WO2014001466A1 - Dispositif et procédé de surveillance d'un réseau électrique - Google Patents

Dispositif et procédé de surveillance d'un réseau électrique Download PDF

Info

Publication number
WO2014001466A1
WO2014001466A1 PCT/EP2013/063547 EP2013063547W WO2014001466A1 WO 2014001466 A1 WO2014001466 A1 WO 2014001466A1 EP 2013063547 W EP2013063547 W EP 2013063547W WO 2014001466 A1 WO2014001466 A1 WO 2014001466A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
electrical
processing
electrical network
detection
Prior art date
Application number
PCT/EP2013/063547
Other languages
English (en)
Inventor
Thomas Klonowski
Ludovic YBANEZ
Original Assignee
Labinal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Labinal filed Critical Labinal
Priority to US14/411,164 priority Critical patent/US10120013B2/en
Priority to EP13731827.5A priority patent/EP2867685B1/fr
Priority to BR112014032109-4A priority patent/BR112014032109B1/pt
Priority to CA2877664A priority patent/CA2877664C/fr
Priority to RU2015102676A priority patent/RU2631492C2/ru
Priority to CN201380034603.7A priority patent/CN104620119B/zh
Publication of WO2014001466A1 publication Critical patent/WO2014001466A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the present invention relates to a method and a device for monitoring an electrical network for the detection of faults or first steps of failure in an electrical network.
  • An electrical network is used to route electrical energy to different electrical loads and has conventional protection against short-circuits, over-currents or other failures.
  • the conventional protection means make it possible to avoid the total degradation of the network and are effective when the defects are energetic like the short circuits, continuous and progressive as the overloads, punctual but with strong variations in current and in tension, or repetitive in the weather.
  • detection techniques consisting of measuring electrical signals and processing these signals in time and frequency.
  • this kind of detection has the disadvantage of not being very reliable and in particular in case of detection of bow or arc tracking beginnings.
  • this detection technique requires several confirmations, which increases the detection time and does not allow the location of the defect.
  • detection techniques based on the principle of reflectometry which consists in injecting a voltage into the network and analyzing the reflection caused by a possible defect in order to locate this defect.
  • OTDR is not suitable for use in certain types of networks.
  • the object of the present invention is therefore to provide a device and a monitoring method that is simple to implement and is capable of quickly and reliably detecting and locating faults in an electrical network of any kind without injecting signals. in said network.
  • the present invention is defined by a device for monitoring an electrical network, comprising:
  • processing means for spatially locating said event of defect in the electrical network according to said first and second time references.
  • the device according to the invention implements in a simple manner, without signal injection in the monitored network, a non-intrusive detection of the electrical and complementary signals in order to perform a global fault analysis by coupling the information from the electrical signals created. by an electrical fault (of the type first arcs, arcs, arc tracking, and partial discharges) with those from complementary signals created simultaneously by the same electrical fault.
  • an electrical fault of the type first arcs, arcs, arc tracking, and partial discharges
  • This allows a reliable detection and a fairly accurate spatial location of the fault in the network (which can be alternating type, continuous or cut) without disrupting the operation of the power grid.
  • said processing means are configured to define the first and second time references by applying a signal processing analysis on said electrical signals and said complementary signals respectively, said processing analysis being chosen from among the following processing techniques: processing by transformation wavelet, Fourier treatment, and Wigner-Ville treatment.
  • the wavelet transformation analysis is very suitable for recognizing in a simple and precise manner the signature of a defect having a stealth and / or non-linear nature such as an electric discharge.
  • said processing means are configured to apply discrete wavelet transform analysis.
  • the discrete transform enables a reliable rebuilding of the signal in a fast manner while avoiding the redundancy of information during the encoding thus making it possible to minimize the storage space and the memory size.
  • said processing means are configured to make a mapping identifying the location of nonlinear normal loads in said power grid and discriminating a real fault event from an event caused by a nonlinear normal load identified in said mapping, thereby avoiding the risk of untimely way.
  • said processing means are configured to determine values relating to quantitative factors of the defect, to compare said values with critical thresholds, and to trigger an immediate cutoff when one of said values exceeds the critical threshold.
  • said processing means are configured to record all the fault events.
  • the detection means comprise first means for detecting said electrical signals and second means for detecting said complementary signals, said first and second detection means being installed in the same geographical location upstream of the electrical network. .
  • said complementary signals are mechanical wave signals.
  • the invention also relates to an electrical network system in an aircraft comprising a monitoring device according to any one of the preceding characteristics. It should be noted that the invention is applicable to all electrical networks (building, ship, railway, automobile, aircraft, etc.).
  • the invention also relates to a method of monitoring an electrical network, comprising the following steps:
  • the complementary signals being of a different physical nature from the electrical signals
  • Fig. 1 schematically illustrates a monitoring device of an electrical network, according to the invention
  • Figs. 2A-2C illustrate the various steps of a wavelet analysis process according to the invention
  • Fig. 3 schematically illustrates a device for monitoring a electrical network according to a preferred embodiment of the invention
  • Fig. 4 is a block diagram illustrating the signal processing by the processing means of FIG. 3 according to a discrete wavelet transform technique
  • Figs. 5A and 5B illustrate examples of low-pass and high-pass filters used in the block logic diagram of FIG. 4;
  • Figs. 6A-6C are graphs illustrating the detection of a fault event on electrical and mechanical signals according to the invention.
  • Fig. 7 is a flow chart illustrating an analysis of the evolution of a defect to quantify its dangerousness, according to the invention.
  • the concept underlying the invention is based on the coupling of the analysis of electrical signals created by an electrical fault with the analysis of complementary signals of different natures created by the same electrical fault.
  • FIG. 1 schematically illustrates a monitoring device 1 of an electrical network 3, according to the invention.
  • This device comprises detection means 5 and processing means 7 usually comprising input means 9, calculation means 11, storage means 13, and output means 15.
  • the processing means 7 can be used to execute a computer program stored in the storage means 13 and including code instructions for implementing the monitoring method according to the invention.
  • the detection means 5 are configured to non-intrusively detect electrical signals SI and complementary signals S2 produced in the electrical network 3 and whose propagation speeds are known.
  • the complementary signals S2 are of a different physical nature from the electrical signals SI and can be sound waves, ultrasonic waves, shock waves, light waves, radio waves, etc.
  • the detection means 5 comprise first detection means 51 for detecting the electrical signals SI and second means detecting means 52 for detecting complementary signals S2.
  • the first and second detection means 51, 52 are installed in the same geographical location upstream of the electrical network 3.
  • the processing means 7 are configured to process and analyze the electrical signals S1 and complementary S2 received via the input means 9 from the detection means 5.
  • the processing means 7 and more particularly the calculation means 11 are configured to define a first time reference t1 representative of a detection time of the electrical signals SI emitted during a fault event E occurring in the network electrical 3 and a second time reference t2 representative of a detection time complementary signals S2 issued during the same event E fault.
  • the processing means 7 are configured to apply a time-frequency signal processing technique on the electrical signals SI and on the complementary signals S2 in order to recognize the signature of the electrical fault E which generally has a stealth character and not linear.
  • the signal processing technique may be a short-term Fourier analysis, a wavelet (continuous or discrete) transformation analysis, or a Wigner-Ville analysis.
  • Short-term Fourier analysis is a time-frequency analysis of the segment-measured signal that can detect non-stationary phenomena.
  • the Fourier analysis keeps a fixed analysis window and convolves the signal to be analyzed by sinusoidal test signals, and therefore there is a compromise to be made between the detection of low frequency phenomena and those of high frequencies.
  • the wavelet transform analysis allows a balanced spatio-temporal location that does not favor one frequency domain over another, in order to obtain a balance between the temporal location and the frequency localization of a signal.
  • the basic principle of this method is to compress or stretch the wavelets so that they automatically adapt to the different components of the signal according to a so-called multi-resolution analysis.
  • This analysis uses a narrow window to detect transient components of high frequencies and a wide window to detect low frequency components (or long durations).
  • the wavelet transformation consists in creating, from a mother wavelet ⁇ , a family of wavelets (or family of functions) ⁇ ( ⁇ + b) which are affine functions where a and b are numbers real.
  • the factor ⁇ (called expansion scale) is used to dilate ( ⁇ > 1) or to compress ( ⁇ ⁇ 1) the function i and the term b (called translation factor) is used to translate it.
  • the wavelet transformation technique consists in transforming a signal f (t) into a two-variable function C (a, b) called "wavelet coefficient" as follows:
  • Figs. 2A-2C illustrate the various steps of the wavelet analysis process.
  • the first step (Fig. 2A) consists in choosing a wavelet ⁇ and comparing it to a part of the signal f (t) starting at the same initial time as the original signal.
  • the second step (FIG 2A) consists of calculating a number C corresponding to the wavelet coefficient.
  • the higher this coefficient the more similar is the signal interval to the wavelet.
  • the wavelet coefficient can be interpreted as a correlation coefficient if the signal and the wavelet are of unit energy. Thus, the more this coefficient tends to 1, the higher the probability of detecting the event of a fault.
  • C 0.0102 but of course, the value of the coefficient also depends on the shape and properties of the wavelet chosen (orthogonal, biorthogonal, oblique, non-orthogonal, wavelet support, oscillation of the wavelet, etc.).
  • the third step (Fig. 2B) is to translate the wavelet ⁇ to the right (that is, in the direction of time) and then repeat the first and second steps until they cover the the entire signal.
  • the fourth step (FIG 2C) is to dilate or contract (according to the algorithm used) the wavelet, then repeat the previous steps.
  • the fifth step is to repeat the previous steps for each expansion scale.
  • the wavelet in the case of a continuous transformation, can be translated and expanded indefinitely (within the sampling time limit of the computer processing means), which results in the encroachment of the wavelet. wavelets one on the other.
  • the advantage that emerges is that the information encoded by a wavelet is also encoded by these neighbors. This induces the notion of information redundancy (in practice the continuous transform is redundant by a factor of 10).
  • Another advantage is the translation invariance and therefore the need not to specify the origin of the encoding. In other words, the coefficients do not change if we move the origin and it is therefore easier to analyze the data and to recognize the patterns.
  • the expansion factors a and translation b are based on a power of 2 giving a representation which is called dyadic.
  • the processing means 7 determine the first and second time references t1 and t2 respectively corresponding to the instants of detection of electrical signals and complementary signals emanating from a fault event E.
  • the time references tl and tl correspond to the instants of occurrences of very high wavelet coefficients with respect to the electrical signals SI and complementary S2.
  • processing means 7 are configured to spatially locate the fault event in the electrical network 3 as a function of the first and second time references t1 and t2.
  • the processing means 7 are furthermore configured to map the electrical network 3 in order to identify the location of the nonlinear normal loads having signatures similar to those of the defects, and to record the data of the mapping in the storage means 13. This allows the processing means 7 to discriminate a real event E fault with respect to an event caused by a nonlinear normal load identified in the map.
  • the processing means 7 are configured to determine values relating to quantitative factors of the defect E which can be its duration, its energy, and its progress on the network 3. This allows the processing means 7 to quantify the criticality of the defect by comparing each of these values with a corresponding critical threshold. Thus, the processing means 7 trigger via the output means 15 an immediate cut of the network 3 when one of these values exceeds the corresponding critical threshold. On the other hand, if the critical thresholds are not reached, the defect and its characteristics are kept in memory in the storage means 13 while keeping the network 3 in service.
  • processing means 7 are configured to record in memory all the fault events and their characteristics in order to evaluate the degradation of the network 3 over time.
  • FIG. 3 is shown a monitoring device of an electrical network according to a preferred embodiment of the invention.
  • the electrical network 3 comprises a power supply 31, electrical charges 33, at least one protection circuit breaker 35, and electrical cables 37.
  • the monitoring device 1 is connected to the electrical network 3 and comprises detection means 5 and processing means 7.
  • the monitoring is based on a double detection.
  • the first detection relates to the detection of the electrical phenomenon by measuring and analyzing the current Sla and the electrical voltage Slb of the monitored line.
  • the second detection relates to the detection of complementary signals S2a of the same phenomenon in order to confirm its detection and locate them.
  • the complementary signals S2a are mechanical wave or vibration signals of the acoustic or ultrasonic type which have a very good propagation in copper or in aluminum.
  • W being the energy dissipated in the arc. It should be noted that an electric arc can create at its birth a noise up to 120 dBA.
  • the detection means 5 comprise first detection means 51a, 51b of the electrical signals Sla, Slb and second detection means 52a of the mechanical wave signals S2a.
  • the first detection means 51a, 51b comprise electrical current measuring means 51a and electrical voltage measuring means 51b and the second detection means comprise mechanical vibration measuring means 52a.
  • the different measuring means 51a, 51b and 52a are installed upstream of the electrical network 3 in the same geographical location.
  • the measuring means can for example be integrated in a circuit breaker 35 for protecting the electrical network 3.
  • the current measurement means 51a use, in known manner, a technology (for example of the current shunt type, current toroid, etc.) adapted to the nature of the electrical network 3 which may be of the alternating, continuous or cut-off type. Current measurement is performed downstream of the protection circuit breaker 35 and in a bandwidth that can go up to a few hundred kHz.
  • the detection means 51a-52a and processing means 7 of the monitoring device can be self-powered by the current measurement means 51a as a function of the current flowing in the line 37.
  • the voltage measuring means 51b also use a technology adapted to the nature of the power grid 3 with a bandwidth of up to a few hundred kHz.
  • the voltage measuring means 51b are also installed downstream of the protection circuit breaker 35 and as close as possible to the current measuring means 51a.
  • the mechanical vibration measuring means 52a are also installed geographically closer to the voltage measuring means 51b and current 51a and downstream of the protection circuit breaker 35 in order to precisely locate the location of the fault.
  • the mechanical vibration measuring means 52a have a bandwidth of up to a few hundred kHz and may comprise amplifiers as well as elements of microphonic, piezoelectric or accelerometric type.
  • the measurement of mechanical vibration is preferably performed on the core of a conductor because it is at this point that the attenuation of the vibration is minimal compared to a measurement made on an insulator.
  • the detection means comprise second mechanical vibration measuring means 52b placed on the return of the specific current to the monitored line and as close as possible to the protection circuit breaker 35. This makes it possible to increase the accuracy of the spatial location of the fault event and to determine its nature.
  • the signature of the mechanical vibration sensed by the two mechanical vibration measuring means 52a, 52b will be similar. However, for a series type defect E2, the signature will be different on the two measuring means 52a, 52b since the mechanical vibration will have to pass through the load 33 for one of the two measuring means 52a, 52b. In this case, it is necessary to take into account effects of distortions, attenuations, and / or acquisition delays on the measuring means furthest from the defect E2.
  • processing means 7 comprise calculation means 11, storage means 13, input means 9 connected to analog / digital converters "CAN" 21 interfacing the different measuring means 51a-52b, and output means 15 connected to output devices such as screens, alarms, circuit breakers, and / or printers (not shown).
  • FIG. 4 is a block diagram illustrating the signal processing by the processing means of FIG. 3 according to the discrete wavelet transform technique.
  • the processing means 7 are configured to continuously analyze, by discrete wavelet transforms, the electrical signals Sla, Slb and mechanical signals S2a, S2b propagating via the electrical network 3.
  • Bl block corresponds to the acquisition of electrical signals Sla, Slb. More particularly, the block Bla relates to the acquisition of the electric current Sla and the block Blb relates to the acquisition of the electrical voltage Slb.
  • Block B2 corresponds to the acquisition of mechanical signals S2a, S2b. Note that for reasons of synchronism in the analysis, the acquisition of electrical signals Sla, Slb and mechanical S2a, S2b is made with the same time base and therefore with the same sampling frequency.
  • the different current signals Sla, of voltage Slb, and mechanical waves S2a, S2b are decomposed in the blocks B3a, B3b, and B3c respectively.
  • the block B3a is detailed knowing that the principle of decomposition is the same for the three signals.
  • the multi-resolution technique known to those skilled in the art which provides a simple and rapid algorithm for decomposing a signal into its components at different scales, is used.
  • one filters with a low pass filter (blocks B31a and B33a) to obtain the coefficients of approximation and with a high pass (blocks B32a and B34a) to obtain the coefficients of detail then one decimates the result in exit of the filter. In other words, we take a sample out of two at the output of each filter.
  • the low-pass filter may be associated with the ladder function (Daubechies type 3) shown in FIG. 5A which gives a coarse image of the signal while the high-pass filter can be associated with the mother wavelet (Daubechies type 3) shown in FIG. 5B which encodes the details.
  • the start signal Sla is first filtered with first low-pass filters (block B31a) and high-pass filters (block B32a).
  • the signal at the output of one of the first two filters is kept for analysis while the signal at the output of the other filter is filtered again with second low-pass filters (block B33a) and high-pass (block B34a). This process is repeated a specified number of times to decompose the signal into a sequence of components at different scales. These components are then analyzed to detect the occurrence of defects.
  • the presence of high wavelet coefficients on a scalogram type graph (blocks B4b) will define the time t2 (blocks B5b) knowing that a mechanical signal has a slower propagation towards the measuring means.
  • Figs. 6A-6C are graphs illustrating the detection of a fault event E on electrical signals Sla, Slb and mechanical S2a, S2b.
  • FIG. 6A illustrates an electrical signal (current Sla or voltage Slb) and Figs. 6B and 6C illustrate first and second mechanical signals S2a, S2b (e.g., sound wave signals) relating to first and second mechanical sensing means 52a, 52b (e.g., first and second mics).
  • first and second mechanical signals S2a, S2b e.g., sound wave signals
  • scalograms (not shown) are obtained on which it is easy to identify the highest wavelet coefficients representative of the occurrences of defects.
  • the instant t1 indicates the beginning of the detection of the fault on the electrical signal SI and the instant t2 indicates the beginning of the detection of the same fault on the mechanical signal S2b of one of the mechanical detection means.
  • the delay of the acquisition t3-t2 of the mechanical signature of the fault event between the two mechanical detection means 52a, 52b makes it possible to increase the accuracy of the spatial location of the defect.
  • the calculation means 11 determine the spatial location of the defect E.
  • the distance D of the defect with respect to the detection means 51a-52b can be determined as a function of the delay ⁇ and the propagation velocities v1 and v2 electric and mechanical waves using the following relation:
  • the propagation velocity v2 of the mechanical wave in copper or in other conducting metals is very slow (typically 3570 m / s in copper) with respect to the propagation velocity v1 of the electric waves (typically 273000000m / s in copper).
  • the distance D can be calculated with great precision by the simple multiplication of the propagation velocity v2 of the mechanical wave by the duration of the delay At.
  • the detection time of the event of defect E depends, of course, on its distance and the speed of propagation of the mechanical wave. For example, the detection of a fault E at 10 m of the detection means 51 a-52 b should take less than 3 ms.
  • the processing means 7 deliver, via the output means 15, the temporal, frequency and spatial coordinates of the fault event E.
  • the detection method according to the invention is robust and has the advantage of discriminating the signature of the charge signals which are connected to the network 3 but may have a non-linear character, and thus avoid the risk of cutting network 3 inadvertently and especially without reason. Indeed, from the beginning of the establishment of the monitoring device 1 as close as possible to the control or protection tools (circuit breaker 35), it can continuously map the electrical network 3 that they protect and identify. place of charges having electrical and mechanical signatures similar to the first defect that is to be detected.
  • the monitoring device 1 defines the areas with non-linear loads. This allows the monitoring device 1 to distinguish an operation of a nonlinear normal load from a fault event by the fact that the load causes repetitive and periodic signals without change of position on the network 3 and without associated mechanical phenomena. While the defect generates stealth signals, aperiodic and variable in terms of energy and location on the electrical network 3 coupled with characteristic mechanical phenomena.
  • the detection method according to the invention makes it possible, for reasons of continuity of service of certain electrical networks, to ensure maximum maintenance of the latter, despite the initialities of defect that may exist during their use.
  • FIG. 7 is a flowchart illustrating an analysis of the evolution of the defect in order to quantify the dangerousness of the presence of the defect.
  • step B12 it is checked whether the fault duration or the energy dissipated in the fault exceeds a first predetermined threshold.
  • the fault duration and the dissipated energy can be characterized by the evolution of the density of the successive high wavelet coefficients. If the outcome of the test B12 is positive, go to step B14 and if not go to step B13.
  • step B13 it is checked whether the progress of the fault on the network exceeds a second predetermined threshold.
  • the defect progress or the spatial evolution of the fault in the network can be characterized by analyzing the reduction of the delay between the propagation of the electrical signals and the propagation of the mechanical signals. If the outcome of the B13 test is positive, we go to step B14 and otherwise we go to step B15.
  • first and second predetermined thresholds can be scaled according to the characteristics of the last occurrences of defects.
  • Step B14 indicates that the danger threshold of the fault has been reached and in this case, the processing means 7 trigger the shutdown of the faulty circuit.
  • the processing means 7 record the fault parameters in the storage means 13. It will therefore be possible to note these parameters later to provide an appropriate maintenance program before the network failure.
  • step B14 a threshold of danger resulting in the immediate shutdown of the circuit in default. If none of the conditions are reached, then the fault and its characteristics will be kept in memory (step B15).
  • the invention is applicable to all electrical networks in buildings, ships, automobiles, aircraft, as well as rail networks.
  • the monitoring device is particularly suitable for monitoring the electrical wiring in an aircraft. It is used to analyze the electrical and mechanical signals in the aircraft wiring to determine the difference between time between the detection of the electrical and mechanical signals of a fault event, to determine the distance of the anomaly, to determine the energies involved in the events treated, and to record all the behaviors in order to evaluate degradation of wiring over time. It will be noted that the monitoring device 1 can then be integrated in a specific housing or be part of an electronic control unit existing in the aircraft.
  • the detection means can be connected to means for acquiring and processing an onboard computer, an electromechanical circuit breaker, or any other equipment in the aircraft to operate the monitoring method according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

L'invention concerne un procédé et un dispositif de surveillance d'un réseau électrique, comportant : - des moyens de détection (51a-52b) de signaux électriques (S1a, S1b) et de signaux complémentaires (S2a, S2b) produits dans le réseau (3) électrique, les signaux complémentaires (S2a, S2b) étant de nature physique différente des signaux électriques (S1a, S1b), - des moyens de traitement (7) desdits signaux électriques pour définir une première référence temporelle (t1) représentative d'un instant de détection des signaux électriques émis lors d'un événement de défaut (E1, E2) survenu dans le réseau électrique, - des moyens de traitement (7) desdits signaux complémentaires pour définir une seconde référence temporelle (t2) représentative d'un instant de détection des signaux complémentaires émis lors dudit événement de défaut survenu dans le réseau électrique, et - des moyens de traitement pour localiser spatialement ledit événement de défaut dans le réseau électrique en fonction desdites première et seconde références temporelles (t1, t2).

Description

DISPOSITIF ET PROCÉDÉ DE SURVEILLANCE D'UN RÉSEAU ÉLECTRIQUE
DOMAINE TECHNIQUE
La présente invention concerne un procédé et un dispositif de surveillance d'un réseau électrique pour la détection de défauts ou prémices de panne dans un réseau électrique.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Un réseau électrique permet d'acheminer l'énergie électrique à différentes charges électriques et comporte des moyens de protection conventionnels vis-à-vis de courts-circuits, de surintensités ou d'autres défaillances.
Les moyens de protection conventionnels permettent d'éviter la dégradation totale du réseau et sont efficaces quand les défauts sont énergétiques comme les courts- circuits, continus et progressifs comme les surcharges, ponctuels mais avec de fortes variations en courant et en tension, ou répétitifs dans le temps.
Or, les moyens conventionnels ne sont que très peu efficaces contre les défauts et leurs prémices de natures furtives, non stationnaires, et très peu énergétiques.
Toutefois, de part leur caractère difficilement détectable ces défauts qui appartiennent à la famille des décharges électriques (par exemple, prémices de l'amorçage d'arc électrique, impulsion de trichel, aigrettes, etc.) peuvent endommager le câblage du réseau électrique.
Les défauts dus à des décharges électriques sont en général bien connus mais sont encore à ce jour très mal détectés et leurs conséquences mal diagnostiquées.
Actuellement, il existe des techniques de détection consistant à mesurer des signaux électriques et à traiter ces signaux en temps et en fréquence. Cependant, ce genre de détection présente l'inconvénient de ne pas être très fiable et en particulier en cas de détection de prémices d'arcs ou d'arc tracking. De plus, cette technique de détection nécessite plusieurs confirmations, ce qui augmente le temps de détection et ne permet pas la localisation du défaut. Il existe d'autres techniques de détection basées sur le principe de réflectométrie qui consiste à injecter une tension dans le réseau et à analyser la réflexion provoquée par un éventuel défaut afin de localiser ce défaut.
Cependant, l'injection d'une tension sur une ligne nécessite une maîtrise de l'impédance de la ligne, un couplage à la ligne, une distance au référentiel de masse à respecter, etc., entraînant une mise en œuvre complexe. En outre, la réflectométrie n'est pas adaptée pour être utilisée dans certains types de réseaux.
Par ailleurs, les différentes techniques actuelles ne sont pas exhaustives sur la détection de défauts sur tout type de réseau qui peut être de nature alternatif, continu ou découpé.
L'objet de la présente invention est par conséquent de proposer un dispositif et un procédé de surveillance simple à mettre en œuvre et qui est capable de détecter et de localiser rapidement et avec fiabilité les défauts dans un réseau électrique de nature quelconque sans injecter des signaux dans ledit réseau.
EXPOSÉ DE L'INVENTION
La présente invention est définie par un dispositif de surveillance d'un réseau électrique, comportant :
- des moyens de détection de signaux électriques et de signaux complémentaires produits dans le réseau électrique, les signaux complémentaires étant de nature physique différente des signaux électriques,
- des moyens de traitement desdits signaux électriques pour définir une première référence temporelle représentative d'un instant de détection des signaux électriques émis lors d'un événement de défaut survenu dans le réseau électrique, - des moyens de traitement desdits signaux complémentaires pour définir une seconde référence temporelle représentative d'un instant de détection des signaux complémentaires émis lors dudit événement de défaut survenu dans le réseau électrique, et
- des moyens de traitement pour localiser spatialement ledit événement de défaut dans le réseau électrique en fonction desdites première et seconde références temporelles.
Ainsi, le dispositif selon l'invention met en œuvre de manière simple, sans injection de signaux dans le réseau surveillé, une détection non intrusive des signaux électriques et complémentaire afin de réaliser une analyse globale du défaut en couplant les informations issues des signaux électriques créés par un défaut électrique (du type prémices d'arcs, arcs, arc tracking, et décharges partielles) avec celles issues des signaux complémentaires créés simultanément par le même défaut électrique. Ceci permet une détection fiable et une localisation spatiale assez précise du défaut dans le réseau (qui peut être de type alternatif, continu ou découpé) sans perturber le fonctionnement du réseau électrique.
Avantageusement, lesdits moyens de traitement sont configurés pour définir les première et seconde références temporelles en appliquant une analyse de traitement de signal sur lesdits signaux électriques et lesdits signaux complémentaires respectivement, ladite analyse de traitement étant choisie parmi les techniques de traitement suivantes : traitement par transformation en ondelettes, traitement de Fourier, et traitement de Wigner-Ville.
Toutes ces analyses ainsi que d'autres techniques de traitement peuvent être appliquées sur les signaux électriques et complémentaires. Plus particulièrement, l'analyse par transformation en ondelettes est très adaptée pour reconnaître de manière simple et précise la signature d'un défaut ayant un caractère furtif et/ou non linéaire tel qu'une décharge électrique.
Avantageusement, lesdits moyens de traitement sont configurés pour appliquer des analyses par transformation en ondelettes discrète. La transformée discrète permet une reconstruction fiable du signal de manière rapide tout en évitant la redondance d'information lors de l'encodage permettant alors de minimiser l'espace de sauvegarde et la taille de mémoire.
Avantageusement, lesdits moyens de traitement sont configurés pour faire une cartographie identifiant la localisation des charges normales non linéaires dans ledit réseau électrique et pour discriminer un événement de défaut réel par rapport à un événement provoqué par une charge normale non linéaire identifiée dans ladite cartographie, Ceci permet d'éviter le risque de couper le réseau de façon intempestive.
Avantageusement, lesdits moyens de traitement sont configurés pour déterminer des valeurs relatives à des facteurs quantitatifs du défaut, de comparer lesdites valeurs à des seuils critiques, et de déclencher une coupure immédiate lorsqu'une desdites valeurs dépasse le seuil critique. Ceci permet de quantifier la criticité du défaut afin de maintenir la continuité de service du réseau électrique lorsque des prémices de défauts non critiques sont détectées tout en déterminant le moment où le défaut atteint un seuil de dangerosité nécessitant la coupure immédiate du circuit en défaut.
Avantageusement, lesdits moyens de traitement sont configurés pour enregistrer l'ensemble des événements de défauts.
Ceci permet d'évaluer la dégradation du réseau dans le temps.
Selon une particularité de la présente invention, les moyens de détection comportent des premiers moyens de détection desdits signaux électriques et des seconds moyens de détection desdits signaux complémentaires, lesdits premiers et seconds moyens de détection étant installés en un même endroit géographique en amont du réseau électrique.
Avantageusement, lesdits signaux complémentaires sont des signaux d'ondes mécaniques.
Ceci permet la détermination des coordonnées de l'événement de défaut avec une très grande précision. On notera que la précision de la localisation d'un défaut est directement proportionnelle à l'écart des vitesses de propagation des signaux électriques et mécaniques et que la propagation des ondes mécaniques est beaucoup plus faible que celle des signaux électriques. L'invention vise également un système de réseau électrique dans un aéronef comportant un dispositif de surveillance selon l'une quelconque des caractéristiques précédentes. On notera que l'invention est applicable à tous les réseaux électriques (bâtiment, navire, ferroviaire, automobile, aéronef, etc.).
L'invention vise aussi un procédé de surveillance d'un réseau électrique, comportant les étapes suivantes :
- détection de signaux électriques et de signaux complémentaires produits dans le réseau électrique, les signaux complémentaires étant de nature physique différente des signaux électriques,
- traitement desdits signaux électriques pour définir une première référence temporelle représentative d'un instant de détection des signaux électriques émis lors d'un événement de défaut survenu dans le réseau électrique,
- traitement desdits signaux complémentaires pour définir une seconde référence temporelle représentative d'un instant de détection des signaux complémentaires émis lors dudit événement de défaut survenu dans le réseau électrique, et
- traitement pour localiser spatialement ledit événement de défaut dans le réseau électrique en fonction desdites première et seconde références temporelles.
BRÈVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de modes de réalisation préférentiels de l'invention faits en référence aux figures jointes parmi lesquelles :
La Fig. 1 illustre de manière schématique un dispositif de surveillance d'un réseau électrique, selon l'invention ;
Les Figs. 2A-2C illustrent les différentes étapes d'un processus d'analyse par ondelettes, selon l'invention ;
La Fig. 3 illustre de manière schématique un dispositif de surveillance d'un réseau électrique selon un mode de réalisation préféré de l'invention ;
La Fig. 4 est un logigramme par bloc illustrant le traitement des signaux par les moyens de traitement de la Fig. 3 selon une technique de transformée en ondelette discrète ;
Les Figs. 5A et 5B illustrent des exemples de filtres passe-bas et passe-haut utilisés dans le logigramme par bloc de la Fig. 4 ;
Les Figs. 6A-6C sont des graphiques illustrant la détection d'un événement de défaut sur des signaux électrique et mécanique, selon l'invention ; et
La Fig. 7 est un organigramme illustrant une analyse de l'évolution d'un défaut permettant de quantifier sa dangerosité, selon l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le concept à la base de l'invention repose sur le couplage de l'analyse des signaux électriques crées par un défaut électrique avec l'analyse de signaux complémentaires de natures différentes créés par le même défaut électrique.
La Fig. 1 illustre de manière schématique un dispositif de surveillance 1 d'un réseau 3 électrique, selon l'invention. Ce dispositif comporte des moyens de détection 5 et des moyens de traitement 7 comprenant habituellement des moyens d'entrée 9, des moyens de calcul 11, des moyens de stockage 13, et des moyens de sortie 15. En particulier, les moyens de traitement 7 peuvent être utilisés pour exécuter un programme d'ordinateur enregistré dans les moyens de stockage 13 et comportant des instructions de code pour la mise en œuvre du procédé de surveillance selon l'invention.
Les moyens de détection 5 sont configurés pour détecter de manière non intrusive, des signaux électriques SI et des signaux complémentaires S2 produits dans le réseau électrique 3 et dont les vitesses de propagation sont connues. Les signaux complémentaires S2 sont de nature physique différente des signaux électriques SI et peuvent être des ondes sonores, des ondes ultrasonores, des ondes de choc, des ondes lumineuses, des ondes radios, etc.
Plus particulièrement, les moyens de détection 5 comportent des premiers moyens de détection 51 pour détecter les signaux électriques SI et des seconds moyens de détection 52 pour détecter les signaux complémentaires S2. Les premiers et seconds moyens de détection 51, 52 sont installés en un même endroit géographique en amont du réseau électrique 3.
Les moyens de traitement 7 sont configurés pour traiter et analyser les signaux électriques SI et complémentaires S2 reçus via les moyens d'entrée 9 depuis les moyens de détection 5.
En premier lieu, les moyens de traitement 7 et plus particulièrement les moyens de calcul 11 sont configurés pour définir une première référence temporelle tl représentative d'un instant de détection des signaux électriques SI émis lors d'un événement de défaut E survenu dans le réseau électrique 3 ainsi qu'une seconde référence temporelle t2 représentative d'un instant de détection des signaux complémentaires S2 émis lors du même événement de défaut E.
En effet, les moyens de traitement 7 sont configurés pour appliquer une technique de traitement du signal temps-fréquence sur les signaux électriques SI et sur les signaux complémentaires S2 afin de reconnaître la signature du défaut électrique E qui présente en général un caractère furtif et non linéaire. La technique de traitement du signal peut être une analyse de Fourier à court terme, une analyse par transformation (continue ou discrète) en ondelettes, ou une analyse par la méthode de Wigner-Ville.
L'analyse de Fourier à court terme est une analyse temps-fréquence du signal mesuré par segments qui permet de détecter les phénomènes non stationnaires. Toutefois, l'analyse de Fourier garde une fenêtre d'analyse fixe et convole le signal à analyser par des signaux test sinusoïdaux, et par conséquent, il y a un compromis à faire entre la détection de phénomènes basses fréquences et ceux de hautes fréquences.
L'analyse par transformation en ondelettes permet une localisation spatio- temporelle équilibrée qui ne privilégie pas un domaine de fréquence au détriment d'un autre, ceci par souci d'obtenir un équilibre entre la localisation temporelle et la localisation fréquentielle d'un signal.
Le principe de base de cette méthode est le fait de comprimer ou d'étirer les ondelettes afin qu'elles s'adaptent automatiquement aux différentes composantes du signal selon une analyse dite de multi-résolution. Cette analyse utilise une fenêtre étroite pour détecter les composantes transitoires de hautes fréquences et une fenêtre large pour détecter les composantes de basses fréquences (ou de longues durées).
De manière générale, la transformation en ondelettes consiste à créer, à partir d'une ondelette mère ψ, une famille d'ondelettes (ou famille de fonctions) ψ(αχ + b) qui sont des fonctions affines où a et b sont des nombres réels. Le facteur σ (appelé échelle de dilatation) sert à dilater (σ>1) ou à comprimer (α<1) la fonction i et le terme b (appelé facteur de translation) sert à la translater.
La technique de transformation en ondelettes consiste à transformer un signal f(t) en une fonction C(a,b) à deux variables appelée « coefficient d'ondelette » de la manière suivante :
+∞
C(a, b) = f(t) x y/(at + b)dt
Les Figs. 2A-2C illustrent les différentes étapes du processus d'analyse par ondelettes.
La première étape (Fig. 2A) consiste à choisir une ondelette ψ et à la comparer à une partie du signal f(t) en commençant au même instant initial que le signal d'origine.
La deuxième étape (Fig. 2A) consiste à calculer un nombre C correspondant au coefficient d'ondelette. Plus ce coefficient est élevé plus il y a ressemblance entre l'intervalle du signal et l'ondelette. Le coefficient d'ondelette peut être interprété comme un coefficient de corrélation si le signal et l'ondelette sont d'énergie unitaire. Ainsi, plus ce coefficient tend vers 1 plus la probabilité de détecter l'événement d'un défaut sera élevée.
Selon l'exemple de la Fig. 2A, C=0,0102 mais bien entendu, la valeur du coefficient dépend aussi de la forme et des propriétés de l'ondelette que l'on choisit (orthogonale, biorthogonale, oblique, non orthogonal, support de l'ondelette, oscillation de l'ondelette, etc.).
La troisième étape (Fig. 2B) consiste à translater l'ondelette ψ vers la droite (c'est-à-dire, dans le sens du temps) puis on répète les première et deuxième étapes jusqu'à ce qu'elles couvrent la totalité du signal. La quatrième étape (Fig. 2C) consiste à dilater ou à contracter (selon l'algorithme utilisé) l'ondelette, puis on répète les étapes précédentes.
La cinquième étape consiste à répéter les étapes précédentes pour chaque échelle de dilatation.
On notera que dans le cas d'une transformation continue, on peut translater et dilater l'ondelette, d'une façon indéfinie (dans la limite du pas d'échantillonnage des moyens informatiques de traitement), ce qui a pour conséquence l'empiétement des ondelettes l'une sur l'autre. L'avantage qui en ressort est que l'information encodée par une ondelette soit aussi encodée par ces voisines. Cela induit la notion de redondance d'information (en pratique la transformée continue est redondante par un facteur 10). Un autre avantage est l'invariance par translation et donc la non nécessité de préciser l'origine de l'encodage. Autrement dit, les coefficients ne changent pas si on déplace l'origine et il est donc plus facile d'analyser les données et de reconnaître les motifs.
En revanche, dans une transformation discrète, on ne translate et on ne dilate l'ondelette que selon des valeurs discrètes :
+∞
C(a,b) = J/(0 x Ψ(αί + fc)i/f avec a = 2J ,b = kl1 , {j,k) e Z2
Dans ce cas, les facteurs de dilatation a et de translation b sont basés sur une puissance de 2 donnant une représentation que l'on appelle dyadique. Cela signifie que les ondelettes fourniront une représentation avec beaucoup moins de redondance d'information que la transformation continue. La redondance d'information dépendra de la structure de l'ondelette que l'on choisit (orthogonale, biorthogonale, oblique, etc.).
L'avantage qui ressort d'une transformée discrète est la reconstruction parfaite du signal tout en évitant la redondance d'information lors de l'encodage. On aura donc un gain dans l'espace de sauvegarde et la taille de mémoire.
Dans le contexte de détection de signaux, il suffit d'identifier les coefficients d'ondelette sans le besoin de reconstruire le signal à partir de ces coefficients. On notera que pour la rapidité de traitement des signaux et l'optimisation de la taille des espaces de sauvegarde, il est plus avantageux d'effectuer une analyse discrète des signaux.
Ainsi, en appliquant par exemple la technique de traitement par transformation discrète en ondelettes, les moyens de traitement 7 déterminent les première et seconde références temporelles tl et t2 correspondants respectivement aux instants de détection des signaux électriques et des signaux complémentaires émanant d'un événement de défaut E. En effet, les références temporelles tl et tl correspondent aux instants d'occurrences de coefficients d'ondelettes très élevés vis-à-vis des signaux électriques SI et complémentaires S2.
En outre, les moyens de traitement 7 sont configurés pour localiser spatialement l'événement de défaut dans le réseau électrique 3 en fonction des première et seconde références temporelles tl et t2.
En effet, en connaissant les vitesses de propagation des signaux électriques SI et complémentaires S2 ainsi que l'écart de temps entre les instants de détection tl et t2, on peut facilement déduire les coordonnées de l'événement de défaut E.
Avantageusement, les moyens de traitement 7 sont en outre configurés pour faire la cartographie du réseau électrique 3 afin d'identifier la localisation des charges normales non linéaires ayant des signatures similaires à celles des défauts, et d'enregistrer les données de la cartographie dans les moyens de stockage 13. Ceci permet aux moyens de traitement 7 de discriminer un événement de défaut E réel par rapport à un événement provoqué par une charge normale non linéaire identifiée dans la cartographie.
En outre, les moyens de traitement 7 sont configurés pour déterminer des valeurs relatives à des facteurs quantitatifs du défaut E qui peuvent être sa durée, son énergie, et son avancement sur le réseau 3. Ceci permet aux moyens de traitement 7 de quantifier la criticité du défaut en comparant chacune de ces valeurs à un seuil critique correspondant. Ainsi, les moyens de traitement 7 déclenchent via les moyens de sortie 15 une coupure immédiate du réseau 3 lorsqu'une de ces valeurs dépasse le seuil critique correspondant. En revanche, si les seuils critiques ne sont pas atteints, le défaut et ses caractéristiques sont gardés en mémoire dans les moyens de stockage 13 tout en maintenant le réseau 3 en service.
On notera que les moyens de traitement 7 sont configurés pour enregistrer en mémoire l'ensemble des événements de défauts et leurs caractéristiques afin d'évaluer la dégradation du réseau 3 dans le temps.
Sur la Fig. 3 est représenté un dispositif de surveillance d'un réseau électrique selon un mode de réalisation préféré de l'invention.
Le réseau électrique 3 comporte une alimentation électrique 31, des charges électriques 33, au moins un disjoncteur 35 de protection, et des câbles électriques 37.
Le dispositif de surveillance 1 est connecté au réseau électrique 3 et comporte des moyens de détection 5, et des moyens de traitement 7.
Comme précédemment, la surveillance est basée sur une double détection. La première détection concerne la détection du phénomène électrique par la mesure et l'analyse du courant Sla et de la tension Slb électrique de la ligne surveillée. La seconde détection concerne la détection des signaux complémentaires S2a du même phénomène afin de pouvoir confirmer sa détection et les localiser. Selon ce mode de réalisation, les signaux complémentaires S2a sont des signaux d'ondes (ou de vibration) mécaniques de type sonore ou ultrasonore qui ont une très bonne propagation dans le cuivre ou dans l'aluminium.
En effet, la création d'un arc électrique, et ceci est d'autant plus vrai sur des réseaux à fortes énergies, est source d'ondes acoustiques qui peuvent avoir des amplitudes très élevées. L'amplitude
Figure imgf000013_0001
des ondes acoustiques d'un arc électrique est donnée par la formule suivante :
\A\ =
dt
W étant l'énergie dissipée dans l'arc. On notera qu'un arc électrique peut créer à sa naissance un bruit atteignant 120 dBA.
Un arc électrique ou une décharge El, E2 étant un phénomène très non linéaire à l'amorçage, la brusque variation de puissance provoquera la transmission de bruit d'amplitude sonore très brève et très élevée dans le conducteur d'un câble. La vitesse du son dans le cuivre étant de 3350 m/s à une température de 25°C, il est donc assez aisé de détecter le moment et l'endroit où aura lieu le défaut dans le réseau 3 électrique. Cette localisation sera d'autant plus précise que la détection se fera en couplant l'analyse des signaux électriques Sla, Slb et l'analyse des signaux sonores ou ultrasonores S2a.
Ainsi, les moyens de détection 5 comportent des premiers moyens de détection 51a, 51b des signaux électriques Sla, Slb et des seconds moyens de détection 52a des signaux d'ondes mécaniques S2a.
Plus particulièrement, les premiers moyens de détection 51a, 51b comportent des moyens de mesure de courant électrique 51a et des moyens de mesure de tension électrique 51b et les seconds moyens de détection comportent des moyens de mesure de vibration mécanique 52a. Les différents moyens de mesure 51a, 51b, et 52a sont installés en amont du réseau électrique 3 dans un même endroit géographique. Les moyens de mesure peuvent par exemple être intégrés dans un disjoncteur 35 de protection du réseau électrique 3.
Les moyens de mesure de courant 51a utilisent de manière connue une technologie (par exemple de type shunt de courant, tore de courant, etc.) adaptée à la nature du réseau électrique 3 qui peut être de type alternatif, continu ou découpé. La mesure du courant est réalisée en aval du disjoncteur 35 de protection et selon une bande passante qui peut aller jusqu'à quelques centaines de kHz.
Avantageusement, les moyens de détection 51a-52a et de traitement 7 du dispositif de surveillance peuvent être autoalimentés par les moyens de mesure de courant 51a en fonction du courant circulant dans la ligne 37.
Les moyens de mesure de tension 51b utilisent également une technologie adaptée à la nature du réseau électrique 3 avec une bande passante pouvant aller jusqu'à quelques centaines de kHz. Les moyens de mesure de tension 51b sont également installés en aval du disjoncteur 35 de protection et au plus près des moyens de mesure de courant 51a.
Les moyens de mesure de vibration mécanique 52a sont installés aussi au plus près géographiquement des moyens de mesures de tension 51b et de courant 51a et en aval du disjoncteur 35 de protection afin de localiser précisément l'endroit du défaut.
Les moyens de mesure de vibration mécanique 52a présentent une bande passante pouvant aller jusqu'à quelques centaines de kHz et peuvent comprendre des amplificateurs ainsi que des éléments de type microphonique, piézoélectrique, ou accélérométrique.
Avantageusement, la mesure de vibration mécanique est de préférence réalisée sur l'âme d'un conducteur car c'est à cet endroit que l'atténuation de la vibration est minimale en comparaison avec une mesure faite sur un isolant.
Selon un mode de réalisation particulier, les moyens de détection comportent des seconds moyens de mesure de vibration mécanique 52b placés sur le retour du courant spécifique à la ligne surveillée et au plus près du disjoncteur 35 de protection. Ceci permet d'augmenter la précision de la localisation spatiale de l'événement de défaut et de déterminer sa nature.
Pour un défaut de type parallèle El, la signature de la vibration mécanique captée par les deux moyens de mesure de vibration mécanique 52a, 52b sera similaire. Toutefois, pour un défaut E2 de type série, la signature sera différente sur les deux moyens de mesure 52a, 52b car la vibration mécanique devra passer par la charge 33 pour un des deux moyens de mesure 52a, 52b. Dans ce cas, il faut prendre en compte des effets de distorsions, atténuations, et/ou retards d'acquisition sur les moyens de mesure les plus éloignés du défaut E2.
Par ailleurs, les moyens de traitement 7 comportent des moyens de calcul 11, des moyens de stockage 13, des moyens d'entrée 9 connectés à des convertisseurs analogiques/numériques « CAN » 21 interfaçant les différents moyens de mesure 51a- 52b, et des moyens de sortie 15 connectés à des périphériques de sortie de type écrans, alarmes, disjoncteurs, et/ou imprimantes (non représentés).
On notera que lorsque la mesure de vibration mécanique est réalisée sur l'âme d'un conducteur, les moyens de mesure de vibration 52a, 52b sont galvaniquement isolés des moyens de traitement 7 par des fibres optiques 23, opto-coupleurs, transformateurs d'isolement etc. Dans ce cas, le CAN 21a connecté aux moyens de mesure de vibration 52a, 52b est installé du côté de ces derniers pour que l'isolement galvanique puisse être bien réalisé. La Fig. 4 est un logigramme par bloc illustrant le traitement des signaux par les moyens de traitement de la Fig. 3 selon la technique de transformée en ondelette discrète.
Les moyens de traitement 7 sont configurés pour continuellement analyser par transformées en ondelettes discrètes les signaux électriques Sla, Slb et mécaniques S2a, S2b se propageant via le réseau électrique 3.
Le bloc Bl correspond à l'acquisition des signaux électriques Sla, Slb. Plus particulièrement, le bloc Bla concerne l'acquisition du courant électrique Sla et le bloc Blb concerne l'acquisition de la tension électrique Slb.
Le bloc B2 correspond à l'acquisition des signaux mécaniques S2a, S2b. On notera que pour des raisons de synchronismes dans l'analyse, l'acquisition des signaux électriques Sla, Slb et mécaniques S2a, S2b est fait avec la même base de temps et donc avec une même fréquence d'échantillonnage.
Les différents signaux de courant Sla, de tension Slb, et des ondes mécaniques S2a, S2b sont décomposés dans les blocs B3a, B3b, et B3c respectivement. Par souci de simplification, seul le bloc B3a est détaillé sachant que le principe de décomposition est le même pour les trois signaux.
On utilise par exemple la technique de multi-résolution connue pour l'homme du métier, et qui fournit un algorithme simple et rapide de décomposition d'un signal en ses composantes aux différentes échelles. A chaque étape on filtre avec un filtrage passe- bas (blocs B31a et B33a) pour obtenir les coefficients d'approximation et avec un passe- haut (blocs B32a et B34a) pour obtenir les coefficients de détail, puis on décime le résultat en sortie du filtre. Autrement dit, on prend un échantillon sur deux à la sortie de chaque filtre.
Le choix des filtres passe-haut et passe-bas dépend des signatures de signaux que l'on veut détecter. A titre d'exemple, le filtre passe-bas peut être associé à la fonction échelle (de type Daubechies 3) représentée sur la Fig. 5A qui donne une image grossière du signal tandis que le filtre passe-haut peut être associé à l'ondelette-mère (de type Daubechies 3) représentée sur la Fig. 5B qui encode les détails. Ainsi, le signal de départ Sla est d'abord filtré avec des premiers filtres passe- bas (bloc B31a) et passe-haut (bloc B32a). Le signal à la sortie d'un des deux premiers filtres est gardé pour être analysé tandis que le signal à la sortie de l'autre filtre est filtré à nouveau avec des deuxièmes filtres passe-bas (bloc B33a) et passe-haut (bloc B34a). Ce processus est répété un nombre déterminé de fois pour décomposer le signal en une suite de composantes à des échelles différentes. Ces composantes sont ensuite analysées pour détecter l'occurrence des défauts.
En effet, en sortie des filtres, on obtient des coefficients d'ondelettes sur différentes échelles de fréquences. Ces coefficients peuvent être représentés sur un graphique de type scalogramme (blocs B4a et B4b). Selon l'algorithme de corrélation de la transformée en ondelette et en fonction du type d'ondelette, plus ce coefficient tendra vers 1 plus la probabilité de détecter l'occurrence d'un défaut sera élevée. Les coefficients très élevés sur les signaux électriques de tension et/ou de courant (bloc B4a) serviront de référence temporelle de l'existence du défaut définissant ainsi, l'instant tl (bloc B5a). On notera que l'événement de défaut E est détecté simultanément sur les graphiques relatifs au courant et à la tension.
Au bloc B3c on peut utiliser également la technique de multi-résolution pour décomposer le signal des ondes mécaniques S2a ou S2b en ses composantes aux différentes échelles. De même, la présence de coefficients d'ondelette élevés sur un graphique de type scalogramme (blocs B4b) définira l'instant t2 (blocs B5b) sachant qu'un signal mécanique présente une propagation plus lente en direction des moyens de mesure.
A titre d'exemple, les Figs. 6A-6C sont des graphiques illustrant la détection d'un événement de défaut E sur des signaux électrique Sla, Slb et mécanique S2a, S2b.
Plus particulièrement, la Fig. 6A illustre un signal électrique (courant Sla ou tension Slb) et les Figs. 6B et 6C illustrent des premier et second signaux mécaniques S2a, S2b (par exemple, signaux d'ondes sonores) relatifs à des premier et second moyens de détection mécaniques 52a, 52b (par exemple des premier et second micros).
En faisant une analyse par ondelette avec par exemple un logiciel de type Matlab, on obtient des scalogrammes (non représentés) sur lesquels on peut facilement identifier les coefficients d'ondelettes les plus élevées représentatives des occurrences des défauts. L'instant tl indique le début de la détection du défaut sur le signal électrique SI et l'instant t2 indique le début de la détection du même défaut sur le signal mécanique S2b d'un des moyens de détection mécaniques.
En outre, le retard de l'acquisition t3-t2 de la signature mécanique de l'événement du défaut entre les deux moyens de détection mécaniques 52a, 52b permet d'augmenter la précision de la localisation spatiale du défaut.
Au bloc B6, les moyens de calcul déterminent l'écart de temps At=t2-tl entre l'arrivée des signaux électrique SI et mécanique S2b. Cette durée Δΐ est utilisée à la prochaine étape pour en déduire à quelle distance des moyens de détection aura eu lieu le défaut.
En effet, au bloc B7 les moyens de calcul 11 déterminent la, localisation spatiale du défaut E. La distance D du défaut par rapport aux moyens de détection 51a- 52b peut être déterminée en fonction du retard Δί et des vitesses de propagation vl et v2 des ondes électrique et mécanique à l'aide de la relation suivante :
D=At(vlv2)/(vl-v2).
On notera que la vitesse de propagation v2 de l'onde mécanique dans le cuivre ou dans d'autres métaux conducteurs est très lente (typiquement 3570m/s dans le cuivre) par rapport à la vitesse de propagation vl des ondes électriques (typiquement 273000000m/s dans le cuivre). Ainsi, la distance D peut être calculée avec une grande précision par la simple multiplication de la vitesse de propagation v2 de l'onde mécanique par la durée du retard At. Le temps de détection de l'événement de défaut E dépend bien entendu de sa distance et de la vitesse de propagation de l'onde mécanique. Par exemple la détection d'un défaut E à 10m des moyens de détection 51a-52b devrait prendre moins de 3 ms.
Finalement, au bloc B8 les moyens de traitement 7 délivrent via les moyens de sortie 15, les coordonnées temporelles, fréquentielles et spatiales de l'événement de défaut E. On notera que la méthode de détection selon l'invention est robuste et présente l'avantage de discriminer la signature des signaux de charges qui sont connectées sur le réseau 3 mais pouvant avoir un caractère non linéaire, et d'éviter ainsi le risque de couper le réseau 3 de façon intempestive et surtout sans raison. En effet, dès le début de la mise en place du dispositif de surveillance 1 au plus près des outils de commande ou de protection (disjoncteur 35), celui-ci peut continuellement faire la cartographie du réseau électrique 3 qu'ils protègent et identifier l'endroit des charges ayant des signatures électrique et mécanique similaires aux prémices de défaut que l'on cherche à détecter. Ainsi grâce au retard entre les signaux électriques SI et mécaniques S2 tout au long de la durée de fonctionnement, le dispositif de surveillance 1 définit les zones comportant des charges non linéaires. Ceci permet au dispositif de surveillance 1 de distinguer un fonctionnement d'une charge normale non linéaire d'un événement de défaut par le fait que la charge provoque des signaux répétitifs et périodiques sans changement de position sur le réseau 3 et sans phénomènes mécaniques associés. Alors que le défaut engendre des signaux furtifs, apériodiques et variables en termes d'énergie et de localisation sur le réseau électrique 3 couplé avec des phénomènes mécaniques caractéristiques.
En outre, la méthode de détection selon l'invention permet pour des raisons de continuité de service de certains réseaux électriques, d'assurer un maintien maximal de ces derniers malgré des prémices de défaut pouvant exister pendant leur utilisation.
En effet, la Fig. 7 est un organigramme illustrant une analyse de l'évolution du défaut afin de quantifier la dangerosité de la présence du défaut.
Ceci peut être réalisé en corrélant plusieurs facteurs relatifs au défaut. Ces facteurs sont par exemple la durée de présence du défaut et l'énergie dissipée dans le défaut ainsi que l'évolution spatiale du défaut dans le réseau électrique.
Plus particulièrement, après la détection d'un défaut à l'étape Bll, on passe aux tests des étapes B12 et B13. A l'étape B12, on vérifie si la durée de défaut ou l'énergie dissipée dans le défaut dépasse un premier seuil prédéterminé. La durée de défaut et l'énergie dissipée peuvent être caractérisées par l'évolution de la densité des coefficients d'ondelettes élevés successifs. Si l'issue du test B12 est positif, on passe à l'étape B14 et sinon on passe à l'étape B13.
A l'étape B13, on vérifie si l'avancement du défaut sur le réseau dépasse un deuxième seuil prédéterminé. L'avancement du défaut ou l'évolution spatiale du défaut dans le réseau peut être caractérisé en analysant la réduction du retard entre la propagation des signaux électriques et la propagation des signaux mécaniques. Si l'issue du test B13 est positive, on passe à l'étape B14 et sinon on passe à l'étape B15.
On notera qu'on peut faire évoluer les premier et deuxième seuils prédéterminés en fonction des caractéristiques des dernières occurrences de défaut.
L'étape B14 indique que le seuil de dangerosité du défaut a été atteint et dans ce cas, les moyens de traitement 7 déclenchent la coupure du circuit en défaut. A l'étape B15, les moyens de traitement 7 enregistrent les paramètres du défaut dans les moyens de stockage 13. On pourra donc relever par la suite ces paramètres pour prévoir un programme de maintenance approprié avant la défaillance du réseau.
Ainsi, selon cet algorithme si au moins une des deux conditions (définies dans les tests des étapes B12 et B13) est atteinte alors on considère que le défaut a atteint un seuil de dangerosité (étape B14) entraînant la coupure immédiate du circuit en défaut. Si aucune des conditions n'est atteinte, alors le défaut et ses caractéristiques seront gardés en mémoire (étape B15).
L'invention est applicable à tous les réseaux électriques dans les bâtiments, les navires, les automobiles, les aéronefs, ainsi que les réseaux ferroviaires.
On notera que le dispositif de surveillance est particulièrement adapté pour surveiller le câblage électrique dans un aéronef. Il permet d'analyser les signaux électriques et mécaniques dans le câblage de l'aéronef afin de déterminer l'écart de temps entre la détection des signaux électriques et mécaniques d'un événement de défaut, de déterminer la distance de l'anomalie, de déterminer les énergies mises en jeux dans les événements traités, et d'enregistrer l'ensemble des comportements afin d'évaluer la dégradation des câblages dans le temps. On notera que le dispositif de surveillance 1 peut alors être intégré dans un boîtier spécifique ou faire partie d'un boîtier électronique existant dans l'aéronef. Avantageusement, on peut connecter les moyens de détection à des moyens d'acquisition et de traitement d'un calculateur embarqué, d'un disjoncteur électromécanique, ou tout autre équipement dans l'aéronef pour exploiter le procédé de surveillance selon l'invention.

Claims

REVENDICATIONS
1. Dispositif de surveillance d'un réseau électrique, caractérisé en ce qu'il comporte :
- des moyens de détection (51, 52) de signaux électriques (SI) et de signaux complémentaires (S2) produits dans le réseau (3) électrique, les signaux complémentaires
(S2) étant de nature physique différente des signaux électriques (SI),
- des moyens de traitement (7) desdits signaux électriques pour définir une première référence temporelle (tl) représentative d'un instant de détection des signaux électriques émis lors d'un événement de défaut (E) survenu dans le réseau électrique, - des moyens de traitement (7) desdits signaux complémentaires (S2) pour définir une seconde référence temporelle (t2) représentative d'un instant de détection des signaux complémentaires émis lors dudit événement de défaut survenu dans le réseau électrique, et
- des moyens de traitement pour localiser spatialement ledit événement de défaut dans le réseau électrique en fonction desdites première et seconde références temporelles (tl, t2).
2. Dispositif selon la revendication 1, caractérisé en ce que lesdits moyens de traitement sont configurés pour définir les première et seconde références temporelles en appliquant une analyse de traitement de signal sur lesdits signaux électriques et lesdits signaux complémentaires respectivement, ladite analyse de traitement étant choisie parmi les techniques de traitement suivantes : traitement par transformation en ondelettes, traitement de Fourier, et traitement de Wigner-Ville.
3. Dispositif selon la revendication 2, caractérisé en ce que lesdits moyens de traitement sont configurés pour appliquer une analyse par transformation en ondelettes discrète.
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits moyens de traitement sont configurés pour faire une cartographie identifiant la localisation des charges normales non linéaires dans ledit réseau électrique et pour discriminer un événement de défaut réel par rapport à un événement provoqué par une charge normale non linéaire identifiée dans ladite cartographie.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits moyens de traitement sont configurés pour déterminer des valeurs relatives à des facteurs quantitatifs du défaut, de comparer lesdites valeurs à des seuils critiques, et de déclencher une coupure immédiate lorsqu'une desdites valeurs dépasse le seuil critique.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits moyens de traitement sont configurés pour enregistrer l'ensemble des événements de défauts.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de détection comportent des premiers moyens de détection desdits signaux électriques et des seconds moyens de détection desdits signaux complémentaires, lesdits premiers et seconds moyens de détection étant installés en un même endroit géographique en amont du réseau électrique.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits signaux complémentaires sont des signaux d'ondes mécaniques.
9. Système de réseau électrique dans un aéronef comportant un dispositif de surveillance selon l'une quelconque des revendications précédentes.
10. Procédé de surveillance d'un réseau électrique, caractérisé en ce qu'il comporte les étapes suivantes :
- détection (51, 52) de signaux électriques (SI) et de signaux complémentaires (S2) produits dans le réseau (3) électrique, les signaux complémentaires (S2) étant de nature physique différente des signaux électriques (SI),
- traitement (7) desdits signaux électriques pour définir une première référence temporelle (tl) représentative d'un instant de détection des signaux électriques émis lors d'un événement de défaut (E) survenu dans le réseau électrique,
- traitement (7) desdits signaux complémentaires (S2) pour définir une seconde référence temporelle (t2) représentative d'un instant de détection des signaux complémentaires émis lors dudit événement de défaut survenu dans le réseau électrique, et
- traitement pour localiser spatialement ledit événement de défaut dans le réseau électrique en fonction desdites première et seconde références temporelles (tl, t2).
PCT/EP2013/063547 2012-06-28 2013-06-27 Dispositif et procédé de surveillance d'un réseau électrique WO2014001466A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/411,164 US10120013B2 (en) 2012-06-28 2013-06-27 Device and method for monitoring an electrical network
EP13731827.5A EP2867685B1 (fr) 2012-06-28 2013-06-27 Dispositif et procédé de surveillance d'un réseau électrique
BR112014032109-4A BR112014032109B1 (pt) 2012-06-28 2013-06-27 dispositivo e método para monitorar uma rede elétrica, e, sistema de rede elétrica
CA2877664A CA2877664C (fr) 2012-06-28 2013-06-27 Dispositif et procede de surveillance d'un reseau electrique
RU2015102676A RU2631492C2 (ru) 2012-06-28 2013-06-27 Устройство и способ контроля электрической сети
CN201380034603.7A CN104620119B (zh) 2012-06-28 2013-06-27 监测电网的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256146 2012-06-28
FR1256146A FR2992733B1 (fr) 2012-06-28 2012-06-28 Dispositif et procede de surveillance d'un reseau electrique

Publications (1)

Publication Number Publication Date
WO2014001466A1 true WO2014001466A1 (fr) 2014-01-03

Family

ID=46754694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/063547 WO2014001466A1 (fr) 2012-06-28 2013-06-27 Dispositif et procédé de surveillance d'un réseau électrique

Country Status (8)

Country Link
US (1) US10120013B2 (fr)
EP (1) EP2867685B1 (fr)
CN (1) CN104620119B (fr)
BR (1) BR112014032109B1 (fr)
CA (1) CA2877664C (fr)
FR (1) FR2992733B1 (fr)
RU (1) RU2631492C2 (fr)
WO (1) WO2014001466A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151239A1 (fr) 2015-03-25 2016-09-29 Labinal Power Systems Procede et dispositif de protection d'un reseau electrique
US10852342B2 (en) 2017-12-01 2020-12-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for detecting a fault occurring in a cable

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150094975A1 (en) * 2013-10-01 2015-04-02 King Fahd University Of Petroleum And Minerals Wavelet transform system and method for voltage events detection and classification
FR3037658B1 (fr) * 2015-06-16 2018-05-18 Schneider Electric Industries Sas Procede et dispositif de detection d'un defaut dans un reseau electrique
EP3223026B1 (fr) * 2016-03-22 2021-04-28 Siemens Aktiengesellschaft Procédé, dispositif et système destines à localiser un défaut sur une ligne d'un réseau d'alimentation électrique
JP7217511B2 (ja) * 2016-06-13 2023-02-03 エレクトリカル グリッド モニタリング リミテッド 配電網内の動的故障検出のための方法およびシステム
EP3267288A1 (fr) * 2016-07-08 2018-01-10 Thomson Licensing Procédé, appareil et système destinés à rendre des effets haptiques
FR3056301B1 (fr) * 2016-09-19 2020-01-10 Safran Helicopter Engines Systeme et procede de detection d'une decharge electrique dans un dispositif electrique
FR3056555B1 (fr) * 2016-09-29 2018-12-07 Safran Helicopter Engines Systeme propulsif hybride pour aeronef a voilure tournante multirotor comprenant des moyens ameliores de conversion dc/ac
CN107231172B (zh) * 2017-06-06 2021-06-15 中国电力科学研究院 一种用于对低压电力线宽带载波通信互操作性进行测试的方法及系统
FR3070495B1 (fr) * 2017-08-28 2019-09-06 Enedis Detection de defaillance d'un reseau de distribution electrique
FR3075969B1 (fr) * 2017-12-21 2020-09-18 Electricite De France Dispositif de detection de defaillance dans la surveillance d'un reseau electrique
US10666036B2 (en) * 2017-12-21 2020-05-26 Eaton Intelligent Power Limited Arc fault detection system
US11455844B2 (en) 2019-11-26 2022-09-27 Ford Global Technologies, Llc Electrical distribution system monitoring for electric and autonomous vehicles
IT202000004303A1 (it) * 2020-03-02 2021-09-02 St Microelectronics Srl Circuito per rilevare scariche parziali, dispositivo, sistema e procedimento corrispondenti
CN113049922B (zh) * 2020-04-22 2022-11-15 青岛鼎信通讯股份有限公司 一种采用卷积神经网络的故障电弧信号检测方法
DE102021103121A1 (de) * 2021-02-10 2022-08-11 Infineon Technologies Ag Verfahren und Vorrichtungen zur Detektion eines Lichtbogens
RU2762526C1 (ru) * 2021-03-09 2021-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники» Способ неразрушающего контроля неисправностей в электрической сети
CN113125905B (zh) * 2021-05-18 2022-10-21 余昉 电弧故障检测装置、方法、设备以及存储介质
CN115128388B (zh) * 2022-08-31 2022-11-15 天津津轨汇海科技发展有限公司 一种轨道交通供电设备故障分析系统
FR3141769A1 (fr) * 2022-11-09 2024-05-10 Safran Procédé de reconnaissance numérique d’une décharge partielle dans des équipements électriques en environnement aéronautique sévère et système de mise en œuvre

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005223A1 (fr) * 2007-07-02 2009-01-08 Korea Electric Power Corporation Système et procédé de détection d'une position de décharge partielle
US20090161272A1 (en) * 2007-12-21 2009-06-25 General Electric Company Arc detection system and method
US20100102824A1 (en) * 2007-04-18 2010-04-29 Mario Tremblay Electrical network fault location by distributed voltage measurements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508160C2 (sv) * 1997-03-10 1998-09-07 Abb Research Ltd Anordning för avkänning av elektriska urladdningar i ett provobjekt med två elektriska anslutningsledare
RU2111499C1 (ru) * 1997-04-22 1998-05-20 Фирсов Михаил Иванович Система определения поврежденных участков электрических сетей
US7139668B2 (en) * 2003-05-12 2006-11-21 Simmonds Precision Products, Inc. Wire event detection
CN2682427Y (zh) * 2003-12-18 2005-03-02 湖南湘能许继高科技股份有限公司 基于行波时差的输电网故障定位装置
US7535233B2 (en) * 2004-07-15 2009-05-19 Cooper Technologies Company Traveling wave based relay protection
CN2771873Y (zh) * 2005-03-23 2006-04-12 王川 三相电力电网非直接接地系统弧光接地故障点探测装置
RU2338215C1 (ru) * 2007-04-25 2008-11-10 Виктор Сергеевич Петухов Способ диагностики силовой электрической цепи переменного тока
US20100169030A1 (en) * 2007-05-24 2010-07-01 Alexander George Parlos Machine condition assessment through power distribution networks
CN101271141B (zh) * 2008-03-17 2010-11-17 长沙理工大学 基于行波时差的故障行波网络定位方法
US8598887B2 (en) * 2010-04-13 2013-12-03 Abb Technology Ag Fault wave arrival determination
CN102435909A (zh) * 2011-09-09 2012-05-02 北京天利继保自动化技术有限公司 一种配电网故障位置检测系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100102824A1 (en) * 2007-04-18 2010-04-29 Mario Tremblay Electrical network fault location by distributed voltage measurements
WO2009005223A1 (fr) * 2007-07-02 2009-01-08 Korea Electric Power Corporation Système et procédé de détection d'une position de décharge partielle
US20090161272A1 (en) * 2007-12-21 2009-06-25 General Electric Company Arc detection system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOMOH J A ET AL: "Design and analysis of aerospace DC arcing faults using fast fourier transformation and artificial neural network", 2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING. CONFERENCE PROCEEDINGS. TORONTO, ONTARIO, CANADA, JULY, 13 - 17, 2003; [IEEE POWER ENGINEERING SOCIETY], NEW YORK, NY : IEEE, US, vol. 2, 1 January 2003 (2003-01-01), pages 788 - 793, XP010685982, ISBN: 978-0-7803-7989-3, DOI: 10.1109/PES.2003.1270407 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151239A1 (fr) 2015-03-25 2016-09-29 Labinal Power Systems Procede et dispositif de protection d'un reseau electrique
CN107534285A (zh) * 2015-03-25 2018-01-02 赛峰电气与电源公司 电网保护方法和装置
CN107534285B (zh) * 2015-03-25 2019-08-13 赛峰电气与电源公司 电网保护方法和装置
US10852342B2 (en) 2017-12-01 2020-12-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for detecting a fault occurring in a cable

Also Published As

Publication number Publication date
EP2867685B1 (fr) 2016-08-24
CN104620119A (zh) 2015-05-13
CA2877664A1 (fr) 2014-01-03
BR112014032109B1 (pt) 2021-01-12
FR2992733B1 (fr) 2014-08-08
RU2015102676A (ru) 2016-08-20
CA2877664C (fr) 2020-08-04
BR112014032109A2 (pt) 2018-05-02
RU2631492C2 (ru) 2017-09-22
CN104620119B (zh) 2018-02-09
EP2867685A1 (fr) 2015-05-06
US10120013B2 (en) 2018-11-06
US20150204935A1 (en) 2015-07-23
FR2992733A1 (fr) 2014-01-03

Similar Documents

Publication Publication Date Title
EP2867685B1 (fr) Dispositif et procédé de surveillance d&#39;un réseau électrique
EP1815260B1 (fr) Procédé et dispositif de détection d&#39;un phénomène d&#39;arc électrique sur au moins un câble électrique
EP2227701B1 (fr) Procede de detection et de localisation de defauts par reflectometrie dans un reseau electrique cable et dispositif correspondant
EP3440472B1 (fr) Procede de detection de defauts non francs dans un cable par fusion de donnees
EP3140666B1 (fr) Procédé de détection de défauts permanents et intermittents d&#39;un ensemble de fils à tester
FR3026848A1 (fr) Procede d&#39;analyse d&#39;un cable, basee sur une correlation auto-adaptative, pour la detection de defauts non francs
EP3259608B1 (fr) Procede de caracterisation d&#39;un defaut non franc dans un cable
WO2007090730A1 (fr) Recepteur numerique large bande de mesure de frequence
EP2820436A1 (fr) Procede de mesure du vieillissement de cables electriques
FR3054668A1 (fr) Procede et systeme de localisation de defauts sur un cable electrique
FR3016443A1 (fr) Procede et systeme de protection contre les arcs electriques mettant en œuvre une modulation specifique a un module de l&#39;onde acoustique accompagnant un arc electrique
WO2020221618A1 (fr) Procede de detection de defauts non francs dans un cable par analyse en composantes principales
EP3227651B2 (fr) Procede et dispositif de detection de points chauds dans une installation, notamment pour la detection de fuites dans des conduits d&#39;air
WO2018192939A1 (fr) Procede et systeme de detection d&#39;un defaut intermittent dans une ligne de transmission, par filtrage
EP3298419B1 (fr) Procede d&#39;analyse d&#39;un cable, impliquant un traitement d&#39;amplification de la signature d&#39;un defaut non franc
EP2994920A1 (fr) Surcouche destinee a recouvrir un objet, notamment un cable, pour la detection et/ou la localisation d&#39;un defaut a sa surface
FR3099830A1 (fr) Procédé et système de surveillance d’un réseau de câbles, par analyse en composantes principales
EP3232212B1 (fr) Système et procédé de détection d&#39;un arc électrique
EP2515129A2 (fr) Procede et dispositif de controle et de localisation de defauts dans une chaine de panneaux photovoltaiques
FR3056301A1 (fr) Systeme et procede de detection d&#39;une decharge electrique dans un dispositif electrique
WO2023184030A1 (fr) Système de localisation d&#39;un défaut dans une partie souterraine d&#39;un réseau électrique moyenne tension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13731827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2877664

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14411164

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013731827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013731827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015102676

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014032109

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014032109

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141219