WO2014000329A1 - 预编码指示合并方法、终端和网络侧设备 - Google Patents

预编码指示合并方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2014000329A1
WO2014000329A1 PCT/CN2012/079098 CN2012079098W WO2014000329A1 WO 2014000329 A1 WO2014000329 A1 WO 2014000329A1 CN 2012079098 W CN2012079098 W CN 2012079098W WO 2014000329 A1 WO2014000329 A1 WO 2014000329A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
dpch
tpich
cell
offset position
Prior art date
Application number
PCT/CN2012/079098
Other languages
English (en)
French (fr)
Inventor
张鹏
王宗杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014000329A1 publication Critical patent/WO2014000329A1/zh
Priority to US14/570,918 priority Critical patent/US9444583B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • Precoding indicates merge method, terminal and network side device
  • the present invention relates to the field of communications technologies, and in particular, to a precoding indication combining method, a terminal, and a network side device.
  • a process of transmitting data by using a Closed Loop Transmit Diversity (CLTD) is: a User Equipment (UE) sends pilot information to a serving cell, and the cell detects the state of the channel by using the pilot.
  • a Transmitted Precoding Indicator (TPI) is determined, and the TPI is transmitted to the UE on a Fractional Transmitted Indicator Channel (F-TPICH).
  • the UE detects the F-TPICH to solve the TPI, and selects the precoding codebook according to the TPI to send the uplink data.
  • the UE may receive the F-TPICH from multiple cells in the Radio Link Set (RLS). Since the TPIs on the F-TPICHs are the same information, the UE may merge the corresponding TPIs of the cells. The TPI in the window is merged.
  • the UE applies the TPI indication at the first uplink dedicated physical control channel (DPCCH) slot boundary after receiving the 512-chip after the second TPI symbol in the TPI information.
  • DPCCH dedicated physical control channel
  • the timing relationship between the DPCCH and the F-TPICH channel is uncertain, which may result in the TPI effective position being uncertain when the UE performs the TPI merge operation, which may cause the UE to use the most timely TPI, resulting in demodulation performance of the UE transmitting data. difference.
  • Embodiments of the present invention provide a precoding indication combining method, a terminal, and a network side device, so that
  • the UE uses the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • an embodiment of the present invention provides a precoding indication combining method, including:
  • the downlink fraction precoding indicates the offset position of the channel F-TPICH, and the offset position of the downlink F-DPCH or the downlink DPCH is the downlink common F-DPCH or the downlink of the two main common control physical channel P-CCPCH frames for a long time.
  • the starting position of the DPCH is delayed from the starting position of the downlink P-CCPCH, and the offset position of the downlink F-TPICH is the starting position of the downlink F-TPICH in the two P-CCPCH frames for a long time.
  • TPI merge window of the cell Determining, by the terminal, a precoding indication TPI merge window of the cell according to the downlink F-DPCH of each of the cells or an offset position of the downlink DPCH and an offset position of the downlink F-TPICH, so that the terminal
  • the effective position of the TPI is located at a slot boundary of a first uplink dedicated physical control channel DPCCH after the termination boundary of the TPI merge window.
  • the embodiment of the invention further provides a terminal, including:
  • a receiver configured to receive an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by the network side device, and a downlink fraction precoding indicator channel F- of the at least one cell Offset position of the TPICH, the offset position of the downlink F-DPCH or the downlink DPCH is two P-CCPCH frames, the start position of the downlink F-DPCH or the downlink DPCH is long from the downlink main common control physical channel P The time at which the start position of the CCPCH is delayed, the offset position of the downlink F-TPICH is two P-CCPCH frames, and the start position of the downlink F-TPICH is delayed from the start position of the downlink P-CCPCH for a long time. time;
  • a processor configured to determine, according to an offset position of the downlink F-DPCH or the downlink DPCH of each of the cells, and an offset position of the downlink F-TPICH, a precoding indication TPI merge window of the cell, where So that the effective position of the TPI is located at a slot boundary of the first uplink dedicated physical control channel DPCCH after the termination boundary of the TPI merge window.
  • the embodiment of the present invention further provides a precoding indication combining method, including: determining, by a network side device, an offset position of a downlink fraction private physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell, and The downlink fraction precoding of the at least one cell indicates the offset position of the channel F-TPICH, and the offset position of the downlink F-DPCH or the downlink DPCH is the downlink F-DPCH or the downlink in the two P-CCPCH frames for a long time.
  • the starting position of the DPCH is delayed from the start position of the downlink main common control physical channel P-CCPCH, and the offset position of the downlink F-TPICH is two P-CCPCH frames for the downlink F-TPICH for a long time.
  • the network side device Sending, by the network side device, the downlink F-DPCH or the downlink of the at least one cell to the terminal Offset the DPCH, and the offset position of the downlink F-TPICH of the at least one cell, so that the terminal according to the offset position of the downlink F-DPCH or the downlink DPCH
  • the offset position of the downlink F-TPICH determines a precoding indication TPI merge window for each of the cells.
  • the embodiment of the invention further provides a network side device, including:
  • a processor configured to determine an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of the at least one cell, and a downlink fraction precoding of the at least one cell indicates an offset position of the channel F-TPICH
  • the offset position of the downlink F-DPCH or the downlink DPCH is the start position of the downlink F-DPCH or the downlink DPCH in the two P-CCPCH frames for a long time from the start of the downlink main common control physical channel P-CCPCH
  • the time delay of the position, the offset position of the downlink F-TPICH is a time when the start position of the downlink F-TPICH is delayed from the start position of the downlink P-CCPCH in the two P-CCPCH frames for a long time;
  • a transmitter configured to send, to the terminal, an offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell, and send an offset position of the downlink F-TPICH of the at least one cell, to And causing the terminal to determine a precoding indication TPI merge window of each of the cells according to an offset position of the downlink F-DPCH or the downlink DPCH and an offset position of the downlink F-TPICH.
  • the embodiment of the present invention further provides a precoding indication combining method, including: receiving, by a terminal, an offset position of a downlink fraction private physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by a network side device; And the downlink fraction precoding of the at least one cell indicates an offset position of the channel F-TPICH, where the offset position of the downlink F-DPCH or the downlink DPCH is two main common control physical channel P-CCPCH frames for a long time The time when the starting position of the downlink F-DPCH or the downlink DPCH is delayed from the frame start position of the previous downlink P-CCPCH, and the offset position of the downlink F-TPICH is two P-CCPCH frames for a long time. Determining a time when the starting position of the downlink F-TPICH is delayed from the start position of the frame of the previous downlink P-CCPCH;
  • TPI merge window of the cell Determining, by the terminal, a precoding indication TPI merge window of the cell according to the downlink F-DPCH of each of the cells or an offset position of the downlink DPCH and an offset position of the downlink F-TPICH, so that the terminal
  • the effective position of the TPI is located at a slot boundary of a first uplink dedicated physical control channel DPCCH after the termination boundary of the TPI merge window.
  • the embodiment of the present invention further provides another precoding indication merging method, which is characterized in that it comprises: Determining, by the network side device, an offset position of a downlink fraction private physical channel F-DPCH or a downlink dedicated physical channel DPCH of the at least one cell, and a downlink fraction precoding of the at least one cell indicating an offset position of the channel F-TPICH, where
  • the offset position of the downlink F-DPCH or the downlink DPCH is the two main common control physical channel P-CCPCH frames.
  • the start position of the downlink F-DPCH or the downlink DPCH is longer than the frame of the previous downlink P-CCPCH.
  • the time at which the start position is delayed, the offset position of the downlink F-TPICH is two P-CCPCH frames, and the start position of the downlink F-TPICH is delayed from the start position of the frame of the previous downlink P-CCPCH for a long time. time;
  • the network side device sends the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell to the terminal, and delivers the offset position of the downlink F-TPICH of the at least one cell, to And causing the terminal to determine a precoding indication TPI merge window of each of the cells according to an offset position of the downlink F-DPCH or the downlink DPCH and an offset position of the downlink F-TPICH.
  • the embodiment of the present invention further provides a terminal, including:
  • a receiver configured to receive an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by the network side device, and a downlink fraction precoding indicator channel F- of the at least one cell Offset position of the TPICH, the offset position of the downlink F-DPCH or the downlink DPCH is the distance of the start position of the downlink F-DPCH or the downlink DPCH in the P-CCPCH frame of the two main common control physical channels for a long time
  • the offset position of the downlink F-TPICH is two P-CCPCH frames, and the start position of the downlink F-TPICH is long from the previous downlink P-CCPCH
  • a processor configured to determine, according to an offset position of the downlink F-DPCH or the downlink DPCH of each of the cells, and an offset position of the downlink F-TPICH, a precoding indication TPI merge window of the cell, where So that the effective position of the TPI is located at a slot boundary of the first uplink dedicated physical control channel DPCCH after the termination boundary of the TPI merge window.
  • the embodiment of the invention further provides a network side device, including:
  • a processor configured to determine an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of the at least one cell, and a downlink fraction precoding of the at least one cell indicates an offset position of the channel F-TPICH
  • the offset position of the downlink F-DPCH or the downlink DPCH is two downlink common control physical channel P-CCPCH frames in the downlink F-DPCH or
  • the starting position of the downlink DPCH is delayed from the frame start position of the previous downlink P-CCPCH, and the offset position of the downlink F-TPICH is the start of the downlink F-TPICH in the two P-CCPCH frames for a long time.
  • the transmitter is configured to send the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell to the terminal, and deliver the offset position Offset position of the downlink F-TPICH of the at least one cell, so that the terminal determines, according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH
  • the precoding of each of the cells indicates a TPI merge window.
  • the precoding indication combining method, the terminal, and the network side device provided by the embodiment of the present invention determine, by the terminal, the precoding indication TPI merge window according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH, Therefore, the effective position of the TPI is located at the slot boundary of the first uplink DPCCH after the termination boundary of the TPI merge window, so that the UE uses the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • FIG. 1 is a flowchart of an embodiment of a precoding indication merging method provided by the present invention
  • FIG. 2 is a schematic diagram of a terminal determining a precoding indication TPI merging window according to a slot boundary of an F-DPCH according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an embodiment of a precoding indication combining method provided by the present invention
  • FIG. 4 is a schematic diagram of a network side device according to the present invention for determining F-DPCH and F-TPICH of at least two cells in the same service link set. Schematic diagram of one embodiment of an offset positional relationship of a starting position;
  • FIG. 5 is a schematic diagram of another embodiment of determining, by a network side device, an offset position relationship between an F-DPCH and a starting position of an F-TPICH of at least two cells in the same service link set according to the present invention
  • FIG. 7 is an implementation of the terminal provided by the present invention. Schematic diagram of the structure
  • FIG. 8 is a schematic structural diagram of an embodiment of a network side device according to the present invention
  • FIG. 9 is a flowchart of an embodiment of a precoding indication merging method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of an embodiment of a precoding indication merging method provided by the present invention. Schematic;
  • FIG. 12 is a schematic structural diagram of an embodiment of a network side device according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the technical solution of the present invention can be applied to various wireless communication networks, for example: a wireless local area network
  • WiMAX World Interoperability for Microwave Access
  • WLAN Wireless Local Area Network
  • GSM Global System for Mobile Communications
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • WiMAX World Interoperability for Microwave Access
  • the network side device may be a base station (Base Transceiver Station, BTS) in a GSM network, a GPRS network or a CDMA network, or may be a base station (NodeB) in a CDMA2000 network or a WCDMA network, or may be an evolution in an LTE network.
  • BTS Base Transceiver Station
  • NodeB base station
  • the Evolved NodeB (eNB) may also be a network element such as an Access Service Network Base Station (ASN BS) in the WiMAX network.
  • ASN BS Access Service Network Base Station
  • FIG. 1 is a flowchart of an embodiment of a precoding indication combining method provided by the present invention. As shown in FIG. 1, the method includes:
  • the terminal receives an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by the network side device, and at least one cell
  • the row precoding indicates the offset position of the channel F-TPICH, and the offset position of the downlink F-DPCH or the downlink DPCH is two P-CCPCH frames.
  • the starting position of the downlink F-DPCH or the downlink DPCH is long from the downlink main public. Controlling the time when the starting position of the physical channel P-CCPCH is delayed, the offset position of the downlink F-TPICH is two P-CCPCH frames.
  • the starting position of the downlink F-TPICH is delayed from the starting position of the downlink P-CCPCH. time.
  • the terminal determines, according to the offset position of the downlink F-DPCH or the downlink DPCH of each cell, and the offset position of the downlink F-TPICH, the precoding indication TPI merge window of the cell, so that the effective location of the TPI is located in the TPI merge window.
  • the first uplink dedicated physical control letter after the termination of the boundary is at the slot boundary of the DPCCH.
  • the TPI is carried on the F-TPICH channel, and one complete TPI information occupies three time slots, that is, one subframe.
  • a complete TPI message consists of two TPI symbols, which are carried in the first two time slots of the subframe.
  • the two time slots use the same slot format, each carrying one TPI symbol.
  • the UE applies the precoding information indicated by the TPI at the slot boundary of the first uplink DPCCH after the 512 chips after receiving the second TPI symbol.
  • the uplink DPCCH has a determined timing relationship with the Fractional Dedicated Physical Channel (F-DPCH) or the Dedicated Physical Channel (DPCH).
  • F-DPCH Fractional Dedicated Physical Channel
  • DPCH Dedicated Physical Channel
  • the timing relationship may be a time difference between a starting position of the uplink DPCCH and a starting position of the downlink F-DPCH or the downlink DPCH.
  • the starting position of the uplink DPCCH is located at 1024 chips after the start of the downlink F-DPCH or downlink DPCH.
  • the terminal can determine the location of the TPI merge window according to the slot boundary of the downlink F-DPCH or the downlink DPCH based on a determined timing relationship between the uplink DPCCH and the downlink F-DPCH or the downlink DPCH, thereby implementing the TPI.
  • the location can be located at the slot boundary of the first uplink DPCCH after the termination boundary of the TPI merge window, so that the UE can use the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • the network side may send the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell and the offset position of the downlink F-TPICH of the at least one cell to enable the terminal to perform the downlink F according to the at least one cell.
  • - DPCH or downlink DPCH offset position to determine The starting position of the F-DPCH or the downlink DPCH, and the starting position of the downlink F-TPICH may be determined according to the offset position of the downlink F-TPICH of the cell.
  • the terminal may be after the time slot boundary of the downlink F-DPCH
  • the position of the mod 2560 chip is determined as the TPI merge window boundary of the cell, where is the offset position of the downlink F-DPCH, where ⁇ is the offset position of the downlink F-TPICH; or,
  • the terminal may determine the position of the slot boundary post-bias ( ⁇ ⁇ ⁇ - ⁇ + 512 ) mod 2560 chip of the downlink DPCH as the boundary of the TPI merge window of the cell, where is the offset position of the downlink DPCH.
  • the starting positions of the downlink F-TPICH and the downlink F-DPCH/downlink DPCH are all based on the starting position of the P-CCPCH channel.
  • the terminal determines the location of the precoding indication TPI merge window of the cell according to the offset position of the downlink F-DPCH of any cell. As shown in FIG. 2, the effective position of the TPI can be maintained in the TPI merge window of the cell.
  • the terminal provided in this embodiment determines the precoding indication TPI merge window according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH, so that the effective position of the TPI is located at the end of the TPI merge window.
  • FIG. 3 is a flowchart of an embodiment of a precoding indication combining method provided by the present invention. As shown in FIG. 3, the method includes:
  • the network side device determines an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of the at least one cell, and a downlink fraction precoding of the at least one cell indicates an offset position of the channel F-TPICH, and downlink
  • the offset position of the F-DPCH or the downlink DPCH is the time when the start position of the downlink F-DPCH or the downlink DPCH in the two P-CCPCH frames is delayed from the start position of the downlink main common control physical channel P-CCPCH.
  • the offset position of the F-TPICH is the time when the start position of the downlink F-TPICH in the two P-CCPCH frames is delayed from the start position of the downlink P-CCPCH.
  • the network side device sends the downlink F-DPCH or downlink of the at least one cell to the terminal.
  • the offset position of the DPCH, and the offset position of the downlink F-TPICH of the at least one cell is sent, so that the terminal determines each cell according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH.
  • the precoding indicates the TPI merge window.
  • the network side device may determine, according to the starting position of the downlink P-CCPCH channel of any cell, that the starting position of the downlink F-TPICH and the downlink F-DPCH/downlink DPCH of the cell is delayed by the downlink P-CCPCH channel.
  • the time of the start position that is, the offset position of the downlink F-TPICH, and the offset position of the downlink F-DPCH/downlink DPCH.
  • the downlink P-CCPCH channel has 10 ms per frame, and there are 15 time slots.
  • Each P-CCPCH frame carries one synchronization frame number (SFN) information.
  • SFN synchronization frame number
  • the offset chip after the start position of the 1 frame of the SFN is an even number of P-CCPCHs is the start position of the other channels. Therefore, each of the above offset positions includes: F-DPCH, F-TPICH, and DPCH values can be:
  • Tp * 256 chips where T p e ⁇ 0, 1, ..., 149 ⁇ .
  • the network side device can determine the downlink of each cell according to the actual demand of each cell service transmission.
  • the offset position of the F-TPICH and the offset position of the downlink F-DPCH/downlink DPCH so that the terminal can determine the corresponding cell according to the offset position of the downlink F-TPICH and the offset position of the downlink F-DPCH/downlink DPCH
  • the precoding indicates the TPI merge window.
  • the UE may receive downlink F-TPICH from at least two cells of the same service link set, these downlinks
  • the F-TPICH has the same TPI, so the UE can merge the TPIs in the corresponding TPI merge window in different cells.
  • the network side device may control the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set to reach the start of the terminal.
  • the positions are the same (or substantially the same) and the starting position of the F-TPICH arriving at the terminal is the same (or substantially the same), and the timing between the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH is determined.
  • the relationships are the same such that the corresponding TPI merge windows of at least two cells determined by the terminal coincide (or substantially coincide).
  • the network side device can determine:
  • the network side device determines the timing relationship between the F-DPCH and the F-TPICH offset position of two cells in the same service link set.
  • FIG. 4 shows the cell 1 and the cell 2 seen by the network side device.
  • the locations of F-DPCH1 and F-DPCH2 are the same (or substantially the same), and the corresponding TPI merge windows are coincident (or substantially coincident), thereby facilitating the terminal to merge the TPIs in the corresponding TPI merge window in different cells.
  • the TPI of each of the at least two cells is located at the TPI merge window boundary of the cell and the first downlink F-TPICH after the TPI merge window boundary.
  • the network side device can determine:
  • the network side also determines ⁇ F-TPICH ⁇ - T DPCH1 - F-TPICH 2 - DPCH 2 -... - ⁇ F-TPICHn - ⁇ DPCHn , where r DPCHn is the starting position of the DPCH of the cell M from the cell The offset position of the starting position of the P-CCPCH.
  • the network side device determines the timing relationship between the F-DPCH and the F-TPICH offset position of two cells in the same service link set.
  • FIG. 5 shows the cell 1 and the cell 2 F- seen by the network side device.
  • the timing relationship between the offset positions of the DPCH and the F-TPICH, on the UE side, the start positions of the F-DPCH1 and the F-DPCH2 are the same (or substantially the same), and the corresponding TPI merge windows coincide (or substantially coincide), Thereby, the terminal is convenient to merge the TPIs in the corresponding TPI merge window in different cells.
  • the network side device may determine that: the network side "and ⁇ " OK ⁇ F-TPICH A - ⁇ F-DPCH A - 2560 - T F - TpiCHB ⁇ ⁇ _ ⁇ ⁇ , where ⁇ F-TPICH A is the starting position of the F-TPICH of the cell in the cell set ⁇ from the P of the cell - the offset position of the starting position of the CCPCH , ⁇ ⁇ is the offset position of the starting position of the F-DPCH of the cell in the cell set A from the starting position of the P-CCPCH
  • the network side also determines ⁇ F-TPICH A - T DPCHA - 2560 - ⁇ F _ TPIC HB - ⁇ DPCHB , where ⁇ DPCHA is the starting position of the DPCH of the cell in the cell set ⁇ from the P- of the cell
  • the offset position of the starting position of the CCPCH is the offset position of the starting position of the DPCH of the cell in the cell set B from the starting position of the P-CCPCH of the cell.
  • the network side device determines the timing relationship between the F-DPCH and the F-TPICH offset positions of the two cells in the same service link set.
  • FIG. 6 shows the cell 1 and the F-TP of the cell 2 seen by the network side device.
  • the timing relationship between the offset positions of the DPCH and the F-TPICH, on the UE side, the start positions of the F-DPCH1 and the F-DPCH2 are the same (or substantially the same), and the corresponding TPI merge windows coincide (or substantially coincide), Thereby, the terminal is convenient to merge the TPIs in the corresponding TPI merge window in different cells.
  • the terminal determines the precoding indication TPI merge window according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH delivered by the network side device, so that the precoding indication TPI merge window is determined.
  • the effective position of the TPI is located at the slot boundary of the first uplink DPCCH after the termination boundary of the TPI merge window, so that the UE uses the timely TPI to improve the demodulation performance of the UE transmitting data.
  • the network side device may control that the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set have the same starting position (or substantially the same) and the starting position of the F-TPICH to reach the terminal. (or substantially the same), and determining that the timing relationship between the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH is the same, so that the corresponding TPI merge window of at least two cells determined by the terminal Coincident (or substantially coincident) facilitates the terminal to merge the TPIs in the corresponding TPI merge window in different cells.
  • Figure 7 is a schematic structural diagram of an embodiment of a terminal provided by the present invention. As shown in Figure 7, the terminal includes: a receiver 11 and a processor 12;
  • the receiver 11 is configured to receive an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by the network side device, and a downlink fraction precoding indicator channel F-TPICH of the at least one cell Offset position, the offset position of the downlink F-DPCH or the downlink DPCH is the start position of the downlink F-DPCH or the downlink DPCH of the two P-CCPCH frames for a long time from the start of the downlink main common control physical channel P-CCPCH When the position is delayed, the offset position of the downlink F-TPICH is the time when the start position of the downlink F-TPICH is delayed from the start position of the downlink P-CCPCH in the two P-CCPCH frames for a long time;
  • the processor 12 is configured to determine, according to the offset position of the downlink F-DPCH or the downlink DPCH of each cell and the offset position of the downlink F-TPICH, a precoding indication TPI merge window of the cell, so that the effective location of the TPI is located.
  • the TPI merge window terminates the slot boundary of the first uplink dedicated physical control channel DPCCH after the boundary.
  • the processor 12 can be specifically configured to:
  • the position of the slot offset (T F — DPCH —T F — TPICH + 512 ) mod 2560 chip from the downlink F-DPCH is determined as the TPI merge window boundary of the cell, where is the offset of the downlink F-DPCH Position, which is the time when the starting position of the downlink F-TPICH is delayed from the starting position of the downlink P-CCPCH; or, the slot boundary of the downlink DPCH is post-biased ( ⁇ ⁇ ⁇ - ⁇ + 512) mod 2560 chips
  • the position is determined as the TPI merge window boundary, where is the offset position of the downlink DPCH.
  • the terminal provided by the embodiment of the present invention is the execution device of the precoding indication merging method provided by the embodiment of the present invention.
  • the process of performing the precoding indication merging method may refer to the precoding indication shown in FIG. 1 to FIG. 2 provided by the present invention.
  • the method of the merging method is not described here.
  • the terminal provided in this embodiment determines the precoding indication TPI merge window according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH, so that the effective position of the TPI is located at the end of the TPI merge window.
  • the slot boundary of the first uplink DPCCH after the boundary so that the UE uses the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • Figure 8 is a schematic structural diagram of an embodiment of a network side device according to the present invention.
  • the network side device includes: a processor 21 and a transmitter 22;
  • the processor 21 is configured to determine an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of the at least one cell, and a downlink fraction precoding of the at least one cell to indicate an offset position of the channel F-TPICH,
  • the offset position of the downlink F-DPCH or the downlink DPCH is the time when the start position of the downlink F-DPCH or the downlink DPCH in the two P-CCPCH frames is delayed from the start position of the downlink main common control physical channel P-CCPCH.
  • the offset position of the downlink F-TPICH is the time when the start position of the downlink F-TPICH is delayed from the start position of the downlink P-CCPCH in the two P-CCPCH frames for a long time;
  • the transmitter 22 is configured to send the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell to the terminal, and deliver the offset position of the downlink F-TPICH of the at least one cell, so that the terminal according to the downlink F-DPCH Or the offset position of the downlink DPCH and the offset position of the downlink F-TPICH determine a precoding indication TPI merge window for each cell.
  • the processor 21 is further configured to: control that the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set have the same starting position (or substantially the same) and the F-TPICH arrives at the terminal.
  • the starting positions are the same (or substantially the same), and determine that the timing relationship between the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH is the same, so that the terminal determines the at least two cells.
  • the corresponding TPI merge windows are coincident (or substantially coincident).
  • the processor 21 may be specifically configured to:
  • the TPI of each cell in the set A of the at least two cells is located at a slot boundary of a downlink F-TPICH of the cell and a first slot after a slot boundary of the downlink F-TPICH Between the boundaries of the TPI merge window, the TPI of each cell in the cell set B in the at least two cells is located at the first downlink F-TPICH of the TPI merge window boundary of the cell and the TPI merge window boundary.
  • the processor 21 can be specifically used to: Indeed T F-TPICHA - T F-DPCHA - 2560 ⁇ ⁇ _ ⁇ ⁇ - T F-DPCHB ' where ' T F-TPICHA is a set of cells
  • the network side device provided by the embodiment of the present invention is an execution device of the precoding indication merging method provided by the embodiment of the present invention.
  • the process of performing the precoding indication merging method may refer to the pres shown in FIG. 3 to FIG. 6 provided by the present invention.
  • the code indicates the merge method embodiment, and details are not described herein again.
  • the network side device determines that the timing relationship between the offset of the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set and the offset position of the downlink F-TPICH is the same by the network side device. And transmitting a TPI to the terminal on the downlink F-TPICH of each cell according to a timing relationship between the offset position of the downlink F-DPCH or the downlink DPCH of each cell and the offset position of the downlink F-TPICH, so that the TPI is The effective position is located at the slot boundary of the first uplink dedicated physical control channel DPCCH after the termination boundary of the TPI merge window, so that the UE uses the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • FIG. 9 is a flowchart of an embodiment of a precoding indication combining method provided by the present invention.
  • FIG. 9 includes:
  • the terminal receives an offset position of a downlink fraction-specific physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by the network side device, and a downlink fraction precoding indication channel F-TPICH offset of the at least one cell Position, the downlink F-DPCH or the downlink DPCH offset position is the two main common control physical channel P-CCPCH frame.
  • the start position of the downlink F-DPCH or the downlink DPCH is longer than the frame start of the previous downlink P-CCPCH.
  • the offset position of the downlink F-TPICH is the time when the start position of the downlink F-TPICH in the two P-CCPCH frames is delayed from the frame start position of the previous downlink P-CCPCH.
  • the terminal determines, according to the offset position of the downlink F-DPCH or the downlink DPCH of each cell and the offset position of the downlink F-TPICH, the precoding indication TPI merge window of the cell, so that the effective location of the TPI is located in the TPI merge window.
  • the TPI is carried on the F-TPICH channel, and one complete TPI information occupies three time slots, that is, one subframe.
  • a complete ⁇ message consists of 2 ⁇ symbols, which are carried in the first 2 time slots of the subframe.
  • the two time slots use the same time slot format, each carrying 1 ⁇ symbol.
  • the UE applies the precoding information indicated by ⁇ at the slot boundary of the first uplink DPCCH after receiving the 512 chips after the second ⁇ symbol.
  • the uplink DPCCH has a determined timing relationship with the Fractional Dedicated Physical Channel (F-DPCH) or the Dedicated Physical Channel (DPCH).
  • F-DPCH Fractional Dedicated Physical Channel
  • DPCH Dedicated Physical Channel
  • the timing relationship may be a time difference between a starting position of the uplink DPCCH and a starting position of the downlink F-DPCH or the downlink DPCH.
  • the starting position of the uplink DPCCH is located at 1024 chips after the start of the downlink F-DPCH or downlink DPCH.
  • the terminal can determine the location of the TPI merge window according to the slot boundary of the downlink F-DPCH or the downlink DPCH based on a determined timing relationship between the uplink DPCCH and the downlink F-DPCH or the downlink DPCH, thereby implementing the TPI.
  • the location can be located at the slot boundary of the first uplink DPCCH after the termination boundary of the TPI merge window, so that the UE can use the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • the network side may send the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell and the offset position of the downlink F-TPICH of the at least one cell to enable the terminal to perform the downlink F according to the at least one cell.
  • the offset position of the DPCH or the downlink DPCH is used to determine the starting position of the downlink F-DPCH or the downlink DPCH.
  • the starting position of the downlink F-TPICH may be determined according to the offset position of the downlink F-TPICH of the cell.
  • the terminal may 512 chips after the slot boundary of the downlink F-DPCH or the slot boundary of the F-TPICH (T F _ DPCH - T F _ TPICH + 512) mod 2560 code
  • the position of the slice is determined as the TPI merge window boundary of the cell, where is the offset position of the downlink F-DPCH, which is the offset position of the downlink F-TPICH; or
  • the terminal may determine the location of the downlink DPCH slot boundary after 512 chips, or the F-TPICH slot boundary (T DPCH - T F _ TP1CH + 512) mod 2560 chip as the TPI of the cell. And the boundary of the window, where is the offset position of the downlink DPCH.
  • the downlink F-TPICH and the downlink F-DPCH/downlink DPCH start positions each have an even-numbered frame, and the adjacent two downlink P-CCPCH frames start with an even-numbered frame of the downlink P-CCPCH for a long time.
  • the starting position is the baseline.
  • the offset position of the downlink F-DPCH or the downlink DPCH is the starting position of the downlink F-DPCH or the downlink DPCH of the adjacent two downlink P-CCPCH frames starting from the even-numbered frame.
  • the time at which the P-CCPCH even-numbered frame start position lags.
  • the terminal determines the location of the precoding indication TPI merge window of the cell according to the offset position of the downlink F-DPCH of any cell. Referring to FIG. 2, the effective position of the TPI can be maintained at the TPI merge window of the cell. At the slot boundary of the first uplink DPCCH after the boundary.
  • the terminal provided in this embodiment determines the precoding indication TPI merge window according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH, so that the effective position of the TPI is located at the end of the TPI merge window.
  • FIG. 10 is a flowchart of an embodiment of a precoding indication combining method provided by the present invention. As shown in FIG. 10, the method includes:
  • the network side device determines a downlink fraction specific physical channel of at least one cell.
  • the offset position of the F-DPCH or the downlink dedicated physical channel DPCH, and the downlink fraction precoding of at least one cell indicates the offset position of the channel F-TPICH
  • the offset positions of the downlink F-DPCH or the downlink DPCH are two main common controls Physical channel P-CCPCH frame
  • the time when the starting position of the downlink F-DPCH or the downlink DPCH is delayed from the frame start position of the previous downlink P-CCPCH, and the offset position of the downlink F-TPICH is two P-CCPCHs.
  • the time when the start position of the downlink F-TPICH in the frame is delayed from the frame start position of the previous downlink P-CCPCH.
  • the network side device sends the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell to the terminal, and delivers the offset position of the downlink F-TPICH of the at least one cell, so that the terminal according to the downlink F-DPCH or
  • the offset position of the downlink DPCH and the offset position of the downlink F-TPICH determine a precoding indication TPI merge window for each cell.
  • the offset position of the downlink F-DPCH or the downlink DPCH is the uplink F-DPCH or the downlink DPCH of the adjacent two main common control physical channel P-CCPCH frames starting from the even-numbered frame for a long time.
  • the time at which the start position is delayed from the start position of the even-numbered frame of the downlink P-CCPCH; the offset position of the downlink F-TPICH is the adjacent two P-CCPCH frames starting with the even-numbered frame for a long time downlink F-TPICH
  • the starting position is the time lags from the start position of the even-numbered frame of the downstream P-CCPCH.
  • the network side device may determine, according to the starting position of the downlink P-CCPCH channel of any cell, that the starting position of the downlink F-TPICH and the downlink F-DPCH/downlink DPCH of the cell is delayed by the downlink P-CCPCH channel.
  • the time of the start position that is, the offset position of the downlink F-TPICH, and the offset position of the downlink F-DPCH/downlink DPCH.
  • the downlink P-CCPCH channel has 10 slots per frame, 15 slots, and each P-CCPCH frame carries 1 synchronization frame number (SFN) information.
  • SFN synchronization frame number
  • the offset chip after the start position of the 1 frame of the P-CCPCH whose SFN is an even number is the start position of the other channel. Therefore, each of the above offset positions, including: T F-DPCH, T F-TPICH, and T DPCH can be:
  • Tp * 256 chips where T p e ⁇ 0, 1, ..., 149 ⁇ .
  • the network side device can determine the downlink of each cell according to the actual demand of each cell service transmission.
  • the offset position of the F-TPICH and the offset position of the downlink F-DPCH/downlink DPCH so that the terminal can determine the corresponding cell according to the offset position of the downlink F-TPICH and the offset position of the downlink F-DPCH/downlink DPCH
  • the precoding indicates the TPI merge window.
  • the UE may receive downlink F-TPICH from at least two cells of the same service link set, these downlinks
  • the F-TPICH has the same TPI, so the UE can merge the TPIs in the corresponding TPI merge window in different cells.
  • the network side device may control the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set to reach the start of the terminal.
  • the positions are the same (or substantially the same) and the starting position of the F-TPICH arriving at the terminal is the same (or substantially the same), and the offset of the downlink F-DPCH or the downlink DPCH is determined.
  • the timing relationship between the location and the offset location of the downlink F-TPICH is the same, such that the corresponding TPI merge windows of the at least two cells determined by the terminal coincide (or substantially coincide).
  • the network side device can determine:
  • F-TPICH1-F-DPCH1- ⁇ F-TPICH!-F-DPCH2-...-F-TPICHn-F-DPCHn where F-TPICHn is the starting position of the cell's F-TPICH from the main public of the cell Controlling an offset position of a starting position of the physical channel P-CCPCH, which is an offset position of a starting position of the F-DPCH of the cell from a starting position of the P-CCPCH of the cell; or
  • the network side i can also determine ⁇ F-TPICm- ⁇ DPCHl- ⁇ F-TPICH!-DPCH2-...-F-TPICHn- ⁇ DPCHn, where the starting position of the DPCH for the cell is from the P- of the cell The offset position of the starting position of the CCPCH.
  • the network side device determines the timing relationship between the F-DPCH and the F-TPICH offset position of two cells in the same service link set.
  • FIG. 4 shows the network side device.
  • the locations of F-DPCH1 and F-DPCH2 are the same (or substantially the same), and the corresponding TPI merge windows are coincident (or substantially coincident), thereby facilitating the terminal to merge the TPIs in the corresponding TPI merge window in different cells.
  • the TPI of each of the at least two cells is located at the TPI merge window boundary of the cell and the first downlink F-TPICH after the TPI merge window boundary.
  • the network side device can determine:
  • F-TPICH1-F-DPCH1- ⁇ F-TPICH!-F-DPCH2-...-F-TPICHn-F-DPCHn where F-TPICHn is the starting position of the F-TPICH of the cell from the main public of the cell Controlling an offset position of a starting position of the physical channel P-CCPCH, which is an offset position of a starting position of the F-DPCH of the cell from a starting position of the P-CCPCH of the cell; or
  • the network side "and indeed ⁇ ⁇ F-TPICm a T DPCm - ⁇ F-TPICH a DPCH -! ... - F-TPICHn a ⁇ DPCHn, wherein the starting position of M r DPCHn DPCH of the cell from the cell P - The offset position of the starting position of the CCPCH.
  • the timing relationship between the F-DPCH and the F-TPICH offset position of two cells in the same service link set is determined by the network side device.
  • FIG. 5 shows that the network side device sees a small
  • the timing relationship between the F-DPCH and the offset position of the F-TPICH of the cell 1 and the cell 2, on the UE side, the start positions of the F-DPCH1 and the F-DPCH2 are the same (or substantially the same), and the corresponding TPI is merged.
  • the windows overlap (or substantially coincide), thereby facilitating the terminal to merge the TPIs in the corresponding TPI merge window in different cells.
  • the network side device can determine: the network side "also ⁇ " ⁇ F-TPICH A - ⁇ F-DPCH A - 2560 - T F - TPICHB ⁇ ⁇ _ ⁇ ⁇ , where ⁇ F - TPICH A is the offset position of the start position of the F-TPICH of the cell in the cell set ⁇ from the start position of the P-CCPCH of the cell, ⁇ ⁇ is the start of the F-DPCH of the cell in the cell set A The offset position of the location from the start position
  • the network side also determines ⁇ F-TPICH A - T DPCHA - 2560 - ⁇ F _ TPIC HB - ⁇ DPCHB , where ⁇ DPCHA is the starting position of the DPCH of the cell in the cell set ⁇ from the P- of the cell
  • the offset position of the starting position of the CCPCH is the offset position of the starting position of the DPCH of the cell in the cell set B from the starting position of the P-CCPCH of the cell.
  • the network side device determines the timing relationship between the F-DPCH and the F-TPICH offset positions of the two cells in the same service link set.
  • FIG. 6 shows the cell 1 and the network side device see the cell 1 and The timing relationship between the F-DPCH of the cell 2 and the offset position of the F-TPICH, on the UE side, the start positions of the F-DPCH1 and the F-DPCH2 are the same (or substantially the same), and the corresponding TPI merge windows coincide ( Or substantially coincident), thereby facilitating the terminal to merge the TPIs in the corresponding TPI merge window in different cells.
  • the terminal sends the downlink according to the network side device
  • the network side device may control that the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set have the same starting position (or substantially the same) and the starting position of the F-TPICH to reach the terminal.
  • FIG. 11 is a schematic structural diagram of an embodiment of a terminal provided by the present invention. As shown in Figure 11, the terminal includes: a receiver 31 and a processor 32;
  • the receiver 31 is configured to receive an offset position of a downlink fraction private physical channel F-DPCH or a downlink dedicated physical channel DPCH of at least one cell sent by the network side device, and a downlink fraction precoding indication channel F-TPICH of the at least one cell Offset position, the offset position of the downlink F-DPCH or the downlink DPCH is the two main common control physical channel P-CCPCH frame.
  • the start position of the downlink F-DPCH or the downlink DPCH is long from the previous downlink P-CCPCH.
  • the offset position of the downlink F-TPICH is the time when the start position of the downlink F-TPICH in the two P-CCPCH frames is delayed from the start position of the frame of the previous downlink P-CCPCH;
  • the processor 32 is configured to determine, according to the offset position of the downlink F-DPCH or the downlink DPCH of each cell and the offset position of the downlink F-TPICH, the precoding indication TPI merge window of the cell, so that the effective location of the TPI is located.
  • the TPI merge window terminates the slot boundary of the first uplink dedicated physical control channel DPCCH after the boundary.
  • the processor 32 can be specifically configured to:
  • the position of the T F tpich + 5 2 mod 2560 chip after the slot boundary of the downlink F-DPCH or the slot boundary of the F-TPICH is determined as the TPI merge window boundary of the cell, where is the downlink F - the offset position of the DPCH, which is the offset position of the downlink F-TPICH; or, 512 chips after the slot boundary of the downlink DPCH, or the slot boundary of the F-TPICH (T DPCH - T F _ TPICH + 512
  • the position of the mod 2560 chip is determined as the TPI merge window boundary, where is the offset position of the downlink DPCH.
  • the terminal provided by the embodiment of the present invention is an apparatus for performing a precoding indication merging method according to an embodiment of the present invention.
  • the process of performing the precoding indication merging method may be implemented by using the precoding indication merging method shown in FIG. 9 provided by the present invention. For example, it will not be described here.
  • the terminal provided in this embodiment determines the precoding indication TPI merge window according to the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH, so that the effective position of the TPI is located at the end of the TPI merge window.
  • the slot boundary of the first uplink DPCCH after the boundary so that the UE uses the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • FIG 12 is a schematic structural diagram of an embodiment of a network side device according to the present invention.
  • the network side device includes: a processor 41 and a transmitter 42;
  • the processor 41 is configured to determine an offset position of a downlink fraction private physical channel F-DPCH or a downlink dedicated physical channel DPCH of the at least one cell, and a downlink fraction precoding of the at least one cell indicates an offset position of the channel F-TPICH,
  • the offset position of the downlink F-DPCH or the downlink DPCH is the two main common control physical channel P-CCPCH frames.
  • the start position of the downlink F-DPCH or the downlink DPCH is delayed from the frame start position of the previous downlink P-CCPCH.
  • the offset position of the downlink F-TPICH is the time when the start position of the downlink F-TPICH in the two P-CCPCH frames is delayed from the frame start position of the previous downlink P-CCPCH;
  • the transmitter 42 is configured to deliver the offset position of the downlink F-DPCH or the downlink DPCH of the at least one cell to the terminal, and deliver the offset position of the downlink F-TPICH of the at least one cell, so that the terminal according to the downlink F-DPCH Or the offset position of the downlink DPCH and the offset position of the downlink F-TPICH determine a precoding indication TPI merge window for each cell.
  • the processor 41 is further configured to: control that the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set have the same starting position (or substantially the same) and the F-TPICH arrives at the terminal.
  • the starting positions are the same (or substantially the same), and determine that the timing relationship between the offset position of the downlink F-DPCH or the downlink DPCH and the offset position of the downlink F-TPICH is the same, so that the terminal determines the at least two cells.
  • the corresponding TPI merge windows are coincident (or substantially coincident).
  • the processor 21 may be specifically configured to:
  • the TPI of each cell in the set A of the at least two cells is located in a slot boundary of a downlink F-TPICH of the cell and a first TPI merge window after a slot boundary of the downlink F-TPICH Between the boundaries, the TPI of each cell in the cell set B in the at least two cells is located between the TPI merge window boundary of the cell and the slot boundary of the first downlink F-TPICH after the TPI merge window boundary,
  • the processor 21 can be specifically configured to:
  • the network side device provided by the embodiment of the present invention is the execution device of the precoding indication merging method provided by the embodiment of the present invention.
  • the process of performing the precoding indication merging method may refer to the precoding indication merge shown in FIG. 10 provided by the present invention. Method embodiments are not described herein again.
  • the network side device determines that the timing relationship between the offset of the downlink F-DPCH or the downlink DPCH of the at least two cells in the same service link set and the offset position of the downlink F-TPICH is the same by the network side device. And transmitting a TPI to the terminal on the downlink F-TPICH of each cell according to a timing relationship between the offset position of the downlink F-DPCH or the downlink DPCH of each cell and the offset position of the downlink F-TPICH, so that the TPI is The effective position is located at the slot boundary of the first uplink dedicated physical control channel DPCCH after the termination boundary of the TPI merge window, so that the UE uses the timely TPI to improve the demodulation performance of the data transmitted by the UE.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例涉及一种编码指示合并方法、终端和网络侧设备。一种方法包括:终端接收网络侧设备发送的至少一个小区的下行分数专有物理信道F-DPCH或下行专用物理信道DPCH的偏置位置,以及至少一个小区的下行分数预编码指示信道F-TPICH的偏置位置;终端根据下行F-DPCH或下行DPCH的偏置位置以及下行F-TPICH的偏置位置,确定小区的预编码指示TPI合并窗口,以使TPI的生效位置位于TPI合并窗口终止边界后的第一个上行专用物理控制信道DPCCH的时隙边界处。以使UE使用的及时的TPI,提高UE发送数据的解调性能。

Description

预编码指示合并方法、 终端和网络侧设备
技术领域 本发明实施例涉及通信技术领域, 特别涉及一种预编码指示合并方法、 终端和网络侧设备。 背景技术 多天线闭环发射分集( Closed Loop Transmit Diversity, CLTD )发送数 据的过程为: 用户设备(User Equipment, UE ) 向服务小区发送导频信息, 该小区通过该导频检测到信道的状态后, 确定预编码指示 (Transmitted Precoding Indicator, TPI ),并将 TPI承载在分数预编码指示信道( Fractional Transmitted Precoding Indicator Channel, F-TPICH )上面发送给 UE。 UE 检测 F-TPICH解出 TPI , 根据 TPI选择预编码码本发送上行数据。 UE可以 接收来自服务链路集(Radio Link Set, RLS )中的多个小区的 F-TPICH , 由 于这些 F-TPICH上的 TPI是相同的信息, 因此, UE可以将这些小区的对应 的 TPI合并窗口内的 TPI合并。
现有技术中, UE在收到 TPI信息中的第 2个 TPI符号后的 512码片之 后的第 1个上行专用物理控制信道 ( Dedicated Physical Control Channel, DPCCH )时隙边界处,应用 TPI指示的预编码信息。然而, DPCCH与 F-TPICH 信道的定时关系不确定, 这会导致 UE进行 TPI合并操作时, TPI生效位置 不确定,从而可能使得 UE使用的不是最及时的 TPI , 导致 UE发送数据的解 调性能差。 发明内容 本发明实施例提供一种预编码指示合并方法、 终端和网络侧设备, 以使
UE使用及时的 TPI , 提高 UE发送数据的解调性能。
一方面, 本发明实施例提供一种预编码指示合并方法, 包括:
终端接收网络侧设备发送的至少一个小区的下行分数专有物理信道
F-DPCH或下行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的 下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下 行 F-DPCH或下行 DPCH的起始位置距下行 P-CCPCH的起始位置滞后的时 间, 所述下行 F-TPICH 的偏置位置为两个 P-CCPCH 帧长时间内所述下行 F-TPICH的起始位置距下行 P-CCPCH的起始位置滞后的时间;
所述终端根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH的偏 置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI 合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后的第 一个上行专用物理控制信道 DPCCH的时隙边界处。
本发明实施例还提供一种终端, 包括:
接收器, 用于接收网络侧设备发送的至少一个小区的下行分数专有物理 信道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及所述至少一个小 区的下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或 下行 DPCH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-DPCH或下 行 DPCH的起始位置距下行主公共控制物理信道 P-CCPCH的起始位置滞后 的时间,所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下 行 F-TPICH的起始位置距下行 P-CCPCH的起始位置滞后的时间;
处理器, 用于根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH 的偏置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后 的第一个上行专用物理控制信道 DPCCH的时隙边界处。
另一方面, 本发明实施例还提供一种预编码指示合并方法, 包括: 网络侧设备确定至少一个小区的下行分数专有物理信道 F-DPCH或下行 专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编码 指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位 置为两个 P-CCPCH帧长时间内所述下行 F-DPCH或下行 DPCH的起始位置 距下行主公共控制物理信道 P-CCPCH 的起始位置滞后的时间, 所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-TPICH的起始 位置距下行 P-CCPCH的起始位置滞后的时间;
所述网络侧设备向终端下发所述至少一个小区的所述下行 F-DPCH或下 行 DPCH的偏置位置, 并下发所述至少一个小区的所述下行 F-TPICH的偏 置位置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置 以及所述下行 F-TPICH的偏置位置确定每个所述小区的预编码指示 TPI合并 窗口。
本发明实施例还提供一种网络侧设备, 包括:
处理器, 用于确定至少一个小区的下行分数专有物理信道 F-DPCH或下 行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编 码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置 位置为两个 P-CCPCH帧长时间内所述下行 F-DPCH或下行 DPCH的起始位 置距下行主公共控制物理信道 P-CCPCH的起始位置滞后的时间, 所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-TPICH的起始 位置距下行 P-CCPCH的起始位置滞后的时间;
发送器, 用于向终端下发所述至少一个小区的所述下行 F-DPCH 或下行 DPCH 的偏置位置, 并下发所述至少一个小区的所述下行 F-TPICH 的偏置位 置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置以及所 述下行 F-TPICH的偏置位置确定每个所述小区的预编码指示 TPI合并窗口。
另一方面, 本发明实施例还提供一种预编码指示合并方法, 包括: 终端接收网络侧设备发送的至少一个小区的下行分数专有物理信道 F-DPCH或下行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的 下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下 行 F-DPCH或下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置 滞后的时间,所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所 述下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时 间;
所述终端根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH的偏 置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI 合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后的第 一个上行专用物理控制信道 DPCCH的时隙边界处。
本发明实施例还提供另一种预编码指示合并方法, 其特征在于, 包括: 网络侧设备确定至少一个小区的下行分数专有物理信道 F-DPCH或下行 专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编码 指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位 置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下行 F-DPCH或下 行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间, 所 述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-TPICH 的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间;
所述网络侧设备向终端下发所述至少一个小区的所述下行 F-DPCH或下 行 DPCH的偏置位置, 并下发所述至少一个小区的所述下行 F-TPICH的偏 置位置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置 以及所述下行 F-TPICH的偏置位置确定每个所述小区的预编码指示 TPI合并 窗口。
另一方面, 本发明实施例还提供一种终端, 包括:
接收器, 用于接收网络侧设备发送的至少一个小区的下行分数专有物理 信道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及所述至少一个小 区的下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或 下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所 述下行 F-DPCH或下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始 位置滞后的时间,所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间 内所述下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后 的时间;
处理器, 用于根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH 的偏置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后 的第一个上行专用物理控制信道 DPCCH的时隙边界处。
本发明实施例还提供一种网络侧设备, 包括:
处理器, 用于确定至少一个小区的下行分数专有物理信道 F-DPCH或下 行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编 码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置 位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下行 F-DPCH或 下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间, 所述下行 F-TPICH 的偏置位置为两个 P-CCPCH 帧长时间内所述下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间; 发送器, 用于向终端下发所述至少一个小区的所述下行 F-DPCH或下行 DPCH的偏置位置,并下发所述至少一个小区的所述下行 F-TPICH的偏置位 置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置以及 所述下行 F-TPICH 的偏置位置确定每个所述小区的预编码指示 TPI合并窗 口。
本发明实施例提供的预编码指示合并方法、 终端和网络侧设备, 通过终 端根据下行 F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置位 置, 确定预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口 终止边界后的第一个上行 DPCCH的时隙边界处,从而使 U E使用及时的 TPI , 提高 UE发送数据的解调性能。 附图说明
施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的预编码指示合并方法一个实施例的流程图; 图 2为本发明实施例提供的终端根据 F-DPCH的时隙边界确定预编码指 示 TPI合并窗口的示意图;
图 3为本发明提供的预编码指示合并方法一个实施例的流程图; 图 4为本发明提供的网络侧设备确定同一服务链路集内至少两个小区的 F-DPCH与 F-TPICH的起始位置的偏置位置关系的一个实施例示意图;
图 5为本发明提供的网络侧设备确定同一服务链路集内至少两个小区的 F-DPCH与 F-TPICH的起始位置的偏置位置关系的另一个实施例示意图; 图 6为本发明提供的网络侧设备确定同一服务链路集内至少两个小区的 F-DPCH与 F-TPICH的起始位置的偏置位置关系的又一个实施例示意图; 图 7为本发明提供的终端一个实施例的结构示意图; 图 8为本发明提供的网络侧设备一个实施例的结构示意图;
图 9为本发明提供的预编码指示合并方法一个实施例的流程图; 图 10为本发明提供的预编码指示合并方法一个实施例的流程图; 图 11为本发明提供的终端一个实施例的结构示意图;
图 12为本发明提供的网络侧设备一个实施例的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种无线通信网络, 例如: 无线局域网
( Wireless Local Area Network, WLAN )、全球移动通信系统( Global System for Mobile Communications, GSM )网络、通用分组无线业务( General Packet Radio Service, GPRS ) 网络、 码分多址( Code Division Multiple Access, CDMA ) 网络、 CDMA2000网络、 宽带码分多址( Wideband Code Division Multiple Access, WCDMA ) 网络、 长期演进( Long Term Evolution, LTE ) 网络或全球 波接入互操作性 ( World Interoperability for Microwave Access, WiMAX )网络等。 可以适用于上述各种通信系统的多天线系统的实 施场景, 例如: 2x2 上行链路(Up Link, UL )多输入多输出 ( Multiple Input Multiple Output, MIMO )、 4x4 UL MIMO等。
其中, 网络侧设备, 可以是 GSM网络、 GPRS网络或 CDMA网络中的 基站 (Base Transceiver Station , BTS ) , 也可以是 CDMA2000 网络或 WCDMA 网络中的基站 (NodeB ) , 还可以是 LTE 网络中的演进型基站 ( Evolved NodeB, eNB ) , 还可以是 WiMAX网络中的接入服务网络的基站 ( Access Service Network Base Station, ASN BS )等网元。
图 1为本发明提供的预编码指示合并方法一个实施例的流程图, 如图 1 , 该方法包括:
S101、 终端接收网络侧设备发送的至少一个小区的下行分数专有物理信 道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及至少一个小区的下 行分数预编码指示信道 F-TPICH的偏置位置, 下行 F-DPCH或下行 DPCH 的偏置位置为两个 P-CCPCH帧长时间内下行 F-DPCH或下行 DPCH的起始 位置距下行主公共控制物理信道 P-CCPCH 的起始位置滞后的时间, 下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内下行 F-TPICH的起始位置 距下行 P-CCPCH的起始位置滞后的时间。
S102、 终端根据每个小区的下行 F-DPCH或下行 DPCH的偏置位置以 及下行 F-TPICH的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行专用物理控制信 it DPCCH的时隙边界处。
其中, TPI承载在 F-TPICH信道上, 1个完整的 TPI信息占 3个时隙, 即 1个子帧。 1个完整的 TPI信息由 2个 TPI符号组成, 承载于子帧的前 2 个时隙上, 这 2个时隙釆用相同的时隙格式, 各承载 1个 TPI符号。 UE在 接收到第 2个 TPI符号后的 512码片之后的第 1个上行 DPCCH的时隙边界 处, 应用 TPI所指示的预编码信息。
上行 DPCCH与下行 F-TPICH没有确定的定时关系, 然而上行 DPCCH 与下行分数专有物理信道 ( Fractional Dedicated Physical Channel , F-DPCH )或下行专用物理信道 ( Dedicated Physical Channel , DPCH )有 确定的定时关系 (当存在下行 DPCH的场景下, 不存在下行 F-DPCH; 当不 存在下行 DPCH的场景下, 则存在下行 F-DPCH )。 其中, 定时关系可以是 指上行 DPCCH的起始位置与下行 F-DPCH或下行 DPCH的起始位置之间的 时间差。上行 DPCCH的起始位置位于下行 F-DPCH或下行 DPCH的起始位 置之后的 1024码片处。
据此,终端可以基于上行 DPCCH与下行 F-DPCH或下行 DPCH之间有 确定的定时关系, 来根据下行 F-DPCH或下行 DPCH的时隙边界来确定 TPI 合并窗口的位置, 从而实现 TPI的生效位置能够位于 TPI合并窗口终止边界 后的第一个上行 DPCCH的时隙边界处, 从而使 UE能够使用及时的 TPI , 提高 UE发送数据的解调性能。
其中, 网络侧可以向终端下发至少一个小区的下行 F-DPCH 或下行 DPCH的偏置位置, 以及至少一个小区的下行 F-TPICH的偏置位置, 以使终 端能够根据至少一个小区的下行 F-DPCH或下行 DPCH的偏置位置来确定下 行 F-DPCH或下行 DPCH的起始位置,同样,可以根据该小区的下行 F-TPICH 的偏置位置来确定下行 F-TPICH的起始位置。
作为一种可行的实施方式, 终端可以将距下行 F-DPCH 的时隙边界后
( TFDPCH—TF 512) mod 2560码片的位置确定为该小区的 TPI合并窗口 边界, 其中, 为下行 F-DPCH的偏置位置, „ ^为下行 F-TPICH的 偏置位置; 或者,
终端可以将下行 DPCH的时隙边界后偏置( τ τΡΤΡΚΗ + 512 ) mod 2560码片的位置确定为该小区的 TPI合并窗口的边界, 其中, 为下行 DPCH的偏置位置。
需要说明的是, 下行 F-TPICH和下行 F-DPCH/下行 DPCH的起始位置 都以下行 P-CCPCH信道的起始位置为基准。
以终端根据任一小区的下行 F-DPCH的偏置位置来确定该小区的预编码 指示 TPI合并窗口的位置为例, 如图 2所示, TPI的生效位置能够保持在该 小区的 TPI合并窗口终止边界后的第 1个上行 DPCCH的时隙边界处。
本实施例提供的终端,通过终端根据下行 F-DPCH或下行 DPCH的偏置 位置以及下行 F-TPICH 的偏置位置, 确定预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行 DPCCH的时隙 边界处, 从而使 UE使用及时的 TPI , 提高 UE发送数据的解调性能。 图 3为本发明提供的预编码指示合并方法一个实施例的流程图, 如图 3, 该方法包括:
5301、 网络侧设备确定至少一个小区的下行分数专有物理信道 F-DPCH 或下行专用物理信道 DPCH的偏置位置, 以及至少一个小区的下行分数预编 码指示信道 F-TPICH的偏置位置, 下行 F-DPCH或下行 DPCH的偏置位置 为两个 P-CCPCH帧长时间内下行 F-DPCH或下行 DPCH的起始位置距下行 主公共控制物理信道 P-CCPCH的起始位置滞后的时间,下行 F-TPICH的偏 置位置为两个 P-CCPCH 帧长时间内下行 F-TPICH 的起始位置距下行 P-CCPCH的起始位置滞后的时间。
5302、 网络侧设备向终端下发至少一个小区的下行 F-DPCH 或下行 DPCH的偏置位置, 并下发至少一个小区的下行 F-TPICH的偏置位置, 以使 终端根据下行 F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置 位置确定每个小区的预编码指示 TPI合并窗口。
其中, 网络侧设备可以以任一小区的下行 P-CCPCH信道的起始位置为 基准, 确定该小区的下行 F-TPICH和下行 F-DPCH/下行 DPCH的起始位置 滞后下行 P-CCPCH信道的起始位置的时间, 即, 确定下行 F-TPICH的偏置 位置, 以及下行 F-DPCH/下行 DPCH的偏置位置。
下行 P-CCPCH信道每帧 10 ms,有 15个时隙,每个 P-CCPCH帧都载 有 1个同步帧号( SFN )信息。 SFN为偶数的 P-CCPCH的那 1帧的起始位 置后的偏置 码片处为其他信道的起始位置。 因此, 上述的各个偏置位置, 包括: F-DPCH、 F-TPICH和 DPCH的取值均可以为:
Tp * 256码片, 其中 Tp e {0, 1, ..., 149}。
网络侧设备可以根据各小区业务传输的实际需求来确定各个小区的下行
F-TPICH的偏置位置, 以及下行 F-DPCH/下行 DPCH的偏置位置, 从而使 终端能够根据下行 F-TPICH的偏置位置, 以及下行 F-DPCH/下行 DPCH的 偏置位置确定对应小区的预编码指示 TPI 合并窗口。 其中, 终端根据下行 F-TPICH的偏置位置, 以及下行 F-DPCH/下行 DPCH的偏置位置确定对应 小区的预编码指示 TPI合并窗口的具体过程可参见图 1和图 2所示的实施例, 在此不再赘述。
UE处于同一服务链路集(Serving RLS ) 中的至少两个小区的交界处的 实施场景下, UE 可能收到来自同 1 个服务链路集的至少两个小区的下行 F-TPICH , 这些下行 F-TPICH上具有相同的 TPI , 因此, UE可以将不同小 区中对应的 TPI合并窗口内的 TPI合并。
可选的,为了便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并, 网络侧设备可以控制同一服务链路集内的至少两个小区的下行 F-DPCH或下 行 DPCH到达终端的起始位置相同 (或基本相同) 以及 F-TPICH到达终端 的起始位置相同 (或基本相同), 并确定下行 F-DPCH或下行 DPCH的偏置 位置与下行 F-TPICH的偏置位置之间的定时关系相同,从而使终端确定的至 少两个小区的对应的 TPI合并窗口重合(或基本重合)。
作为一种可行的实施方式, 若至少两个小区中的每个小区的 TPI均位于 该小区的下行 F-TPICH的时隙边界与下行 F-TPICH的时隙边界之后的第一 个 TPI合并窗口的边界之间的实施场景下, 则网络侧设备可以确定:
τ F-TP1CH\一 τ F-DPCH\ - τ F-TPICH 2一 τ F-DPCH2 -… - τ F-TPlCHn一 τ F-DPCHn ' 其中 ' τ F-TPlCHn为 小区《的 F-TPICH的起始位置距该小区的主公共控制物理信道 P-CCPCH的 起始位置的偏置位置, 为小区《的 F-DPCH 的起始位置距该小区的 P-CCPCH的起始位置的偏置位置; 或者,
网络側 "又^^可以确 ^F-TPICH\ - τ DPCm - ^F-TPICH! - - … - ^F-TPICHn - τ DPCHn , 其中, 为小区 "的 DPCH的起始位置距该小区的 P-CCPCH的起始位置 的偏置位置。
以网络侧设备确定同一服务链路集内两个小区的 F-DPCH 与 F-TPICH 的偏置位置之间的定时关系为例, 图 4所示为网络侧设备看到的小区 1和小 区 2的 F-DPCH与 F-TPICH的偏置位置之间的定时关系。在 UE侧, F-DPCH1 和 F-DPCH2的位置相同 (或基本相同), 并且对应的 TPI合并窗口重合(或 基本重合), 从而便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并。
作为另一种可行的实施方式, 在同一时隙内, 至少两个小区中的每个小 区的 TPI均位于该小区的 TPI合并窗口边界与 TPI合并窗口边界之后的第一 个下行 F-TPICH的时隙边界之间的实施场景下, 网络侧设备可以确定:
τ F-TP1CH\一 τ F-DPCH\ - τ F-TPICH 2一 τ F-DPCH 2 -… - τ F-TPlCHn一 τ F-DPCHn ' 其中 ' τ F-TPlCHn为 小区《的 F-TPICH的起始位置距该小区的主公共控制物理信道 P-CCPCH的 起始位置的偏置位置, 为小区《的 F-DPCH 的起始位置距该小区的 P-CCPCH的起始位置的偏置位置; 或者,
网络側"又^^确 ^F-TPICH\ - T DPCH1 - F-TPICH 2 - DPCH 2 -… - ^F-TPICHn - τ DPCHn ,其中 , rDPCHn为小区 M的 DPCH的起始位置距该小区的 P-CCPCH的起始位置的偏置 位置。
以网络侧设备确定同一服务链路集内两个小区的 F-DPCH 与 F-TPICH 的偏置位置的定时关系为例, 如图 5为网络侧设备看到的小区 1和小区 2的 F-DPCH与 F-TPICH的偏置位置之间的定时关系, 在 UE侧, F-DPCH1和 F-DPCH2的起始位置相同(或基本相同),并且对应的 TPI合并窗口重合(或 基本重合), 从而便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并。
作为另一种可行的实施方式, 在若至少两个小区中的集合 A中每个小区 的 TPI均位于该小区的下行 F-TPICH的时隙边界与下行 F-TPICH的时隙边 界之后的第一个 TPI合并窗口的边界之间, 至少两个小区中的小区集合 B中 每个小区的 TPI均位于该小区的 TPI合并窗口边界与 TPI合并窗口边界之后 的第一个下行 F-TPICH的时隙边界之间的实施场景下,网络侧设备可以确定: 网络側"又^"确 τ F-TPICH A - τ F-DPCH A - 2560 - TFTpiCHB― ^ρ_ΟΡ ΗΒ , 其中 , τ F-TPICH A 为小区集合 Α中的小区的 F-TPICH的起始位置距该小区的 P-CCPCH的起始 位置的偏置位置, ΰΡ ^为小区集合 A中的小区的 F-DPCH的起始位置距该 小区的 P-CCPCH的起始位置的偏置位置, 为小区集合 B中的小区的 F-TPICH的起始位置距该小区的 P-CCPCH的起始位置的偏置位置, τΡ― 为小区集合 B中的小区的 F-DPCH的起始位置距该小区的 P-CCPCH的起始 位置的偏置位置; 或者,
网络側"又^^确 τ F-TPICH A - T DPCHA - 2560 - ^F_TPICHB - τ DPCHB , 其中 , τ DPCHA为小 区集合 Α中的小区的 DPCH的起始位置距该小区的 P-CCPCH的起始位置的 偏置位置, 为小区集合 B 中的小区的 DPCH 的起始位置距该小区的 P-CCPCH的起始位置的偏置位置。
以网络侧设备确定同一服务链路集内两个小区的 F-DPCH 与 F-TPICH 的偏置位置的定时关系为例, 如图 6为网络侧设备看到的小区 1和小区 2的 F-DPCH与 F-TPICH的偏置位置之间的定时关系, 在 UE侧, F-DPCH1和 F-DPCH2的起始位置相同(或基本相同),并且对应的 TPI合并窗口重合(或 基本重合), 从而便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并。
本实施例提供的预编码指示合并方法, 终端根据网络侧设备下发的下行 F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置位置, 确定预 编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后 的第一个上行 DPCCH的时隙边界处, 从而使 UE使用及时的 TPI, 提高 UE 发送数据的解调性能。 进一步的, 网络侧设备可以控制同一服务链路集内的 至少两个小区的下行 F-DPCH或下行 DPCH到达终端的起始位置相同(或基 本相同) 以及 F-TPICH到达终端的起始位置相同 (或基本相同), 并确定下 行 F-DPCH或下行 DPCH的偏置位置与下行 F-TPICH的偏置位置之间的定 时关系相同,从而使终端确定的至少两个小区的对应的 TPI合并窗口重合(或 基本重合), 便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并。 图 7为本发明提供的终端一个实施例的结构示意图, 如图 7所示, 终端 包括: 接收器 11和处理器 12;
接收器 11 , 用于接收网络侧设备发送的至少一个小区的下行分数专有物 理信道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及至少一个小区 的下行分数预编码指示信道 F-TPICH 的偏置位置, 下行 F-DPCH 或下行 DPCH的偏置位置为两个 P-CCPCH帧长时间内下行 F-DPCH或下行 DPCH 的起始位置距下行主公共控制物理信道 P-CCPCH的起始位置滞后的时间, 下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内下行 F-TPICH的起 始位置距下行 P-CCPCH的起始位置滞后的时间;
处理器 12, 用于根据每个小区的下行 F-DPCH或下行 DPCH的偏置位 置以及下行 F-TPICH的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行专用物理控 制信道 DPCCH的时隙边界处。
可选的, 处理器 12可以具体用于:
将距下行 F-DPCH的时隙边界后偏置( TFDPCH—TFTPICH + 512 ) mod 2560 码片的位置确定为小区的 TPI合并窗口边界, 其中, 为下行 F-DPCH 的偏置位置, 为下行 F-TPICH的起始位置距下行 P-CCPCH的起始位 置滞后的时间; 或者,将下行 DPCH的时隙边界后偏置( τ τΡΤΡΚΗ + 512) mod 2560码片的位置确定为 TPI合并窗口边界, 其中, 为下行 DPCH 的偏置位置。
本发明实施例提供的终端, 为本发明实施例提供的预编码指示合并方法 的执行设备, 其执行预编码指示合并方法的过程可参见本发明提供的图 1-图 2所示的预编码指示合并方法实施例, 在此不再赘述。
本实施例提供的终端,通过终端根据下行 F-DPCH或下行 DPCH的偏置 位置以及下行 F-TPICH 的偏置位置, 确定预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行 DPCCH的时隙 边界处, 从而使 UE使用及时的 TPI , 提高 UE发送数据的解调性能。
图 8为本发明提供的网络侧设备一个实施例的结构示意图,如图 8所示, 该网络侧设备包括: 处理器 21和发送器 22; 处理器 21 ,用于确定至少一个小区的下行分数专有物理信道 F-DPCH或 下行专用物理信道 DPCH的偏置位置, 以及至少一个小区的下行分数预编码 指示信道 F-TPICH的偏置位置, 下行 F-DPCH或下行 DPCH的偏置位置为 两个 P-CCPCH帧长时间内下行 F-DPCH或下行 DPCH的起始位置距下行主 公共控制物理信道 P-CCPCH的起始位置滞后的时间,下行 F-TPICH的偏置 位置为两个 P-CCPCH 帧长时间内下行 F-TPICH 的起始位置距下行 P-CCPCH的起始位置滞后的时间;
发送器 22,用于向终端下发至少一个小区的下行 F-DPCH或下行 DPCH 的偏置位置, 并下发至少一个小区的下行 F-TPICH的偏置位置, 以使终端根 据下行 F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置位置确 定每个小区的预编码指示 TPI合并窗口。
可选的, 处理器 21还可以用于: 控制同一服务链路集内的至少两个小区 的下行 F-DPCH或下行 DPCH到达终端的起始位置相同(或基本相同)以及 F-TPICH到达终端的起始位置相同 (或基本相同), 并确定下行 F-DPCH或 下行 DPCH的偏置位置与下行 F-TPICH的偏置位置之间的定时关系相同, 以使终端确定的至少两个小区的对应的 TPI合并窗口重合(或基本重合)。
可选的, 若所述至少两个小区中的每个小区的 TPI均位于该小区的下行 窗口的边界之间, 或者所述至少两个小区中的每个小区的 TPI均位于该小区 的 TPI合并窗口边界与所述 TPI合并窗口边界之后的第一个下行 F-TPICH的 时隙边界之间, 则处理器 21可以具体用于:
确 F-TPICHl一 F-DPCHl - F-TPICH 2一 F-DPCH 2 - ■■■ - F-TPICHn一 F-DPCHn , 其中 , rFmcHn为小区 "的下行 F-TPICH的偏置位置, τΡοραΐη为小区"的下行 F-DPCH 的偏置 置, 或者 , ^F-TPICm ~ ^DPCHl ~ ^F-TPICH! ~ 2 ~… - τ F—TPICHn— τ DPCHn , 其中, p ^为小区 M的下行 DPCH的偏置位置。
可选的, 若所述至少两个小区中的集合 A中每个小区的 TPI均位于该小 区的下行 F-TPICH的时隙边界与所述下行 F-TPICH的时隙边界之后的第一 个 TPI合并窗口的边界之间, 所述至少两个小区中的小区集合 B中每个小区 的 TPI均位于该小区的 TPI合并窗口边界与所述 TPI合并窗口边界之后的第 一个下行 F-TPICH的时隙边界之间, 则处理器 21可以具体用于: 确 TF-TPICHA - TF-DPCHA - 2560― ^ρ_ΤΡΙ ΗΒ - TF-DPCHB ' 其中 ' TF-TPICHA为小区集
A中的小区的下行 F-TPICH的偏置位置, Tfdpcha为小区集合 A中的小区的下 行 F-DPCH的偏置位置, 为小区集合 B中的小区的下行 F-TPICH的 偏置位置, 为小区集合 B中的小区的下行 F-DPCH的偏置位置;或者, 确 m定 τ i- F-TPICH A - Τ L DPCHA - 2560 = τ L F-TPICHB - Τ L DPCHB , 立中 I , ' τ L DPCHA为^小 ~* 区 ' "~集不合口 Α "中 I 的小 区的下行 DPCH的偏置位置, 为小区集合 B中的小区的下行 DPCH的 偏置位置。
本发明实施例提供的网络侧设备, 为本发明实施例提供的预编码指示合 并方法的执行设备, 其执行预编码指示合并方法的过程可参见本发明提供的 图 3-图 6所示的预编码指示合并方法实施例, 在此不再赘述。
本实施例提供的网络侧设备, 通过网络侧设备确定同一服务链路集内至 少两个小区的下行 F-DPCH或下行 DPCH的偏置与下行 F-TPICH的偏置位 置之间的定时关系相同,并根据每个小区的下行 F-DPCH或下行 DPCH的偏 置位置与下行 F-TPICH 的偏置位置之间的定时关系在每个小区的下行 F-TPICH上向终端发送 TPI , 以使 TPI的生效位置位于 TPI合并窗口终止边 界后的第一个上行专用物理控制信道 DPCCH的时隙边界处, 从而使 UE使 用及时的 TPI , 提高 UE发送数据的解调性能。
图 9为本发明提供的预编码指示合并方法一个实施例的流程图, 如图 9, 该方法包括:
S901、 终端接收网络侧设备发送的至少一个小区的下行分数专有物理信 道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及至少一个小区的下 行分数预编码指示信道 F-TPICH的偏置位置, 下行 F-DPCH或下行 DPCH 的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内下行 F-DPCH 或下行 DPCH 的起始位置距前一个下行 P-CCPCH 的帧起始位置滞后的时 间, 下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内下行 F-TPICH 的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间。
S902、 终端根据每个小区的下行 F-DPCH或下行 DPCH的偏置位置以 及下行 F-TPICH的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行专用物理控制信 道 DPCCH的时隙边界处。 其中, TPI承载在 F-TPICH信道上, 1个完整的 TPI信息占 3个时隙, 即 1个子帧。 1个完整的 ΤΡΙ信息由 2个 ΤΡΙ符号组成, 承载于子帧的前 2 个时隙上, 这 2个时隙釆用相同的时隙格式, 各承载 1个 ΤΡΙ符号。 UE在 接收到第 2个 ΤΡΙ符号后的 512码片之后的第 1个上行 DPCCH的时隙边界 处, 应用 ΤΡΙ所指示的预编码信息。
上行 DPCCH与下行 F-TPICH没有确定的定时关系, 然而上行 DPCCH 与下行分数专有物理信道 ( Fractional Dedicated Physical Channel , F-DPCH )或下行专用物理信道 ( Dedicated Physical Channel, DPCH )有 确定的定时关系 (当存在下行 DPCH的场景下, 不存在下行 F-DPCH; 当不 存在下行 DPCH的场景下, 则存在下行 F-DPCH )。 其中, 定时关系可以是 指上行 DPCCH的起始位置与下行 F-DPCH或下行 DPCH的起始位置之间的 时间差。上行 DPCCH的起始位置位于下行 F-DPCH或下行 DPCH的起始位 置之后的 1024码片处。
据此,终端可以基于上行 DPCCH与下行 F-DPCH或下行 DPCH之间有 确定的定时关系, 来根据下行 F-DPCH或下行 DPCH的时隙边界来确定 TPI 合并窗口的位置, 从而实现 TPI的生效位置能够位于 TPI合并窗口终止边界 后的第一个上行 DPCCH的时隙边界处, 从而使 UE能够使用及时的 TPI , 提高 UE发送数据的解调性能。
其中, 网络侧可以向终端下发至少一个小区的下行 F-DPCH 或下行 DPCH的偏置位置, 以及至少一个小区的下行 F-TPICH的偏置位置, 以使终 端能够根据至少一个小区的下行 F-DPCH或下行 DPCH的偏置位置来确定下 行 F-DPCH或下行 DPCH的起始位置,同样,可以根据该小区的下行 F-TPICH 的偏置位置来确定下行 F-TPICH的起始位置。
作为一种可行的实施方式, 终端可以将距下行 F-DPCH 的时隙边界后 512码片, 或者 F-TPICH的时隙边界后 ( TF_DPCH - TF_TPICH + 512) mod 2560 码片的位置确定为该小区的 TPI合并窗口边界,其中, 为下行 F-DPCH 的偏置位置, 为下行 F-TPICH的偏置位置; 或者,
终端可以将下行 DPCH的时隙边界后 512码片, 或者 F-TPICH的时隙 边界后 ( TDPCH - TF_TP1CH + 512) mod 2560码片的位置确定为该小区的 TPI合 并窗口的边界, 其中, 为下行 DPCH的偏置位置。
需要说明的是, 下行 F-TPICH和下行 F-DPCH/下行 DPCH的起始位置 都以偶数编号帧为起始的相邻两个下行 P-CCPCH 帧长时间内下行 P-CCPCH的偶数编号帧的起始位置为基准。
具体的:下行 F-DPCH或下行 DPCH的偏置位置是以偶数编号帧为起始 的相邻两个下行 P-CCPCH帧长时间内下行 F-DPCH或下行 DPCH的起始位 置距下行 P-CCPCH的偶数编号帧起始位置滞后的时间;下行 F-TPICH的偏 置位置是以偶数编号帧为起始的相邻两个 P-CCPCH 帧长时间内下行 F-TPICH的起始位置距下行 P-CCPCH的偶数编号帧起始位置滞后的时间。
以终端根据任一小区的下行 F-DPCH的偏置位置来确定该小区的预编码 指示 TPI合并窗口的位置为例, 同时参见图 2, TPI的生效位置能够保持在该 小区的 TPI合并窗口终止边界后的第 1个上行 DPCCH的时隙边界处。
本实施例提供的终端,通过终端根据下行 F-DPCH或下行 DPCH的偏置 位置以及下行 F-TPICH 的偏置位置, 确定预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行 DPCCH的时隙 边界处, 从而使 UE使用及时的 TPI , 提高 UE发送数据的解调性能。 图 10 为本发明提供的预编码指示合并方法一个实施例的流程图, 如图 10, 该方法包括:
S1001 , 网络侧设备确定至少一个小区的下行分数专有物理信道
F-DPCH或下行专用物理信道 DPCH的偏置位置, 以及至少一个小区的下行 分数预编码指示信道 F-TPICH的偏置位置, 下行 F-DPCH或下行 DPCH的 偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内下行 F-DPCH或 下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间, 下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内下行 F-TPICH的起 始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间。
S1002、 网络侧设备向终端下发至少一个小区的下行 F-DPCH 或下行 DPCH的偏置位置, 并下发至少一个小区的下行 F-TPICH的偏置位置, 以使 终端根据下行 F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置 位置确定每个小区的预编码指示 TPI合并窗口。 需要说明的是,下行 F-DPCH或下行 DPCH的偏置位置为以偶数编号帧 为起始的相邻两个主公共控制物理信道 P-CCPCH帧长时间内下行 F-DPCH 或下行 DPCH的起始位置距下行 P-CCPCH的偶数编号帧起始位置滞后的时 间; 下行 F-TPICH的偏置位置为以偶数编号帧为起始的相邻两个 P-CCPCH 帧长时间内下行 F-TPICH的起始位置距下行 P-CCPCH的偶数编号帧起始位 置滞后的时间。
其中, 网络侧设备可以以任一小区的下行 P-CCPCH信道的起始位置为 基准, 确定该小区的下行 F-TPICH和下行 F-DPCH/下行 DPCH的起始位置 滞后下行 P-CCPCH信道的起始位置的时间, 即, 确定下行 F-TPICH的偏置 位置, 以及下行 F-DPCH/下行 DPCH的偏置位置。
下行 P-CCPCH信道每帧 10 ms,有 15个时隙,每个 P-CCPCH帧都载 有 1个同步帧号(SFN )信息。 SFN为偶数的 P-CCPCH的那 1帧的起始位 置后的偏置 码片处为其他信道的起始位置。 因此, 上述的各个偏置位置, 包括: TF-DPCH、 TF-TPICH和 T DPCH的取值均可以为:
Tp * 256码片, 其中 Tp e {0, 1, ..., 149}。
网络侧设备可以根据各小区业务传输的实际需求来确定各个小区的下行
F-TPICH的偏置位置, 以及下行 F-DPCH/下行 DPCH的偏置位置, 从而使 终端能够根据下行 F-TPICH的偏置位置, 以及下行 F-DPCH/下行 DPCH的 偏置位置确定对应小区的预编码指示 TPI 合并窗口。 其中, 终端根据下行 F-TPICH的偏置位置, 以及下行 F-DPCH/下行 DPCH的偏置位置确定对应 小区的预编码指示 TPI合并窗口的具体过程可参见图 9所示的实施例, 在此 不再赘述。
UE处于同一服务链路集(Serving RLS ) 中的至少两个小区的交界处的 实施场景下, UE 可能收到来自同 1 个服务链路集的至少两个小区的下行 F-TPICH , 这些下行 F-TPICH上具有相同的 TPI , 因此, UE可以将不同小 区中对应的 TPI合并窗口内的 TPI合并。
可选的,为了便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并, 网络侧设备可以控制同一服务链路集内的至少两个小区的下行 F-DPCH或下 行 DPCH到达终端的起始位置相同 (或基本相同) 以及 F-TPICH到达终端 的起始位置相同 (或基本相同), 并确定下行 F-DPCH或下行 DPCH的偏置 位置与下行 F-TPICH的偏置位置之间的定时关系相同,从而使终端确定的至 少两个小区的对应的 TPI合并窗口重合(或基本重合)。
作为一种可行的实施方式, 若至少两个小区中的每个小区的 TPI均位于 该小区的下行 F-TPICH的时隙边界与下行 F-TPICH的时隙边界之后的第一 个 TPI合并窗口的边界之间的实施场景下, 则网络侧设备可以确定:
F-TPICHl一 F-DPCHl - ^F-TPICH!一 F-DPCH2 -… - F-TPICHn一 F-DPCHn , 其中 , F-TPICHn为 小区《的 F-TPICH的起始位置距该小区的主公共控制物理信道 P-CCPCH的 起始位置的偏置位置, 为小区《的 F-DPCH 的起始位置距该小区的 P-CCPCH的起始位置的偏置位置; 或者,
网络側 i又^"可以确 ^F-TPICm一 ^DPCHl - ^F-TPICH!一 DPCH2 - … - F—TPICHn一 τ DPCHn , 其中, 为小区 "的 DPCH的起始位置距该小区的 P-CCPCH的起始位置 的偏置位置。
以网络侧设备确定同一服务链路集内两个小区的 F-DPCH 与 F-TPICH 的偏置位置之间的定时关系为例, 同时参见图 4, 图 4所示为网络侧设备看 到的小区 1和小区 2的 F-DPCH与 F-TPICH的偏置位置之间的定时关系。 在 UE侧, F-DPCH1和 F-DPCH2的位置相同 (或基本相同), 并且对应的 TPI合并窗口重合(或基本重合), 从而便于终端将不同小区中对应的 TPI合 并窗口内的 TPI合并。
作为另一种可行的实施方式, 在同一时隙内, 至少两个小区中的每个小 区的 TPI均位于该小区的 TPI合并窗口边界与 TPI合并窗口边界之后的第一 个下行 F-TPICH的时隙边界之间的实施场景下, 网络侧设备可以确定:
F-TPICHl一 F-DPCHl - ^F-TPICH!一 F-DPCH2 -… - F-TPICHn一 F -DPCHn , 其中 , F-TPICHn为 小区《的 F-TPICH的起始位置距该小区的主公共控制物理信道 P-CCPCH的 起始位置的偏置位置, 为小区《的 F-DPCH 的起始位置距该小区的 P-CCPCH的起始位置的偏置位置; 或者,
网络側"又^^确 ^F-TPICm一 TDPCm - ^F-TPICH!一 DPCH -… - F-TPICHn一 τ DPCHn ,其中 , rDPCHn为小区 M的 DPCH的起始位置距该小区的 P-CCPCH的起始位置的偏置 位置。
以网络侧设备确定同一服务链路集内两个小区的 F-DPCH 与 F-TPICH 的偏置位置的定时关系为例, 同时参见图 5, 如图 5为网络侧设备看到的小 区 1和小区 2的 F-DPCH与 F-TPICH的偏置位置之间的定时关系, 在 UE 侧, F-DPCH1和 F-DPCH2的起始位置相同(或基本相同), 并且对应的 TPI 合并窗口重合(或基本重合),从而便于终端将不同小区中对应的 TPI合并窗 口内的 TPI合并。
作为另一种可行的实施方式, 在若至少两个小区中的集合 A中每个小区 的 TPI均位于该小区的下行 F-TPICH的时隙边界与下行 F-TPICH的时隙边 界之后的第一个 TPI合并窗口的边界之间, 至少两个小区中的小区集合 B中 每个小区的 TPI均位于该小区的 TPI合并窗口边界与 TPI合并窗口边界之后 的第一个下行 F-TPICH的时隙边界之间的实施场景下,网络侧设备可以确定: 网络側"又^"确 τ F-TPICH A - τ F-DPCH A - 2560 - TFTPICHB― ^ρ_ΟΡ ΗΒ , 其中 , τ F-TPICH A 为小区集合 Α中的小区的 F-TPICH的起始位置距该小区的 P-CCPCH的起始 位置的偏置位置, ΰΡ ^为小区集合 A中的小区的 F-DPCH的起始位置距该 小区的 P-CCPCH的起始位置的偏置位置, 为小区集合 B中的小区的 F-TPICH的起始位置距该小区的 P-CCPCH的起始位置的偏置位置, TFDPCHB 为小区集合 B中的小区的 F-DPCH的起始位置距该小区的 P-CCPCH的起始 位置的偏置位置; 或者,
网络側"又^^确 τ F-TPICH A - T DPCHA - 2560 - ^F_TPICHB - τ DPCHB , 其中 , τ DPCHA为小 区集合 Α中的小区的 DPCH的起始位置距该小区的 P-CCPCH的起始位置的 偏置位置, 为小区集合 B 中的小区的 DPCH 的起始位置距该小区的 P-CCPCH的起始位置的偏置位置。
以网络侧设备确定同一服务链路集内两个小区的 F-DPCH 与 F-TPICH 的偏置位置的定时关系为例, 同时参见图 6, 如图 6为网络侧设备看到的小 区 1和小区 2的 F-DPCH与 F-TPICH的偏置位置之间的定时关系, 在 UE 侧, F-DPCH1和 F-DPCH2的起始位置相同(或基本相同), 并且对应的 TPI 合并窗口重合(或基本重合),从而便于终端将不同小区中对应的 TPI合并窗 口内的 TPI合并。
本实施例提供的预编码指示合并方法, 终端根据网络侧设备下发的下行
F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置位置, 确定预 编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后 的第一个上行 DPCCH的时隙边界处, 从而使 UE使用及时的 TPI , 提高 UE 发送数据的解调性能。 进一步的, 网络侧设备可以控制同一服务链路集内的 至少两个小区的下行 F-DPCH或下行 DPCH到达终端的起始位置相同(或基 本相同) 以及 F-TPICH到达终端的起始位置相同 (或基本相同), 并确定下 行 F-DPCH或下行 DPCH的偏置位置与下行 F-TPICH的偏置位置之间的定 时关系相同,从而使终端确定的至少两个小区的对应的 TPI合并窗口重合(或 基本重合), 便于终端将不同小区中对应的 TPI合并窗口内的 TPI合并。 图 11为本发明提供的终端一个实施例的结构示意图, 如图 11所示, 终 端包括: 接收器 31和处理器 32;
接收器 31 , 用于接收网络侧设备发送的至少一个小区的下行分数专有物 理信道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及至少一个小区 的下行分数预编码指示信道 F-TPICH 的偏置位置, 下行 F-DPCH 或下行 DPCH 的偏置位置为两个主公共控制物理信道 P-CCPCH 帧长时间内下行 F-DPCH或下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置滞 后的时间, 下行 F-TPICH 的偏置位置为两个 P-CCPCH 帧长时间内下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间; 处理器 32, 用于根据每个小区的下行 F-DPCH或下行 DPCH的偏置位 置以及下行 F-TPICH的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行专用物理控 制信道 DPCCH的时隙边界处。
可选的, 处理器 32可以具体用于:
将距下行 F-DPCH的时隙边界后 512码片, 或者 F-TPICH的时隙边界 后 TF tpich + 5 2 mod 2560码片的位置确定为小区的 TPI合并窗口 边界, 其中, 为下行 F-DPCH的偏置位置, 为下行 F-TPICH的 偏置位置; 或者, 将下行 DPCH的时隙边界后 512码片, 或者 F-TPICH的 时隙边界后 ( TDPCH - TF_TPICH + 512 ) mod 2560码片的位置确定为 TPI合并窗 口边界, 其中, 为下行 DPCH的偏置位置。
本发明实施例提供的终端, 为本发明实施例提供的预编码指示合并方法 的执行设备, 其执行预编码指示合并方法的过程可参见本发明提供的图 9所 示的预编码指示合并方法实施例, 在此不再赘述。 本实施例提供的终端,通过终端根据下行 F-DPCH或下行 DPCH的偏置 位置以及下行 F-TPICH 的偏置位置, 确定预编码指示 TPI合并窗口, 以使 TPI的生效位置位于 TPI合并窗口终止边界后的第一个上行 DPCCH的时隙 边界处, 从而使 UE使用及时的 TPI , 提高 UE发送数据的解调性能。
图 12为本发明提供的网络侧设备一个实施例的结构示意图,如图 8所示, 该网络侧设备包括: 处理器 41和发送器 42;
处理器 41 ,用于确定至少一个小区的下行分数专有物理信道 F-DPCH或 下行专用物理信道 DPCH的偏置位置, 以及至少一个小区的下行分数预编码 指示信道 F-TPICH的偏置位置, 下行 F-DPCH或下行 DPCH的偏置位置为 两个主公共控制物理信道 P-CCPCH帧长时间内下行 F-DPCH或下行 DPCH 的起始位置距前一个下行 P-CCPCH 的帧起始位置滞后的时间, 下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内下行 F-TPICH的起始位置 距前一个下行 P-CCPCH的帧起始位置滞后的时间;
发送器 42,用于向终端下发至少一个小区的下行 F-DPCH或下行 DPCH 的偏置位置, 并下发至少一个小区的下行 F-TPICH的偏置位置, 以使终端根 据下行 F-DPCH或下行 DPCH的偏置位置以及下行 F-TPICH的偏置位置确 定每个小区的预编码指示 TPI合并窗口。
可选的, 处理器 41还可以用于: 控制同一服务链路集内的至少两个小区 的下行 F-DPCH或下行 DPCH到达终端的起始位置相同(或基本相同)以及 F-TPICH到达终端的起始位置相同 (或基本相同), 并确定下行 F-DPCH或 下行 DPCH的偏置位置与下行 F-TPICH的偏置位置之间的定时关系相同, 以使终端确定的至少两个小区的对应的 TPI合并窗口重合(或基本重合)。
可选的, 若至少两个小区中的每个小区的 TPI 均位于该小区的下行 的边界之间, 或者至少两个小区中的每个小区的 TPI均位于该小区的 TPI合 并窗口边界与 TPI合并窗口边界之后的第一个下行 F-TPICH 的时隙边界之 间, 则处理器 21可以具体用于:
确 F-TPICHl一 F-DPCHl - F-TPICH 2一 F-DPCH 2 - ■■■ - F-TPICHn一 F-DPCHn , 其中 , rFmcHn为小区 "的下行 F-TPICH的偏置位置, τΡοραΐη为小区"的下行 F-DPCH 的偏置 置, 或者, ^F-TPICm ~ ^DPCHl ~ ^F-TPICH! ~ 2 ~ … - τ F -TPICHn一 τ DPCHn , 其中, p ^为小区"的下行 DPCH的偏置位置。
可选的, 若至少两个小区中的集合 A中每个小区的 TPI均位于该小区的 下行 F-TPICH的时隙边界与下行 F-TPICH的时隙边界之后的第一个 TPI合 并窗口的边界之间, 至少两个小区中的小区集合 B中每个小区的 TPI均位于 该小区的 TPI合并窗口边界与 TPI合并窗口边界之后的第一个下行 F-TPICH 的时隙边界之间, 则处理器 21可以具体用于:
τ F-TPICH A - F-DPCHA - 2560 - ^ρ_ΤΡΐ ΗΒ - F-DPCHB , 其中 , τ F-TPICH Α为小区集^^
A中的小区的下行 F-TPICH的偏置位置, Tfdpcha为小区集合 A中的小区的下 行 F-DPCH的偏置位置, 为小区集合 B中的小区的下行 F-TPICH的 偏置位置, 为小区集合 B中的小区的下行 F-DPCH的偏置位置;或者, 确 'Ί'定 τ L F-TPICHA _r L DPCHA - 2560 = τ L F-TPICHB -τ L DPCHB , ' 立中 I , ' τ L DPCHA为^小 ~* 区 ' "~集不合口 Α "中 I 的小 区的下行 DPCH的偏置位置, 为小区集合 B中的小区的下行 DPCH的 偏置位置。
本发明实施例提供的网络侧设备, 为本发明实施例提供的预编码指示合 并方法的执行设备, 其执行预编码指示合并方法的过程可参见本发明提供的 图 10所示的预编码指示合并方法实施例, 在此不再赘述。
本实施例提供的网络侧设备, 通过网络侧设备确定同一服务链路集内至 少两个小区的下行 F-DPCH或下行 DPCH的偏置与下行 F-TPICH的偏置位 置之间的定时关系相同,并根据每个小区的下行 F-DPCH或下行 DPCH的偏 置位置与下行 F-TPICH 的偏置位置之间的定时关系在每个小区的下行 F-TPICH上向终端发送 TPI , 以使 TPI的生效位置位于 TPI合并窗口终止边 界后的第一个上行专用物理控制信道 DPCCH的时隙边界处, 从而使 UE使 用及时的 TPI , 提高 UE发送数据的解调性能。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于计算机可读 取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步骤; 而前 述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的 介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种预编码指示合并方法, 其特征在于, 包括:
终端接收网络侧设备发送的至少一个小区的下行分数专有物理信道
F-DPCH或下行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的 下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下 行 F-DPCH或下行 DPCH的起始位置距下行 P-CCPCH的起始位置滞后的时 间, 所述下行 F-TPICH 的偏置位置为两个 P-CCPCH 帧长时间内所述下行 F-TPICH的起始位置距下行 P-CCPCH的起始位置滞后的时间;
所述终端根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH的偏 置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI 合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后的第 一个上行专用物理控制信道 DPCCH的时隙边界处。
2、根据权利要求 1所述的方法, 其特征在于, 所述终端根据每个所述小 区的所述下行 F-DPCH或下行 DPCH的偏置位置以及所述下行 F-TPICH的 偏置位置, 确定该小区的预编码指示 TPI合并窗口, 具体为: 所述终端将距所述下行 F-DPCH 的时隙边界后偏置 ( TFDPCH - TFTHCH +
512) mod 2560码片的位置确定为所述小区的 TPI合并窗口边界, 其中, 为所述下行 F-DPCH的偏置位置, OT为下行 F-TPICH的起始位置 距所述下行 P-CCPCH的起始位置滞后的时间; 或者,
所述终端将所述下行 DPCH的时隙边界偏置( τ 512) mod 2560码片的位置确定为所述 TPI合并窗口边界,其中, TDPCH为所述下行 DPCH 的偏置位置。
3、 一种预编码指示合并方法, 其特征在于, 包括:
网络侧设备确定至少一个小区的下行分数专有物理信道 F-DPCH或下行 专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编码 指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位 置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下行 F-DPCH或下 行 DPCH 的起始位置距下行 P-CCPCH 的起始位置滞后的时间, 所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-TPICH的起始 位置距下行 P-CCPCH的起始位置滞后的时间;
所述网络侧设备向终端下发所述至少一个小区的所述下行 F-DPCH或下 行 DPCH的偏置位置, 并下发所述至少一个小区的所述下行 F-TPICH的偏 置位置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置 以及所述下行 F-TPICH的偏置位置确定每个所述小区的预编码指示 TPI合并 窗口。
4、 根据权利要求 3所述的方法, 其特征在于, 还包括:
网络侧设备控制同一服务链路集内的至少两个小区的下行 F-DPCH或下 行 DPCH到达终端的起始位置相同以及 F-TPICH到达终端的起始位置相同, 并确定下行 F-DPCH或下行 DPCH的偏置位置与下行 F-TPICH的偏置位置 之间的定时关系相同, 以使所述终端确定的所述至少两个小区的对应的 TPI 合并窗口重合。
5、根据权利要求 4所述的方法, 其特征在于, 若所述至少两个小区中的 每个小区的 TPI 均位于该小区的下行 F-TPICH 的时隙边界与所述下行
F-TPICH的时隙边界之后的第一个 TPI合并窗口的边界之间, 或者所述至少 两个小区中的每个小区的 TPI均位于该小区的 TPI合并窗口边界与所述 TPI 合并窗口边界之后的第一个下行 F-TPICH的时隙边界之间,则所述确定下行 F-DPCH或下行 DPCH的偏置位置与下行 F-TPICH的偏置位置之间的定时 关系相同, 包括:
所述网络侧设备确定 r -TPICm - τ -DPCm = τ - τ = =
™— ϋ,其中, rf— ^为小区"的下行 F-TPICH的偏置位置, TF 为小区 M的下行 F-DPCH的偏置位置; 或者,
所述网
Figure imgf000026_0001
- … - τ FTPICHn— τ DPCHn , 其中, p ^为小区 M的下行 DPCH的偏置位置。
6、根据权利要求 4所述的方法, 其特征在于, 若所述至少两个小区中的 集合 A中每个小区的 TPI均位于该小区的下行 F-TPICH的时隙边界与所述下 行 F-TPICH的时隙边界之后的第一个 TPI合并窗口的边界之间,所述至少两 个小区中的小区集合 B中每个小区的 TPI均位于该小区的 TPI合并窗口边界 与所述 TPI合并窗口边界之后的第一个下行 F-TPICH的时隙边界之间,则所 述确定下行 F-DPCH或下行 DPCH的偏置位置与下行 F-TPICH的偏置位置 之间的定时关系相同, 包括:
所述网络侧设备确定 TFMCHA - rF_DPCHA - 2560 = τΡ_„ - TF_DPCHB, 其中, ^为小区集合 A中的小区的下行 F-TPICH的偏置位置, ΰΡ ^为小区 集合 Α中的小区的下行 F-DPCH的偏置位置, 为小区集合 B中的小 区的下行 F-TPICH 的偏置位置, 为小区集合 Β 中的小区的下行 F-DPCH的偏置位置; 或者,
所述网络側"又^"确 ^F-TPICHA - T DPCHA - 2560 - ^F_TPICHB - τ DPCHB , 其中 , τ DPCHA 为小区集合 Α中的小区的下行 DPCH的偏置位置, TD 为小区集合 B中的 小区的下行 DPCH的偏置位置。
7、 一种终端, 其特征在于, 包括:
接收器, 用于接收网络侧设备发送的至少一个小区的下行分数专有物理 信道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及所述至少一个小 区的下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或 下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所 述下行 F-DPCH或下行 DPCH的起始位置距下行 P-CCPCH的起始位置滞后 的时间,所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下 行 F-TPICH的起始位置距下行 P-CCPCH的起始位置滞后的时间;
处理器, 用于根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH 的偏置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后 的第一个上行专用物理控制信道 DPCCH的时隙边界处。
8、 根据权利要求 7所述的终端, 其特征在于, 所述处理器具体用于: 将 距所述下行 F-DPCH 的时隙边界后偏置 FDPCH - TFTPICH + 512 ) mod 2560 码片的位置确定为所述小区的 TPI合并窗口边界, 其中, 为所述下行 F-DPCH 的偏置位置, 为下行 F-TPICH 的起始位置距所述下行 P-CCPCH的起始位置滞后的时间; 或者, 将所述下行 DPCH的时隙边界后 偏置( TDPCH—TF 5 mod 2560码片的位置确定为所述 TPI合并窗口 边界, 其中, 为所述下行 DPCH的偏置位置。
9、 一种网络侧设备, 其特征在于, 包括:
处理器, 用于确定至少一个小区的下行分数专有物理信道 F-DPCH或下 行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编 码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置 位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下行 F-DPCH或 下行 DPCH的起始位置距下行 P-CCPCH的起始位置滞后的时间, 所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-TPICH的起始 位置距下行 P-CCPCH的起始位置滞后的时间;
发送器, 用于向终端下发所述至少一个小区的所述下行 F-DPCH或下行
DPCH的偏置位置,并下发所述至少一个小区的所述下行 F-TPICH的偏置位 置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置以及 所述下行 F-TPICH 的偏置位置确定每个所述小区的预编码指示 TPI合并窗 口。
10、 根据权利要求 9所述的网络侧设备, 其特征在于,
所述处理器还用于: 控制同一服务链路集内的至少两个小区的下行 F-DPCH或下行 DPCH到达终端的起始位置相同以及 F-TPICH到达终端的 起始位置相同, 并确定下行 F-DPCH 或下行 DPCH 的偏置位置与下行 F-TPICH的偏置位置之间的定时关系相同, 以使所述终端确定的所述至少两 个小区的对应的 TPI合并窗口重合。
11、根据权利要求 10所述的网络侧设备, 其特征在于, 若所述至少两个 小区中的每个小区的 TPI均位于该小区的下行 F-TPICH的时隙边界与所述下 行 F-TPICH的时隙边界之后的第一个 TPI合并窗口的边界之间,或者所述至 少两个小区中的每个小区的 TPI 均位于该小区的 TPI 合并窗口边界与所述 TPI合并窗口边界之后的第一个下行 F-TPICH的时隙边界之间, 则所述处理 器具体用于:
τ F-TP1CH\一 τ F-DPCH\ - τ F-TPICH 2一 τ F-DPCH 2 - ■■■ - τ F-TPlCHn一 τ F-DPCHn ' 其中 ' rFmcHn为小区 "的下行 F-TPICH的偏置位置, τΡοραΐη为小区"的下行 F-DPCH 的偏置 置, 或者? ^F-TPICH\ ~ ^DPCHl ~ ^F-TPICH! ~ 2 ~ … - τ F—TPICHn— τ DPCHn , 其中, ^p „为小区 M的下行 DPCH的偏置位置。
12、 根据权利要求 10 所述的网络侧设备, 其特征在于, 若所述至少两 个小区中的集合 A中每个小区的 TPI均位于该小区的下行 F-TPICH的时隙边 界与所述下行 F-TPICH的时隙边界之后的第一个 TPI合并窗口的边界之间, 所述至少两个小区中的小区集合 B中每个小区的 TPI均位于该小区的 TPI合 并窗口边界与所述 TPI合并窗口边界之后的第一个下行 F-TPICH的时隙边界 之间, 则所述处理器具体用于:
τ F-TPICH A - F-DPCHA - 2560 - ^ρ_ΤΡΐ ΗΒ - F-DPCHB , 其中 , τ F-TPICH Α为小区集^^
A中的小区的下行 F-TPICH的偏置位置, Tfdpcha为小区集合 A中的小区的下 行 F-DPCH的偏置位置, 为小区集合 B中的小区的下行 F-TPICH的 偏置位置, 为小区集合 B中的小区的下行 F-DPCH的偏置位置;或者, 确 'Ί'定 τ L F-TPICHA _r L DPCHA - 2560 = τ L F-TPICHB -τ L DPCHB , ' 立中 I , ' τ L DPCHA为^小 ~* 区 ' "~集不合口 Α "中 I 的小 区的下行 DPCH的偏置位置, 为小区集合 B中的小区的下行 DPCH的 偏置位置。
13、 一种预编码指示合并方法, 其特征在于, 包括:
终端接收网络侧设备发送的至少一个小区的下行分数专有物理信道
F-DPCH或下行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的 下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下 行 F-DPCH或下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置 滞后的时间,所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所 述下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时 间;
所述终端根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH的偏 置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI 合并窗口, 以使所述 TPI的生效位置位于所述 TPI合并窗口终止边界后的第 一个上行专用物理控制信道 DPCCH的时隙边界处。
14、 根据权利要求 13 所述的方法, 其特征在于, 所述终端根据每个所 述小区的所述下行 F-DPCH或下行 DPCH的偏置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 具体为: 所述终端将距所述下行 F-DPCH的时隙边界后 512码片,或者 F-TPICH 的时隙边界后( — - — OT+ 512) mod 2560码片的位置确定为所述小区 的 TPI合并窗口边界,其中, 为所述下行 F-DPCH的偏置位置, TFTP1CH 为下行 F-TPICH的偏置位置; 或者,
所述终端将所述下行 DPCH的时隙边界 512码片, 或者 F-TPICH的时 隙边界后 DPCff - rFr + 512) mod 2560码片的位置确定为所述 TPI合并 窗口边界, 其中, 为所述下行 DPCH的偏置位置。
15、 一种预编码指示合并方法, 其特征在于, 包括:
网络侧设备确定至少一个小区的下行分数专有物理信道 F-DPCH或下行 专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编码 指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置位 置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下行 F-DPCH或下 行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间, 所 述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间内所述下行 F-TPICH 的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间;
所述网络侧设备向终端下发所述至少一个小区的所述下行 F-DPCH或下 行 DPCH的偏置位置, 并下发所述至少一个小区的所述下行 F-TPICH的偏 置位置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置 以及所述下行 F-TPICH的偏置位置确定每个所述小区的预编码指示 TPI合并 窗口。
16、 一种终端, 其特征在于, 包括:
接收器, 用于接收网络侧设备发送的至少一个小区的下行分数专有物理 信道 F-DPCH或下行专用物理信道 DPCH的偏置位置,以及所述至少一个小 区的下行分数预编码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或 下行 DPCH的偏置位置为两个主公共控制物理信道 P-CCPCH帧长时间内所 述下行 F-DPCH或下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始 位置滞后的时间,所述下行 F-TPICH的偏置位置为两个 P-CCPCH帧长时间 内所述下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后 的时间;
处理器, 用于根据每个所述小区的所述下行 F-DPCH或所述下行 DPCH 的偏置位置以及所述下行 F-TPICH 的偏置位置, 确定该小区的预编码指示 TPI合并窗口, 以使所述 ΤΡΙ的生效位置位于所述 ΤΡΙ合并窗口终止边界后 的第一个上行专用物理控制信道 DPCCH的时隙边界处。
17、 根据权利要求 16所述的终端, 其特征在于, 所述处理器具体用于: 将距所述下行 F-DPCH的时隙边界后 512码片, 或者 F-TPICH的时隙边界 后 2 mod 2560码片的位置确定为所述小区的 TPI合并 窗口边界, 其中, 为所述下行 F-DPCH 的偏置位置, 为下行 F-TPICH的偏置位置; 或者, 将所述下行 DPCH的时隙边界后 512码片, 或 者 F-TPICH的时隙边界后 ( TDPCH - TF_TPICH + 512 ) mod 2560码片的位置确定 为所述 TPI合并窗口边界, 其中, 为所述下行 DPCH的偏置位置。
18、 一种网络侧设备, 其特征在于, 包括:
处理器, 用于确定至少一个小区的下行分数专有物理信道 F-DPCH或下 行专用物理信道 DPCH的偏置位置, 以及所述至少一个小区的下行分数预编 码指示信道 F-TPICH的偏置位置, 所述下行 F-DPCH或下行 DPCH的偏置 位置为两个主公共控制物理信道 P-CCPCH帧长时间内所述下行 F-DPCH或 下行 DPCH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间, 所述下行 F-TPICH 的偏置位置为两个 P-CCPCH 帧长时间内所述下行 F-TPICH的起始位置距前一个下行 P-CCPCH的帧起始位置滞后的时间; 发送器, 用于向终端下发所述至少一个小区的所述下行 F-DPCH或下行 DPCH的偏置位置,并下发所述至少一个小区的所述下行 F-TPICH的偏置位 置,以使所述终端根据所述下行 F-DPCH或所述下行 DPCH的偏置位置以及 所述下行 F-TPICH 的偏置位置确定每个所述小区的预编码指示 TPI合并窗 口„
PCT/CN2012/079098 2012-06-28 2012-07-24 预编码指示合并方法、终端和网络侧设备 WO2014000329A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/570,918 US9444583B2 (en) 2012-06-28 2014-12-15 Transmitted precoding indicator combining method, terminal and network-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/077730 WO2014000218A1 (zh) 2012-06-28 2012-06-28 预编码指示合并方法、终端和网络侧设备
CNPCT/CN2012/077730 2012-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/570,918 Continuation US9444583B2 (en) 2012-06-28 2014-12-15 Transmitted precoding indicator combining method, terminal and network-side device

Publications (1)

Publication Number Publication Date
WO2014000329A1 true WO2014000329A1 (zh) 2014-01-03

Family

ID=49782073

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/077730 WO2014000218A1 (zh) 2012-06-28 2012-06-28 预编码指示合并方法、终端和网络侧设备
PCT/CN2012/079098 WO2014000329A1 (zh) 2012-06-28 2012-07-24 预编码指示合并方法、终端和网络侧设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077730 WO2014000218A1 (zh) 2012-06-28 2012-06-28 预编码指示合并方法、终端和网络侧设备

Country Status (3)

Country Link
US (1) US9444583B2 (zh)
CN (1) CN103703802B (zh)
WO (2) WO2014000218A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3562233A4 (en) * 2017-01-23 2019-11-20 Guangdong OPPO Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR TRANSMITTING UPLINK SIGNALS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107699A2 (en) * 2009-03-16 2010-09-23 Interdigital Patent Holdings, Inc. Method and apparatus for performing uplink transmit diversity
CN101964675A (zh) * 2009-07-22 2011-02-02 华为技术有限公司 一种预编码控制指示pci信息的传输方法及用户设备
CN102098143A (zh) * 2011-02-14 2011-06-15 中兴通讯股份有限公司 一种开环空间复用的预编码方法及系统及预编码指示方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023620A (en) * 1997-02-26 2000-02-08 Telefonaktiebolaget Lm Ecrisson Method for downloading control software to a cellular telephone
JP3562393B2 (ja) * 1999-08-11 2004-09-08 日本電気株式会社 移動通信システム及びそれに用いるプログラムダウンロード方法
CN1780292B (zh) * 2004-11-19 2010-10-13 中国移动通信集团公司 多种应用协议下保证业务平台获得用户终端信息的方法
PT2052468E (pt) 2006-08-18 2015-12-07 Qualcomm Inc Retorno da indicação de controlo de pré-codificação (pci) e da indicação de qualidade de canal (cqi) num sistema de comunicação sem fios
CN102340371B (zh) 2010-07-20 2014-10-22 大连海兰德维通信技术有限公司 物理控制格式指示信道的传输方法和系统
CN102340380A (zh) 2010-07-23 2012-02-01 中兴通讯股份有限公司 一种基于有限反馈预编码的协作中继传输方法和系统
CN102711090B (zh) * 2012-05-18 2018-06-01 中兴通讯股份有限公司 无线终端自适应网络升级的电话号码升级的方法及装置
CN102711235B (zh) * 2012-05-28 2014-12-17 华为技术有限公司 绝对授权值与信道状态参数的同步控制方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107699A2 (en) * 2009-03-16 2010-09-23 Interdigital Patent Holdings, Inc. Method and apparatus for performing uplink transmit diversity
CN101964675A (zh) * 2009-07-22 2011-02-02 华为技术有限公司 一种预编码控制指示pci信息的传输方法及用户设备
CN102098143A (zh) * 2011-02-14 2011-06-15 中兴通讯股份有限公司 一种开环空间复用的预编码方法及系统及预编码指示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; PHYSICAL LAYER PROCEDURES (FDD) (RELEASE 11)", 3GPP TS 25.214 V11.1.0., 31 March 2012 (2012-03-31) *

Also Published As

Publication number Publication date
CN103703802B (zh) 2017-10-10
WO2014000218A9 (zh) 2015-02-26
US9444583B2 (en) 2016-09-13
WO2014000218A1 (zh) 2014-01-03
US20150117379A1 (en) 2015-04-30
CN103703802A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
CN108476089B (zh) 基于设备到设备的中继通信的速率控制
WO2019153347A1 (zh) 配置信息的接收和发送方法、装置及通信系统
CN112136357B (zh) 带宽部分指示的配置方法、装置和通信系统
CA2882353C (en) Systems and methods for semi-persistent scheduling of wireless communications
TWI706681B (zh) 經由同步通道和廣播通道的資源選擇來傳送假設
CN103493412B (zh) 使用载波聚合的时分双工移动通信系统中激活或停用副载波的方法和装置
TWI673977B (zh) 窄頻ack/nack傳輸
US10356836B2 (en) User terminal and base station for performing uplink transmission in an unlicensed band
JP5800033B2 (ja) 協調セルを有する無線通信
TWI747976B (zh) 子時槽附隨和認可
CN107646176B (zh) 单播信号与多播信号之间的非正交多址
TWI742052B (zh) 用於mmw排程的子訊框或時槽之內的分時多工傳輸時段
KR20180074686A (ko) 번들링된 송신들을 이용한 mtc에 대한 drx 및 sps
JP5884003B1 (ja) 混合マクロ−フェムト基地局ダウンリンク用のハイブリッド干渉アライメント
WO2013119092A1 (ko) 다중 셀 기반 무선 통신 시스템에서 하향링크 데이터 채널 수신 방법 및 이를 위한 장치
WO2011038636A1 (zh) 发送上行资源调度请求的方法和用户设备
CN110168978B (zh) 用于随机接入过程的方法和设备
CN111052844A (zh) 用于空间先听后讲协议的装置和方法
WO2014019517A1 (zh) 传输参考信号的方法、用户设备和网络侧设备
TW201246864A (en) Managing reserved cells and user equipments in an MBSFN environment within a wireless communication system
US20160219579A1 (en) User terminal, base station, and processor
WO2013004157A1 (zh) 控制信令的检测、发送方法及用户设备、基站
WO2015109773A1 (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2014021573A1 (ko) 기지국 협력 무선 통신 시스템에서 간섭 측정 기반 상향링크 신호 송수신 방법 및 이를 위한 장치
WO2013107269A1 (zh) 一种信息的传输、配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880170

Country of ref document: EP

Kind code of ref document: A1