WO2014000164A1 - 微波网络规划的方法及装置 - Google Patents

微波网络规划的方法及装置 Download PDF

Info

Publication number
WO2014000164A1
WO2014000164A1 PCT/CN2012/077569 CN2012077569W WO2014000164A1 WO 2014000164 A1 WO2014000164 A1 WO 2014000164A1 CN 2012077569 W CN2012077569 W CN 2012077569W WO 2014000164 A1 WO2014000164 A1 WO 2014000164A1
Authority
WO
WIPO (PCT)
Prior art keywords
planning
link
microwave network
node
nodes
Prior art date
Application number
PCT/CN2012/077569
Other languages
English (en)
French (fr)
Inventor
石礌
陈昌海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/077569 priority Critical patent/WO2014000164A1/zh
Priority to CN201280000864.2A priority patent/CN102870447B/zh
Publication of WO2014000164A1 publication Critical patent/WO2014000164A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for planning a microwave network.
  • the microwave network is an electromagnetic wave transmission network based on line-of-sight communication, and the microwave refers to the frequency at
  • Electromagnetic waves in the range of 300 MHz to 300 GHz are short for a limited frequency band in radio waves.
  • the specific planning process can be divided into three parts: topology planning, capacity planning, and frequency allocation.
  • the current microwave network planning method is as follows: firstly, the topology planning of the microwave network is performed, and according to the actual terrain of each node, the type of the visual communication between the nodes is determined, and the positions of the respective nodes are determined, and the connection relationship between the nodes is set; Capacity planning for the microwave network, based on the bandwidth requirements between each node and the key performance indicators (Key Perfance Instances, KP I for short), the microwave network devices (such as microwave antennas, indoors) required by each node are determined.
  • KP I Key Perfance Instances
  • Unit I DU outdoor unit 0DU, etc., and determining the model size of the microwave network device; performing frequency allocation on the microwave network, and determining spectrum resources available to each node according to topology planning results and capacity planning results between nodes Frequency allocation is performed for each node, and the frequencies of the respective nodes are mutually interfered to meet the requirements of the KP I.
  • the frequency allocation if the frequencies of the nodes do not meet the requirements of the KP I, the frequency needs to be replaced to ensure the success of the network construction. Since the spectrum resources are limited, the network will be successfully replaced by changing the frequency. This causes waste of spectrum resources.
  • Embodiments of the present invention provide a method and an apparatus for planning a microwave network, which can solve the existing In the technology, since the spectrum resources are limited, the problem of waste of spectrum resources is caused by replacing the frequency of the nodes to reach the network construction success.
  • a method for planning a microwave network comprising:
  • a device for planning a microwave network comprising:
  • a topology planning unit for performing topology planning on a microwave network
  • a capacity planning unit configured to perform capacity planning on the microwave network according to the result of the topology planning, and determine whether the capacity planning is successful, where the capacity planning is for each chain of each node in the microwave network Road configuration;
  • a first returning unit configured to perform a topology planning on the microwave network if the capacity planning fails
  • a spectrum allocation unit configured to perform spectrum allocation if the capacity planning is successful, and determine whether the spectrum allocation is successful
  • a second returning unit configured to perform capacity planning on the microwave network or return to topology planning of the microwave network if the spectrum allocation fails;
  • a method and an apparatus for planning a microwave network by performing topology planning on a microwave network, and performing capacity planning according to a result of the topology planning, and determining the If the capacity planning is successful, after the capacity planning fails, return to the topology planning of the microwave network.
  • the capacity planning When the capacity planning is successful, perform spectrum allocation, and determine whether the spectrum allocation is successful, and the spectrum allocation fails. Then, return to the capacity planning or topology planning of the microwave network until the spectrum allocation is successful, and output the result of the microwave network planning.
  • FIG. 2 is a flowchart of a method for planning a microwave network according to another embodiment of the present invention
  • FIG. 3 is a schematic structural diagram 1 of a device for planning a microwave network according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a microwave network according to an embodiment of the present invention
  • the structure diagram of the device is two. detailed description
  • Step 1 Perform topology planning on the microwave network. Specifically, the topology planning is to perform node grading on each node in the microwave network to determine a weight of a link between the nodes in the microwave network, and according to the link between the nodes The weight in the microwave network is planned for the link between the nodes.
  • the node grading may be determined according to geographic location information of each node in the microwave network, and the location is closer to the center than the weight, otherwise the weight is lower, but not limited thereto.
  • the node at the center of the geographic area may be set as a level 1 central node, and the wave network includes a plurality of sub-dense areas, and the plurality of sub-dense areas pass through
  • the node of the level 1 node is connected, and the node that can set the edge position of the geographic area is a leaf node, and the wave network may further include a level 2 node, a level 3 node, etc., but is not limited thereto.
  • Step 1 02 Perform capacity planning on the microwave network according to the result of the topology planning, and determine whether the capacity planning is successful.
  • the capacity planning is to configure a device for each link of each node in the microwave network. If the capacity planning fails, go back to step 1 01, otherwise go to step 1 03.
  • the capacity planning is to set a weight of a device required for each link at each node according to a result of the topology planning and an optimization target, where the optimization target includes focusing on performance or controlling cost.
  • Step 1 03 Perform spectrum allocation, and determine whether the spectrum allocation is successful. If the spectrum allocation fails, return to step 1 01 or step 1 02, otherwise go to step 1 04.
  • the spectrum is allocated according to the optimization target and the weight of the link between the nodes, and the links between the nodes are prioritized according to the priorities between the nodes. Sort, traverse the spectrum resources of each link, and allocate spectrum resources for each link.
  • Step 1 04 Output the result of the microwave network planning.
  • the result of the microwave network planning includes a link connection between each node.
  • the system, the frequency of each link, and the configuration of the devices at each node (such as device model, device size, device operating power, etc.), but are not limited to this.
  • a method for planning a microwave network includes: Step 201: Perform node grading on each node in a microwave network to determine a link between each node in the microwave network. The weight in .
  • the node grading may be determined according to the location of each node in the microwave network, and the link weight between the nodes located near the center is higher, otherwise the weight is lower, but is not limited thereto.
  • the node at the center of the geographic area may be set as a level 1 central node, and the wave network includes a plurality of sub-dense areas, and the plurality of sub-dense areas pass through
  • the node of the level 1 node is connected, and the node that can set the edge position of the geographic area is a leaf node, and the wave network may further include a level 2 node, a level 3 node, etc., but is not limited thereto.
  • Step 202 Plan a link between the nodes according to weights of the links between the nodes in the microwave network.
  • the planning of the link between the nodes may be performed by using a multi-constrained minimum spanning tree algorithm to construct a tree including the respective nodes.
  • Step 203 Set, according to a result of the topology planning and an optimization target, where each node is located The weight of the device required for each link.
  • the optimization goal includes focusing on performance or controlling cost, but is not limited thereto.
  • each link at each node has multiple devices (for example, an antenna, an outdoor unit device, an indoor unit device, and the like), and each of the devices may have multiple (for example, the antenna has different models, etc.)
  • the optimization target is performance-oriented, when the weights of the devices required for each link at the respective nodes are set, the devices with high performance have higher weights, and the devices with lower performance have lower weights;
  • the optimization goal is to control the cost, and the cheap device weight is higher when setting the weight of the device required for each link at each of the nodes.
  • the optimization target may also comprehensively consider the performance and cost of the device.
  • the optimization target is cost performance, and the weight of the device with high set price is high.
  • Step 204 Traverse a device database in the microwave network, and configure a corresponding device for the link between the nodes according to the weight of the device required for each link at each node.
  • different links may need to be configured with different devices, and the devices required for the links between the nodes may be recorded in a device database in the microwave network, for example, the identity of the device database recording device (I den Ti ty (referred to as ID), the model and size of the device, and the supported link bandwidth, etc., but are not limited to this.
  • ID the identity of the device database recording device
  • the ID of the device with the highest weight of each link at each node is found in the device database by the weight of the device required for each link at each node, thereby being each of the respective nodes
  • the link configures the corresponding device.
  • Step 205 Detect, at each node, whether the corresponding device can work normally on the link where the corresponding device is located, to determine whether the corresponding device meets the requirement of the link where the corresponding device is located. If the corresponding device does not work normally on the link where the device is located, the link does not work normally, and the link does not work normally. Step 206 is performed. Otherwise, step 207 is performed.
  • the determining whether the corresponding device meets the requirement of the link in which the device is located may be caused by detecting whether the device is working on the link where the device is working, or even not working normally, for example, at a node.
  • the link transmit power is to reach a certain threshold, and the transmit power of the device selected by the optimization target and the device weight cannot reach the threshold, thereby causing the pass If the device whose optimization target and device weight selection cannot work normally on the link where it is located, it is determined that the device does not meet the requirements of the link where the device is located.
  • Step 206 Increase the weight of the link that cannot work normally. Go back to step 202. Specifically, since the corresponding device does not work normally on the link where the device is located, the link cannot work normally, and the weight of the link that cannot work normally may be increased, so that the link between the nodes is The planning changes, so that the subsequent steps will re-configure the device for the link between the nodes, and the weight of the link is increased, so that the probability of selecting the device of the current application in the subsequent step is reduced.
  • Step 207 Prioritize the links between the nodes according to the optimization target and the weight of the link between the nodes.
  • the different optimization targets may need to be transmitted through different links between the nodes, and the respective nodes need to be according to the optimization target and the weight of the link between the nodes.
  • the links between the links are prioritized.
  • Step 208 traverse the spectrum resources of each link according to the priority order of the links between the nodes, and allocate spectrum resources for each link.
  • the preferred frequency may be allocated to a link with a higher priority of the link, but is not limited thereto.
  • Step 209 Detect frequency interference between spectrum resources of each link, and determine whether the frequency interference meets the requirement of the key performance indicator KP I. If the frequency interference does not meet the requirements of the KP I, and the link after the frequency allocation is not working properly, perform step 210 or step 206, otherwise perform step 21 1.
  • the KP I includes: frequency availability and error performance indicators, but is not limited thereto.
  • Step 21 Exclude the device currently used by the node associated with the link and the device that requires higher receiving performance indicators than the device. Go back to step 203.
  • the KP I may be finally satisfied by reconfiguring the device currently used by the node associated with the link.
  • the requirement is that, in order to reduce the maximum number of frequencies of the microwave network after the network is successfully established, the receiving performance index requirement (for example, the transmitting power) may be adopted when the device of the node related to the link is reconfigured. Or receive power) lower equipment.
  • Step 21 Output the result of the microwave network planning.
  • the result of the microwave network planning includes a link connection relationship between each node, a frequency of each link, and The configuration of the device at each node (such as device model, device size, device operating power, etc.), but is not limited to this.
  • a method for planning a microwave network by performing topology planning on a microwave network, performing capacity planning according to the result of the topology planning, and determining whether the capacity planning is successful, in the capacity After the planning fails, return to the topology planning of the microwave network.
  • the capacity planning is successful, perform spectrum allocation, and determine whether the spectrum allocation is successful.
  • the spectrum allocation fails, return to the capacity of the microwave network.
  • Planning or topology planning until the spectrum allocation is successful, outputting the results of the microwave network planning.
  • the apparatus for planning a microwave network includes: a topology planning unit 31, configured to perform topology planning on a microwave network. For details, see step 1 01 in Figure 1, and no further details are provided here.
  • the capacity planning unit 32 is configured to perform capacity planning on the microwave network according to the result of the topology planning, and determine whether the capacity planning is successful, where the capacity planning is performed for each node in the microwave network.
  • the link performs device configuration. For the specific implementation, refer to step 1 02 in Figure 1, and no further details are provided here.
  • the first returning unit 33 is configured to return to the topology planning of the microwave network if the capacity planning fails.
  • the spectrum allocating unit 34 is configured to perform spectrum allocation if the capacity planning is successful, and determine whether the spectrum allocation is successful. For details, see step 1 03 in Figure 1, and no further details are provided here.
  • the second returning unit 35 is configured to return to the capacity planning of the microwave network or return to the topology planning of the microwave network if the spectrum allocation fails. See the figure for its specific implementation.
  • Steps 1 02 and 101 in 1 are not repeated here.
  • the output unit 36 is configured to output a result of the microwave network planning if the spectrum allocation is successful.
  • the output unit 36 is configured to output a result of the microwave network planning if the spectrum allocation is successful.
  • the topology planning unit 31 includes:
  • the node grading module 31 1 is configured to perform node grading on each node in the microwave network to determine the weight of the link between the nodes in the microwave network. For details, refer to step 201 in Figure 2, and details are not described here.
  • the link planning module 312 is configured to plan a link between the nodes according to weights of the links between the nodes in the microwave network. For details, refer to step 202 in Figure 2, and details are not described here.
  • the capacity planning unit 32 includes:
  • the first setting module 321 is configured to set a weight of a device required for each link at each node according to a result of the topology planning and an optimization target, where the optimization target includes focusing on performance or controlling cost.
  • the optimization target includes focusing on performance or controlling cost.
  • the device configuration module 322 is configured to traverse a device database in the microwave network, and configure a corresponding device for the link between the nodes according to the weight of the device required for each link at each node. For the specific implementation, refer to step 204 in Figure 2, and details are not described herein.
  • the first detecting module 323 is configured to detect, at each node, whether the corresponding device can work normally on the link where the corresponding device is located, to determine whether the corresponding device meets the location of the corresponding device.
  • the demand for the link For the specific implementation, refer to step 205 in Figure 2, and details are not described herein.
  • the first returning unit 33 is specifically configured to: if the corresponding device does not meet the requirement of the link where the device is located, increase the weight of the link that cannot work normally, and return to The planning of the link between the nodes is performed. For the specific implementation, refer to step 206 in Figure 2, and details are not described herein.
  • the frequency-submersible allocating unit 34 includes:
  • a second setting module 341 configured to: if the corresponding device meets the requirement of the link where the device is located, according to the optimization target and the weight of the link between the nodes, the chain between the nodes The way to prioritize. For details, refer to step 207 in Figure 2, and details are not described here.
  • the spectrum resource allocation module 342 is configured to: according to the priority order of the links between the nodes, traverse the spectrum resources of each link, and allocate spectrum resources for each link. For the specific implementation, refer to step 208 in Figure 2, and details are not described herein.
  • the second detecting module 343 is configured to detect frequency interference between spectrum resources of each link, and determine whether the frequency interference meets the requirement of the key performance indicator KP I.
  • the specific implementation manner is shown in step 209 in Figure 2, and details are not described herein again.
  • the second returning unit 35 includes:
  • the exclusion module 351 is configured to exclude, if the frequency interference does not meet the requirement of the KP I, a device currently used by a node associated with the link and a device that is higher than a receiving performance indicator of the device. For the specific implementation, refer to step 21 0 in Figure 2, and details are not described herein.
  • the returning module 352 is configured to return to the weight of the device required to set each link at each of the nodes according to the result of the topology planning, the optimization target, and the remaining devices after the device is excluded. For the specific implementation, refer to step 203 in Figure 2, and details are not described herein.
  • the second returning unit 35 is specifically configured to: if the frequency interference does not meet the requirement of the KP I, increase the weight of the link that cannot work normally, and return to the Plan the links between the various nodes.
  • the frequency interference does not meet the requirement of the KP I, increase the weight of the link that cannot work normally, and return to the Plan the links between the various nodes.
  • the device for planning a microwave network provided by the embodiment of the present invention is adopted by a topology planning unit.
  • the microwave network performs topology planning, and the capacity planning unit performs capacity planning on the microwave network according to the result of the topology planning, and determines whether the capacity planning is successful, and the first return unit returns to the microwave after the capacity planning fails.
  • the network performs topology planning, and the spectrum allocation unit performs spectrum allocation when the capacity planning is successful, and determines whether the spectrum allocation is successful. After the spectrum allocation fails, the second return unit returns to the capacity planning of the microwave network. Or topology planning, until the spectrum allocation is successful, the output unit outputs the result of the microwave network planning.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种微波网络规划的方法及装置,涉及通信技术领域,解决了当前微波网络规划时的频谱资源浪费的问题。方法包括:对微波网络进行拓扑规划;根据拓扑规划的结果,进行容量规划,并确定容量规划是否成功;若容量规划失败,返回到对微波网络进行拓扑规划;若容量规划成功,进行频谱分配,并确定频谱分配是否成功;若频谱分配失败,返回到对微波网络进行容量规划或者对微波网络进行拓扑规划;若频谱分配成功,输出微波网络规划的结果。本发明适用于微波网络中。

Description

微波网络规划的方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种微波网络规划的方法及装 置。
背景技术
微波网络是基于视距通信的电磁波传输网络, 微波是指频率在
300MHz- 300GHz范围内的电磁波, 是无线电波中一个有限频带的简称。 在 微波网络建立之前, 需要对微波网络的建立进行规划, 具体的规划过程可 以分为三部分: 拓朴规划、 容量规划以及频率分配。 当前的微波网络规划 的方法为:首先对微波网络进行拓朴规划,具体根据各个节点的实际地形, 判断各个节点间的视通类型, 并确定各个节点的位置, 设置各个节点间的 连接关系; 对微波网络进行容量规划, 具体根据各个节点间的带宽需求与 关键性能指标 (Key Per f ormance I nd i ca t or , 简称 KP I ) 确定各个节点 所需的微波网络设备 (如微波天线、 室内单元 I DU、 室外单元 0DU等), 并确定所述微波网络设备的型号尺寸; 对微波网络进行频率分配, 具体根 据各个节点间的拓朴规划结果及容量规划结果,确定各个节点可用的频谱 资源, 对各个节点进行频率分配, 并确保所述各个节点的频率相互干扰达 到所述 KP I的要求。
在实现本发明实施例的过程中,发明人发现现有技术中至少存在如下 问题:
在频率分配时, 若有节点的频率相互干扰无法满足所述 KP I的要求, 则需要更换频率以保证建网成功, 由于频谱资源是有限的, 因此通过为节 点更换频率来到达建网成功会造成频谱资源的浪费。
发明内容
本发明的实施例提供一种微波网络规划的方法及装置,能够解决现有 技术中由于频谱资源是有限的,通过为节点更换频率来到达建网成功会造 成频谱资源的浪费的问题。
为达到上述目的, 本发明采用如下技术方案:
一种微波网络规划的方法, 包括:
对微波网络进行拓朴规划;
根据所述拓朴规划的结果, 对所述微波网络进行容量规划, 并确定所 述容量规划是否成功,所述容量规划为对所述微波网络中各个节点的每个 链路进行设备配置;
若所述容量规划失败, 返回到对微波网络进行拓朴规划;
若所述容量规划成功,进行频谱分配,并确定所述频谱分配是否成功; 若所述频谱分配失败,返回到对微波网络进行容量规划或者返回到对 微波网络进行拓朴规划;
若所述频谱分配成功, 输出所述微波网络规划的结果。
一种微波网络规划的装置, 包括:
拓朴规划单元, 用于对微波网络进行拓朴规划;
容量规划单元, 用于根据所述拓朴规划的结果, 对所述微波网络进行 容量规划, 并确定所述容量规划是否成功, 所述容量规划为对所述微波网 络中各个节点的每个链路进行设备配置;
第一返回单元, 用于若所述容量规划失败, 返回到对微波网络进行拓 朴规划;
频谱分配单元, 用于若所述容量规划成功, 进行频谱分配, 并确定所 述频谱分配是否成功;
第二返回单元, 用于若所述频谱分配失败, 返回到对微波网络进行容 量规划或者返回到对微波网络进行拓朴规划;
输出单元,用于若所述频谱分配成功,输出所述微波网络规划的结果。 本发明实施例提供的微波网络规划的方法及装置,由于通过对微波网 络进行拓朴规划, 并根据所述拓朴规划的结果进行容量规划, 并确定所述 容量规划是否成功, 在所述容量规划失败后,返回到对微波网络进行拓朴 规划, 在所述容量规划成功时, 进行频谱分配, 并确定所述频谱分配是否 成功, 在所述频谱分配失败后,返回到对微波网络进行容量规划或者拓朴 规划, 直到所述频谱分配成功, 输出所述微波网络规划的结果。 这样考虑 到拓朴规划、 容量规划及频谱规划对微波网络规划的影响, 在微波网络规 划中的频率分配失败时能够通过重新进行拓朴规划或容量规划来解决频 率分配失败的问题,从而避免采用通过为节点更换频率,造成的频谱资源 浪费的问题。
附图说明 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。 图 2为本发明又一实施例提供的微波网络规划的方法流程图; 图 3为本发明实施例提供的微波网络规划的装置的结构示意图一; 图 4为本发明实施例提供的微波网络规划的装置的结构示意图二。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
为使本发明技术方案的优点更加清楚,下面结合附图和实施例对本发 明作伴细说明。 步骤 1 01、 对微波网络进行拓朴规划。 具体的, 所述拓朴规划为对微波网络中的各个节点进行节点分级, 以 确定各个节点之间的链路在所述微波网络中的权重,并根据所述各个节点 之间的链路在所述微波网络中的权重, 对各个节点之间的链路进行规划。
例如, 所述节点分级可以是根据所述微波网络中的各个节点的地理位 置信息来决定的, 位置离中心近的权重较高, 否则权重较低, 但不仅局限 于此。 例如, 在为某一片地理区域做微波网络规划时, 可以设置所述地理 区域的中心处的节点为 1级中心节点,所述 波网络中包括多个子密集区 域, 所述多个子密集区域通过所述 1级中心节点连接, 而可以设置所述地 理区域的边缘位置的节点为叶子节点,所述 波网络中还可以包括 2级节 点、 3级节点等, 但不仅局限于此。
步骤 1 02、根据所述拓朴规划的结果,对所述微波网络进行容量规划, 并确定所述容量规划是否成功。
其中, 所述容量规划为对所述微波网络中各个节点的每个链路进行设 备配置。 若所述容量规划失败, 返回执行步骤 1 01 , 否者执行步骤 1 03。
具体的, 所述容量规划为根据所述拓朴规划的结果及优化目标, 设置 所述各个节点处的每条链路所需的设备的权重, 其中, 所述优化目标包括 注重性能或者控制成本, 遍历所述微波网络中的设备数据库, 根据所述各 个节点处的每条链路所需的设备的权重,为所述各个节点之间的链路配置 相应的设备。
步骤 1 03、 进行频谱分配, 并确定所述频谱分配是否成功。 若所述频 谱分配失败, 返回到步骤 1 01或者步骤 1 02 , 否者执行步骤 1 04。
其中, 所述频谱分配为根据所述优化目标及所述各个节点之间的链路 的权重, 对所述各个节点之间的链路进行优先级排序, 根据所述各个节点 之间的优先级排序, 遍历每个链路的频谱资源, 并为每个链路分配频谱资 源。
步骤 1 04、 输出所述微波网络规划的结果。
具体的, 所述微波网络规划的结果包括各个节点之间的链路连接关 系、每个链路的频率及各个节点处的设备的配置(如设备型号、设备尺寸、 设备工作功率等), 但是不仅局限于此。 拓朴规划, 并根据所述拓朴规划的结果进行容量规划, 并确定所述容量规 划是否成功, 在所述容量规划失败后, 返回到对微波网络进行拓朴规划, 在所述容量规划成功时, 进行频谱分配, 并确定所述频谱分配是否成功, 在所述频谱分配失败后, 返回到对微波网络进行容量规划或者拓朴规划, 直到所述频谱分配成功, 输出所述微波网络规划的结果。 这样考虑到拓朴 规划、 容量规划及频谱规划对微波网络规划的影响, 在微波网络规划中的 频率分配失败时能够通过重新进行拓朴规划或容量规划来解决频率分配 失败的问题, 从而避免采用通过为节点更换频率, 造成的频谱资源浪费的 问题。
如图 2所示, 本发明又一实施例提供的微波网络规划的方法, 包括: 步骤 201、 对微波网络中的各个节点进行节点分级, 以确定各个节点 之间的链路在所述微波网络中的权重。
具体的,所述节点分级可以是根据所述微波网络中的各个节点的位置 来决定的, 位置离中心近的节点之间的链路权重较高, 否则权重较低, 但 不仅局限于此。 例如, 在为某一片地理区域做微波网络规划时, 可以设置 所述地理区域的中心处的节点为 1级中心节点,所述 波网络中包括多个 子密集区域, 所述多个子密集区域通过所述 1级中心节点连接, 而可以设 置所述地理区域的边缘位置的节点为叶子节点,所述 波网络中还可以包 括 2级节点、 3级节点等, 但不仅局限于此。
步骤 202、 根据所述各个节点之间的链路在所述微波网络中的权重, 对所述各个节点之间的链路进行规划。
具体的,所述对各个节点之间的链路进行规划可以是采用多约束最小 生成树算法, 从而来构建包含所述各个节点的树。
步骤 203、 根据拓朴规划的结果及优化目标, 设置所述各个节点处的 每条链路所需的设备的权重。
其中, 所述优化目标包括注重性能或者控制成本, 但不仅局限于此。 具体的, 所述各个节点处的每条链路所需的设备有多种(例如天线、 室外 单元设备、 室内单元设备等), 且每种可以有多个 (例如天线有不同的型 号等), 若所述优化目标为注重性能, 则在设置所述各个节点处的每条链 路所需的设备的权重时,性能高的设备权重较高,性能低的设备权重较低; 若所述优化目标为控制成本,则在设置所述各个节点处的每条链路所需的 设备的权重时, 廉价的设备权重较高。 但不仅局限于此, 所述优化目标还 可以综合考虑设备的性能及成本, 例如所述优化目标为性价比, 设置性价 比高的设备的权重高。
步骤 204、 遍历微波网络中的设备数据库, 根据所述各个节点处的每 条链路所需的设备的权重, 为所述各个节点之间的链路配置相应的设备。
具体的, 不同的链路可能需要配置不同的设备, 所述各个节点之间的 链路需要的设备可以记录在微波网络中的设备数据库中,例如所述设备数 据库记录设备的身份标识 ( I den t i ty , 简称 I D )、 设备的型号、 尺寸以及 所支持的链路带宽等, 但不仅局限于此。 通过所述各个节点处的每条链路 所需的设备的权重,在所述设备数据库中找到各个节点处的每条链路的权 重最高的设备的 I D , 从而为所述各个节点的每条链路配置相应的设备。
步骤 205、 在各个节点处检测所述相应的设备是否能在所述相应的设 备所在的链路上正常工作,以确定所述相应的设备是否满足其所在的链路 的需求。 若所述相应的设备在其所在的链路上不能正常工作, 则为不满足 其所在的链路的需求, 所述链路也不能正常工作, 执行步骤 206 , 否则执 行步骤 207。
具体的,所述确定所述相应的设备是否满足其所在的链路的需求可以 是通过检测所述设备在其所在的链路工作时是否会出现问题,甚至不能正 常工作, 例如某节点处的链路发射功率要达到某一阈值, 而通过所述优化 目标及设备权重选择的设备的发射功率无法达到所述阈值,则造成所述通 过所述优化目标及设备权重选择的设备无法在其所在的链路上正常工作, 则确定所述设备不满足其所在的链路的需求。
步骤 206、 将不能正常工作的链路的权重增加。 返回执行步骤 202。 具体的, 由于所述相应的设备在其所在的链路上不能正常工作, 造成 所述链路不能正常工作, 可以将不能正常工作的链路的权重增加, 以使得 各个节点之间的链路规划发生变化,从而后续步骤将重新为所述各个节点 之间的链路进行设备的配置, 通过所述链路的权重增加, 使得在后续步骤 中再次选用本次应用的设备的概率降低。
步骤 207、 根据所述优化目标及所述各个节点之间的链路的权重, 对 所述各个节点之间的链路进行优先级排序。
具体的, 在后期发射信号时, 由于不同的优化目标在各个节点之间可 能需要通过不同链路进行传输,需要根据所述优化目标以及各个节点之间 的链路的权重, 对所述各个节点之间的链路进行优先级排序。
步骤 208、 根据所述各个节点之间的链路的优先级排序, 遍历每个链 路的频谱资源, 并为每个链路分配频谱资源。
具体的, 在频谱资源中有较优的优选频率, 可以将所述优选频率分配 给链路优先级排序较高的链路, 但不仅局限于此。
步骤 209、 检测各个链路的频谱资源之间的频率干扰, 确定所述频率 干扰是否满足关键性能指标 KP I的要求。 若所述频率干扰不满足所述 KP I 的要求, 造成频率分配后的链路不能正常工作, 执行步骤 210 或者步骤 206 , 否则执行步骤 21 1。
具体的, 所述 KP I 包括: 频率可用度及差错性能指标等, 但不仅局限 于此。
步骤 21 0、 排除与所述链路相关的节点当前所用的设备以及比所述设 备对接收性能指标要求更高的设备。 返回执行步骤 203。
具体的, 在频率干扰不能满足所述 KP I的要求后, 可以通过重新配置 与所述链路相关的节点当前所用的设备的方式来实现最终满足所述 KP I 的要求, 为了使微波网络在建网成功后的最大频率数减少, 可以在重新配 置所述与所述链路相关的节点的设备时采用比原先所用的设备对接收性 能指标要求 (例如发射功率或接收功率) 更低的设备。
步骤 21 1、 输出所述微波网络规划的结果。
具体的, 若所述频率干扰满足所述 KP I的要求, 输出所述微波网络规 划的结果, 所述微波网络规划的结果包括各个节点之间的链路连接关系、 每个链路的频率及各个节点处的设备的配置(如设备型号、 设备尺寸、 设 备工作功率等), 但是不仅局限于此。
本发明又一实施例提供的微波网络规划的方法,由于通过对微波网络 进行拓朴规划, 并根据所述拓朴规划的结果进行容量规划, 并确定所述容 量规划是否成功, 在所述容量规划失败后, 返回到对微波网络进行拓朴规 划, 在所述容量规划成功时, 进行频谱分配, 并确定所述频谱分配是否成 功, 在所述频谱分配失败后, 返回到对微波网络进行容量规划或者拓朴规 划, 直到所述频谱分配成功, 输出所述微波网络规划的结果。 这样考虑到 拓朴规划、 容量规划及频谱规划对微波网络规划的影响, 在微波网络规划 中的频率分配失败时能够通过重新进行拓朴规划或容量规划来解决频率 分配失败的问题, 从而避免采用通过为节点更换频率, 造成的频谱资源浪 费的问题。
如图 3所示, 本发明实施例提供的微波网络规划的装置, 包括: 拓朴规划单元 31 , 用于对微波网络进行拓朴规划。 其具体实现方式 参见图 1 中步骤 1 01所示, 此处不再贅述。
容量规划单元 32 , 用于根据所述拓朴规划的结果, 对所述微波网络 进行容量规划, 并确定所述容量规划是否成功, 所述容量规划为对所述微 波网络中各个节点的每个链路进行设备配置。 其具体实现方式参见图 1 中步骤 1 02所示, 此处不再贅述。
第一返回单元 33 , 用于若所述容量规划失败, 返回到对微波网络进 行拓朴规划。 其具体实现方式参见图 1 中步骤 101所示, 此处不再贅述。 频谱分配单元 34 , 用于若所述容量规划成功, 进行频谱分配, 并确 定所述频谱分配是否成功。 其具体实现方式参见图 1 中步骤 1 03所示, 此 处不再赘述。
第二返回单元 35 , 用于若所述频谱分配失败, 返回到对微波网络进 行容量规划或者返回到对微波网络进行拓朴规划。其具体实现方式参见图
1 中步骤 1 02及步骤 101所示, 此处不再贅述。
输出单元 36 , 用于若所述频谱分配成功, 输出所述微波网络规划的 结果。 其具体实现方式参见图 1 中步骤 104所示, 此处不再贅述。
进一步的, 如图 4所示, 所述拓朴规划单元 31 , 包括:
节点分级模块 31 1 , 用于对微波网络中的各个节点进行节点分级, 以 确定各个节点之间的链路在所述微波网络中的权重。其具体实现方式参见 图 2中步骤 201所示, 此处不再贅述。
链路规划模块 312 , 用于根据所述各个节点之间的链路在所述微波网 络中的权重, 对所述各个节点之间的链路进行规划。 其具体实现方式参见 图 2中步骤 202所示, 此处不再贅述。
进一步的, 如图 4所示, 所述容量规划单元 32 , 包括:
第一设置模块 321 , 用于根据所述拓朴规划的结果及优化目标, 设置 所述各个节点处的每条链路所需的设备的权重,所述优化目标包括注重性 能或者控制成本。 其具体实现方式参见图 2中步骤 203所示, 此处不再贅 述。
设备配置模块 322 , 用于遍历微波网络中的设备数据库, 根据所述各 个节点处的每条链路所需的设备的权重,为所述各个节点之间的链路配置 相应的设备。 其具体实现方式参见图 2中步骤 204所示, 此处不再贅述。
第一检测模块 323 , 用于在各个节点处检测所述相应的设备是否能在 所述相应的设备所在的链路上正常工作,以确定所述相应的设备是否满足 所述相应的设备所在的链路的需求。 其具体实现方式参见图 2中步骤 205 所示, 此处不再贅述。 进一步的, 如图 4所示, 所述第一返回单元 33 , 具体用于: 若所述相应的设备不满足其所在的链路的需求,将不能正常工作的链 路的权重增加, 返回到所述对各个节点之间的链路进行规划。 其具体实现 方式参见图 2中步骤 206所示, 此处不再贅述。
进一步的, 如图 4所示, 所述频 -潜分配单元 34 , 包括:
第二设置模块 341 ,用于若所述相应的设备满足其所在的链路的需求, 根据所述优化目标及所述各个节点之间的链路的权重,对所述各个节点之 间的链路进行优先级排序。 其具体实现方式参见图 2中步骤 207所示, 此 处不再赘述。
频谱资源分配模块 342 , 用于根据所述各个节点之间的链路的优先级 排序, 遍历每个链路的频谱资源, 并为每个链路分配频谱资源。 其具体实 现方式参见图 2中步骤 208所示, 此处不再贅述。
第二检测模块 343 , 用于检测各个链路的频谱资源之间的频率干扰, 确定所述频率干扰是否满足关键性能指标 KP I的要求。其具体实现方式参 见图 2中步骤 209所示, 此处不再贅述。
进一步的, 如图 4所示, 所述第二返回单元 35 , 包括:
排除模块 351 , 用于若所述频率干扰不满足所述 KP I的要求, 排除与 所述链路相关的节点当前所用的设备以及比所述设备对接收性能指标要 求更高的设备。其具体实现方式参见图 2中步骤 21 0所示,此处不再贅述。
返回模块 352 , 用于根据所述拓朴规划的结果、 优化目标以及排除设 备后剩余的设备,返回到所述设置所述各个节点处的每条链路所需的设备 的权重。 其具体实现方式参见图 2中步骤 203所示, 此处不再贅述。
进一步的, 如图 4所示, 所述第二返回单元 35 , 具体用于: 若所述频率干扰不满足所述 KP I的要求,将不能正常工作的链路的权 重增加, 返回到所述对各个节点之间的链路进行规划。 其具体实现方式参 见图 2中步骤 206及步骤 202所示, 此处不再贅述。
本发明实施例提供的微波网络规划的装置,由于通过拓朴规划单元对 微波网络进行拓朴规划,容量规划单元根据所述拓朴规划的结果对微波网 络进行容量规划, 并确定所述容量规划是否成功, 第一返回单元在所述容 量规划失败后, 返回到对微波网络进行拓朴规划, 频谱分配单元在所述容 量规划成功时, 进行频谱分配, 并确定所述频谱分配是否成功, 第二返回 单元在所述频谱分配失败后,返回到对微波网络进行容量规划或者拓朴规 划, 直到所述频谱分配成功, 输出单元输出所述微波网络规划的结果。 这 样考虑到拓朴规划、 容量规划及频谱规划对微波网络规划的影响, 在微波 网络规划中的频率分配失败时能够通过重新进行拓朴规划或容量规划来 解决频率分配失败的问题, 从而避免采用通过为节点更换频率, 造成的频 谱资源浪费的问题。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到 本发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬 件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式 体现出来, 该计算机软件产品存储在可读取的存储介质中, 如计算机的软 盘, 硬盘或光盘等, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种微波网络规划的方法, 其特征在于, 包括:
对微波网络进行拓朴规划;
根据所述拓朴规划的结果, 对所述微波网络进行容量规划, 并确定所 述容量规划是否成功, 所述容量规划为对所述微波网络中各个节点的每个 链路进行设备配置;
若所述容量规划失败, 返回到对微波网络进行拓朴规划;
若所述容量规划成功, 进行频谱分配, 并确定所述频谱分配是否成功; 若所述频谱分配失败, 返回到对微波网络进行容量规划或者返回到对 微波网络进行拓朴规划;
若所述频谱分配成功, 输出所述微波网络规划的结果。
2、 根据权利要求 1所述的方法, 其特征在于, 所述对微波网络进行拓 朴规划, 包括:
对微波网络中的各个节点进行节点分级, 以确定各个节点之间的链路 在所述 波网络中的权重;
根据所述各个节点之间的链路在所述微波网络中的权重, 对所述各个 节点之间的链路进行规划。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据所述拓朴规划 的结果, 对所述微波网络进行容量规划, 并确定所述容量规划是否成功, 包括:
根据所述拓朴规划的结果及优化目标, 设置所述各个节点处的每条链 路所需的设备的权重, 所述优化目标包括注重性能或者控制成本;
遍历微波网络中的设备数据库, 根据所述各个节点处的每条链路所需 的设备的权重, 为所述各个节点之间的链路配置相应的设备;
在各个节点处检测所述相应的设备是否能在所述相应的设备所在的链 路上正常工作, 以确定所述相应的设备是否满足所述相应的设备所在的链 路的需求。
4、 根据权利要求 3所述的方法, 其特征在于, 所述若所述容量规划失 败, 返回到对微波网络进行拓朴规划, 包括:
若所述相应的设备不满足其所在的链路的需求, 将不能正常工作的链 路的权重增加, 返回到所述对各个节点之间的链路进行规划。
5、 根据权利要求 3所述的方法, 其特征在于, 所述若所述容量规划成 功, 进行频谱分配, 并确定所述频谱分配是否成功, 包括:
若所述相应的设备满足其所在的链路的需求, 根据所述优化目标及所 述各个节点之间的链路的权重, 对所述各个节点之间的链路进行优先级排 序;
根据所述各个节点之间的链路的优先级排序, 遍历每个链路的频谱资 源, 并为每个链路分配频谱资源;
检测各个链路的频谱资源之间的频率干扰, 确定所述频率干扰是否满 足关键性能指标 KP I的要求。
6、 根据权利要求 5所述的方法, 其特征在于, 所述若所述频谱分配失 败, 返回到对微波网络进行容量规划, 包括:
若所述频率干扰不满足所述 KP I 的要求, 排除与所述链路相关的节点 当前所用的设备以及比所述设备对接收性能指标要求更高的设备;
根据所述拓朴规划的结果、 优化目标以及排除设备后剩余的设备, 返 回到所述设置所述各个节点处的每条链路所需的设备的权重。
7、 根据权利要求 5所述的方法, 其特征在于, 所述若所述频谱分配失 败, 返回到对微波网络进行拓朴规划, 包括:
若所述频率干扰不满足所述 KP I 的要求, 将不能正常工作的链路的权 重增加, 返回到所述对各个节点之间的链路进行规划。
8、 一种微波网络规划的装置, 其特征在于, 包括:
拓朴规划单元, 用于对微波网络进行拓朴规划;
容量规划单元, 用于根据所述拓朴规划的结果, 对所述微波网络进行 容量规划, 并确定所述容量规划是否成功, 所述容量规划为对所述微波网 络中各个节点的每个链路进行设备配置;
第一返回单元, 用于若所述容量规划失败, 返回到对微波网络进行拓 朴规划;
频谱分配单元, 用于若所述容量规划成功, 进行频谱分配, 并确定所 述频谱分配是否成功;
第二返回单元, 用于若所述频谱分配失败, 返回到对微波网络进行容 量规划或者返回到对微波网络进行拓朴规划;
输出单元, 用于若所述频谱分配成功, 输出所述微波网络规划的结果。
9、 根据权利要求 8所述的装置, 其特征在于, 所述拓朴规划单元, 包 括:
节点分级模块, 用于对微波网络中的各个节点进行节点分级, 以确定 各个节点之间的链路在所述微波网络中的权重;
链路规划模块, 用于根据所述各个节点之间的链路在所述微波网络中 的权重, 对所述各个节点之间的链路进行规划。
1 0、 根据权利要求 9 所述的装置, 其特征在于, 所述容量规划单元, 包括:
第一设置模块, 用于根据所述拓朴规划的结果及优化目标, 设置所述 各个节点处的每条链路所需的设备的权重, 所述优化目标包括注重性能或 者控制成本;
设备配置模块, 用于遍历微波网络中的设备数据库, 根据所述各个节 点处的每条链路所需的设备的权重, 为所述各个节点之间的链路配置相应 的设备;
第一检测模块, 用于在各个节点处检测所述相应的设备是否能在所述 相应的设备所在的链路上正常工作, 以确定所述相应的设备是否满足所述 相应的设备所在的链路的需求。
1 1、 根据权利要求 1 0所述的装置, 其特征在于, 所述第一返回单元, 具体用于: 若所述相应的设备不满足其所在的链路的需求, 将不能正常工作的链 路的权重增加, 返回到所述对各个节点之间的链路进行规划。
12、 根据权利要求 10所述的装置, 其特征在于, 所述频谱分配单元, 包括:
第二设置模块, 用于若所述相应的设备满足其所在的链路的需求, 根 据所述优化目标及所述各个节点之间的链路的权重, 对所述各个节点之间 的链路进行优先级排序;
频谱资源分配模块, 用于根据所述各个节点之间的链路的优先级排序, 遍历每个链路的频谱资源, 并为每个链路分配频谱资源;
第二检测模块, 用于检测各个链路的频谱资源之间的频率干扰, 确定 所述频率干扰是否满足关键性能指标 KP I的要求。
1 3、 根据权利要求 12所述的装置, 其特征在于, 所述第二返回单元, 包括:
排除模块, 用于若所述频率干扰不满足所述 KP I 的要求, 排除与所述 链路相关的节点当前所用的设备以及比所述设备对接收性能指标要求更高 的设备;
返回模块, 用于根据所述拓朴规划的结果、 优化目标以及排除设备后 剩余的设备, 返回到所述设置所述各个节点处的每条链路所需的设备的权 重。
14、 根据权利要求 12所述的装置, 其特征在于, 所述第二返回单元, 具体用于:
若所述频率干扰不满足所述 KP I 的要求, 将不能正常工作的链路的权 重增加, 返回到所述对各个节点之间的链路进行规划。
PCT/CN2012/077569 2012-06-26 2012-06-26 微波网络规划的方法及装置 WO2014000164A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/077569 WO2014000164A1 (zh) 2012-06-26 2012-06-26 微波网络规划的方法及装置
CN201280000864.2A CN102870447B (zh) 2012-06-26 2012-06-26 微波网络规划的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077569 WO2014000164A1 (zh) 2012-06-26 2012-06-26 微波网络规划的方法及装置

Publications (1)

Publication Number Publication Date
WO2014000164A1 true WO2014000164A1 (zh) 2014-01-03

Family

ID=47447779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077569 WO2014000164A1 (zh) 2012-06-26 2012-06-26 微波网络规划的方法及装置

Country Status (2)

Country Link
CN (1) CN102870447B (zh)
WO (1) WO2014000164A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105516992A (zh) * 2015-12-14 2016-04-20 广东省电信工程有限公司 一种lte网络的pci规划方法
CN109561436A (zh) * 2017-09-26 2019-04-02 中国移动通信集团公司 一种物理层小区标识pci优化的方法、设备和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744536A (zh) * 2014-12-09 2016-07-06 富士通株式会社 无线网络部署方法和装置
CN108419245B (zh) * 2017-02-09 2021-11-12 中兴通讯股份有限公司 子网划分方法和装置
US11240675B2 (en) 2017-08-09 2022-02-01 Commscope Technologies Llc Method and system for planning and operating fixed microwave communications systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098455A2 (en) * 1999-11-03 2001-05-09 CALY Corporation Spatially switched router for wireless data packets
CN1682551A (zh) * 2002-09-13 2005-10-12 艾利森电话股份有限公司 频率复用的优化机制
US20080049672A1 (en) * 2006-07-13 2008-02-28 Oz Barak Point to point communication method with interference mitagation
CN102137405A (zh) * 2010-06-01 2011-07-27 华为技术有限公司 一种构造网络拓扑结构的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561876B2 (en) * 2003-02-21 2009-07-14 Groundhog Technologies Inc. System with user interface for network planning and mobility management optimization in a mobile communication network and method thereof
CN1333614C (zh) * 2003-09-10 2007-08-22 华为技术有限公司 一种高速数据业务的无线网络规划方法
CN1556661A (zh) * 2004-01-12 2004-12-22 中兴通讯股份有限公司 一种无线网络规划的方法
US9420603B2 (en) * 2006-09-08 2016-08-16 Qualcomm Incorporated Recovery from resource mismatch in a wireless communication system
CN101945398B (zh) * 2009-07-07 2013-01-30 华为技术有限公司 无线网络规划方法及装置
CN101662783B (zh) * 2009-08-26 2012-05-23 东南大学 认知无线电系统中一种基于图论的频谱分配方法
CN102404752B (zh) * 2011-12-23 2014-03-26 广东省电信工程有限公司 一种gsm网络的频率规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098455A2 (en) * 1999-11-03 2001-05-09 CALY Corporation Spatially switched router for wireless data packets
CN1682551A (zh) * 2002-09-13 2005-10-12 艾利森电话股份有限公司 频率复用的优化机制
US20080049672A1 (en) * 2006-07-13 2008-02-28 Oz Barak Point to point communication method with interference mitagation
CN102137405A (zh) * 2010-06-01 2011-07-27 华为技术有限公司 一种构造网络拓扑结构的方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105516992A (zh) * 2015-12-14 2016-04-20 广东省电信工程有限公司 一种lte网络的pci规划方法
CN105516992B (zh) * 2015-12-14 2018-12-14 中通服建设有限公司 一种lte网络的pci规划方法
CN109561436A (zh) * 2017-09-26 2019-04-02 中国移动通信集团公司 一种物理层小区标识pci优化的方法、设备和装置
CN109561436B (zh) * 2017-09-26 2021-04-30 中国移动通信集团公司 一种物理层小区标识pci优化的方法、设备、计算机可读存储介质和装置

Also Published As

Publication number Publication date
CN102870447B (zh) 2016-01-13
CN102870447A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
US7366519B2 (en) Systems and methods for managing wireless communications using link space information
US20150296386A1 (en) System and method for spectrum sharing
US11470014B2 (en) System and method of managing data connections to a communication network using tiered devices and telemetry data
CN108696910A (zh) 一种选择目标基站的方法、装置和存储介质
CN108810928A (zh) 一种接收波束恢复请求的方法及网络设备
WO2014000164A1 (zh) 微波网络规划的方法及装置
WO2006026753A2 (en) Distributed networking agent (dna) and methods of making and using the same
JP6564867B2 (ja) アンテナビーム情報の利用
US10945299B2 (en) Overshoot analysis based on user equipment metrics
JP5744240B2 (ja) 無線通信システム、無線通信方法、および無線局
CN109362093B (zh) 网络功能虚拟化的总吞吐量最大化的资源优化方法
WO2014173316A1 (zh) 覆盖和容量联合优化方法及装置、系统
Devoti et al. Mm-wave initial access: A context information overview
US20230080610A1 (en) Determining locations of deployed access points
Nguyen et al. A deep learning framework for beam selection and power control in massive MIMO-millimeter-wave communications
CN112088555A (zh) 用于无线通信系统中的资源分配的协调器网络节点和接入网络节点
US10805829B2 (en) BLE-based location services in high density deployments
Halder et al. Lifetime maximizing clustering structure using archimedes' spiral based deployment in WSNs
US9756509B2 (en) Defining logical cells
CN102316485B (zh) 一种修改小区参数的方法、系统和设备
Duan Software-defined Networking enabled Resource Management and Security Provisioning in 5G Heterogeneous Networks
RU2600941C1 (ru) Способ обеспечения живучести распределенной абонентской сети связи
US11864220B2 (en) Systems and methods for controlling beam parameters to improve signal strength
Singh SDN (Software Defined Network) and Machine Learning for High-Density WLANs
CN102740376B (zh) 提升数据传输性能的方法、装置和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000864.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879858

Country of ref document: EP

Kind code of ref document: A1