WO2014000136A1 - 一种零功耗节电插座电路 - Google Patents

一种零功耗节电插座电路 Download PDF

Info

Publication number
WO2014000136A1
WO2014000136A1 PCT/CN2012/001730 CN2012001730W WO2014000136A1 WO 2014000136 A1 WO2014000136 A1 WO 2014000136A1 CN 2012001730 W CN2012001730 W CN 2012001730W WO 2014000136 A1 WO2014000136 A1 WO 2014000136A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
switching power
power
supply chip
Prior art date
Application number
PCT/CN2012/001730
Other languages
English (en)
French (fr)
Inventor
秦兵
Original Assignee
宁波江北博泰电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波江北博泰电子科技有限公司 filed Critical 宁波江北博泰电子科技有限公司
Publication of WO2014000136A1 publication Critical patent/WO2014000136A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to a zero power consumption power saving socket circuit. Background technique
  • the power-saving socket can eliminate the standby power consumption of TVs, computers and other electrical equipment, and thus become the main product of green energy conservation. But now the power-saving sockets on the market, the power supply part of the internal circuit is using the RC method to provide
  • the general MCU main controller and relay Relay and other circuits consume power
  • the general MCU main controller consumes less than 3mW
  • the relay relay consumes less than 0.5W.
  • the circuit works in normal working state, and the circuit consumes The power is about 0.6W; when the relay relay is disconnected, the circuit works in the standby state, and the power consumed by the circuit will be less than 5mW.
  • the luF capacitor is used in the 120V/60Hz power supply. Because the power factor of the resistive capacitors C1 and R1 is low, it is about 0.1, so the active power is only about 0.5W. The power is 5.43W. The defect of the RC circuit is that the power consumption of the circuit is maintained at 5.43W as long as it is connected to the AC power supply. It does not reduce the power consumption as the Relay Relay is disconnected. The circuit is not energy efficient.
  • the specific calculation method is:
  • the capacitor of 0.47uF is used. Because the power factor of the resistive capacitors C1 and R1 is low, it is about 0.1, so the power test is only about 0.6W. The total power consumed is 7.14W.
  • the specific calculation method is:
  • the power-saving socket eliminates the standby power consumption of the external load such as the TV and the computer, but the power-saving socket still needs to be connected all the time.
  • the power supply, its own power consumption has not been reduced, so the power-saving socket of this circuit is not energy-saving.
  • the technical problem to be solved by the present invention is to provide a zero power consumption power saving socket circuit for the above prior art.
  • the technical solution adopted by the present invention to solve the above technical problem is: the zero-power power-saving socket circuit includes: an EMC circuit connected to the mains,
  • a relay connected to an external power load for turning the power supply of the power load on or off;
  • a main control unit connected to the relay for controlling opening and closing of the relay, a power input terminal of the main control unit and a DC of the rear stage The output terminals of the power circuit are connected;
  • the switching power supply circuit comprises:
  • the output of the EMC circuit is connected to one end of the current amplification and start-up circuit, and the other end of the current amplification and start-up circuit is connected to the first signal input end of the switching power supply chip.
  • the first end of the current feedback circuit is grounded, and the second end of the current feedback circuit is connected to the second signal input end of the power supply chip;
  • the first end of the voltage feedback circuit is connected to the primary auxiliary winding of the transformer, the primary auxiliary winding of the transformer is a transformer feedback voltage winding, and the second end of the voltage feedback circuit is connected to the third signal input end of the switching power supply chip;
  • the signal output end of the switching power supply chip is connected to the primary winding of the transformer in the downstream DC power supply circuit.
  • the current amplification and activation circuit includes a second resistor, a third resistor, and a fourth capacitor, wherein the first end of the second resistor is connected to the output end of the EMC circuit, and the second end and the third resistor of the second resistor are The first end of the third resistor is connected to the first pin of the switching power supply chip, and the first pin of the switching power supply chip is the first signal input end of the switching power supply chip, and the first of the fourth capacitor The terminal is connected to the first pin of the switching power supply chip, and the second end of the fourth capacitor is grounded.
  • the current feedback circuit includes a fifth resistor and a sixth capacitor, wherein the first end of the fifth resistor is connected to the fourth pin of the switching power supply chip, and the fourth pin of the switching power supply chip is the switching power supply chip.
  • the second signal input end, the second end of the fifth resistor is grounded; the first end of the sixth capacitor is connected to the fourth pin of the switching power supply chip, and the second end of the sixth capacitor is grounded.
  • the voltage feedback circuit includes a seventh capacitor, the second diode, wherein the anode of the second diode is connected to one input of the primary auxiliary winding of the transformer, and the other input of the primary auxiliary winding is grounded, the second The cathode of the pole tube is connected to the third pin of the switching power supply chip, and the third pin of the switching power supply chip is the third signal input end of the switching power supply chip, and the first end of the seventh capacitor and the third lead of the switching power supply chip The feet are connected, and the second end of the seventh capacitor Ground.
  • the zero-power saving socket circuit provided by the present invention further includes a current detecting circuit for detecting an operating current flowing through the external power load, and the current detecting circuit is also connected to the main control unit.
  • the invention has the advantages that: using a dedicated switching power supply chip, using the transformer feedback voltage winding and the internal current feedback circuit to realize automatic detection, timely determining whether the circuit is in a standby state or a normal working state, adjusting the switching power supply
  • the operating frequency of the chip makes the output power correspond to the working state; in the standby state, the entire circuit only needs to provide the weak standby power required by the main control unit (the operating voltage of the main control unit MCU is 5V, 200uA).
  • the output power will be less than 4mW, that is, the zero power specified in Article 4.5 of IEC 62301; in normal working condition, the pull-in power of the Relay Relay is about 0.4W, and the output power of the whole circuit will be kept at 0.5W to provide sufficient circuit. power supply.
  • FIG. 1 is a circuit schematic diagram of a zero power consumption power saving socket circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a resistor-capacitor step-down power supply circuit of a 120V/60HZ power supply in the prior art.
  • FIG. 3 is a schematic diagram of a resistor-capacitor step-down power supply circuit of a 220V/50HZ power supply in the prior art. detailed description
  • the zero-power power-saving socket circuit shown in FIG. 1 includes: an EMC circuit 1 connected to the mains;
  • a relay 4 connected to an external electric load for turning on or off the electric load power supply; a main control unit 5 connected to the relay 4 for controlling the opening and closing of the relay 4, and a power supply input of the main control unit 5 The end is connected to the output end of the DC power supply circuit 3 of the latter stage;
  • the above EMC circuit 1 employs a conventional circuit.
  • the above switching power supply circuit 2 includes:
  • Switching power supply chip 31 its model number is: PT108
  • the current amplification and start circuit 32, the output end of the EMC circuit 1 is connected to one end of the current amplification and start circuit 32, and the other end of the current amplification and start circuit 32 is connected to the first signal input end of the switching power supply chip 31, and the current feedback circuit 33
  • the first end of the current feedback circuit 33 is grounded, and the second end of the current feedback circuit 33 is opened.
  • the second signal input end of the power chip 31 is connected;
  • the voltage feedback circuit 34 the first end of the voltage feedback circuit 34 is connected to the primary auxiliary winding of the transformer B, the primary auxiliary winding of the transformer B is the transformer feedback voltage winding, the second end of the voltage feedback circuit 34 and the first of the switching power supply chip 31 Three signal inputs are connected;
  • the signal output terminal of the switching power supply chip 31 is connected to the primary winding of the transformer B in the rear stage DC power supply circuit 3.
  • the current amplifying and starting circuit 32 includes a second resistor R2, a third resistor R3, and a fourth capacitor C4.
  • the first end of the second resistor R2 is connected to the output end of the EMC circuit 1, and the second end of the second resistor R2 is connected.
  • Connected to the first end of the third resistor R3, the second end of the third resistor R3 is connected to the first pin of the switching power supply chip 31, and the first pin of the switching power supply chip 31 is the first signal of the switching power supply chip 31.
  • the first end of the fourth capacitor C4 is connected to the first pin of the switching power supply chip 31, and the second end of the fourth capacitor C4 is grounded.
  • the current feedback circuit 33 includes a fifth resistor R5 and a sixth capacitor C6.
  • the first end of the fifth resistor R5 is connected to the fourth pin of the switching power supply chip 31, and the fourth pin of the switching power supply chip 31 is a switch.
  • the second signal input end of the power chip 31, the second end of the fifth resistor R5 is grounded; the first end of the sixth capacitor C6 is connected to the fourth pin of the switching power supply chip 31, and the second end of the sixth capacitor C6 is grounded.
  • the voltage feedback circuit 34 includes a seventh capacitor C7, the second diode D2, wherein the anode of the second diode D2 is connected to one input of the primary auxiliary winding of the transformer B, and the other input of the primary auxiliary winding is grounded.
  • the cathode of the second diode D2 is connected to the third pin of the switching power supply chip 31, and the third pin of the switching power supply chip 31 is the third signal input end of the switching power supply chip 31, and the first of the seventh capacitor C7
  • the terminal is connected to the third pin of the switching power supply chip 31, and the second terminal of the seventh capacitor C7 is grounded.
  • the above-mentioned rear stage DC power supply circuit 3 adopts a conventional circuit
  • the main control unit 5 is an MCU.
  • the current detecting circuit 6 is also a conventional circuit.
  • the power chip operates in a typical flyback circuit topology and forms a compact and efficient AC/DC converter.
  • the startup circuit of the power chip is designed as a unique current sinking mode, which is activated by the amplification of the built-in power switch tube of the power chip 1 pin, which significantly reduces the power consumption of the resistor at startup;
  • the circuit can be quickly switched from the standby state to the normal working mode.
  • the relay When the MCU receives the work command, the relay is operated, and the instant energy consumption of the relay is provided by the DC capacitor of the rear-level DC power supply circuit 3, and the DC capacitor is fast. The discharge will be fed back to the power chip through the transformer.
  • the current feedback circuit 33 of the power chip will capture this weak current change (typically 50uA) and use its unique amplification characteristics to amplify and complete the power chip startup process.
  • the power chip quickly enters the normal working state (starting time is typically 75nS), the power chip operating frequency is increased, and the normal working power is output to maintain the energy consumption required for the relay to pull.
  • starting time is typically 75nS
  • the power chip operating frequency is increased
  • the normal working power is output to maintain the energy consumption required for the relay to pull.
  • the power consumed by the latter circuit is reduced, and the power is fed back to the power chip through the transformer winding.
  • the power chip passes through the internal feedback loop to reduce the operating frequency and reduce the output power, thereby achieving extremely low standby power. Consumption.

Abstract

一种零功耗节电插座电路包括:与市电连接的EMC电路(1),与EMC电路相连的开关电源电路(2),与开关电源电路相连的后级直流电源电路(3),与外部用电负载相连的、用于开启或关闭所述用电负载供电电源的继电器(4),以及与继电器相连的用于控制继电器开启与闭合的主控制单元(5)。主控制单元的供电输入端与后级直流电源电路的输出端相连。开关电源电路包括开关电源芯片(31)、电流放大与启动电路(32)、电流反馈电路(33)、以及电压反馈电路(34)。零功耗节电插座电路在待机状态时仅需要提供主控制单元所需的微弱待机功率。

Description

一种零功耗节电插座电路
技术领域
本发明涉及到一种零功耗节电插座电路。 背景技术
节电插座可以消除电视、 电脑等用电设备的待机功耗, 因而成为绿色节能的主力产 品。 但现在面市上的节电插座, 其内部电路的电源部分都采用阻容降压方式, 来提供
MCU主控制器和继电器 Relay等电路的工作消耗功率,一般 MCU主控制器消耗功率在 3mW以内, 继电器 Relay消耗功率在 0.5W以内; 继电器 Relay吸合时电路就工作在正 常工作状态, 电路所消耗的功率在 0.6W左右; 继电器 Relay断开时电路工作在待机状 态, 这时电路所消耗功率将小于 5mW。
如附图 2所示, 在 120V/60Hz的电源中, 采用 luF的电容, 因为阻容电路 Cl、 R1 的功率因数低, 为 0.1左右, 所以有功功率只有 0.5W左右, 实际计算得知消耗总功率 为 5.43W; 阻容降压电路的缺陷在于, 电路只要接入交流电源中, 其消耗功率就一直维 持在 5.43W, 不会随着继电器 Relay的断开, 而降低消耗功率, 所以阻容电路是不节能 的。 具体计算方式为:
Xc=l^f C)=l/(2*3.14*60Hz*luF*10A6)
=2.654K
Ic=U/Xc= 120V/2.654K=45.2mA
P=U*Ic=120V*45.2mA=5.43 W
在 220V/50Hz的电源中,参见附图 3所示,采用 0.47uF的电容,因为阻容电路 Cl、 R1的功率因数低, 为 0.1左右, 所以有功率测试只有 0.6W左右, 实际计算得知消耗总 功率为 7.14W。 具体计算方式为:
Xc=l/(2 π f C)=l/(2*3.14*50Hz*0.47uF*10A6
=6.784K
Ic=U/Xc=220V/6.78K=32.45mA
P=U*Ic=220V*32.45mA=7.14 W
因为节电插座需要全天候接入电源, 当电视、 电脑等用电设备进入待机状态后, 节 电插座虽然把电视、 电脑等外接负载的待机功耗消除了, 但节电插座仍需要全天候接入 电源, 其自身功耗并没有减少, 所以这种电路的节电插座并不节能。
按照 IEC 62301第 4.5条规定, 低于 5 mW的待机功率视为零功耗。 而目前市面上 还没有真正做到零功耗的节电插座。 发明内容
本发明所要解决的技术问题是针对上述现有技术提供一种零功耗节电插座电路。 本发明解决上述技术问题所采用的技术方案为: 该零功耗节电插座电路, 包括: 与市电连接的 EMC电路,
与 EMC电路相连的开关电源电路;
与开关电源电路相连的后级直流电源电路;
与外部用电负载相连的、 用于开启或关闭所述用电负载供电电源的继电器; 与继电器相连的用于控制继电器开启与闭合的主控制单元, 主控制单元的供电输入 端与后级直流电源电路的输出端相连;
其特征在于: 所述开关电源电路包括:
开关电源芯片;
电流放大与启动电路, EMC 电路的输出端与电流放大与启动电路的一端相连, 电 流放大与启动电路的另一端与开关电源芯片的第一信号输入端相连,
电流反馈电路, 电流反馈电路的第一端接地, 电流反馈电路的第二端与幵关电源芯 片的第二信号输入端相连;
电压反馈电路, 电压反馈电路的第一端与变压器的初级辅助绕组相连, 变压器的初 级辅助绕组即为变压器反馈电压绕组, 电压反馈电路的第二端与开关电源芯片的第三信 号输入端相连;
开关电源芯片的信号输出端与后级直流电源电路中变压器的初级绕组相连。
作为改进, 所述电流放大与启动电路包括第二电阻、 第三电阻、 第四电容, 其中第 二电阻的第一端与 EMC电路的输出端相连, 第二电阻的第二端与第三电阻的第一端相 连, 第三电阻的第二端与开关电源芯片的第 1引脚相连, 开关电源芯片的第 1引脚即为 开关电源芯片的第一信号输入端, 第四电容的第一端与开关电源芯片的第一引脚相连, 第四电容的第二端接地。
再改进, 所述电流反馈电路包括第五电阻、 第六电容, 其中第五电阻的第一端与开 关电源芯片的第 4引脚相连, 开关电源芯片的第 4引脚即为开关电源芯片的第二信号输 入端, 第五电阻的第二端接地; 第六电容的第一端与开关电源芯片的第 4引脚相连, 第 六电容的第二端接地。
再改进, 电压反馈电路包括第七电容, 第二二极管, 其中第二二极管的阳极与变压 器的初级辅助绕组的一输入端相连, 初级辅助绕组的另一输入端接地, 第二二极管的阴 极与开关电源芯片的第 3引脚相连, 开关电源芯片的第 3引脚即为开关电源芯片的第三 信号输入端, 第七电容的第一端与开关电源芯片的第 3引脚相连, 第七电容的第二端接 地。
作为改进, 本发明提供的零功耗节电插座电路, 还包括用于检测流过外部用电负载 的工作电流的电流检测电路, 该电流检测电路也与所述主控制单元相连。
与现有技术相比, 本发明的优点在于: 采用专用的开关电源芯片, 利用变压器反馈 电压绕组和内部电流反馈电路实现自动侦测,适时判断电路在待机状态或还是正常工作 状态, 调整开关电源芯片的工作频率, 使输出功率与工作状态对应; 在待机状态时, 整 个电路仅需要提供主控制单元所需的微弱待机功率 (一般主控制单元 MCU的工作电压 为 5V, 200uA)这时整个电路输出功率将小于 4mW, 即满足 IEC 62301第 4.5条规定的 零功率; 在正常工作状态时, 继电器 Relay的吸合功率为 0.4W左右, 整个电路输出功 率将保持在 0.5W, 以提供电路足够的电源供应。 附图说明
图 1为本发明实施例中零功耗节电插座电路的电路原理图。
图 2为现有技术中 120V/60HZ电源的阻容降压电源电路原理图。
图 3为现有技术中 220V/50HZ电源的阻容降压电源电路原理图。 具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图 1所示的零功耗节电插座电路, 其包括- 与市电连接的 EMC电路 1 ;
与 EMC电路 1相连的开关电源电路 2;
与开关电源电路 2相连的后级直流电源电路 3;
与外部用电负载相连的、 用于开启或关闭所述用电负载供电电源的继电器 4; 与继电器 4相连的用于控制继电器 4开启与闭合的主控制单元 5, 主控制单元 5的 供电输入端与后级直流电源电路 3的输出端相连;
用于检测流过外部用电负载的工作电流的电流检测电路 6, 该电流检测电路 6也与 所述主控制单元 5相连。
上述 EMC电路 1采用常规电路。
上述开关电源电路 2包括:
开关电源芯片 31, 其型号为: PT108
电流放大与启动电路 32, EMC电路 1的输出端与电流放大与启动电路 32的一端相 连, 电流放大与启动电路 32的另一端与开关电源芯片 31的第一信号输入端相连, 电流反馈电路 33, 电流反馈电路 33的第一端接地, 电流反馈电路 33的第二端与开 关电源芯片 31的第二信号输入端相连;
电压反馈电路 34, 电压反馈电路 34的第一端与变压器 B的初级辅助绕组相连, 变 压器 B的初级辅助绕组即为变压器反馈电压绕组, 电压反馈电路 34的第二端与开关电 源芯片 31的第三信号输入端相连;
开关电源芯片 31的信号输出端与后级直流电源电路 3中变压器 B的初级绕组相连。 所述电流放大与启动电路 32包括第二电阻 R2、 第三电阻 R3、 第四电容 C4, 其中 第二电阻 R2的第一端与 EMC电路 1的输出端相连,第二电阻 R2的第二端与第三电阻 R3的第一端相连, 第三电阻 R3的第二端与开关电源芯片 31的第 1引脚相连, 开关电 源芯片 31的第 1引脚即为开关电源芯片 31的第一信号输入端, 第四电容 C4的第一端 与开关电源芯片 31的第一引脚相连, 第四电容 C4的第二端接地。
所述电流反馈电路 33包括第五电阻 R5、 第六电容 C6, 其中第五电阻 R5的第一端 与开关电源芯片 31的第 4引脚相连,开关电源芯片 31的第 4引脚即为开关电源芯片 31 的第二信号输入端, 第五电阻 R5的第二端接地; 第六电容 C6的第一端与开关电源芯 片 31的第 4引脚相连, 第六电容 C6的第二端接地。
所述电压反馈电路 34包括第七电容 C7, 第二二极管 D2, 其中第二二极管 D2的阳 极与变压器 B的初级辅助绕组的一输入端相连,初级辅助绕组的另一输入端接地,第二 二极管 D2的阴极与开关电源芯片 31的第 3引脚相连, 开关电源芯片 31的第 3引脚即 为开关电源芯片 31的第三信号输入端, 第七电容 C7的第一端与开关电源芯片 31的第 3引脚相连, 第七电容 C7的第二端接地。
上述后级直流电源电路 3采用常规电路;
主控制单元 5为 MCU。
电流检测电路 6也为常规电路。
电源芯片工作于典型的反激电路拓扑中, 构成简洁髙效的 AC/DC转换器。 电源芯 片的启动电路被设计成一种独特的电流吸入方式,利用电源芯片①脚内置功率开关管本 身的放大作用完成启动, 这显著地降低了启动时电阻的功率消耗; 同时利用启动时的放 大原理, 可实现电路从待机状态到正常工作状^的快速切换, 当 MCU在接收到工作指 令后, 使 Relay工作, Relay开启瞬间能耗由后级直流电源电路 3的直流电容提供, 直 流电容的快速放电将通过变压器反馈给电源芯片, 电源芯片的电流反馈电路 33,将扑捉 到这微弱的电流变化 (典型值为 50uA),并利用其独特的放大特性进行放大处理并完成电 源芯片的启动过程, 使电源芯片迅速进入正常工作状态 (启动时间典型值为 75nS), 使电 源芯片工作频率提高,输出正常的工作功率来维持 Relay吸合所需的能耗。反之,当 Relay 断开后, 后级电路消耗的功率减少, 将通过变压器绕组反馈给电源芯片, 电源芯片经过 内部反馈回路, 降低工作频率, 使输出功率减小, 从而实现了极低的待机功耗。

Claims

权 利 要 求
1、 一种零功耗节电插座电路, 包括:
与市电连接的 EMC电路 (1),
与 EMC电路 (1)相连的开关电源电路 (2);
与开关电源电路 (2)相连的后级直流电源电路 (3);
与外部用电负载相连的、 用于开启或关闭所述用电负载供电电源的继电器 (4);
与继电器 (4)相连的用于控制继电器 (4)开启与闭合的主控制单元 (5), 主控制单元 (5) 的供电输入端与后级直流电源电路 (3)的输出端相连;
其特征在于: 所述开关电源电路 (2)包括:
开关电源芯片 (31);
电流放大与启动电路 (32), EMC电路 (1)的输出端与电流放大与启动电路 (32)的一端 相连, 电流放大与启动电路 (32)的另一端与开关电源芯片 (31)的第一信号输入端相连, 电流反馈电路 (33), 电流反馈电路 (33)的第一端接地, 电流反馈电路 (33)的第二端与 开关电源芯片 (31)的第二信号输入端相连;
电压反馈电路 (34), 电压反馈电路 (34)的第一端与变压器的初级辅助绕组相连, 变 压器的初级辅助绕组即为变压器反馈电压绕组, 电压反馈电路 (34)的第二端与开关电源 芯片 (31)的第三信号输入端相连;
开关电源芯片 (31)的信号输出端与变压器的初级绕组相连。
2、 根据权利要求 1 所述的零功耗节电插座电路, 其特征在于: 所述电流放大与启 动电路 (32)包括第二电阻 (R2)、 第三电阻 (R3)、 第四电容 (C4), 其中第二电阻 (R2)的第一 端与 EMC电路 (1)的输出端相连,第二电阻 (R2)的第二端与第三电阻 (R3)的第一端相连, 第三电阻 (R3)的第二端与开关电源芯片 (31)的第 1引脚相连,开关电源芯片 (31)的第 1引 脚即为开关电源芯片 (31)的第一信号输入端,第四电容 (C4)的第一端与开关电源芯片 (31) 的第一引脚相连, 第四电容 (C4)的第二端接地。
3、 根据权利要求 1 所述的零功耗节电插座电路, 其特征在于: 所述电流反馈电路
(33)包括第五电阻 (R5)、 第六电容 (C6), 其中第五电阻 (R5)的第一端与开关电源芯片 (31) 的第 4引脚相连, 开关电源芯片 (31)的第 4引脚即为开关电源芯片 (31)的第二信号输入 端, 第五电阻 (R5)的第二端接地; 第六电容 (C6)的第一端与开关电源芯片 (31)的第 4 引 脚相连, 第六电容 (C6)的第二端接地。
4、 根据权利要求 1所述的零功耗节电插座电路, 其特征在于: 所述电压反馈电路
(34)包括第七电容 (C7), 第二二极管 (D2), 其中第二二极管 (D2)的阳极与变压器 (B)的初 级辅助绕组的一输入端相连, 初级辅助绕组的另一输入端接地, 第二二极管 (D2)的阴极 与开关电源芯片 (31)的第 3引脚相连,开关电源芯片 (31)的第 3引脚即为开关电源芯片 (31) 的第三信号输入端, 第七电容 (C7)的第一端与开关电源芯片 (31)的第 3 引脚相连, 第七 电容 (C7)的第二端接地。
5、 根据权利要求 1或 2或 3或 4所述的零功耗节电插座电路, 其特征在于: 还包 括用于检测流过外部用电负载的工作电流的电流检测电路 (6), 该电流检测电路 (6)也与 所述主控制单元 (5)相连。
PCT/CN2012/001730 2012-06-28 2012-12-26 一种零功耗节电插座电路 WO2014000136A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210224218.6 2012-06-28
CN2012102242186A CN102723882A (zh) 2012-06-28 2012-06-28 一种零功耗节电插座电路

Publications (1)

Publication Number Publication Date
WO2014000136A1 true WO2014000136A1 (zh) 2014-01-03

Family

ID=46949570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001730 WO2014000136A1 (zh) 2012-06-28 2012-12-26 一种零功耗节电插座电路

Country Status (2)

Country Link
CN (1) CN102723882A (zh)
WO (1) WO2014000136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981784A (zh) * 2017-04-06 2017-07-25 六安市同心畅能电子科技有限公司 一种节能型零功耗待机电脑插座电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723882A (zh) * 2012-06-28 2012-10-10 宁波江北博泰电子科技有限公司 一种零功耗节电插座电路
CN103199710A (zh) * 2013-04-01 2013-07-10 上海师范大学 一种待机低功耗的开关电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174090Y (zh) * 2008-04-14 2008-12-31 汤正才 笔记型计算机的供电适配器
US20110302433A1 (en) * 2010-06-04 2011-12-08 Prodigit Electronics Co., Ltd. Control circuit of power-saving socket
CN202210602U (zh) * 2011-09-22 2012-05-02 黄长生 一种遥控排插座
CN102723882A (zh) * 2012-06-28 2012-10-10 宁波江北博泰电子科技有限公司 一种零功耗节电插座电路
CN202652089U (zh) * 2012-06-28 2013-01-02 宁波江北博泰电子科技有限公司 一种零功耗节电插座电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100036464A (ko) * 2008-09-30 2010-04-08 주식회사 두원 대기 전력을 최소화한 절전형 멀티콘센트 및 그 구동 방법
CN202142728U (zh) * 2011-06-16 2012-02-08 孙少珍 一种利于外接负载在待机或关机时实现零功耗的节能插座

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174090Y (zh) * 2008-04-14 2008-12-31 汤正才 笔记型计算机的供电适配器
US20110302433A1 (en) * 2010-06-04 2011-12-08 Prodigit Electronics Co., Ltd. Control circuit of power-saving socket
CN202210602U (zh) * 2011-09-22 2012-05-02 黄长生 一种遥控排插座
CN102723882A (zh) * 2012-06-28 2012-10-10 宁波江北博泰电子科技有限公司 一种零功耗节电插座电路
CN202652089U (zh) * 2012-06-28 2013-01-02 宁波江北博泰电子科技有限公司 一种零功耗节电插座电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981784A (zh) * 2017-04-06 2017-07-25 六安市同心畅能电子科技有限公司 一种节能型零功耗待机电脑插座电路
CN106981784B (zh) * 2017-04-06 2023-04-28 六安市同心畅能电子科技有限公司 一种节能型零功耗待机电脑插座电路

Also Published As

Publication number Publication date
CN102723882A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
US8687392B2 (en) Power converter with automatic mode switching
TWI497275B (zh) 具有低功率消耗突衝待命操作的電源供應器
CN103078478B (zh) 一种开关电源控制器及开关电源
TW201435573A (zh) 電子裝置
CN201499095U (zh) 于无载状态降低电力消耗的电源供应器
CN102880280A (zh) 一种显示终端
CN103677034A (zh) 家用电器的待机电路及待机控制方法
WO2014000136A1 (zh) 一种零功耗节电插座电路
CN101635513B (zh) 一种待机电路
CN201142006Y (zh) 待命模式的电源变动唤醒装置
WO2022142201A1 (zh) 空调室外机控制电路、电控组件及空调器
CN201556975U (zh) 一种智能安全节能的待机自动断电装置
TWM450891U (zh) 節能供電裝置
CN207955365U (zh) 一种充电桩及其充电模块
TWI746117B (zh) 可節能之電源供應器和相關電子系統
TWI553461B (zh) 電源供應系統及其電源控制電路
CN202257139U (zh) 无待机功耗的智能咖啡机电路
WO2014173061A1 (zh) 一种太阳能待机供电装置
TW201128382A (en) Power apparatus
TWI704755B (zh) 電源供應裝置及其操作方法
CN207601560U (zh) 一种家电控制器
CN104137023A (zh) 电源供应器及其控制电路与省电方法
CN102349801B (zh) 无待机功耗的智能咖啡机电路
TW583400B (en) DC/DC converter burn-in testing method and system using an active feedback load
TW202118210A (zh) 能夠降低輸出電容維持時間之電源供應器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879941

Country of ref document: EP

Kind code of ref document: A1