WO2013191412A1 - Complex three-dimensional multi-layer structure and manufacturing method thereof - Google Patents

Complex three-dimensional multi-layer structure and manufacturing method thereof Download PDF

Info

Publication number
WO2013191412A1
WO2013191412A1 PCT/KR2013/005213 KR2013005213W WO2013191412A1 WO 2013191412 A1 WO2013191412 A1 WO 2013191412A1 KR 2013005213 W KR2013005213 W KR 2013005213W WO 2013191412 A1 WO2013191412 A1 WO 2013191412A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
mold
parallel
resin
mask
Prior art date
Application number
PCT/KR2013/005213
Other languages
French (fr)
Korean (ko)
Inventor
임한얼
최세진
김태완
백승준
Original Assignee
주식회사 미뉴타텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120096320A external-priority patent/KR101370426B1/en
Application filed by 주식회사 미뉴타텍 filed Critical 주식회사 미뉴타텍
Priority to CN201380032269.1A priority Critical patent/CN104428703B/en
Priority to JP2015518326A priority patent/JP6567969B2/en
Priority to US14/410,266 priority patent/US9958581B2/en
Publication of WO2013191412A1 publication Critical patent/WO2013191412A1/en
Priority to US15/880,887 priority patent/US10962692B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0263Diffusing elements; Afocal elements characterised by the diffusing properties with positional variation of the diffusing properties, e.g. gradient or patterned diffuser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Definitions

  • the present invention relates to a three-dimensional complex multilayer structure, and more particularly, to a three-dimensional complex multilayer structure having a complex shape that can be utilized in various fields such as optics, metrology, and integrated circuits and other micro devices and It is about how it can be.
  • micro / nano sized structures with complex three-dimensional shapes include not only optical components but also next-generation three-dimensional semiconductors, next-generation displays (TFT backplanes, flexible TFTs, transparent displays, etc.), dry adhesion using micro-ciliary structures, micro / nano piezoelectric elements, lighting, and biocell / virus research using micropatterns. This is because it can be used in various fields.
  • Such flat panel displays include Liquid Crystal Display (LCD), Field Emission Display (FED), Plasma Display Panel (PDP) and Electro-Luminescence (EL) display.
  • LCD Liquid Crystal Display
  • FED Field Emission Display
  • PDP Plasma Display Panel
  • EL Electro-Luminescence
  • the flat panel display apparatus has been actively researched to improve the display quality and to make a large screen.
  • the liquid crystal display (LCD) of the flat panel display device has a number of advantages, such as small size / light weight and low power consumption is increasingly used.
  • the liquid crystal display is a non-light emitting display that displays information by using the electrical / optical properties of the liquid crystal injected into the liquid crystal display panel and expresses an image by using a light source such as a lamp. That is, unlike a cathode ray tube, a liquid crystal display device is a liquid crystal material injected between a TFT substrate and a color filter substrate, not a light emitting material that emits light, but a light receiving material that controls the amount of light coming from the outside and displays it on the screen. A separate device, ie, a backlight assembly, for irradiating light to the display panel is necessary.
  • the backlight assembly includes a mold frame in which a storage space is formed, a reflection sheet installed on a base surface of the storage space to reflect light toward the liquid crystal display panel, a light guide plate or diffuser plate installed on the reflective surface to guide light, a light guide plate and a storage space.
  • a lamp unit disposed between sidewalls or at the bottom of the lamp unit to emit light, optical sheets stacked on an upper surface of the light guide plate to diffuse and collect light, and installed on an upper part of the mold frame, It consists of a top chassis covering an area leading to the side.
  • the light guide plate or the diffuser plate has a disadvantage in that the emission angle or the front luminance is very low, and the optical sheet must be placed thereon.
  • the optical sheets may include a diffusion sheet for diffusing light, a prism sheet for condensing the diffused light stacked on the upper surface of the diffusion sheet and transferring the light to a liquid crystal display panel, and a protective sheet for protecting the diffusion sheet and the prism sheet. It consists of.
  • the number of optical sheets used in the display device is large and expensive, reducing the number of optical sheets has become a major technical issue.
  • the one optical sheet has both the functions of the diffusion sheet and the prism sheet, and its performance is large. It should be no less than when using an optical sheet.
  • the one optical sheet should not deteriorate the image quality on the display panel obtained when a plurality of optical sheets are used.
  • Korean Patent Laid-Open Publication No. 10-2009-0073532 and Korean Patent Publication No. 10-2011-0017194 disclose a composite optical sheet having different patterns formed on its upper and lower surfaces.
  • a light diffusing layer including a prism pattern or a plurality of lenses on an upper surface of the transparent film and diffusion beads on a lower surface of the transparent film facing the light source, or forming a plurality of layers having different refractive indices, or including air bubbles Techniques for forming the same have been proposed.
  • the multifunctional optical sheet developed according to the above-described conventional techniques does not sufficiently satisfy image quality conditions such as luminance, contrast ratio, etc. which can be achieved by a plurality of conventional optical sheets. Accordingly, there is a need for the development of an optical sheet having a complex function capable of satisfying image quality conditions such as brightness and contrast ratio requirements on a display screen, which can replace a plurality of optical sheets used in a display device.
  • the light guide plate serves as one or more optical sheets, or a light collecting sheet or a light collecting plate in a photovoltaic device is also required for an optical sheet that can perform such a complex function. Can be solved.
  • the present invention is a complex shape that can be used in a variety of fields, such as next generation three-dimensional semiconductor, next-generation display, optical components, dry adhesion using micro-ciliary structure, micro / nano piezoelectric element, lighting equipment, bio-cell / virus research using micropattern It is an object to provide a three-dimensional complex multilayer structure having.
  • Another object of the present invention is to provide a method of manufacturing the three-dimensional complex multilayer structure.
  • First and second patterns having different thicknesses are formed on one or both surfaces of the plate.
  • the first pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other,
  • the second pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other,
  • the boundary between the first pattern and the second pattern is a figure selected from the group consisting of polygons, circles, ellipses, and combinations thereof.
  • the figure provides a three-dimensional complex multilayer structure characterized in that it is repeatedly formed on one side or both sides of the plate.
  • the parallel direction of the first pattern and the parallel direction of the second pattern may be perpendicular to each other.
  • the three-dimensional complex multilayer structure of the present invention may have a third pattern to form the first pattern and the second pattern spaced apart by a predetermined height.
  • first pattern and the second pattern may be formed of a thermosetting resin or an active energy ray curable resin.
  • a cross section perpendicular to the parallel direction of the first pattern and the second pattern forms a waveform, and a pair of valleys adjacent to each other and a floor between them are triangular vertices and arches, respectively, among the waveforms formed by the cross section.
  • One end of the string and one of the arcs of the chord, both the end of the chord of the elliptic chord and one of the elliptical arcs, or the floor of the triangle may be rounded off.
  • the included angle (narrow angle) of the floor is 30 To 150 °.
  • the height from the valley to the floor of the waveform formed by the cross section may be 1 to 500 ⁇ m.
  • the three-dimensional complex multilayer structure may have a refractive index of 1.3 to 1.9.
  • the diameter, the long diameter or the length of one side of the repeated figure may be 1 to 5000 ⁇ m.
  • the present invention also provides an optical component, a semiconductor device, a piezoelectric device or a biosensor using the three-dimensional complex multilayer structure.
  • the optical component may be an optical sheet, a light guide plate of an edge type liquid crystal display device, a diffusion plate of a direct type liquid crystal display device, or a light collecting plate of a photovoltaic device.
  • a mask in which a polygon, a circle, an ellipse or a combination thereof is repeatedly formed on one surface of the first support, or a polygon, a circle, an ellipse or a combination thereof is repeatedly perforated;
  • a second layer formed on a portion of the pattern layer having a second pattern formed on the surface opposite to the surface facing the first support and the mask, or the one surface of the first support on which the mask is formed.
  • the second pattern may be selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other.
  • the first pattern and the second pattern is formed to be spaced apart by a predetermined height It can be made to adhere so much that a 3 pattern can be provided.
  • the second mold is formed around the resin for the second mold so that the parallel direction of the second pattern is orthogonal to the parallel direction of the first pattern. 2
  • the base mold and the mask mold can be in close contact.
  • a cross section perpendicular to the parallel direction of the first pattern and the second pattern forms a waveform, and a pair of valleys adjacent to each other and a floor between them are triangular vertices and arches, respectively, among the waveforms formed by the cross section.
  • One end of the string and one of the arcs of the chord, both the end of the chord of the elliptic chord and one of the elliptical arcs, or the floor of the triangle may be rounded off.
  • the three-dimensional complex multilayer structure having the first pattern and the second pattern may be formed on only one surface of the substrate, or may be formed on both surfaces.
  • first pattern may be thicker than the second pattern, or the second pattern may be thicker than the first pattern.
  • the mask mold is a flexible or rigid plate-like first support for transmitting the active energy ray
  • the mask is characterized in that it does not transmit the active energy ray.
  • the mask mold is a flexible or rigid plate-like first support for transmitting the active energy ray
  • the mask is characterized in that it does not transmit the active energy ray.
  • first support and the mask may further include an adhesion-activating layer between the pattern layer.
  • the pattern layer, pattern or adhesion active layer may be cured by active energy rays or heat.
  • first pattern and the second pattern may be a pattern selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines and combinations thereof that do not meet each other.
  • the mask may be printed colored coating or deposited opaque metal.
  • the colored coating is characterized in that it does not transmit the active energy ray.
  • the colored coating is characterized in that it does not transmit the active energy ray.
  • the colored coating may be printed such that a polygon, a circle, an ellipse or a combination thereof is repeatedly printed, or a polygon, a circle, an ellipse or a combination thereof is repeatedly printed.
  • the opaque metal is characterized in that it does not transmit the active energy ray.
  • the opaque metal is characterized in that it does not transmit the active energy ray.
  • the opaque metal may be deposited such that a polygon, a circle, an ellipse, or a combination thereof is repeatedly deposited, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly drilled.
  • the mask mold of the present invention is characterized in that it is manufactured by the manufacturing method.
  • the three-dimensional complex multilayer structure according to the present invention is different from the conventional device formed with only one simple pattern, and different patterns are formed in a complex, and can be manufactured by a simple process, and thus display optical components (light guide plates, diffuser plates, prisms, Color filter), next-generation display process (TFT, OTFT, Oxide TFT, flexible display, transparent display), next-generation three-dimensional semiconductor, dry adhesion using micro fine structure, micro / nano piezoelectric element, lighting optical parts, bio cell using fine pattern It may be usefully used for virus research, but is not limited thereto.
  • display optical components light guide plates, diffuser plates, prisms, Color filter
  • next-generation display process TFT, OTFT, Oxide TFT, flexible display, transparent display
  • next-generation three-dimensional semiconductor dry adhesion using micro fine structure, micro / nano piezoelectric element, lighting optical parts, bio cell using fine pattern It may be usefully used for virus research, but is not limited thereto.
  • the three-dimensional complex multilayer structure of the present invention when used in an optical component, it is not necessary to separately provide a plurality of optical sheets as in the prior art, thereby improving economic efficiency and reducing thickness.
  • the optical part when the optical part is a light guide plate, a sufficient light converging effect is expressed even without a separate light collecting sheet.
  • the light guide plate and the diffusion sheet could realize front luminance greater than that of the conventional optical component.
  • the manufacturing process of the optical component is simplified, thereby improving the stability and economical efficiency of the process.
  • the fine multilayered ciliary structure has an effective elastic modulus characteristic that the elastic modulus is lower than that of the same material due to its structural features. Due to these characteristics, the van der Waals force is used to have strong adhesion to various deposits.
  • these techniques require more than one process each time to produce a single layer of ciliary structure, and the process is also very complicated or sensitive to the surrounding environment, which does not significantly affect the mass production for mass production.
  • the three-dimensional complex multilayer structure manufacturing method of the present invention it is possible to manufacture a multi-layer fine cilia structure of two or more layers in one process, and it is possible to manufacture significantly simpler than the prior art.
  • the present invention can be used repeatedly, a pattern of four or more layers is also possible.
  • Existing imprint infrastructure can be used in production, which allows the mass production.
  • FIG. 1 is a perspective view of an embodiment of the present invention in which the first pattern is a prism pattern and the second pattern is a prism pattern orthogonal to the parallel direction of the first pattern.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • FIG 3 is a plan view of an embodiment of the present invention in which a first pattern of parallel curves and a second pattern of parallel curves orthogonal to the parallel direction of the first pattern are combined.
  • FIG. 4 is a plan view of an embodiment of the present invention in which a first pattern of parallel curves and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined.
  • FIG. 5 is a plan view of an embodiment of the present invention in which a first pattern of parallel zigzag lines and a second pattern of parallel zigzag lines orthogonal to the parallel direction of the first pattern are combined.
  • FIG. 6 is a plan view of an embodiment of the present invention in which a first pattern of parallel zigzag lines and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined.
  • FIG. 7 is a plan view of an embodiment of the present invention in which a first pattern of parallel curves and a parallel zigzag line orthogonal to the parallel direction of the first pattern and a second pattern of parallel lines are combined.
  • FIG. 8 is a cross-sectional view of an embodiment of the present invention in which a pair of valleys adjacent to each other among the waveforms formed by the cross section of the pattern and the floor between them are three vertices of a triangle.
  • FIG. 9 is a cross-sectional view of an embodiment of the present invention with the floor rounded in FIG. 8.
  • FIG. 10 is a cross-sectional view of an embodiment of the present invention in which a pair of valleys adjacent to each other among the waveforms formed by the cross section of the pattern are both end points of the bow string and the floor between them is one of the arcs of the bow.
  • FIG. 11 is a cross-sectional view of an embodiment of the present invention in which a pair of adjacent bones among the waveforms formed by the cross section of the pattern are both end points of the elliptic bow string and the floor between them is one of the elliptical arcs of the elliptical bow.
  • 12 and 13 are conceptual views illustrating a manufacturing process of a mask mold used for manufacturing a three-dimensional complex multilayer structure of the present invention.
  • 14 and 15 are conceptual views illustrating one embodiment of a method for manufacturing a three-dimensional complex multilayer structure of the present invention as a master.
  • 16 is a conceptual diagram illustrating an embodiment of a method for manufacturing a three-dimensional complex multilayer structure of the present invention from a master.
  • FIG. 17 is a photograph of an embodiment of the present invention in which a first pattern is a prism pattern and a second pattern is a prism pattern orthogonal to the parallel direction of the first pattern.
  • FIG. 18 is a partially enlarged photograph of FIG. 17.
  • FIG. 19 to 22 are view angle analysis diagrams in the case of using a diffusion plate (FIG. 20), a first light collecting sheet (FIG. 21) and a second light collecting sheet (FIG. 22) in a conventional light guide plate (FIG. 19).
  • FIG. 23 and 24 are view angle analysis diagrams when the three-dimensional complex multilayer structure according to the present invention is used as a light guide plate (FIG. 23) and a diffusion plate (FIG. 24) is used.
  • 25 is a view angle analysis diagram when a diffusion plate is used in a conventional light guide plate.
  • FIG. 26 is a view angle analysis diagram when a diffusion plate, a first light collecting sheet, and a second light collecting sheet are used in a conventional light guide plate.
  • FIG. 27 is a view angle analysis diagram when a diffusion plate and a three-dimensional complex multilayer structure of the present invention are used as an optical sheet in a conventional light guide plate.
  • structures having different shapes of patterns according to heights from a substrate are regarded as one layer, and thus, a structure including all of them is referred to as a multilayer.
  • the predetermined height T may be expressed by the thickness or the third pattern of the second pattern. This is because when the height of the second pattern and the third pattern is large, the function of each structure exists.
  • the height T of the third pattern may be equal to or smaller than the height H1 of the first pattern (T ⁇ H1) and may be equal to or smaller than the height H2 of the second pattern (T ⁇ H2). ).
  • the height T of the third pattern when the height T of the third pattern is close to 0, for example, as shown in the pattern of FIG. 18, it may be regarded as a case where the second pattern is directly raised over the first pattern.
  • the second type is when the height of the third pattern is greater than the height of the first pattern and the second pattern (T> H1, T> H2).
  • the overall height of the pattern is an important factor in the effective elastic modulus, but if T is much larger (H2 ⁇ H1 ⁇ T) like the third type, then the overall height (H1 + T + H2) is determined by T.
  • Three patterns will perform a structural (or optical) function.
  • a composite optical component using a three-dimensional complex multilayer structure of the present invention is an optical member that collects light in two directions perpendicular to the composite optical component, and is a light guide plate or a direct type in an optical sheet or an edge type LCD.
  • a light guide plate or a direct type in an optical sheet or an edge type LCD In the field of diffusers in LCDs and photovoltaic devices, it refers to light collecting sheets or panels.
  • the active energy ray refers to both a particle beam and an electromagnetic wave having an energy enough to cure a predetermined resin, and include ultraviolet rays, lasers, microwaves, electron beams, X-rays, and the like. .
  • the three-dimensional complex multilayer structure of the present invention is formed with a first pattern and a second pattern having different thicknesses, or a first pattern, a second pattern, and a third pattern on one surface of a plate.
  • the first pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, wherein the second pattern is not parallel to the first pattern, and parallel lines, parallel curves, and parallels do not meet each other.
  • a zigzag line and a combination thereof, and the boundary between the first pattern and the second pattern is a figure selected from the group consisting of polygons, circles, ellipses, and combinations thereof, and the figure is repeatedly formed on one surface of the plate. The most important feature.
  • various functions for example, when used as optical parts, can perform the functions of several optical parts as one optical part.
  • the optical sheet using the three-dimensional complex multilayer structure of the present invention may have the effect of condensing in two directions.
  • the first pattern is a prism pattern and the second pattern is a diffusion pattern, the functions of the light collecting sheet and the diffusion sheet may be simultaneously performed.
  • the three-dimensional complex multilayer structure of the present invention wherein the parallel direction (direction 2 in FIG. 2) of a series of lines selected from the group consisting of parallel zigzag lines and combinations thereof and not parallel to the first pattern is orthogonal to each other, is focused in a direction perpendicular to each other.
  • the luminance can be maximized when used as an optical component.
  • first pattern and the second pattern are prismatic patterns, and are orthogonal to each other, and the thickness of the second pattern is greater than the thickness of the first pattern, that is, the third pattern.
  • the boundary between the first pattern and the second pattern forms a rectangle. If a three-dimensional complex multilayer structure in which such a pattern is formed is used as a light guide plate or a diffusion plate, sufficient front luminance can be achieved without a separate light collecting sheet. If such a pattern is formed on an optical sheet, the light collecting effect of two conventional optical sheets is performed. Can be implemented as a single optical sheet.
  • the length of one side of the quadrangle that forms the boundary between the first pattern and the second pattern is preferably 1 to 5000 ⁇ m. If it is less than the above range, the pattern is difficult to form and the mold itself becomes too difficult to manufacture. In the case of using the three-dimensional complex multilayer structure of the present invention as an optical component, if the above range is exceeded, it can be visually identified to realize a uniform brightness, and as a result, it cannot be used as a display device, but is not particularly limited in other applications. Do not.
  • the three-dimensional complex multilayer structure of the present invention may have not only parallel lines orthogonal to each other, but also parallel and parallel zigzag lines, and the boundary between the first pattern and the second pattern may be polygons, circles, or ellipses in addition to quadrangles. Combination of is also possible.
  • FIG. 3 shows an example in which a first pattern of parallel curves and a second pattern of parallel curves orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a quadrangle.
  • FIG. 4 is an example in which a first pattern of parallel curves and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a quadrangle.
  • FIG. 5 shows an example in which a first pattern of parallel zigzag lines and a second pattern of parallel zigzag lines orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a circle.
  • FIG. 6 shows an example in which a first pattern of parallel zig-zag lines and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a circle.
  • FIG. 7 shows an example in which a first pattern of parallel curves and a parallel zigzag line and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined, and the boundaries thereof are circles and squares.
  • the first pattern and the second pattern of the present invention is a microstructure implemented from a thermosetting resin or an active energy ray curable resin.
  • Active energy ray hardening resin refers to resin in which hardening is performed by active energy ray.
  • Conventional curing of the resin was mainly performed by heat, but thermal curing is caused by the volume shrinkage due to thermal expansion caused by the temperature difference between the maximum heating temperature and the normal temperature during cooling, and the volume shrinkage due to the curing reaction itself. It is also difficult to obtain sophisticated dimensions.
  • the thermal residual stress generated by the thermosetting process shortens the life of the part, requires a lot of thermal energy in the curing process, has a limitation in the size of the molded article, and has a long time for curing.
  • the hardening process by the active energy ray does not cause the problems of the thermal curing process (cracking, low precision, thermal residual stress, etc.), significantly less energy and time consumption, and is not limited by the size of the molded article. There is an advantage.
  • the cross section perpendicular to the parallel direction of the first pattern and the second pattern forms a waveform, and a pair of valleys adjacent to each other and the floor between them are triangular vertices and arches, respectively, among the waveforms formed by the cross section.
  • One end of the string and one of the arcs of the chord, both the end of the chord of the elliptic chord and one of the elliptical arcs, or the floor of the triangle may be rounded off.
  • FIG. 8 is an embodiment of a first pattern or a second pattern of the present invention in the three-dimensional complex multilayer structure in which the pair of valleys adjacent to each other among the waveforms formed by the cross section and the floor between them are three vertices of a triangle.
  • the third pattern may be formed to a thickness T.
  • the use of the structure of the present invention having such a pattern as a prism sheet exhibits a simultaneous light collection effect in two different directions.
  • the included angle (narrow angle) of the floor that is, the angle A in FIG. 8 is preferably 30 to 150 °, but if it is less than the above range, light cannot totally pass through, and mold processing is difficult, This sharp and brittle is inferior in handleability.
  • it exceeds 150 ° it is closer to the plane than the prism, so that the condensing effect is reduced, and as a result, the brightness decreases as the light spreads.
  • FIG. 9 is a first or second pattern of the three-dimensional complex multilayer structure of the present invention in which a pair of valleys adjacent to each other among the waveforms formed by the cross section are both end points of the bow string and the floor therebetween is one point of the arc of the bow. Is one embodiment.
  • a three-dimensional complex multilayer structure having such a pattern is used as a diffusion sheet, light can be diffused to widen the viewing angle and make the luminance uniform.
  • the three-dimensional complex multilayer structure of the present invention is a first pattern of the three-dimensional complex multilayer structure of the present invention in which a pair of bones adjacent to each other among the waveforms formed by the cross-section are both end points of an elliptic bow and a floor between them is one of the elliptical arcs of the elliptic bow; One embodiment of the second pattern.
  • the three-dimensional complex multilayer structure also spreads light in the form of a diffusion sheet, thereby widening the viewing angle and making the luminance uniform.
  • the height from the valley to the floor of the waveform formed by the cross section that is, H of FIGS. 8 to 11 is 1 to 500 ⁇ m. If it is less than the above range, the pattern effect due to the step disappears. On the contrary, if it exceeds 500 ⁇ m, it is visually identifiable, resulting in poor visibility and an excessively thick result.
  • the refractive index is preferably 1.3 to 1.9.
  • the optical component is not limited so long as it is an optical component for inducing and controlling the movement path of light.
  • various optical sheets for concentrating or dispersing light paths light guide plates in edge type liquid crystal displays, diffusion plates in direct type liquid crystal displays, or light collecting sheets or light collecting plates used in photovoltaic devices.
  • the three-dimensional complex multilayer structure of the present invention can be used for display optical components such as color filters, next-generation display processes (TFT, OTFT, Oxide TFT, flexible displays, transparent displays), next-generation three-dimensional semiconductors, and micro fine structures. It may be used for dry adhesion, micro / nano piezoelectric elements, illumination optical parts, biocell / virus research using micropatterns, but is not limited thereto.
  • display optical components such as color filters, next-generation display processes (TFT, OTFT, Oxide TFT, flexible displays, transparent displays), next-generation three-dimensional semiconductors, and micro fine structures. It may be used for dry adhesion, micro / nano piezoelectric elements, illumination optical parts, biocell / virus research using micropatterns, but is not limited thereto.
  • the three-dimensional complex multilayer structure of the present invention can be manufactured using a mask mold, for example, as shown in Figs.
  • a second basic mold 12 having a first pattern selected from the group consisting of parallel lines, parallel curves, parallel zig-zag lines, and combinations thereof not formed on one surface thereof is prepared [step (f) of FIG. 14, FIG. 15). Step (f ')].
  • the flexible or rigid plate-like first support 20 through which the active energy ray is transmitted;
  • a mask 30 in which a polygon, a circle, an ellipse or a combination thereof is repeatedly formed on one surface of the first support 20, or a polygon, a circle, an ellipse or a combination thereof is repeatedly perforated; And a pattern layer on which the second pattern is formed on the surface opposite to the surface facing the first support 20 and the mask 30, or on which the mask 30 is formed.
  • the first support 20 of the one surface of the) includes a second pattern formed on the exposed portion, the mask 30 prepares the mask mold (60, 60 ') that does not transmit the active energy ray (Fig. 14 Step (f), step (f ') of FIG. 15].
  • the second pattern may be selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other.
  • a second mold resin 42 is applied onto the first pattern of the second base mold 12 or the mask molds 60 and 60 ', and the parallel direction of the second pattern is the first pattern.
  • the second base mold 12 and the mask mold 60, 60 ' are brought into close contact with each other so that the second mold resin 42 is not parallel to the parallel direction of the step (f) of FIG. Step (f ') of FIG. 15].
  • the second base mold 12 and the mask mold 60, 60 ′ centering on the second mold resin 42 so that the parallel direction of the second pattern is perpendicular to the parallel direction of the first pattern. ) Is more preferable.
  • the mask molds 60 and 60 ' are pressed in the direction of the resin 42 for the second mold, and active energy rays are irradiated or heated to the mask molds 60 and 60', thereby producing the resin for the two molds. Is cured to form a second mold 52 (step (g) in FIG. 14, step (g ') in FIG. 15).
  • the three-dimensional complex multilayer structure of the present invention may be manufactured by the above manufacturing method, a mold may be made again and manufactured from the three-dimensional complex multilayer structure 70 manufactured by the manufacturing method as a master (see FIG. 16). ).
  • the third mold resin 44 may be coated using the multilayer structure 70 manufactured as shown in FIG. 14 or 15 as a master, and the second support may be applied to the third mold resin 44. (25) is brought into close contact (step (k) of FIG. 16).
  • the second support 25 is pressed in the direction of the master 70 and the active energy ray is irradiated or heated to cure the resin 44 for the third mold to form the third mold 54 [Fig. 16 steps (l)]. Then, the third mold 54 is separated from the master 70 (step (m) of FIG. 16).
  • the patterning resin 84 is applied to the third mold 54 or the substrate 82, and the third mold 54 and the substrate 82 are brought into close contact with the patterning resin 84. [Step (n) of Fig. 16].
  • the pattern resin 84 is cured to form a pattern 86 (step (o) of FIG. 16).
  • the three-dimensional complex multilayer structure 80 of the present invention in which the pattern 86 is formed is separated from the third mold 54 (step (p) of FIG. 16).
  • the first pattern and the second pattern may be formed on only one surface of the multilayer structure, or may be formed on both surfaces. This is distinguished from the prior art in which separate patterns are formed on both sides of one multilayer structure.
  • the pattern is formed on both sides of one multilayer structure as described above, when used as an optical sheet, the light condensing effect in two different directions cannot be achieved, and as a result, the number of optical sheets is reduced or the frontal brightness is increased dramatically.
  • the same effect of the present invention may not be fully enjoyed, but it is irrelevant for other uses.
  • the mask mold 60 used in the manufacture of the three-dimensional complex multilayer structure of the present invention is a flexible or rigid plate-like first support 20 through which the active energy ray is transmitted,
  • the mask 30 is characterized in that it does not transmit active energy rays.
  • the mask 30 is characterized in that it does not transmit active energy rays.
  • first support 20 and the mask 30 further include an adhesion-activating layer between the pattern layer or the pattern to prevent the pattern layer or the pattern from falling off.
  • the pattern layer, pattern or adhesion active layer may be cured by active energy rays or heat.
  • thermal curing may cause cracks due to the action of volume shrinkage due to thermal expansion occurring at the temperature difference between the maximum heating temperature and room temperature during cooling and the volume shrinkage due to the curing reaction itself, and also have precise dimensions. Difficult to obtain Furthermore, the thermal residual stress generated by the thermosetting process shortens the life of the part, requires a lot of thermal energy in the curing process, has a limitation in the size of the molded article, and takes a long time to cure, resulting in energy and Remarkably low time consumption, hardening by active energy ray has the advantage that the size of the molded article is not limited is widely used.
  • the first pattern and the second pattern may be a pattern selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other, as in the case of the 3D complex multilayer structure.
  • the mask 30 may in particular be a printed colored coating or a deposited opaque metal.
  • the mask molds 60 and 60 'of the present invention may be manufactured by an imprint method, for example, as shown in FIGS. 12 and 13, but are not limited thereto, and may also be manufactured by inkjet or screen printing.
  • FIGS. 12 and 13 The imprint method of FIGS. 12 and 13 will be described in detail as an example.
  • a portion of one surface of the flexible or rigid plate-shaped first support 20 through which active energy rays are transmitted is printed and colored coated (step (a) of FIG. 12 and step (a) of FIG. 13).
  • the colored coating may be printed such that a polygon, a circle, an ellipse or a combination thereof is repeatedly printed, or a polygon, a circle, an ellipse or a combination thereof is repeatedly printed.
  • the adhesive active layer resin may be formed by coating and curing the resin for the adhesive active layer on the surface on which the colored coating is printed in the first support 20. This adhesion-activating layer further strengthens the bond between the first support 20 and the first mold 50 to be described later.
  • the first mold resin 40 is coated on the surface of the active energy ray transmitting first basic mold 10 or the first support 20 where the colored coating is printed, and the first mold resin 40 is applied.
  • the first support 20 and the first base mold 10 are brought into close contact with each other (step (b) of FIG. 12 and step (b) of FIG. 13).
  • step (c) of FIG. 12 is a case where the active energy ray is irradiated from the first base mold side
  • step (c ') of FIG. 13 is a case where the active energy ray is irradiated from the first support side.
  • the step of dissolving and removing the uncured portion of the first mold resin 40 with a solvent may be further roughened.
  • the mask mold 60, 60 ' is separated from the first base mold 10 (step (d) of FIG. 12, step (d') of FIG. 13), the three-dimensional complex multilayer of the present invention.
  • a mask mold (60,60 ') used to manufacture the structure (80) is obtained (step (e) of FIG. 12, step (e') of FIG. 13), wherein the colored coating does not transmit active energy rays. It features.
  • the mask molds 60 and 60 'of the present invention may first begin by depositing an opaque metal by covering part of one surface of the flexible or rigid plate-shaped first support 20 through which active energy rays are transmitted, with a shadow mask. [Step (a) of FIG. 12, step (a) of FIG. 13].
  • the opaque metal may be deposited such that a polygon, a circle, an ellipse, or a combination thereof is repeatedly deposited, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly drilled.
  • the adhesion active layer resin may be applied to the surface on which the opaque metal is deposited in the first support 20 and cured to form an adhesion active layer. This adhesion-activating layer further strengthens the bond between the first support 20 and the first mold 50 to be described later.
  • the first mold resin 40 is coated on the surface where the opaque metal is deposited in the active energy ray transmitting first basic mold 10 or the first support 20, and the first mold resin 40 is applied.
  • the first support 20 and the first base mold 10 are brought into close contact with each other (step (b) of FIG. 12 and step (b) of FIG. 13).
  • step (c) in FIG. 12 step (c') in FIG. 13).
  • the step of dissolving and removing the uncured portion of the first mold resin 40 with a solvent may be further roughened.
  • the mask mold 60, 60 ' is separated from the first base mold 10 (step (d) of FIG. 12, step (d') of FIG. 13), the three-dimensional complex multilayer of the present invention.
  • a mask mold (60, 60 ') used to manufacture the structure (80) is obtained (step (e) of FIG. 12, step (e') of FIG. 13), wherein the opaque metal does not transmit active energy rays. It features.
  • FIG. 17 is a photograph of an embodiment of the present invention in which a first pattern is a prism pattern and a second pattern is a prism pattern orthogonal to the parallel direction of the first pattern, and FIG. 18 is a partially enlarged photograph of FIG. 17.
  • FIG. 19 to 22 are view angle analysis diagrams in the case of using a diffusion plate (FIG. 20), a first light collecting sheet (FIG. 21), and a second light collecting sheet (FIG. 22) in a conventional light guide plate (FIG. 19).
  • the part displayed in red is a high luminance part.
  • a diffuser plate FIG. 20
  • a first condensing sheet FIG. 21
  • a second condensing sheet FIG. 22
  • the structure according to the present invention is used as the light guide plate (FIG. 23), first, the conventional light guide plate (FIG. Compared with 19), the brightness is higher, and even though only the diffusion plate is added, the center becomes red (FIG. 24), and it can be seen that a separate light collecting sheet is not required. This can reduce the use of optical sheets, which is economically beneficial and can also reduce the thickness of equipment.
  • the diffusion plate is mounted on the conventional light guide plate
  • the brightness is the same as that of FIG. 25.
  • the two conventional optical sheets are mounted (FIG. 26) and the multilayer structure of the present invention is mounted on one sheet as the optical sheet of FIG. 17. Comparing the case (FIG. 27), it was confirmed that the luminance in the case of Figure 27 as a whole, the number of sheets required optical sheet is reduced.
  • the three-dimensional complex multilayer structure according to the present invention is different from the conventional device formed with only one simple pattern, and different patterns are formed in a complex, and can be manufactured by a simple process, and thus display optical components (light guide plates, diffuser plates, prisms, Color filter), next-generation display process (TFT, OTFT, Oxide TFT, flexible display, transparent display), next-generation three-dimensional semiconductor, dry adhesion using micro fine structure, micro / nano piezoelectric element, lighting optical parts, bio cell using fine pattern It may be usefully used for virus research, but is not limited thereto.
  • display optical components light guide plates, diffuser plates, prisms, Color filter
  • next-generation display process TFT, OTFT, Oxide TFT, flexible display, transparent display
  • next-generation three-dimensional semiconductor dry adhesion using micro fine structure, micro / nano piezoelectric element, lighting optical parts, bio cell using fine pattern It may be usefully used for virus research, but is not limited thereto.

Abstract

The present invention relates to a complex three-dimensional multi-layer structure, and more specifically, provides a complex three-dimensional multi-layer structure characterized in that a first pattern and a second pattern having different thicknesses are formed on one surface or both surfaces of a plate phase, the first pattern is selected from a group consisting of parallel lines, parallel curves, parallel zigzag lines and a combination thereof, none of which cross each other, the second pattern which is not parallel to the first pattern is selected from a group consisting of parallel lines, parallel curves, parallel zigzag lines and a combination thereof, none of which cross each other, a boundary of the first pattern and the second pattern is a figure selected from a group consisting of a polygon, a circle, an oval and a combination thereof, and the figure is repeatedly formed on the one surface or the both surfaces of the plate phase. Unlike the conventional device having only a simple pattern, the complex three-dimensional multi-layer structure of the present invention has complexly formed different patterns and can be manufactured by a simple process, and thus the three-dimensional complex multi-layer structure of the present invention can be useful for display optical parts (light guide plates, diffusion plates, prisms, and color filters), next-generation display processes (TFTs, OTFTs, oxide TFTs, flexible displays and transparent displays), next-generation three-dimensional semiconductors, dry adhesion using a miniature cilia structure, micro/nano piezoelectric elements, lighting optical parts, biocell/virus researches using micro patterns, and the like.

Description

[규칙 제26조에 의한 보정 26.06.2013] 3차원 복잡 다층 구조물 및 그 제조방법 [Correction 26.06.2013 based on Article 26 of the Rule] Three-dimensional complex multilayer structure and its manufacturing method
본 발명은 3차원 복잡 다층 구조물에 관한 것으로서, 보다 구체적으로는 광학 분야, 계측 분야, 및 집적회로와 기타 마이크로소자 등 다양한 분야에서 활용될 수 있는 복잡한 형상을 갖는 3차원 복잡 다층 구조물 및 이를 제조할 수 있는 방법에 관한 것이다.The present invention relates to a three-dimensional complex multilayer structure, and more particularly, to a three-dimensional complex multilayer structure having a complex shape that can be utilized in various fields such as optics, metrology, and integrated circuits and other micro devices and It is about how it can be.
광학 분야, 계측 분야, 및 집적회로와 기타 마이크로소자 분야의 기술 발전에 따라 복잡한 3차원 형상을 갖는 마이크로/나노 크기의 구조물에 대한 연구가 활발히 진행되고 있다. 이러한 구조물은 광학부품뿐만 아니라 차세대 삼차원 반도체, 차세대 디스플레이(TFT 백플레인이나 플렉시블 TFT, 투명 디스플레이 등), 미세섬모구조를 이용한 건식접착, 마이크로/나노 압전소자, 조명, 미세패턴을 이용한 바이오셀/바이러스 연구 등 다양한 분야에서 활용될 수 있기 때문이다. BACKGROUND OF THE INVENTION With advances in optics, metrology, and integrated circuits and other microdevices, research into micro / nano sized structures with complex three-dimensional shapes is being actively conducted. These structures include not only optical components but also next-generation three-dimensional semiconductors, next-generation displays (TFT backplanes, flexible TFTs, transparent displays, etc.), dry adhesion using micro-ciliary structures, micro / nano piezoelectric elements, lighting, and biocell / virus research using micropatterns. This is because it can be used in various fields.
광학부품을 구체적으로 예를 들어 설명하면, 최근 들어 음극선관 (Cathode Ray Tube)의 단점인 무게와 부피를 줄일 수 있는 각종 평판표시장치들이 개발되고 있다. 이러한 평판표시장치들로는 액정표시장치 (LCD: Liquid Crystal Display), 전계방출 표시장치 (FED: Field Emission Display), 플라즈마 디스플레이 패널 (PDP: Plasma Display Panel) 및 전계발광 (EL: Electro-Luminescence) 표시장치 등이 있으며, 이와 같은 상기 평판표시장치에 대하여 표시 품질을 향상시키고 대화면화하기 위한 연구들이 활발히 진행되고 있다.Referring to the optical component in detail, in recent years, various flat panel display apparatuses that can reduce the weight and volume, which are disadvantages of cathode ray tubes, have been developed. Such flat panel displays include Liquid Crystal Display (LCD), Field Emission Display (FED), Plasma Display Panel (PDP) and Electro-Luminescence (EL) display. The flat panel display apparatus has been actively researched to improve the display quality and to make a large screen.
특히, 상기 평판표시장치 중 액정표시장치(LCD)는 소형/경량화 및 저소비 전력 등 많은 장점을 가지고 있어 그 사용이 점차 증가하고 있는 추세이다. 액정표시장치는 액정표시패널의 내부에 주입된 액정의 전기/광학적 성질을 이용하여 정보를 표시하며, 램프 등의 광원을 이용하여 화상을 표현하는 비발광형 표시장치이다. 즉, 액정표시장치는 음극선관과는 달리 TFT 기판과 컬러필터 기판 사이에 주입된 액정물질이 자체 발광을 하는 발광성 물질이 아니라 외부에서 들어오는 광의 양을 조절하여 화면에 표시하는 수광성 물질이기 때문에 액정표시패널에 광을 조사하기 위한 별도의 장치, 즉 백라이트 어셈블리가 반드시 필요하게 된다.In particular, the liquid crystal display (LCD) of the flat panel display device has a number of advantages, such as small size / light weight and low power consumption is increasingly used. The liquid crystal display is a non-light emitting display that displays information by using the electrical / optical properties of the liquid crystal injected into the liquid crystal display panel and expresses an image by using a light source such as a lamp. That is, unlike a cathode ray tube, a liquid crystal display device is a liquid crystal material injected between a TFT substrate and a color filter substrate, not a light emitting material that emits light, but a light receiving material that controls the amount of light coming from the outside and displays it on the screen. A separate device, ie, a backlight assembly, for irradiating light to the display panel is necessary.
백라이트 어셈블리는 수납 공간이 형성된 몰드 프레임과, 수납 공간의 기저면에 설치되어 액정표시패널쪽으로 빛을 반사하는 반사시트, 반사시트에 상부면에 설치되어 빛을 안내하는 도광판 또는 확산판, 도광판과 수납 공간의 측벽 사이 또는 바닥에 설치되어 빛을 발산하는 램프 유닛, 도광판의 상부면에 적층되어 빛을 확산하고 집광하는 광학시트들, 몰드 프레임의 상부에 설치되어 액정표시패널 가장자리의 소정 부분에서부터 몰드 프레임의 측면에 이르는 영역을 덮는 탑샤시로 구성된다.The backlight assembly includes a mold frame in which a storage space is formed, a reflection sheet installed on a base surface of the storage space to reflect light toward the liquid crystal display panel, a light guide plate or diffuser plate installed on the reflective surface to guide light, a light guide plate and a storage space. A lamp unit disposed between sidewalls or at the bottom of the lamp unit to emit light, optical sheets stacked on an upper surface of the light guide plate to diffuse and collect light, and installed on an upper part of the mold frame, It consists of a top chassis covering an area leading to the side.
이 중에서 도광판 또는 확산판은 출사각 또는 정면 휘도가 매우 낮아 그 위에 상기 광학시트를 여러 장 올려야 하는 단점이 있다.Among them, the light guide plate or the diffuser plate has a disadvantage in that the emission angle or the front luminance is very low, and the optical sheet must be placed thereon.
그리고, 상기 광학시트들은 빛을 확산시키는 확산시트와, 확산시트의 상부면에 적층되어 확산된 빛을 집광시켜 액정표시패널로 전달하는 프리즘 시트 및 상기 확산시트와 프리즘 시트를 보호하기 위한 보호시트 등으로 구성된다.The optical sheets may include a diffusion sheet for diffusing light, a prism sheet for condensing the diffused light stacked on the upper surface of the diffusion sheet and transferring the light to a liquid crystal display panel, and a protective sheet for protecting the diffusion sheet and the prism sheet. It consists of.
상기한 바와 같이, 표시장치에 사용되는 광학시트는 그 매수가 많고 고가여서 광학시트의 매수를 감소시키는 것이 주요 기술적 이슈가 되고 있다. 광학시트의 개수를 감소시키기 위해, 예를 들어, 확산시트 및 프리즘 시트를 1 매의 광학시트로 대체하는 경우, 상기 1매의 광학시트는 확산시트 및 프리즘 시트의 기능을 모두 가지며 그 성능이 다수의 광학시트를 사용할 때에 못지않아야 할 것이다.As described above, since the number of optical sheets used in the display device is large and expensive, reducing the number of optical sheets has become a major technical issue. In order to reduce the number of optical sheets, for example, when replacing the diffusion sheet and prism sheet with one optical sheet, the one optical sheet has both the functions of the diffusion sheet and the prism sheet, and its performance is large. It should be no less than when using an optical sheet.
또한 상기 1매의 광학시트는 다수의 광학시트를 사용한 경우에 얻을 수 있는 표시패널 상의 화질을 저하시키지 않아야 할 것이다. 전술한 바와 같이, 1매의 광학시트가 복합적인 기능을 가질 수 있도록 하는 기술의 개시는 다수 존재한다. 예를 들어, 한국공개특허 10-2009-0073532 및 한국공개특허 10-2011-0017194는 상면과 하면에 상이한 패턴이 형성된 복합 광학시트를 개시하고 있다.In addition, the one optical sheet should not deteriorate the image quality on the display panel obtained when a plurality of optical sheets are used. As described above, there are many disclosures of techniques for allowing one optical sheet to have a complex function. For example, Korean Patent Laid-Open Publication No. 10-2009-0073532 and Korean Patent Publication No. 10-2011-0017194 disclose a composite optical sheet having different patterns formed on its upper and lower surfaces.
나아가, 투명필름의 상면에 프리즘 패턴 또는 복수의 렌즈들을 형성하고 광원과 대향하는 투명필름의 하면에 확산비드들 형성하거나, 또는 굴절률이 서로 다른 다수의 층들을 형성하거나, 공기 버블을 포함하는 광확산층을 형성하는 기술 등이 제시되었다.Furthermore, a light diffusing layer including a prism pattern or a plurality of lenses on an upper surface of the transparent film and diffusion beads on a lower surface of the transparent film facing the light source, or forming a plurality of layers having different refractive indices, or including air bubbles Techniques for forming the same have been proposed.
그러나, 상기한 종래의 기술들에 따라 개발된 다기능 광학시트는 종래의 다수의 광학시트들에 의해 달성될 수 있는 휘도, 대비비 등과 같은 화질조건을 충분히 충족시키지 못하는 것이 현실이다. 따라서 표시화면 상에 요구되는 휘도, 대비비 조건과 같은 화질조건을 만족시켜서, 표시장치에 사용되는 다수의 광학시트들을 대체할 수 있는 복합기능을 갖는 광학시트의 개발이 요구된다.However, it is a reality that the multifunctional optical sheet developed according to the above-described conventional techniques does not sufficiently satisfy image quality conditions such as luminance, contrast ratio, etc. which can be achieved by a plurality of conventional optical sheets. Accordingly, there is a need for the development of an optical sheet having a complex function capable of satisfying image quality conditions such as brightness and contrast ratio requirements on a display screen, which can replace a plurality of optical sheets used in a display device.
나아가, 상기 도광판이 하나 이상의 광학시트 역할을 수행하거나, 태양광 발전장치에서의 집광시트 또는 집광판 역시 이처럼 복합기능을 수행할 수 있는 광학시트가 요구되는데, 3차원 복잡 다층 구조물을 이용한다면 이러한 문제점이 해결될 수 있다. Furthermore, the light guide plate serves as one or more optical sheets, or a light collecting sheet or a light collecting plate in a photovoltaic device is also required for an optical sheet that can perform such a complex function. Can be solved.
복잡한 3차원 형상의 구조물을 제조할 수 있는 기존의 방법은 리소그래피나 임프린팅 공정을 통해 각 층을 순서대로 제작하거나, 아니면 기판 상에 제1패턴을 만든 후 화학적 물리적인 방법으로 후처리를 통해 표면을 가공하는 방법이다. Conventional methods for manufacturing complex three-dimensional structures can be fabricated in order by using lithography or imprinting processes, or after the first pattern is formed on a substrate, and then surface treated by chemical and physical methods. How to process.
그러나, 이러한 방법들은 두 가지 층의 다층 패턴을 형성할 시 두 번 이상의 공정이 필요하고 또한 제작할 수 있는 제2패턴이나 제3패턴의 구조나 크기에 많은 제약이 있다. 따라서 3차원 복잡 다층 구조물을 보다 간단한 공정으로 제조할 수 있는 방법이 요구된다.However, these methods require two or more steps in forming a multi-layered pattern of two layers, and there are many restrictions on the structure or size of the second pattern or the third pattern that can be manufactured. Therefore, there is a need for a method capable of manufacturing a three-dimensional complex multilayer structure in a simpler process.
본 발명은 차세대 삼차원 반도체, 차세대 디스플레이, 광학부품, 미세섬모구조를 이용한 건식접착, 마이크로/나노 압전소자, 조명기구, 미세패턴을 이용한 바이오셀/바이러스 연구 등 다양한 분야에서 활용될 수 있는 복잡한 형상을 갖는 3차원 복잡 다층 구조물을 제공하는 것을 그 목적으로 한다.The present invention is a complex shape that can be used in a variety of fields, such as next generation three-dimensional semiconductor, next-generation display, optical components, dry adhesion using micro-ciliary structure, micro / nano piezoelectric element, lighting equipment, bio-cell / virus research using micropattern It is an object to provide a three-dimensional complex multilayer structure having.
본 발명은 또한 상기 3차원 복잡 다층 구조물의 제조방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a method of manufacturing the three-dimensional complex multilayer structure.
본 발명은 상술한 바와 같은 목적을 달성하기 위하여, The present invention to achieve the object as described above,
판상의 일면 또는 양면에 서로 두께가 상이한 제 1 패턴 및 제 2 패턴이 형성되고, First and second patterns having different thicknesses are formed on one or both surfaces of the plate,
상기 제 1 패턴은 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고, The first pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other,
상기 제 2 패턴은 상기 제 1 패턴에 평행하지 않고, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고, The second pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other,
상기 제 1 패턴과 제 2 패턴의 경계는 다각형, 원, 타원 및 그 조합으로 이루어진 군에서 선택된 도형이고, The boundary between the first pattern and the second pattern is a figure selected from the group consisting of polygons, circles, ellipses, and combinations thereof.
상기 도형은 상기 판상의 일면 또는 양면에 반복형성되는 것을 특징으로 하는 3차원 복잡 다층 구조물을 제공한다.The figure provides a three-dimensional complex multilayer structure characterized in that it is repeatedly formed on one side or both sides of the plate.
또한, 본 발명의 3차원 복잡 다층 구조물은 상기 제 1 패턴의 평행방향과 상기 제 2 패턴의 평행방향이 서로 직교할 수 있다. In addition, in the three-dimensional complex multilayer structure of the present invention, the parallel direction of the first pattern and the parallel direction of the second pattern may be perpendicular to each other.
또한, 본 발명의 3차원 복잡 다층 구조물은 상기 제 1 패턴과 상기 제 2 패턴이 소정 높이로 이격 형성되도록 하는 제 3 패턴을 구비할 수 있다. In addition, the three-dimensional complex multilayer structure of the present invention may have a third pattern to form the first pattern and the second pattern spaced apart by a predetermined height.
또한, 상기 제 1 패턴 및 제 2 패턴은 열 경화성 수지 또는 활성에너지선 경화성 수지로 형성될 수 있다.In addition, the first pattern and the second pattern may be formed of a thermosetting resin or an active energy ray curable resin.
또한, 상기 제 1 패턴 및 제 2 패턴의 평행방향에 수직한 단면은 파형(波形)을 이루고, 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루는 각각 삼각형의 세 꼭지점, 활꼴의 현의 양 끝점과 호 중의 한 점, 타원활꼴의 현의 양 끝점과 타원호 중의 한 점, 또는 상기 삼각형 중 마루가 둥글게 깎인 것일 수 있다.In addition, a cross section perpendicular to the parallel direction of the first pattern and the second pattern forms a waveform, and a pair of valleys adjacent to each other and a floor between them are triangular vertices and arches, respectively, among the waveforms formed by the cross section. One end of the string and one of the arcs of the chord, both the end of the chord of the elliptic chord and one of the elliptical arcs, or the floor of the triangle may be rounded off.
또한, 본 발명의 3차원 복잡 다층 구조물은 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루가 삼각형의 세 꼭지점이거나 마루가 둥글게 깎인 삼각형인 경우 상기 마루의 끼인각(협각)은 30 내지 150°일 수 있다.In addition, in the three-dimensional complex multilayer structure of the present invention, when the pair of valleys adjacent to each other among the waveforms formed by the cross section and the floor between them are three vertices of a triangle or the floor is a rounded triangle, the included angle (narrow angle) of the floor is 30 To 150 °.
또한, 상기 단면이 이루는 파형의 골에서 마루까지의 높이는 1 내지 500 μm일 수 있다.In addition, the height from the valley to the floor of the waveform formed by the cross section may be 1 to 500 μm.
또한, 상기 3차원 복잡 다층 구조물은 굴절률 1.3 내지 1.9 일 수 있다. In addition, the three-dimensional complex multilayer structure may have a refractive index of 1.3 to 1.9.
또한, 상기 반복형성된 도형의 직경, 장경 또는 한 변의 길이는 1 내지 5000 μm일 수 있다.In addition, the diameter, the long diameter or the length of one side of the repeated figure may be 1 to 5000 μm.
본 발명은 또한 상기 3차원 복잡 다층 구조물을 이용한 광학부품, 반도체 소자, 압전 소자 또는 바이오센서를 제공한다. The present invention also provides an optical component, a semiconductor device, a piezoelectric device or a biosensor using the three-dimensional complex multilayer structure.
또한, 상기 광학부품은 광학시트, 에지형 액정표시장치의 도광판 또는 직하형 액정표시장치의 확산판, 또는 태양광 발전장치의 집광판일 수 있다.The optical component may be an optical sheet, a light guide plate of an edge type liquid crystal display device, a diffusion plate of a direct type liquid crystal display device, or a light collecting plate of a photovoltaic device.
한편, 본 발명의 3차원 복잡 다층 구조물의 제조방법은 On the other hand, the manufacturing method of the three-dimensional complex multilayer structure of the present invention
(A) 일면에 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택된 제 1 패턴이 형성된 제 2 기본몰드를 준비하는 단계; (A) preparing a second basic mold having a first pattern selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other on one surface;
(B) 활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체; 상기 제 1 지지체의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크; 및 상기 제 1 지지체 및 마스크를 덮고, 상기 제 1 지지체를 향하는 면의 반대쪽 면에 제 2 패턴이 형성된 패턴층 또는 상기 마스크가 형성된 제 1 지지체의 일면 중 제 1 지지체가 노출된 부분에 형성된 제 2 패턴을 포함하고, 상기 마스크는 활성에너지선을 투과하지 않는 마스크 몰드를 준비하는 단계; (B) a flexible or rigid plate-like first support through which the active energy ray is transmitted; A mask in which a polygon, a circle, an ellipse or a combination thereof is repeatedly formed on one surface of the first support, or a polygon, a circle, an ellipse or a combination thereof is repeatedly perforated; And a second layer formed on a portion of the pattern layer having a second pattern formed on the surface opposite to the surface facing the first support and the mask, or the one surface of the first support on which the mask is formed. Preparing a mask mold including a pattern, wherein the mask does not transmit active energy rays;
(C) 상기 제 2 기본몰드의 제 1 패턴 또는 상기 마스크 몰드 위에 제 2 몰드용 수지를 도포하는 단계, (C) applying a resin for a second mold on the first pattern of the second base mold or the mask mold,
(D) 상기 제 2 패턴의 평행방향이 상기 제 1 패턴의 평행방향과 평행하지 않도록, 상기 제 2 몰드용 수지를 중심으로 상기 제 2 기본몰드와 상기 마스크 몰드를 밀착시키는 단계; (D) bringing the second base mold into close contact with the mask mold around the resin for the second mold such that the parallel direction of the second pattern is not parallel to the parallel direction of the first pattern;
(E) 상기 마스크 몰드를 상기 제 2 몰드용 수지 방향으로 가압하고, 상기 마스크 몰드에 활성에너지선을 조사 또는 가열함으로써, 상기 2 몰드용 수지를 경화시켜 제 2 몰드를 형성하는 단계; (E) pressing the mask mold in the direction of the resin for the second mold, and curing the resin for the second mold to form a second mold by irradiating or heating an active energy ray on the mask mold;
(F) 상기 마스크 몰드를 상기 제 2 몰드와 분리하는 단계; 및 (F) separating the mask mold from the second mold; And
(G) 상기 제 2 몰드용 수지 중 경화되지 않은 부분을 용제로 용해하여 제거하는 단계(G) dissolving and removing the uncured portion of the second mold resin with a solvent
를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.
또한, 본 발명의 3차원 복잡 다층 구조물의 제조방법은 상기 단계 (G) 이후에, In addition, the method of manufacturing a three-dimensional complex multilayer structure of the present invention after the step (G),
(H) 상기 단계 (G)를 거친 마스터에 제 3 몰드용 수지를 도포하는 단계; (H) applying a resin for a third mold to the master passed through the step (G);
(I) 상기 제 3 몰드용 수지에 제 2 지지체를 밀착시키는 단계; (I) bringing the second supporter into close contact with the third mold resin;
(J) 상기 제 2 지지체를 상기 마스터 방향으로 가압하고, 활성에너지선을 조사 또는 가열함으로써, 상기 제 3 몰드용 수지를 경화시켜 제 3 몰드를 형성하는 단계; (J) pressing the second support in the direction of the master and curing the resin for the third mold by irradiating or heating an active energy ray to form a third mold;
(K) 상기 제 3 몰드를 상기 마스터로부터 분리하는 단계; (K) separating the third mold from the master;
(L) 상기 제 3 몰드 또는 기판에 패턴용 수지를 도포하는 단계; (L) coating a resin for the pattern on the third mold or substrate;
(M) 상기 패턴용 수지를 중심으로 상기 제 3 몰드와 상기 기판을 밀착시키는 단계; (M) bringing the third mold into close contact with the substrate around the resin for the pattern;
(N) 상기 제 3 몰드 또는 상기 기판에 활성에너지선을 조사 또는 가열함으로써, 상기 패턴용 수지를 경화시켜 패턴을 형성하는 단계; 및 (N) hardening the resin for the pattern to form a pattern by irradiating or heating an active energy ray on the third mold or the substrate; And
(O) 상기 패턴이 형성된 3차원 복잡 다층 구조물을 상기 제 3 몰드로부터 분리하는 단계(O) separating the patterned three-dimensional complex multilayer structure from the third mold
를 포함할 수 있다.It may include.
또한, 상기 제 2 패턴은 상기 제 1 패턴에 평행하지 않고, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택될 수 있다.In addition, the second pattern may be selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other.
또한, 상기 (D) 단계에서, 상기 제 2 몰드용 수지를 중심으로 상기 제 2 기본몰드와 상기 마스크 몰드를 밀착시킬 때, 상기 제 1 패턴과 상기 제 2 패턴이 소정 높이로 이격 형성되도록 하는 제 3 패턴을 구비할 수 있을 정도로 밀착시킬 수 있다. In addition, in the step (D), when the second base mold and the mask mold is in close contact with the resin for the second mold, the first pattern and the second pattern is formed to be spaced apart by a predetermined height It can be made to adhere so much that a 3 pattern can be provided.
또한, 본 발명의 3차원 복잡 다층 구조물의 제조방법은 상기 단계 (D)에서 상기 제 2 패턴의 평행방향이 상기 제 1 패턴의 평행방향과 직교하도록, 상기 제 2 몰드용 수지를 중심으로 상기 제 2 기본몰드와 상기 마스크 몰드를 밀착시킬 수 있다.In addition, in the method of manufacturing a three-dimensional complex multilayer structure of the present invention, in the step (D), the second mold is formed around the resin for the second mold so that the parallel direction of the second pattern is orthogonal to the parallel direction of the first pattern. 2 The base mold and the mask mold can be in close contact.
또한, 상기 제 1 패턴 및 제 2 패턴의 평행방향에 수직한 단면은 파형(波形)을 이루고, 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루는 각각 삼각형의 세 꼭지점, 활꼴의 현의 양 끝점과 호 중의 한 점, 타원활꼴의 현의 양 끝점과 타원호 중의 한 점, 또는 상기 삼각형 중 마루가 둥글게 깎인 것일 수 있다.In addition, a cross section perpendicular to the parallel direction of the first pattern and the second pattern forms a waveform, and a pair of valleys adjacent to each other and a floor between them are triangular vertices and arches, respectively, among the waveforms formed by the cross section. One end of the string and one of the arcs of the chord, both the end of the chord of the elliptic chord and one of the elliptical arcs, or the floor of the triangle may be rounded off.
또한, 상기 제 1 패턴 및 제 2 패턴을 갖는 3차원 복잡 다층 구조물은 기판의 일면에만 형성될 수도 있고, 양면 모두에 형성될 수도 있다.In addition, the three-dimensional complex multilayer structure having the first pattern and the second pattern may be formed on only one surface of the substrate, or may be formed on both surfaces.
또한, 상기 제 1 패턴이 제 2 패턴보다 두껍거나, 상기 제 2 패턴이 제 1 패턴보다 두꺼울 수 있다.In addition, the first pattern may be thicker than the second pattern, or the second pattern may be thicker than the first pattern.
한편, 상기 마스크 몰드는 활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체, On the other hand, the mask mold is a flexible or rigid plate-like first support for transmitting the active energy ray,
상기 제 1 지지체의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크, 및 A mask in which a polygon, a circle, an ellipse, or a combination thereof is repeatedly formed on one surface of the first support, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly perforated, and
상기 제 1 지지체 및 마스크를 덮고, 상기 제 1 지지체를 향하는 면의 반대쪽 면에 패턴이 형성된 패턴층A pattern layer covering the first support and the mask and having a pattern formed on a surface opposite to the surface facing the first support.
을 포함하고, Including,
상기 마스크는 활성에너지선을 투과하지 않는 것을 특징으로 한다.The mask is characterized in that it does not transmit the active energy ray.
한편, 상기 마스크 몰드는 활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체, On the other hand, the mask mold is a flexible or rigid plate-like first support for transmitting the active energy ray,
상기 제 1 지지체의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크, 및 A mask in which a polygon, a circle, an ellipse, or a combination thereof is repeatedly formed on one surface of the first support, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly perforated, and
상기 마스크가 형성된 제 1 지지체의 일면 중 제 1 지지체가 노출된 부분에 형성된 패턴The pattern formed on the exposed portion of the first support of one surface of the first support on which the mask is formed
을 포함하고, Including,
상기 마스크는 활성에너지선을 투과하지 않는 것을 특징으로 한다.The mask is characterized in that it does not transmit the active energy ray.
또한, 상기 제 1 지지체 및 마스크는 상기 패턴층과의 사이에 부착활성층을 추가로 구비할 수 있다.In addition, the first support and the mask may further include an adhesion-activating layer between the pattern layer.
또한, 상기 패턴층, 패턴 또는 부착활성층은 활성에너지선 또는 열에 의해 경화될 수 있다.In addition, the pattern layer, pattern or adhesion active layer may be cured by active energy rays or heat.
또한, 상기 제 1 패턴 및 제 2 패턴은 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택된 패턴일 수 있다.In addition, the first pattern and the second pattern may be a pattern selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines and combinations thereof that do not meet each other.
또한, 상기 마스크는 인쇄된 유색코팅 또는 증착된 불투명 금속일 수 있다.In addition, the mask may be printed colored coating or deposited opaque metal.
한편, 본 발명의 마스크 몰드의 제조방법은 On the other hand, the manufacturing method of the mask mold of the present invention
활성에너지선이 투과되는 연성 또는 강성의 판형 제 1 지지체의 일면 중 일부에 인쇄하여 유색코팅하는 단계; Printing and color-coating a portion of one surface of the flexible or rigid plate-shaped first support through which the active energy ray is transmitted;
활성에너지선 투과형 제 1 기본몰드 또는 상기 제 1 지지체 중 유색코팅이 인쇄된 면에 제 1 몰드용 수지를 도포하는 단계; Applying a resin for a first mold to an active energy ray transmitting first basic mold or a surface on which a colored coating is printed;
상기 제 1 몰드용 수지를 중심으로 상기 제 1 지지체와 상기 제 1 기본몰드를 밀착시키는 단계; Bringing the first support and the first base mold into close contact with each other based on the first mold resin;
상기 제 1 지지체를 상기 제 1 기본몰드 방향으로 가압하고, 상기 제 1 기본몰드에 활성에너지선을 조사 또는 가열함으로써, 상기 제 1 몰드용 수지를 경화시켜 마스크 몰드를 형성하는 단계; 및 Pressing the first support toward the first base mold and irradiating or heating an active energy ray to the first base mold to cure the first mold resin to form a mask mold; And
상기 마스크 몰드를 상기 제 1 기본몰드로부터 분리하는 단계Separating the mask mold from the first base mold
를 포함하고, 상기 유색코팅은 활성에너지선을 투과하지 않는 것을 특징으로 한다.It includes, The colored coating is characterized in that it does not transmit the active energy ray.
한편, 본 발명의 마스크 몰드의 제조방법은 On the other hand, the manufacturing method of the mask mold of the present invention
활성에너지선이 투과되는 연성 또는 강성의 판형 제 1 지지체의 일면 중 일부에 인쇄하여 유색코팅하는 단계; Printing and color-coating a portion of one surface of the flexible or rigid plate-shaped first support through which the active energy ray is transmitted;
상기 제 1 지지체 중 유색코팅이 인쇄된 면에 부착활성층용 수지를 도포하는 단계; Applying a resin for an adhesion-activating layer to a surface on which a colored coating is printed in the first support;
상기 부착활성층용 수지에 활성에너지선을 조사 또는 가열함으로써, 상기 부착활성층용 수지를 경화시켜 부착활성층을 형성하는 단계; Irradiating or heating an active energy ray on the resin for an adhesion active layer to cure the adhesion active layer to form an adhesion active layer;
활성에너지선 투과형 제 1 기본몰드 또는 상기 부착활성층에 제 1 몰드용 수지를 도포하는 단계; Applying a resin for a first mold to an active energy ray transmitting first base mold or the adhesion active layer;
상기 제 1 몰드용 수지를 중심으로 상기 부착활성층과 상기 제 1 기본몰드를 밀착시키는 단계; Bringing the adhesion-activating layer and the first base mold into close contact with each other based on the first mold resin;
상기 제 1 지지체를 상기 제 1 기본몰드 방향으로 가압하고, 상기 제 1 기본몰드에 활성에너지선을 조사 또는 가열함으로써, 상기 제 1 몰드용 수지를 경화시켜 마스크 몰드를 형성하는 단계; 및 Pressing the first support toward the first base mold and irradiating or heating an active energy ray to the first base mold to cure the first mold resin to form a mask mold; And
상기 마스크 몰드를 상기 제 1 기본몰드로부터 분리하는 단계Separating the mask mold from the first base mold
를 포함하고, 상기 유색코팅은 활성에너지선을 투과하지 않는 것을 특징으로 한다.It includes, The colored coating is characterized in that it does not transmit the active energy ray.
또한, 상기 유색코팅은 다각형, 원, 타원 또는 그 조합이 반복해서 인쇄되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공되도록 인쇄될 수 있다.In addition, the colored coating may be printed such that a polygon, a circle, an ellipse or a combination thereof is repeatedly printed, or a polygon, a circle, an ellipse or a combination thereof is repeatedly printed.
한편, 본 발명의 마스크 몰드의 제조방법은 On the other hand, the manufacturing method of the mask mold of the present invention
활성에너지선이 투과되는 연성 또는 강성의 판형 제 1 지지체의 일면 중 일부를 섀도우 마스크로 가리고, 불투명 금속을 증착시키는 단계; Covering a portion of one surface of the flexible or rigid plate-shaped first support through which the active energy ray is transmitted with a shadow mask and depositing an opaque metal;
활성에너지선 투과형 제 1 기본몰드 또는 상기 제 1 지지체 중 불투명 금속이 증착된 면에 제 1 몰드용 수지를 도포하는 단계; Applying a resin for a first mold to an active energy ray transmitting first base mold or a surface on which an opaque metal is deposited in the first support;
상기 제 1 몰드용 수지를 중심으로 상기 제 1 지지체와 상기 제 1 기본몰드를 밀착시키는 단계; Bringing the first support and the first base mold into close contact with each other based on the first mold resin;
상기 제 1 지지체를 상기 제 1 기본몰드 방향으로 가압하고, 상기 제 1 기본몰드에 활성에너지선을 조사 또는 가열함으로써, 상기 제 1 몰드용 수지를 경화시켜 마스크 몰드를 형성하는 단계; 및 Pressing the first support toward the first base mold and irradiating or heating an active energy ray to the first base mold to cure the first mold resin to form a mask mold; And
상기 마스크 몰드를 상기 제 1 기본몰드로부터 분리하는 단계Separating the mask mold from the first base mold
를 포함하고, 상기 불투명 금속은 활성에너지선을 투과하지 않는 것을 특징으로 한다.It includes, The opaque metal is characterized in that it does not transmit the active energy ray.
한편, 본 발명의 마스크 몰드의 제조방법은 On the other hand, the manufacturing method of the mask mold of the present invention
활성에너지선이 투과되는 연성 또는 강성의 판형 제 1 지지체의 일면 중 일부를 섀도우 마스크로 가리고, 불투명 금속을 증착시키는 단계; Covering a portion of one surface of the flexible or rigid plate-shaped first support through which the active energy ray is transmitted with a shadow mask and depositing an opaque metal;
상기 제 1 지지체 중 불투명 금속이 증착된 면에 부착활성층용 수지를 도포하는 단계; Applying a resin for an adhesion-active layer to a surface on which an opaque metal is deposited in the first support;
상기 부착활성층용 수지에 활성에너지선을 조사 또는 가열함으로써, 상기 부착활성층용 수지를 경화시켜 부착활성층을 형성하는 단계; Irradiating or heating an active energy ray on the resin for an adhesion active layer to cure the adhesion active layer to form an adhesion active layer;
활성에너지선 투과형 제 1 기본몰드 또는 상기 부착활성층에 제 1 몰드용 수지를 도포하는 단계; Applying a resin for a first mold to an active energy ray transmitting first base mold or the adhesion active layer;
상기 제 1 몰드용 수지를 중심으로 상기 부착활성층과 상기 제 1 기본몰드를 밀착시키는 단계; Bringing the adhesion-activating layer and the first base mold into close contact with each other based on the first mold resin;
상기 제 1 지지체를 상기 제 1 기본몰드 방향으로 가압하고, 상기 제 1 기본몰드에 활성에너지선을 조사 또는 가열함으로써, 상기 제 1 몰드용 수지를 경화시켜 마스크 몰드를 형성하는 단계; 및 Pressing the first support toward the first base mold and irradiating or heating an active energy ray to the first base mold to cure the first mold resin to form a mask mold; And
상기 마스크 몰드를 상기 제 1 기본몰드로부터 분리하는 단계Separating the mask mold from the first base mold
를 포함하고, 상기 불투명 금속은 활성에너지선을 투과하지 않는 것을 특징으로 한다.It includes, The opaque metal is characterized in that it does not transmit the active energy ray.
또한, 상기 불투명 금속은 다각형, 원, 타원 또는 그 조합이 반복해서 증착되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공되도록 증착될 수 있다.In addition, the opaque metal may be deposited such that a polygon, a circle, an ellipse, or a combination thereof is repeatedly deposited, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly drilled.
한편, 본 발명의 마스크 몰드는 상기 제조방법으로 제조된 것을 특징으로 한다.On the other hand, the mask mold of the present invention is characterized in that it is manufactured by the manufacturing method.
본 발명에 따른 3차원 복잡 다층 구조물은 종래 한가지의 단순한 패턴만 형성된 소자와는 다르게 서로 다른 패턴이 복합적으로 형성되어 있고, 간단한 공정으로 제조될 수 있어, 디스플레이 광학부품(도광판, 확산판, 프리즘, 칼라필터), 차세대 디스플레이 공정 (TFT, OTFT, Oxide TFT, 플렉시블 디스플레이, 투명 디스플레이), 차세대 삼차원 반도체, 미세섬모구조를 이용한 건식접착, 마이크로/나노 압전소자, 조명 광학부품, 미세패턴을 이용한 바이오셀/바이러스 연구 등에 유용하게 이용될 수 있으나, 이들로 한정되는 것은 아니다. The three-dimensional complex multilayer structure according to the present invention is different from the conventional device formed with only one simple pattern, and different patterns are formed in a complex, and can be manufactured by a simple process, and thus display optical components (light guide plates, diffuser plates, prisms, Color filter), next-generation display process (TFT, OTFT, Oxide TFT, flexible display, transparent display), next-generation three-dimensional semiconductor, dry adhesion using micro fine structure, micro / nano piezoelectric element, lighting optical parts, bio cell using fine pattern It may be usefully used for virus research, but is not limited thereto.
특히, 본 발명의 3차원 복잡 다층 구조물을 광학부품에 이용하게 되면, 종래처럼 복수의 광학시트를 별도로 구비할 필요가 없어 경제성이 향상되고, 두께를 줄일 수 있다. 또한 상기 광학부품이 도광판인 경우 별도의 집광시트가 없어도 충분한 집광효과를 발현한다. 그 결과, 도광판과 확산시트만으로 종래 광학부품 수준 이상의 정면 휘도를 구현할 수 있었다. 그리고, 광원으로부터 유도된 광이 다수의 광학시트를 통과함에 따른 광손실을 줄일 수 있다. 이러한 장점은 직하형 LCD에 사용되는 확산판이나 태양광 발전장치에 사용되는 집광부품에서도 동일하게 발현된다. 나아가, 광학부품에 들어가는 광학시트의 개수가 줄어듦에 따라 상기 광학부품의 제조공정이 단순해지고, 이로 인해 공정의 안정성 및 경제성이 제고되는 효과가 있다.In particular, when the three-dimensional complex multilayer structure of the present invention is used in an optical component, it is not necessary to separately provide a plurality of optical sheets as in the prior art, thereby improving economic efficiency and reducing thickness. In addition, when the optical part is a light guide plate, a sufficient light converging effect is expressed even without a separate light collecting sheet. As a result, only the light guide plate and the diffusion sheet could realize front luminance greater than that of the conventional optical component. In addition, it is possible to reduce the light loss due to the light guided by the light source passing through the plurality of optical sheets. This advantage is equally manifested in the diffuser plate used in direct type LCDs and condensing parts used in photovoltaic devices. Furthermore, as the number of optical sheets entering the optical component is reduced, the manufacturing process of the optical component is simplified, thereby improving the stability and economical efficiency of the process.
또한 건식접착분야에 있어 게코 도마뱀의 발바닥 또는 딱정벌레의 다리에 있는 다층 미세 섬모구조를 모사하려는 다양한 시도들이 있다. 미세 다층 섬모구조는 구조적인 특징으로 인해 동일재료에 비해 탄성계수가 낮아지는 유효 탄성계수 (effective elastic modulus) 특징이 있다. 이러한 특성으로 인해 반데르발스 힘(van der Waals force)을 이용하여 다양한 피착물에 강한 접착력을 갖게 된다. 하지만 이러한 기술들을 한 가지 층의 섬모 구조를 제작하는 데 있어 각 1회 이상의 공정을 필요로 하고 공정 또한 매우 복잡하거나 주위 환경에 민감하여 대량 생산을 위한 양산성에는 크게 영향을 미치지 못하는 실정이다. There are also various attempts in the field of dry adhesion to simulate the multi-layered fine cilia in the soles of gecko lizards or the legs of beetles. The fine multilayered ciliary structure has an effective elastic modulus characteristic that the elastic modulus is lower than that of the same material due to its structural features. Due to these characteristics, the van der Waals force is used to have strong adhesion to various deposits. However, these techniques require more than one process each time to produce a single layer of ciliary structure, and the process is also very complicated or sensitive to the surrounding environment, which does not significantly affect the mass production for mass production.
반면에 본 발명의 3차원 복잡 다층 구조물 제작 방법을 적용할 경우 2층 이상의 다층 미세 섬모구조를 1회의 공정에 제작 가능하고 종래 기술에 비해 획기적으로 단순하게 제작 가능하다. 또한 본 발명을 2회 반복적으로 사용 가능하므로 4층 이상의 패턴 제작 또한 가능하다. 제작에 있어 기존 임프린트 기반 시설을 이용할 수 있어 대량 생산이 가능한 장점이 있다.On the other hand, when applying the three-dimensional complex multilayer structure manufacturing method of the present invention it is possible to manufacture a multi-layer fine cilia structure of two or more layers in one process, and it is possible to manufacture significantly simpler than the prior art. In addition, since the present invention can be used repeatedly, a pattern of four or more layers is also possible. Existing imprint infrastructure can be used in production, which allows the mass production.
도 1은 제 1 패턴이 프리즘 패턴이고 제 2 패턴이 상기 제 1 패턴의 평행방향에 직교하는 프리즘 패턴인 본 발명 일 실시예의 사시도이다.1 is a perspective view of an embodiment of the present invention in which the first pattern is a prism pattern and the second pattern is a prism pattern orthogonal to the parallel direction of the first pattern.
도 2는 도 1의 부분 확대도이다.FIG. 2 is a partially enlarged view of FIG. 1.
도 3은 평행곡선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행곡선의 제 2 패턴이 조합된 본 발명 일 실시예의 평면도이다.3 is a plan view of an embodiment of the present invention in which a first pattern of parallel curves and a second pattern of parallel curves orthogonal to the parallel direction of the first pattern are combined.
도 4는 평행곡선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행선의 제 2 패턴이 조합된 본 발명 일 실시예의 평면도이다.4 is a plan view of an embodiment of the present invention in which a first pattern of parallel curves and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined.
도 5는 평행지그재그선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행지그재그선의 제 2 패턴이 조합된 본 발명 일 실시예의 평면도이다.5 is a plan view of an embodiment of the present invention in which a first pattern of parallel zigzag lines and a second pattern of parallel zigzag lines orthogonal to the parallel direction of the first pattern are combined.
도 6은 평행지그재그선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행선의 제 2 패턴이 조합된 본 발명 일 실시예의 평면도이다.6 is a plan view of an embodiment of the present invention in which a first pattern of parallel zigzag lines and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined.
도 7은 평행곡선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행지그재그선 및 평행선의 제 2 패턴이 조합된 본 발명 일 실시예의 평면도이다.7 is a plan view of an embodiment of the present invention in which a first pattern of parallel curves and a parallel zigzag line orthogonal to the parallel direction of the first pattern and a second pattern of parallel lines are combined.
도 8은 패턴의 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루가 각각 삼각형의 세 꼭지점인 본 발명 일 실시예의 단면도이다.8 is a cross-sectional view of an embodiment of the present invention in which a pair of valleys adjacent to each other among the waveforms formed by the cross section of the pattern and the floor between them are three vertices of a triangle.
도 9는 도 8에서 마루가 둥글게 깎인 본 발명 일 실시예의 단면도이다.9 is a cross-sectional view of an embodiment of the present invention with the floor rounded in FIG. 8.
도 10은 패턴의 단면이 이루는 파형 중 서로 인접한 한 쌍의 골이 활꼴의 현의 양 끝점이고 그 사이의 마루가 상기 활꼴의 호 중의 한 점인 본 발명 일 실시예의 단면도이다.10 is a cross-sectional view of an embodiment of the present invention in which a pair of valleys adjacent to each other among the waveforms formed by the cross section of the pattern are both end points of the bow string and the floor between them is one of the arcs of the bow.
도 11은 패턴의 단면이 이루는 파형 중 서로 인접한 한 쌍의 골이 타원활꼴의 현의 양 끝점이고 그 사이의 마루가 상기 타원활꼴의 타원호 중의 한 점인 본 발명 일 실시예의 단면도이다.11 is a cross-sectional view of an embodiment of the present invention in which a pair of adjacent bones among the waveforms formed by the cross section of the pattern are both end points of the elliptic bow string and the floor between them is one of the elliptical arcs of the elliptical bow.
도 12 및 도 13은 본 발명의 3차원 복잡 다층 구조물 제조에 사용되는 마스크 몰드의 제조과정을 나타낸 개념도이다.12 and 13 are conceptual views illustrating a manufacturing process of a mask mold used for manufacturing a three-dimensional complex multilayer structure of the present invention.
도 14 및 도 15는 마스터로서의 본 발명의 3차원 복잡 다층 구조물 제조방법의 일 실시예를 나타낸 개념도이다.14 and 15 are conceptual views illustrating one embodiment of a method for manufacturing a three-dimensional complex multilayer structure of the present invention as a master.
도 16은 마스터로부터 본 발명의 3차원 복잡 다층 구조물 제조방법의 일 실시예를 나타낸 개념도이다.16 is a conceptual diagram illustrating an embodiment of a method for manufacturing a three-dimensional complex multilayer structure of the present invention from a master.
도 17은 제 1 패턴이 프리즘 패턴이고 제 2 패턴이 상기 제 1 패턴의 평행방향에 직교하는 프리즘 패턴인 본 발명 일 실시예를 촬영한 사진이다.FIG. 17 is a photograph of an embodiment of the present invention in which a first pattern is a prism pattern and a second pattern is a prism pattern orthogonal to the parallel direction of the first pattern.
도 18은 도 17의 부분 확대사진이다.18 is a partially enlarged photograph of FIG. 17.
도 19 내지 도 22는 종래 도광판 (도 19)에 확산판 (도 20), 제 1 집광시트 (도 21) 및 제 2 집광시트 (도 22)를 사용한 경우의 시야각 분석 도면이다.19 to 22 are view angle analysis diagrams in the case of using a diffusion plate (FIG. 20), a first light collecting sheet (FIG. 21) and a second light collecting sheet (FIG. 22) in a conventional light guide plate (FIG. 19).
도 23 및 도 24는 본 발명에 따른 3차원 복잡 다층 구조물을 도광판 (도 23)으로 사용하고, 여기에 확산판 (도 24)을 사용한 경우의 시야각 분석 도면이다.23 and 24 are view angle analysis diagrams when the three-dimensional complex multilayer structure according to the present invention is used as a light guide plate (FIG. 23) and a diffusion plate (FIG. 24) is used.
도 25은 종래 도광판에 확산판을 사용한 경우의 시야각 분석 도면이다.25 is a view angle analysis diagram when a diffusion plate is used in a conventional light guide plate.
도 26는 종래 도광판에 확산판, 제 1 집광시트 및 제 2 집광시트를 사용한 경우의 시야각 분석 도면이다.FIG. 26 is a view angle analysis diagram when a diffusion plate, a first light collecting sheet, and a second light collecting sheet are used in a conventional light guide plate. FIG.
도 27은 종래 도광판에 확산판 및 본 발명의 3차원 복잡 다층 구조물을 광학시트로 사용한 경우의 시야각 분석 도면이다.27 is a view angle analysis diagram when a diffusion plate and a three-dimensional complex multilayer structure of the present invention are used as an optical sheet in a conventional light guide plate.
이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 설명되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, many specific details such as specific components are described in the following description, which is provided to help a more general understanding of the present invention, and the present invention may be practiced without these specific details. It is self-evident to those who have knowledge of the world. In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
우선, 본 명세서에 사용된 용어 중 일부에 대해 정의한다.First, some of the terms used herein are defined.
본원 명세서에서, 기판으로부터 높이에 따라 패턴의 형상이 다른 구조물을 각각 하나의 층으로 간주하므로 이들을 모두 포함하고 있는 구조물을 다층이라고 지칭하기로 한다. In this specification, structures having different shapes of patterns according to heights from a substrate are regarded as one layer, and thus, a structure including all of them is referred to as a multilayer.
도 14 내지 도 16에 도시된 3차원 복잡 다층 구조물의 단면을 예로 들어 설명하면, 제 1 기본 몰드에 높이 H1으로 형성된 제1 패턴, 제 1 패턴과 평행하지 않으면서 제 1 패턴으로부터 소정 높이(T)에 높이 H2로 형성된 제 2 패턴이라 할 때, 상기 소정 높이(T)는 제 2 패턴의 두께 또는 제 3 패턴으로 표현할 수 있다. 제 2 패턴과 제 3 패턴의 높이가 클 경우에는 각각의 구조가 갖는 기능이 존재하기 때문이다. Referring to the cross-sectional view of the three-dimensional complex multilayer structure illustrated in FIGS. 14 to 16 as an example, the first pattern formed with the height H1 in the first basic mold, the predetermined height T from the first pattern without being parallel to the first pattern When the second pattern is formed to have a height H2, the predetermined height T may be expressed by the thickness or the third pattern of the second pattern. This is because when the height of the second pattern and the third pattern is large, the function of each structure exists.
제 1 유형에 따르면, 제 3 패턴의 높이(T)는 제 1 패턴의 높이(H1)와 같거나 작고(T≤H1) 제 2 패턴의 높이 (H2)와 같거나 작을 수 있다(T≤H2). 이때 제 3 패턴의 높이(T)가 0에 가까운 경우는, 예를 들어 도 18의 패턴과 같이 제 1 패턴 바로 위에 제 2 패턴이 올라간 경우로 볼 수 있다. According to the first type, the height T of the third pattern may be equal to or smaller than the height H1 of the first pattern (T≤H1) and may be equal to or smaller than the height H2 of the second pattern (T≤H2). ). In this case, when the height T of the third pattern is close to 0, for example, as shown in the pattern of FIG. 18, it may be regarded as a case where the second pattern is directly raised over the first pattern.
제 2 유형은 제 3 패턴의 높이가 제 1 패턴 및 제 2 패턴의 높이보다 큰 경우이다 (T>H1, T>H2). 패턴의 전체 높이는 유효탄성계수(effective elastic modulus)에 중요한 요소인데 제3 유형과 같이 T가 훨씬 크다면(H2<H1<<T) T에 의해 전체 높이(H1+T+H2)가 결정되므로 제 3 패턴이 구조적(또는 광학적) 기능을 수행하게 된다. The second type is when the height of the third pattern is greater than the height of the first pattern and the second pattern (T> H1, T> H2). The overall height of the pattern is an important factor in the effective elastic modulus, but if T is much larger (H2 <H1 << T) like the third type, then the overall height (H1 + T + H2) is determined by T. Three patterns will perform a structural (or optical) function.
표 1
제1유형 제2유형 제3유형
Figure PCTKR2013005213-appb-I000001
Figure PCTKR2013005213-appb-I000002
Figure PCTKR2013005213-appb-I000003
Table 1
Type 1 Type 2 Type 3
Figure PCTKR2013005213-appb-I000001
Figure PCTKR2013005213-appb-I000002
Figure PCTKR2013005213-appb-I000003
본 명세서에서 본 발명의 3차원 복잡 다층 구조물을 이용한 복합 광학부품이란, 두 방향에서 광을 상기 복합 광학부품에 수직한 방향으로 모아 주는 광학부재로서, 광학시트나 에지형 LCD에서의 도광판 또는 직하형 LCD에서의 확산판 그리고 태양광 발전장치 분야에서 집광시트나 집광판을 가리킨다.In the present specification, a composite optical component using a three-dimensional complex multilayer structure of the present invention is an optical member that collects light in two directions perpendicular to the composite optical component, and is a light guide plate or a direct type in an optical sheet or an edge type LCD. In the field of diffusers in LCDs and photovoltaic devices, it refers to light collecting sheets or panels.
본 명세서에서 활성에너지선이란, 소정의 수지를 경화시킬 수 있는 정도의 에너지를 가진 입자선 및 전자기파를 함께 지칭하며, 자외선, 레이저, 마이크로웨이브, 전자선(electron beam), X-선 등을 포함한다.In the present specification, the active energy ray refers to both a particle beam and an electromagnetic wave having an energy enough to cure a predetermined resin, and include ultraviolet rays, lasers, microwaves, electron beams, X-rays, and the like. .
실시예Example
이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.
본 발명의 3차원 복잡 다층 구조물은 상술한 바와 같은 목적을 달성하기 위하여, 판상의 일면에 서로 두께가 상이한 제 1 패턴 및 제 2 패턴, 또는 제 1 패턴, 제 2 패턴 및 제 3 패턴이 형성되고, 상기 제 1 패턴은 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고, 상기 제 2 패턴은 상기 제 1 패턴에 평행하지 않고, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고, 상기 제 1 패턴과 제 2 패턴의 경계는 다각형, 원, 타원 및 그 조합으로 이루어진 군에서 선택된 도형이고, 상기 도형은 상기 판상의 일면에 반복형성되는 것을 가장 주요한 특징으로 한다.In order to achieve the object as described above, the three-dimensional complex multilayer structure of the present invention is formed with a first pattern and a second pattern having different thicknesses, or a first pattern, a second pattern, and a third pattern on one surface of a plate. The first pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, wherein the second pattern is not parallel to the first pattern, and parallel lines, parallel curves, and parallels do not meet each other. A zigzag line and a combination thereof, and the boundary between the first pattern and the second pattern is a figure selected from the group consisting of polygons, circles, ellipses, and combinations thereof, and the figure is repeatedly formed on one surface of the plate. The most important feature.
본 발명은 이처럼 둘 이상의 패턴을 하나의 3차원 복잡 다층 구조물의 동일 면에 형성함으로써 여러 가지 기능, 예를 들어 광학부품으로 사용되는 경우에는 하나의 광학부품으로써 여러 개의 광학부품의 기능을 수행할 수 있다. 예컨대, 상기 제 1 패턴과 제 2 패턴이 모두 프리즘 패턴이라면 본 발명의 3차원 복잡 다층 구조물을 이용한 광학시트는 두 방향에서 집광하는 효과를 거둘 수 있다. 그리고, 제 1 패턴은 프리즘 패턴이고 제 2 패턴은 확산패턴이라면 집광시트와 확산시트의 기능을 동시에 수행할 수 있다.In the present invention, by forming two or more patterns on the same surface of one three-dimensional complex multilayer structure, various functions, for example, when used as optical parts, can perform the functions of several optical parts as one optical part. have. For example, if the first pattern and the second pattern are both prism patterns, the optical sheet using the three-dimensional complex multilayer structure of the present invention may have the effect of condensing in two directions. If the first pattern is a prism pattern and the second pattern is a diffusion pattern, the functions of the light collecting sheet and the diffusion sheet may be simultaneously performed.
특히, 상기 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택된 제 1 패턴의 평행방향 (도 1에서 방향 1)과, 상기 제 2 패턴 중 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고 상기 제 1 패턴에 평행하지 않은 일련의 선의 평행방향 (도 2에서 방향 2)이 서로 직교하는 본 발명 3차원 복잡 다층 구조물은 서로 직교하는 방향으로 집광하는 효과를 거둘 수 있어, 광학부품으로 사용하는 경우 휘도를 최대화할 수 있다.In particular, the parallel direction (parallel 1 in FIG. 1) of the first pattern selected from the group consisting of parallel lines, parallel curves, parallel zig-zag lines, and combinations thereof, which do not meet each other, parallel lines, parallel curves, The three-dimensional complex multilayer structure of the present invention, wherein the parallel direction (direction 2 in FIG. 2) of a series of lines selected from the group consisting of parallel zigzag lines and combinations thereof and not parallel to the first pattern is orthogonal to each other, is focused in a direction perpendicular to each other. In this case, the luminance can be maximized when used as an optical component.
도 1 및 도 2는 제 1 패턴과 제 2 패턴이 프리즘 패턴이며, 서로 직교하는 경우의 본 발명의 일 실시예로서, 제 2 패턴의 두께가 제 1 패턴의 두께보다 크고, 즉, 제 3 패턴이 형성되어 있고(특별히 도시되지 않았으나), 제 1 패턴과 제 2 패턴의 경계는 사각형을 이룬다. 이러한 패턴이 형성된 3차원 복잡 다층 구조물을 도광판이나 확산판으로 이용하면 별도의 집광시트 없이도 충분한 정면 휘도를 달성할 수 있으며, 만약 광학시트에 이러한 패턴이 형성된다면 종래 두 장의 광학시트가 수행하던 집광효과를 한 장의 광학시트로 구현할 수 있다.1 and 2 illustrate an embodiment of the present invention in which the first pattern and the second pattern are prismatic patterns, and are orthogonal to each other, and the thickness of the second pattern is greater than the thickness of the first pattern, that is, the third pattern. Are formed (not specifically shown), and the boundary between the first pattern and the second pattern forms a rectangle. If a three-dimensional complex multilayer structure in which such a pattern is formed is used as a light guide plate or a diffusion plate, sufficient front luminance can be achieved without a separate light collecting sheet. If such a pattern is formed on an optical sheet, the light collecting effect of two conventional optical sheets is performed. Can be implemented as a single optical sheet.
여기서 상기 제 1 패턴과 제 2 패턴의 경계를 이루는 사각형의 한 변의 길이는 1 내지 5000 μm인 것이 바람직한데, 상기 범위 미만이면 패턴 형성이 어렵고 몰드 자체를 제작하기가 지나치게 힘들어진다. 만일 본 발명의 3차원 복잡 다층 구조물을 광학부품으로 사용하는 경우에는 상기 상기 범위를 초과하면 육안으로 식별이 가능해 균일한 휘도를 구현할 수 없으며 그 결과 디스플레이 장치로서 사용할 수 없으나, 다른 용도에서는 특별히 제한되지 않는다.The length of one side of the quadrangle that forms the boundary between the first pattern and the second pattern is preferably 1 to 5000 μm. If it is less than the above range, the pattern is difficult to form and the mold itself becomes too difficult to manufacture. In the case of using the three-dimensional complex multilayer structure of the present invention as an optical component, if the above range is exceeded, it can be visually identified to realize a uniform brightness, and as a result, it cannot be used as a display device, but is not particularly limited in other applications. Do not.
본 발명의 3차원 복잡 다층 구조물은 서로 직교하는 평행선뿐만 아니라, 평행곡선과 평행지그재그선을 구비할 수도 있으며, 제 1 패턴과 제 2 패턴의 경계는 사각형 외에 다각형, 원 또는 타원일 수 있고, 이들의 조합도 가능하다.The three-dimensional complex multilayer structure of the present invention may have not only parallel lines orthogonal to each other, but also parallel and parallel zigzag lines, and the boundary between the first pattern and the second pattern may be polygons, circles, or ellipses in addition to quadrangles. Combination of is also possible.
예컨대, 도 3은 평행곡선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행곡선의 제 2 패턴이 조합된 예이고, 그 경계는 사각형이다.For example, FIG. 3 shows an example in which a first pattern of parallel curves and a second pattern of parallel curves orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a quadrangle.
도 4는 평행곡선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행선의 제 2 패턴이 조합된 예이고, 그 경계는 사각형이다.4 is an example in which a first pattern of parallel curves and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a quadrangle.
도 5는 평행지그재그선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행지그재그선의 제 2 패턴이 조합된 예이고, 그 경계는 원이다.5 shows an example in which a first pattern of parallel zigzag lines and a second pattern of parallel zigzag lines orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a circle.
도 6은 평행지그재그선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행선의 제 2 패턴이 조합된 예이고, 그 경계는 원이다.6 shows an example in which a first pattern of parallel zig-zag lines and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined, and the boundary thereof is a circle.
도 7은 평행곡선의 제 1 패턴과 상기 제 1 패턴의 평행방향에 직교하는 평행지그재그선 및 평행선의 제 2 패턴이 조합된 예이고, 그 경계는 원 및 사각형이다.FIG. 7 shows an example in which a first pattern of parallel curves and a parallel zigzag line and a second pattern of parallel lines orthogonal to the parallel direction of the first pattern are combined, and the boundaries thereof are circles and squares.
본 발명의 상기 제 1 패턴 및 제 2 패턴은 열 경화성 수지 또는 활성에너지선 경화성 수지를 소재로 구현된 미세구조이다.The first pattern and the second pattern of the present invention is a microstructure implemented from a thermosetting resin or an active energy ray curable resin.
활성에너지선 경화수지는 활성에너지선에 의해 경화가 이루어지는 수지를 가리킨다. 종래 수지의 경화는 주로 열에 의해 이루어졌으나, 열경화는 최대 가열온도와 냉각시 상온과의 온도차에서 발생하는 열팽창에 기한 부피수축과 경화반응 자체에 의한 부피수축이 함께 작용하여 크랙(crack)이 발생할 수 있고 또한 정교한 치수를 획득하기 곤란하다. 나아가, 열경화 과정에 의해 발생한 열 잔류응력은 부품의 수명을 단축시키고, 경화공정에 많은 열에너지를 필요로 하며 성형품의 크기에 제한이 있고, 경화에 소요되는 시간이 길다는 단점이 있다.Active energy ray hardening resin refers to resin in which hardening is performed by active energy ray. Conventional curing of the resin was mainly performed by heat, but thermal curing is caused by the volume shrinkage due to thermal expansion caused by the temperature difference between the maximum heating temperature and the normal temperature during cooling, and the volume shrinkage due to the curing reaction itself. It is also difficult to obtain sophisticated dimensions. Furthermore, the thermal residual stress generated by the thermosetting process shortens the life of the part, requires a lot of thermal energy in the curing process, has a limitation in the size of the molded article, and has a long time for curing.
이에 비해 활성에너지선에 의한 경화공정은 상기 열경화공정의 문제점 (크랙 발생, 저정밀도, 열 잔류응력 등)이 발생하지 않고, 에너지 및 시간 소모량이 현저히 적으며, 성형품의 크기에 제한을 받지 않는 장점이 있다.On the other hand, the hardening process by the active energy ray does not cause the problems of the thermal curing process (cracking, low precision, thermal residual stress, etc.), significantly less energy and time consumption, and is not limited by the size of the molded article. There is an advantage.
한편, 상기 제 1 패턴 및 제 2 패턴의 평행방향에 수직한 단면은 파형(波形)을 이루고, 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루는 각각 삼각형의 세 꼭지점, 활꼴의 현의 양 끝점과 호 중의 한 점, 타원활꼴의 현의 양 끝점과 타원호 중의 한 점, 또는 상기 삼각형 중 마루가 둥글게 깎인 것일 수 있다.On the other hand, the cross section perpendicular to the parallel direction of the first pattern and the second pattern forms a waveform, and a pair of valleys adjacent to each other and the floor between them are triangular vertices and arches, respectively, among the waveforms formed by the cross section. One end of the string and one of the arcs of the chord, both the end of the chord of the elliptic chord and one of the elliptical arcs, or the floor of the triangle may be rounded off.
도 8은 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루가 각각 삼각형의 세 꼭지점인 본 발명 3차원 복잡 다층 구조물의 제 1 패턴 또는 제 2 패턴의 일 실시예이다. 제 2 패턴으로 사용되는 경우에는 제 3 패턴이 두께 T로 형성될 수 있다. FIG. 8 is an embodiment of a first pattern or a second pattern of the present invention in the three-dimensional complex multilayer structure in which the pair of valleys adjacent to each other among the waveforms formed by the cross section and the floor between them are three vertices of a triangle. When used as the second pattern, the third pattern may be formed to a thickness T.
이러한 패턴을 갖는 본 발명의 구조물을 프리즘 시트로 사용하면 서로 다른 2방향에 대한 동시 집광효과를 나타낸다. 프리즘 시트로 사용하는 경우, 상기 마루의 끼인각(협각), 즉 도 8의 각 A는 30 내지 150°인 것이 바람직한데, 상기 범위 미만이면 빛이 전반사하여 통과할 수 없고, 몰드 가공이 어려우며, 끝이 뾰족해 부러지기 쉬워 취급성이 떨어진다. 반대로 150°를 초과하면 프리즘이라기보다는 평면에 가까워져 집광효과가 떨어지고 그 결과 빛이 퍼짐에 따라 휘도가 감소한다.The use of the structure of the present invention having such a pattern as a prism sheet exhibits a simultaneous light collection effect in two different directions. When used as a prism sheet, the included angle (narrow angle) of the floor, that is, the angle A in FIG. 8 is preferably 30 to 150 °, but if it is less than the above range, light cannot totally pass through, and mold processing is difficult, This sharp and brittle is inferior in handleability. On the contrary, if it exceeds 150 °, it is closer to the plane than the prism, so that the condensing effect is reduced, and as a result, the brightness decreases as the light spreads.
도 9는 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골이 활꼴의 현의 양 끝점이고 그 사이의 마루가 상기 활꼴의 호 중의 한 점인 본 발명 3차원 복잡 다층 구조물의 제 1 패턴 또는 제 2 패턴의 일 실시예이다. 이러한 패턴을 갖는 3차원 복잡 다층 구조물을 확산시트로 사용하게 되면 빛을 퍼지게 만들어 시야각을 넓히고, 휘도를 균일하게 할 수 있다.9 is a first or second pattern of the three-dimensional complex multilayer structure of the present invention in which a pair of valleys adjacent to each other among the waveforms formed by the cross section are both end points of the bow string and the floor therebetween is one point of the arc of the bow. Is one embodiment. When a three-dimensional complex multilayer structure having such a pattern is used as a diffusion sheet, light can be diffused to widen the viewing angle and make the luminance uniform.
도 10은 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골이 타원활꼴의 현의 양 끝점이고 그 사이의 마루가 상기 타원활꼴의 타원호 중의 한 점인 본 발명 3차원 복잡 다층 구조물의 제 1 패턴 또는 제 2 패턴의 일 실시예이다. 이러한 3차원 복잡 다층 구조물 역시 상기 원형활꼴의 경우와 마찬가지로 확산시트의 형태로서 빛을 퍼지게 만들어 시야각을 넓히고, 휘도를 균일하게 한다.10 is a first pattern of the three-dimensional complex multilayer structure of the present invention in which a pair of bones adjacent to each other among the waveforms formed by the cross-section are both end points of an elliptic bow and a floor between them is one of the elliptical arcs of the elliptic bow; One embodiment of the second pattern. Like the case of the circular bow, the three-dimensional complex multilayer structure also spreads light in the form of a diffusion sheet, thereby widening the viewing angle and making the luminance uniform.
그리고, 본 발명의 3차원 복잡 다층 구조물을 광학부품으로 사용하는 경우에는, 상기 단면이 이루는 파형의 골에서 마루까지의 높이, 즉 도 8 내지 도 11의 H는 1 내지 500 μm인 것이 바람직한데, 상기 범위 미만이면 단차에 의한 패턴효과가 사라져버리고, 반대로 500 μm를 초과하면 육안으로 식별이 가능하여 시인성이 떨어지고 지나치게 두꺼운 결과를 초래한다.In addition, in the case of using the three-dimensional complex multilayer structure of the present invention as an optical component, it is preferable that the height from the valley to the floor of the waveform formed by the cross section, that is, H of FIGS. 8 to 11 is 1 to 500 μm. If it is less than the above range, the pattern effect due to the step disappears. On the contrary, if it exceeds 500 μm, it is visually identifiable, resulting in poor visibility and an excessively thick result.
또한, 상기 제 1 패턴과 제 2 패턴이 함께 구현된 본 발명의 3차원 복잡 다층 구조물을 광학시트로 사용하는 경우 굴절률은 1.3 내지 1.9인 것이 바람직하다.In addition, when using the three-dimensional complex multilayer structure of the present invention implemented with the first pattern and the second pattern as an optical sheet, the refractive index is preferably 1.3 to 1.9.
또한, 상기 광학부품은 광의 이동경로를 유도 및 제어하는 광학부품이라면 제한 없이 해당된다. 예컨대, 광경로를 집중 또는 분산시키는 각종 광학시트, 에지형 액정표시장치에서의 도광판, 직하형 액정표시장치에서의 확산판이거나, 태양광 발전장치에서 사용되는 집광시트 또는 집광판일 수 있다.In addition, the optical component is not limited so long as it is an optical component for inducing and controlling the movement path of light. For example, various optical sheets for concentrating or dispersing light paths, light guide plates in edge type liquid crystal displays, diffusion plates in direct type liquid crystal displays, or light collecting sheets or light collecting plates used in photovoltaic devices.
본 발명의 3차원 복잡 다층 구조물은 상기 언급한 광학부품 이외에도, 칼라필터와 같은 디스플레이 광학부품, 차세대 디스플레이 공정 (TFT, OTFT, Oxide TFT, 플렉시블 디스플레이, 투명 디스플레이), 차세대 삼차원 반도체, 미세섬모구조를 이용한 건식접착, 마이크로/나노 압전소자, 조명 광학부품, 미세패턴을 이용한 바이오셀/바이러스 연구 등에 이용될 수 있으나, 이들로 한정되는 것은 아니다. In addition to the above-mentioned optical components, the three-dimensional complex multilayer structure of the present invention can be used for display optical components such as color filters, next-generation display processes (TFT, OTFT, Oxide TFT, flexible displays, transparent displays), next-generation three-dimensional semiconductors, and micro fine structures. It may be used for dry adhesion, micro / nano piezoelectric elements, illumination optical parts, biocell / virus research using micropatterns, but is not limited thereto.
한편, 본 발명의 3차원 복잡 다층 구조물은 예컨대 도 14 내지 도 15에 도시된 바와 같이 마스크 몰드를 이용하여 제조될 수 있다. On the other hand, the three-dimensional complex multilayer structure of the present invention can be manufactured using a mask mold, for example, as shown in Figs.
먼저, 일면에 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택된 제 1 패턴이 형성된 제 2 기본몰드 (12)를 준비한다 [도 14의 단계 (f), 도 15의 단계 (f')].First, a second basic mold 12 having a first pattern selected from the group consisting of parallel lines, parallel curves, parallel zig-zag lines, and combinations thereof not formed on one surface thereof is prepared [step (f) of FIG. 14, FIG. 15). Step (f ')].
이와 별도로, 활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체 (20); 상기 제 1 지지체 (20)의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크 (30); 및 상기 제 1 지지체 (20) 및 마스크 (30)를 덮고, 상기 제 1 지지체 (20)를 향하는 면의 반대쪽 면에 제 2 패턴이 형성된 패턴층 또는 상기 마스크 (30)가 형성된 제 1 지지체 (20)의 일면 중 제 1 지지체 (20)가 노출된 부분에 형성된 제 2 패턴을 포함하고, 상기 마스크 (30)는 활성에너지선을 투과하지 않는 마스크 몰드 (60,60')를 준비한다 [도 14의 단계 (f), 도 15의 단계 (f')].Separately, the flexible or rigid plate-like first support 20 through which the active energy ray is transmitted; A mask 30 in which a polygon, a circle, an ellipse or a combination thereof is repeatedly formed on one surface of the first support 20, or a polygon, a circle, an ellipse or a combination thereof is repeatedly perforated; And a pattern layer on which the second pattern is formed on the surface opposite to the surface facing the first support 20 and the mask 30, or on which the mask 30 is formed. The first support 20 of the one surface of the) includes a second pattern formed on the exposed portion, the mask 30 prepares the mask mold (60, 60 ') that does not transmit the active energy ray (Fig. 14 Step (f), step (f ') of FIG. 15].
여기서, 상기 제 2 패턴은 상기 제 1 패턴에 평행하지 않고, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택될 수 있다.Here, the second pattern may be selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other.
그 다음, 상기 제 2 기본몰드 (12)의 제 1 패턴 또는 상기 마스크 몰드 (60,60') 위에 제 2 몰드용 수지 (42)를 도포하고, 상기 제 2 패턴의 평행방향이 상기 제 1 패턴의 평행방향과 평행하지 않도록, 상기 제 2 몰드용 수지 (42)를 중심으로 상기 제 2 기본몰드 (12)와 상기 마스크 몰드 (60,60')를 밀착시킨다 [도 14의 단계 (f), 도 15의 단계 (f')]. 나아가, 상기 제 2 패턴의 평행방향이 상기 제 1 패턴의 평행방향과 직교하도록, 상기 제 2 몰드용 수지 (42)를 중심으로 상기 제 2 기본몰드 (12)와 상기 마스크 몰드 (60,60')를 밀착시키는 것이 더욱 바람직하다.Then, a second mold resin 42 is applied onto the first pattern of the second base mold 12 or the mask molds 60 and 60 ', and the parallel direction of the second pattern is the first pattern. The second base mold 12 and the mask mold 60, 60 'are brought into close contact with each other so that the second mold resin 42 is not parallel to the parallel direction of the step (f) of FIG. Step (f ') of FIG. 15]. Further, the second base mold 12 and the mask mold 60, 60 ′ centering on the second mold resin 42 so that the parallel direction of the second pattern is perpendicular to the parallel direction of the first pattern. ) Is more preferable.
이어서, 상기 마스크 몰드 (60,60')를 상기 제 2 몰드용 수지 (42) 방향으로 가압하고, 상기 마스크 몰드 (60,60')에 활성에너지선을 조사 또는 가열함으로써, 상기 2 몰드용 수지를 경화시켜 제 2 몰드 (52)를 형성한다 [도 14의 단계 (g), 도 15의 단계 (g')].Subsequently, the mask molds 60 and 60 'are pressed in the direction of the resin 42 for the second mold, and active energy rays are irradiated or heated to the mask molds 60 and 60', thereby producing the resin for the two molds. Is cured to form a second mold 52 (step (g) in FIG. 14, step (g ') in FIG. 15).
그런 다음, 상기 마스크 몰드 (60,60')를 상기 제 2 몰드 (52)와 분리하고 [도 14의 단계 (h), 도 15의 단계 (h')], 상기 제 2 몰드용 수지 (42) 중 경화되지 않은 부분을 용제로 용해하여 제거하여 [도 14의 단계 (i), 도 15의 단계 (i')], 본 발명에 따른 3차원 복잡 다층 구조물(70)을 제조한다 [도 14의 단계 (j), 도 15의 단계 (j)].Then, the mask mold 60, 60 'is separated from the second mold 52 (step (h) of FIG. 14, step (h') of FIG. 15), and the resin for the second mold 42 ), The uncured portion of the solution is dissolved by removing the solvent (step (i) of FIG. 14, step (i ′) of FIG. 15), thereby manufacturing a three-dimensional complex multilayer structure 70 according to the present invention [FIG. 14. Step (j), step (j) of FIG. 15].
본 발명의 3차원 복잡 다층 구조물은 상기 제조방법으로 제조할 수도 있지만, 상기 제조방법으로 제조된 3차원 복잡 다층 구조물(70)을 마스터로 하여 다시 몰드를 만들고 이로부터 제조할 수도 있다 (도 16 참조). Although the three-dimensional complex multilayer structure of the present invention may be manufactured by the above manufacturing method, a mold may be made again and manufactured from the three-dimensional complex multilayer structure 70 manufactured by the manufacturing method as a master (see FIG. 16). ).
구체적으로 도 16을 참조하면, 도 14 또는 15와 같이 제조된 다층 구조물(70)을 마스터로 하여 제 3 몰드용 수지 (44)를 도포하고, 상기 제 3 몰드용 수지 (44)에 제 2 지지체 (25)를 밀착시킨다 [도 16의 단계 (k)].Specifically, referring to FIG. 16, the third mold resin 44 may be coated using the multilayer structure 70 manufactured as shown in FIG. 14 or 15 as a master, and the second support may be applied to the third mold resin 44. (25) is brought into close contact (step (k) of FIG. 16).
상기 제 2 지지체 (25)를 상기 마스터 (70) 방향으로 가압하고, 활성에너지선을 조사 또는 가열함으로써, 상기 제 3 몰드용 수지 (44)를 경화시켜 제 3 몰드 (54)를 형성한다 [도 16의 단계 (l)]. 그런 다음, 상기 제 3 몰드 (54)를 상기 마스터 (70)로부터 분리한다 [도 16의 단계 (m)].The second support 25 is pressed in the direction of the master 70 and the active energy ray is irradiated or heated to cure the resin 44 for the third mold to form the third mold 54 [Fig. 16 steps (l)]. Then, the third mold 54 is separated from the master 70 (step (m) of FIG. 16).
이어서, 상기 제 3 몰드 (54) 또는 기판 (82)에 패턴용 수지 (84)를 도포하고, 상기 패턴용 수지 (84)를 중심으로 상기 제 3 몰드 (54)와 상기 기판 (82)을 밀착시킨다 [도 16의 단계 (n)].Subsequently, the patterning resin 84 is applied to the third mold 54 or the substrate 82, and the third mold 54 and the substrate 82 are brought into close contact with the patterning resin 84. [Step (n) of Fig. 16].
그리고, 상기 제 3 몰드 (54) 또는 상기 기판 (82)에 활성에너지선을 조사 또는 가열함으로써, 상기 패턴용 수지 (84)를 경화시켜 패턴 (86)을 형성한다 [도 16의 단계 (o)].Then, by irradiating or heating an active energy ray on the third mold 54 or the substrate 82, the pattern resin 84 is cured to form a pattern 86 (step (o) of FIG. 16). ].
상기 패턴 (86)이 형성된 본 발명의 3차원 복잡 다층 구조물 (80)을 상기 제 3 몰드 (54)로부터 분리한다 [도 16의 단계 (p)].The three-dimensional complex multilayer structure 80 of the present invention in which the pattern 86 is formed is separated from the third mold 54 (step (p) of FIG. 16).
한편, 상기 제 1 패턴 및 제 2 패턴은 다층 구조물의 일면에만 형성될 수도 있고, 또는 양면 모두에 형성될 수도 있다. 이는 하나의 다층 구조물의 양면에 별개의 패턴이 형성된 종래기술과 구별된다. 이처럼 하나의 다층 구조물의 양면에 패턴이 형성되는 경우에는 광학시트로 사용하게 되면 서로 다른 두 방향에서의 집광효과 등을 달성할 수 없으며, 그 결과 광학시트의 개수를 줄이거나 정면 휘도의 비약적 상승과 같은 본 발명의 효과를 충분히 누릴 수 없을 수 있으나 다른 용도라면 무관하다. On the other hand, the first pattern and the second pattern may be formed on only one surface of the multilayer structure, or may be formed on both surfaces. This is distinguished from the prior art in which separate patterns are formed on both sides of one multilayer structure. When the pattern is formed on both sides of one multilayer structure as described above, when used as an optical sheet, the light condensing effect in two different directions cannot be achieved, and as a result, the number of optical sheets is reduced or the frontal brightness is increased dramatically. The same effect of the present invention may not be fully enjoyed, but it is irrelevant for other uses.
또한, 최근 두 방향의 프리즘을 서로 겹치게 접착 또는 점착하여 두 장을 한 장처럼 제작하는 복합 (프리즘) 광학 시트 개발이 많이 이뤄지고 있다. 이러한 경우 두 방향에 대한 동시 집광이 이뤄질 수 있기는 하지만, 두 장의 지지체(PET)를 사용하고 있어 제조단가가 높고, 접착을 위해 끝단 프리즘이 뭉개져 광학적 기능이 떨어진다는 문제점이 있는 반면, 본 발명에 따르면 두 방향의 프리즘이 한 장의 지지체 일면에 형성될 수 있어 유리하다(표 2 참조). In recent years, there have been many developments of a composite (prism) optical sheet that produces two sheets as one sheet by bonding or adhering the prism in two directions overlapping each other. In this case, although the simultaneous condensing can be achieved in two directions, the use of two sheets of support (PET) has a problem in that the manufacturing cost is high and the end prism is crushed for adhesion, thereby degrading the optical function. According to this, the prism in two directions can be formed on one surface of the support (see Table 2).
표 2
종래기술 본 발명
Figure PCTKR2013005213-appb-I000004
Figure PCTKR2013005213-appb-I000005
TABLE 2
Prior art The present invention
Figure PCTKR2013005213-appb-I000004
Figure PCTKR2013005213-appb-I000005
한편, 본 발명의 3차원 복잡 다층 구조물 제조에 사용되는 상기 마스크 몰드 (60)는 활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체 (20), On the other hand, the mask mold 60 used in the manufacture of the three-dimensional complex multilayer structure of the present invention is a flexible or rigid plate-like first support 20 through which the active energy ray is transmitted,
상기 제 1 지지체 (20)의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크 (30), 및 A mask 30 in which a polygon, a circle, an ellipse, or a combination thereof is repeatedly formed on one surface of the first support 20, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly perforated, and
상기 제 1 지지체 (20) 및 마스크 (30)를 덮고, 상기 제 1 지지체 (20)를 향하는 면의 반대쪽 면에 패턴이 형성된 패턴층A pattern layer covering the first support 20 and the mask 30 and having a pattern formed on a surface opposite to the surface facing the first support 20.
을 포함하고, Including,
상기 마스크 (30)는 활성에너지선을 투과하지 않는 것을 특징으로 한다.The mask 30 is characterized in that it does not transmit active energy rays.
또는, 상기 마스크 몰드 (60')는 Alternatively, the mask mold 60 '
활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체 (20), A flexible or rigid plate-like first support 20 through which active energy rays are transmitted,
상기 제 1 지지체 (20)의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크 (30), 및 A mask 30 in which a polygon, a circle, an ellipse, or a combination thereof is repeatedly formed on one surface of the first support 20, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly perforated, and
상기 마스크 (30)가 형성된 제 1 지지체 (20)의 일면 중 제 1 지지체 (20)가 노출된 부분에 형성된 패턴A pattern formed on an exposed portion of the first support 20 of one surface of the first support 20 on which the mask 30 is formed
을 포함하고, Including,
상기 마스크 (30)는 활성에너지선을 투과하지 않는 것을 특징으로 한다.The mask 30 is characterized in that it does not transmit active energy rays.
또한, 상기 제 1 지지체 (20) 및 마스크 (30)는 상기 패턴층 또는 패턴과의 사이에 부착활성층을 추가로 구비함으로써, 상기 패턴층 또는 패턴의 탈락을 예방하는 것이 바람직하다.In addition, it is preferable that the first support 20 and the mask 30 further include an adhesion-activating layer between the pattern layer or the pattern to prevent the pattern layer or the pattern from falling off.
그리고, 상기 패턴층, 패턴 또는 부착활성층은 활성에너지선 또는 열에 의해 경화될 수 있다. 전술한 바와 마찬가지로, 열경화는 최대 가열온도와 냉각시 상온과의 온도차에서 발생하는 열팽창에 기한 부피수축과 경화반응 자체에 의한 부피수축이 함께 작용하여 크랙(crack)이 발생할 수 있고 또한 정교한 치수를 획득하기 곤란하다. 나아가, 열경화 과정에 의해 발생한 열 잔류응력은 부품의 수명을 단축시키고, 경화공정에 많은 열에너지를 필요로 하며 성형품의 크기에 제한이 있고, 경화에 소요되는 시간이 길다는 단점이 있어, 에너지 및 시간 소모량이 현저히 적으며, 성형품의 크기에 제한을 받지 않는 장점이 있는 활성에너지선에 의한 경화가 널리 이용되고 있다.In addition, the pattern layer, pattern or adhesion active layer may be cured by active energy rays or heat. As described above, thermal curing may cause cracks due to the action of volume shrinkage due to thermal expansion occurring at the temperature difference between the maximum heating temperature and room temperature during cooling and the volume shrinkage due to the curing reaction itself, and also have precise dimensions. Difficult to obtain Furthermore, the thermal residual stress generated by the thermosetting process shortens the life of the part, requires a lot of thermal energy in the curing process, has a limitation in the size of the molded article, and takes a long time to cure, resulting in energy and Remarkably low time consumption, hardening by active energy ray has the advantage that the size of the molded article is not limited is widely used.
상기 제 1 패턴 및 제 2 패턴은 상기 3차원 복잡 다층 구조물의 경우와 마찬가지로, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택된 패턴일 수 있다.The first pattern and the second pattern may be a pattern selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other, as in the case of the 3D complex multilayer structure.
또한, 상기 마스크 (30)는 특히 인쇄된 유색코팅 또는 증착된 불투명 금속일 수 있다.In addition, the mask 30 may in particular be a printed colored coating or a deposited opaque metal.
한편, 본 발명의 마스크 몰드 (60,60')는 예컨대 도 12 및 도 13에 도시된 바와 같이 임프린트 방식으로 제조될 수 있지만 이에 한정되는 것은 아니고, 잉크젯이나 스크린 인쇄에 의해 제조하는 것도 가능하다.Meanwhile, the mask molds 60 and 60 'of the present invention may be manufactured by an imprint method, for example, as shown in FIGS. 12 and 13, but are not limited thereto, and may also be manufactured by inkjet or screen printing.
도 12 및 도 13의 임프린트 방식을 예로 들어 구체적으로 설명한다. 먼저, 활성에너지선이 투과되는 연성 또는 강성의 판형 제 1 지지체 (20)의 일면 중 일부에 인쇄하여 유색코팅한다 [도 12의 단계 (a), 도 13의 단계 (a)]. 또한, 상기 유색코팅은 다각형, 원, 타원 또는 그 조합이 반복해서 인쇄되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공되도록 인쇄될 수 있다.The imprint method of FIGS. 12 and 13 will be described in detail as an example. First, a portion of one surface of the flexible or rigid plate-shaped first support 20 through which active energy rays are transmitted is printed and colored coated (step (a) of FIG. 12 and step (a) of FIG. 13). In addition, the colored coating may be printed such that a polygon, a circle, an ellipse or a combination thereof is repeatedly printed, or a polygon, a circle, an ellipse or a combination thereof is repeatedly printed.
필요한 경우, 상기 제 1 지지체 (20) 중 유색코팅이 인쇄된 면에 부착활성층용 수지를 도포하고 경화시켜 부착활성층을 형성시킬 수도 있다. 이러한 부착활성층은 상기 제 1 지지체 (20)와 후술할 제 1 몰드 (50)의 결합을 더욱 강하게 한다.If necessary, the adhesive active layer resin may be formed by coating and curing the resin for the adhesive active layer on the surface on which the colored coating is printed in the first support 20. This adhesion-activating layer further strengthens the bond between the first support 20 and the first mold 50 to be described later.
그리고, 활성에너지선 투과형 제 1 기본몰드 (10) 또는 상기 제 1 지지체 (20) 중 유색코팅이 인쇄된 면에 제 1 몰드용 수지 (40)를 도포하고, 상기 제 1 몰드용 수지 (40)를 중심으로 상기 제 1 지지체 (20)와 상기 제 1 기본몰드 (10)를 밀착시킨다 [도 12의 단계 (b), 도 13의 단계 (b)].Then, the first mold resin 40 is coated on the surface of the active energy ray transmitting first basic mold 10 or the first support 20 where the colored coating is printed, and the first mold resin 40 is applied. The first support 20 and the first base mold 10 are brought into close contact with each other (step (b) of FIG. 12 and step (b) of FIG. 13).
이어서, 상기 제 1 지지체 (20)를 상기 제 1 기본몰드 (10) 방향으로 가압하고, 상기 제 1 기본몰드 (10)에 활성에너지선을 조사 또는 가열함으로써, 상기 제 1 몰드용 수지 (40)를 경화시켜 마스크 몰드 (60,60')를 형성한다 [도 12의 단계 (c), 도 13의 단계 (c')]. 도 12의 단계 (c)는 제 1 기본 몰드 쪽에서 활성에너지선을 조사한 경우이고, 도 13의 단계 (c')는 제 1 지지체 쪽에서 활성에너지선을 조사한 경우이다. Subsequently, the first support 20 is pressed in the direction of the first base mold 10, and an active energy ray is irradiated or heated on the first base mold 10 to thereby form the first mold resin 40. To form mask molds 60 and 60 '(step (c) in FIG. 12, step (c') in FIG. 13). Step (c) of FIG. 12 is a case where the active energy ray is irradiated from the first base mold side, and step (c ') of FIG. 13 is a case where the active energy ray is irradiated from the first support side.
필요한 경우 상기 제 1 몰드용 수지 (40) 중 경화되지 않은 부분을 용제로 용해하여 제거하는 단계를 추가로 거칠 수도 있다.If necessary, the step of dissolving and removing the uncured portion of the first mold resin 40 with a solvent may be further roughened.
마지막으로, 상기 마스크 몰드 (60,60')를 상기 제 1 기본몰드 (10)로부터 분리하여 [도 12의 단계 (d), 도 13의 단계 (d')], 본 발명의 3차원 복잡 다층 구조물 (80) 제조에 사용되는 마스크 몰드 (60,60')를 수득하며 [도 12의 단계 (e), 도 13의 단계 (e')], 상기 유색코팅은 활성에너지선을 투과하지 않는 것을 특징으로 한다.Finally, the mask mold 60, 60 'is separated from the first base mold 10 (step (d) of FIG. 12, step (d') of FIG. 13), the three-dimensional complex multilayer of the present invention. A mask mold (60,60 ') used to manufacture the structure (80) is obtained (step (e) of FIG. 12, step (e') of FIG. 13), wherein the colored coating does not transmit active energy rays. It features.
또한, 본 발명의 마스크 몰드 (60,60')는 먼저 활성에너지선이 투과되는 연성 또는 강성의 판형 제 1 지지체 (20)의 일면 중 일부를 섀도우 마스크로 가리고, 불투명 금속을 증착시키는 단계로부터 시작될 수도 있다 [도 12의 단계 (a), 도 13의 단계 (a)]. 또한, 상기 불투명 금속은 다각형, 원, 타원 또는 그 조합이 반복해서 증착되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공되도록 증착될 수 있다.In addition, the mask molds 60 and 60 'of the present invention may first begin by depositing an opaque metal by covering part of one surface of the flexible or rigid plate-shaped first support 20 through which active energy rays are transmitted, with a shadow mask. [Step (a) of FIG. 12, step (a) of FIG. 13]. In addition, the opaque metal may be deposited such that a polygon, a circle, an ellipse, or a combination thereof is repeatedly deposited, or a polygon, a circle, an ellipse, or a combination thereof is repeatedly drilled.
필요한 경우, 상기 제 1 지지체 (20) 중 불투명금속이 증착된 면에 부착활성층용 수지를 도포하고 경화시켜 부착활성층을 형성시킬 수도 있다. 이러한 부착활성층은 상기 제 1 지지체 (20)와 후술할 제 1 몰드 (50)의 결합을 더욱 강하게 한다.If necessary, the adhesion active layer resin may be applied to the surface on which the opaque metal is deposited in the first support 20 and cured to form an adhesion active layer. This adhesion-activating layer further strengthens the bond between the first support 20 and the first mold 50 to be described later.
그리고, 활성에너지선 투과형 제 1 기본몰드 (10) 또는 상기 제 1 지지체 (20) 중 불투명 금속이 증착된 면에 제 1 몰드용 수지 (40)를 도포하고, 상기 제 1 몰드용 수지 (40)를 중심으로 상기 제 1 지지체 (20)와 상기 제 1 기본몰드 (10)를 밀착시킨다 [도 12의 단계 (b), 도 13의 단계 (b)].Then, the first mold resin 40 is coated on the surface where the opaque metal is deposited in the active energy ray transmitting first basic mold 10 or the first support 20, and the first mold resin 40 is applied. The first support 20 and the first base mold 10 are brought into close contact with each other (step (b) of FIG. 12 and step (b) of FIG. 13).
이어서, 상기 제 1 지지체 (20)를 상기 제 1 기본몰드 (10) 방향으로 가압하고, 상기 제 1 기본몰드 (10)에 활성에너지선을 조사 또는 가열함으로써, 상기 제 1 몰드용 수지 (40)를 경화시켜 마스크 몰드 (60,60')를 형성한다 [도 12의 단계 (c), 도 13의 단계 (c')].Subsequently, the first support 20 is pressed in the direction of the first base mold 10, and an active energy ray is irradiated or heated on the first base mold 10 to thereby form the first mold resin 40. To form mask molds 60 and 60 '(step (c) in FIG. 12, step (c') in FIG. 13).
필요한 경우 상기 제 1 몰드용 수지 (40) 중 경화되지 않은 부분을 용제로 용해하여 제거하는 단계를 추가로 거칠 수도 있다.If necessary, the step of dissolving and removing the uncured portion of the first mold resin 40 with a solvent may be further roughened.
마지막으로, 상기 마스크 몰드 (60,60')를 상기 제 1 기본몰드 (10)로부터 분리하여 [도 12의 단계 (d), 도 13의 단계 (d')], 본 발명의 3차원 복잡 다층 구조물 (80) 제조에 사용되는 마스크 몰드 (60,60')를 수득하며 [도 12의 단계 (e), 도 13의 단계 (e')], 상기 불투명 금속은 활성에너지선을 투과하지 않는 것을 특징으로 한다.Finally, the mask mold 60, 60 'is separated from the first base mold 10 (step (d) of FIG. 12, step (d') of FIG. 13), the three-dimensional complex multilayer of the present invention. A mask mold (60, 60 ') used to manufacture the structure (80) is obtained (step (e) of FIG. 12, step (e') of FIG. 13), wherein the opaque metal does not transmit active energy rays. It features.
이하에서는 본 발명에 의한 3차원 복잡 다층 구조물을 예를 들어 광학부품에 실제 적용한 경우의 효과를 설명한다. Hereinafter, the effect when the three-dimensional complex multilayer structure according to the present invention is actually applied to an optical component, for example.
도 17은 제 1 패턴이 프리즘 패턴이고 제 2 패턴이 상기 제 1 패턴의 평행방향에 직교하는 프리즘 패턴인 본 발명 일 실시예를 촬영한 사진이고, 도 18은 도 17의 부분 확대사진이다.17 is a photograph of an embodiment of the present invention in which a first pattern is a prism pattern and a second pattern is a prism pattern orthogonal to the parallel direction of the first pattern, and FIG. 18 is a partially enlarged photograph of FIG. 17.
그리고, 도 19 내지 도 22는 종래 도광판 (도 19)에 확산판 (도 20), 제 1 집광시트 (도 21) 및 제 2 집광시트 (도 22)를 사용한 경우의 시야각 분석 도면이다.19 to 22 are view angle analysis diagrams in the case of using a diffusion plate (FIG. 20), a first light collecting sheet (FIG. 21), and a second light collecting sheet (FIG. 22) in a conventional light guide plate (FIG. 19).
붉은 색으로 표시되는 부분이 휘도가 높은 부분인데, 종래 도광판 (도 19)의 경우 확산판 (도 20), 제 1 집광시트 (도 21) 및 제 2 집광시트 (도 22)까지 사용해야 중앙이 붉어지는 것을 확인할 수 있으며, 이로써 종래 도광판은 두 개의 집광시트가 반드시 필요함을 알 수 있다.The part displayed in red is a high luminance part. In the conventional light guide plate (FIG. 19), a diffuser plate (FIG. 20), a first condensing sheet (FIG. 21), and a second condensing sheet (FIG. 22) must be used. It can be confirmed that the light guide plate has a conventional light guide plate, so it can be seen that two light collecting sheets are necessary.
이에 반해, 본 발명의 3차원 복잡 다층 구조물을 도광판으로 하고, 여기에 확산판만 사용한 경우의 시야각 분석 도면을 살펴 보면 본 발명에 따른 구조물을 도광판으로 사용한 경우 (도 23), 우선 종래 도광판 (도 19)에 비해 휘도가 높으며, 확산판만 추가하였는데도 중앙이 붉어져 (도 24) 별도의 집광시트가 필요하지 않음을 알 수 있다. 이는 광학시트의 사용을 줄일 수 있어 경제적으로 이로울 뿐만 아니라, 장비 두께를 줄이는 효과도 거둘 수 있다.On the contrary, when the three-dimensional complex multilayer structure of the present invention is used as the light guide plate, and the viewing angle analysis drawing when only the diffusion plate is used, the structure according to the present invention is used as the light guide plate (FIG. 23), first, the conventional light guide plate (FIG. Compared with 19), the brightness is higher, and even though only the diffusion plate is added, the center becomes red (FIG. 24), and it can be seen that a separate light collecting sheet is not required. This can reduce the use of optical sheets, which is economically beneficial and can also reduce the thickness of equipment.
또한, 종래 도광판에 확산판을 얹은 경우에는 도 25와 같은 휘도를 보여 주는데, 종래의 광학시트 두 장을 얹은 경우 (도 26)와 본 발명의 다층 구조물을 도 17의 광학시트로서 한 장을 얹은 경우 (도 27)를 비교하면, 전체적으로 도 27의 경우 휘도가 더 높음을 확인할 수 있어, 필요한 광학시트의 매수가 줄어듦이 확인되었다.In addition, when the diffusion plate is mounted on the conventional light guide plate, the brightness is the same as that of FIG. 25. When the two conventional optical sheets are mounted (FIG. 26) and the multilayer structure of the present invention is mounted on one sheet as the optical sheet of FIG. 17. Comparing the case (FIG. 27), it was confirmed that the luminance in the case of Figure 27 as a whole, the number of sheets required optical sheet is reduced.
이상에서는 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.In the above description of the preferred embodiment of the present invention, the present invention is not limited to the specific embodiments described above, those skilled in the art various modifications without departing from the gist of the present invention Of course it is possible. Therefore, the scope of the present invention should not be construed as being limited to the above embodiments, but should be defined by the claims below and equivalents thereof.
본 발명에 따른 3차원 복잡 다층 구조물은 종래 한가지의 단순한 패턴만 형성된 소자와는 다르게 서로 다른 패턴이 복합적으로 형성되어 있고, 간단한 공정으로 제조될 수 있어, 디스플레이 광학부품(도광판, 확산판, 프리즘, 칼라필터), 차세대 디스플레이 공정 (TFT, OTFT, Oxide TFT, 플렉시블 디스플레이, 투명 디스플레이), 차세대 삼차원 반도체, 미세섬모구조를 이용한 건식접착, 마이크로/나노 압전소자, 조명 광학부품, 미세패턴을 이용한 바이오셀/바이러스 연구 등에 유용하게 이용될 수 있으나, 이들로 한정되는 것은 아니다. The three-dimensional complex multilayer structure according to the present invention is different from the conventional device formed with only one simple pattern, and different patterns are formed in a complex, and can be manufactured by a simple process, and thus display optical components (light guide plates, diffuser plates, prisms, Color filter), next-generation display process (TFT, OTFT, Oxide TFT, flexible display, transparent display), next-generation three-dimensional semiconductor, dry adhesion using micro fine structure, micro / nano piezoelectric element, lighting optical parts, bio cell using fine pattern It may be usefully used for virus research, but is not limited thereto.

Claims (15)

  1. 판상의 일면 또는 양면에 서로 두께가 상이한 제 1 패턴 및 제 2 패턴이 형성되고, First and second patterns having different thicknesses are formed on one or both surfaces of the plate,
    상기 제 1 패턴은 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고, The first pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other,
    상기 제 2 패턴은 상기 제 1 패턴에 평행하지 않고, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되고, The second pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other,
    상기 제 1 패턴과 제 2 패턴의 경계는 다각형, 원, 타원 및 그 조합으로 이루어진 군에서 선택된 도형이고, The boundary between the first pattern and the second pattern is a figure selected from the group consisting of polygons, circles, ellipses, and combinations thereof.
    상기 도형은 상기 판상의 일면 또는 양면에 반복형성되는 것을 특징으로 하는 3차원 복잡 다층 구조물.The figure is a three-dimensional complex multilayer structure, characterized in that repeated on one or both sides of the plate shape.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 패턴의 평행방향과 상기 제 2 패턴의 평행방향이 서로 직교하는 것을 특징으로 하는 3차원 복잡 다층 구조물.And the parallel direction of the first pattern and the parallel direction of the second pattern are perpendicular to each other.
  3. 제 1 항에 있어서, 상기 제 1 패턴과 상기 제 2 패턴이 소정 높이로 이격 형성되도록 하는 제 3 패턴을 구비한 것을 특징으로 하는 3차원 복잡 다층 구조물. The three-dimensional complex multilayer structure of claim 1, further comprising a third pattern to form the first pattern and the second pattern spaced apart by a predetermined height.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 패턴 및 제 2 패턴은 열 경화성 수지 또는 활성에너지선 경화성 수지로 형성된 것을 특징으로 하는 3차원 복잡 다층 구조물.The first pattern and the second pattern is a three-dimensional complex multilayer structure, characterized in that formed of a thermosetting resin or active energy ray-curable resin.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 패턴 및 제 2 패턴의 평행방향에 수직한 단면은 파형(波形)을 이루고, 상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루는 각각 삼각형의 세 꼭지점, 활꼴의 현의 양 끝점과 호 중의 한 점, 타원활꼴의 현의 양 끝점과 타원호 중의 한 점, 또는 상기 삼각형 중 마루가 둥글게 깎인 것을 특징으로 하는 3차원 복잡 다층 구조물.Cross sections perpendicular to the parallel direction of the first pattern and the second pattern form a waveform, and a pair of valleys adjacent to each other and the floor between them are triangular vertices and bow strings, respectively. A three-dimensional complex multi-layer structure, characterized in that one end of the arc and one of the arcs, both the end of the elliptic chord and one of the elliptical arcs, or the floor of the triangle is rounded.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 단면이 이루는 파형 중 서로 인접한 한 쌍의 골과 그 사이의 마루가 삼각형의 세 꼭지점이거나 마루가 둥글게 깎인 삼각형인 경우 상기 마루의 끼인각(협각)은 30 내지 150°인 것을 특징으로 하는 3차원 복잡 다층 구조물.When the pair of valleys adjacent to each other among the waveforms formed by the cross section and the floor between them are three vertices of a triangle or the floor is a rounded triangle, the included angle (narrow angle) of the floor is 30 to 150 °. Multilayer structure.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 단면이 이루는 파형의 골에서 마루까지의 높이는 1 내지 500 μm인 것을 특징으로 하는 3차원 복잡 다층 구조물.3D complex multilayer structure, characterized in that the height from the valley to the floor of the waveform formed by the cross section is 1 to 500 μm.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 3차원 복잡 다층 구조물은 굴절률 1.3 내지 1.9인 것을 특징으로 하는 3차원 복잡 다층 구조물.The three-dimensional complex multilayer structure is a three-dimensional complex multilayer structure, characterized in that the refractive index 1.3 to 1.9.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 반복형성된 도형의 직경, 장경 또는 한 변의 길이는 1 내지 5000 μm인 것을 특징으로 하는 3차원 복잡 다층 구조물.Diameter, long diameter or the length of one side of the repeating figure is 1 to 5000 μm, characterized in that the multi-layer complex structure.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 광학부품, 반도체 소자, 압전 소자, 바이오센서 또는 건식접착층에 이용되는 것을 특징으로 하는 3차원 복잡 다층 구조물. The three-dimensional complex multilayer structure according to any one of claims 1 to 9, which is used for an optical component, a semiconductor element, a piezoelectric element, a biosensor, or a dry adhesive layer.
  11. (A) 일면에 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택된 제 1 패턴이 형성된 제 2 기본몰드를 준비하는 단계; (A) preparing a second basic mold having a first pattern selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which do not meet each other on one surface;
    (B) 활성에너지선이 투과되는 연성 또는 강성 판형의 제 1 지지체; 상기 제 1 지지체의 일면에 다각형, 원, 타원 또는 그 조합이 반복 형성되거나, 다각형, 원, 타원 또는 그 조합이 반복 천공된 마스크; 및 상기 제 1 지지체 및 마스크를 덮고, 상기 제 1 지지체를 향하는 면의 반대쪽 면에 제 2 패턴이 형성된 패턴층 또는 상기 마스크가 형성된 제 1 지지체의 일면 중 제 1 지지체가 노출된 부분에 형성된 제 2 패턴을 포함하고, 상기 마스크는 활성에너지선을 투과하지 않는 마스크 몰드를 준비하는 단계; (B) a flexible or rigid plate-like first support through which the active energy ray is transmitted; A mask in which a polygon, a circle, an ellipse or a combination thereof is repeatedly formed on one surface of the first support, or a polygon, a circle, an ellipse or a combination thereof is repeatedly perforated; And a second layer formed on a portion of the pattern layer having a second pattern formed on the surface opposite to the surface facing the first support and the mask, or the one surface of the first support on which the mask is formed. Preparing a mask mold including a pattern, wherein the mask does not transmit active energy rays;
    (C) 상기 제 2 기본몰드의 제 1 패턴 또는 상기 마스크 몰드 위에 제 2 몰드용 수지를 도포하는 단계, (C) applying a resin for a second mold on the first pattern of the second base mold or the mask mold,
    (D) 상기 제 2 패턴의 평행방향이 상기 제 1 패턴의 평행방향과 평행하지 않도록, 상기 제 2 몰드용 수지를 중심으로 상기 제 2 기본몰드와 상기 마스크 몰드를 밀착시키는 단계; (D) bringing the second base mold into close contact with the mask mold around the resin for the second mold such that the parallel direction of the second pattern is not parallel to the parallel direction of the first pattern;
    (E) 상기 마스크 몰드를 상기 제 2 몰드용 수지 방향으로 가압하고, 상기 마스크 몰드에 활성에너지선을 조사 또는 가열함으로써, 상기 2 몰드용 수지를 경화시켜 제 2 몰드를 형성하는 단계; (E) pressing the mask mold in the direction of the resin for the second mold, and curing the resin for the second mold to form a second mold by irradiating or heating an active energy ray on the mask mold;
    (F) 상기 마스크 몰드를 상기 제 2 몰드와 분리하는 단계; 및 (F) separating the mask mold from the second mold; And
    (G) 상기 제 2 몰드용 수지 중 경화되지 않은 부분을 용제로 용해하여 제거하는 단계(G) dissolving and removing the uncured portion of the second mold resin with a solvent
    를 포함하는 3차원 복잡 다층 구조물의 제조방법.Method for producing a three-dimensional complex multilayer structure comprising a.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 단계 (G) 이후에, After the above step (G),
    (H) 상기 단계 (G)를 거친 마스터에 제 3 몰드용 수지를 도포하는 단계; (H) applying a resin for a third mold to the master passed through the step (G);
    (I) 상기 제 3 몰드용 수지에 제 2 지지체를 밀착시키는 단계; (I) bringing the second supporter into close contact with the third mold resin;
    (J) 상기 제 2 지지체를 상기 마스터 방향으로 가압하고, 활성에너지선을 조사 또는 가열함으로써, 상기 제 3 몰드용 수지를 경화시켜 제 3 몰드를 형성하는 단계; (J) pressing the second support in the direction of the master and curing the resin for the third mold by irradiating or heating an active energy ray to form a third mold;
    (K) 상기 제 3 몰드를 상기 마스터로부터 분리하는 단계; (K) separating the third mold from the master;
    (L) 상기 제 3 몰드 또는 기판에 패턴용 수지를 도포하는 단계; (L) coating a resin for the pattern on the third mold or substrate;
    (M) 상기 패턴용 수지를 중심으로 상기 제 3 몰드와 상기 기판을 밀착시키는 단계; (M) bringing the third mold into close contact with the substrate around the resin for the pattern;
    (N) 상기 제 3 몰드 또는 상기 기판에 활성에너지선을 조사 또는 가열함으로써, 상기 패턴용 수지를 경화시켜 패턴을 형성하는 단계; 및 (N) hardening the resin for the pattern to form a pattern by irradiating or heating an active energy ray on the third mold or the substrate; And
    (O) 상기 패턴이 형성된 3차원 복잡 다층 구조물을 상기 제 3 몰드로부터 분리하는 단계(O) separating the patterned three-dimensional complex multilayer structure from the third mold
    를 포함하는 3차원 복잡 다층 구조물의 제조방법.Method for producing a three-dimensional complex multilayer structure comprising a.
  13. 제 11 항 또는 제 12 항에 있어서, The method according to claim 11 or 12,
    상기 제 2 패턴은 상기 제 1 패턴에 평행하지 않고, 서로 만나지 않는 평행선, 평행곡선, 평행지그재그선 및 그 조합으로 이루어진 군에서 선택되는 것을 특징으로 하는 3차원 복잡 다층 구조물의 제조방법.And the second pattern is selected from the group consisting of parallel lines, parallel curves, parallel zigzag lines, and combinations thereof, which are not parallel to the first pattern and do not meet each other.
  14. 제 11 항에 있어서, The method of claim 11,
    상기 (D) 단계에서, 상기 제 2 몰드용 수지를 중심으로 상기 제 2 기본몰드와 상기 마스크 몰드를 밀착시킬 때, 상기 제 1 패턴과 상기 제 2 패턴이 소정 높이로 이격 형성되도록 하는 제 3 패턴을 구비할 수 있을 정도로 밀착시키는 것을 특징으로 하는 3차원 복잡 다층 구조물의 제조방법. In the step (D), when the second base mold and the mask mold is in close contact with the resin for the second mold, a third pattern such that the first pattern and the second pattern are spaced apart by a predetermined height Method for producing a three-dimensional complex multilayer structure characterized in that the adhesion close enough to be provided.
  15. 제 11 항에 있어서, The method of claim 11,
    상기 단계 (D)에서 상기 제 2 패턴의 평행방향이 상기 제 1 패턴의 평행방향과 직교하도록, 상기 제 2 몰드용 수지를 중심으로 상기 제 2 기본몰드와 상기 마스크 몰드를 밀착시키는 것을 특징으로 하는 3차원 복잡 다층 구조물의 제조방법.In step (D), the second base mold and the mask mold in close contact with the resin for the second mold so that the parallel direction of the second pattern is orthogonal to the parallel direction of the first pattern. Method for manufacturing three-dimensional complex multilayer structure.
PCT/KR2013/005213 2012-06-21 2013-06-13 Complex three-dimensional multi-layer structure and manufacturing method thereof WO2013191412A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380032269.1A CN104428703B (en) 2012-06-21 2013-06-13 Three-dimensional composite layered structure body and its manufacturing method
JP2015518326A JP6567969B2 (en) 2012-06-21 2013-06-13 Three-dimensional complex multilayer structure and manufacturing method thereof
US14/410,266 US9958581B2 (en) 2012-06-21 2013-06-13 Complex three-dimensional multi-layer structure and manufacturing method thereof
US15/880,887 US10962692B2 (en) 2012-06-21 2018-01-26 Complex three-dimensional multi-layer structure and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0067048 2012-06-21
KR20120067048 2012-06-21
KR10-2012-0096320 2012-08-31
KR1020120096320A KR101370426B1 (en) 2012-06-21 2012-08-31 3-dimensional complex multi-layered structure and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/410,266 A-371-Of-International US9958581B2 (en) 2012-06-21 2013-06-13 Complex three-dimensional multi-layer structure and manufacturing method thereof
US15/880,887 Division US10962692B2 (en) 2012-06-21 2018-01-26 Complex three-dimensional multi-layer structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2013191412A1 true WO2013191412A1 (en) 2013-12-27

Family

ID=49768967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005213 WO2013191412A1 (en) 2012-06-21 2013-06-13 Complex three-dimensional multi-layer structure and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2013191412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170203330A1 (en) * 2014-07-25 2017-07-20 Soken Chemical & Engineering Co., Ltd. Method for manufacturing microscopic structural body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030091901A (en) * 2003-11-13 2003-12-03 손미경 Mosaic type Prism sheet for LCD back-panel
KR20090043958A (en) * 2007-10-30 2009-05-07 제일모직주식회사 Brightness enhacing optical film having prism cell array
KR20100057313A (en) * 2008-11-21 2010-05-31 삼성전자주식회사 Display device comprising diffuser plate and method for making the diffuser plate
KR20120063184A (en) * 2010-12-07 2012-06-15 신화인터텍 주식회사 Optical film, light source assembly including the same and liquid crystal display including the light source assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030091901A (en) * 2003-11-13 2003-12-03 손미경 Mosaic type Prism sheet for LCD back-panel
KR20090043958A (en) * 2007-10-30 2009-05-07 제일모직주식회사 Brightness enhacing optical film having prism cell array
KR20100057313A (en) * 2008-11-21 2010-05-31 삼성전자주식회사 Display device comprising diffuser plate and method for making the diffuser plate
KR20120063184A (en) * 2010-12-07 2012-06-15 신화인터텍 주식회사 Optical film, light source assembly including the same and liquid crystal display including the light source assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170203330A1 (en) * 2014-07-25 2017-07-20 Soken Chemical & Engineering Co., Ltd. Method for manufacturing microscopic structural body

Similar Documents

Publication Publication Date Title
WO2011025172A2 (en) Backlight unit and dipslay device
JP3826145B2 (en) Condensing film, liquid crystal panel and backlight, and method for producing condensing film
JP6567969B2 (en) Three-dimensional complex multilayer structure and manufacturing method thereof
WO2014137192A2 (en) Transparent substrate including fine metal line and method for manufacturing same
WO2013055020A1 (en) Optical assembly, backlight unit having the same, and display apparatus thereof
WO2010038963A4 (en) Apparatus for manufacturing a stratified structure
WO2019054756A1 (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
WO2015126088A1 (en) Touch window and display with the same
WO2017115957A1 (en) Composite reflective polarizing film
WO2019031786A1 (en) Optical member, polarization member, and display device
WO2015093855A1 (en) Composition for refractive index matching, and touch screen substrate and display device manufactured using same
WO2018221872A1 (en) Polarizing plate and liquid crystal display device including same
WO2009139560A2 (en) Optical sheet
WO2019132242A1 (en) Polarizing plate and optical display device including same
WO2017175971A1 (en) Method for forming bezel pattern using inkjet printing
WO2013191412A1 (en) Complex three-dimensional multi-layer structure and manufacturing method thereof
WO2013073873A1 (en) Linear light source generating device, exposure having linear light source generating device, and lenticular system used for linear light source generating device
WO2023158199A1 (en) Method for forming three-dimensionally shaped impact absorption layer by using uv parallel light in multilayered laminated structure and impact absorption layer formed thereby
WO2021177621A1 (en) Polarizing plate for light-emitting display device, and light-emitting display device comprising same
WO2012020920A1 (en) Patterned light guide plate and improved method for manufacturing same
WO2016204438A1 (en) Light concentrating module capable of reducing bending, and backlight unit comprising same
WO2017078247A1 (en) Film touch sensor
WO2013154280A1 (en) Method for manufacturing integral optical film, and integral optical film
WO2016093638A1 (en) Composite optical sheet, liquid crystal display device using same, and method for manufacturing same
WO2018043845A1 (en) Composition for window film and flexible window film formed therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14410266

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13806469

Country of ref document: EP

Kind code of ref document: A1