WO2013191323A1 - Method for molding spherical storage container using aluminum thick plate - Google Patents

Method for molding spherical storage container using aluminum thick plate Download PDF

Info

Publication number
WO2013191323A1
WO2013191323A1 PCT/KR2012/006066 KR2012006066W WO2013191323A1 WO 2013191323 A1 WO2013191323 A1 WO 2013191323A1 KR 2012006066 W KR2012006066 W KR 2012006066W WO 2013191323 A1 WO2013191323 A1 WO 2013191323A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
curvature
storage container
aluminum
punch
Prior art date
Application number
PCT/KR2012/006066
Other languages
French (fr)
Korean (ko)
Inventor
윤종헌
이정환
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2013191323A1 publication Critical patent/WO2013191323A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/02Making hollow objects characterised by the structure of the objects
    • B21D51/08Making hollow objects characterised by the structure of the objects ball-shaped objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/18Making hollow objects characterised by the use of the objects vessels, e.g. tubs, vats, tanks, sinks, or the like

Definitions

  • the present invention relates to a method for forming a spherical shape storage container using an aluminum thick plate, and more particularly, to a method for forming a spherical shape storage container using an aluminum thick plate having an internal curvature of a target curvature.
  • Aluminum is a silver-white soft metal, which can be made of thin foil or wire because of its malleability and ductility, and its properties vary depending on the purity. It is often used as a material for wires.
  • aluminum is used as a major material for aircraft, ships and vehicles because of its light and durable characteristics, and easily reacts with oxygen, but after the oxide film is formed, the film is blocked from contact with oxygen, so it does not rust well and is polished. This is often used for parts that need to last long.
  • Aluminum plates are widely used in transport ships that carry liquid gas, such as LNG or LPG, and these liquid gases are liquid gases due to rapid increase in consumption due to high oil prices and reactor accidents.
  • the demand for transport ships for transporting the situation is increasing.
  • a liquid gas carrier is a ship that carries liquid gas from a production base to a receiving base. It is usually called an LNG ship or an LPG ship, or an LG Carrier or an LPG Carrier, depending on the type of liquid gas. Also called).
  • Liquefied natural gas for example, is a gas obtained by liquefying natural gas mainly composed of methane at sub-atmospheric pressure of 162 ° C.
  • the volume ratio of liquid and gas is about 1/600, and the specific gravity of the liquefied state is 0.43 to 0.50.
  • the LNG ship is divided into independent tank type and membrane type according to the shape of the cargo hold, the independent tank type is designed to have a double structure of the tank in which the LENG is stored, and the independent aluminum sphere tank (sphere) It is made to be independent of the hull.
  • Independent tank type has the advantage of accurate analysis of storage tank stability and reliability.
  • Membrane type can take advantage of relatively inexpensive ship and deck space, freely deforms according to the change of tank capacity, and secures the clock. This has the advantage of reducing the cost and the cost of passage of the Suez Canal.
  • the independent tank type storage tank is constructed by welding a plurality of aluminum plate patches formed with a constant curvature to maintain a spherical shape.
  • the curvature of the curved plate is not constant, a shape of a perfect shape in the welding process is achieved. Since it becomes difficult to assemble the spherical shape, it is necessary to accurately secure the curvature according to the surface forming and to predict the elastic restoration amount of the thick plate due to the spring back.
  • the capacity of the storage tank may be inaccurate and may change the transport capacity of the liquid gas.
  • the Korean Laid-open Patent includes an upper punch fixedly installed on a lower surface of a ram reciprocating up and down of a press, and a lower die fixedly installed on an upper surface of a bed under the ram and in contact with the upper punch by lowering the ram.
  • Disclosed is a configuration in which curved surfaces corresponding to each other are formed on the lower surface of the punch and the upper surface of the lower die, respectively, and the curved surface is formed to have the same curvature after the corner forming plate member is bent into a three-dimensional curved surface between the upper punch and the lower die. .
  • Korean Patent Laid-Open Publication No. 2008-0000880 discloses an invention relating to a structure of a bending roller device for three-dimensional molding, and the published patent is capable of storing and transporting crude oil or various gases in a liquid or gaseous state.
  • a three-dimensional forming apparatus for manufacturing a large or elliptical large tank structure installed on a ship and onshore is disclosed.
  • the upper and lower roller shapes may have a convex or concave surface to form a flat member such as ferrous or non-ferrous metal having a predetermined thickness to have a three-dimensional curved surface, thereby effectively producing a three-dimensional curved shape.
  • a flat member such as ferrous or non-ferrous metal having a predetermined thickness to have a three-dimensional curved surface, thereby effectively producing a three-dimensional curved shape.
  • inventions that provide equipment and methods.
  • Another object of the present invention is to provide a method for forming a spherical shape storage container capable of securing a precise molding dimension by reducing the amount of elastic recovery generated after the curved surface of an aluminum thick plate.
  • a method of forming a spherical shape storage container using an aluminum thick plate in the method of forming a spherical shape storage container using an aluminum thick plate according to the present invention, a method of forming a spherical shape storage container while joining a plurality of plates made of aluminum as a main material, wherein the surface supporting the plate is a target. Positioning the plate on a die formed to have a curvature; A second step of compressing the plate by moving a punch formed such that a surface facing the plate has a curvature greater than the target curvature; And a third step of moving the punch to its original position. It is configured to include.
  • a molding method of a spherical shape storage container using an aluminum thick plate is a method of forming a spherical shape while a plurality of plates made of aluminum as a main material are joined to support a plate. Positioning the plate on a die whose surface is formed to have a curvature greater than a target curvature; A second step of compressing the plate by moving a punch formed such that a surface facing the plate has a target curvature; And a third step of moving the punch to its original position. It is configured to include.
  • the inner surface of the storage container is formed to have a target curvature, the internal curvature is formed to be constant, the effect of accurate calculation of storage capacity and loading of the desired capacity You can expect.
  • the internal curvature of the storage container can be expected to reduce the molding load while maintaining a constant, it is possible to expect the effect that the molding of the storage container becomes easier as the molding load is reduced.
  • the curvature and dimensional accuracy of the curved plate forming the storage container can be expected to be improved, and the productivity and work efficiency for manufacturing the storage container such as welding between the curved plate can be expected to be improved.
  • the effect of maintaining the internal pressure of the storage container can be expected to be constant, it is possible to expect the effect of extending the life of the storage container by maintaining a constant internal pressure.
  • FIG. 1 is a perspective view showing a vessel using a storage container molded by a method of forming a spherical shape storage container using an aluminum plate according to an embodiment of the present invention.
  • Figure 2 is a schematic view showing a mold used in the method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
  • Figure 3 is a partially enlarged view showing the elastic recovery amount measurement position by the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
  • Figure 4 is a graph showing the results of measuring the elastic restoring force according to the thickness and size of the aluminum plate by the molding method of the sphere-shaped storage container using the aluminum plate according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the plastic strain in the thickness direction according to the molding method of the spherical shape storage container using an aluminum plate according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a molding load measurement result according to the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
  • FIG. 7 is a schematic view showing a state in which a plate is molded by a mold used in the method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a process according to the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a vessel using a storage container molded by the method of forming a spherical shape storage container using an aluminum plate according to an embodiment of the present invention.
  • Liquefied natural gas is a state in which natural gas is liquefied by compressing about 600 times at a temperature of minus 162 ° C. Therefore, the outer wall of the storage container for storing liquefied natural gas is resistant to low temperature brittleness and has excellent corrosion resistance and mechanical properties. I) is mainly used.
  • the aluminum thick plate will be referred to as a metallic plate including a metal plate having a thickness of at least 10 mm of aluminum.
  • the storage container 10 for transporting the liquefied natural gas is formed in the shape of a sphere having a predetermined diameter and having an internal space, and a plurality of vessels are mainly installed in the vessel 1, and the vessel ( The liquid liquefied natural gas is accommodated in the internal space of the storage container 10 installed in 1) and is transported to a desired position by the movement of the vessel 1.
  • the storage container 10 has a diameter of 40m or more on an inner surface thereof to store a large amount of liquid or gaseous storage material in the inner space thereof.
  • a diameter of 40m or more on an inner surface thereof to store a large amount of liquid or gaseous storage material in the inner space thereof.
  • smaller or larger configurations are possible, but larger diameters would be desirable to store large amounts of storage material.
  • the storage container 10 for forming a large internal space is formed by curvedly forming a plurality of plates 20 to form a large curved surface and then joining them to form a shape thereof.
  • the plate 20 formed of a thick aluminum plate is subjected to curved molding at a warm temperature (about 300 °C to 450 °C) in order to reduce the molding load and the elastic recovery amount generated in the large surface forming.
  • FIG. 2 is a schematic view showing a lattice mold used in a method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention
  • FIG. 3 is a spherical shape storage using an aluminum thick plate according to an embodiment of the present invention. It is a partial enlarged view which shows the elastic restoring amount measurement position according to the shaping
  • Figure 4 is a graph showing the results of measuring the elastic restoring force according to the thickness and size of the aluminum plate by the method of forming a spherical shape storage container using an aluminum plate according to an embodiment of the present invention
  • Figure 5 is according to an embodiment of the present invention It is a graph which shows the plastic strain generation direction by the shaping
  • Figure 6 is a graph showing the molding load by the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
  • a lattice mold is manufactured for actual large-surface molding conditions, and an example of experiment and molding analysis will be described.
  • the aluminum plate to be used for the experiment and molding analysis has a length of 1186 ⁇ 790 mm in length and width.
  • a configuration in which the main material having a thickness of 20 or 30 mm is made of a metal plate in which aluminum is used will be described.
  • the mold is formed by a method of removing stepped steps using precision machining after assembling the lattice mold in order to generate an accurate target curvature and improve the surface quality of the sheet. Will be produced.
  • the thickness of the aluminum plate, the curvature of the mold, and the like to analyze the elastic restoring force and the molding load of the aluminum plate according to the molding conditions and process conditions based on the aluminum plate formed to have a curvature by the lattice-shaped mold For example, the result of the molding analysis by applying the grid spacing of the mold as a variable will be described.
  • the aluminum thick plate pressed by the lattice-shaped mold measures the size after molding of the thick plate in the x-axis direction.
  • the elastic recovery amount can be measured in different directions, but since the curved aluminum sheet has the same curvature in the horizontal, vertical and diagonal directions, the elastic recovery amount is in the x-axis direction, which is the longest side of the aluminum thick plate. It would be desirable to measure.
  • a value of x of 560 mm means a position spaced about 560 mm from the central portion of the storage container 10.
  • the punch curvature is applied differently, i.e., 1/1520 and 1/1530, with respect to the same thickness of the aluminum thick plate, that is, the die curvature (1/1500) of the aluminum thick plate equal to 30 mm.
  • the elastic recovery of the thick plate is tested.
  • case 2 the lower curvature contacting the mold is the same as in case 1, while the upper punch is formed by using a punch with a relatively high curvature, which not only reduces the elastic recovery amount by 14% but also reduces the molding load by 41%. It can be seen that the results.
  • Figure 7 is a schematic diagram showing a state in which the plate is formed by a mold used in the method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention
  • Figure 8 is an aluminum according to an embodiment of the present invention It is a block diagram which shows the process by the shaping
  • a first step 31 of positioning the plate 20 on a die is formed such that the surface supporting the plate 20, whose main material is made of aluminum, has a target curvature.
  • the mold pressed to form the curved surface of the plate 20 includes a die 40 for supporting the plate 20 and a punch 50 for pressing the plate 20 supported on the die 40. It is configured by.
  • the die 40 is relatively positioned on the lower side to support the plate 20 placed on the upper side, and the punch 50 is relatively placed on the plate on the lower side ( By pressing 20, the plate 20 is formed in a shape having a curvature.
  • FIG. 7A illustrates an embodiment in which the upper surface of the die 40 has a target curvature
  • FIG. 7B the lower surface of the punch 50 has a target curvature. An embodiment is shown.
  • each plate 20 is formed so that the surface formed to have a target curvature forms the inner surface of the storage container 10 Combined.
  • either the die 40 or the punch 50 is formed to have the same curvature as the target curvature and the plate ( 20).
  • the surface of the die 40 or the surface of the punch 50 that has a surface formed to have the same curvature as the target curvature is formed to have a curvature larger than the target curvature.
  • the die 40 is formed to have an approximately " ⁇ " shape.
  • the upper surface of the die 40 is formed to be recessed upwardly to have the same curvature as the target curvature, the inner surface of the surface that is pressed upwards and is pressed upward while the plate 20 is supported on the upper surface of the die 40
  • the die 40 is molded to have a target curvature corresponding to the top surface of the die 40.
  • the lower surface of the punch 50 for pressing the plate 20 while moving downward from the upper surface of the die 40 formed to have the same curvature as the target curvature is formed by the upper surface of the die 40 It is recessed upwardly to have a curvature larger than the curvature, for example, about 1-50% larger curvature.
  • the surface for forming the inner surface to have the target curvature becomes the upper surface of the die 40, and the upper surface of the die 40 has the same curvature as the target curvature. Is formed.
  • the lower surface of the punch 50 that is pressed in the upper surface direction of the die 40 is formed to have a greater curvature than the upper surface of the die 40. That is, Rd, which is the top curvature of the die 40 shown in the drawing, has a smaller value than Rp, which is the bottom curvature of the punch 50, which is expressed by a formula, where Rd ⁇ Rp.
  • the bottom surface of the punch 50 is recessed downward to have the same curvature as the target curvature so that the recessed surface of the plate 20 has a target curvature. Is formed.
  • the punch 50 When the punch 50 is viewed from the side, the punch 50 is formed to have a substantially " ⁇ " shape, and a surface recessed upwardly of the plate 20, that is, a surface rounded to have a curvature projecting upward is aimed at. In order to have a curvature, the die 40 is installed to have a substantially " ⁇ " shape when viewed from the side.
  • the upper surface of the die 40 positioned below the lower surface of the punch 50 formed to have the same curvature as the target curvature and supporting the plate 20 is more than the curvature formed by the lower surface of the punch 50. It is formed recessed downward to have a large curvature.
  • the surface for forming the recessed surface of the plate 20 to have a target curvature becomes the lower surface of the punch 50, the surface supporting the plate 20 to have a greater curvature than the target curvature. It becomes an upper surface of the die 40 formed.
  • Rd which is the upper surface curvature of the die 40 shown in FIG. 7B
  • Rp which is the lower surface curvature of the punch 50.
  • the plate 20 having the target curvature and the surface being compressed and having a larger curvature than the curvature of the surface having the target curvature (approximately, is formed to have the punch 50 moves and is supported by the die 40).
  • the plate 20 is supported on a surface formed to have a target curvature, and is pressed at a predetermined interval from a surface formed to have a curvature larger than the target curvature.
  • the elastic restoring force generated while forming the plate 20 may be reduced.
  • the reduced elastic restoring force has the advantage that the precise molding is possible, which can be said to have been proved through the various experiments described above.
  • the plurality of plates 20, the main material of which is formed of aluminum, are joined to each other, and the storage container 10 having a spherical shape is welded to the plurality of plates 20 formed to have a target curvature. It is produced by joint bonding by a bonding method such as.
  • the surface supporting the plate 20 the main material is formed of aluminum is formed to have a target curvature, or larger than the target curvature
  • a first step 31 of positioning the plate 20 on the die 40 formed to have a curvature proceeds.
  • the surface on which the plate 20 is pressed is formed to have a target curvature or is formed to have a larger curvature than the target curvature.
  • the second step 32 of pressing the plate 20 by moving the punch 50 is performed.
  • a third step 33 of moving the punch 50 to its original position is performed.
  • the plate 20 may be welded to form an inner surface with a surface having a target curvature.
  • a fourth step 34 of joining joints is further proceeded.
  • a method of forming a storage container having a spherical shape using an aluminum thick plate by moving a punch formed so that a surface facing the plate has a curvature larger than the target curvature, and compressing the plate so that the plate is recessed.
  • the inner surface of 20) is molded to have the same curvature as the target curvature.
  • the inner surface of the storage container has the advantage of being uniform, thereby having the advantage of having a uniform volume of the storage space, and has the advantage of improving safety.
  • the spherical shape storage container using the aluminum plate according to the present invention will be highly applicable to not only the storage container industry but also various related industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The present invention relates to a method for molding a spherical storage container using an aluminum thick plate and, more specifically, to a method for molding a spherical storage container using an aluminum thick plate, in which an inside curvature has a target curvature. The method for molding a spherical storage container using an aluminum thick plate, according to the present invention, is a method for molding a storage container which is formed as a spherical shape by allowing a plurality of plates mainly made of aluminum to be bonded, and the method for molding the spherical storage container comprises: the first step of positioning the plates on a die which is formed by allowing a surface thereof that supports the plates to have a target curvature; the second step of pressing the plates by moving a punch which is formed by allowing a surface thereof that faces the plates to have a larger curvature than the target curvature; and moving the punch to the original position. Thus, according to the present invention, since the inside curvature of the storage container is formed to have the target curvature, an elastic restoring force is reduced such that a degree of precision in measurement can be improved, and it is possible to determine an exact storage capacity and to load a desired capacity.

Description

알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법Forming method of spherical shape storage container using aluminum thick plate
본 발명은 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 관한 것으로, 상세하게는 내부 곡률이 목표 곡률을 이루는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 관한 것이다. The present invention relates to a method for forming a spherical shape storage container using an aluminum thick plate, and more particularly, to a method for forming a spherical shape storage container using an aluminum thick plate having an internal curvature of a target curvature.
알루미늄은 은백색의 부드러운 금속으로 전성과 연성이 커서 얇은 박이나 철사로 제조될 수도 있고, 성질은 순도에 따라 다르며 전기적으로는 양도체이고 비중으로 보면 전형적인 경금속이며, 전성과 연성이 뛰어나고 전기 전도성이 좋아 고압 전선의 재료로 많이 사용된다. Aluminum is a silver-white soft metal, which can be made of thin foil or wire because of its malleability and ductility, and its properties vary depending on the purity. It is often used as a material for wires.
또한, 알루미늄은 가볍고 내구성이 큰 특성을 가지므로 항공기, 선박, 차량의 주요 재료로도 사용되며, 산소와 쉽게 반응하지만 산화 피막이 형성된 후에는 피막에 의해 산소와의 접촉이 차단되어 녹이 잘 슬지 않아 광택이 오래 지속될 필요가 있는 부분에 많이 사용된다. In addition, aluminum is used as a major material for aircraft, ships and vehicles because of its light and durable characteristics, and easily reacts with oxygen, but after the oxide film is formed, the film is blocked from contact with oxygen, so it does not rust well and is polished. This is often used for parts that need to last long.
알루미늄 후판(厚板)은 액화천연가스(LNG) 또는 액화석유가스(LPG) 등 액체가스를 운반하는 운반선박에 많이 사용되고 있으며, 이러한 액체가스는 고유가 및 원자로 사고 등에 따른 소비량이 급증함에 따라 액체가스를 운반하기 위한 운반 선박의 수요가 증가하고 있는 실정이다. Aluminum plates are widely used in transport ships that carry liquid gas, such as LNG or LPG, and these liquid gases are liquid gases due to rapid increase in consumption due to high oil prices and reactor accidents. The demand for transport ships for transporting the situation is increasing.
액체가스 운반선이란 액체가스를 생산기지에서 인수 기지까지 운반하는 선박으로 통상 액체가스의 종류에 따라 엘엔지(LNG)선 또는 엘피지(LPG)선이라 하거나, 엘엔지씨(LNG Carrier) 또는 엘피지씨(LPG Carrier)라 하기도 한다. A liquid gas carrier is a ship that carries liquid gas from a production base to a receiving base. It is usually called an LNG ship or an LPG ship, or an LG Carrier or an LPG Carrier, depending on the type of liquid gas. Also called).
액화천연가스를 예를 들면, 액화천연가스는 메탄이 주성분인 천연가스를 대기압에서 영하 162℃로 액화시킨 가스로서, 액체와 기체의 용적 비율은 약 1/600이고, 액화 상태의 비중은 0.43∼0.50이다. Liquefied natural gas, for example, is a gas obtained by liquefying natural gas mainly composed of methane at sub-atmospheric pressure of 162 ° C. The volume ratio of liquid and gas is about 1/600, and the specific gravity of the liquefied state is 0.43 to 0.50.
그리고, 상기 엘엔지선은 화물창의 형태에 따라 독립탱크형과 멤브레인형으로 구분되며, 독립탱크형은 엘엔지가 보관되는 탱크를 이중 구조의 구형(球形)으로 설계하고, 독립된 알루미늄 구형(球形) 탱크를 선체와 독립되게 만들어지는 형태이다. In addition, the LNG ship is divided into independent tank type and membrane type according to the shape of the cargo hold, the independent tank type is designed to have a double structure of the tank in which the LENG is stored, and the independent aluminum sphere tank (sphere) It is made to be independent of the hull.
독립탱크형은 저장 탱크의 안정성 및 신뢰성에 대한 정확한 분석이 가능한 장점을 가지며, 멤브레인형은 상대적으로 저렴한 선가와 갑판 상부의 공간을 넓게 활용할 수 있고, 탱크 용량 변화에 따른 변형이 자유로우며, 시계 확보가 유리한 점 및 수에즈 운하의 통과 비용이 절감되는 장점을 가진다. Independent tank type has the advantage of accurate analysis of storage tank stability and reliability. Membrane type can take advantage of relatively inexpensive ship and deck space, freely deforms according to the change of tank capacity, and secures the clock. This has the advantage of reducing the cost and the cost of passage of the Suez Canal.
독립탱크형의 저장 탱크는 구(球) 형상을 유지하기 위하여 일정한 곡률로 성형된 다수의 알루미늄 후판 패치를 용접하여 구성되며, 곡면 성형된 후판의 곡률이 일정하지 않을 경우, 용접 공정에서 완벽한 형상의 구형을 조립하기 어려워지므로, 곡면 성형에 따른 정확한 곡률 확보와 스프링백으로 인한 후판의 탄성 복원량을 예측할 필요성을 가지는 실정이다. The independent tank type storage tank is constructed by welding a plurality of aluminum plate patches formed with a constant curvature to maintain a spherical shape. When the curvature of the curved plate is not constant, a shape of a perfect shape in the welding process is achieved. Since it becomes difficult to assemble the spherical shape, it is necessary to accurately secure the curvature according to the surface forming and to predict the elastic restoration amount of the thick plate due to the spring back.
이처럼 저장 탱크가 완벽한 형상의 구형으로 형성되지 않는 경우 저장 탱크의 용량이 정확하지 않아 운반하는 액체가스의 운반 용량이 달라지는 상황이 발생할 수 있게 된다. As such, when the storage tank is not formed in a spherical shape, the capacity of the storage tank may be inaccurate and may change the transport capacity of the liquid gas.
한편, 대한민국 공개특허 제2009-0116037호에 따르면, 코너부 형성 판부재를 곡률 반경이 동일한 3차원 곡면이 되도록 벤딩하는 작업 시간을 최대한 단축할 수 있고, 생산 단가를 줄일 수 있도록 하면서, 열 변형에 의한 2차적인 방법을 사용하지 않으며, 품질 및 생산성의 향상을 도모할 수 있고, 평평한 판부재 뿐만 아니라 임의의 형상으로 벤딩된 판부재를 재활용할 수 있는 액화석유가스 운송 선박의 가스 저장탱크용 코너부 형성 판부재 3차원 곡면 벤딩장치에 관한 발명이 개시된다. On the other hand, according to the Republic of Korea Patent Publication No. 2009-0116037, while bending the corner forming plate member to be a three-dimensional curved surface with the same radius of curvature can be shortened as much as possible, while reducing the cost of production, Corner for gas storage tank of liquefied petroleum gas transportation ship that can improve quality and productivity without recycling secondary method by means, and can recycle not only flat plate member but also plate member bent in any shape. Disclosed is an invention relating to a three-dimensional curved surface bending apparatus for a secondary plate member.
상기 대한민국 공개특허에는 프레스의 상하로 왕복 운동하는 램의 하면에 고정 설치되는 상부 펀치와, 램 아래의 베드의 상면에 고정 설치되며 램의 하강에 의해 상부 펀치와 접촉되는 하부 다이를 포함하며, 상부 펀치의 하면과 하부 다이의 상면에는 각각 서로 대응되는 곡면이 형성되고, 곡면은 코너부 형성판 부재가 상부 펀치와 하부 다이 사이에서 3차원 곡면으로 벤딩된 후의 곡률과 동일하게 형성되는 구성이 개시된다. The Korean Laid-open Patent includes an upper punch fixedly installed on a lower surface of a ram reciprocating up and down of a press, and a lower die fixedly installed on an upper surface of a bed under the ram and in contact with the upper punch by lowering the ram. Disclosed is a configuration in which curved surfaces corresponding to each other are formed on the lower surface of the punch and the upper surface of the lower die, respectively, and the curved surface is formed to have the same curvature after the corner forming plate member is bent into a three-dimensional curved surface between the upper punch and the lower die. .
또한, 대한민국 공개특허 제2008-0000880호에는, 3차원 성형을 위한 밴딩 롤러 장치의 구조에 관한 발명이 개시되어 있으며, 상기 공개특허는 액체 혹은 기체 상태의 원유나 각종 가스를 저장, 운반할 수 있는 선박 및 육상에 설치된 구형 혹은 타원형의 대형 탱크 구조물을 제작하기 위한 3차원 성형 장비에 관한 발명이 개시된다. In addition, Korean Patent Laid-Open Publication No. 2008-0000880 discloses an invention relating to a structure of a bending roller device for three-dimensional molding, and the published patent is capable of storing and transporting crude oil or various gases in a liquid or gaseous state. Disclosed is a three-dimensional forming apparatus for manufacturing a large or elliptical large tank structure installed on a ship and onshore.
상기 공개특허에는 일정한 두께를 가지는 철 혹은 비철금속 등의 평판 부재를 3차원 곡면을 가지도록 성형하기 위하여 상부 및 하부 롤러 형상이 볼록 혹은 오목 곡면을 가지도록 함으로써 3차원 곡면 형상을 효율적으로 만들어 낼 수 있는 장비 및 방법을 제공하는 발명이 개시된다. The above-mentioned patent discloses that the upper and lower roller shapes may have a convex or concave surface to form a flat member such as ferrous or non-ferrous metal having a predetermined thickness to have a three-dimensional curved surface, thereby effectively producing a three-dimensional curved shape. Disclosed are inventions that provide equipment and methods.
본 발명의 목적은 내면이 목표 곡률을 가지는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법을 제공하는 것이다. It is an object of the present invention to provide a method for forming a spherical shape storage container using an aluminum thick plate having an inner surface having a target curvature.
본 발명의 다른 목적은, 알루미늄 후판의 곡면 가공 후 발생하는 탄성 복원량을 저감시켜 정밀한 성형 치수를 확보할 수 있는 구체 형상 저장용기의 성형 방법을 제공하는 것이다. Another object of the present invention is to provide a method for forming a spherical shape storage container capable of securing a precise molding dimension by reducing the amount of elastic recovery generated after the curved surface of an aluminum thick plate.
본 발명에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법은, 주재료가 알루미늄으로 형성되는 다수의 플레이트가 접합되면서 구체 형상으로 이루어지는 저장용기를 성형하는 방법에 있어서, 상기 플레이트를 지지하는 면이 목표 곡률을 가지도록 형성되는 다이에 상기 플레이트를 위치시키는 제1단계; 상기 플레이트를 향하는 면이 상기 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 펀치를 이동하여 상기 플레이트를 압착하는 제2단계; 및 상기 펀치를 원위치로 이동시키는 제3단계; 를 포함하여 구성된다. In the method of forming a spherical shape storage container using an aluminum thick plate according to the present invention, a method of forming a spherical shape storage container while joining a plurality of plates made of aluminum as a main material, wherein the surface supporting the plate is a target. Positioning the plate on a die formed to have a curvature; A second step of compressing the plate by moving a punch formed such that a surface facing the plate has a curvature greater than the target curvature; And a third step of moving the punch to its original position. It is configured to include.
다른 측면에서 본 발명에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법은, 주재료가 알루미늄으로 형성되는 다수의 플레이트가 접합되면서 구체 형상으로 이루어지는 저장용기를 성형하는 방법에 있어서, 상기 플레이트를 지지하는 면이 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 다이에 상기 플레이트를 위치시키는 제1단계; 상기 플레이트를 향하는 면이 목표 곡률을 가지도록 형성되는 펀치를 이동하여 상기 플레이트를 압착하는 제2단계; 및 상기 펀치를 원위치로 이동시키는 제3단계; 를 포함하여 구성된다.In another aspect, a molding method of a spherical shape storage container using an aluminum thick plate according to the present invention is a method of forming a spherical shape while a plurality of plates made of aluminum as a main material are joined to support a plate. Positioning the plate on a die whose surface is formed to have a curvature greater than a target curvature; A second step of compressing the plate by moving a punch formed such that a surface facing the plate has a target curvature; And a third step of moving the punch to its original position. It is configured to include.
본 발명에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의하면, 저장용기의 내면이 목표 곡률을 가지도록 형성됨으로써 내부 곡률이 일정하게 형성되어 정확한 저장 용량의 계산 및 원하는 용량의 적재가 가능한 효과를 기대할 수 있게 된다. According to the molding method of the spherical shape storage container using the aluminum plate according to the present invention, the inner surface of the storage container is formed to have a target curvature, the internal curvature is formed to be constant, the effect of accurate calculation of storage capacity and loading of the desired capacity You can expect.
또한, 저장용기의 내부 곡률은 일정하게 유지되면서 성형 하중이 감소하는 효과를 기대할 수 있으며, 성형 하중이 감소됨에 따라 저장용기의 성형이 용이해지는 효과를 기대할 수 있게 된다. In addition, the internal curvature of the storage container can be expected to reduce the molding load while maintaining a constant, it is possible to expect the effect that the molding of the storage container becomes easier as the molding load is reduced.
그리고, 저장용기를 형성하는 곡면 판재의 곡률 및 치수 정밀도가 향상되는 효과를 기대할 수 있으며, 곡면 판재 사이의 용접 등 저장용기의 제조를 위한 생산성 및 작업 효율성이 향상되는 효과를 기대할 수 있게 된다. The curvature and dimensional accuracy of the curved plate forming the storage container can be expected to be improved, and the productivity and work efficiency for manufacturing the storage container such as welding between the curved plate can be expected to be improved.
저장용기의 내부 곡률이 일정하게 유지되므로 저장용기의 내부 압력이 일정하게 유지되는 효과를 기대할 수 있으며, 일정한 내부 압력이 유지됨으로써 저장용기의 수명이 연장되는 효과를 기대할 수 있게 된다. Since the internal curvature of the storage container is kept constant, the effect of maintaining the internal pressure of the storage container can be expected to be constant, it is possible to expect the effect of extending the life of the storage container by maintaining a constant internal pressure.
일정한 내부 압력이 유지되는 저장용기로 인해 내부 압력이 균등하게 분포됨으로써 저장용기의 안전성이 향상되는 효과를 기대할 수 있게 되며, 이에 따라 저장용기의 사용에 따른 유지 비용이 절감되는 효과를 기대할 수 있게 된다. As the internal pressure is distributed evenly due to the storage container that maintains a constant internal pressure, it is possible to expect the effect of improving the safety of the storage container, thereby reducing the maintenance cost according to the use of the storage container. .
도 1 은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의해 성형된 저장용기가 사용된 선박을 나타낸 사시도.1 is a perspective view showing a vessel using a storage container molded by a method of forming a spherical shape storage container using an aluminum plate according to an embodiment of the present invention.
도 2 는 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 사용되는 금형을 나타낸 개략도.Figure 2 is a schematic view showing a mold used in the method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
도 3 은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의한 탄성 복원량 측정 위치를 나타낸 부분 확대도.Figure 3 is a partially enlarged view showing the elastic recovery amount measurement position by the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
도 4 는 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의한 알루미늄 후판의 두께와 크기에 따른 탄성 복원력 측정 결과를 보인 그래프.Figure 4 is a graph showing the results of measuring the elastic restoring force according to the thickness and size of the aluminum plate by the molding method of the sphere-shaped storage container using the aluminum plate according to an embodiment of the present invention.
도 5 는 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 따른 두께 방향 소성 변형률을 나타낸 그래프.5 is a graph showing the plastic strain in the thickness direction according to the molding method of the spherical shape storage container using an aluminum plate according to an embodiment of the present invention.
도 6 은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 따른 성형 하중 측정 결과를 나타낸 그래프.6 is a graph showing a molding load measurement result according to the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
도 7 은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 사용되는 금형에 의해 플레이트가 성형되는 상태를 나타낸 개략도.7 is a schematic view showing a state in which a plate is molded by a mold used in the method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
도 8 은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 따른 공정을 나타낸 블럭도.8 is a block diagram showing a process according to the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
* 도면의 주요 부호에 대한 설명 *Description of the main symbols in the drawings
1. 선박 10. 저장용기1. Vessel 10. Storage Container
20. 플레이트 31. 제1단계20. Plate 31. First Step
32. 제2단계 33. 제3단계32. The Second Step 33. The Third Step
34. 제4단계 40. 다이34. Fourth Step 40. Die
50. 펀치50. Punch
이하에서는 본 발명에 의한 알루미늄 후판을 이용한 구체 저장용기 및 이의 제조방법에 대하여 실시 예를 들어 첨부되는 도면을 참조하여 액화천연가스를 저장하는 저장용기를 예를 들어 상세히 살펴보기로 한다. Hereinafter, a concrete storage container using an aluminum plate according to the present invention and a manufacturing method thereof will be described in detail with reference to the accompanying drawings, for example, a storage container for storing liquefied natural gas.
다만, 본 발명의 사상은 이하에서 살펴보는 실시 예에 의해 그 실시 가능 상태가 제한된다고는 할 수 없고, 본 발명의 사상을 이해하는 당업자는 동일한 기술적 사상의 범위 내에 포함되는 다른 실시 예를 이용하여 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 기술적 사상에 포함된다고 할 것이다. However, the spirit of the present invention is not limited to the implementation state by the embodiments described below, and those skilled in the art to understand the spirit of the present invention using other embodiments falling within the scope of the same technical spirit It may be easily proposed, but this will also be included in the technical idea of the present invention.
그리고, 본 명세서 또는 청구 범위에서 사용되는 용어는 설명의 편의를 위하여 선택한 개념으로, 본 발명의 기술적 내용을 파악함에 있어서, 본 발명의 기술적 사상에 부합되는 의미로 적절히 해석되어야 할 것이다. In addition, terms used in the present specification or claims are concepts selected for convenience of description, and in grasping the technical contents of the present invention, they should be appropriately interpreted as meanings corresponding to the technical idea of the present invention.
도 1 은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의해 성형된 저장용기가 사용된 선박을 나타낸 사시도이다. 1 is a perspective view showing a vessel using a storage container molded by the method of forming a spherical shape storage container using an aluminum plate according to an embodiment of the present invention.
액화천연가스는 천연가스를 영하 162℃ 상태에서 약 600배 압축하여 액화시킨 상태의 가스이므로, 액화천연가스를 저장하는 저장용기의 외벽은 저온 취성에 강하며 내부식성 및 기계적 물성이 뛰어난 알루미늄 후판(厚板)이 주로 사용된다. Liquefied natural gas is a state in which natural gas is liquefied by compressing about 600 times at a temperature of minus 162 ° C. Therefore, the outer wall of the storage container for storing liquefied natural gas is resistant to low temperature brittleness and has excellent corrosion resistance and mechanical properties. I) is mainly used.
이하의 설명에서 상기 알루미늄 후판은 판재의 두께가 적어도 10㎜ 이상의 알루미늄을 포함하는 금속성 판재를 알루미늄 후판이라 칭하기로 한다. In the following description, the aluminum thick plate will be referred to as a metallic plate including a metal plate having a thickness of at least 10 mm of aluminum.
알루미늄 후판을 적용한 저장용기(10)의 대곡면 성형 시 블록 타입의 금형을 제작하여 성형하는 성형 방법은 현실적으로 어려우므로, 격자 형태의 금형을 사용하여 다수의 곡면 판재를 성형한 다음 이들 곡면 판재를 이어 붙임으로써 상기 저장용기(10)를 성형하게 된다. Since the molding method of manufacturing a block type mold by forming a large curved surface of the storage container 10 to which the aluminum thick plate is applied is practically difficult, a plurality of curved plates are formed by using a lattice-shaped mold, and then the curved plates are joined. As a result, the storage container 10 is molded.
즉, 상기 액화천연가스를 운반하기 위한 상기 저장용기(10)는 일정 정도의 지름을 가지면서 내부 공간을 가지는 구(球) 형태로 형성되어 주로 선박(1)에 다수 개가 설치되고, 상기 선박(1)에 설치되는 상기 저장용기(10)의 내부 공간에 액체 상태의 액화천연가스가 수용되면서 상기 선박(1)의 이동에 의해 원하는 위치로 운반하게 된다.That is, the storage container 10 for transporting the liquefied natural gas is formed in the shape of a sphere having a predetermined diameter and having an internal space, and a plurality of vessels are mainly installed in the vessel 1, and the vessel ( The liquid liquefied natural gas is accommodated in the internal space of the storage container 10 installed in 1) and is transported to a desired position by the movement of the vessel 1.
상기 저장용기(10)는 그 내부 공간에 많은 양의 액체 상태 또는 기체 상태의 저장 물질을 저장하기 위하여 내면의 지름이 40m 이상의 크기로 이루어진다. 물론, 더 작거나 크게 형성되는 구성도 가능하나, 많은 양의 저장 물질을 저장하기 위하여서는 지름이 큰 형태가 바람직할 것이다. The storage container 10 has a diameter of 40m or more on an inner surface thereof to store a large amount of liquid or gaseous storage material in the inner space thereof. Of course, smaller or larger configurations are possible, but larger diameters would be desirable to store large amounts of storage material.
이처럼, 내부 공간을 크게 형성하기 위한 상기 저장용기(10)는 대곡면의 성형을 위하여 다수의 플레이트(20)를 곡면 성형한 다음 이음 결합함으로써 그 형태를 성형하게 된다. As such, the storage container 10 for forming a large internal space is formed by curvedly forming a plurality of plates 20 to form a large curved surface and then joining them to form a shape thereof.
이때, 알루미늄 후판으로 형성되는 상기 플레이트(20)는 대곡면 성형에서 발생하는 성형 하중 및 탄성 복원량을 감소시키기 위하여 온간(약 300℃∼450℃)에서 곡면 성형을 진행하게 된다.At this time, the plate 20 formed of a thick aluminum plate is subjected to curved molding at a warm temperature (about 300 ℃ to 450 ℃) in order to reduce the molding load and the elastic recovery amount generated in the large surface forming.
도 2는 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 사용되는 격자 형상의 금형을 나타낸 개략도이고, 도 3은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 따른 탄성 복원량 측정 위치를 나타낸 부분 확대도이다. FIG. 2 is a schematic view showing a lattice mold used in a method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention, and FIG. 3 is a spherical shape storage using an aluminum thick plate according to an embodiment of the present invention. It is a partial enlarged view which shows the elastic restoring amount measurement position according to the shaping | molding method of a container.
도 4는 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의한 알루미늄 후판의 두께와 크기에 따른 탄성 복원력 측정 결과를 보인 그래프이고, 도 5는 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의한 소성 변형률 발생 방향을 나타낸 그래프이다. Figure 4 is a graph showing the results of measuring the elastic restoring force according to the thickness and size of the aluminum plate by the method of forming a spherical shape storage container using an aluminum plate according to an embodiment of the present invention, Figure 5 is according to an embodiment of the present invention It is a graph which shows the plastic strain generation direction by the shaping | molding method of the spherical shape storage container using aluminum thick plate.
도 6은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 의한 성형 하중을 나타낸 그래프이다. Figure 6 is a graph showing the molding load by the molding method of the spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention.
본 발명에서는 실제 대곡면 성형 조건을 위하여 격자형 금형을 제작하여 실험 및 성형 해석한 예를 들어 살펴보기로 하며, 실험 및 성형 해석에 사용될 상기 알루미늄 후판은 가로와 세로의 길이가 1186×790㎜를 가지면서 20 또는 30㎜ 두께를 가지는 주재료가 알루미늄인 금속성 판재 형태로 이루어지는 구성을 예를 들어 살펴보기로 한다. In the present invention, for example, a lattice mold is manufactured for actual large-surface molding conditions, and an example of experiment and molding analysis will be described. The aluminum plate to be used for the experiment and molding analysis has a length of 1186 × 790 mm in length and width. For example, a configuration in which the main material having a thickness of 20 or 30 mm is made of a metal plate in which aluminum is used will be described.
도 2에 도시된 격자 형태의 금형 제작 시, 정확한 목표 곡률을 생성하고 판재의 표면 품질을 향상시키기 위하여 격자형 금형을 조립 후에 정밀 기계 가공을 이용하여 계단 형태의 단을 제거하는 방법에 의해 금형을 제작하게 된다. When fabricating the lattice-shaped mold shown in FIG. 2, the mold is formed by a method of removing stepped steps using precision machining after assembling the lattice mold in order to generate an accurate target curvature and improve the surface quality of the sheet. Will be produced.
상기 격자 형태의 금형에 의해 곡률을 가지도록 성형되는 상기 알루미늄 후판을 소재로 하여 성형 조건 및 공정 조건에 따른 알루미늄 후판의 탄성 복원력과 성형 하중 등을 분석하기 위하여 상기 알루미늄 후판의 두께, 금형의 곡률, 금형의 격자 간격 등을 변수로 적용하여 성형 해석을 수행한 결과를 예를 들어 살펴보기로 한다. The thickness of the aluminum plate, the curvature of the mold, and the like to analyze the elastic restoring force and the molding load of the aluminum plate according to the molding conditions and process conditions based on the aluminum plate formed to have a curvature by the lattice-shaped mold For example, the result of the molding analysis by applying the grid spacing of the mold as a variable will be described.
이하의 설명에서는 성형 조건들의 비교 분석을 위하여 성형 조건들을 서로 달리하면서 다수의 실험을 통해 본 발명의 구성을 살펴보기로 한다. 이때 사용되는 각 유형별 성형조건은 아래 표와 같다.In the following description, the configuration of the present invention will be described through a number of experiments while varying the molding conditions for comparative analysis of the molding conditions. The molding conditions for each type used are shown in the table below.
표 1
구분 다이곡률(㎜) 펀치곡률(㎜) 플레이트 두께(㎜)
Case 1 1,500 1,530 30
Case 2 1,500 1,520 30
Table 1
division Die curvature (mm) Punch Curvature (mm) Plate thickness (mm)
Case 1 1,500 1,530 30
Case 2 1,500 1,520 30
Case 1, 2의 비교를 통하여 동일한 다이 곡률(1/1500) 및 알루미늄 후판의 두께(30㎜)에 대하여 성형 펀치의 곡률 차이가 있을 경우 탄성 복원력 차이를 실험하였으며, 이때 곡면 성형된 알루미늄 후판의 탄성 복원량은 펀치를 제거한 다음 복원되는 탄성 복원량을 측정하여 금형의 곡률과 비교하여 실험한 결과이다. Through comparison of cases 1 and 2, the difference in elastic restoring force was tested for the same die curvature (1/1500) and the thickness of aluminum thick plate (30 mm) when the bending punch was different. Restoration amount is the result of experiment by comparing the curvature of the mold by measuring the amount of elastic restoration restored after removing the punch.
한편, 다양한 성형 조건에 따른 탄성 복원량을 측정하기 위하여 도 3에 도시된 바와 같이 상기 격자 형태의 금형에 의해 압착되는 상기 알루미늄 후판은 x-축 방향으로 후판의 성형 후 치수를 측정하게 된다. Meanwhile, in order to measure the elastic restoration amount according to various molding conditions, as shown in FIG. 3, the aluminum thick plate pressed by the lattice-shaped mold measures the size after molding of the thick plate in the x-axis direction.
물론, 다른 방향으로 탄성 복원량을 측정할 수 있으며, 다만 곡면 성형된 상기 알루미늄 후판은 수평, 수직 및 대각선 방향 모두 동일한 곡률을 가지고 있으므로, 탄성 복원량은 상기 알루미늄 후판의 가장 긴 변인 x축 방향으로 측정하는 것이 바람직할 것이다. Of course, the elastic recovery amount can be measured in different directions, but since the curved aluminum sheet has the same curvature in the horizontal, vertical and diagonal directions, the elastic recovery amount is in the x-axis direction, which is the longest side of the aluminum thick plate. It would be desirable to measure.
이하에서는 도 4를 참조하여 금형 곡률 및 알루미늄 후판의 두께에 따른 실험 결과를 살펴 보기로 한다. Hereinafter, with reference to Figure 4 will be described the experimental results according to the mold curvature and the thickness of the aluminum thick plate.
도 4에 도시된 바와 같이 성형 조건 케이스 1,2에 따른 탄성 복원량은 x=560㎜에서 각각 6.5, 5.6㎜로 측정된다. x의 값이 560㎜의 의미는 상기 저장용기(10)의 중앙 부분으로부터 560㎜ 정도 이격된 위치를 의미한다. As shown in FIG. 4, the elastic restoration amount according to the molding condition cases 1 and 2 is measured as 6.5 and 5.6 mm at x = 560 mm, respectively. A value of x of 560 mm means a position spaced about 560 mm from the central portion of the storage container 10.
케이스 1과 2를 비교함으로써 동일한 상기 알루미늄 후판의 두께 즉, 30㎜와 동일한 상기 알루미늄 후판의 다이 곡률(1/1500)에 대하여 펀치 곡률을 다르게 즉, 1/1520과 1/1530으로 적용하여 상기 알루미늄 후판의 탄성 복원량을 실험하게 된다. By comparing the cases 1 and 2, the punch curvature is applied differently, i.e., 1/1520 and 1/1530, with respect to the same thickness of the aluminum thick plate, that is, the die curvature (1/1500) of the aluminum thick plate equal to 30 mm. The elastic recovery of the thick plate is tested.
케이스 2의 경우 금형과 맞닿는 하부 곡률은 케이스 1과 동일하면서 상부 펀치는 곡률이 상대적으로 큰 펀치를 사용하여 성형하는 경우 탄성 복원량이 케이스 1과 비교하여 14% 감소할 뿐만 아니라 성형 하중도 41% 감소하는 결과를 나타냄을 알 수 있게 된다. In case 2, the lower curvature contacting the mold is the same as in case 1, while the upper punch is formed by using a punch with a relatively high curvature, which not only reduces the elastic recovery amount by 14% but also reduces the molding load by 41%. It can be seen that the results.
케이스 2의 경우 상기 알루미늄 후판의 하단면 즉, 하부 다이와 접촉하는 면의 곡률은 케이스 1과 동일하지만 상부 펀치와 접촉하는 면의 곡률은 증가된 곡률을 가지기 때문에 상기 알루미늄 후판의 두께별 유효 소성 변형률이 크게 발생하여 탄성 복원량이 감소하는 것으로 실험 결과를 해석할 수 있게 된다. In case 2, the curvature of the lower surface of the aluminum thick plate, that is, the surface in contact with the lower die, is the same as that of case 1, but the curvature of the surface in contact with the upper punch has an increased curvature. It is largely generated and the amount of elastic recovery is reduced, so that the experimental results can be interpreted.
또한, 곡률이 다르게 설계된 상,하부의 금형이 완전히 닫힌 시점에서 상기 알루미늄 후판은 금형에 완벽하게 접촉되지 않으므로, 성형 하중이 감소하는 결과를 나타낸다. In addition, when the upper and lower molds with different curvatures are completely closed, the aluminum thick plate is not in perfect contact with the mold, resulting in a reduction in molding load.
한편, 도 7은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 사용되는 금형에 의해 플레이트가 성형되는 상태를 나타낸 개략도이고, 도 8은 본 발명의 실시 예에 의한 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법에 따른 공정을 나타낸 블럭도이다. On the other hand, Figure 7 is a schematic diagram showing a state in which the plate is formed by a mold used in the method of forming a spherical shape storage container using an aluminum thick plate according to an embodiment of the present invention, Figure 8 is an aluminum according to an embodiment of the present invention It is a block diagram which shows the process by the shaping | molding method of the spherical shape storage container using a thick plate.
이들 도면을 참조하여 보면, 주재료가 알루미늄으로 형성되는 상기 플레이트(20)를 지지하는 면이 목표 곡률을 가지도록 형성되는 다이에 상기 플레이트(20)를 위치시키는 제1단계(31)가 진행된다. Referring to these figures, a first step 31 of positioning the plate 20 on a die is formed such that the surface supporting the plate 20, whose main material is made of aluminum, has a target curvature.
상기 플레이트(20)의 곡면을 형성하기 위하여 압착하는 금형은 상기 플레이트(20)를 지지하는 다이(40)와 상기 다이(40)에 지지되는 상기 플레이트(20)를 압착하는 펀치(50)를 포함하여 구성된다. The mold pressed to form the curved surface of the plate 20 includes a die 40 for supporting the plate 20 and a punch 50 for pressing the plate 20 supported on the die 40. It is configured by.
도 7을 참조하여 보면, 상기 다이(40)는 상대적으로 하측에 위치하여 상측에 놓이는 상기 플레이트(20)를 하측에서 지지하게 되고, 상기 펀치(50)는 상대적으로 상측에서 하측에 놓이는 상기 플레이트(20)를 압착함으로써 상기 플레이트(20)는 곡률을 가지는 형태로 형성된다. Referring to FIG. 7, the die 40 is relatively positioned on the lower side to support the plate 20 placed on the upper side, and the punch 50 is relatively placed on the plate on the lower side ( By pressing 20, the plate 20 is formed in a shape having a curvature.
도시된 도 7의 (a)에는 상기 다이(40)의 상면이 목표 곡률을 가지도록 형성되는 실시 예가 도시되어 있으며, 도 7의 (b)에는 상기 펀치(50)의 하면이 목표 곡률을 가지도록 형성되는 실시 예가 도시되어 있다. FIG. 7A illustrates an embodiment in which the upper surface of the die 40 has a target curvature, and in FIG. 7B, the lower surface of the punch 50 has a target curvature. An embodiment is shown.
또한, 상기 플레이트(20)는 함몰 형성되는 면이 목표 곡률을 가지도록 성형되면서, 목표 곡률을 가지도록 함몰 형성되는 면이 상기 저장용기(10)의 내면을 이루도록 각각의 상기 플레이트(20)는 이음 결합된다. In addition, while the plate 20 is formed to have a target curvature formed in the recessed surface, each plate 20 is formed so that the surface formed to have a target curvature forms the inner surface of the storage container 10 Combined.
이는 상기 플레이트(20)의 목표 곡률을 가지는 면이 상기 저장용기(10)의 내면을 이루도록 형성함으로써 상기 저장용기(10)의 내부 저장 부피가 일정하게 형성되고, 균일한 내부 압력을 유지할 수 있도록 하기 위함이다. This is to form a surface having a target curvature of the plate 20 to form the inner surface of the storage container 10 so that the internal storage volume of the storage container 10 is uniformly formed, and to maintain a uniform internal pressure For sake.
한편, 상기 플레이트(20)의 함몰 형성되는 면이 목표 곡률을 가지도록 성형하기 위하여, 상기 다이(40) 또는 상기 펀치(50) 중 어느 하나는 목표 곡률과 동일한 곡률을 가지도록 형성되면서 상기 플레이트(20)를 지지하도록 구성된다. Meanwhile, in order to form the recessed surface of the plate 20 to have a target curvature, either the die 40 or the punch 50 is formed to have the same curvature as the target curvature and the plate ( 20).
그리고, 목표 곡률과 동일한 곡률을 가지도록 형성되는 면을 가지는 상기 다이(40) 또는 상기 펀치(50)의 면을 압착하는 면은 목표 곡률보다 더 큰 곡률을 가지도록 형성된다. In addition, the surface of the die 40 or the surface of the punch 50 that has a surface formed to have the same curvature as the target curvature is formed to have a curvature larger than the target curvature.
도 7의 (a)를 예를 들어 상세히 살펴보면, 상기 플레이트(20)의 상방으로 함몰되는 면 즉, 상방으로 돌출되는 곡률을 가지도록 라운드지게 형성되는 면이 목표 곡률을 가지도록, 측방에서 볼 때 대략 "∩" 형태를 이루는 상기 다이(40)를 설치하게 된다. Referring to FIG. 7A in detail, for example, when viewed from the side so that the surface recessed upwardly of the plate 20, that is, the surface rounded to have a curvature projecting upward, has a target curvature. The die 40 is formed to have an approximately "∩" shape.
상기 다이(40)의 상면은 목표 곡률과 동일한 곡률을 가지도록 상방으로 함몰 형성되고, 이러한 상기 다이(40)의 상면에 상기 플레이트(20)가 지지되면서 상방에서 압착되어 상방으로 함몰되는 면의 내면이 상기 다이(40)의 상면과 대응되는 목표 곡률을 가지도록 성형된다. The upper surface of the die 40 is formed to be recessed upwardly to have the same curvature as the target curvature, the inner surface of the surface that is pressed upwards and is pressed upward while the plate 20 is supported on the upper surface of the die 40 The die 40 is molded to have a target curvature corresponding to the top surface of the die 40.
목표 곡률과 동일한 곡률을 가지도록 형성되는 상기 다이(40)의 상면 상측에서 하방으로 이동하면서 상기 플레이트(20)를 압착하기 위한 상기 펀치(50)의 하면은 상기 다이(40)의 상면이 형성하는 곡률보다 더 큰 곡률, 예를 들면 약 1∼50%정도 더 큰 곡률을 가지도록 상방으로 함몰 형성된다. The lower surface of the punch 50 for pressing the plate 20 while moving downward from the upper surface of the die 40 formed to have the same curvature as the target curvature is formed by the upper surface of the die 40 It is recessed upwardly to have a curvature larger than the curvature, for example, about 1-50% larger curvature.
이처럼, 상기 플레이트(20)가 압착 가공되면서, 내면이 목표 곡률을 가지도록 형성하기 위한 면은 상기 다이(40)의 상면이 되고, 상기 다이(40)의 상면은 목표 곡률과 동일한 곡률을 가지도록 형성된다. As such, as the plate 20 is pressed, the surface for forming the inner surface to have the target curvature becomes the upper surface of the die 40, and the upper surface of the die 40 has the same curvature as the target curvature. Is formed.
반면, 상기 다이(40)의 상면 방향으로 압착하는 상기 펀치(50)의 하면은 상기 다이(40)의 상면보다 더 큰 곡률을 가지도록 형성된다. 즉, 도면에 도시되는 상기 다이(40)의 상면 곡률인 Rd는 상기 펀치(50)의 하면 곡률인 Rp보다 더 작은 값을 가지게 되며, 이를 수식으로 표현하면, Rd<Rp 가 된다. On the other hand, the lower surface of the punch 50 that is pressed in the upper surface direction of the die 40 is formed to have a greater curvature than the upper surface of the die 40. That is, Rd, which is the top curvature of the die 40 shown in the drawing, has a smaller value than Rp, which is the bottom curvature of the punch 50, which is expressed by a formula, where Rd <Rp.
도 7의 (b)를 예를 들어 상세히 살펴보면, 상기 플레이트(20)의 함몰되는 면이 목표 곡률을 가지도록 성형하기 위하여 상기 펀치(50)의 하면은 목표 곡률과 동일한 곡률을 가지도록 하방으로 함몰 형성된다. Referring to FIG. 7B in detail, the bottom surface of the punch 50 is recessed downward to have the same curvature as the target curvature so that the recessed surface of the plate 20 has a target curvature. Is formed.
이러한, 상기 펀치(50)를 측방에서 보면, 대략 "∩" 형태를 이루도록 형성되고, 상기 플레이트(20)의 상방으로 함몰되는 면 즉, 상방으로 돌출되는 곡률을 가지도록 라운드지게 형성되는 면이 목표 곡률을 가지도록, 측방에서 볼 때 대략 "∩" 형태를 이루는 상기 다이(40)를 설치하게 된다. When the punch 50 is viewed from the side, the punch 50 is formed to have a substantially "∩" shape, and a surface recessed upwardly of the plate 20, that is, a surface rounded to have a curvature projecting upward is aimed at. In order to have a curvature, the die 40 is installed to have a substantially "∩" shape when viewed from the side.
목표 곡률과 동일한 곡률을 가지도록 형성되는 상기 펀치(50)의 하면 하측에 위치하여 상기 플레이트(20)를 지지하는 상기 다이(40)의 상면은 상기 펀치(50)의 하면이 형성하는 곡률보다 더 큰 곡률을 가지도록 하방으로 함몰 형성된다. The upper surface of the die 40 positioned below the lower surface of the punch 50 formed to have the same curvature as the target curvature and supporting the plate 20 is more than the curvature formed by the lower surface of the punch 50. It is formed recessed downward to have a large curvature.
이때, 상기 플레이트(20)의 함몰면이 목표 곡률을 가지도록 형성하기 위한 면은 상기 펀치(50)의 하면이 되고, 상기 플레이트(20)를 지지하는 면은 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 상기 다이(40)의 상면이 된다. At this time, the surface for forming the recessed surface of the plate 20 to have a target curvature becomes the lower surface of the punch 50, the surface supporting the plate 20 to have a greater curvature than the target curvature. It becomes an upper surface of the die 40 formed.
즉, 도 7의 (b)에 도시되는 상기 다이(40)의 상면 곡률인 Rd는 상기 펀치(50)의 하면 곡률인 Rp보다 더 큰 값을 가지게 되며, 이를 수식으로 표현하면, Rp<Rd 가 된다. That is, Rd, which is the upper surface curvature of the die 40 shown in FIG. 7B, has a larger value than Rp, which is the lower surface curvature of the punch 50. Expressed by the formula, Rp <Rd is do.
한편, 목표 곡률을 가지는 면의 곡률보다 목표 곡률을 가지는 면과 압착되는 면이 더 큰 곡률(약 을 가지도록 형성됨으로써 상기 펀치(50)가 이동하여 상기 다이(40)에 지지되는 상기 플레이트(20)를 압착하게 되면, 상기 플레이트(20)는 목표 곡률을 가지도록 형성되는 면에 지지되고, 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 면과는 일정 간격으로 이격되는 상태로 압착된다. Meanwhile, the plate 20 having the target curvature and the surface being compressed and having a larger curvature than the curvature of the surface having the target curvature (approximately, is formed to have the punch 50 moves and is supported by the die 40). When pressing), the plate 20 is supported on a surface formed to have a target curvature, and is pressed at a predetermined interval from a surface formed to have a curvature larger than the target curvature.
이와 같이, 목표 곡률을 가지는 면의 곡률보다 목표 곡률을 가지는 면과 압착되는 면이 더 큰 곡률을 가지도록 형성되면, 상기 플레이트(20)를 성형하면서 발생하는 탄성 복원력을 저감시킬 수 있는 장점을 가지게 되며, 저감되는 탄성 복원력에 의해 정밀한 성형이 가능한 장점을 가지게 되고, 이는 앞서 설명한 다양한 실험을 통해 증명된 것이라 할 수 있다. As such, when the surface having the target curvature and the surface to be compressed have a larger curvature than the curvature of the surface having the target curvature, the elastic restoring force generated while forming the plate 20 may be reduced. And, by the reduced elastic restoring force has the advantage that the precise molding is possible, which can be said to have been proved through the various experiments described above.
도 8을 참조하여 보면, 주재료가 알루미늄으로 형성되는 다수의 상기 플레이트(20)가 접합되면서 구체 형상으로 이루어지는 상기 저장용기(10)는 목표 곡률을 가지도록 형성되는 다수의 상기 플레이트(20)를 용접 등에 의한 결합 방법으로 이음 결합함으로써 제조된다. Referring to FIG. 8, the plurality of plates 20, the main material of which is formed of aluminum, are joined to each other, and the storage container 10 having a spherical shape is welded to the plurality of plates 20 formed to have a target curvature. It is produced by joint bonding by a bonding method such as.
이때, 상기 플레이트(20)를 목표 곡률을 가지도록 성형하는 성형 방법을 살펴보면, 먼저 주재료가 알루미늄으로 형성되는 상기 플레이트(20)를 지지하는 면이 목표 곡률을 가지도록 형성되거나, 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 상기 다이(40)에 상기 플레이트(20)를 위치시키는 제1단계(31)가 진행된다. At this time, looking at the molding method for forming the plate 20 to have a target curvature, first, the surface supporting the plate 20, the main material is formed of aluminum is formed to have a target curvature, or larger than the target curvature A first step 31 of positioning the plate 20 on the die 40 formed to have a curvature proceeds.
상기 제1단계(31)를 통해 상기 플레이트(20)가 성형 위치에 위치하게 되면, 상기 플레이트(20)를 압착하는 면이 목표 곡률을 가지도록 형성되거나, 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 상기 펀치(50)를 이동하여 상기 플레이트(20)를 압착하는 제2단계(32)가 진행된다. When the plate 20 is positioned at the molding position through the first step 31, the surface on which the plate 20 is pressed is formed to have a target curvature or is formed to have a larger curvature than the target curvature. The second step 32 of pressing the plate 20 by moving the punch 50 is performed.
상기 제2단계(32)를 통해 상기 플레이트(20)가 목표 곡률을 가지도록 성형되면, 상기 펀치(50)를 원위치로 이동시키는 제3단계(33)가 진행된다. When the plate 20 is molded to have a target curvature through the second step 32, a third step 33 of moving the punch 50 to its original position is performed.
상기 제3단계(33) 이후에는 상기 제3단계(33)를 통해 목표 곡률을 가지도록 상기 플레이트(20)가 성형되면, 목표 곡률을 가지는 면이 내면을 이루도록 상기 플레이트(20)를 용접 등의 결합 방법으로 이음 결합하는 제4단계(34)가 더 진행된다. After the third step 33, if the plate 20 is formed to have a target curvature through the third step 33, the plate 20 may be welded to form an inner surface with a surface having a target curvature. A fourth step 34 of joining joints is further proceeded.
전술한 바와 같은 본 발명의 설명은 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The description of the present invention as described above is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains various modifications without departing from the essential characteristics of the present invention. Modifications may be possible.
본 발명에 의한 알루미늄 후판을 이용한 구체 형상의 저장용기 성형 방법은, 상기 플레이트를 향하는 면이 상기 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 펀치를 이동하여 상기 플레이트를 압착하여 함몰 형성되는 상기 플레이트(20)의 내면이 목표 곡률과 동일한 곡률을 가지도록 성형하게 된다. According to the present invention, there is provided a method of forming a storage container having a spherical shape using an aluminum thick plate, by moving a punch formed so that a surface facing the plate has a curvature larger than the target curvature, and compressing the plate so that the plate is recessed. The inner surface of 20) is molded to have the same curvature as the target curvature.
이에 따라, 상기 저장용기의 내면은 균일해지는 장점을 가지게 되고, 이로 인해 저장 공간의 균일한 부피를 가지는 장점을 가지게 되고, 안전성이 향상되는 장점을 가지게 된다. Accordingly, the inner surface of the storage container has the advantage of being uniform, thereby having the advantage of having a uniform volume of the storage space, and has the advantage of improving safety.
이러한 다양한 장점 및 효과로 인해 본 발명에 의한 알루미늄 후판을 이용한 구체 형상의 저장용기는 저장용기 산업뿐만 아니라, 이와 관련된 다양한 산업에 그 이용 가능성이 크다 할 것이다. Due to these various advantages and effects, the spherical shape storage container using the aluminum plate according to the present invention will be highly applicable to not only the storage container industry but also various related industries.

Claims (6)

  1. 주재료가 알루미늄으로 형성되는 다수의 플레이트가 접합되면서 구체 형상으로 이루어지는 저장용기를 성형하는 방법에 있어서,In the method of molding a storage container having a spherical shape while a plurality of plates of the main material is formed of aluminum bonded to each other,
    상기 플레이트를 지지하는 면이 목표 곡률을 가지도록 형성되는 다이에 상기 플레이트를 위치시키는 제1단계;Positioning the plate on a die formed such that a surface supporting the plate has a target curvature;
    상기 플레이트를 향하는 면이 상기 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 펀치를 이동하여 상기 플레이트를 압착하는 제2단계; 및 A second step of compressing the plate by moving a punch formed such that a surface facing the plate has a curvature greater than the target curvature; And
    상기 펀치를 원위치로 이동시키는 제3단계; 를 포함하여 구성되는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법.A third step of moving the punch to its original position; Forming method of a spherical shape storage container using an aluminum thick plate configured to include.
  2. 주재료가 알루미늄으로 형성되는 다수의 플레이트가 접합되면서 구체 형상으로 이루어지는 저장용기를 성형하는 방법에 있어서,In the method of molding a storage container having a spherical shape while a plurality of plates of the main material is formed of aluminum bonded to each other,
    상기 플레이트를 지지하는 면이 목표 곡률보다 더 큰 곡률을 가지도록 형성되는 다이에 상기 플레이트를 위치시키는 제1단계;Positioning the plate on a die formed such that a surface supporting the plate has a curvature greater than a target curvature;
    상기 플레이트를 향하는 면이 목표 곡률을 가지도록 형성되는 펀치를 이동하여 상기 플레이트를 압착하는 제2단계; 및A second step of compressing the plate by moving a punch formed such that a surface facing the plate has a target curvature; And
    상기 펀치를 원위치로 이동시키는 제3단계; 를 포함하여 구성되는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법.A third step of moving the punch to its original position; Forming method of a spherical shape storage container using an aluminum thick plate configured to include.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 플레이트는 적어도 10㎜ 이상의 두께를 가지는 후판으로 형성되는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법.And the plate is formed of a thick plate having a thickness of at least 10 mm or more.
  4. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 플레이트는, 목표 곡률을 가지는 면이 형성되는 다이 또는 펀치에 의해 어느 일면은 목표 곡률을 가지도록 형성되고, 목표 곡률보다 더 큰 곡률을 가지는 면이 형성되는 다이 또는 펀치의 면과 이격되면서 압착되는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법.The plate is formed by a die or punch having a surface having a target curvature, and one surface thereof is formed to have a target curvature, and is pressed while being spaced apart from a surface of a die or punch having a surface having a curvature greater than the target curvature. Forming method of spherical shape storage container using aluminum thick plate.
  5. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 제3단계 이후에는 목표 곡률을 가지도록 형성되는 면이 상기 저장용기의 내면을 형성하도록 상기 플레이트를 서로 이음 결합하는 제4단계가 더 진행되는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법.And after the third step, a fourth step of jointly joining the plates to each other such that a surface formed to have a target curvature forms an inner surface of the storage container is further formed.
  6. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 플레이트는 함몰 형성되는 면이 목표 곡률을 가지도록 압착되는 알루미늄 후판을 이용한 구체 형상 저장용기의 성형 방법.The plate is a method of forming a spherical shape storage container using an aluminum thick plate is pressed so that the surface formed indentation has a target curvature.
PCT/KR2012/006066 2012-06-21 2012-07-30 Method for molding spherical storage container using aluminum thick plate WO2013191323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120066825 2012-06-21
KR10-2012-0066825 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013191323A1 true WO2013191323A1 (en) 2013-12-27

Family

ID=49768901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006066 WO2013191323A1 (en) 2012-06-21 2012-07-30 Method for molding spherical storage container using aluminum thick plate

Country Status (1)

Country Link
WO (1) WO2013191323A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960010125U (en) * 1994-09-14 1996-04-12 오리온전기주식회사 Shadow Mask Molding Mold
JPH09122933A (en) * 1995-10-31 1997-05-13 Kobe Steel Ltd Manufacture of container for electromagnetic cooker
KR20030021305A (en) * 2001-09-05 2003-03-15 재단법인 포항산업과학연구원 Pressing die for waved steel plate
KR20090116037A (en) * 2008-05-06 2009-11-11 현대삼호중공업 주식회사 The bending machine for 3-dimensional forming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960010125U (en) * 1994-09-14 1996-04-12 오리온전기주식회사 Shadow Mask Molding Mold
JPH09122933A (en) * 1995-10-31 1997-05-13 Kobe Steel Ltd Manufacture of container for electromagnetic cooker
KR20030021305A (en) * 2001-09-05 2003-03-15 재단법인 포항산업과학연구원 Pressing die for waved steel plate
KR20090116037A (en) * 2008-05-06 2009-11-11 현대삼호중공업 주식회사 The bending machine for 3-dimensional forming

Similar Documents

Publication Publication Date Title
US10511046B2 (en) Fuel cell assembling method and fuel cell assembling apparatus
KR20070115652A (en) Battery can
KR200467144Y1 (en) Universal clamp of auto welding machine for making lng tank ship
WO2013191323A1 (en) Method for molding spherical storage container using aluminum thick plate
CN103639257B (en) Electronic universal tester is utilized to carry out the device of hyperbolicity sheet material bending and forming
KR20090119470A (en) Method for forming membrane in a liquefied natural gas strorage tank and device thereof
CN109482696A (en) Film-type liquefied natural gas cargo tank maintenance system stainless steel wave card ripplet making apparatus and manufacture craft
WO2014003231A1 (en) Method for forming curved surface of thick aluminum plate having three-dimensional curvature
KR101339688B1 (en) Forming equipment for making spherical container with aluminium thick plate
CN209520212U (en) Film-type liquefied natural gas cargo tank maintenance system stainless steel wave card shaping tooling
WO2017034109A1 (en) Insulation system for membrane-type storage tank and membrane-type storage tank comprising same
CN116329104A (en) Automatic material guiding, clamping and measuring automation equipment for bearing
CN115207432A (en) Module stacking workstation and stacking quality control method
CN213447223U (en) High-rigidity platform for heat treatment of large thin-wall light alloy castings
US6487999B2 (en) Liner mounting structure for measuring piston friction
KR20170019880A (en) Charging-Discharging Apparatus Capable of Measuring Thickness of Battery Cell
CN206740394U (en) A kind of side plate tension test fixed equipment
CN112304581A (en) Expansion joint service life test device
CN211696217U (en) Flatness detection jig
KR20030039709A (en) Cargo containment system for LNG ship
CN210046642U (en) Stamping workpiece strorage device
CN217250762U (en) Automatic sagger size detection and sorting device
CN219607930U (en) Ultrathin part detection tool
KR100984671B1 (en) Template device for insulation production box of l.n.g keeping tank
CN212311813U (en) 5G stamping part checking fixture mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879445

Country of ref document: EP

Kind code of ref document: A1