WO2013190818A1 - Network control method and apparatus, server and base station in mobile communication system - Google Patents

Network control method and apparatus, server and base station in mobile communication system Download PDF

Info

Publication number
WO2013190818A1
WO2013190818A1 PCT/JP2013/003765 JP2013003765W WO2013190818A1 WO 2013190818 A1 WO2013190818 A1 WO 2013190818A1 JP 2013003765 W JP2013003765 W JP 2013003765W WO 2013190818 A1 WO2013190818 A1 WO 2013190818A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile terminal
relay
relay station
communication
Prior art date
Application number
PCT/JP2013/003765
Other languages
French (fr)
Japanese (ja)
Inventor
潤 式田
石井 直人
ブンサーン ピタックダンロンキジャー
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013190818A1 publication Critical patent/WO2013190818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a mobile communication system to which relay transmission is applied, and more particularly to a network control method and apparatus thereof, and a server and a base station having a network control function.
  • a relay station In 3GPP LTE (Long-Term Evolution) -Advanced, in order to improve the transmission data volume per unit time (hereinafter referred to as throughput) and expand the system coverage, a relay station (Relay transmission is used for transmission via Relay Node). Adoption of relay transmission has an advantage that a transmission line is not required because the base station and the relay station are wireless lines, and the system can be constructed at low cost.
  • a relay station (hereinafter abbreviated as RN) used for relay transmission has the same cell identifier as a base station (Donor eNodeB, hereinafter abbreviated as DeNB) to which the RN belongs, or is different from DeNB.
  • the mobile terminal User (Equipment, hereinafter abbreviated as UE) recognizes the presence of the RN, and transmits the signal transmitted from the RN to the DeNB. It is considered.
  • the RN has a unique cell identifier
  • the RN forms an independent cell different from the DeNB, so that the RN is recognized as one of the base stations when viewed from the UE.
  • FIG. 1 shows an example of a mobile communication system that employs relay transmission using an RN having a unique cell identifier.
  • the UE is connected to either the macro cell MCELL or the relay cell RCELL.
  • MUE the UE connected to the macro cell MCELL
  • RUE the UE connected to the relay cell RCELL
  • DeNB1 and RN2 are respectively connected by the radio
  • DeNB1 and the core network 5 are connected by the wired line.
  • the connection between the UE and the cell is established by a procedure in which the UE selects a cell, makes a connection request to the selected cell, and the requested cell permits the connection.
  • Cell selection is based on the received signal quality (RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality)) measured using a cell-specific reference signal and system information (SIB: System Information Block). This is performed based on the notified offset value.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SIB System Information Block
  • Non-Patent Document 1 Such a cell selection method is disclosed in Non-Patent Document 1, and the parameters of system information (SIB) are described in Non-Patent Document 2 (Sec. 6.3.1, pp. 146-159). RSRP or RSRQ) is disclosed in Non-Patent Document 3, respectively.
  • SIB system information
  • RSRP or RSRQ system information
  • the UE may need to switch the connected cell (handover).
  • the cell to which the UE is connected determines which cell to handover based on the received signal quality (RSRP or RSRQ) of the own cell and neighboring cells reported from the UE and the offset value unique to each cell. .
  • RSRP received signal quality
  • RSRQ received signal quality
  • the offset value used in the handover process is a parameter different from the setting in the system information (SIB) used at the time of cell selection described above, and handover failure or frequent occurrence can be achieved by setting each UE individually. Optimized to avoid.
  • SIB system information
  • the setting of the offset value is described in Non-Patent Document 2 (Sec. 6.3.5, pp. 213-214). Note that the handover execution condition based on the received signal quality (RSRP or RSRQ) and the offset value is determined by the operating policy of the communication carrier.
  • the offset value used at the time of cell selection or handover described above has been set based on the radio wave environment and traffic load analysis results from a driving test or the like.
  • SON optimizes base station configuration parameters by collecting and analyzing information about network quality measured by terminals and base stations. Note that collection / analysis of measurement information and parameter optimization may be performed in a distributed manner by each base station, or may be performed in a centralized manner by a network management apparatus that can communicate with a plurality of base stations.
  • 3GPP, TS36.304 V10.4.0 (2011-12), Sec. 5.2, pp. 15-25.
  • the throughput of the UE 3 connected to the relay cell RCELL in the relay transmission as shown in FIG. 1 is the theoretical value of the throughput of the line between DeNB and RN (hereinafter referred to as the backhaul link) and the line between the RN and UE ( Hereinafter, it is influenced by the relationship with the theoretical value of the throughput of the relay access link.
  • the theoretical value of the throughput is a value determined by the channel quality of the line and the amount of available resources, and corresponds to a throughput value that can be realized when a sufficient amount of transmission data exists on the transmission side.
  • the relay access link becomes a bottleneck, and conversely, the theoretical value of the throughput of the backhaul link is larger than the theoretical value of the throughput of the relay access link. Is smaller, the backhaul link becomes a bottleneck.
  • the backhaul link is a bottleneck, even if relay transmission is introduced, the capacity of the relay access link is not fully utilized, and thus the system throughput cannot be sufficiently improved.
  • the received signal quality offset value used at the time of cell selection or handover described above is set for the purpose of traffic load distribution, handover control, etc., and does not consider the bottleneck of the line. Therefore, since the offset value is set without considering the bottleneck of the line, there is a possibility that the throughput cannot be sufficiently improved when the backhaul is in a bottleneck state.
  • an object of the present invention is to provide a network control method and apparatus, a server, and a base station that can improve the throughput of the entire system when a backhaul link is a bottleneck.
  • the network control method is a network control method in a mobile communication system including a relay station, in which communication of a mobile terminal connected to the relay station is performed between the first communication link between the base station and the relay station and the relay Determining which of the second communication links between the station and the mobile terminal is restricted, and when restricted by the first communication link, connection of another mobile terminal connected to the base station Control is performed to switch the destination from the base station to the relay station.
  • a network control apparatus according to the present invention is a network control apparatus in a mobile communication system including a relay station, and a mobile terminal connected to the relay station communicates with a first communication link between the base station and the relay station and the relay.
  • the base station according to the present invention is a base station in a mobile communication system including a relay station, and communication of a mobile terminal connected to the base station is performed between the first communication link and the relay between the base station and the relay station.
  • the server according to the present invention is a server in a mobile communication system including a base station and a relay station, and communication of a mobile terminal connected to the base station is performed between the first communication link between the base station and the relay station, and the relay station.
  • a mobile communication system according to the present invention is a mobile communication system including a macro cell formed by a base station and a relay cell formed by a relay station connected to the base station, wherein the base station connects to the relay cell.
  • Determining means for determining which of the first communication link between the base station and the relay station and the second communication link between the relay station and the mobile terminal is restricted by Control means for controlling to switch a connection destination of another mobile terminal connected to the macro cell from the base station to the relay station when restricted by the first communication link.
  • a mobile communication system is a mobile communication system including a macro cell formed by a base station and a relay cell formed by a relay station connected to the base station, wherein a server connected to the base station includes the relay cell Determines whether communication of a mobile terminal connected to the mobile station is restricted by a first communication link between the base station and the relay station or a second communication link between the relay station and the mobile terminal And a control means for controlling to switch the connection destination of another mobile terminal connected to the macro cell from the base station to the relay station when restricted by the first communication link. It is characterized by.
  • the total throughput of the entire system can be improved.
  • FIG. 1 is a configuration diagram showing an example of a mobile communication system employing relay transmission.
  • FIG. 2 is a schematic diagram of a mobile communication system for explaining the basic operation of network control according to the present invention.
  • FIG. 3 is a sequence diagram showing a network control operation in the mobile communication system according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a configuration example of the base station (DeNB).
  • FIG. 5 is a block diagram illustrating a configuration example of the relay station (RN).
  • FIG. 6 is a block diagram illustrating a configuration example of a mobile terminal (UE).
  • FIG. 7 is a flowchart showing a network control method according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart showing a network control method according to the second embodiment of the present invention.
  • FIG. 9 is a network configuration diagram showing a schematic configuration of a mobile communication system according to the second embodiment of the present invention.
  • the connection destination of the mobile terminal connected to the macro cell is switched from the macro cell to the relay cell.
  • the channel quality of the macro access link can be improved and the throughput of the entire system can be increased.
  • the theoretical value of the throughput of a radio channel (hereinafter referred to as a macro access link) between the DeNB (base station) 10 and the MUE (mobile terminal) 40 connected to the macro cell is expressed as follows.
  • the theoretical value of the throughput of the backhaul link between the TP MA , the DeNB 10 and the RN (relay node) 20 is the theoretical value of the throughput of the relay access link between the TP BH , the RN 20 and the RUE (mobile terminal) 30 connected to the relay cell. It is assumed that the value is TP RA and the backhaul link is a bottleneck, that is, TP BH ⁇ TP RA .
  • the theoretical value of the throughput of each link is defined as follows.
  • Theoretical value of throughput of each link (Average frequency utilization efficiency of each link) x (Available frequency bandwidth of each link)
  • the frequency utilization efficiency is a throughput per unit frequency (bit / s / Hz), and its magnitude depends on the channel quality.
  • the throughput of the RUE is limited by the backhaul link, and the capacity of the relay access link is not fully utilized.
  • the capacity of the relay access link can be effectively used by handing over a MUE having a relatively deteriorated channel quality among the MUEs connected to the macro cell to the relay cell.
  • the network control according to the present invention can increase the total throughput of the MUE without changing the total throughput of the RUE, and can improve the total throughput of the entire system.
  • the present invention does not limit the subject of network control, as will be described below, in the first embodiment of the present invention, the DeNB is used, and in the second embodiment, a server other than the base station is used as the subject of network control. As an example.
  • each of RN 20, RUE 30 and MUE 40 measures channel quality (operations S101 to S103), and RN 20 and MUE 40 directly transmit the measured channel quality to DeNB1. Then, the RUE 30 transmits to the RN 20 (operation S104).
  • the DeNB 10 calculates the frequency use efficiency of the macro access link and the backhaul link based on the channel quality received from the MUE 40 or the RN 20 (Operation S105). The frequency utilization efficiency can also be derived from the received signal quality (RSRP or RSRQ). Further, the DeNB 10 calculates the amount of resources allocated to each RN using the scheduling information (Operation S106). The RN 20 calculates the frequency use efficiency of the relay access link using the channel quality received from the RUE 30 (Operation S107), and transmits information on the calculated frequency use efficiency to the DeNB 10 (Operation S108).
  • the DeNB 10 When receiving information on the frequency usage efficiency of the relay access link from the RN 20, the DeNB 10 uses the information on the frequency usage efficiency, the calculated frequency usage efficiency, and the amount of resources allocated to each RN, and the backhaul link and the relay.
  • the theoretical value of the throughput of the access link is calculated (operation S109), and the offset value of the received signal quality for each RN of each MUE is determined using the calculated frequency utilization efficiency of each link (operation S110).
  • the offset value of the received signal quality for each RN of each MUE is determined using the calculated frequency utilization efficiency of each link (operation S110).
  • the DeNB 10 includes a transmission path interface unit 11, a baseband signal processing unit 12, and a radio frequency signal processing unit 13.
  • the baseband signal processing unit 12 includes an upper layer processing unit 121, a MAC (Medium Access Control) layer processing unit 122, a physical layer processing unit 123, a channel quality calculation unit 124, and an offset value determination unit 125.
  • the function of each processing unit will be described by taking as an example the case of a downlink that sends data from the DeNB 10 to the UE.
  • the transmission path interface unit 11 receives user data from the core network 5 and transfers the received data to the upper layer processing unit 121.
  • the upper layer processing unit 121 performs PDCP (Packet Data Convergence Protocol) layer processing such as encryption on the received data, and RLC (Radio Link Control) layer processing such as division / combination of user data, and MAC layer processing unit 122.
  • the upper layer processing unit 121 also performs RRCRR (Radio Resource Control) layer processing for handling control messages.
  • the MAC layer processing unit 122 performs multiplexing, retransmission processing (hybrid ARQ), and scheduling processing of data transferred from the higher layer processing unit 121.
  • the data multiplexing method and the retransmission processing control method are determined by the scheduling process.
  • the modulation method and coding rate in the physical layer processing unit 123 are also determined by the scheduling process.
  • the physical layer processing unit 123 performs encoding, modulation, and the like on the data transmitted from the MAC layer processing unit 122 to generate a baseband signal, and transfers the baseband signal to the radio frequency signal processing unit 13.
  • the radio frequency signal processing unit 13 performs conversion processing, band limitation processing, and amplification processing of the baseband signal transferred from the physical layer processing unit 123 of the baseband signal processing unit 12 into a carrier frequency band signal, and finally from the antenna. Send.
  • the processing route reverses that of the downlink described above. That is, the radio frequency signal processing unit 13 converts the radio frequency signal received from the MUE or RN into a baseband signal, and the baseband signal processing unit 12 performs physical layer processing, MAC layer processing, and higher layer processing on the baseband signal. Finally, the transmission path interface unit 11 transfers the data to the core network 5.
  • the channel quality calculation unit 124 of the baseband signal processing unit 12 acquires the CQI (Channel Quality Indicator) reported from each MUE or RN and the scheduling information of the DeNB from the MAC layer processing unit 122, and the macro access link and back Calculate the frequency utilization efficiency of the hall link and the amount of resources allocated to each RN. Further, the channel quality calculation unit 124 uses the calculated frequency utilization efficiency, the amount of resources allocated to each RN, and the information on the frequency utilization efficiency of the relay access link reported from the RN, and the backhaul link and the relay access link. And calculates the calculated theoretical value of the throughput and the frequency utilization efficiency to the offset value determination unit 125.
  • CQI Channel Quality Indicator
  • the offset value determination unit 125 determines the received signal quality offset value for each relay cell of the MUE, using the theoretical throughput value and the frequency utilization efficiency input from the channel quality calculation unit 124, as will be described later.
  • the RN 20 includes a baseband signal processing unit 22 and a radio frequency signal processing unit 23.
  • the baseband signal processing unit 22 includes an upper layer processing unit 221, a MAC layer processing unit 222, a physical layer processing unit 223, and an access link quality calculation unit 224.
  • the transmission path interface unit connected to the core network 5 is not provided.
  • the functions of each processing unit of the RN 20 are basically the same as those of the DeNB 10 described above, but the upper layer processing unit 221 divides and multiplexes the data addressed to the RUE, and the physical layer processing unit 223 receives the received signal. It differs from DeNB10 in that quality is measured.
  • Downlink data transmitted from the DeNB 10 to the RUE via the RN is transmitted as data addressed to the RN obtained by multiplexing the data of a plurality of RUEs connected to the same relay cell.
  • the multiplex processing of the data addressed to the RN is executed by the core network 5 and the division processing of the multiplexed data is executed by the upper layer processing unit 221 of the RN 20.
  • the data of each divided RUE is subjected to higher layer processing (PDCP layer processing, RLC layer processing), MAC layer processing, physical layer processing, and radio frequency signal processing, and then transmitted to each RUE.
  • PDCP layer processing, RLC layer processing Radio Link Control Protocol
  • MAC layer processing MAC layer processing
  • physical layer processing and radio frequency signal processing
  • the physical layer processing unit 223 measures the received signal quality (RSRP or RSRQ) using the cell-specific reference signal, and outputs the measured received signal quality to the upper layer processing unit 221.
  • the upper layer processing unit 221 reports the received signal quality to the DeNB 10 as an RRC message.
  • the access link quality calculation unit 224 obtains the CQI reported from each RUE connected to the cell formed by the RN from the MAC layer processing unit 222, and calculates the average frequency use efficiency of the relay access link using the CQI. To do.
  • the calculated frequency utilization efficiency is sent to the DeNB 10 by an RRC message as an example. Note that the information to be transmitted may be, for example, throughput instead of frequency utilization efficiency.
  • the UE includes an application layer processing unit 31, a baseband signal processing unit 32, and a radio frequency signal processing unit 33, and the baseband
  • the signal processing unit 32 includes an upper layer processing unit 321, a MAC layer processing unit 322, and a physical layer processing unit 323.
  • the application layer processing unit 31 exchanges data with the upper layer processing unit 321. Similar to the physical layer processing unit 223 of the RN 20, the physical layer processing unit 323 measures the received signal quality (RSRP or RSRQ) and sends the measurement value to the higher layer processing unit 321. Note that the MAC layer processing unit 322 does not perform scheduling processing. Since information such as the modulation method and coding rate is sent from the connected DeNB 10 or RN 20, the UE may perform each process according to the information. The functions of the other processing units are basically the same as those of the DeNB 10 described above.
  • Offset value determination operation The processing of the offset value determination unit 125 of the DeNB 10 may be periodic or aperiodic, but in any case, the processing starts after the channel quality calculation unit 124 ends.
  • the bottleneck determination method for example, the following two methods can be adopted.
  • a method of comparing the ratio of the theoretical values of the throughput of the backhaul link and the relay access link with a threshold value can be considered.
  • a value calculated by the channel quality calculation unit 124 is used, and an appropriate value may be set as the threshold value so that it is possible to determine which line is the bottleneck.
  • a method using the resource usage rate in RNi can be considered. In this case as well, as in the first example, the determination may be made by comparing with a threshold value. Note that the resource usage measurement processing and the exchange processing between adjacent base stations of the measured resource usage are supported by standard specifications.
  • backhaul link in operation 202
  • a UE that satisfies the following two conditions is searched when the connection destination is switched to a cell formed by RNi (operation S203).
  • Condition 1 Improve communication quality (throughput as an example) of a cell connected before switching.
  • Condition 2 Data communication to UEs connected to RNi is restricted by the backhaul link (the backhaul link is a bottleneck).
  • the frequency utilization efficiency of each UE sent from the channel quality calculation unit 124 can be used.
  • the frequency utilization efficiency when the target UE connects to RNi is required, but it can be derived from the received signal quality (RSRP or RSRQ) reported from the UE.
  • the received signal quality offset value ⁇ for the cell formed by RNi of the control target UE is determined (operation S205).
  • the offset value ⁇ is set so that the UE to be controlled is handed over to RNi. That is, the offset value ⁇ is set to an appropriate value by considering the RSRP difference between the cell formed by RNi and the cell before switching and the handover control method.
  • the offset value ⁇ is determined, when the relay access link is determined to be a bottleneck (“relay access link” in operation S202), or when a UE that satisfies both the above conditions 1 and 2 is not found (operation S204; NO), it is determined whether or not the index i is a predetermined maximum value (max value) (operation S206). If the index i is the maximum value (operation S206; YES), the processing related to the determination of the offset value is terminated. If the index i is not the maximum value (operation S206; NO), the value of i is incremented by 1 (operation S207). Return to operation S202. Thus, the above-described processing S202 to S206 is repeated until the value of i reaches the maximum value.
  • the received signal quality offset value of the UE for each relay cell in consideration of fluctuations in the communication quality of the bottleneck line and the connected cell. Is determined. For example, if the backhaul link is a bottleneck in the relay cell to be controlled, when the UE connection destination is switched to the relay cell to be controlled, the bottleneck state of the backhaul link is maintained, and the cell communication before connection switching If there is a UE that improves the quality, an offset value of the received signal quality is set for the UE to be handed over to the relay cell to be controlled.
  • the backhaul link is a bottleneck, so the total data amount transmitted to the UE connected to the relay cell to be controlled does not change and the communication quality of the handover source cell is improved. . Therefore, as a result, the total throughput of the entire system can be improved.
  • the configurations of the DeNB 10, the RN 20, and the UE are as shown in FIGS.
  • the processing method of the offset value determination unit 125 is different from that of the first embodiment.
  • a second embodiment of the present invention will be described with reference to a flowchart shown in FIG.
  • the processing of the offset value determination unit 125 of the DeNB 10 may be periodic or aperiodic, but in any case, it starts after the processing of the channel quality calculation unit 124 ends.
  • the UE improves the communication quality of the cell connected before switching when the connection destination is switched to the cell formed by RNi.
  • backhaul link in operation 302
  • the UE improves the communication quality of the cell connected before switching when the connection destination is switched to the cell formed by RNi.
  • are listed (operation S303).
  • a condition such as “the RSRP difference between the connected cell and the cell formed by RNi is below the threshold” is added. Or setting the maximum number of UEs in the list is also conceivable.
  • the received signal quality offset value ⁇ for the cell formed by RNi of the j-th UEj in the list is determined (operation S308).
  • the offset value ⁇ is set such that the control target UEj is handed over to RNi. That is, the offset value ⁇ is set to an appropriate value by considering the RSRP difference between the cell formed by RNi and the cell before switching and the handover control method.
  • the relay access link is determined to be a bottleneck (“relay access link” in operation S302), or the value of j is the maximum value (operation S306; YES), the index i Is a predetermined maximum value (max ⁇ value) or not (operation S309). If the index i is the maximum value (operation S309; YES), the processing related to the determination of the offset value is terminated. If the index i is not the maximum value (operation S309; NO), the value of i is incremented by 1 (operation S310). Return to operation S302. In this way, the above-described processes S302 to S310 are repeated until the value of i reaches the maximum value.
  • the process of operation S305 is executed according to the order of the list, it is necessary to devise the order of UEs arranged in the list in order to shorten the UE search time.
  • the DeNB 10a has a configuration obtained by removing the functions of the channel quality calculation unit 124 and the offset value determination unit 125 from the configuration of the DeNB 10 illustrated in FIG. 4, and the server 6 includes the channel quality calculation unit 124 and the offset value determination unit. It has 125 functions. Since the basic operation according to the present embodiment is the same as that described in the first embodiment, a description thereof will be omitted.
  • the present invention can be applied to a mobile communication system employing relay transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] To provide a network control method and apparatus, a server and a base station wherein the throughput of the whole system can be improved when a backhaul link is a bottleneck. [Solution] In a mobile communication system including a relay station (20), it is determined whether the communications of mobile terminals (30) connected to the relay station (20) are restricted by a backhaul link between a base station (10) and the relay station (20) or by a relay access link between the relay station (20) and the mobile terminals (30), and, if the communications are restricted by the backhaul link, a control is performed such that the connection destination of other mobile terminals (40) currently connected to the base station (10) is switched to the relay station.

Description

移動通信システムにおけるネットワーク制御方法および装置、サーバ並びに基地局Network control method and apparatus, server and base station in mobile communication system
 本発明はリレー伝送を適用した移動通信システムに係り、特にそのネットワーク制御方法および装置、並びにネットワーク制御機能を有するサーバおよび基地局に関する。 The present invention relates to a mobile communication system to which relay transmission is applied, and more particularly to a network control method and apparatus thereof, and a server and a base station having a network control function.
 3GPP LTE(Long-Term Evolution)-Advancedでは、単位時間当たりの伝送データ量(以下、スループットという。)の向上やシステムカバー範囲の拡大を目的として、基地局と移動端末との間に中継局(Relay Node)を介して伝送を行うリレー伝送が採用されている。リレー伝送の採用は、基地局と中継局との間が無線回線であるから伝送路の敷設が不要となり、システムを低コストで構築できるという利点がある。 In 3GPP LTE (Long-Term Evolution) -Advanced, in order to improve the transmission data volume per unit time (hereinafter referred to as throughput) and expand the system coverage, a relay station ( Relay transmission is used for transmission via Relay Node). Adoption of relay transmission has an advantage that a transmission line is not required because the base station and the relay station are wireless lines, and the system can be constructed at low cost.
 リレー伝送で用いる中継局(以下、RNと略記する。)は、当該RNの帰属する基地局(Donor eNodeB、以下、DeNBと略記する。)と同一のセル識別子を有するか、もしくはDeNBと異なる独自のセル識別子を有するか、により2種類に分けられる。RNがDeNBと同一のセル識別子を持つ場合、移動端末(User Equipment、以下、UEと略記する。)は、RNの存在を認識することなく、RNから送信された信号をDeNBから送信された信号とみなす。一方、RNが独自のセル識別子を持つ場合、RNはDeNBとは異なる独立したセルを形成するので、UEから見ると、RNは基地局の一つとして認識される。 A relay station (hereinafter abbreviated as RN) used for relay transmission has the same cell identifier as a base station (Donor eNodeB, hereinafter abbreviated as DeNB) to which the RN belongs, or is different from DeNB. Depending on whether the cell identifier is When the RN has the same cell identifier as the DeNB, the mobile terminal (User (Equipment, hereinafter abbreviated as UE) recognizes the presence of the RN, and transmits the signal transmitted from the RN to the DeNB. It is considered. On the other hand, when the RN has a unique cell identifier, the RN forms an independent cell different from the DeNB, so that the RN is recognized as one of the base stations when viewed from the UE.
 図1は独自のセル識別子を持つRNを用いたリレー伝送を採用した移動通信システムの一例を示す。図1に示すように、DeNB1がマクロセルMCELLを、RN2がリレーセルRCELLを、それぞれ形成するシステムでは、UEの接続先はマクロセルMCELLかリレーセルRCELLのいずれかである。以下、マクロセルMCELLに接続したUEをMUE、リレーセルRCELLに接続したUEをRUEとする。なお、DeNB1とRN2との間、RN2とRUE3との間、およびDeNB1とMUE4との間はそれぞれ無線回線で接続され、DeNB1とコアネットワーク5とは有線回線で接続されている。 FIG. 1 shows an example of a mobile communication system that employs relay transmission using an RN having a unique cell identifier. As shown in FIG. 1, in a system in which DeNB1 forms a macro cell MCELL and RN2 forms a relay cell RCELL, the UE is connected to either the macro cell MCELL or the relay cell RCELL. Hereinafter, the UE connected to the macro cell MCELL is referred to as MUE, and the UE connected to the relay cell RCELL is referred to as RUE. In addition, between DeNB1 and RN2, between RN2 and RUE3, and between DeNB1 and MUE4 are respectively connected by the radio | wireless line, and DeNB1 and the core network 5 are connected by the wired line.
 UEとセルとの接続は、UEがセルを選択し、選択したセルへ接続要求を行い、要求を受けたセルが接続を許可する、という手順により確立される。セルの選択は、セル固有の参照信号を用いて測定された受信信号品質(RSRP (Reference Signal Received Power)またはRSRQ (Reference Signal Received Quality))と、システム情報(SIB: System Information Block)によりセルから報知されるオフセット値と、に基づいて行われる。UEにオフセット値を設定することで受信信号品質が最良でないセルを接続先として選択させることができるため、オフセット設定値によりセル間でトラフィック負荷分散等を最適化することが可能となる。このようなセルの選択方法は非特許文献1に開示されており、システム情報(SIB)のパラメータに関しては非特許文献2(Sec. 6.3.1, pp. 146 - 159)に、受信信号品質(RSRPまたはRSRQ)の測定に関しては非特許文献3に、それぞれ開示されている。ただし、システム情報の変更はUEの処理量の増大を伴うため、設定値の頻繁な変更は望ましくない。 The connection between the UE and the cell is established by a procedure in which the UE selects a cell, makes a connection request to the selected cell, and the requested cell permits the connection. Cell selection is based on the received signal quality (RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality)) measured using a cell-specific reference signal and system information (SIB: System Information Block). This is performed based on the notified offset value. By setting an offset value in the UE, it is possible to select a cell with a reception signal quality that is not the best as a connection destination, so that it is possible to optimize traffic load distribution between cells by the offset setting value. Such a cell selection method is disclosed in Non-Patent Document 1, and the parameters of system information (SIB) are described in Non-Patent Document 2 (Sec. 6.3.1, pp. 146-159). RSRP or RSRQ) is disclosed in Non-Patent Document 3, respectively. However, since changing the system information is accompanied by an increase in the processing amount of the UE, it is not desirable to change the setting value frequently.
 また、無線回線の品質はUEの移動などにより変動するため、UEは接続するセルを切り替えること(ハンドオーバ)が必要となる場合がある。UEが接続しているセルは、当該UEから報告される自セルおよび隣接セルの受信信号品質(RSRPまたはRSRQ)と各セル固有のオフセット値とに基づいて、どのセルにハンドオーバするかを判断する。 Also, since the quality of the radio channel varies depending on the movement of the UE, the UE may need to switch the connected cell (handover). The cell to which the UE is connected determines which cell to handover based on the received signal quality (RSRP or RSRQ) of the own cell and neighboring cells reported from the UE and the offset value unique to each cell. .
 ハンドオーバ処理で用いられるオフセット値は、上述したセルの選択時に使用されるシステム情報(SIB)での設定とは異なるパラメータであり、各UEに対して個別に設定することでハンドオーバの失敗や頻発を回避するように最適化される。オフセット値の設定に関しては非特許文献2(Sec. 6.3.5, pp. 213 - 214)に記載されている。なお、受信信号品質(RSRPまたはRSRQ)とオフセット値に基づいたハンドオーバの実行条件は、通信事業者の運用方針により決定される。 The offset value used in the handover process is a parameter different from the setting in the system information (SIB) used at the time of cell selection described above, and handover failure or frequent occurrence can be achieved by setting each UE individually. Optimized to avoid. The setting of the offset value is described in Non-Patent Document 2 (Sec. 6.3.5, pp. 213-214). Note that the handover execution condition based on the received signal quality (RSRP or RSRQ) and the offset value is determined by the operating policy of the communication carrier.
 上述したセルの選択またはハンドオーバ時に用いられるオフセット値は、走行試験などによる電波環境やトラフィック負荷の分析結果に基づいて設定されてきたが、近年では、運用コスト削減のために、上述した設定作業をネットワークが自律的に行う自己組織化ネットワーク(以下SON: Self Organizing Network)技術の導入が進められている。SONでは、端末や基地局が測定したネットワーク品質に関する情報を収集・分析することで、基地局の設定パラメータを最適化する。なお、測定情報の収集・分析やパラメータの最適化は、各基地局が分散的に行っても良いし、複数基地局と通信可能なネットワーク管理装置が集中的に行っても良い。 The offset value used at the time of cell selection or handover described above has been set based on the radio wave environment and traffic load analysis results from a driving test or the like. The introduction of self-organizing network (SON: “Self-Organizing” Network) technology, which is autonomously performed by the network, is being promoted. SON optimizes base station configuration parameters by collecting and analyzing information about network quality measured by terminals and base stations. Note that collection / analysis of measurement information and parameter optimization may be performed in a distributed manner by each base station, or may be performed in a centralized manner by a network management apparatus that can communicate with a plurality of base stations.
 しかしながら、図1に示すようなリレー伝送におけるリレーセルRCELLに接続するUE3のスループットは、DeNB-RN間の回線(以下、バックホールリンクという。)のスループットの理論値と、RN-UE間の回線(以下、リレーアクセスリンクという。)のスループットの理論値との関係に影響される。ここで、スループットの理論値は、 回線のチャネル品質と利用可能なリソース量により決定される値であり、送信側に十分な量の送信データが存在する場合に実現できるスループット値に相当する。バックホールリンクのスループットの理論値がリレーアクセスリンクのスループットの理論値よりも大きい場合はリレーアクセスリンクがボトルネックとなり、逆にバックホールリンクのスループットの理論値がリレーアクセスリンクのスループットの理論値よりも小さい場合はバックホールリンクがボトルネックとなる。バックホールリンクがボトルネックの場合、リレー伝送を導入しても、リレーアクセスリンクの容量が十分に利用されないために、システムのスループットを十分に改善することができない。 However, the throughput of the UE 3 connected to the relay cell RCELL in the relay transmission as shown in FIG. 1 is the theoretical value of the throughput of the line between DeNB and RN (hereinafter referred to as the backhaul link) and the line between the RN and UE ( Hereinafter, it is influenced by the relationship with the theoretical value of the throughput of the relay access link. Here, the theoretical value of the throughput is a value determined by the channel quality of the line and the amount of available resources, and corresponds to a throughput value that can be realized when a sufficient amount of transmission data exists on the transmission side. When the theoretical value of the throughput of the backhaul link is larger than the theoretical value of the throughput of the relay access link, the relay access link becomes a bottleneck, and conversely, the theoretical value of the throughput of the backhaul link is larger than the theoretical value of the throughput of the relay access link. Is smaller, the backhaul link becomes a bottleneck. When the backhaul link is a bottleneck, even if relay transmission is introduced, the capacity of the relay access link is not fully utilized, and thus the system throughput cannot be sufficiently improved.
 上述したセル選択またはハンドオーバ時に用いられる受信信号品質のオフセット値は、トラフィック負荷分散やハンドオーバ制御などを目的として設定されており、回線のボトルネックについては考慮されていない。したがって、回線のボトルネックを考慮せずにオフセット値を設定しているため、バックホールがボトルネックの状態になるとスループットが十分に改善できない可能性がある。 The received signal quality offset value used at the time of cell selection or handover described above is set for the purpose of traffic load distribution, handover control, etc., and does not consider the bottleneck of the line. Therefore, since the offset value is set without considering the bottleneck of the line, there is a possibility that the throughput cannot be sufficiently improved when the backhaul is in a bottleneck state.
 そこで、本発明の目的は、バックホールリンクがボトルネックであるときのシステム全体のスループットを改善することができるネットワーク制御方法および装置、サーバ並びに基地局を提供することにある。 Therefore, an object of the present invention is to provide a network control method and apparatus, a server, and a base station that can improve the throughput of the entire system when a backhaul link is a bottleneck.
 本発明によるネットワーク制御方法は、中継局を含む移動通信システムにおけるネットワーク制御方法であって、中継局に接続した移動端末の通信が基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定し、前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する、ことを特徴とする。
 本発明によるネットワーク制御装置は、中継局を含む移動通信システムにおけるネットワーク制御装置であって、中継局に接続した移動端末の通信が基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、を有することを特徴とする。
 本発明による基地局は、中継局を含む移動通信システムにおける基地局であって、前記基地局に接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、を有することを特徴とする。
 本発明によるサーバは、基地局および中継局を含む移動通信システムにおけるサーバであって、前記基地局に接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、を有することを特徴とする。
 本発明による移動通信システムは、基地局が形成するマクロセルと前記基地局に接続された中継局が形成するリレーセルとを含む移動通信システムであって、前記基地局が、前記リレーセルに接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、前記第1通信リンクにより制限される場合、前記マクロセルに接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、を有することを特徴とする。
 本発明による移動通信システムは、基地局が形成するマクロセルと前記基地局に接続された中継局が形成するリレーセルとを含む移動通信システムであって、前記基地局に接続されたサーバが、前記リレーセルに接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、前記第1通信リンクにより制限される場合、前記マクロセルに接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、を有することを特徴とする。
The network control method according to the present invention is a network control method in a mobile communication system including a relay station, in which communication of a mobile terminal connected to the relay station is performed between the first communication link between the base station and the relay station and the relay Determining which of the second communication links between the station and the mobile terminal is restricted, and when restricted by the first communication link, connection of another mobile terminal connected to the base station Control is performed to switch the destination from the base station to the relay station.
A network control apparatus according to the present invention is a network control apparatus in a mobile communication system including a relay station, and a mobile terminal connected to the relay station communicates with a first communication link between the base station and the relay station and the relay. A determination means for determining which of the second communication links between the mobile station and the mobile terminal is restricted, and another mobile connected to the base station when restricted by the first communication link Control means for controlling to switch the connection destination of the terminal from the base station to the relay station.
The base station according to the present invention is a base station in a mobile communication system including a relay station, and communication of a mobile terminal connected to the base station is performed between the first communication link and the relay between the base station and the relay station. A determination means for determining which of the second communication links between the mobile station and the mobile terminal is restricted, and another mobile connected to the base station when restricted by the first communication link Control means for controlling to switch the connection destination of the terminal from the base station to the relay station.
The server according to the present invention is a server in a mobile communication system including a base station and a relay station, and communication of a mobile terminal connected to the base station is performed between the first communication link between the base station and the relay station, and the relay station. A determination unit for determining which of the second communication links between the relay station and the mobile terminal is restricted; and when restricted by the first communication link, another unit connected to the base station Control means for controlling to switch the connection destination of the mobile terminal from the base station to the relay station.
A mobile communication system according to the present invention is a mobile communication system including a macro cell formed by a base station and a relay cell formed by a relay station connected to the base station, wherein the base station connects to the relay cell. Determining means for determining which of the first communication link between the base station and the relay station and the second communication link between the relay station and the mobile terminal is restricted by Control means for controlling to switch a connection destination of another mobile terminal connected to the macro cell from the base station to the relay station when restricted by the first communication link.
A mobile communication system according to the present invention is a mobile communication system including a macro cell formed by a base station and a relay cell formed by a relay station connected to the base station, wherein a server connected to the base station includes the relay cell Determines whether communication of a mobile terminal connected to the mobile station is restricted by a first communication link between the base station and the relay station or a second communication link between the relay station and the mobile terminal And a control means for controlling to switch the connection destination of another mobile terminal connected to the macro cell from the base station to the relay station when restricted by the first communication link. It is characterized by.
 本発明によれば、システム全体の総スループットを改善することができる。 According to the present invention, the total throughput of the entire system can be improved.
図1はリレー伝送を採用した移動通信システムの一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a mobile communication system employing relay transmission. 図2は本発明によるネットワーク制御の基本的動作を説明するための移動通信システムの模式図である。FIG. 2 is a schematic diagram of a mobile communication system for explaining the basic operation of network control according to the present invention. 図3は本発明の第1実施形態による移動通信システムにおけるネットワーク制御動作を示すシーケンス図である。FIG. 3 is a sequence diagram showing a network control operation in the mobile communication system according to the first embodiment of the present invention. 図4は基地局(DeNB)の構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of the base station (DeNB). 図5は中継局(RN)の構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration example of the relay station (RN). 図6は移動端末(UE)の構成例を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration example of a mobile terminal (UE). 図7は本発明の第1実施例によるネットワーク制御方法を示すフローチャートである。FIG. 7 is a flowchart showing a network control method according to the first embodiment of the present invention. 図8は本発明の第2実施例によるネットワーク制御方法を示すフローチャートである。FIG. 8 is a flowchart showing a network control method according to the second embodiment of the present invention. 図9は本発明の第2実施形態による移動通信システムの概略的構成を示すネットワーク構成図である。FIG. 9 is a network configuration diagram showing a schematic configuration of a mobile communication system according to the second embodiment of the present invention.
 本発明の実施形態によれば、バックホールリンクがボトルネックとなる場合、マクロセルに接続された移動端末の接続先をマクロセルからリレーセルへ切り替える。これにより、マクロアクセスリンクのチャネル品質を改善し、システム全体でのスループットを増大させることができる。以下、本発明によるネットワーク制御の基本的動作について図2を参照しながら説明する。 According to the embodiment of the present invention, when the backhaul link becomes a bottleneck, the connection destination of the mobile terminal connected to the macro cell is switched from the macro cell to the relay cell. Thereby, the channel quality of the macro access link can be improved and the throughput of the entire system can be increased. The basic operation of network control according to the present invention will be described below with reference to FIG.
 1.基本的動作
 まず、図2に示すように、DeNB(基地局)10とマクロセルに接続したMUE(移動端末)40との間の無線回線(以下、マクロアクセスリンクという。)のスループットの理論値をTPMA、DeNB10とRN(リレーノード)20との間のバックホールリンクのスループットの理論値をTPBH、RN20とリレーセルに接続したRUE(移動端末)30との間のリレーアクセスリンクのスループットの理論値をTPRAとし、バックホールリンクがボトルネックとなっている状態、すなわちTPBH<TPRAであるとする。一例として、各リンクのスループットの理論値は以下のように定義される。
1. Basic Operation First, as shown in FIG. 2, the theoretical value of the throughput of a radio channel (hereinafter referred to as a macro access link) between the DeNB (base station) 10 and the MUE (mobile terminal) 40 connected to the macro cell is expressed as follows. The theoretical value of the throughput of the backhaul link between the TP MA , the DeNB 10 and the RN (relay node) 20 is the theoretical value of the throughput of the relay access link between the TP BH , the RN 20 and the RUE (mobile terminal) 30 connected to the relay cell. It is assumed that the value is TP RA and the backhaul link is a bottleneck, that is, TP BH <TP RA . As an example, the theoretical value of the throughput of each link is defined as follows.
 各リンクのスループットの理論値=(各リンクの平均周波数利用効率)×(各リンクの利用可能な周波数帯域幅)
 ここで、周波数利用効率は単位周波数当たりのスループット(bit/s/Hz)であり、その大きさはチャネル品質に依存する。
Theoretical value of throughput of each link = (Average frequency utilization efficiency of each link) x (Available frequency bandwidth of each link)
Here, the frequency utilization efficiency is a throughput per unit frequency (bit / s / Hz), and its magnitude depends on the channel quality.
と表される。 It is expressed.
 バックホールリンクがボトルネックの場合(TPBH < TPRA)、上述したように、RUEのスループットはバックホールリンクにより制限され、リレーアクセスリンクの容量が十分に利用されない。本発明によるネットワーク制御では、マクロセルに接続するMUEの中で比較的チャネル品質が劣化したMUEをリレーセルにハンドオーバさせることでリレーアクセスリンクの容量を有効に利用することができる。 When the backhaul link is a bottleneck (TP BH <TP RA ), as described above, the throughput of the RUE is limited by the backhaul link, and the capacity of the relay access link is not fully utilized. In the network control according to the present invention, the capacity of the relay access link can be effectively used by handing over a MUE having a relatively deteriorated channel quality among the MUEs connected to the macro cell to the relay cell.
 より詳しくは、図2に示すように、マクロセルに接続するチャネル品質の悪いUExをリレーセルにハンドオーバさせると、マクロアクセスリンクの平均的な周波数利用効率が改善し、マクロアクセスリンクのスループットの理論値(MUEの総スループット)がTPMAからTP'MAに増大する。UExをリレーセルにハンドオーバさせることで、リレーアクセスリンクの平均的な周波数利用効率は劣化し、スループットの理論値がTPRAからTP'RAに劣化すると見込まれる。しかしながら、バックホールリンクがボトルネックである状態に変化がなければ(TPBH < TP’RA)、RUEの総スループット(TP’RUE×N’RUE)はTPBHであり、UExのハンドオーバ制御前と変動しない。したがって、本発明によるネットワーク制御により、RUEの総スループットを変えずにMUEの総スループットを増大することができ、システム全体の総スループットを改善できる。 More specifically, as shown in FIG. 2, when UEx having poor channel quality connected to the macro cell is handed over to the relay cell, the average frequency utilization efficiency of the macro access link is improved, and the theoretical value of the throughput of the macro access link ( MUE total throughput) increases from TP MA to TP ' MA . By handing over UEx to the relay cell, the average frequency utilization efficiency of the relay access link is deteriorated, and the theoretical value of the throughput is expected to deteriorate from TP RA to TP ′ RA . However, if there is no change in the state where the backhaul link is a bottleneck (TP BH <TP ' RA ), the total RUE throughput (TP' RUE × N ' RUE ) is TP BH , and the UEx before handover control Does not fluctuate. Therefore, the network control according to the present invention can increase the total throughput of the MUE without changing the total throughput of the RUE, and can improve the total throughput of the entire system.
 以下、本発明の実施形態および実施例について図面を参照しながら詳細に説明する。本発明はネットワーク制御の主体を限定するものではないが、以下に説明するように、本発明の第1実施形態ではDeNBを、第2実施形態では基地局以外のサーバを、それぞれネットワーク制御の主体として例示する。 Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the drawings. Although the present invention does not limit the subject of network control, as will be described below, in the first embodiment of the present invention, the DeNB is used, and in the second embodiment, a server other than the base station is used as the subject of network control. As an example.
 2.第1実施形態
 2.1)システム動作
 図3に示すように、RN20、RUE30およびMUE40はそれぞれチャネル品質を測定し(動作S101-S103)、RN20およびMUE40は測定されたチャネル品質をDeNB1へ直接送信し、RUE30はRN20へ送信する(動作S104)。DeNB10は、MUE40またはRN20から受信したチャネル品質に基づいて、マクロアクセスリンクとバックホールリンクの周波数利用効率を計算する(動作S105)。なお、周波数利用効率は、受信信号品質(RSRPまたはRSRQ)からも導出できる。さらに、DeNB10は、スケジューリング情報を用いて、各RNへの割り当てリソース量を計算する(動作S106)。RN20は、RUE30から受信したチャネル品質を用いてリレーアクセスリンクの周波数利用効率を計算し(動作S107)、算出された周波数利用効率に関する情報をDeNB10へ送信する(動作S108)。
2. First Embodiment 2.1) System Operation As shown in FIG. 3, each of RN 20, RUE 30 and MUE 40 measures channel quality (operations S101 to S103), and RN 20 and MUE 40 directly transmit the measured channel quality to DeNB1. Then, the RUE 30 transmits to the RN 20 (operation S104). The DeNB 10 calculates the frequency use efficiency of the macro access link and the backhaul link based on the channel quality received from the MUE 40 or the RN 20 (Operation S105). The frequency utilization efficiency can also be derived from the received signal quality (RSRP or RSRQ). Further, the DeNB 10 calculates the amount of resources allocated to each RN using the scheduling information (Operation S106). The RN 20 calculates the frequency use efficiency of the relay access link using the channel quality received from the RUE 30 (Operation S107), and transmits information on the calculated frequency use efficiency to the DeNB 10 (Operation S108).
 RN20からリレーアクセスリンクの周波数利用効率に関する情報を受信すると、DeNB10は、当該周波数利用効率に関する情報と上記算出された周波数利用効率および各RNへの割当リソース量とを用いて、バックホールリンクとリレーアクセスリンクのスループットの理論値を計算し(動作S109)、算出された各リンクの周波数利用効率を用いて、各MUEの各RNに対する受信信号品質のオフセット値を決定する(動作S110)。上述したように、オフセット値の設定により、MUE(特に受信品質の劣化したUE)に対してマクロセルからリレーセルへのハンドオーバを促進させることができる。以下、このようなシステム動作を行うためのDeNB10、RN20およびUEの構成および機能について説明する。 When receiving information on the frequency usage efficiency of the relay access link from the RN 20, the DeNB 10 uses the information on the frequency usage efficiency, the calculated frequency usage efficiency, and the amount of resources allocated to each RN, and the backhaul link and the relay. The theoretical value of the throughput of the access link is calculated (operation S109), and the offset value of the received signal quality for each RN of each MUE is determined using the calculated frequency utilization efficiency of each link (operation S110). As described above, by setting an offset value, handover from a macro cell to a relay cell can be promoted for a MUE (particularly a UE having a deteriorated reception quality). Hereinafter, configurations and functions of the DeNB 10, the RN 20, and the UE for performing such a system operation will be described.
 2.2)基地局DeNB
 図4に示すように、DeNB10は、伝送路インターフェース部11、ベースバンド信号処理部12および無線周波数信号処理部13を備える。ベースバンド信号処理部12は、上位層処理部121、MAC (Medium Access Control)層処理部122、物理層処理部123、チャネル品質計算部124およびオフセット値決定部125を備える。各処理部の機能を、DeNB10からUEへデータを送る下り回線の場合を例にして説明する。
2.2) Base station DeNB
As illustrated in FIG. 4, the DeNB 10 includes a transmission path interface unit 11, a baseband signal processing unit 12, and a radio frequency signal processing unit 13. The baseband signal processing unit 12 includes an upper layer processing unit 121, a MAC (Medium Access Control) layer processing unit 122, a physical layer processing unit 123, a channel quality calculation unit 124, and an offset value determination unit 125. The function of each processing unit will be described by taking as an example the case of a downlink that sends data from the DeNB 10 to the UE.
 伝送路インターフェース部11は、コアネットワーク5からユーザデータを受信し、受信したデータを上位層処理部121へ転送する。上位層処理部121は、受信したデータに対して暗号化などのPDCP (Packet Data Convergence Protocol)層処理、ユーザデータの分割・結合などのRLC (Radio Link Control)層処理を行い、MAC層処理部122へ転送する。なお、上位層処理部121は、制御メッセージを扱うRRC (Radio Resource Control)層処理も行う。MAC層処理部122は、上位層処理部121から転送されたデータの多重、再送処理(ハイブリッドARQ)、スケジューリング処理を行う。データの多重方法や再送処理の制御方法はスケジューリング処理により決められる。また、物理層処理部123における変調方法や符号化率などもスケジューリング処理で決められる。物理層処理部123は、MAC層処理部122から送られたデータに対して、符号化、変調などを行い、ベースバンド信号を生成し、無線周波数信号処理部13へ転送する。 The transmission path interface unit 11 receives user data from the core network 5 and transfers the received data to the upper layer processing unit 121. The upper layer processing unit 121 performs PDCP (Packet Data Convergence Protocol) layer processing such as encryption on the received data, and RLC (Radio Link Control) layer processing such as division / combination of user data, and MAC layer processing unit 122. The upper layer processing unit 121 also performs RRCRR (Radio Resource Control) layer processing for handling control messages. The MAC layer processing unit 122 performs multiplexing, retransmission processing (hybrid ARQ), and scheduling processing of data transferred from the higher layer processing unit 121. The data multiplexing method and the retransmission processing control method are determined by the scheduling process. Further, the modulation method and coding rate in the physical layer processing unit 123 are also determined by the scheduling process. The physical layer processing unit 123 performs encoding, modulation, and the like on the data transmitted from the MAC layer processing unit 122 to generate a baseband signal, and transfers the baseband signal to the radio frequency signal processing unit 13.
 無線周波数信号処理部13は、ベースバンド信号処理部12の物理層処理部123から転送されたベースバンド信号の搬送波周波数帯域信号への変換処理、帯域制限処理および増幅処理を行い、最後にアンテナから送信する。 The radio frequency signal processing unit 13 performs conversion processing, band limitation processing, and amplification processing of the baseband signal transferred from the physical layer processing unit 123 of the baseband signal processing unit 12 into a carrier frequency band signal, and finally from the antenna. Send.
 上り回線の場合は上述した下り回線とは逆の処理経路を通る。すなわち、無線周波数信号処理部13がMUEまたはRNから受信した無線周波数信号をベースバンド信号に変換し、当該ベースバンド信号に対してベースバンド信号処理部12が物理層処理、MAC層処理および上位層処理を行い、最後に伝送路インターフェース部11がコアネットワーク5へ転送する。 In the case of an uplink, the processing route reverses that of the downlink described above. That is, the radio frequency signal processing unit 13 converts the radio frequency signal received from the MUE or RN into a baseband signal, and the baseband signal processing unit 12 performs physical layer processing, MAC layer processing, and higher layer processing on the baseband signal. Finally, the transmission path interface unit 11 transfers the data to the core network 5.
 ベースバンド信号処理部12のチャネル品質計算部124は、各MUEまたはRNから報告されたCQI (Channel Quality Indicator)と当該DeNBのスケジューリング情報とをMAC層処理部122から取得し、マクロアクセスリンクとバックホールリンクの周波数利用効率および各RNへの割当リソース量を計算する。さらに、チャネル品質計算部124は、算出された周波数利用効率および各RNへの割当リソース量とRNから報告されたリレーアクセスリンクの周波数利用効率に関する情報とを用いて、バックホールリンクとリレーアクセスリンクのスループットの理論値を計算し、算出されたスループットの理論値および周波数利用効率をオフセット値決定部125へ出力する。 The channel quality calculation unit 124 of the baseband signal processing unit 12 acquires the CQI (Channel Quality Indicator) reported from each MUE or RN and the scheduling information of the DeNB from the MAC layer processing unit 122, and the macro access link and back Calculate the frequency utilization efficiency of the hall link and the amount of resources allocated to each RN. Further, the channel quality calculation unit 124 uses the calculated frequency utilization efficiency, the amount of resources allocated to each RN, and the information on the frequency utilization efficiency of the relay access link reported from the RN, and the backhaul link and the relay access link. And calculates the calculated theoretical value of the throughput and the frequency utilization efficiency to the offset value determination unit 125.
 オフセット値決定部125は、後述するように、チャネル品質計算部124から入力したスループットの理論値と周波数利用効率を用いて、MUEの各リレーセルに対する受信信号品質のオフセット値を決定する。 The offset value determination unit 125 determines the received signal quality offset value for each relay cell of the MUE, using the theoretical throughput value and the frequency utilization efficiency input from the channel quality calculation unit 124, as will be described later.
 2.3)リレーノードRN
 図5に示すように、RN20は、ベースバンド信号処理部22と無線周波数信号処理部23とを備える。ベースバンド信号処理部22は、上位層処理部221、MAC層処理部222、物理層処理部223、およびアクセスリンク品質計算部224を備える。DeNB10とは異なり、コアネットワーク5と接続する伝送路インターフェース部は備えない。RN20の各処理部における機能は基本的に上述したDeNB10と同様であるが、上位層処理部221でリレーセルに接続するRUE宛のデータの分割・多重が行われ、物理層処理部223で受信信号品質の測定が行われる点がDeNB10とは異なる。
2.3) Relay node RN
As shown in FIG. 5, the RN 20 includes a baseband signal processing unit 22 and a radio frequency signal processing unit 23. The baseband signal processing unit 22 includes an upper layer processing unit 221, a MAC layer processing unit 222, a physical layer processing unit 223, and an access link quality calculation unit 224. Unlike the DeNB 10, the transmission path interface unit connected to the core network 5 is not provided. The functions of each processing unit of the RN 20 are basically the same as those of the DeNB 10 described above, but the upper layer processing unit 221 divides and multiplexes the data addressed to the RUE, and the physical layer processing unit 223 receives the received signal. It differs from DeNB10 in that quality is measured.
 DeNB10からRNを介してRUEへ送信される下りデータは、同一リレーセルに接続する複数のRUEのデータを多重したRN宛データとして伝送される。このRN宛データの多重処理はコアネットワーク5が実行し、多重されたデータの分割処理はRN20の上位層処理部221が実行する。分割された各RUEのデータは、上位層処理(PDCP層処理、RLC層処理)、MAC層処理、物理層処理、無線周波数信号処理が行われた後、各RUEへ送信される。一方、上り回線の場合、複数のRUEから受信したデータはRN20の上位層処理部221において多重され、送信元がRNのデータとしてDeNB10へ送信される。 Downlink data transmitted from the DeNB 10 to the RUE via the RN is transmitted as data addressed to the RN obtained by multiplexing the data of a plurality of RUEs connected to the same relay cell. The multiplex processing of the data addressed to the RN is executed by the core network 5 and the division processing of the multiplexed data is executed by the upper layer processing unit 221 of the RN 20. The data of each divided RUE is subjected to higher layer processing (PDCP layer processing, RLC layer processing), MAC layer processing, physical layer processing, and radio frequency signal processing, and then transmitted to each RUE. On the other hand, in the case of an uplink, data received from a plurality of RUEs are multiplexed in the upper layer processing unit 221 of the RN 20 and transmitted to the DeNB 10 as data having a transmission source of RN.
 物理層処理部223は、セル固有の参照信号を用いて受信信号品質(RSRPまたはRSRQ)の測定を行い、測定された受信信号品質を上位層処理部221へ出力する。上位層処理部221は、受信信号品質をRRCメッセージとしてDeNB10へ報告する。 The physical layer processing unit 223 measures the received signal quality (RSRP or RSRQ) using the cell-specific reference signal, and outputs the measured received signal quality to the upper layer processing unit 221. The upper layer processing unit 221 reports the received signal quality to the DeNB 10 as an RRC message.
 アクセスリンク品質計算部224は、当該RNが形成するセルに接続する各RUEから報告されたCQIをMAC層処理部222から取得し、CQIを用いてリレーアクセスリンクの平均的な周波数利用効率を計算する。計算された周波数利用効率は、一例として、RRCメッセージによりDeNB10へ送られる。なお、送信する情報としては、周波数利用効率ではなく、例えばスループットでも良い。 The access link quality calculation unit 224 obtains the CQI reported from each RUE connected to the cell formed by the RN from the MAC layer processing unit 222, and calculates the average frequency use efficiency of the relay access link using the CQI. To do. The calculated frequency utilization efficiency is sent to the DeNB 10 by an RRC message as an example. Note that the information to be transmitted may be, for example, throughput instead of frequency utilization efficiency.
 2.4)移動端末UEの構成
 図6に示すように、UE(RUE30、MUE40)は、アプリケーション層処理部31、ベースバンド信号処理部32および無線周波数信号処理部33を備えており、ベースバンド信号処理部32は上位層処理部321、MAC層処理部322および物理層処理部323を備える。
2.4) Configuration of the mobile terminal UE As shown in FIG. 6, the UE (RUE 30, MUE 40) includes an application layer processing unit 31, a baseband signal processing unit 32, and a radio frequency signal processing unit 33, and the baseband The signal processing unit 32 includes an upper layer processing unit 321, a MAC layer processing unit 322, and a physical layer processing unit 323.
 アプリケーション層処理部31は上位層処理部321とデータのやり取りを行う。物理層処理部323は、RN20の物理層処理部223と同様に、受信信号品質(RSRPまたはRSRQ)の測定を行い、測定値を上位層処理部321へ送る。なお、MAC層処理部322では、スケジューリング処理は行われない。変調方法や符号化率などの情報は、接続するDeNB10またはRN20から送られるため、UEはその情報に従って各処理を行えばよい。その他の各処理部における機能は基本的に上述したDeNB10と同様である。 The application layer processing unit 31 exchanges data with the upper layer processing unit 321. Similar to the physical layer processing unit 223 of the RN 20, the physical layer processing unit 323 measures the received signal quality (RSRP or RSRQ) and sends the measurement value to the higher layer processing unit 321. Note that the MAC layer processing unit 322 does not perform scheduling processing. Since information such as the modulation method and coding rate is sent from the connected DeNB 10 or RN 20, the UE may perform each process according to the information. The functions of the other processing units are basically the same as those of the DeNB 10 described above.
 3.第1実施例(ネットワーク制御)
 3.1)オフセット値決定動作
 DeNB10のオフセット値決定部125の処理は周期的でも非周期的でも良いが、いずれの場合においても、チャネル品質計算部124の処理終了後に開始する。
3. First embodiment (network control)
3.1) Offset value determination operation The processing of the offset value determination unit 125 of the DeNB 10 may be periodic or aperiodic, but in any case, the processing starts after the channel quality calculation unit 124 ends.
 図7において、オフセット値決定部125は、まず、DeNB10に接続するRNのインデックスiを初期値(i=1)に設定する(動作S201)。続いて、i番目のRN(以下、RNiと記す。)に接続するUEへのデータ通信がバックホールリンクとリレーアクセスリンクのいずれの回線により制限されているか(すなわち、いずれの回線がボトルネックであるか)を判定する(動作S202)。 In FIG. 7, the offset value determination unit 125 first sets the index i of the RN connected to the DeNB 10 to an initial value (i = 1) (operation S201). Subsequently, data communication to the UE connected to the i-th RN (hereinafter referred to as RNi) is restricted by the backhaul link or the relay access link (that is, which line is the bottleneck) It is determined (operation S202).
 ボトルネック判定方法としては、たとえば次の2つの方法を採用することができる。第1の例として、バックホールリンクとリレーアクセスリンクのスループットの理論値の比をしきい値と比較する方法が考えられる。スループットの理論値は、チャネル品質計算部124で算出された値を用い、しきい値はどちらの回線がボトルネックであるかを判定できるように適当な値を設定すればよい。第2の例として、RNiにおけるリソース使用率を用いる方法が考えられる。この場合も、第1の例と同様に、しきい値と比較して判定すればよい。なお、リソース使用率の測定処理と、測定したリソース使用率の隣接基地局間での交換処理は、標準仕様でサポートされている。 As the bottleneck determination method, for example, the following two methods can be adopted. As a first example, a method of comparing the ratio of the theoretical values of the throughput of the backhaul link and the relay access link with a threshold value can be considered. As the theoretical value of the throughput, a value calculated by the channel quality calculation unit 124 is used, and an appropriate value may be set as the threshold value so that it is possible to determine which line is the bottleneck. As a second example, a method using the resource usage rate in RNi can be considered. In this case as well, as in the first example, the determination may be made by comparing with a threshold value. Note that the resource usage measurement processing and the exchange processing between adjacent base stations of the measured resource usage are supported by standard specifications.
 バックホールリンクがボトルネックと判定されれば(動作202の「バックホールリンク」)、接続先をRNiが形成するセルに切り替えた際に以下の2つの条件を満たすUEを検索する(動作S203)。
・条件1:切り替え前に接続していたセルの通信品質(一例として、スループット)を改善する。
・条件2:RNiに接続するUEへのデータ通信がバックホールリンクにより制限される(バックホールリンクがボトルネックである)。
If it is determined that the backhaul link is a bottleneck (“backhaul link” in operation 202), a UE that satisfies the following two conditions is searched when the connection destination is switched to a cell formed by RNi (operation S203). .
Condition 1: Improve communication quality (throughput as an example) of a cell connected before switching.
Condition 2: Data communication to UEs connected to RNi is restricted by the backhaul link (the backhaul link is a bottleneck).
 条件1に関しては、チャネル品質計算部124から送られた各UEの周波数利用効率を用いることができる。条件2に関しては、対象となるUEがRNiに接続した際の周波数利用効率が必要となるが、UEから報告された受信信号品質(RSRPまたはRSRQ)から導出することができる。 Regarding Condition 1, the frequency utilization efficiency of each UE sent from the channel quality calculation unit 124 can be used. Regarding condition 2, the frequency utilization efficiency when the target UE connects to RNi is required, but it can be derived from the received signal quality (RSRP or RSRQ) reported from the UE.
 上記条件1および2を共に満たす制御対象UEが見つかれば(動作S204;YES)、制御対象UEのRNiが形成するセルに対する受信信号品質のオフセット値Δを決定する(動作S205)。オフセット値Δは、制御対象のUEがRNiにハンドオーバするように設定される。すなわち、RNiが形成するセルと切替前のセルとのRSRPの差やハンドオーバの制御方法を考慮することでオフセット値Δを適当な値を設定する。 If a control target UE that satisfies both of the above conditions 1 and 2 is found (operation S204; YES), the received signal quality offset value Δ for the cell formed by RNi of the control target UE is determined (operation S205). The offset value Δ is set so that the UE to be controlled is handed over to RNi. That is, the offset value Δ is set to an appropriate value by considering the RSRP difference between the cell formed by RNi and the cell before switching and the handover control method.
 オフセット値Δが決定された場合、リレーアクセスリンクがボトルネックと判定された場合(動作S202の「リレーアクセスリンク」)、あるいは上記条件1および2を共に満たすUEが見つからなかった場合(動作S204;NO)、インデックスiが所定の最大値(max value)であるか否かを判定する(動作S206)。インデックスiが最大値であれば(動作S206;YES)、オフセット値の決定に関する処理を終了し、最大値でなければ(動作S206;NO)、iの値を1だけインクリメントし(動作S207)、動作S202へ戻る。こうして、iの値が最大値になるまで上述した処理S202~S206を繰り返す。 When the offset value Δ is determined, when the relay access link is determined to be a bottleneck (“relay access link” in operation S202), or when a UE that satisfies both the above conditions 1 and 2 is not found (operation S204; NO), it is determined whether or not the index i is a predetermined maximum value (max value) (operation S206). If the index i is the maximum value (operation S206; YES), the processing related to the determination of the offset value is terminated. If the index i is not the maximum value (operation S206; NO), the value of i is incremented by 1 (operation S207). Return to operation S202. Thus, the above-described processing S202 to S206 is repeated until the value of i reaches the maximum value.
 3.2)効果
 上述したように、本発明の第1実施例によれば、ボトルネックとなる回線および接続セルの通信品質の変動を考慮して、各リレーセルに対するUEの受信信号品質のオフセット値が決定される。たとえば制御対象のリレーセルにおいてバックホールリンクがボトルネックである場合、UEの接続先が制御対象のリレーセルに切り替わった場合に当該バックホールリンクのボトルネック状態が維持され、かつ接続切替前のセルの通信品質を改善するようなUEが存在すれば、当該UEに対して、制御対象のリレーセルにハンドオーバするような受信信号品質のオフセット値を設定する。これによりUEがハンドオーバすると、当該バックホールリンクがボトルネックとなっているので制御対象のリレーセルに接続するUEへ伝送される総データ量が変わらずに、ハンドオーバ元のセルの通信品質が改善される。したがって、結果としてシステム全体の総スループットを改善することができる。
3.2) Effect As described above, according to the first embodiment of the present invention, the received signal quality offset value of the UE for each relay cell in consideration of fluctuations in the communication quality of the bottleneck line and the connected cell. Is determined. For example, if the backhaul link is a bottleneck in the relay cell to be controlled, when the UE connection destination is switched to the relay cell to be controlled, the bottleneck state of the backhaul link is maintained, and the cell communication before connection switching If there is a UE that improves the quality, an offset value of the received signal quality is set for the UE to be handed over to the relay cell to be controlled. When the UE is handed over, the backhaul link is a bottleneck, so the total data amount transmitted to the UE connected to the relay cell to be controlled does not change and the communication quality of the handover source cell is improved. . Therefore, as a result, the total throughput of the entire system can be improved.
 4.第2実施例(ネットワーク制御)
 4.1)オフセット値決定動作
 DeNB10、RN20、UEの構成は、図3~図5にそれぞれ示す通りであるから、説明は省略する。ただし、オフセット値決定部125の処理方法が第1実施例とは異なる。以下、本発明の第2実施例として図8に示すフローチャートを用いて説明する。DeNB10のオフセット値決定部125の処理は周期的でも非周期的でも良いが、いずれの場合においても、チャネル品質計算部124の処理終了後に開始する。
4). Second embodiment (network control)
4.1) Offset value determination operation The configurations of the DeNB 10, the RN 20, and the UE are as shown in FIGS. However, the processing method of the offset value determination unit 125 is different from that of the first embodiment. Hereinafter, a second embodiment of the present invention will be described with reference to a flowchart shown in FIG. The processing of the offset value determination unit 125 of the DeNB 10 may be periodic or aperiodic, but in any case, it starts after the processing of the channel quality calculation unit 124 ends.
 図8において、オフセット値決定部125は、まず、DeNB10に接続するRNのインデックスiを初期値(i=1)に設定する(動作S301)。続いて、RNiに接続するUEへのデータ通信がバックホールリンクとリレーアクセスリンクのいずれの回線により制限されているか(すなわち、いずれの回線がボトルネックであるか)を判定する(動作S302)。ボトルネック判定方法としては、上述したとおりである。 8, the offset value determination unit 125 first sets the index i of the RN connected to the DeNB 10 to an initial value (i = 1) (operation S301). Subsequently, it is determined whether the data communication to the UE connected to RNi is restricted by the backhaul link or the relay access link (that is, which line is the bottleneck) (operation S302). The bottleneck determination method is as described above.
 バックホールリンクがボトルネックと判定されれば(動作302の「バックホールリンク」)、接続先をRNiが形成するセルに切り替えた際に切替前に接続していたセルの通信品質を改善するUEをリストアップする(動作S303)。なお、リストに入るUE数を制限するために、リストに入れる条件として、例えば、「接続しているセルとRNiが形成するセルとのRSRPの差がしきい値以下」のような条件を追加したり、リストの最大UE数を設定したりする方法も考えられる。 If the backhaul link is determined to be a bottleneck (“backhaul link” in operation 302), the UE improves the communication quality of the cell connected before switching when the connection destination is switched to the cell formed by RNi. Are listed (operation S303). In addition, in order to limit the number of UEs that can be entered in the list, for example, a condition such as “the RSRP difference between the connected cell and the cell formed by RNi is below the threshold” is added. Or setting the maximum number of UEs in the list is also conceivable.
 続いて、リストに対するインデックスjを初期値j=1に設定する(動作S304)。リストのj番目のUE(UEj)の接続先をRNiが形成するセルに切り替えた際に、RNiに接続するUEへのデータ通信が、切替前と同様に、バックホールがボトルネックとなるか否かを判定する(動作S305)。バックホールがボトルネックとならないと判定された場合(動作S305;NO)、jの値が所定の最大値であるか否かを判定する(動作S306)。jの値が最大値でなければ(動作S306;NO)、jの値を1だけインクリメントし(動作S307)、動作S305の処理に戻る。 Subsequently, the index j for the list is set to an initial value j = 1 (operation S304). Whether the backhaul becomes a bottleneck when switching the jth UE (UEj) of the list to the cell formed by RNi, as in the case before data switching to the UE connected to RNi Is determined (operation S305). When it is determined that the backhaul is not a bottleneck (operation S305; NO), it is determined whether the value of j is a predetermined maximum value (operation S306). If the value of j is not the maximum value (operation S306; NO), the value of j is incremented by 1 (operation S307), and the processing returns to operation S305.
 バックホールリンクがボトルネックになると判定された場合(動作S305;YES)、リストのj番目のUEjの、RNiが形成するセルに対する受信信号品質のオフセット値Δを決定する(動作S308)。オフセット値Δは、第1実施例と同様に、制御対象のUEjがRNiにハンドオーバするように設定される。すなわち、RNiが形成するセルと切替前のセルとのRSRPの差やハンドオーバの制御方法を考慮することでオフセット値Δを適当な値を設定する。 When it is determined that the backhaul link becomes a bottleneck (operation S305; YES), the received signal quality offset value Δ for the cell formed by RNi of the j-th UEj in the list is determined (operation S308). As in the first embodiment, the offset value Δ is set such that the control target UEj is handed over to RNi. That is, the offset value Δ is set to an appropriate value by considering the RSRP difference between the cell formed by RNi and the cell before switching and the handover control method.
 オフセット値Δが決定された場合、リレーアクセスリンクがボトルネックと判定された場合(動作S302の「リレーアクセスリンク」)、あるいはjの値が最大値である場合(動作S306;YES)、インデックスiが所定の最大値(max value)であるか否かを判定する(動作S309)。インデックスiが最大値であれば(動作S309;YES)、オフセット値の決定に関する処理を終了し、最大値でなければ(動作S309;NO)、iの値を1だけインクリメントし(動作S310)、動作S302へ戻る。こうして、iの値が最大値になるまで上述した処理S302~S310を繰り返す。 When the offset value Δ is determined, the relay access link is determined to be a bottleneck (“relay access link” in operation S302), or the value of j is the maximum value (operation S306; YES), the index i Is a predetermined maximum value (max 値 value) or not (operation S309). If the index i is the maximum value (operation S309; YES), the processing related to the determination of the offset value is terminated. If the index i is not the maximum value (operation S309; NO), the value of i is incremented by 1 (operation S310). Return to operation S302. In this way, the above-described processes S302 to S310 are repeated until the value of i reaches the maximum value.
 上述したように、動作S305の処理はリストの順番に従って実行されるので、UEの検索時間を短縮するためにリストに並べるUEの順番を工夫する必要がある。例えば、接続先の切り替えによる通信品質の改善量が大きいと見込まれる順や、接続しているセルとRNiが形成するセルとのRSRPの差が小さい順といった方法が考えられる。 As described above, since the process of operation S305 is executed according to the order of the list, it is necessary to devise the order of UEs arranged in the list in order to shorten the UE search time. For example, there can be considered a method in which the improvement in communication quality due to switching of the connection destination is expected to be large, or the RSRP difference between the connected cell and the cell formed by RNi is small.
 4.2)効果
 本発明の第2実施例は、第1実施例と同様に、リレーセルに接続するUEへのデータ通信を制限している(ボトルネックとなる)回線および接続セルの通信品質の変動を考慮することでUEの各リレーセルに対する受信信号品質のオフセット値を決定しているので、システム全体の総スループットを改善することができる。第2実施例によれば、さらに、接続先を切り替えることで、切替前に接続していたセルの通信品質を改善するUEのリストを作成した後に、リストの中からリレーセルのボトルネックとなる回線を変えないUEを検索している。したがって、第1実施例よりも効率的にUEを検索できる。リストを作る際には、順番を工夫することで更なる効率的な検索が可能となる。
4.2) Effect In the second embodiment of the present invention, as in the first embodiment, data communication to the UE connected to the relay cell is limited (bottleneck) and the communication quality of the connected cell is reduced. Since the received signal quality offset value for each relay cell of the UE is determined by taking the fluctuations into account, the total throughput of the entire system can be improved. According to the second embodiment, after creating a list of UEs that improve the communication quality of the cell connected before switching by switching the connection destination, a line that becomes a bottleneck of the relay cell from the list Searching for a UE that does not change Therefore, UE can be searched more efficiently than the first embodiment. When creating a list, you can search more efficiently by devising the order.
 5.第2実施形態
 上述した第1実施形態では、DeNB10においてオフセット値の決定処理を行ったが、本発明はこの実施形態に限定されるものではなく、コアネットワーク5および移動通信システムのネットワークを管理するサーバを使用している場合には、当該サーバにオフセット値決定機能を備えることもできる。
5. 2nd Embodiment In 1st Embodiment mentioned above, although the determination process of offset value was performed in DeNB10, this invention is not limited to this embodiment, The network of the core network 5 and a mobile communication system is managed. When a server is used, the server can be provided with an offset value determination function.
 図9において、DeNB10aは、図4に示すDeNB10の構成からチャネル品質計算部124およびオフセット値決定部125の機能を除いた構成を有し、サーバ6は当該チャネル品質計算部124およびオフセット値決定部125の機能を有する。本実施形態による基本的な動作は、上記第1実施形態で説明したとおりであるから省略する。 9, the DeNB 10a has a configuration obtained by removing the functions of the channel quality calculation unit 124 and the offset value determination unit 125 from the configuration of the DeNB 10 illustrated in FIG. 4, and the server 6 includes the channel quality calculation unit 124 and the offset value determination unit. It has 125 functions. Since the basic operation according to the present embodiment is the same as that described in the first embodiment, a description thereof will be omitted.
 本発明はリレー伝送を採用した移動通信システムに適用可能である。 The present invention can be applied to a mobile communication system employing relay transmission.
1, 10 DeNB
2, 20 RN
3, 30 RUE
4, 40 MUE
5     コアネットワーク
6     サーバ
MCELL マクロセル
RCELL リレーセル
11    伝送路インターフェース部
12    ベースバンド信号処理部
13    無線周波数信号処理部
121   上位層処理部
122   MAC層処理部
123   物理層処理部
124   チャネル品質計算部
125   オフセット値決定部
22    ベースバンド信号処理部
23    無線周波数信号処理部
221   上位層処理部
222   MAC層処理部
223   物理層処理部
224   アクセスリンク品質計算部
31    アプリケーション層処理部
32    ベースバンド信号処理部
33    無線周波数信号処理部
321   上位層処理部
322   MAC層処理部
323   物理層処理部
1, 10 DeNB
2, 20 RN
3, 30 RUE
4, 40 MUE
5 Core network
6 servers
MCELL macrocell
RCELL relay cell
11 Transmission path interface
12 Baseband signal processor
13 Radio frequency signal processor
121 Upper layer processing section
122 MAC layer processor
123 Physical layer processor
124 Channel quality calculator
125 Offset value determination unit
22 Baseband signal processor
23 Radio frequency signal processor
221 Upper layer processing section
222 MAC layer processor
223 Physical layer processor
224 Access link quality calculator
31 Application layer processing section
32 Baseband signal processor
33 Radio frequency signal processor
321 Upper layer processing section
322 MAC layer processor
323 Physical layer processor

Claims (19)

  1.  中継局を含む移動通信システムにおけるネットワーク制御方法であって、
     中継局に接続した移動端末の通信が基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定し、
     前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する、
     ことを特徴とするネットワーク制御方法。
    A network control method in a mobile communication system including a relay station,
    Whether the communication of the mobile terminal connected to the relay station is restricted by the first communication link between the base station and the relay station or the second communication link between the relay station and the mobile terminal Judgment,
    When restricted by the first communication link, control to switch the connection destination of another mobile terminal connected to the base station from the base station to the relay station,
    A network control method.
  2.  前記他の移動端末は、その接続先を前記基地局から前記中継局へ切り替えた場合に、前記基地局の通信品質が改善する移動端末である、ことを特徴とする請求項1に記載のネットワーク制御方法。 The network according to claim 1, wherein the other mobile terminal is a mobile terminal whose communication quality is improved when the connection destination is switched from the base station to the relay station. Control method.
  3.  前記他の移動端末は、さらに、前記第1通信リンクによる前記通信の制限が維持される移動端末である、ことを特徴とする請求項2に記載のネットワーク制御方法。 3. The network control method according to claim 2, wherein the other mobile terminal is a mobile terminal in which the restriction of the communication by the first communication link is further maintained.
  4.  前記他の移動端末の接続先を前記基地局から前記中継局へ切り替えた場合に、前記基地局の通信品質が改善する移動端末をリストアップし、
     リストアップされた移動端末の接続先を前記基地局から前記中継局へ切り替えた場合に、前記第1通信リンクによる前記通信の制限が維持される移動端末を前記他の移動端末として選択する、
     ことを特徴とする請求項3に記載のネットワーク制御方法。
    When the connection destination of the other mobile terminal is switched from the base station to the relay station, the mobile terminal whose communication quality of the base station is improved is listed,
    When the connection destination of the listed mobile terminal is switched from the base station to the relay station, the mobile terminal that maintains the communication restriction by the first communication link is selected as the other mobile terminal.
    The network control method according to claim 3.
  5.  前記他の移動端末は、受信信号品質に基づいて、前記基地局に接続された複数の移動端末から選択されることを特徴とする請求項1-4のいずれか1項に記載のネットワーク制御方法。 5. The network control method according to claim 1, wherein the other mobile terminal is selected from a plurality of mobile terminals connected to the base station based on received signal quality. 6. .
  6.  前記他の移動端末は、前記基地局に対する受信信号品質と前記中継局に対する受信信号品質との差が小さい移動端末から優先的に選択されることを特徴とする請求項5項に記載のネットワーク制御方法。 6. The network control according to claim 5, wherein the other mobile terminal is preferentially selected from mobile terminals having a small difference between the received signal quality for the base station and the received signal quality for the relay station. Method.
  7.  中継局を含む移動通信システムにおけるネットワーク制御装置であって、
     中継局に接続した移動端末の通信が基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、
     前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、
     を有することを特徴とするネットワーク制御装置。
    A network control device in a mobile communication system including a relay station,
    Whether the communication of the mobile terminal connected to the relay station is restricted by the first communication link between the base station and the relay station or the second communication link between the relay station and the mobile terminal Determination means for determining;
    Control means for controlling to switch the connection destination of another mobile terminal connected to the base station from the base station to the relay station when restricted by the first communication link;
    A network control apparatus comprising:
  8.  前記制御手段は、前記他の移動端末の接続先を前記基地局から前記中継局へ切り替えた場合に、前記基地局の通信品質が改善する移動端末を前記他の移動端末として選択する、ことを特徴とする請求項7に記載のネットワーク制御装置。 The control means selects, as the other mobile terminal, a mobile terminal whose communication quality of the base station is improved when the connection destination of the other mobile terminal is switched from the base station to the relay station. The network control device according to claim 7, characterized in that:
  9.  前記制御手段は、さらに、前記第1通信リンクによる前記通信の制限が維持される移動端末を前記他の移動端末として選択する、ことを特徴とする請求項8に記載のネットワーク制御装置。 The network control device according to claim 8, wherein the control means further selects a mobile terminal that maintains the communication restriction by the first communication link as the other mobile terminal.
  10.  前記制御手段は、前記他の移動端末の接続先を前記基地局から前記中継局へ切り替えた場合に、前記基地局の通信品質が改善する移動端末をリストアップし、リストアップされた移動端末の接続先を前記基地局から前記中継局へ切り替えた場合に前記第1通信リンクによる前記通信の制限が維持される移動端末を前記他の移動端末として選択する、ことを特徴とする請求項9に記載のネットワーク制御装置。 The control means lists mobile terminals whose communication quality of the base station improves when the connection destination of the other mobile terminal is switched from the base station to the relay station. 10. The mobile terminal that maintains the communication restriction by the first communication link when the connection destination is switched from the base station to the relay station is selected as the other mobile terminal. The network control device described.
  11.  前記制御手段は、受信信号品質に基づいて、前記基地局に接続された複数の移動端末から前記他の移動端末を選択する、ことを特徴とする請求項7-10のいずれか1項に記載のネットワーク制御装置。 11. The control unit according to claim 7, wherein the control unit selects the other mobile terminal from a plurality of mobile terminals connected to the base station based on received signal quality. Network controller.
  12.  前記制御手段は、前記基地局に対する受信信号品質と前記中継局に対する受信信号品質との差が小さい移動端末から優先的に前記他の移動端末を選択する、ことを特徴とする請求項11項に記載のネットワーク制御装置。 The said control means selects the said other mobile terminal preferentially from the mobile terminal with a small difference of the received signal quality with respect to the said base station, and the received signal quality with respect to the said relay station. The network control device described.
  13.  前記基地局に設置されたことを特徴とする請求項7-12のいずれか1項に記載のネットワーク制御装置。 The network control device according to any one of claims 7 to 12, wherein the network control device is installed in the base station.
  14.  前記移動通信システムを管理するネットワーク管理装置に設置されたことを特徴とする請求項7-12のいずれか1項に記載のネットワーク制御装置。 13. The network control device according to claim 7, wherein the network control device is installed in a network management device that manages the mobile communication system.
  15.  中継局を含む移動通信システムにおける基地局であって、
     前記基地局に接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、
     前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、
     を有することを特徴とする基地局。
    A base station in a mobile communication system including a relay station,
    Communication of a mobile terminal connected to the base station is restricted by any one of a first communication link between the base station and the relay station and a second communication link between the relay station and the mobile terminal. Determination means for determining whether or not
    Control means for controlling to switch the connection destination of another mobile terminal connected to the base station from the base station to the relay station when restricted by the first communication link;
    A base station characterized by comprising:
  16.  基地局および中継局を含む移動通信システムにおけるサーバであって、
     前記基地局に接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、
     前記第1通信リンクにより制限される場合、前記基地局に接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、
     を有することを特徴とするサーバ。
    A server in a mobile communication system including a base station and a relay station,
    Communication of a mobile terminal connected to the base station is restricted by any one of a first communication link between the base station and the relay station and a second communication link between the relay station and the mobile terminal. Determination means for determining whether or not
    Control means for controlling to switch the connection destination of another mobile terminal connected to the base station from the base station to the relay station when restricted by the first communication link;
    The server characterized by having.
  17.  基地局が形成するマクロセルと前記基地局に接続された中継局が形成するリレーセルとを含む移動通信システムであって、
     前記基地局が、
      前記リレーセルに接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、
      前記第1通信リンクにより制限される場合、前記マクロセルに接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、
     を有することを特徴とする移動通信システム。
    A mobile communication system including a macro cell formed by a base station and a relay cell formed by a relay station connected to the base station,
    The base station is
    Whether the communication of the mobile terminal connected to the relay cell is restricted by the first communication link between the base station and the relay station or the second communication link between the relay station and the mobile terminal Determining means for determining
    Control means for controlling to switch the connection destination of another mobile terminal connected to the macro cell from the base station to the relay station when restricted by the first communication link;
    A mobile communication system comprising:
  18.  基地局が形成するマクロセルと前記基地局に接続された中継局が形成するリレーセルとを含む移動通信システムであって、
     前記基地局に接続されたサーバが、
      前記リレーセルに接続した移動端末の通信が前記基地局と前記中継局との間の第1通信リンクと前記中継局と前記移動端末との間の第2通信リンクのいずれのリンクにより制限されるかを判定する判定手段と、
      前記第1通信リンクにより制限される場合、前記マクロセルに接続された他の移動端末の接続先を前記基地局から前記中継局へ切り替えるように制御する制御手段と、
     を有することを特徴とする移動通信システム。
    A mobile communication system including a macro cell formed by a base station and a relay cell formed by a relay station connected to the base station,
    A server connected to the base station
    Whether the communication of the mobile terminal connected to the relay cell is restricted by the first communication link between the base station and the relay station or the second communication link between the relay station and the mobile terminal Determining means for determining
    Control means for controlling to switch the connection destination of another mobile terminal connected to the macro cell from the base station to the relay station when restricted by the first communication link;
    A mobile communication system comprising:
  19.  請求項17または18に記載の移動通信システムにおける前記中継局において、前記第2通信リンクのチャネル品質に関する情報を計算して前記基地局へ報告するリンク品質計算手段を有することを特徴とする中継局。 19. The relay station in the mobile communication system according to claim 17 or 18, further comprising link quality calculation means for calculating information on channel quality of the second communication link and reporting the information to the base station. .
PCT/JP2013/003765 2012-06-20 2013-06-17 Network control method and apparatus, server and base station in mobile communication system WO2013190818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012138332 2012-06-20
JP2012-138332 2012-06-20

Publications (1)

Publication Number Publication Date
WO2013190818A1 true WO2013190818A1 (en) 2013-12-27

Family

ID=49768432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003765 WO2013190818A1 (en) 2012-06-20 2013-06-17 Network control method and apparatus, server and base station in mobile communication system

Country Status (1)

Country Link
WO (1) WO2013190818A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056857A (en) * 2008-08-28 2010-03-11 Kyocera Corp Wireless communication system, wireless base station, wireless relay station, and wireless communication method
WO2011094644A1 (en) * 2010-01-28 2011-08-04 Qualcomm Incorporated Method and apparatus for biasing a handoff decision based on a backhaul link

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056857A (en) * 2008-08-28 2010-03-11 Kyocera Corp Wireless communication system, wireless base station, wireless relay station, and wireless communication method
WO2011094644A1 (en) * 2010-01-28 2011-08-04 Qualcomm Incorporated Method and apparatus for biasing a handoff decision based on a backhaul link

Similar Documents

Publication Publication Date Title
US10080221B2 (en) Radio communication system, radio base station, and communication control method that can reduce an inter-base station interference between downlink control channels
EP3573249B1 (en) Radio communicating system, radio communicating method, radio station, control station and program
EP3051876B1 (en) Small cell switching method, enb and computer storage medium
CN102870460B (en) The handover configurations optimized
WO2011149081A1 (en) Wireless communication system, wireless base station, and communication control method
CN102164385B (en) Switching method and relay node
US10206156B2 (en) Radio access management system
GB2490366A (en) Determining bottleneck information in a cellular network with a relay node
JP5592702B2 (en) Wireless communication system, wireless base station, and communication control method
JP2014523159A5 (en)
JP2014523159A (en) Performing measurements in digital cellular radio telecommunications networks
JP6612554B2 (en) Wireless base station, user terminal, wireless communication method
US10555248B2 (en) Method, system and devices for enabling a network node to perform a radio operation task in a telecommunication network
WO2011155555A1 (en) Radio communication system, radio base station, radio terminals and communication control method
WO2013190818A1 (en) Network control method and apparatus, server and base station in mobile communication system
GB2554451A (en) Cellular telecommunications network
CN102823299A (en) Base station, mobile euipment and method in wireless heterogeneous network
US9210635B2 (en) Radio base station and handover control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP