WO2013189185A1 - 容灾倒换的方法、装置和系统 - Google Patents

容灾倒换的方法、装置和系统 Download PDF

Info

Publication number
WO2013189185A1
WO2013189185A1 PCT/CN2013/071631 CN2013071631W WO2013189185A1 WO 2013189185 A1 WO2013189185 A1 WO 2013189185A1 CN 2013071631 W CN2013071631 W CN 2013071631W WO 2013189185 A1 WO2013189185 A1 WO 2013189185A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
service node
itself
detects
unreachable
Prior art date
Application number
PCT/CN2013/071631
Other languages
English (en)
French (fr)
Inventor
刘恒
周江鲤
胡达
侯前进
刘海静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013189185A1 publication Critical patent/WO2013189185A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method, an apparatus, and a system for disaster tolerance switching. Background technique
  • user data is the core data of the operator's communication network
  • the consistency and reliability of user data is not only the most concerned indicator of telecom operators, but also the core indicator of telecom network service quality.
  • FE and BE implement separate deployment, and also realize the separation of business logic and data management, thus posing challenges to the reliability and consistency of user data.
  • the BE As a user data center, the BE generally adopts distributed deployment and forms a disaster recovery network in multiple geographic locations to ensure user data security.
  • the most critical core technology in a disaster recovery solution is how to implement disaster recovery switching in a fault scenario. That is, when an FE/BE fails, other FE/BEs can be automatically switched and taken over, ensuring a seamless service experience for the end user.
  • the existing FE/BE disaster recovery switching scheme is a single-layer switching scheme that is commonly used.
  • the peer network device such as the MSC (Mobile Switching Center) / STP (Signaling Transfer Point), is connected through FE and BE.
  • MSC/STP finds that the active FE is unavailable, it switches to Disaster tolerance FE.
  • the BE finds that the primary FE is unavailable, it switches to the disaster-tolerant FE to send a notification message about the user subscription data change.
  • the subscription notification message sent by the BE to the FE cannot be delivered to the peer network device. If the communication link with the primary BE/DR is all faulty, the service request sent by the peer network device to the FE will also fail. That is to say, in these scenarios, even if the status of the FE is normal, the service cannot be performed normally, resulting in poor user experience.
  • the embodiment of the invention provides a method, a device and a system for disaster recovery switching, which can solve the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improve the service experience of the user and the reliability of the operator network.
  • the embodiment of the present invention provides a method for disaster recovery switching, including:
  • the service node is respectively in communication with the at least one first device and the at least one second device; and when the service node detects that the link with the at least one first device fails, shutting down itself and the at least one a link between two devices; to enable any of the second devices to detect that the link with the service node is unreachable, select a standby node of the service node to provide a service.
  • an embodiment of the present invention provides a service node, including:
  • a first unit configured to enable the service node to communicate with each of the at least one first device and the at least one second device respectively;
  • a second unit configured to: when the service node detects that a link with the at least one first device fails, close a link between itself and the at least one second device; Said When the second device detects that the link with the service node is unreachable, the standby node of the service node is selected to provide a service.
  • an embodiment of the present invention provides a system for disaster recovery switching, including at least one first device, at least one second device, and a communication connection with the at least one first device and the at least one second device.
  • Business node
  • the service node is configured to, when detecting a fault with the link between the at least one first device, shut down a link between itself and the at least one second device;
  • the second device is configured to: when detecting that the link with the service node is unreachable, select a standby node of the service node to provide a service.
  • the service node is respectively connected to the at least one first device and the at least one second device; and when the service node detects the chain with the at least one first device If the path fails, the link between itself and the at least one second device is closed; so that any of the second devices detects that the link with the service node is unreachable, and selects the service.
  • the standby node of the node provides the service, which solves the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improves the service experience of the user and the reliability of the carrier network.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for disaster recovery switching according to the present invention
  • FIG. 2 is a schematic diagram of a fault scenario provided by the present invention.
  • FIG. 3 is a schematic diagram of another fault scenario provided by the present invention.
  • FIG. 4 is a flowchart of Embodiment 2 of a method for disaster recovery switching provided by the present invention
  • FIG. 5 is a flowchart of Embodiment 3 of a method for disaster recovery switching according to the present invention
  • Embodiment 4 is a flowchart of Embodiment 4 of a method for disaster recovery switching provided by the present invention
  • FIG. 8 is a schematic structural diagram of an embodiment of a service node according to the present invention.
  • FIG. 9 is a schematic structural diagram of an embodiment of a disaster recovery switching system provided by the present invention. detailed description
  • FIG. 1 is a flowchart of Embodiment 1 of a method for disaster recovery switching according to the present invention. As shown in FIG. 1, the method includes:
  • the service node FE is respectively communicably connected to the at least one first device and the at least one second device.
  • the first device and the second device may be MSC/STP, and BE respectively; or may be an S-CSCF (Serving Call Session Control Function) and BE, respectively, and are of course not limited thereto.
  • S103 When the service node detects that a link with the at least one first device fails, shutting down a link between itself and the at least one second device, so that any of the second When the device detects that the link with the service node is unreachable, the standby node of the service node is selected to provide the service.
  • the service node detects that the link between the first device and the first device is faulty, and may be that the link between the service node and the first device is faulty, or the first device is faulty, and the service node and the service node are A link between devices has failed.
  • the link between itself and the at least one first device When the FE detects that the link between itself and the at least one first device has failed, the link between itself and the at least one second device is turned off.
  • the service node detects that the link between the first device and the at least one first device is faulty, and then shuts down the at least one
  • the link between the second device is specifically: when the service node detects that the link with the at least one MSC/STP fails, shutting down the SOAP between itself and the at least one BE (simple object)
  • the service node detects that the link with the at least one first device fails, and then closes itself and the at least one second.
  • the link between the devices is specifically: the service node detects that the link between the at least one BE connected to it fails, and closes the seventh letter between itself and the at least one MSC/STP. Let the link.
  • the service node detects that the link with the at least one first device fails, the user and the at least The link between the second device is specifically: the service node detects that the link with the at least one S-CSCF fails, and then closes the SOAP subscription notification link between itself and the at least one BE.
  • the first device is the BE and the second device is the S-CSCF
  • the at least one service node detects that the link with the at least one first device is faulty
  • the user and the device are closed.
  • the link between the at least one second device is specifically: the service node detects that the link between the at least one BE connected thereto is faulty, and then shuts down itself and the at least one S-CSCF Diameter link between.
  • the disaster recovery switching method provided by the embodiment of the present invention can solve the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improve the service experience of the user and the reliability of the operator network.
  • the Provisioning System to distribute and manage user data, such as overhead users, add packages, and increase contracted services.
  • the service delivery system modifies the data of the BE
  • the general BE sends a subscription notification to the FE
  • the FE sends the notification to the peer network device to complete the notification of the user data change.
  • the mobile phone user is notified of the subscription service by the SMS. You can enjoy new business experiences and more immediately.
  • the standby FE of the active FE can have two or more.
  • the standby BE of the active BE can also have two or more, which is not limited here.
  • there can be only one BE connected to the FE that is, there is no spare BE.
  • the peer network device connected to the primary FE or the standby FE may also have two or more.
  • the standby FE of the active FE may have two or more.
  • the standby BE of the active BE may also have two or more, and is not limited herein.
  • there may be only one BE connected to the FE that is, there is no spare BE.
  • the primary HLR detects that the link between the MSC and the STP is faulty.
  • the reason that the link between the primary HLR and the MSC/STP fails may be that the link between the primary HLR and the MSC/STP fails, or the MSC/STP fails to cause the primary HLR and the primary The link between the MSC/STP has failed.
  • the primary HLR detects that the link between the two MSCs/STPs fails, and then performs S403.
  • the primary HLR closes the SOAP subscription notification link between itself and the BE.
  • the SOAP subscription notification protocol between the HLR and the BE has a heartbeat handshake mechanism, and the underlying link is unreachable and can be detected and found.
  • the closing of the SOAP subscription notification link between the self and the BE may specifically be that the service node closes the TCP link between itself and the BE.
  • BE1 if connected to the main HLR is a BE, abbreviated as BE1, then the primary HLR is closed with the link between itself and BE1; correspondingly, the primary BE in step S405 is BE1.
  • the primary BE detects that the TCP link with the active HLR is unreachable.
  • the disaster recovery switching method provided in this embodiment can solve the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improve the service experience of the user and the reliability of the carrier network.
  • FIG. 5 provides A flow chart of an embodiment of a disaster tolerance switching method.
  • the primary HLR detects that the link between the primary BE and the primary BE has failed.
  • the reason that the link between the primary HLR and the primary BE fails may be that the link between the primary HLR and the primary BE is faulty, or that the primary BE fails, and the primary HLR and the primary The link between the primary BEs has failed.
  • the primary HLR detects that the link between the standby BE and the standby BE is faulty.
  • the primary HLR closes the seventh signaling link between itself and the MSC/STP with which it has a communication connection.
  • the signaling link 7 between the self and the MSC/STP may be:
  • the primary HLR sets its own SCCP (Signaling Link Control Protocol) signaling point status to unavailable.
  • SCCP Signaling Link Control Protocol
  • the main HLR will be its own M3UA (MTP third Layer User Adaptation Layer, MTP3 - User Adaptation layer / MTP3 (Message Transfer Part Level 3) is set to Unreachable.
  • step S505 the primary HLR turns off the signaling link 7 between itself and the two MSCs/STPs.
  • the MSC/STP detects that the link with the active HLR is unreachable.
  • the MSC/STP may detect that the status of the SCCP signaling point of the primary HLR is unreachable through the SCCP layer.
  • the SCCP layer between the primary HLR and the MSC/STP has a state management message mechanism.
  • the primary HLR automatically sends status management to the peer network device MSC/STP. The message, so that the MSC/STP will know that the signaling point of the primary HLR is unreachable.
  • the MSC/STP can detect that the M3UA/MTP3 status of the active HLR is unreachable through the M3UA/MTP3 layer.
  • the MSC/STP is switched to the standby HLR.
  • the primary HSS detects that the link between the S-CSCF and the S-CSCF is faulty.
  • the reason for the failure of the link between the primary HSS and the S-CSCF may be that the link between the primary HSS and the S-CSCF is faulty, or the primary HSS may be caused by the failure of the S-CSCF.
  • the link between the S-CSCFs has failed.
  • the primary HSS closes the SOAP subscription notification link between itself and the BE.
  • the primary HSS will close the SOAP subscription notification link between itself and BE2.
  • the link between the primary BE and the primary HSS is unreachable.
  • the primary BE detects that the TCP link with the primary HSS is unreachable.
  • the link between the standby BE detection side and the active HSS may be unreachable.
  • the link between the detected side and the active HSS is unreachable.
  • the HSS and the BE network in the IMS domain are used as an example.
  • the FE is the HSS and the S-CSCF is used as the example.
  • Figure 7 provides A flow of an embodiment of a disaster tolerance switching method solves the above situation. S701, the primary HSS detects that the link between the primary BE and the primary BE is faulty.
  • the reason for the failure of the link between the primary HSS and the primary BE may be that the link between the primary HSS and the primary BE is faulty, or that the primary BE fails, causing the primary HSS and The link between the primary BEs has failed.
  • the primary HSS detects that the link with the standby BE is faulty.
  • the link between the primary HSS and the standby BE may be faulty, or the link between the primary HSS and the standby BE may be faulty, or the standby BE may be faulty, causing the primary HSS and the standby BE.
  • the link between the links has failed.
  • the primary HSS closes the Diameter link between itself and the S-CSCF that has a communication connection with itself.
  • the Diameter link between the self-disabled S-CSCF and the S-CSCF that communicates with itself may be:
  • the primary HSS closes the SCTP between itself and the S-CSCF (stream control transmission protocol, stream control transmission protocol
  • the link or the primary HSS sends a Disconnect-Peer-Request message to the S-CSCF to inform the S-CSCF to actively close the link between the S-CSCF and the HSS.
  • the S-CSCF replies with a response message, the Diameter link is disconnected.
  • step S705 the primary HSS closes itself and the Diameter link with the two S-CSCFs.
  • the S-CSCF detects that the link with the primary HSS is unreachable.
  • the S-CSCF that detects that the link with the primary HSS is unreachable may be in the two S-CSCFs. anyone.
  • the S-CSCF switches to the standby HSS.
  • the S-CSCF switches to the standby HSS, and the standby HSS provides services to the S-CSCF.
  • the disaster recovery switching method provided in this embodiment can solve the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improve the service experience of the user and the reliability of the carrier network.
  • the embodiment of the present invention further provides a service node 80.
  • the service node includes a first unit 81 and a second unit 83.
  • the first unit 81 is configured to enable the service node to communicate with the at least one first device and the at least one second device, respectively, and the second unit 83 is configured to: when the service node detects the at least one first device When the link between the two links fails, the link between itself and the at least one second device is closed; so that any of the second devices detects that the link with the service node is unreachable, The standby node of the service node is selected to provide the service.
  • the second unit 83 is specifically configured to: when the first device is the mobile switching center MSC/signaling transfer point STP, and the second device is the data node BE, if the at least one MSC is detected If the link between the STPs fails, the Simple Object Access Protocol (SOAP) subscription notification link between itself and the at least one BE is closed; so that any BE detects that the link with the service node is unreachable.
  • the service node can be an HLR.
  • the second unit 83 is specifically configured to: when the first device is a BE and the second device is an MSC/STP, if a link between the at least one BE connected to the UE is detected to be faulty, Turning off the SS7 link between itself and the at least one MSC/STP; so that any of the MSC/STPs detects that the link with the service node is unreachable, select the service node The alternate node to provide the service.
  • the service node can be an HLR.
  • the second unit 83 is specifically configured to: when the first device is the serving call session control function S-CSCF, and the second device is the BE, if the link with the at least one S-CSCF is detected to be faulty, And then shutting down the SOAP subscription notification link between itself and the at least one S-CSCF; so that any BE detects that the link with the service node is unreachable, selecting the standby of the service node Nodes provide good services.
  • the service node may be an HSS.
  • the second unit 83 is specifically configured to: when the first device is a BE, and the second device is an S-CSCF, if a link between the at least one BE connected thereto is detected to be faulty, And then closing the Diameter link between itself and the at least one S-CSCF; to enable any of the S-CSCFs to detect that the link with the service node is unreachable, select the standby of the service node Node to provide services.
  • the service node can be an HSS.
  • the service node provided in this embodiment can solve the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improve the service experience of the user and the reliability of the carrier network.
  • the embodiment of the present invention further provides a disaster tolerance switching system 90.
  • the system includes at least one first device 91, at least one second device 95, and a service node 93 communicatively coupled to the at least one first device and the at least one second device.
  • the service node 93 is configured to: when detecting a fault with the at least one first device 91, shut down a link between itself and the at least one second device 95; the second device 95, For selecting a standby node of the service node to provide a service when detecting that the link with the service node is unreachable.
  • the service node in the system may be any one of the service nodes 80 in the embodiment shown in FIG. 8.
  • the disaster recovery switching system provided in this embodiment can solve the fault scenario that cannot be solved under the original single-layer disaster recovery switchover, and improve the service experience of the user and the reliability of the carrier network.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, ead-Only Memory), and a random access memory.
  • a medium that can store program code such as a RAM (RAM, Random Access Memory), a disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephonic Communication Services (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种容灾倒换的方法、装置和系统。容灾倒换的方法包括:业务节点分别与至少一个第一设备和至少一个第二设备通信连接;当所述业务节点检测到与所述至少一个第一设备之间的链路发生故障,则关闭自身与所述至少一个第二设备之间的链路;以使任一所述第二设备检测到与所述业务节点之间的链路不可达时,选择所述业务节点的备用节点来提供服务。通过本发明实施例提供的容灾倒换的方法,可以提高用户体验。

Description

容灾倒换的方法、 装置和系统
本申倚要求了 2012年 6月 20日提交的、 申请号为 201210203506.3、 发明名 称为 "容灾倒换的方法、 装置和系统" 的中国申请的优先权, 其全部内容通过 引用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种容灾倒换的方法、 装置和 系统。 背景技术
随着固定移动网络融合的发展, UDC (用户数据融合, User Data Convergence ) 架构正在成为各大通信设备厂商在 SDM (用户数据管理, Subscriber Data Management )解决方案的主要产品架构。 在 UDC架构下, 使 用业务节点 FE (业务节点, Front End, FE ) 来完成 CS ( Circuit Switched domain , 电路 i或 ) /PS ( Packet domain, 分组域 ) /IMS ( IP multimedia subsystem, IP多媒体子系统)各种领域的业务逻辑处理, 使用共同的 BE (数 据节点, Back End ) 完成用户数据融合存储和集中管理。
由于用户数据是运营商通信网络的核心数据, 用户数据的一致性和可靠性 不仅是电信运行商最关注的指标, 也是电信网络服务质量的核心指标。 而在 UDC架构下, FE和 BE实现了分离部署, 也实现了业务逻辑和数据管理的分 离, 因此对用户数据的可靠性和一致性也带来了挑战。
BE作为用户数据中心, 一般都釆取分布式部署, 在多个地理位置形成容 灾组网, 确保用户数据的安全。 容灾解决方案中最关键的核心技术是如何实现 故障场景下的容灾倒换。 即当某个 FE/BE故障时, 其它的 FE/BE可以进行自 动的倒换和接管, 确保对终端用户提供无缝的业务体验。 现有 FE/BE容灾倒换方案是普遍使用的是单层的倒换方案。 对端网络设 备, 例如 MSC ( Mobile Switching Center, 移动交换中心) /STP ( Signalling Transfer Point, 信令转接点)通过 FE和 BE通信连接, 当 MSC/STP发现主用 FE不可用后, 倒换到容灾 FE。 BE发现主用 FE不可用时, 倒换到容灾 FE发 送用户签约数据变化的通知消息。
但是在有些场景下, 比如: 如果某个 FE和对端网络设备的链路出现故 障, 那么这时 BE发送给 FE的订阅通知消息实际无法下发到对端网络设备; 或者, 如果主用 FE和主用 BE/容灾 BE的通信链路全部故障, 那么对端网络设 备向 FE发送的业务请求也会失败。 也就是说, 在这些场景下, 即使 FE的状 态正常, 业务也无法正常进行, 导致用户的业务体验差。 发明内容
本发明实施例提供一种容灾倒换的方法、 装置和系统, 解决原有单层容灾 倒换下无法解决的故障场景, 提高了用户的业务体验和运营商网络的可靠性。
一方面, 本发明实施例提供了一种容灾倒换的方法, 包括:
业务节点分别与至少一个第一设备和至少一个第二设备通信连接; 当所述业务节点检测到与所述至少一个第一设备之间的链路发生故障, 则 关闭自身与所述至少一个第二设备之间的链路; 以使任一所述第二设备检测到 与所述业务节点之间的链路不可达时, 选择所述业务节点的备用节点来提供服 务。
另一方面, 本发明实施例提供了一种业务节点, 包括:
第一单元, 用于使所述业务节点分别与至少一个第一设备和至少一个第二 设备通信连接;
第二单元, 用于当所述业务节点检测到与所述至少一个第一设备之间的链 路发生故障, 则关闭自身与所述至少一个第二设备之间的链路; 以使任一所述 第二设备检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备 用节点来提供服务。
另一方面, 本发明实施例提供了一种容灾倒换的系统, 包括至少一个第一 设备、 至少一个第二设备, 和与所述至少一个第一设备及所述至少一个第二设 备通信连接的业务节点,
所述业务节点, 用于当检测到与所述至少一个第一设备之间的链路发生故 障时, 则关闭自身与所述至少一个第二设备之间的链路;
所述第二设备, 用于当检测到与所述业务节点之间的链路不可达时, 选择 所述业务节点的备用节点来提供服务。
本发明实施例提供的容灾倒换的的方法, 业务节点分别与至少一个第一设 备和至少一个第二设备通信连接; 当所述业务节点检测到与所述至少一个第一 设备之间的链路发生故障, 则关闭自身与所述至少一个第二设备之间的链路; 以使任一所述第二设备检测到与所述业务节点之间的链路不可达时, 选择所述 业务节点的备用节点来提供服务, 从而解决原有单层容灾倒换下无法解决的故 障场景, 提高了用户的业务体验和运营商网络的可靠性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的一个容灾倒换的方法实施例一的流程图;
图 2为本发明提供的一种故障场景示意图;
图 3为本发明提供的另一种故障场景示意图;
图 4为本发明提供的容灾倒换的方法实施例二的流程图; 图 5为本发明提供的容灾倒换的方法实施例三的流程图;
图 6为本发明提供的容灾倒换的方法实施例四的流程图;
图 7为本发明提供的容灾倒换的方法实施例五的流程图;
图 8为本发明提供的业务节点实施例的结构示意图;
图 9为本发明提供的容灾倒换系统实施例的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明提供的容灾倒换的方法实施例一的流程图, 如图 1所示, 该方 法包括:
S101 , 业务节点 FE分别与至少一个第一设备和至少一个第二设备通信连 接;
在 UDC架构下, 业务处理由 FE完成, 用户数据的存储和管理由 BE完成, BE可以支持各种领域的业务, 只要部署对应的 FE即可。 本发明与具体的网絡 域、 FE类型无直接关系, FE可以是 CS域的 HLR (归属位置寄存器, Home Location Register ) 、 IMS域的 HSS (归属用户服务器, Home subscriber Server ) 或 PS域的 PCRF ( Policy and Charging Rules Function, 策略与计费规则 功能实体) , 当然也不限于这些。
例如, 第一设备和第二设备可以分别是 MSC/STP, 和 BE; 也可以分别是 S-CSCF (服务呼叫会话控制功能, Serving Call Session Control Function ) 和 BE, 当然也不限于这些。 S103 , 当所述业务节点检测到与所述至少一个第一设备之间的链路发生故 障, 则关闭自身与所述至少一个第二设备之间的链路; 以使任一所述第二设备 检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备用节点来 提供服务。
其中, 所述业务节点检测到与第一设备之间的链路发生故障, 可以是业务 节点和第一设备之间的链路发生故障, 也可以是第一设备发生故障而导致业务 节点和第一设备之间的链路发生故障。
当 FE检测到自己和至少一个第一设备之间的链路发生故障后, 则关闭自 身与至少一个第二设备之间的链路。
可选的, 当第一设备为 MSC/STP, 第二设备为 BE时, 所述业务节点检测 到与所述至少一个第一设备之间的链路发生故障, 则关闭自身与所述至少一个 第二设备之间的链路, 具体为: 所述业务节点检测到与所述至少一个 MSC/STP 之间的链路发生故障, 则关闭自身和所述至少一个 BE之间的 SOAP (简单对象 访问协议, Simple Object Access Protocol )订阅通 口链路。
可选的, 当第一设备为 BE, 第二设备为 MSC/STP时, 所述业务节点检测 到与所述至少一个第一设备的链路发生故障, 则关闭自身与所述至少一个第二 设备之间的链路, 具体为: 所述业务节点检测到与其连接的所述至少一个 BE 之间的链路都发生故障, 将关闭自身和所述至少一个 MSC/STP之间的七号信令 链路。
可选的, 当第一设备为 S-CSCF, 第二设备为 BE时, 所述当所述业务节 点检测到与所述至少一个第一设备的链路发生故障, 则关闭自身与所述至少一 个第二设备之间的链路, 具体为: 所述业务节点检测到与所述至少一个 S- CSCF的链路发生故障, 则关闭自身和所述至少一个 BE之间的 SOAP订阅通 知链路。 可选的, 当第一设备为 BE, 第二设备为 S-CSCF时, 所述当所述至少一 个业务节点检测到与所述至少一个第一设备的链路发生故障, 则关闭自身与所 述至少一个第二设备之间的链路, 具体为: 所述业务节点检测到与其连接的所 述至少一个 BE之间的链路都发生故障, 则关闭自身和所述至少一个 S-CSCF 之间的 Diameter链路。
通过本发明实施例提供的容灾倒换的方法, 可以解决原有单层容灾倒换下 无法解决的故障场景, 提高用户的业务体验和运营商网络的可靠性。
下面结合具体例子, 更加详细地描述本发明的实施例。 其中, 图 2到图 7的 实施例只是为了帮助本领域技术人员更好地理解本发明, 而非要限制本发明的 范围。
运营商一般都通过业务发放系统( Provisioning System )对用户数据进行 业务发放和管理, 如开销户、 增加套餐、 增加签约业务等。 业务发放系统对 BE的数据进行修改后, 一般 BE会发送订阅通知到 FE, 由 FE下发到对端网络设 备, 完成用户数据变化的通知, 比如通过短信通知手机用户某个签约业务生效 了, 可以马上享受新的业务体验等。
如图 2中所示, 如果主用 FE和对端网络设备的链路出现故障, 主用 BE发送 给主用 FE的订阅通知消息实际无法下发到对端网络设备。 这种场景下, 主用 FE的状态是正常的, 因此主用 BE并不会倒换到其它的备用 FE来下发订阅通 知, 因此导致了用户的签约数据发生变化后, 用户无法及时了解自己的业务变 化, 也无法及时享受到业务体验。 现有的 FE BE容灾倒换方法无法解决图 2所 示的故障场景。 当然, 主用 FE的备用 FE (即容灾 FE )可以有两个或两个以 上, 主用 BE的备用 BE (即容灾 BE )也可以有两个或两个以上, 这里不作限 制。 可选的, 和 FE连接的 BE也可以只有一个, 即没有备用 BE。 可选的, 和主 用 FE或备用 FE连接的对端网络设备也可以有两个或两个以上。
由于 FE和 BE分离部署, 如图 3所示, 如果主用 FE和主用 BE/容灾 BE的通信 链路全部故障, 实际上主用 FE对外已经无法提供正常的服务, 但是主用 FE 身的状态还是正常, 主用 FE和对端网络设备的链路也是正常的, 因此对端网 络设备并不会进行容灾倒换, 会继续选择主用 FE提供服务。 这种场景下, 大 量的业务请求都会失败。 现有的 FE BE容灾倒换方法无法解决图 3所示的故障 场景。 当然, 主用 FE的备用 FE (即容灾 FE ) 可以有两个或两个以上, 主用 BE 的备用 BE (即容灾 BE )也可以有两个或两个以上, 这里不作限制。 可选的, 和 FE连接的 BE也可以只有一个, 即没有备用 BE。 可选的, 和主用 FE或备用 FE 连接的对端网络设备也可以有两个或两个以上。
针对图 2所示的场景, 以图 2所示的是 CS域中 HLR和 BE组网为例, 也即是 FE以 HLR为例, 对端网络设备以 MSC/STP为例, 图 4提供了一种容灾倒换方法 实施例的流程图。
S401 , 主用 HLR检测到与 MSC/STP之间的链路发生故障。
其中, 主用 HLR与 MSC/STP之间的链路发生故障的原因, 可以是主用 HLR 和 MSC/STP之间的链路发生故障, 也可以是 MSC/STP发生故障而导致主用 HLR和 MSC/STP之间的链路发生故障。
可选的, 如杲和主用 HLR连接的 MSC/STP有两个, 那么主用 HLR检测到与 这两个 MSC/STP之间的链路都发生故障, 然后执行 S403。
S403,主用 HLR关闭自身和 BE之间的 SOAP订阅通知链路。
具体的, 主用 HLR会关闭与自身有通信连接的主用 BE和备用 BE之间的 SOAP订阅通知链路。
其中, HLR和 BE间的 SOAP订阅通知协议有心跳握手机制, 底层链路不可 达, 可以检测并发现。
可选的, 由于 SOAP协议通常是通过 HTTP承载的, 而 HTTP是通过 TCP承 载的。 因此, 所述关闭自身和 BE之间的 SOAP订阅通知链路具体可以为, 所述 业务节点关闭自身和 BE之间的 TCP链路。 可选的, 如果和主用 HLR连接的是一 个 BE, 简称 BE1 , 那么主用 HLR关闭的是自身和 BE1之间的链路; 相应的, S405步骤中的主用 BE就是 BE1。
S405, 主用 BE检侧到与主用 HLR间的链路不可达。
可选的 , 检侧到与主用 HLR之间的链路不可达时可以为 , 主用 BE检测到 与主用 HLR间的 TCP链路不可达。
S407, 切换到备用 HLR上。
通过本实施例提供的容灾倒换的方法, 可以解决原有单层容灾倒换下无法 解决的故障场景, 提高用户的业务体验和运营商网络的可靠性。
针对图 3所示的场景, 以图 3所示的是 CS域中 HLR和 BE组网为例, 也即是 FE以 HLR为例, 对端网络设备以 MSC/STP为例, 图 5提供了一种容灾倒换方法 实施例的流程图。
S501 , 主用 HLR检测发现到与主用 BE之间的链路发生故障。
其中, 主用 HLR与主用 BE之间的链路发生故障的原因, 可以是主用 HLR和主用 BE之间的链路发生故障, 也可以是主用 BE发生故障而导致主用 HLR和主用 BE之间的链路发生故障。
S503 , 主用 HLR检测到与备用 BE之间的链路发生故障。
其中, 主用 HLR与备用 BE之间的链路发生故障的原因, 可以是主用 HLR和备用 BE之间的链路发生故障, 也可以是备用 BE发生故障而导致主用 HLR和备用 BE之间的链路发生故障。
S501和 S503无先后顺序之分。
S505, 主用 HLR关闭自身和与自身有通信连接的 MSC/STP之间的七号信 令链路。
可选的, 关闭自身和 MSC/STP之间的七号信令链路具体可以为: 主用 HLR将自身的 SCCP (信令链路控制协议, Signalling Connection Control Part ) 信令点状态设置为不可达; 也可以为, 主用 HLR将自身的 M3UA ( MTP第三 层用户适配层, MTP3 -User Adaptation layer ) /MTP3 (消息传输部分第三层, Message Transfer Part level 3 )状态设置为不可达。
可选的, 如果和主用 HLR连接的 MSC/STP有两个, 那么步骤 S505中, 主用 HLR关闭自身和与这两个 MSC/STP之间的七号信令链路。
S507 , MSC/STP检测到与主用 HLR之间的链路不可达。
可选的, 如果 S505中, 主用 HLR将自身的 SCCP信令点状态设置为不可 达, 则 MSC/STP可以通过 SCCP层检测到主用 HLR的 SCCP信令点状态为不 可达。 例如, 主用 HLR和 MSC/STP间的 SCCP层有状态管理消息机制, 当主 用 HLR的 SCCP信令点状态设置为不可达, 则主用 HLR会自动向对端网络设 备 MSC/STP发送状态管理消息, 从而 MSC/STP会得知主用 HLR的信令点不 可达。
可选的, 如果 S505中, 主用 HLR将自身的 M3UA/MTP3状态设置为不可 达, 则 MSC/STP可以通过 M3UA/MTP3层检测到主用 HLR的 M3UA/MTP3状 态为不可达。
可选的, 如果和主用 HLR连接的 MSC/STP有两个, 那么步骤 S507中, 检测到与主用 HLR之间的链路不可达的 MSC/STP可以是这两个 MSC/STP中 的任意一个。
S509 , MSC/STP切换到备用 HLR上。
MSC/STP切换到备用 HLR上, 备用 HLR为 MSC/STP提供服务。
通过本实施例提供的容灾倒换的方法, 可以解决原有单层容灾倒换下无法 解决的故障场景, 提高了用户的业务体验和运营商网絡的可靠性。
针对图 2所示的场景, 以图 2所示的是 IMS域中 HSS和 BE组网为例, 也 即是 FE以 HSS为例, 对端网络设备以 S-CSCF为例, 图 6提供了一种容灾倒 换方法实施例的的流程图来解决上述这种情况。
S601 , 主用 HSS检测到与 S-CSCF之间的链路发生故障。 其中, 主用 HSS与 S-CSCF之间的链路发生故障的原因, 可以是主用 HSS和 S-CSCF之间的链路发生故障, 也可以是 S-CSCF发生故障而导致主用 HSS和 S- CSCF之间的链路发生故障。
S603,主用 HSS关闭自身和 BE之间的 SOAP订阅通知链路。
具体的, 主用 HSS会关闭与自身有通信连接的主用 BE和备用 BE之间的 SOAP订阅通知链路。 其中, HSS和 BE间的 SOAP订阅通知协议有心跳握手机 制, 底层链路不可达, 可以检测并发现。
可选的, 由于 SOAP协议是通过 HTTP承载的, 而 HTTP是通过 TCP承载 的。 因此, 所述关闭自身和 BE之间的 SOAP订阅通知链路具体可以为, 所述业 务节点关闭自身和 BE之间的 TCP链路。
可选的, 如果主用只 HSS连接了一个 BE, 简称 BE2, 那么主用 HSS会关闭 自身与 BE2之间的 SOAP订阅通知链路。
S605 , 主用 BE检侧到与主用 HSS之间的链路不可达。
可选的, 主用 BE检侧到与主用 HSS之间的链路不可达具体可以为, 主用 BE检测到与主用 HSS间的 TCP链路不可达。 可选的, S605中, 也可以是备用 BE检侧到与主用 HSS之间的链路不可达。
可选的, 如果主用 HSS只连接了一个 BE2, 那么 S605中, 检侧到与主用 HSS之间的链路不可达的是 BE2。
S607, 切换到备用 HSS上。
S-CSCF切换到备用 HSS上, 备用 HSS为 S-CSCF提供服务。
通过本实施例提供的容灾倒换的方法, 可以解决原有单层容灾倒换下无法 解决的故障场景, 提高了用户的业务体验和运营商网络的可靠性。
针对图 3所示的场景, 以图 3所示的是 IMS域中 HSS和 BE组网为例, 也即是 FE以 HSS为例, 对端网络设备以 S-CSCF为例, 图 7提供了一种容灾倒换方法实 施例的流程来解决上述这种情况。 S701 , 主用 HSS检测发现到与主用 BE之间的链路发生故障。
其中, 主用 HSS与主用 BE之间的链路发生故障的原因, 可以是主用 HSS 和主用 BE之间的链路发生故障, 也可以是主用 BE发生故障而导致主用 HSS 和主用 BE之间的链路发生故障。
S703 , 主用 HSS检测到与备用 BE之间的链路发生故障。
其中, 主用 HSS与备用 BE之间的链路发生故障的原因, 可以是主用 HSS 和备用 BE之间的链路发生故障, 也可以是备用 BE发生故障而导致主用 HSS 和备用 BE之间的链路发生故障。
S701和 S703无先后顺序之分。
S705, 主用 HSS关闭自身和与自身有通信连接的 S-CSCF之间的 Diameter 链路。
可选的, 关闭自身和和与自身有通信连接的 S-CSCF之间的 Diameter链路具 体可以为: 主用 HSS关闭自身和 S-CSCF之间的 SCTP (流控制传输协议, stream control transmission protocol )链路; 或主用 HSS发送 Disconnect-Peer- Request消息给 S-CSCF, 以通知 S-CSCF主动关闭 S-CSCF和 HSS之间的链路。 S- CSCF回复响应消息后, Diameter链路即断开。
可选的, 如果和主用 HSS连接的 S-CSCF有两个, 那么步骤 S705中, 主用 HSS关闭自身和与这两个 S-CSCF之间的 Diameter链路。
S707, S-CSCF检测到与主用 HSS之间的链路不可达。
可选的, 检侧到与主用 HSS之间的链路不可达具体可以为, S-CSCF检测 到与主用 HSS间的 SCTP链路不可达。
可选的, 如果和主用 HSS连接的 S-CSCF有两个, 那么步 S707中, 检 测到与主用 HSS之间的链路不可达的 S-CSCF可以是这两个 S-CSCF中的任意 一个。
S709, S-CSCF切换到备用 HSS上。 S-CSCF切换到备用 HSS上, 备用 HSS为 S-CSCF提供服务。
通过本实施例提供的容灾倒换的方法, 可以解决原有单层容灾倒换下无法 解决的故障场景, 提高了用户的业务体验和运营商网络的可靠性。
如图 8所示, 本发明实施例还提供了一种业务节点 80。 该业务节点包括第 一单元 81和第二单元 83。
第一单元 81, 用于使所述业务节点分别与至少一个第一设备和至少一个第 二设备通信连接; 第二单元 83 , 用于当所述业务节点检测到与所述至少一个第 一设备之间的链路发生故障, 则关闭自身与所述至少一个第二设备之间的链 路; 以使任一所述第二设备检测到与所述业务节点之间的链路不可达时, 选择 所述业务节点的备用节点来提供服务。
可选的 , 第二单元 83 , 具体用于当第一设备为移动交换中心 MSC/信令转 接点 STP, 所述第二设备为数据节点 BE时, 若检测到与所述至少一个 MSC/STP 之间的链路发生故障, 则关闭自身和所述至少一个 BE之间的简单对象访问协 议 SOAP订阅通知链路; 以使任一 BE检测到与所述业务节点之间的链路不可达 时, 选择所述业务节点的备用节点来提供服务。 可选的, 该业务节点可以为 HLR。
可选的, 第二单元 83, 具体用于当第一设备为 BE, 第二设备为 MSC/STP 时, 若当检测到与其连接的所述至少一个 BE之间的链路都发生故障, 则关闭 自身和所述至少一个 MSC/STP之间的七号信令链路; 以使任一所述 MSC/STP 检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备用节点来 提供服务。 可选的, 该业务节点可以为 HLR。
可选的, 第二单元 83 , 具体用于当第一设备为服务呼叫会话控制功能 S- CSCF, 第二设备为 BE时, 若检测到与所述至少一个 S-CSCF的链路发生故 障, 则关闭自身和所述至少一个 S-CSCF之间的 SOAP订阅通知链路; 以使任 一 BE检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备用 节点来提供 ϋ良务。 可选的, 该业务节点可以为 HSS。
可选的, 第二单元 83 , 具体用于当所述第一设备为 BE, 第二设备为 S- CSCF时, 若检测到与其连接的所述至少一个 BE之间的链路都发生故障, 则关 闭自身和所述至少一个 S-CSCF之间的 Diameter链路; 以使任一所述 S-CSCF检 测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备用节点来提 供服务。 可选的, 该业务节点可以为 HSS。
通过本实施例提供的业务节点, 可以解决原有单层容灾倒换下无法解决的 故障场景, 提高了用户的业务体验和运营商网络的可靠性。
如图 9所示, 本发明实施例还提供了一种容灾倒换系统 90。 该系统包括至 少一个第一设备 91、 至少一个第二设备 95 , 和与所述至少一个第一设备及所述 至少一个第二设备通信连接的业务节点 93。
其中, 业务节点 93 , 用于当检测到与所述至少一个第一设备 91之间的链 路发生故障时, 则关闭自身与至少一个第二设备 95之间的链路; 第二设备 95 , 用于当检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的 备用节点来提供服务。
可选的, 该系统中的业务节点可以为图 8所示的实施例中的任一种业务节 点 80。
系统中各个第一设备、 第二设备和业务节点之间的具体交互方法可以参考 方法实施例中的描述, 这里不再赘述。
通过本实施例提供的容灾倒换的系统, 可以解决原有单层容灾倒换下无法 解决的故障场景, 提高了用户的业务体验和运营商网絡的可靠性。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示 例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来 实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用 所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过 程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元 中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备 等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包 括: U盘、 移动硬盘、 只读存储器 (ROM, ead-Only Memory ) 、 随机存取存 储器 (RAM, Random Access Memory ) 、 磁碟或者光盘等各种可以存储程序 代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种容灾倒换方法, 其特征在于, 包括:
业务节点分别与至少一个第一设备和至少一个第二设备通信连接; 当所述业务节点检测到与所述至少一个第一设备之间的链路发生故障 , 则 关闭自身与所述至少一个第二设备之间的链路; 以使任一所述第二设备检测到 与所述业务节点之间的链路不可达时, 选择所述业务节点的备用节点来提供服 务。
2、 如权利要求 1所述的方法, 其特征在于, 所述第一设备为移动交换中心 MSC/信令转接点 STP, 所述第二设备为数据节点 BE, 所述当所述业务节点检 测到与所述至少一个第一设备之间的链路发生故障, 则关闭自身与所述至少一 个第二设备之间的链路, 具体包括: 当所述业务节点检测到与所述至少一个 MSC/STP之间的链路发生故障, 则关闭自身和所述至少一个 BE之间的简单对 象访问协议 SOAP订阅通知链路。
3、 如权利要求 2所述的方法, 其特征在于, 所述关闭自身和所述至少一个 BE之间的 SOAP订阅通知链路具体包括: 所述业务节点关闭自身和所述至少一 个 BE之间的传输控制协议 TCP链路;
相应的, 所述任一所述第二设备检测到与所述业务节点之间的链路不可达 时, 具体包括: 任一 BE检测到与所述业务节点间的 TCP链路不可达。
4、 如权利要求 1所述的方法, 其特征在于, 所述第一设备为 BE, 第二设 备为 MSC/STP, 所述当所述业务节点检测到与所述至少一个第一设备的链路发 生故障, 则关闭自身与所述至少一个第二设备之间的链路, 具体包括: 当所述 业务节点检测到与其连接的所述至少一个 BE之间的链路都发生故障, 则关闭 自身和所述至少一个 MSC/STP之间的七号信令链路。
5、 如权利要求 4所述的方法, 其特征在于, 所述关闭自身和所述至少一个 MSC/STP之间的七号信令链路具体包括: 将自身的信令连接控制协议 SCCP信 令点状态设置为不可达;
相应的 , 所述任一所述第二设备检测到与所述业务节点之间的链路不可 达, 具体包括: 任一 MSC/STP检测到所述业务节点的 SCCP信令点状态为不可 达。
6、 如权利要求 4所述的方法, 其特征在于, 所述关闭自身和所述至少一个 MSC/STP之间的七号信令链路具体包括: 将自身的 MTP第三层用户适配层 M3UA/消息传输部分第三层 MTP3状态设置为不可达;
相应的, 所述任一所述第二设备检测到与所述业务节点之间的链路不可 达, 具体包括: 任一 MSC/STP检测到所述业务节点的 M3UA/MTP3状态为不可 达。
7、 如权利要求 1 所述的方法, 其特征在于, 所述第一设备为服务呼叫会 话控制功能 S-CSCF, 第二设备为 BE, 所述当所述业务节点检测到与所述至少 一个第一设备的链路发生故障, 则关闭自身与所述至少一个第二设备之间的链 路, 具体包括: 所述业务节点检测到与所述至少一个 S-CSCF 的链路发生故 障, 则关闭自身和所述至少一个 BE之间的 SOAP订阅通知链路。
8、 如权利要求 7所述的方法, 其特征在于, 所述关闭自身和所述至少一个 BE之间的 SOAP订阅通知链路具体包括: 所述业务节点关闭自身和所述至少一 个 BE之间的 TCP链路;
相应的, 所述任一所述第二设备检测到与所述业务节点之间的链路不可 达, 具体包括: 任一 BE检测到和所述业务节点之间的 TCP链路不可达。
9、 如权利要求 1所述的方法, 其特征在于, 所述第一设备为 BE, 第二设 备为 S-CSCF, 所述当所述业务节点检测到与所述至少一个第一设备的链路发 生故障, 则关闭自身与所述至少一个第二设备之间的链路, 具体包括: 当所述 业务节点检测到与其连接的所述至少一个 BE之间的链路都发生故障, 则关闭 自身和所述至少一个 S-CSCF之间的 Diameter链路。
10、 如权利要求 9所述的方法, 其特征在于, 所述关闭自身和所述至少一 个 S-CSCF之间的 Diameter链路具体包括: 所述业务节点关闭自身和所述至少一 个 S-CSCF之间的流控制传输协议 SCTP链路; 或所述业务节点发送 Disconnect- Peer-Request消息给所述至少一个 S-CSCF, 以通知所述至少一个 S-CSCF关闭链 路。
11、 一种业务节点, 其特征在于, 包括:
第一单元, 用于使所述业务节点分别与至少一个第一设备和至少一个第二 设备通信连接;
第二单元, 用于当所述业务节点检测到与所述至少一个第一设备之间的链 路发生故障, 则关闭自身与所述至少一个第二设备之间的链路; 以使任一所述 第二设备检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备 用节点来提供服务。
12、 如权利要求 11所述的业务节点, 其特征在于, 所述第二单元, 具体用 于当第一设备为移动交换中心 MSC/信令转接点 STP, 所述第二设备为数据节点 BE时, 若检测到与所述至少一个 MSC/STP之间的链路发生故障, 则关闭自身 和所述至少一个 BE之间的简单对象访问协议 SOAP订阅通知链路; 以使任一 BE 检测到与所述业务节点之间的链路不可达时, 选择所述业务节点的备用节点来 提供服务。
13、 如权利要求 11 所述的业务节点, 其特征在于, 所述第二单元, 具体 用于当第一设备为 BE, 第二设备为 MSC/STP时, 若当检测到与其连接的所述 至少一个 BE之间的链路都发生故障, 则关闭自身和所述至少一个 MSC/STP 之间的七号信令链路; 以使任一 MSC/STP检测到与所述业务节点之间的链路 不可达时, 选择所述业务节点的备用节点来提供服务。
14、 如权利要求 11 所述的业务节点, 其特征在于, 所述第二单元, 具体 用于当第一设备为服务呼叫会话控制功能 S-CSCF, 第二设备为 BE时, 若检 测到与所述至少一个 S-CSCF 的链路发生故障, 则关闭自身和所述至少一个 BE之间的 SOAP订阅通知链路; 以使任一 BE检测到与所述业务节点之间的链 路不可达时, 选择所述业务节点的备用节点来提供服务。
15、 如权利要求 11 所述的业务节点, 其特征在于, 所述第二单元, 具体 用于当所述第一设备为 BE, 第二设备为 S-CSCF时, 若检测到与其连接的所 述至少一个 BE之间的链路都发生故障, 则关闭自身和所述至少一个 S-CSCF 之间的 Diameter链路; 以使任一 S-CSCF检测到与所述业务节点之间的链路不 可达时, 选择所述业务节点的备用节点来提供服务。
16、 一种容灾倒换系统, 其特征在于, 包括至少一个第一设备、 至少一个 第二设备, 和与所述至少一个第一设备及所述至少一个第二设备通信连接的业 务节点,
所述业务节点, 用于当检测到与所述至少一个第一设备之间的链路发生故 障时, 则关闭自身与所述至少一个第二设备之间的链路;
所述第二设备, 用于当检测到与所述业务节点之间的链路不可达时, 选择 所述业务节点的备用节点来提供服务。
17、 如权利要求 16所述的容灾倒换系统, 其特征在于, 所述业务节点包 括如权利要求 12-15任一所述的业务节点。
PCT/CN2013/071631 2012-06-20 2013-02-18 容灾倒换的方法、装置和系统 WO2013189185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102035063A CN102724072A (zh) 2012-06-20 2012-06-20 容灾倒换的方法、装置和系统
CN201210203506.3 2012-06-20

Publications (1)

Publication Number Publication Date
WO2013189185A1 true WO2013189185A1 (zh) 2013-12-27

Family

ID=46949742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071631 WO2013189185A1 (zh) 2012-06-20 2013-02-18 容灾倒换的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN102724072A (zh)
WO (1) WO2013189185A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733683A (zh) * 2017-08-26 2018-02-23 深圳市盛路物联通讯技术有限公司 基于物联网的数据备份的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724072A (zh) * 2012-06-20 2012-10-10 华为技术有限公司 容灾倒换的方法、装置和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741476A (zh) * 2005-09-20 2006-03-01 广东省电信有限公司研究院 信令网关与媒体网关控制器之间的连接故障的处理方法
CN101188507A (zh) * 2006-11-15 2008-05-28 中兴通讯股份有限公司 故障通知方法
CN102724072A (zh) * 2012-06-20 2012-10-10 华为技术有限公司 容灾倒换的方法、装置和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747740B2 (ja) * 2000-05-22 2006-02-22 株式会社日立製作所 インタネットゲートウェイシステムでの迂回制御方法
JP2002290551A (ja) * 2001-03-28 2002-10-04 Nec Corp ゲートウェイシステム及びそれに用いる障害処理方法
CN1423458A (zh) * 2001-11-30 2003-06-11 深圳市中兴通讯股份有限公司 一种ip网中实现信令链路冗余备份的方法
CN1317850C (zh) * 2003-06-24 2007-05-23 华为技术有限公司 一种业务中断的处理方法
CN101043477B (zh) * 2007-03-26 2011-07-27 华为技术有限公司 一种信令网关的信令处理方法、系统及信令网关
CN101296170B (zh) * 2007-04-24 2011-08-24 中兴通讯股份有限公司 基于ip网络信令传输协议的优化系统及其实现方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741476A (zh) * 2005-09-20 2006-03-01 广东省电信有限公司研究院 信令网关与媒体网关控制器之间的连接故障的处理方法
CN101188507A (zh) * 2006-11-15 2008-05-28 中兴通讯股份有限公司 故障通知方法
CN102724072A (zh) * 2012-06-20 2012-10-10 华为技术有限公司 容灾倒换的方法、装置和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733683A (zh) * 2017-08-26 2018-02-23 深圳市盛路物联通讯技术有限公司 基于物联网的数据备份的方法和装置
CN107733683B (zh) * 2017-08-26 2021-01-26 深圳市盛路物联通讯技术有限公司 基于物联网的数据备份的方法和装置

Also Published As

Publication number Publication date
CN102724072A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
CN105765934B (zh) 当发生p-cscf故障时促进p-cscf恢复的方法、设备和系统
US9735971B2 (en) High-availability, scalable policy and charging control systems, and methods therefor
CN102138312B (zh) Ip多媒体子系统网络中的故障恢复
US20080285438A1 (en) Methods, systems, and computer program products for providing fault-tolerant service interaction and mediation function in a communications network
WO2018076972A1 (zh) 一种故障切换方法、装置及系统
WO2008008226A2 (en) Method for providing geographically diverse ip multimedia subsystem instances
WO2006024225A1 (fr) Procede de realisation d'une double inscription
WO2011099523A1 (ja) Pcrfと障害復旧方法とシステム
WO2011157151A2 (zh) 实现容灾备份的方法、设备及系统
WO2007000094A1 (fr) Procede pour effectuer un raccordement a double anneau de central de commutation mobile
CN101164307A (zh) 主备网关设备状态切换后业务恢复的方法及网关设备
WO2017036227A1 (zh) 一种实现终端被叫业务恢复的方法及装置
WO2018058618A1 (zh) 一种故障处理方法及设备
WO2016082710A1 (zh) 一种呼叫控制方法、Diameter协议转发设备及系统
CN101667936A (zh) 接入会话控制服务器的故障处理方法、设备及系统
WO2018090386A1 (zh) 一种nf组件异常的处理方法、设备及系统
CN103685163B (zh) Ims网络中的容灾方法、系统和设备
CN102006189A (zh) 用于双机冗余备份的主用接入服务器确定方法及装置
CN105517031A (zh) Pcrf故障后业务恢复的方法及装置
JP6983904B2 (ja) アクセスノード・ゲートウェイ(an−gw)の非可用期間およびan−gwの復旧後のメッセージフラッド抑制のための方法、システム、およびコンピュータ可読媒体
WO2016078026A1 (zh) 处理被叫业务的方法、移动管理实体和归属用户服务器
WO2013078849A1 (zh) 容灾倒回服务呼叫会话控制功能实体的方法、系统及装置
WO2012155629A1 (zh) 网络容灾方法和系统
US20150271275A1 (en) Session restoration method, device and system
CN105764082B (zh) 网元容灾方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807386

Country of ref document: EP

Kind code of ref document: A1