WO2013187246A1 - Thermal flow meter - Google Patents

Thermal flow meter Download PDF

Info

Publication number
WO2013187246A1
WO2013187246A1 PCT/JP2013/065130 JP2013065130W WO2013187246A1 WO 2013187246 A1 WO2013187246 A1 WO 2013187246A1 JP 2013065130 W JP2013065130 W JP 2013065130W WO 2013187246 A1 WO2013187246 A1 WO 2013187246A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
circuit package
mold
flow rate
package
Prior art date
Application number
PCT/JP2013/065130
Other languages
French (fr)
Japanese (ja)
Inventor
徳安 昇
忍 田代
半沢 恵二
河野 務
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013187246A1 publication Critical patent/WO2013187246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/699Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters by control of a separate heating or cooling element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/006Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus characterised by the use of a particular material, e.g. anti-corrosive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • G01F15/185Connecting means, e.g. bypass conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device

Definitions

  • Patent Document 2 when a semiconductor element having an air flow rate detection unit and a lead frame are installed in a mold and integrally molded with a mold resin, a metal element is used to expose the air flow rate detection unit of the semiconductor element from the mold resin. A technique for holding and molding an air flow rate detection portion of a semiconductor element with a mold is shown.
  • thermal type flow meter of the present invention it is possible to obtain a thermal type flow meter having a circuit package having an arrangement configuration capable of filling the mold resin to every corner of the cavity while preventing the occurrence of resin leakage.
  • FIG. 1 is a system diagram showing an embodiment in which a thermal flow meter according to the present invention is used in an internal combustion engine control system. It is a figure which shows the external appearance of a thermal type flow meter, FIG. 2 (A) is a left view, and FIG. 2 (B) is a front view. It is a figure which shows the external appearance of a thermal type flow meter, FIG. 3 (A) is a right view, and FIG. 3 (B) is a rear view. It is a figure which shows the external appearance of a thermal type flow meter, FIG. 4 (A) is a top view, FIG.4 (B) is a bottom view. It is a figure which shows the housing of a thermal type flow meter, FIG.
  • FIG. 1 shows an embodiment in which the thermal flow meter according to the present invention is used in an internal combustion engine control system of an electronic fuel injection system.
  • FIG. Based on the operation of the internal combustion engine 110 including the engine cylinder 112 and the engine piston 114, the intake air is sucked from the air cleaner 122 as the measurement target gas 30 and passes through the main passage 124 such as the intake body, the throttle body 126, and the intake manifold 128. Guided to the combustion chamber of the engine cylinder 112. The flow rate of the gas 30 to be measured, which is the intake air led to the combustion chamber, is measured by the thermal flow meter 300 according to the present invention, and fuel is supplied from the fuel injection valve 152 based on the measured flow rate.
  • the gas to be measured is introduced into the combustion chamber together with a certain gas 30 to be measured.
  • the fuel injection valve 152 is provided at the intake port of the internal combustion engine, and the fuel injected into the intake port forms an air-fuel mixture together with the measured gas 30 that is the intake air, and passes through the intake valve 116. It is guided to the combustion chamber and burns to generate mechanical energy.
  • the thermal flow meter 300 can be used not only for the method of injecting fuel into the intake port of the internal combustion engine shown in FIG. 1 but also for the method of directly injecting fuel into each combustion chamber.
  • the basic concept of the control parameter measurement method including the method of using the thermal flow meter 300 and the control method of the internal combustion engine including the fuel supply amount and ignition timing are substantially the same. A method of injecting fuel into the port is shown in FIG.
  • the fuel and air guided to the combustion chamber are in a mixed state of fuel and air, and are ignited explosively by spark ignition of the spark plug 154 to generate mechanical energy.
  • the combusted gas is guided from the exhaust valve 118 to the exhaust pipe, and is exhausted from the exhaust pipe to the outside as exhaust 24.
  • the flow rate of the gas 30 to be measured which is the intake air led to the combustion chamber, is controlled by the throttle valve 132 whose opening degree changes based on the operation of the accelerator pedal.
  • the fuel supply amount is controlled based on the flow rate of the intake air guided to the combustion chamber, and the driver controls the flow rate of the intake air guided to the combustion chamber by controlling the opening degree of the throttle valve 132, thereby
  • the mechanical energy generated by the engine can be controlled.
  • the flow rate and temperature of the measurement target gas 30 that is the intake air that is taken in from the air cleaner 122 and flows through the main passage 124 are measured by the thermal flow meter 300, and An electric signal indicating the flow rate and temperature of the intake air is input to the control device 200.
  • the output of the throttle angle sensor 144 that measures the opening degree of the throttle valve 132 is input to the control device 200, and the positions and states of the engine piston 114, the intake valve 116, and the exhaust valve 118 of the internal combustion engine, and the rotation of the internal combustion engine.
  • the output of the rotation angle sensor 146 is input to the control device 200.
  • the output of the oxygen sensor 148 is input to the control device 200 in order to measure the state of the mixture ratio between the fuel amount and the air amount from the state of the exhaust 24.
  • the control device 200 calculates the fuel injection amount and the ignition timing based on the flow rate of the intake air, which is the output of the thermal flow meter 300, and the rotational speed of the internal combustion engine measured based on the output of the rotation angle sensor 146. Based on these calculation results, the amount of fuel supplied from the fuel injection valve 152 and the ignition timing ignited by the spark plug 154 are controlled. The fuel supply amount and ignition timing are actually based on the intake air temperature and throttle angle change state measured by the thermal flow meter 300, the engine rotational speed change state, and the air-fuel ratio state measured by the oxygen sensor 148. It is finely controlled. The control device 200 further controls the amount of air that bypasses the throttle valve 132 by the idle air control valve 156 in the idle operation state of the internal combustion engine, thereby controlling the rotational speed of the internal combustion engine in the idle operation state.
  • the vehicle on which the thermal flow meter 300 is mounted is used in an environment with a large temperature change, and is also used in wind and rain or snow. When a vehicle travels on a snowy road, it travels on a road on which an antifreezing agent is sprayed. It is desirable for the thermal flow meter 300 to take into account the response to temperature changes in the environment in which it is used and the response to dust and contaminants. Further, the thermal flow meter 300 is installed in an environment that receives vibrations of the internal combustion engine. It is required to maintain high reliability against vibration.
  • the thermal flow meter 300 is attached to an intake pipe that is affected by heat generated from the internal combustion engine. Therefore, heat generated by the internal combustion engine is transmitted to the thermal flow meter 300 via the intake pipe which is the main passage 124. Since the thermal flow meter 300 measures the flow rate of the gas to be measured by performing heat transfer with the gas to be measured, it is important to suppress the influence of heat from the outside as much as possible.
  • the thermal flow meter 300 mounted on the vehicle simply solves the problem described in the column of the problem to be solved by the invention, and exhibits the effect described in the column of the effect of the invention.
  • the above-described various problems are fully considered, and various problems required as products are solved, and various effects are produced. Specific problems to be solved by the thermal flow meter 300 and specific effects achieved will be described in the description of the following examples.
  • FIGS. 2, 3, and 4 are views showing the external appearance of the thermal flow meter 300, and FIG. 2B is a front view, FIG. 3A is a right side view, FIG. 3B is a rear view, FIG. 4A is a plan view, and FIG. ) Is a bottom view.
  • the thermal flow meter 300 includes a housing 302, a front cover 303, and a back cover 304.
  • the housing 302 includes a flange 312 for fixing the thermal flow meter 300 to the intake body that is the main passage 124, an external connection portion 305 having an external terminal 306 for electrical connection with an external device, and a flow rate.
  • a measuring unit 310 is provided.
  • a sub-passage groove for creating a sub-passage is provided inside the measuring unit 310, and a flow rate detection for measuring the flow rate of the gas 30 to be measured flowing through the main passage 124 is provided inside the measuring unit 310.
  • the measurement unit 310 of the thermal flow meter 300 has a shape that extends long from the flange 312 toward the center of the main passage 124, and a portion of the gas to be measured 30 such as intake air is taken into the sub-passage at the tip. There are provided an inlet 350 and an outlet 352 for returning the gas 30 to be measured from the auxiliary passage to the main passage 124.
  • the measuring section 310 has a shape that extends long along the axis from the outer wall of the main passage 124 toward the center, but the width has a narrow shape as shown in FIGS. 2 (A) and 3 (A). is doing. That is, the measurement unit 310 of the thermal flow meter 300 has a side surface with a thin width and a substantially rectangular front surface.
  • the flow of the measurement target gas 30 is positioned closer to the flange 312 side than the auxiliary passage provided on the distal end side of the measurement unit 310.
  • An inlet 343 opening toward the upstream side is formed, and a temperature detector 452 for measuring the temperature of the measurement target gas 30 is disposed inside the inlet 343.
  • the upstream outer wall in the measurement unit 310 constituting the housing 302 is recessed toward the downstream side, and the temperature detection unit 452 extends from the recess-shaped upstream outer wall. Has a shape protruding toward the upstream side.
  • a front cover 303 and a back cover 304 are provided on both side portions of the hollow outer wall, and upstream ends of the front cover 303 and the rear cover 304 are directed upstream from the hollow outer wall. It has a protruding shape. Therefore, an inlet 343 for taking in the measurement target gas 30 is formed by the hollow outer wall and the front cover 303 and the back cover 304 on both sides thereof. The gas 30 to be measured taken from the inlet 343 comes into contact with the temperature detector 452 provided inside the inlet 343, and the temperature is measured by the temperature detector 452.
  • the gas to be measured 30 flows along a portion supporting the temperature detection unit 452 protruding upstream from the outer wall of the housing 302 having a hollow shape, and the front side outlet 344 and the back side outlet 345 provided in the front cover 303 and the back cover 304. To the main passage 124.
  • the temperature of the gas flowing into the inlet 343 from the upstream side in the direction along the flow of the gas 30 to be measured is measured by the temperature detector 452, and the gas further passes through the temperature detector 452.
  • the temperature of the portion that supports the temperature detection portion 452 is cooled in a direction approaching the temperature of the measurement target gas 30.
  • the temperature of the intake pipe, which is the main passage 124, is normally high, and heat is transmitted from the flange 312 or the heat insulating portion 315 to the portion supporting the temperature detecting portion 452 through the upstream outer wall in the measuring portion 310, and the temperature measurement accuracy There is a risk of affecting.
  • the support portion is cooled by flowing along the support portion of the temperature detection unit 452. Therefore, it is possible to suppress the heat from being transmitted from the flange 312 or the heat insulating portion 315 to the portion supporting the temperature detecting portion 452 through the upstream outer wall in the measuring portion 310.
  • FIGS. Show. 5A is a left side view of the housing 302
  • FIG. 5B is a front view of the housing 302
  • FIG. 6A is a right side view of the housing 302
  • FIG. 4 is a rear view of the housing 302.
  • the housing 302 has a structure in which the measuring unit 310 extends from the flange 312 toward the center of the main passage 124, and a sub-passage groove for forming the sub-passage is provided on the tip side thereof.
  • the sub-passage grooves are provided on both the front and back surfaces of the housing 302.
  • FIG. 5B shows the front-side sub-passage groove 332
  • FIG. 6B shows the back-side sub-passage groove 334.
  • An inlet groove 351 for forming the inlet 350 of the sub-passage and an outlet groove 353 for forming the outlet 352 are provided at the distal end portion of the housing 302, so that the gas in a portion away from the inner wall surface of the main passage 124 In other words, the gas flowing in the portion close to the central portion of the main passage 124 can be taken in from the inlet 350 as the gas 30 to be measured.
  • the gas flowing in the vicinity of the inner wall surface of the main passage 124 is affected by the wall surface temperature of the main passage 124 and often has a temperature different from the average temperature of the gas flowing through the main passage 124 such as intake air. Further, the gas flowing in the vicinity of the inner wall surface of the main passage 124 often exhibits a flow rate that is slower than the average flow velocity of the gas flowing through the main passage 124. Since the thermal flow meter 300 of the embodiment is not easily affected by this, it is possible to suppress a decrease in measurement accuracy.
  • the auxiliary passages formed by the front side auxiliary passage groove 332 and the back side auxiliary passage groove 334 described above are connected to the heat insulating portion 315 by the outer wall recess 366, the upstream outer wall 335, and the downstream outer wall 336.
  • the upstream outer wall 335 is provided with an upstream protrusion 317
  • the downstream outer wall 336 is provided with a downstream protrusion 318.
  • the sub-passage groove for forming the sub-passage is formed in the housing 302, and the sub-passage is completed by the sub-passage groove and the cover by covering the cover with the front and back surfaces of the housing 302. .
  • all the sub-passage grooves can be formed as a part of the housing 302 in the resin molding process of the housing 302.
  • both the front side sub-passage groove 332 and the back side sub-passage groove 334 are all part of the housing 302. It becomes possible to mold.
  • a part of the gas 30 to be measured flowing through the main passage 124 is taken into the back side sub-pass groove 334 from the inlet groove 351 forming the inlet 350 and flows through the back side sub-pass groove 334.
  • the back side sub-passage groove 334 has a shape that becomes deeper as it advances, and as the gas flows along the groove, the measured gas 30 gradually moves in the front side direction.
  • the rear side sub-passage groove 334 is provided with a steeply inclined portion 347 that becomes deeper and deeper in the upstream portion 342 of the circuit package 400, and a part of the air having a small mass moves along the steeply inclined portion 347.
  • the upstream portion 342 flows through the measurement flow path surface 430 shown in FIG.
  • the air that is the measurement target gas 30 that has moved from the upstream portion 342 of the circuit package 400 to the front side sub-passage groove 332 is along the measurement channel surface 430. Then, heat is transferred to and from the flow rate detection unit 602 for measuring the flow rate via the heat transfer surface exposed portion 436 provided on the measurement flow path surface 430, and the flow rate is measured.
  • a substance having a large mass such as dust mixed in the measurement target gas 30 has a large inertial force, and along the surface of the portion of the steeply inclined portion 347 shown in FIG. It is difficult to change the course rapidly in the deep direction of the groove. For this reason, the foreign matter having a large mass moves toward the measurement channel surface rear surface 431, and the foreign matter can be prevented from passing near the heat transfer surface exposed portion 436.
  • many foreign substances having a large mass other than gas pass through the measurement channel surface rear surface 431 which is the back surface of the measurement channel surface 430, they are caused by foreign matters such as oil, carbon, and dust.
  • the influence of dirt can be reduced, and the decrease in measurement accuracy can be suppressed. That is, since it has a shape in which the path of the gas to be measured 30 is suddenly changed along an axis that crosses the flow axis of the main passage 124, the influence of foreign matter mixed in the gas to be measured 30 can be reduced.
  • the flow path formed by the back side sub-passage groove 334 draws a curve from the front end of the housing 302 toward the flange, and the gas flowing through the sub-passage flows into the main passage 124 at the position closest to the flange.
  • the flow is in the reverse direction, and the sub-passage on the back surface, which is one side in the flow portion in the reverse direction, is connected to the sub-passage formed on the surface side, which is the other side.
  • the flow passage surface 430 for measuring the flow rate has a structure that penetrates the back side sub-passage groove 334 and the front side sub-passage groove 332 in the front-rear direction in the flow direction, and the front end side of the circuit package 400 is the housing
  • the cavity 382 is provided instead of the configuration supported by 302, and the space of the upstream portion 342 of the circuit package 400 and the space of the downstream portion 341 of the circuit package 400 are connected.
  • the sub passage is formed in a shape in which the gas 30 to be measured moves.
  • the sub-passage grooves can be formed on both surfaces of the housing 302 in a single resin molding step, and the structure connecting the sub-passage grooves on both surfaces can be formed together.
  • a structure is formed that penetrates the upstream portion 342 of the circuit package 400 and the downstream portion 341 of the circuit package 400 by clamping both sides of the measurement flow path surface 430 formed in the circuit package 400 with a molding die.
  • the circuit package 400 can be mounted on the housing 302 simultaneously with resin molding of the housing 302.
  • the circuit package 400 and the heat transfer surface exposed portion 436 can be mounted with high accuracy in the sub-passage.
  • a back side sub-passage inner peripheral wall 391 and a back side sub-passage outer peripheral wall 392 are provided on both sides of the back side sub-passage groove 334, and the height direction ends of the back side sub-passage inner peripheral wall 391 and the back side sub-passage outer peripheral wall 392 are respectively provided.
  • the back side sub-passage of the housing 302 is formed by the close contact between the portion and the inner surface of the back cover 304.
  • a front side sub-passage inner peripheral wall 393 and a front side sub-passage outer peripheral wall 394 are provided on both sides of the front side sub-passage groove 332.
  • the front side sub-passage of the housing 302 is formed.
  • the outer wall 335 is provided with an outer wall recess 366 that has a shape in which the upstream outer wall 335 is recessed downstream at the root of the temperature detector 452.
  • the outer wall recess 366 increases the distance between the temperature detection unit 452 and the outer wall recess 366, thereby reducing the influence of heat transmitted through the upstream outer wall 335.
  • FIG. 7 is a partially enlarged view showing a state in which the measurement channel surface 430 of the circuit package 400 is arranged inside the sub-passage groove.
  • FIG. 7 is a conceptual diagram, and the details shown in FIGS. 5 and 6 are omitted and simplified in detail in FIG. 7, and the details are slightly modified.
  • the left portion in FIG. 7 is the end portion of the back side auxiliary passage groove 334, and the right side portion is the starting end portion of the front side auxiliary passage groove 332.
  • penetrating portions are provided on the left and right sides of the circuit package 400 having the measurement channel surface 430, and the back sides are provided on the left and right sides of the circuit package 400 having the measurement channel surface 430.
  • the sub passage groove 334 and the front side sub passage groove 332 are connected.
  • the gas to be measured 30 that has flowed through the flow path 387 moves toward the front side sub-passage groove 332 through the penetration portion of the downstream portion 341 of the circuit package 400, and merges with the gas to be measured 30 that is flowing through the flow path 386. Then, it flows through the front side auxiliary passage groove 332 and is discharged from the outlet 352 to the main passage 124.
  • the measured gas 30 led to the flow path 386 from the back side sub-passage groove 334 through the penetration part of the upstream part 342 of the circuit package 400 is bent more than the flow path guided to the flow path 387. Since the sub-passage groove is formed, a substance having a large mass such as dust contained in the gas to be measured 30 gathers in the flow path 387 having a small bend. For this reason, almost no foreign substance flows into the flow path 386.
  • a structure is formed in which the throttle is formed by the protrusion 356 provided on the front cover 303 projecting gradually toward the measurement flow path surface 430 continuously from the most distal portion of the front side sub-passage groove 332. Is made.
  • a flow path surface for measurement 430 is arranged on one side of the throttle part of the flow path 386, and a heat transfer surface exposed part for allowing the flow rate detection unit 602 to transfer heat to the measurement target gas 30 on the flow path surface for measurement 430. 436 is provided.
  • the measurement target gas 30 is a laminar flow with few vortices in the heat transfer surface exposed portion 436.
  • the measurement accuracy is improved when the flow velocity is high.
  • the diaphragm is formed by the projection 356 provided on the front cover 303 facing the measurement channel surface 430 smoothly projecting toward the measurement channel surface 430. This restriction acts to reduce the vortex of the measured gas 30 and bring it closer to the laminar flow. Further, the flow velocity is increased in the throttle portion, and since the heat transfer surface exposed portion 436 for measuring the flow rate is arranged in the throttle portion, the flow rate measurement accuracy is improved.
  • the trace of the mold used in the resin molding process of the circuit package 400 is applied to the measurement channel surface rear surface 431 which is the back surface of the heat transfer surface exposed portion 436 provided on the measurement channel surface 430. 442 remains.
  • the press mark 442 does not particularly hinder measurement of the flow rate, and there is no problem even if the press mark 442 remains as it is.
  • the measurement flow path surface 430 including the heat transfer surface exposed portion 436 is surrounded by a mold, and the back surface of the heat transfer surface exposed portion 436 is pressed by another mold to prevent the inflow of resin.
  • the circuit package 400 is made by transfer molding, the pressure of the resin is high, and it is important to press the heat transfer surface exposed portion 436 from the back surface.
  • a semiconductor diaphragm is used for the flow rate detection unit 602, and it is desirable to form a ventilation passage formed by the semiconductor diaphragm. In order to hold and fix a plate or the like for forming the ventilation passage, it is important to press the heat transfer surface exposed portion 436 from the back surface.
  • FIGS. 5 and 6 fixing of the circuit package 400 to the housing 302 by a resin molding process will be described.
  • the surface of the circuit package 400 is formed on the connecting portion of the front side sub passage groove 332 and the back side sub passage groove 334.
  • the circuit package 400 is arranged and fixed to the housing 302 so that the measurement flow path surface 430 is arranged.
  • a portion for embedding and fixing the circuit package 400 in the housing 302 with a resin mold is provided as a fixing portion 372 for embedding and fixing the circuit package 400 in the housing 302 on the flange 312 side slightly from the sub-passage groove.
  • the fixing portion 372 is embedded so as to cover the outer periphery of the circuit package 400 formed by the first resin molding process.
  • the circuit package 400 is fixed by a fixing portion 372.
  • the fixing portion 372 includes the circuit package 400 by a surface having a height in contact with the front cover 303 and a thin portion 376.
  • the shrinkage when the temperature of the resin cools when the fixing portion 372 is molded can be reduced, and the concentration of stress applied to the circuit package 400 can be reduced. is there.
  • FIG. 6B when the back side of the circuit package 400 is also shaped as described above, more effects can be obtained.
  • the area of the outer peripheral surface of the circuit package 400 that is included in the resin of the housing 302 is exposed from the resin of the housing 302 without being included in the resin of the housing 302. The area is wider. Further, the part of the measurement flow path surface 430 of the circuit package 400 is also exposed from the resin forming the housing 302.
  • the periphery of the circuit package 400 is included in the second resin molding step for molding the housing 302.
  • excessive stress concentration due to volume shrinkage in the process of hardening the fixing portion 372 is reduced. Excessive stress concentration may also adversely affect the circuit package 400.
  • the circuit package 400 in the fixing portion 372 can be fixed more firmly. It is desirable to improve the adhesion with the outer wall of the.
  • the thermoplastic resin enters the fine irregularities of the outer wall of the circuit package 400 in a state where the viscosity of the thermoplastic resin is low, and the thermoplastic resin enters the fine irregularities of the outer wall. It is desirable for the resin to cure. In the resin molding process for molding the housing 302, it is desirable to provide an inlet for the thermoplastic resin at or near the fixed portion 372.
  • thermoplastic resin increases in viscosity based on a decrease in temperature and hardens. Accordingly, by pouring the high temperature thermoplastic resin into or from the fixing portion 372, the low viscosity thermoplastic resin can be brought into close contact with the outer wall of the circuit package 400 and cured. This suppresses the temperature drop of the thermoplastic resin, prolongs the low-viscosity state, and improves the adhesion between the circuit package 400 and the fixing portion 372.
  • a roughening method for forming fine irregularities on the surface of the circuit package 400 after the circuit package 400 is formed in the first resin molding step for example, a treatment method called matte treatment.
  • a roughening method for applying fine irregularities to the surface of the circuit package 400 for example, it can be roughened by sandblasting. Further, it can be roughened by laser processing.
  • thermosetting resin that forms the circuit package 400 there is a difference in the thermal expansion coefficient between the thermosetting resin that forms the circuit package 400 and the thermoplastic resin that forms the housing 302 including the fixing portion 372, and an excessive stress generated based on the difference in the thermal expansion coefficient causes the circuit package. It is desirable not to join 400.
  • the stress due to the difference in thermal expansion coefficient applied to the circuit package 400 can be reduced by forming the fixed portion 372 including the outer periphery of the circuit package 400 in a band shape and narrowing the width of the band. It is desirable that the width of the band of the fixing portion 372 is 10 mm or less, preferably 8 mm or less. In the present embodiment, not only the fixing portion 372 but also the outer wall recess 366 that is a part of the upstream outer wall 335 of the housing 302 includes the circuit package 400 and fixes the circuit package 400. The width of the band 372 can be further reduced. For example, if there is a width of 3 mm or more, the circuit package 400 can be fixed.
  • the surface of the circuit package 400 is provided with a portion covered with a resin for molding the housing 302 and a portion exposed without being covered for the purpose of reducing stress due to a difference in thermal expansion coefficient.
  • a plurality of portions where the surface of the circuit package 400 is exposed from the resin of the housing 302 are provided, one of which is the measurement flow path surface 430 having the heat transfer surface exposed portion 436 described above.
  • a portion exposed to the flange 312 side from the fixing portion 372 is provided.
  • an outer wall recess 366 is formed, and a portion upstream of the outer wall recess 366 is exposed, and this exposed portion is used as a support for supporting the temperature detector 452.
  • the relationship among the front side sub-passage groove 332, the back side sub-passage groove 334, and the heat transfer surface exposed portion 436 is set with high accuracy so as to be a prescribed relationship.
  • the circuit package 400 can be fixed to the housing 302.
  • the positional relationship between the heat transfer surface exposed portion 436 of each circuit package 400 and the sub-passage, such as the positional relationship and shape, are constantly obtained with very high accuracy. It becomes possible.
  • the built-in flow rate detection unit 602 (see FIG. 16) to measure the state of the gas 30 to be measured with high accuracy, the gas flowing in the vicinity of the heat transfer surface exposed portion 436 is laminar and less disturbed. desirable. For this reason, it is preferable that there is no step between the side surface of the heat transfer surface exposed portion 436 and the surface of the measurement channel surface 430 that guides the gas. With such a configuration, it is possible to suppress uneven stress and distortion from acting on the flow rate detection unit 602 while maintaining high accuracy in flow rate measurement. The step may be provided as long as it does not affect the flow rate measurement accuracy.
  • the hatched portion is the second resin molding process in order to fix circuit package 400 to housing 302 in the second resin molding process.
  • the fixing surface 432 for covering the circuit package 400 with the thermoplastic resin to be used is shown.
  • the relationship between the measurement channel surface 430 and the heat transfer surface exposed portion 436 provided on the measurement channel surface 430 and the shape of the sub-passage is a prescribed relationship. As such, it is important that it be maintained with high accuracy.
  • the circuit package 400 is fixed to the housing 302 that molds the sub-passage and at the same time forms the sub-passage. It can be maintained with extremely high accuracy.
  • the circuit package 400 since the circuit package 400 is fixed to the housing 302 in the second resin molding step, the circuit package 400 can be positioned and fixed with high accuracy in a mold for forming the housing 302 having the sub-passage. It becomes possible. By injecting a high-temperature thermoplastic resin into the mold, the sub-passage is molded with high accuracy, and the circuit package 400 is fixed with high accuracy.
  • thermosetting resin that forms the circuit package 400 there is a difference in the thermal expansion coefficient between the thermosetting resin that forms the circuit package 400 and the thermoplastic resin that forms the housing 302 including the fixing portion 372, and stress based on this difference in thermal expansion coefficient is not applied to the circuit package 400 as much as possible. It is desirable to do so.
  • the fixed surface 432 on the surface of the circuit package 400 By reducing the fixed surface 432 on the surface of the circuit package 400, the influence based on the difference in thermal expansion coefficient can be reduced.
  • the fixed surface 432 on the surface of the circuit package 400 can be reduced by forming a belt with a width L.
  • the mechanical strength of the projecting portion 424 can be increased by providing the fixing surface 432 at the base of the projecting portion 424.
  • the circuit package 400 On the surface of the circuit package 400, by providing a band-shaped fixed surface in a direction along the axis through which the measured gas 30 flows, and further providing a fixed surface in a direction intersecting with the axis through which the measured gas 30 flows, the circuit package is more firmly provided 400 and the housing 302 can be fixed to each other.
  • a portion surrounding the circuit package 400 in a band shape with a width L along the measurement flow path surface 430 is a fixed surface in the direction along the flow axis of the measurement target gas 30 described above, and the root of the protrusion 424.
  • the portion that covers is a fixed surface in the direction crossing the flow axis of the measurement target gas 30.
  • the resin filling passage 597 extends in parallel to the downstream side portion along the Y-axis direction connecting the base end side portion and the tip end side portion of the circuit package 400 at a spaced position on the same plane as the circuit package 400. Is provided.
  • the inlet gate 599A branches at a midpoint of the resin filling passage 597, extends obliquely with respect to the Y-axis direction along the diagonal line of the circuit package 400, and is connected to the press-fitting hole 598.
  • the entrance gate 599A is connected obliquely with respect to the Y-axis direction of the main body 404, when the mold resin is filled into the cavity from the entrance gate 599A, the entrance gate 599A can flow along the diagonal line of the circuit package 400.
  • the resin can flow smoothly to the first package protrusion 401 and the second package protrusion 402 that are arranged opposite to each other on the diagonal line from the corner 403, and before the resin is cured.
  • the mold resin can be spread over the entire cavity.
  • the flow rate detection unit 602 has molds on both sides of the heat transfer surface exposed portion 436 and the measurement channel surface back surface 431 which is the back surface thereof in order to prevent the heat transfer surface exposed portion 436 from being covered with the mold resin. Since the heat transfer surface exposed portion 436 is held and the inflow of resin to the heat transfer surface exposed portion 436 is prevented, the mold resin directly collides with the contact portion of the mold. By avoiding this, it is possible to prevent the resin from flowing into the heat transfer surface exposed portion 436 without increasing the holding force held by the mold, and the resin leakage into the heat transfer surface exposed portion 436 (resin fogging) ) Can be prevented.
  • FIG. 11 is a view showing another embodiment in which the first molding resin is injected into the mold in the first resin molding step.
  • the circuit package 400 is formed by filling the mold resin into the cavity via the inlet gate 599B, which is provided with a filling inlet 405 at the corner 403 of the main body 404 and at the base end. It has the structure which was made.
  • the entrance gate 599B branches at a midpoint of the resin filling passage 597, extends in the same direction as the downstream side along the Y-axis direction of the main body 404, and is provided at the corner 403 and at the base end side.
  • the press-fitting hole 598 is connected.
  • the lead 514 protruding from the base end side portion of the main body portion 404 has a bent shape so as to be displaced toward the upstream side portion by the amount provided with the entrance gate 599B.
  • the entrance gate 599B extends along the Y-axis direction of the main body 404, when the mold resin is filled into the cavity from the entrance gate 599B, the entrance gate 599B can be caused to flow so as to expand on a diagonal line of the circuit package 400.
  • the resin can flow smoothly to the first package protrusion 401 and the second package protrusion 402 that are arranged opposite to each other on the diagonal line from the corner 403, and before the resin is cured.
  • the mold resin can be spread over the entire cavity.
  • the entrance gate 599B extends in parallel with the resin filling passage 597, it is not necessary to provide the convex portion 403A at the corner portion 403 of the circuit package 400 as compared with the embodiment shown in FIG. . Therefore, the outer shape of the circuit package 400 can be made a simpler shape, and the position of the resin filling passage 597 can be made closer to the circuit package 400 by the omitted portion d1 of the convex portion 403A.
  • the lead frame 511 can be reduced in size.
  • FIG. 12 is a view showing another embodiment in which the first molding resin is injected into the mold in the first resin molding step.
  • the circuit package 400 is formed by filling the mold resin into the cavity via the inlet gate 599C, which is provided with a filling inlet 405 at the corner 403 of the main body 404 and at the downstream side. It has a configuration.
  • the inlet gate 599C branches near the tip of the resin filling passage 597, extends in the same direction as the base side along the X-axis direction of the main body 404, and is provided at the corner 403 and on the downstream side.
  • the press-fitting hole 598 is connected.
  • the entrance gate 599C extends along the X-axis direction of the main body portion 404, when the cavity is filled with mold resin from the entrance gate 599C, the entrance gate 599C can be caused to flow so as to expand on a diagonal line of the circuit package 400.
  • the resin can flow smoothly to the first package protrusion 401 and the second package protrusion 402 that are arranged opposite to each other on the diagonal line from the corner 403, and before the resin is cured.
  • the mold resin can be spread over the entire cavity.
  • FIG. 13 is a view showing a part of the CC cross section of FIG. 9 and is provided inside the diaphragm 672 and the flow rate detection unit (flow rate detection element) 602. It is explanatory drawing explaining the communicating hole 676 which connects the gap
  • a diaphragm 672 is provided in the flow rate detection unit 602 that measures the flow rate of the gas 30 to be measured, and a gap 674 is provided in the back surface of the diaphragm 672.
  • the diaphragm 672 is provided with an element for exchanging heat with the measurement target gas 30 and thereby measuring the flow rate. If heat is transmitted between the elements via the diaphragm 672 separately from the exchange of heat with the gas to be measured 30 between the elements formed in the diaphragm 672, it is difficult to accurately measure the flow rate. For this reason, the diaphragm 672 needs to increase the thermal resistance, and the diaphragm 672 is made as thin as possible.
  • the portion of the flow rate detection unit (flow rate detection element) 602 where the element is provided is disposed in the heat transfer surface exposed portion 436 of the measurement flow channel surface 430, and the heat transfer surface 437 forms the measurement flow channel surface 430. Exposed from the resin.
  • the outer peripheral portion of the flow rate detection unit 602 is covered with the thermosetting resin used in the first resin molding process for forming the measurement flow path surface 430.
  • the distortion of the diaphragm 672 is reduced by setting the front side outer peripheral portion of the flow rate detection unit 602 to be covered with the thermosetting resin.
  • the step W between the heat transfer surface 437 and the measurement flow path surface 430 through which the measurement target gas 30 flows is small.
  • the communication hole 676 is made of two plates, for example, a first plate 532 and a second plate 536.
  • the first plate 532 is provided with a hole 520 and a hole 521, and further a groove for forming a communication hole 676.
  • the communication hole 676 is formed by closing the groove and the hole 520 and the hole 521 with the second plate 536.
  • the communication hole 676 can be formed by closing the groove and the hole 520 and the hole 521 with the second plate 536.
  • the lead frame can be used as the second plate 536.
  • an LSI that operates as a diaphragm 672 and a processing unit 604 is provided on the plate 532.
  • a lead frame for supporting a plate 532 on which the diaphragm 672 and the processing unit 604 are mounted is provided below these. Therefore, the structure becomes simpler by using this lead frame.
  • the lead frame can be used as a ground electrode.
  • a pressing trace 442 remains on the back surface of the circuit package 400 where the heat transfer surface exposed portion 436 is formed.
  • a mold for example, a insert piece is applied to the heat transfer surface exposed portion 436, and the pressing trace 442 on the opposite surface is further formed.
  • a mold is applied to the portion, and both molds prevent the resin from flowing into the heat transfer surface exposed portion 436.
  • FIG. 14 shows a state in which the lead frame shown in FIG. 9 is molded with a thermosetting resin and covered with the thermosetting resin in the first resin molding step.
  • the measurement flow path surface 430 is formed on the surface of the circuit package 400, and the heat transfer surface exposed portion 436 is provided on the measurement flow path surface 430.
  • a gap 674 on the back surface of the diaphragm 672 corresponding to the heat transfer surface exposed portion 436 is configured to be connected to the opening 438.
  • a temperature detection unit 452 for measuring the temperature of the measurement target gas 30 is provided at the tip of the protrusion 424, and a temperature detection element 518 is incorporated therein.
  • a lead for taking out an electric signal of the temperature detection element 518 is divided, and a connection line 546 having a large thermal resistance is disposed. Thereby, the heat transfer from the base of the protrusion part 424 to the temperature detection part 452 is suppressed, and the influence by heat is suppressed.
  • an inclined portion 594 and an inclined portion 596 are formed at the base of the protruding portion 424. While the flow of the resin in the first resin molding step is smooth, the measurement target gas 30 measured by the temperature detection unit 452 is measured by the inclined portion 594 and the inclined portion 596 in a state where the resin is mounted on the vehicle and operating. The projection flows smoothly from the protrusion 424 toward the root, and the root of the protrusion 424 is cooled, so that the effect of heat on the temperature detection unit 452 can be reduced. After the state shown in FIG. 14, the lead 514 is disconnected for each terminal to become the connection terminal 412 and the terminal 414.
  • the resin flow is blocked at the position of the heat transfer surface exposed portion 436 and the opening 438, for example, a piece larger than the diaphragm 672 is applied, and the back surface is pressed and sandwiched from both sides. .
  • FIG. 8C the heat transfer surface exposed portion 436 and the opening 438 in FIG. 14 or the back surface corresponding to the heat transfer surface exposed portion 436 and the opening 438 in FIG. A trace 441 remains.
  • FIGS. 15A and 15B show the production process of thermal flow meter 300
  • FIG. 15A shows the production process of circuit package 400
  • Step 1 shows a process of producing the lead frame shown in FIG. This lead frame is made by, for example, press working.
  • step 3 the circuit package 400 and the external terminal 306 produced according to FIG. 15A are used.
  • step 3 The housing 302 is formed with a resin-made sub-passage groove, a flange 312 and an external connection portion 305, and the hatched portion of the circuit package 400 shown in FIG. 8 is covered with the resin in the second resin molding process. 302 is fixed.
  • step 3 The combination of the production of the circuit package 400 by the first resin molding process (step 3) and the molding of the housing 302 of the thermal flow meter 300 by the second resin molding process significantly improves the flow rate detection accuracy.
  • step 6 each internal terminal inner end 361 is disconnected, and connection terminal 412 and external terminal inner end 361 are connected in step 7.
  • step 8 the front cover 303 and the back cover 304 are attached to the housing 302, the inside of the housing 302 is sealed with the front cover 303 and the back cover 304, and the measured gas 30 A sub-passage for the flow is completed.
  • the diaphragm structure described with reference to FIG. 7 is formed by the protrusions 356 provided on the front cover 303 or the back cover 304.
  • the front cover 303 is made by molding in step 10
  • the back cover 304 is made by molding in step 11.
  • the front cover 303 and the back cover 304 are made in different processes, and are made by molding with different molds.
  • step 9 the gas is actually introduced into the sub-passage and the characteristics are tested.
  • the relationship between the sub passage and the flow rate detection unit is maintained with high accuracy, very high measurement accuracy can be obtained by performing characteristic correction by a characteristic test.
  • the positioning and shape-related molding that affects the relationship between the sub-passage and the flow rate detection unit are performed in the first resin molding process and the second resin molding process, there is little change in characteristics even with long-term use, and high accuracy. In addition, high reliability is ensured.
  • FIG. 16 is a circuit diagram showing a flow rate detection circuit 601 of the thermal flow meter 300. Note that a measurement circuit related to the temperature detection unit 452 described in the embodiment is also provided in the thermal flow meter 300, but is omitted in FIG.
  • the flow rate detection circuit 601 of the thermal type flow meter 300 includes a flow rate detection unit 602 having a heating element 608 and a processing unit 604.
  • the processing unit 604 controls the amount of heat generated by the heating element 608 of the flow rate detection unit 602 and outputs a signal indicating the flow rate based on the output of the flow rate detection unit 602 via the terminal 662.
  • the processing unit 604 includes a central processing unit (hereinafter referred to as a CPU) 612, an input circuit 614, an output circuit 616, a memory 618 that holds data representing a relationship between a correction value, a measured value, and a flow rate,
  • a power supply circuit 622 is provided to supply a constant voltage to each necessary circuit.
  • the power supply circuit 622 is supplied with DC power from an external power source such as an in-vehicle battery via a terminal 664 and a ground terminal (not shown).
  • the flow rate detector 602 is provided with a heating element 608 for heating the measurement target gas 30.
  • the voltage V1 is supplied from the power supply circuit 622 to the collector of the transistor 606 constituting the current supply circuit of the heating element 608, and a control signal is applied from the CPU 612 to the base of the transistor 606 via the output circuit 616. Accordingly, a current is supplied from the transistor 606 to the heating element 608 through the terminal 624.
  • the amount of current supplied to the heating element 608 is controlled by a control signal applied from the CPU 612 to the transistor 606 constituting the current supply circuit of the heating element 608 via the output circuit 616.
  • the processing unit 604 controls the amount of heat generated by the heating element 608 so that the temperature of the measurement target gas 30 is higher than the initial temperature by a predetermined temperature, for example, 100 ° C., when heated by the heating element 608.
  • the flow rate detection unit 602 has a heat generation control bridge 640 for controlling the heat generation amount of the heating element 608 and a flow rate detection bridge 650 for measuring the flow rate.
  • One end of the heat generation control bridge 640 is supplied with a constant voltage V3 from the power supply circuit 622 via a terminal 626, and the other end of the heat generation control bridge 640 is connected to the ground terminal 630.
  • a constant voltage V2 is supplied from one end of the flow rate detection bridge 650 from the power supply circuit 622 via a terminal 625, and the other end of the flow rate detection bridge 650 is connected to the ground terminal 630.
  • the heat generation control bridge 640 includes a resistor 642 that is a resistance temperature detector whose resistance value changes based on the temperature of the heated measurement target gas 30.
  • the resistor 642, the resistor 644, the resistor 646, and the resistor 648 are bridges.
  • the circuit is configured.
  • the potential difference between the intersection A of the resistor 642 and the resistor 646 and the potential B at the intersection B of the resistor 644 and 648 is input to the input circuit 614 via the terminal 627 and the terminal 628, and the CPU 612 has a predetermined potential difference between the intersection A and the intersection B.
  • the amount of heat generated by the heating element 608 is controlled by controlling the current supplied from the transistor 606 so as to be zero volts.
  • the 16 heats the measurement gas 30 with the heating element 608 so as to be higher than the original temperature of the measurement gas 30 by a constant temperature, for example, 100 ° C. at all times.
  • a constant temperature for example, 100 ° C.
  • the resistance value of each resistor constituting the heat generation control bridge 640 is set so that the potential difference between B becomes zero volts. Therefore, in the flow rate detection circuit 601 shown in FIG. 16, the CPU 612 controls the current supplied to the heating element 608 so that the potential difference between the intersection A and the intersection B becomes zero volts.
  • the flow rate detection bridge 650 includes four resistance temperature detectors, a resistor 652, a resistor 654, a resistor 656, and a resistor 658. These four resistance temperature detectors are arranged along the flow of the gas to be measured 30, and the resistor 652 and the resistor 654 are arranged upstream of the heating element 608 in the flow path of the gas to be measured 30, and the resistor 656. And the resistor 658 are arranged on the downstream side in the flow path of the measurement target gas 30 with respect to the heating element 608. In order to increase the measurement accuracy, the resistor 652 and the resistor 654 are arranged so that the distance to the heating element 608 is substantially the same, and the resistor 656 and the resistor 658 are substantially the same distance to the heating element 608. Has been placed.
  • each resistance of the flow rate detection bridge 650 is set so that the potential difference between the intersection C and the intersection D becomes zero when the flow of the measurement target gas 30 is zero. Therefore, when the potential difference between the intersection point C and the intersection point D is, for example, zero volts, the CPU 612 generates an electric signal indicating that the flow rate of the main passage 124 is zero based on the measurement result that the flow rate of the measurement target gas 30 is zero. Output from the terminal 662.
  • the resistor 652 and the resistor 654 arranged on the upstream side are cooled by the gas to be measured 30 and arranged downstream of the gas to be measured 30.
  • the resistors 656 and 658 are heated by the measurement target gas 30 heated by the heating element 608, and the temperatures of the resistors 656 and 658 are increased. Therefore, a potential difference is generated between the intersection C and the intersection D of the flow rate detection bridge 650, and this potential difference is input to the input circuit 614 via the terminal 631 and the terminal 632.
  • the CPU 612 retrieves data representing the relationship between the potential difference stored in the memory 618 and the flow rate of the main passage 124 based on the potential difference between the intersection C and the intersection D of the flow rate detection bridge 650, and Find the flow rate.
  • An electrical signal representing the flow rate of the main passage 124 obtained in this way is output via the terminal 662. Note that the terminal 664 and the terminal 662 illustrated in FIG. 16 are newly described with reference numerals, but are included in the connection terminal 412 illustrated in FIGS. 5 and 6 described above.
  • the memory 618 stores data representing the relationship between the potential difference between the intersection C and the intersection D and the flow rate of the main passage 124, and is obtained based on the actual measured value of gas after the circuit package 400 is produced.
  • correction data for reducing measurement errors such as variations is stored.
  • the actual measurement of the gas after production of the circuit package 400 and the writing of the correction value based on it into the memory 618 are performed using the external terminal 306 and the correction terminal 307 shown in FIG.
  • the arrangement relationship between the sub-passage through which the measurement target gas 30 flows and the measurement flow path surface 430 and the arrangement relationship between the sub-passage through which the measurement target gas 30 flows and the heat transfer surface exposed portion 436 are highly accurate. Since the circuit package 400 is produced in a state where there is little variation, the measurement result with extremely high accuracy can be obtained by the correction using the correction value.
  • FIG. 17 is a circuit configuration diagram showing a circuit arrangement of the flow rate detection circuit 601 of FIG. 16 described above.
  • the flow rate detection circuit 601 is made as a rectangular semiconductor chip, and the measured gas 30 flows in the direction of the arrow from the left side to the right side of the flow rate detection circuit 601 shown in FIG.
  • a rectangular diaphragm 672 in which the thickness of the semiconductor chip is reduced is formed in the flow rate detection unit (flow rate detection element) 602 formed of a semiconductor chip.
  • the diaphragm 672 includes a thin region (that is, the above-described thin area). Heat transfer surface) 603 is provided.
  • the above-described gap is formed on the back surface side of the thin region 603, the gap communicates with the opening 438 shown in FIGS. 8 and 5, and the pressure in the gap depends on the pressure introduced from the opening 438. .
  • a heating element 608 is provided at the center of the thin region 603 of the diaphragm 672, and a resistor 642 constituting a heating control bridge 640 is provided around the heating element 608.
  • Resistors 644, 646, and 648 constituting the heat generation control bridge 640 are provided outside the thin region 603.
  • the resistors 642, 644, 646, and 648 formed in this way constitute a heat generation control bridge 640.
  • a resistor 652 and a resistor 654 which are upstream temperature measuring resistors and a resistor 656 and a resistor 658 which are downstream temperature measuring resistors are arranged so as to sandwich the heating element 608, and the gas to be measured is placed on the heating element 608.
  • An upstream resistance temperature detector 652 and a resistance 654 are arranged on the upstream side in the direction of the arrow through which 30 flows, and a downstream resistance temperature detector on the downstream side in the direction of the arrow in which the measured gas 30 flows with respect to the heating element 608.
  • a certain resistor 656 and resistor 658 are arranged. In this manner, the flow rate detection bridge 650 is formed by the resistor 652, the resistor 654, the resistor 656, and the resistor 658 arranged in the thin region 603.
  • both ends of the heating element 608 are connected to terminals 624 and 629 described at the lower side of FIG.
  • a current supplied from the transistor 606 to the heating element 608 is applied to the terminal 624, and the terminal 629 is grounded.
  • the resistor 642, the resistor 644, the resistor 646, and the resistor 648 constituting the heat generation control bridge 640 are connected to the terminals 626 and 630, respectively.
  • a constant voltage V3 is supplied to the terminal 626 from the power supply circuit 622, and the terminal 630 is grounded as a ground.
  • a connection point between the resistor 642 and the resistor 646 and between the resistor 646 and the resistor 648 is connected to a terminal 627 and a terminal 628.
  • the terminal 627 outputs the potential at the intersection A between the resistor 642 and the resistor 646, and the terminal 627 outputs the potential at the intersection B between the resistor 644 and the resistor 648.
  • a constant voltage V2 is supplied to the terminal 625 from the power supply circuit 622, and the terminal 630 is grounded as a ground terminal.
  • the connection point between the resistor 654 and the resistor 658 is connected to the terminal 631, and the terminal 631 outputs the potential at the point B in FIG.
  • a connection point between the resistor 652 and the resistor 656 is connected to a terminal 632, and the terminal 632 outputs a potential at the intersection C shown in FIG.
  • the resistor 642 constituting the heat generation control bridge 640 is formed in the vicinity of the heating element 608, so that the temperature of the gas warmed by the heat generated from the heating element 608 can be accurately measured. it can.
  • the resistors 644, 646, and 648 constituting the heat generation control bridge 640 are arranged away from the heat generating body 608, and thus are configured not to be affected by heat generated from the heat generating body 608.
  • the resistor 642 is configured to react sensitively to the temperature of the gas heated by the heating element 608, and the resistor 644, the resistance 646, and the resistance 648 are configured not to be affected by the heating element 608. For this reason, the detection accuracy of the measurement target gas 30 by the heat generation control bridge 640 is high, and the control for increasing the measurement target gas 30 by a predetermined temperature with respect to the initial temperature can be performed with high accuracy.
  • an air gap is formed on the back surface side of the diaphragm 672, and this air space communicates with the opening 438 shown in FIGS. 8 and 5.
  • the difference from the pressure is not increased. Distortion of the diaphragm 672 due to this pressure difference can be suppressed. This leads to an improvement in flow rate measurement accuracy.
  • the diaphragm 672 is formed with the thin region 603, and the thickness of the portion including the thin region 603 is very thin, and heat conduction through the diaphragm 672 is suppressed as much as possible. Therefore, the flow rate detection bridge 650 and the heat generation control bridge 640 are less affected by heat conduction through the diaphragm 672, and the tendency to operate depending on the temperature of the measurement target gas 30 is further increased, and the measurement operation is improved. For this reason, high measurement accuracy is obtained.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • the present invention can be applied to the measuring device for measuring the gas flow rate described above.
  • Measurement flow path surface 432 Fixed surface 436 ... Heat transfer surface exposed part 438 ... Opening 452 ... Temperature detection part 511 ... Lead frame 516 ... Chip Parts (circuit parts) 518 ... Temperature detection element 597 ... Resin filling passage 598 ... Press-fit hole 599A, 599B, 599C ... Inlet gate 594 ... Inclined part 596 ... Inclined part 601 ... Flow rate detection circuit 602 ... Flow rate detection part 604 ... Processing part (circuit parts) 608 ... Heating element 640 ... Heat generation control bridge 650 ... Flow rate detection bridge 672 ... Diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The purpose of the present invention is to provide a thermal flow meter having a circuit package configured in such a manner as to enable every gap in cavities to be filled with a molding resin, while preventing resin leaks. This thermal flow meter (300) has a temperature detecting element (518), a flow rate detector (602), and a circuit package (400) having circuit components (516, 604) that are mounted on a lead frame (511), and sealed with a molding resin. The circuit package (400) has a body section (404) on which the circuit components (516, 604) are disposed, a first package protruding section (401) on which the temperature detecting element (518) is disposed, and a second package protruding section (402) on which the flow rate detector (602) is disposed. Moreover, a filling inlet (405) for the molding resin is disposed on the body section (404), and the filling inlet (405) in configured in such a manner as to be disposed in a position facing the first package protruding section (401) and the second protruding section (402), with the circuit components (516, 604) therebetween.

Description

熱式流量計Thermal flow meter
 本発明は熱式流量計に関する。 The present invention relates to a thermal flow meter.
 気体の流量を計測する熱式流量計は流量を計測するための流量検出部を備え、前記流量検出部と計測対象である前記気体との間で熱伝達を行うことにより、前記気体の流量を計測するように構成されている。熱式流量計が計測する流量は色々な装置の重要な制御パラメータとして広く使用されている。熱式流量計の特徴は、他の方式の流量計に比べ相対的に高い精度で気体の流量、例えば質量流量を計測できることである。 A thermal flow meter that measures the flow rate of gas includes a flow rate detection unit for measuring the flow rate, and performs heat transfer between the flow rate detection unit and the gas to be measured, thereby reducing the flow rate of the gas. It is configured to measure. The flow rate measured by the thermal flow meter is widely used as an important control parameter for various devices. A feature of the thermal flow meter is that it can measure a gas flow rate, for example, a mass flow rate, with relatively high accuracy compared to other types of flow meters.
 しかしさらに気体流量の計測精度の向上が望まれている。例えば、内燃機関を搭載した車両では、省燃費の要望や排気ガス浄化の要望が非常に高い。これら要望に応えるには、内燃機関の主要パラメータである吸入空気量を高い精度で計測することが求められている。内燃機関に導かれる吸入空気量を計測する熱式流量計は、吸入空気量の一部を取り込む副通路と前記副通路に配置された流量検出部とを備え、前記流量検出部が被計測気体との間で熱伝達を行うことにより、前記副通路を流れる被計測気体の状態を計測して、前記内燃機関に導かれる吸入空気量を表す電気信号を出力する。このような技術は、例えば特開2011-252796号公報(特許文献1)に開示されている。 However, further improvement in gas flow rate measurement accuracy is desired. For example, a vehicle equipped with an internal combustion engine has a very high demand for fuel saving and exhaust gas purification. In order to meet these demands, it is required to measure the intake air amount, which is a main parameter of the internal combustion engine, with high accuracy. A thermal flow meter for measuring the amount of intake air led to an internal combustion engine includes a sub-passage that takes in a part of the intake air amount and a flow rate detector disposed in the sub-passage, and the flow rate detector is a gas to be measured. The state of the gas to be measured flowing through the sub-passage is measured by performing heat transfer between and the electric signal, and an electric signal representing the amount of intake air guided to the internal combustion engine is output. Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-252796 (Patent Document 1).
 特許文献2には、空気流量検出部を有する半導体素子とリードフレームを金型内に設置してモールド樹脂で一体成形する場合に、半導体素子の空気流量検出部をモールド樹脂から露出させるために金型で半導体素子の空気流量検出部を保持して成形する技術が示されている。 In Patent Document 2, when a semiconductor element having an air flow rate detection unit and a lead frame are installed in a mold and integrally molded with a mold resin, a metal element is used to expose the air flow rate detection unit of the semiconductor element from the mold resin. A technique for holding and molding an air flow rate detection portion of a semiconductor element with a mold is shown.
特開2011-252796号公報JP 2011-252796 A 特開2011-122984号公報JP 2011-122984 A
 特許文献2に示す技術の場合、半導体素子を保持する保持力を半導体素子に影響を与えない範囲に制限する必要がある一方、モールド樹脂の成型金型を保持した際に金型内部に形成される隙間(キャビティ)の隅々まで行き渡らせるために高温のモールド樹脂を所定値以上の充填圧力で充填する必要がある。したがって、充填圧力の方が保持力よりも大きい場合に、金型と空気流量検出部との間にモールド樹脂が侵入して、空気流量検出部に樹脂漏れが生じるおそれがある。樹脂漏れにより、空気流量の検出精度低下してしまうため、その発生を防ぐ必要がある。 In the case of the technique shown in Patent Document 2, it is necessary to limit the holding force for holding the semiconductor element to a range that does not affect the semiconductor element. On the other hand, when the mold for resin molding is held, it is formed inside the mold. It is necessary to fill a hot mold resin with a filling pressure equal to or higher than a predetermined value in order to spread all the gaps (cavities). Therefore, when the filling pressure is larger than the holding force, mold resin may enter between the mold and the air flow rate detection unit, and there is a possibility that resin leakage may occur in the air flow rate detection unit. Since the detection accuracy of the air flow rate decreases due to resin leakage, it is necessary to prevent the occurrence.
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、樹脂漏れの発生を防ぎつつキャビティの隅々までモールド樹脂を充填可能な配置構成の回路パッケージを有する熱式流量計を提供することである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a thermal type having a circuit package having an arrangement configuration capable of filling a mold resin to every corner of a cavity while preventing the occurrence of resin leakage. It is to provide a flow meter.
 上記課題を解決する本発明の熱式流量計は、温度検出素子と、流量検出素子と、回路部品とをリードに搭載して金型のキャビティ内に配置し、該キャビティ内にモールド樹脂を充填して形成された回路パッケージを有する熱式流量計であって、前記回路パッケージは、前記回路部品が配置される本体部と、前記本体部から突出して前記温度検出素子が配置される第1のパッケージ突出部と、該第1のパッケージ突出部から離間して前記本体部から突出して前記流量検出部が配置される第2のパッケージ突出部とを有し、前記モールド樹脂を前記キャビティ内に充填した充填入口部が前記本体部に設けられており、該充填入口部が前記回路部品を間に介して前記第1のパッケージ突出部及び前記第2のパッケージ突出部に対向する位置に配置された構成を有することを特徴としている。 The thermal flow meter of the present invention that solves the above-mentioned problems is a temperature detecting element, a flow detecting element, and a circuit component mounted on a lead and disposed in a cavity of a mold, and the mold resin is filled in the cavity. A thermal flow meter having a circuit package formed as described above, wherein the circuit package includes a main body portion on which the circuit component is disposed, and a first detector on which the temperature detection element is disposed so as to protrude from the main body portion. A package projecting portion; and a second package projecting portion that is spaced apart from the first package projecting portion and projects from the main body portion and on which the flow rate detecting unit is disposed, and is filled with the mold resin in the cavity The filling inlet portion is provided in the main body portion, and the filling inlet portion is disposed at a position facing the first package protrusion portion and the second package protrusion portion with the circuit component interposed therebetween. It is characterized by having a configuration.
 本発明の熱式流量計によれば、樹脂漏れの発生を防ぎつつキャビティの隅々までモールド樹脂を充填可能な配置構成の回路パッケージを有する熱式流量計を得ることができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the thermal type flow meter of the present invention, it is possible to obtain a thermal type flow meter having a circuit package having an arrangement configuration capable of filling the mold resin to every corner of the cavity while preventing the occurrence of resin leakage. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
内燃機関制御システムに本発明に係る熱式流量計を使用した一実施例を示すシステム図である。1 is a system diagram showing an embodiment in which a thermal flow meter according to the present invention is used in an internal combustion engine control system. 熱式流量計の外観を示す図であり、図2(A)は左側面図、図2(B)は正面図である。It is a figure which shows the external appearance of a thermal type flow meter, FIG. 2 (A) is a left view, and FIG. 2 (B) is a front view. 熱式流量計の外観を示す図であり、図3(A)は右側面図、図3(B)は背面図である。It is a figure which shows the external appearance of a thermal type flow meter, FIG. 3 (A) is a right view, and FIG. 3 (B) is a rear view. 熱式流量計の外観を示す図であり、図4(A)は平面図、図4(B)は下面図である。It is a figure which shows the external appearance of a thermal type flow meter, FIG. 4 (A) is a top view, FIG.4 (B) is a bottom view. 熱式流量計のハウジングを示す図であり、図5(A)はハウジングの左側面図であり、図5(B)はハウジングの正面図である。It is a figure which shows the housing of a thermal type flow meter, FIG. 5 (A) is a left view of a housing, and FIG. 5 (B) is a front view of a housing. 熱式流量計のハウジングを示す図であり、図6(A)はハウジングの右側面図であり、図6(B)はハウジングの背面図である。It is a figure which shows the housing of a thermal type flow meter, FIG. 6 (A) is a right view of a housing, and FIG. 6 (B) is a rear view of a housing. 副通路に配置された流路面の状態を示す部分拡大図である。It is the elements on larger scale which show the state of the flow-path surface arrange | positioned at a subchannel | path. 回路パッケージの外観図であり、図8(A)は左側面図、図8(B)は正面図、図8(C)は背面図である。8A and 8B are external views of a circuit package, in which FIG. 8A is a left side view, FIG. 8B is a front view, and FIG. 8C is a rear view. 回路パッケージのリードフレームに回路部品を搭載した状態を示す図である。It is a figure which shows the state which mounted the circuit components on the lead frame of the circuit package. 第1樹脂モールド工程で第1のモールド樹脂を金型内に注入した状態の具体例を示す図である。It is a figure which shows the specific example of the state which inject | poured 1st mold resin in the metal mold | die at the 1st resin mold process. 第1樹脂モールド工程で第1のモールド樹脂を金型内に注入した状態の他の具体例を示す図である。It is a figure which shows the other specific example of the state which inject | poured 1st mold resin in the metal mold | die at the 1st resin mold process. 第1樹脂モールド工程で第1のモールド樹脂を金型内に注入した状態のさらに他の具体例を示す図である。It is a figure which shows the other specific example of the state which injected the 1st mold resin in the metal mold | die at the 1st resin mold process. ダイヤフラムおよびダイヤフラム内部の空隙と開口とを繋ぐ連通路を説明する、説明図である。It is explanatory drawing explaining the communicating path which connects the space | gap and opening inside a diaphragm and a diaphragm. 第1樹脂モールド工程後の回路パッケージの状態を示す図である。It is a figure which shows the state of the circuit package after a 1st resin mold process. 熱式流量計の製造工程の概要を示す図であり、回路パッケージの生産工程を示す図である。It is a figure which shows the outline | summary of the manufacturing process of a thermal type flow meter, and is a figure which shows the production process of a circuit package. 熱式流量計の製造工程の概要を示す図であり、熱式流量計の生産工程を示す図である。It is a figure which shows the outline | summary of the manufacturing process of a thermal type flow meter, and is a figure which shows the production process of a thermal type flow meter. 熱式流量計の流量検出回路を示す回路図である。It is a circuit diagram which shows the flow volume detection circuit of a thermal type flow meter. 流量検出回路の流量検出部を説明する説明図である。It is explanatory drawing explaining the flow volume detection part of a flow volume detection circuit.
 以下に説明する、発明を実施するための形態(以下実施例と記す)は、実際の製品として要望されている色々な課題を解決しており、特に車両の吸入空気量を計測する計測装置として使用するために望ましい色々な課題を解決し、色々な効果を奏している。下記実施例が解決している色々な課題の内の一つが、上述した発明が解決しようとする課題の欄に記載した内容であり、また下記実施例が奏する色々な効果の内の一つが、発明の効果の欄に記載された効果である。下記実施例が解決している色々な課題について、さらに下記実施例により奏される色々な効果について、下記実施例の説明の中で、述べる。従って下記実施例の中で述べる、実施例が解決している課題や効果は、発明が解決しようとする課題の欄や発明の効果の欄の内容以外の内容についても記載されている。 The form for carrying out the invention described below (hereinafter referred to as an embodiment) solves various problems that are demanded as actual products, and particularly as a measuring device for measuring the intake air amount of a vehicle. It solves various problems that are desirable for use, and has various effects. One of the various problems solved by the following embodiment is the contents described in the column of the problem to be solved by the invention described above, and one of the various effects exhibited by the following embodiment is as follows. It is the effect described in the column of the effect of the invention. Various problems solved by the following embodiments, and various effects produced by the following embodiments will be described in the description of the following embodiments. Therefore, the problems and effects solved by the embodiments described in the following embodiments are also described in the contents other than the contents of the problem column to be solved by the invention and the effect column of the invention.
 以下の実施例で、同一の参照符号は、図番が異なっていても同一の構成を示しており、同じ作用効果を成す。既に説明済みの構成について、図に参照符号のみを付し、説明を省略する場合がある。 In the following embodiments, the same reference numerals indicate the same configuration even if the figure numbers are different, and the same effect is achieved. For configurations that have already been described, only the reference numerals are attached to the drawings, and the description may be omitted.
 1. 内燃機関制御システムに本発明に係る熱式流量計を使用した一実施例
 図1は、電子燃料噴射方式の内燃機関制御システムに、本発明に係る熱式流量計を使用した一実施例を示す、システム図である。エンジンシリンダ112とエンジンピストン114を備える内燃機関110の動作に基づき、吸入空気が被計測気体30としてエアクリーナ122から吸入され、主通路124である例えば吸気ボディ、スロットルボディ126、吸気マニホールド128を介してエンジンシリンダ112の燃焼室に導かれる。前記燃焼室に導かれる吸入空気である被計測気体30の流量は本発明に係る熱式流量計300で計測され、計測された流量に基づいて燃料噴射弁152より燃料が供給され、吸入空気である被計測気体30と共に混合気の状態で燃焼室に導かれる。なお、本実施例では、燃料噴射弁152は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気である被計測気体30と共に混合気を成形し、吸気弁116を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
FIG. 1 shows an embodiment in which the thermal flow meter according to the present invention is used in an internal combustion engine control system of an electronic fuel injection system. FIG. Based on the operation of the internal combustion engine 110 including the engine cylinder 112 and the engine piston 114, the intake air is sucked from the air cleaner 122 as the measurement target gas 30 and passes through the main passage 124 such as the intake body, the throttle body 126, and the intake manifold 128. Guided to the combustion chamber of the engine cylinder 112. The flow rate of the gas 30 to be measured, which is the intake air led to the combustion chamber, is measured by the thermal flow meter 300 according to the present invention, and fuel is supplied from the fuel injection valve 152 based on the measured flow rate. The gas to be measured is introduced into the combustion chamber together with a certain gas 30 to be measured. In this embodiment, the fuel injection valve 152 is provided at the intake port of the internal combustion engine, and the fuel injected into the intake port forms an air-fuel mixture together with the measured gas 30 that is the intake air, and passes through the intake valve 116. It is guided to the combustion chamber and burns to generate mechanical energy.
 近年、多くの車では排気浄化や燃費向上に優れた方式として、内燃機関のシリンダヘッドに燃料噴射弁152を取り付け、燃料噴射弁152から各燃焼室に燃料を直接噴射する方式が採用されている。熱式流量計300は、図1に示す内燃機関の吸気ポートに燃料を噴射する方式だけでなく、各燃焼室に燃料を直接噴射する方式にも同様に使用できる。両方式とも熱式流量計300の使用方法を含めた制御パラメータの計測方法および燃料供給量や点火時期を含めた内燃機関の制御方法の基本概念は略同じであり、両方式の代表例として吸気ポートに燃料を噴射する方式を図1に示す。 In recent years, as a method excellent in exhaust gas purification and fuel consumption improvement in many vehicles, a method in which a fuel injection valve 152 is attached to a cylinder head of an internal combustion engine and fuel is directly injected into each combustion chamber from the fuel injection valve 152 has been adopted. . The thermal flow meter 300 can be used not only for the method of injecting fuel into the intake port of the internal combustion engine shown in FIG. 1 but also for the method of directly injecting fuel into each combustion chamber. In both types, the basic concept of the control parameter measurement method including the method of using the thermal flow meter 300 and the control method of the internal combustion engine including the fuel supply amount and ignition timing are substantially the same. A method of injecting fuel into the port is shown in FIG.
 燃焼室に導かれた燃料および空気は、燃料と空気の混合状態を成しており、点火プラグ154の火花着火により、爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は排気弁118から排気管に導かれ、排気24として排気管から車外に排出される。前記燃焼室に導かれる吸入空気である被計測気体30の流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ132により制御される。前記燃焼室に導かれる吸入空気の流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ132の開度を制御して前記燃焼室に導かれる吸入空気の流量を制御することにより、内燃機関が発生する機械エネルギを制御することができる。 The fuel and air guided to the combustion chamber are in a mixed state of fuel and air, and are ignited explosively by spark ignition of the spark plug 154 to generate mechanical energy. The combusted gas is guided from the exhaust valve 118 to the exhaust pipe, and is exhausted from the exhaust pipe to the outside as exhaust 24. The flow rate of the gas 30 to be measured, which is the intake air led to the combustion chamber, is controlled by the throttle valve 132 whose opening degree changes based on the operation of the accelerator pedal. The fuel supply amount is controlled based on the flow rate of the intake air guided to the combustion chamber, and the driver controls the flow rate of the intake air guided to the combustion chamber by controlling the opening degree of the throttle valve 132, thereby The mechanical energy generated by the engine can be controlled.
 1.1 内燃機関制御システムの制御の概要
 エアクリーナ122から取り込まれ主通路124を流れる吸入空気である被計測気体30の流量および温度が、熱式流量計300により計測され、熱式流量計300から吸入空気の流量および温度を表す電気信号が制御装置200に入力される。また、スロットルバルブ132の開度を計測するスロットル角度センサ144の出力が制御装置200に入力され、さらに内燃機関のエンジンピストン114や吸気弁116や排気弁118の位置や状態、さらに内燃機関の回転速度を計測するために、回転角度センサ146の出力が、制御装置200に入力される。排気24の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ148の出力が制御装置200に入力される。
1.1 Outline of Control of Internal Combustion Engine Control System The flow rate and temperature of the measurement target gas 30 that is the intake air that is taken in from the air cleaner 122 and flows through the main passage 124 are measured by the thermal flow meter 300, and An electric signal indicating the flow rate and temperature of the intake air is input to the control device 200. Further, the output of the throttle angle sensor 144 that measures the opening degree of the throttle valve 132 is input to the control device 200, and the positions and states of the engine piston 114, the intake valve 116, and the exhaust valve 118 of the internal combustion engine, and the rotation of the internal combustion engine. In order to measure the speed, the output of the rotation angle sensor 146 is input to the control device 200. The output of the oxygen sensor 148 is input to the control device 200 in order to measure the state of the mixture ratio between the fuel amount and the air amount from the state of the exhaust 24.
 制御装置200は、熱式流量計300の出力である吸入空気の流量、および回転角度センサ146の出力に基づき計測された内燃機関の回転速度、に基づいて燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁152から供給される燃料量、また点火プラグ154により点火される点火時期が制御される。燃料供給量や点火時期は、実際にはさらに熱式流量計300で計測される吸気温度やスロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ148で計測された空燃比の状態に基づいて、きめ細かく制御されている。制御装置200はさらに内燃機関のアイドル運転状態において、スロットルバルブ132をバイパスする空気量をアイドルエアコントロールバルブ156により制御し、アイドル運転状態での内燃機関の回転速度を制御する。 The control device 200 calculates the fuel injection amount and the ignition timing based on the flow rate of the intake air, which is the output of the thermal flow meter 300, and the rotational speed of the internal combustion engine measured based on the output of the rotation angle sensor 146. Based on these calculation results, the amount of fuel supplied from the fuel injection valve 152 and the ignition timing ignited by the spark plug 154 are controlled. The fuel supply amount and ignition timing are actually based on the intake air temperature and throttle angle change state measured by the thermal flow meter 300, the engine rotational speed change state, and the air-fuel ratio state measured by the oxygen sensor 148. It is finely controlled. The control device 200 further controls the amount of air that bypasses the throttle valve 132 by the idle air control valve 156 in the idle operation state of the internal combustion engine, thereby controlling the rotational speed of the internal combustion engine in the idle operation state.
 1.2 熱式流量計の計測精度向上の重要性と熱式流量計の搭載環境
 内燃機関の主要な制御量である燃料供給量や点火時期はいずれも熱式流量計300の出力を主パラメータとして演算される。従って熱式流量計300の計測精度の向上や経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには熱式流量計300により計測される吸入空気である被計測気体30の流量の計測精度の向上が極めて重要である。また熱式流量計300が高い信頼性を維持していることも大切である。
1.2 The importance of improving the measurement accuracy of the thermal flow meter and the installation environment of the thermal flow meter Both the fuel supply amount and ignition timing, which are the main controlled variables of the internal combustion engine, are the main parameters Is calculated as Therefore, improvement in measurement accuracy of the thermal flow meter 300, suppression of changes over time, and improvement in reliability are important in terms of improvement in vehicle control accuracy and ensuring reliability. In particular, in recent years, there has been a very high demand for fuel efficiency of vehicles and a very high demand for exhaust gas purification. In order to meet these demands, it is extremely important to improve the measurement accuracy of the flow rate of the measurement target gas 30 that is the intake air measured by the thermal flow meter 300. It is also important that the thermal flow meter 300 maintains high reliability.
 熱式流量計300が搭載される車両は温度変化の大きい環境で使用され、また風雨や雪の中で使用される。雪道を車が走行する場合には、凍結防止剤が散布された道路を走行することとなる。熱式流量計300は、その使用環境における温度変化への対応や、塵埃や汚染物質などへの対応も、考慮されていることが望ましい。さらに熱式流量計300は内燃機関の振動を受ける環境に設置される。振動に対しても高い信頼性の維持が求められる。 The vehicle on which the thermal flow meter 300 is mounted is used in an environment with a large temperature change, and is also used in wind and rain or snow. When a vehicle travels on a snowy road, it travels on a road on which an antifreezing agent is sprayed. It is desirable for the thermal flow meter 300 to take into account the response to temperature changes in the environment in which it is used and the response to dust and contaminants. Further, the thermal flow meter 300 is installed in an environment that receives vibrations of the internal combustion engine. It is required to maintain high reliability against vibration.
 また熱式流量計300は内燃機関からの発熱の影響を受ける吸気管に装着される。このため内燃機関の発熱が主通路124である吸気管を介して、熱式流量計300に伝わる。熱式流量計300は、被計測気体と熱伝達を行うことにより被計測気体の流量を計測するので、外部からの熱の影響をできるだけ抑制することが重要である。 Also, the thermal flow meter 300 is attached to an intake pipe that is affected by heat generated from the internal combustion engine. Therefore, heat generated by the internal combustion engine is transmitted to the thermal flow meter 300 via the intake pipe which is the main passage 124. Since the thermal flow meter 300 measures the flow rate of the gas to be measured by performing heat transfer with the gas to be measured, it is important to suppress the influence of heat from the outside as much as possible.
 車に搭載される熱式流量計300は、以下で説明するように、単に発明が解決しようとする課題の欄に記載された課題を解決し、発明の効果の欄に記載された効果を奏するのみでなく、以下で説明するように、上述した色々な課題を十分に考慮し、製品として求められている色々な課題を解決し、色々な効果を奏している。熱式流量計300が解決する具体的な課題や奏する具体的な効果は、以下の実施例の記載の中で説明する。 As described below, the thermal flow meter 300 mounted on the vehicle simply solves the problem described in the column of the problem to be solved by the invention, and exhibits the effect described in the column of the effect of the invention. In addition, as will be described below, the above-described various problems are fully considered, and various problems required as products are solved, and various effects are produced. Specific problems to be solved by the thermal flow meter 300 and specific effects achieved will be described in the description of the following examples.
 2. 熱式流量計300の構成
 2.1 熱式流量計300の外観構造
 図2および図3、図4は、熱式流量計300の外観を示す図であり、図2(A)は熱式流量計300の左側面図、図2(B)は正面図、図3(A)は右側面図、図3(B)は背面図、図4(A)は平面図、図4(B)は下面図である。熱式流量計300はハウジング302と表カバー303と裏カバー304とを備えている。ハウジング302は、熱式流量計300を主通路124である吸気ボディに固定するためのフランジ312と、外部機器との電気的な接続を行うための外部端子306を有する外部接続部305と、流量等を計測するための計測部310を備えている。計測部310の内部には、副通路を作るための副通路溝が設けられており、さらに計測部310の内部には、主通路124を流れる被計測気体30の流量を計測するための流量検出部602(図16参照)や主通路124を流れる被計測気体30の温度を計測するための温度検出部452を備える回路パッケージ400が設けられている。
2. Configuration of Thermal Flow Meter 300 2.1 External Structure of Thermal Flow Meter 300 FIGS. 2, 3, and 4 are views showing the external appearance of the thermal flow meter 300, and FIG. 2B is a front view, FIG. 3A is a right side view, FIG. 3B is a rear view, FIG. 4A is a plan view, and FIG. ) Is a bottom view. The thermal flow meter 300 includes a housing 302, a front cover 303, and a back cover 304. The housing 302 includes a flange 312 for fixing the thermal flow meter 300 to the intake body that is the main passage 124, an external connection portion 305 having an external terminal 306 for electrical connection with an external device, and a flow rate. Etc., a measuring unit 310 is provided. A sub-passage groove for creating a sub-passage is provided inside the measuring unit 310, and a flow rate detection for measuring the flow rate of the gas 30 to be measured flowing through the main passage 124 is provided inside the measuring unit 310. A circuit package 400 including a temperature detection unit 452 for measuring the temperature of the measurement target gas 30 flowing in the unit 602 (see FIG. 16) and the main passage 124 is provided.
 2.2 熱式流量計300の外観構造に基づく効果
 熱式流量計300の入口350が、フランジ312から主通路124の中心方向に向かって延びる計測部310の先端側に設けられているので、主通路124の内壁面近傍ではなく、内壁面から離れた中央部に近い部分の気体を副通路に取り込むことができる。このため熱式流量計300は主通路124の内壁面から離れた部分の気体の流量や温度を測定することができ、熱などの影響による計測精度の低下を抑制できる。主通路124の内壁面近傍では、主通路124の温度の影響を受け易く、気体の本来の温度に対して被計測気体30の温度が異なる状態となり、主通路124内の主気体の平均的な状態と異なることになる。特に主通路124がエンジンの吸気ボディである場合は、エンジンからの熱の影響を受け、高温に維持されていることが多い。このため主通路124の内壁面近傍の気体は、主通路124の本来の気温に対して高いことが多く、計測精度を低下させる要因となる。
2.2 Effects based on the external structure of the thermal flow meter 300 Since the inlet 350 of the thermal flow meter 300 is provided on the distal end side of the measuring unit 310 extending from the flange 312 toward the center of the main passage 124, A portion of the gas that is not near the inner wall surface of the main passage 124 but near the center away from the inner wall surface can be taken into the sub-passage. For this reason, the thermal type flow meter 300 can measure the flow rate and temperature of the gas in the part away from the inner wall surface of the main passage 124, and can suppress a decrease in measurement accuracy due to the influence of heat or the like. In the vicinity of the inner wall surface of the main passage 124, the temperature of the measurement target gas 30 is easily affected by the temperature of the main passage 124 and is different from the original temperature of the gas. It will be different from the state. In particular, when the main passage 124 is an intake body of an engine, it is often maintained at a high temperature under the influence of heat from the engine. For this reason, the gas in the vicinity of the inner wall surface of the main passage 124 is often higher than the original temperature of the main passage 124, which causes a reduction in measurement accuracy.
 主通路124の内壁面近傍では流体抵抗が大きく、主通路124の平均的な流速に比べ、流速が低くなる。このため主通路124の内壁面近傍の気体を被計測気体30として副通路に取り込むと、主通路124の平均的な流速に対する流速の低下が計測誤差につながる恐れがある。図2乃至図4に示す熱式流量計300では、フランジ312から主通路124の中央に向かって延びる薄くて長い計測部310の先端部に入口350が設けられているので、内壁面近傍の流速低下に関係する計測誤差を低減できる。また、図2乃至図4に示す熱式流量計300では、フランジ312から主通路124の中央に向かって延びる計測部310の先端部に入口350が設けられているだけでなく、副通路の出口も計測部310の先端部に設けられているので、さらに計測誤差を低減することができる。 Near the inner wall surface of the main passage 124, the fluid resistance is large, and the flow velocity is lower than the average flow velocity of the main passage 124. For this reason, if the gas in the vicinity of the inner wall surface of the main passage 124 is taken into the sub passage as the gas to be measured 30, a decrease in the flow velocity with respect to the average flow velocity in the main passage 124 may lead to a measurement error. In the thermal flow meter 300 shown in FIGS. 2 to 4, the inlet 350 is provided at the tip of the thin and long measuring unit 310 extending from the flange 312 toward the center of the main passage 124, so that the flow velocity in the vicinity of the inner wall surface is provided. Measurement errors related to the reduction can be reduced. In addition, in the thermal type flow meter 300 shown in FIGS. 2 to 4, not only the inlet 350 is provided at the distal end portion of the measuring unit 310 extending from the flange 312 toward the center of the main passage 124, but also the outlet of the sub passage. Is also provided at the tip of the measurement unit 310, so that measurement errors can be further reduced.
 熱式流量計300の計測部310はフランジ312から主通路124の中心方向に向かって長く延びる形状を成し、その先端部には吸入空気などの被計測気体30の一部を副通路に取り込むための入口350と副通路から被計測気体30を主通路124に戻すための出口352が設けられている。計測部310は主通路124の外壁から中央に向かう軸に沿って長く延びる形状を成しているが、幅は、図2(A)および図3(A)に記載の如く、狭い形状を成している。即ち熱式流量計300の計測部310は、側面の幅が薄く正面が略長方形の形状を成している。これにより、熱式流量計300は十分な長さの副通路を備えることができ、被計測気体30に対しては流体抵抗を小さい値に抑えることができる。このため、熱式流量計300は、流体抵抗を小さい値に抑えられると共に高い精度で被計測気体30の流量を計測することが可能である。 The measurement unit 310 of the thermal flow meter 300 has a shape that extends long from the flange 312 toward the center of the main passage 124, and a portion of the gas to be measured 30 such as intake air is taken into the sub-passage at the tip. There are provided an inlet 350 and an outlet 352 for returning the gas 30 to be measured from the auxiliary passage to the main passage 124. The measuring section 310 has a shape that extends long along the axis from the outer wall of the main passage 124 toward the center, but the width has a narrow shape as shown in FIGS. 2 (A) and 3 (A). is doing. That is, the measurement unit 310 of the thermal flow meter 300 has a side surface with a thin width and a substantially rectangular front surface. Thereby, the thermal flow meter 300 can be provided with a sufficiently long sub-passage, and the fluid resistance of the measurement target gas 30 can be suppressed to a small value. For this reason, the thermal type flow meter 300 can measure the flow rate of the measurement target gas 30 with high accuracy while suppressing the fluid resistance to a small value.
 2.3 温度検出部452の構造
 計測部310の先端側に設けられた副通路よりもフランジ312側の方に位置して、図2および図3に示すように、被計測気体30の流れの上流側に向かって開口する入口343が成形されており、入口343の内部には被計測気体30の温度を計測するための温度検出部452が配置されている。入口343が設けられている計測部310の中央部では、ハウジング302を構成する計測部310内の上流側外壁が下流側に向かって窪んでおり、前記窪み形状の上流側外壁から温度検出部452が上流側に向かって突出する形状を成している。また前記窪み形状の外壁の両側部には表カバー303と裏カバー304が設けられており、前記表カバー303と裏カバー304の上流側端部が、前記窪み形状の外壁より上流側に向かって突出した形状を成している。このため前記窪み形状の外壁とその両側の表カバー303と裏カバー304とにより、被計測気体30を取り込むための入口343が成形される。入口343から取り込まれた被計測気体30は入口343の内部に設けられた温度検出部452に接触することで、温度検出部452によって温度が計測される。さらに窪み形状を成すハウジング302の外壁から上流側に突出した温度検出部452を支える部分に沿って被計測気体30が流れ、表カバー303と裏カバー304に設けられた表側出口344および裏側出口345から主通路124に排出される。
2.3 Structure of Temperature Detection Unit 452 As shown in FIGS. 2 and 3, the flow of the measurement target gas 30 is positioned closer to the flange 312 side than the auxiliary passage provided on the distal end side of the measurement unit 310. An inlet 343 opening toward the upstream side is formed, and a temperature detector 452 for measuring the temperature of the measurement target gas 30 is disposed inside the inlet 343. In the central portion of the measurement unit 310 where the inlet 343 is provided, the upstream outer wall in the measurement unit 310 constituting the housing 302 is recessed toward the downstream side, and the temperature detection unit 452 extends from the recess-shaped upstream outer wall. Has a shape protruding toward the upstream side. Further, a front cover 303 and a back cover 304 are provided on both side portions of the hollow outer wall, and upstream ends of the front cover 303 and the rear cover 304 are directed upstream from the hollow outer wall. It has a protruding shape. Therefore, an inlet 343 for taking in the measurement target gas 30 is formed by the hollow outer wall and the front cover 303 and the back cover 304 on both sides thereof. The gas 30 to be measured taken from the inlet 343 comes into contact with the temperature detector 452 provided inside the inlet 343, and the temperature is measured by the temperature detector 452. Further, the gas to be measured 30 flows along a portion supporting the temperature detection unit 452 protruding upstream from the outer wall of the housing 302 having a hollow shape, and the front side outlet 344 and the back side outlet 345 provided in the front cover 303 and the back cover 304. To the main passage 124.
 2.4 温度検出部452に関係する効果
 被計測気体30の流れに沿う方向の上流側から入口343に流入する気体の温度が温度検出部452により計測され、さらにその気体が温度検出部452を支える部分である温度検出部452の根元部分に向かって流れることにより、温度検出部452を支える部分の温度を被計測気体30の温度に近づく方向に冷却する作用を為す。主通路124である吸気管の温度が通常高くなり、フランジ312あるいは熱絶縁部315から計測部310内の上流側外壁を通って、温度検出部452を支える部分に熱が伝わり、温度の計測精度に影響を与える恐れがある。上述のように、被計測気体30が温度検出部452により計測された後、温度検出部452の支える部分に沿って流れることにより、前記支える部分が冷却される。従ってフランジ312あるいは熱絶縁部315から計測部310内の上流側外壁を通って温度検出部452を支える部分に熱が伝わるのを抑制できる。
2.4 Effects related to the temperature detector 452 The temperature of the gas flowing into the inlet 343 from the upstream side in the direction along the flow of the gas 30 to be measured is measured by the temperature detector 452, and the gas further passes through the temperature detector 452. By flowing toward the base portion of the temperature detection unit 452 that is the supporting portion, the temperature of the portion that supports the temperature detection portion 452 is cooled in a direction approaching the temperature of the measurement target gas 30. The temperature of the intake pipe, which is the main passage 124, is normally high, and heat is transmitted from the flange 312 or the heat insulating portion 315 to the portion supporting the temperature detecting portion 452 through the upstream outer wall in the measuring portion 310, and the temperature measurement accuracy There is a risk of affecting. As described above, after the gas to be measured 30 is measured by the temperature detection unit 452, the support portion is cooled by flowing along the support portion of the temperature detection unit 452. Therefore, it is possible to suppress the heat from being transmitted from the flange 312 or the heat insulating portion 315 to the portion supporting the temperature detecting portion 452 through the upstream outer wall in the measuring portion 310.
 特に、温度検出部452の支え部分では、計測部310内の上流側外壁が下流側に向かって凹む形状(図5および図6を用いて以下で説明する)を成しているので、計測部310内の上流側外壁と温度検出部452との間の距離を長くできる。熱伝導距離が長くなるとともに、被計測気体30による冷却部分の距離が長くなる。従ってフランジ312あるいは熱絶縁部315からもたらされる熱の影響を低減できる。これらのことから計測精度が向上する。上記上流側外壁が下流側に向かって凹む形状(図5および図6を用いて以下で説明する)を成しているので、以下で説明する回路パッケージ400(図5と図6参照)の固定が容易となる。 In particular, the support portion of the temperature detection unit 452 has a shape in which the upstream outer wall in the measurement unit 310 is recessed toward the downstream side (described below with reference to FIGS. 5 and 6). The distance between the upstream outer wall in 310 and the temperature detector 452 can be increased. As the heat conduction distance becomes longer, the distance of the cooling portion by the measurement target gas 30 becomes longer. Accordingly, it is possible to reduce the influence of heat generated from the flange 312 or the heat insulating portion 315. As a result, the measurement accuracy is improved. Since the upstream outer wall has a shape recessed toward the downstream side (described below with reference to FIGS. 5 and 6), the circuit package 400 described below (see FIGS. 5 and 6) is fixed. Becomes easy.
 3. ハウジング302の全体構造とその効果
 3.1 副通路と流量検出部の構造と効果
 熱式流量計300から表カバー303および裏カバー304を取り外したハウジング302の状態を図5および図6に示す。図5(A)はハウジング302の左側面図であり、図5(B)はハウジング302の正面図であり、図6(A)はハウジング302の右側面図であり、図6(B)はハウジング302の背面図である。ハウジング302はフランジ312から計測部310が主通路124の中心方向に延びる構造を成しており、その先端側に副通路を成形するための副通路溝が設けられている。この実施例ではハウジング302の表裏両面に副通路溝が設けられており、図5(B)に表側副通路溝332を示し、図6(B)に裏側副通路溝334を示す。副通路の入口350を成形するための入口溝351と出口352を成形するための出口溝353が、ハウジング302の先端部に設けられているので、主通路124の内壁面から離れた部分の気体を、言い換えると主通路124の中央部分に近い部分を流れている気体を被計測気体30として入口350から取り込むことができる。主通路124の内壁面近傍を流れる気体は、主通路124の壁面温度の影響を受け、吸入空気などの主通路124を流れる気体の平均温度と異なる温度を有することが多い。また主通路124の内壁面近傍を流れる気体は、主通路124を流れる気体の平均流速より遅い流速を示すことが多い。実施例の熱式流量計300ではこのような影響を受け難いので、計測精度の低下を抑制できる。
3. Overall structure of the housing 302 and its effect 3.1 Structure and effect of the sub-passage and the flow rate detection unit The state of the housing 302 with the front cover 303 and the back cover 304 removed from the thermal flow meter 300 is shown in FIGS. Show. 5A is a left side view of the housing 302, FIG. 5B is a front view of the housing 302, FIG. 6A is a right side view of the housing 302, and FIG. 4 is a rear view of the housing 302. FIG. The housing 302 has a structure in which the measuring unit 310 extends from the flange 312 toward the center of the main passage 124, and a sub-passage groove for forming the sub-passage is provided on the tip side thereof. In this embodiment, the sub-passage grooves are provided on both the front and back surfaces of the housing 302. FIG. 5B shows the front-side sub-passage groove 332, and FIG. 6B shows the back-side sub-passage groove 334. An inlet groove 351 for forming the inlet 350 of the sub-passage and an outlet groove 353 for forming the outlet 352 are provided at the distal end portion of the housing 302, so that the gas in a portion away from the inner wall surface of the main passage 124 In other words, the gas flowing in the portion close to the central portion of the main passage 124 can be taken in from the inlet 350 as the gas 30 to be measured. The gas flowing in the vicinity of the inner wall surface of the main passage 124 is affected by the wall surface temperature of the main passage 124 and often has a temperature different from the average temperature of the gas flowing through the main passage 124 such as intake air. Further, the gas flowing in the vicinity of the inner wall surface of the main passage 124 often exhibits a flow rate that is slower than the average flow velocity of the gas flowing through the main passage 124. Since the thermal flow meter 300 of the embodiment is not easily affected by this, it is possible to suppress a decrease in measurement accuracy.
 上述した表側副通路溝332や裏側副通路溝334で作られる副通路は外壁窪み部366や上流側外壁335や下流側外壁336により熱絶縁部315に繋がっている。また上流側外壁335には上流側突起317が設けられ、下流側外壁336には下流側突起318が設けられている。このような構造により、フランジ312で熱式流量計300が主通路124に固定されることにより、回路パッケージ400を有する計測部310が高い信頼性を持って主通路124に固定される。 The auxiliary passages formed by the front side auxiliary passage groove 332 and the back side auxiliary passage groove 334 described above are connected to the heat insulating portion 315 by the outer wall recess 366, the upstream outer wall 335, and the downstream outer wall 336. The upstream outer wall 335 is provided with an upstream protrusion 317, and the downstream outer wall 336 is provided with a downstream protrusion 318. With such a structure, the thermal flow meter 300 is fixed to the main passage 124 by the flange 312, whereby the measuring unit 310 having the circuit package 400 is fixed to the main passage 124 with high reliability.
 この実施例ではハウジング302に副通路を成形するための副通路溝を設けており、カバーをハウジング302の表面及び裏面にかぶせることにより、副通路溝とカバーとにより副通路が完成する構成としている。このような構造とすることで、ハウジング302の樹脂モールド工程でハウジング302の一部としてすべての副通路溝を成形することができる。またハウジング302の成形時にハウジング302の両面に金型が設けられるので、この両方の金型を使用することにより、表側副通路溝332と裏側副通路溝334の両方をハウジング302の一部として全て成形することが可能となる。ハウジング302の両面に表カバー303と裏カバー304を設けることでハウジング302の両面の副通路を完成させることができる。金型を利用してハウジング302の両面に表側副通路溝332と裏側副通路溝334を成形することで高い精度で副通路を成形できる。また高い生産性が得られる。 In this embodiment, the sub-passage groove for forming the sub-passage is formed in the housing 302, and the sub-passage is completed by the sub-passage groove and the cover by covering the cover with the front and back surfaces of the housing 302. . With such a structure, all the sub-passage grooves can be formed as a part of the housing 302 in the resin molding process of the housing 302. In addition, since molds are provided on both sides of the housing 302 when the housing 302 is molded, by using both molds, both the front side sub-passage groove 332 and the back side sub-passage groove 334 are all part of the housing 302. It becomes possible to mold. By providing the front cover 303 and the back cover 304 on both sides of the housing 302, the secondary passages on both sides of the housing 302 can be completed. By forming the front side secondary passage groove 332 and the back side secondary passage groove 334 on both surfaces of the housing 302 using a mold, the secondary passage can be formed with high accuracy. Moreover, high productivity is obtained.
 図6(B)において主通路124を流れる被計測気体30の一部が入口350を成形する入口溝351から裏側副通路溝334内に取り込まれ、裏側副通路溝334内を流れる。裏側副通路溝334は進むにつれて深くなる形状をしており、溝に沿って流れるにつれ表側の方向に被計測気体30は徐々に移動する。特に裏側副通路溝334は回路パッケージ400の上流部342で急激に深くなる急傾斜部347が設けられていて、質量の小さい空気の一部は急傾斜部347に沿って移動し、回路パッケージ400の上流部342で図5(B)に記載の計測用流路面430の方を流れる。一方質量の大きい異物は慣性力によって急激な進路変更が困難なため、図6(B)に示す計測用流路面裏面431の方を移動する。その後回路パッケージ400の下流部341を通り、図5(B)に記載の計測用流路面430の方を流れる。 6B, a part of the gas 30 to be measured flowing through the main passage 124 is taken into the back side sub-pass groove 334 from the inlet groove 351 forming the inlet 350 and flows through the back side sub-pass groove 334. The back side sub-passage groove 334 has a shape that becomes deeper as it advances, and as the gas flows along the groove, the measured gas 30 gradually moves in the front side direction. In particular, the rear side sub-passage groove 334 is provided with a steeply inclined portion 347 that becomes deeper and deeper in the upstream portion 342 of the circuit package 400, and a part of the air having a small mass moves along the steeply inclined portion 347. The upstream portion 342 flows through the measurement flow path surface 430 shown in FIG. On the other hand, since a foreign substance having a large mass is difficult to change its course rapidly due to inertial force, the foreign substance moves on the measurement channel surface rear surface 431 shown in FIG. Thereafter, it passes through the downstream portion 341 of the circuit package 400 and flows through the measurement channel surface 430 shown in FIG.
 熱伝達面露出部436近傍の被計測気体30の流れについて図7を用いて説明する。図5(B)に記載の表側副通路溝332において、上述の回路パッケージ400の上流部342から表側副通路溝332側に移動した被計測気体30である空気は、計測用流路面430に沿って流れ、計測用流路面430に設けられた熱伝達面露出部436を介して流量を計測するための流量検出部602との間で熱伝達が行われ、流量の計測が行われる。計測用流路面430を通過した被計測気体30や回路パッケージ400の下流部341から表側副通路溝332に流れてきた空気は共に表側副通路溝332に沿って流れ、出口352を成形するための出口溝353から主通路124に排出される。 The flow of the measurement target gas 30 in the vicinity of the heat transfer surface exposed portion 436 will be described with reference to FIG. In the front side sub-passage groove 332 illustrated in FIG. 5B, the air that is the measurement target gas 30 that has moved from the upstream portion 342 of the circuit package 400 to the front side sub-passage groove 332 is along the measurement channel surface 430. Then, heat is transferred to and from the flow rate detection unit 602 for measuring the flow rate via the heat transfer surface exposed portion 436 provided on the measurement flow path surface 430, and the flow rate is measured. Both the gas 30 to be measured that has passed through the measurement flow path surface 430 and the air that has flowed from the downstream portion 341 of the circuit package 400 to the front side sub-passage groove 332 flow along the front side sub-passage groove 332 to form the outlet 352. It is discharged from the exit groove 353 to the main passage 124.
 被計測気体30に混入しているごみなどの質量の大きい物質は慣性力が大きく、溝の深さが急激に深まる図6(B)に示す、急傾斜部347の部分の表面に沿って、溝の深い方向に急激に進路を変えることが困難である。このため質量の大きい異物は計測用流路面裏面431の方を移動し、異物が熱伝達面露出部436の近くを通るのを抑制できる。この実施例では気体以外の質量の大きい異物の多くが、計測用流路面430の背面である計測用流路面裏面431を通過するように構成しているので、油分やカーボン、ごみなどの異物による汚れの影響を低減でき、計測精度の低下を抑制できる。すなわち主通路124の流れの軸を横切る軸に沿って被計測気体30の進路を急に変化させる形状を有しているので、被計測気体30に混入する異物の影響を低減できる。 A substance having a large mass such as dust mixed in the measurement target gas 30 has a large inertial force, and along the surface of the portion of the steeply inclined portion 347 shown in FIG. It is difficult to change the course rapidly in the deep direction of the groove. For this reason, the foreign matter having a large mass moves toward the measurement channel surface rear surface 431, and the foreign matter can be prevented from passing near the heat transfer surface exposed portion 436. In this embodiment, since many foreign substances having a large mass other than gas pass through the measurement channel surface rear surface 431 which is the back surface of the measurement channel surface 430, they are caused by foreign matters such as oil, carbon, and dust. The influence of dirt can be reduced, and the decrease in measurement accuracy can be suppressed. That is, since it has a shape in which the path of the gas to be measured 30 is suddenly changed along an axis that crosses the flow axis of the main passage 124, the influence of foreign matter mixed in the gas to be measured 30 can be reduced.
 この実施例では、裏側副通路溝334で構成される流路は曲線を描きながらハウジング302の先端部からフランジ方向に向かい、最もフランジ側の位置では副通路を流れる気体は主通路124の流れに対して逆方向の流れとなり、この逆方向の流れの部分で一方側である裏面側の副通路が、他方側である表面側に成形された副通路につながる。このようにすることで、回路パッケージ400の熱伝達面露出部436の副通路への固定が容易となり、さらに被計測気体30を主通路124の中央部に近い位置で取り込むことが容易となる。 In this embodiment, the flow path formed by the back side sub-passage groove 334 draws a curve from the front end of the housing 302 toward the flange, and the gas flowing through the sub-passage flows into the main passage 124 at the position closest to the flange. On the other hand, the flow is in the reverse direction, and the sub-passage on the back surface, which is one side in the flow portion in the reverse direction, is connected to the sub-passage formed on the surface side, which is the other side. By doing so, it becomes easy to fix the heat transfer surface exposed portion 436 of the circuit package 400 to the sub-passage, and further, it becomes easy to take in the gas 30 to be measured at a position close to the central portion of the main passage 124.
 この実施例では、流量を計測するための計測用流路面430の流れ方向における前後に裏側副通路溝334と表側副通路溝332とに貫通する構成から成り、かつ回路パッケージ400の先端側はハウジング302で支持した構成ではなく空洞部382を有し、回路パッケージ400の上流部342の空間と回路パッケージ400の下流部341の空間が繋がった構成である。この回路パッケージ400の上流部342と回路パッケージ400の下流部341を貫通する構成として、ハウジング302の一方面に成形した裏側副通路溝334からハウジング302の他方の面に成形した表側副通路溝332へ被計測気体30が移動する形状で副通路を成形している。このような構成とすることで、1回の樹脂モールド工程でハウジング302の両面に副通路溝を成形でき、また両面の副通路溝を繋ぐ構造を合わせて成形することが可能となる。 In this embodiment, the flow passage surface 430 for measuring the flow rate has a structure that penetrates the back side sub-passage groove 334 and the front side sub-passage groove 332 in the front-rear direction in the flow direction, and the front end side of the circuit package 400 is the housing In this configuration, the cavity 382 is provided instead of the configuration supported by 302, and the space of the upstream portion 342 of the circuit package 400 and the space of the downstream portion 341 of the circuit package 400 are connected. As a configuration that penetrates the upstream portion 342 of the circuit package 400 and the downstream portion 341 of the circuit package 400, the front side sub passage groove 332 formed on the other surface of the housing 302 from the back side sub passage groove 334 formed on one surface of the housing 302. The sub passage is formed in a shape in which the gas 30 to be measured moves. With such a configuration, the sub-passage grooves can be formed on both surfaces of the housing 302 in a single resin molding step, and the structure connecting the sub-passage grooves on both surfaces can be formed together.
 ハウジング302の成形時には、回路パッケージ400に形成された計測用流路面430の両側を成型金型でクランプすることで回路パッケージ400の上流部342と回路パッケージ400の下流部341を貫通する構成を形成することができると共に、ハウジング302の樹脂モールド成形と同時に、回路パッケージ400をハウジング302に実装することができる。このようにハウジング302の成形金型に回路パッケージ400をインサートして成形することにより、副通路に対して回路パッケージ400及び熱伝達面露出部436を高精度に実装することが可能となる。 When molding the housing 302, a structure is formed that penetrates the upstream portion 342 of the circuit package 400 and the downstream portion 341 of the circuit package 400 by clamping both sides of the measurement flow path surface 430 formed in the circuit package 400 with a molding die. In addition, the circuit package 400 can be mounted on the housing 302 simultaneously with resin molding of the housing 302. Thus, by forming the circuit package 400 by inserting it into the molding die of the housing 302, the circuit package 400 and the heat transfer surface exposed portion 436 can be mounted with high accuracy in the sub-passage.
 なお、裏側副通路溝334の両側には裏側副通路内周壁391と裏側副通路外周壁392が設けられ、これら裏側副通路内周壁391と裏側副通路外周壁392のそれぞれの高さ方向の先端部と裏カバー304の内側面とが密着することで、ハウジング302の裏側副通路が成形される。また表側副通路溝332の両側には表側副通路内周壁393と表側副通路外周壁394が設けられ、これら表側副通路内周壁393と表側副通路外周壁394の高さ方向の先端部と表カバー303の内側面とが密着することで、ハウジング302の表側副通路が成形される。 A back side sub-passage inner peripheral wall 391 and a back side sub-passage outer peripheral wall 392 are provided on both sides of the back side sub-passage groove 334, and the height direction ends of the back side sub-passage inner peripheral wall 391 and the back side sub-passage outer peripheral wall 392 are respectively provided. The back side sub-passage of the housing 302 is formed by the close contact between the portion and the inner surface of the back cover 304. Further, a front side sub-passage inner peripheral wall 393 and a front side sub-passage outer peripheral wall 394 are provided on both sides of the front side sub-passage groove 332. The front side sub-passage inner peripheral wall 393 and the front-side sub-passage outer peripheral wall 394 and the front end portion in the height direction and the front side. When the inner surface of the cover 303 is in close contact, the front side sub-passage of the housing 302 is formed.
 図5および図6で、上流側外壁335が温度検出部452の根元部で下流側に窪む形状を成す、外壁窪み部366を備えている。この外壁窪み部366により、温度検出部452と外壁窪み部366との間の距離が長くなり、上流側外壁335を介して伝わってくる熱の影響を低減できる。 5 and FIG. 6, the outer wall 335 is provided with an outer wall recess 366 that has a shape in which the upstream outer wall 335 is recessed downstream at the root of the temperature detector 452. The outer wall recess 366 increases the distance between the temperature detection unit 452 and the outer wall recess 366, thereby reducing the influence of heat transmitted through the upstream outer wall 335.
 3.2 副通路の流量検出部の構造と効果
 図7は、回路パッケージ400の計測用流路面430が副通路溝の内部に配置されている状態を示す部分拡大図であり、図6のA-A断面図である。なお、この図は概念図であり、図5や図6に示す詳細形状に対して、図7では細部の省略および単純化を行っており、細部に関して少し変形している。図7の左部分が裏側副通路溝334の終端部であり、右側部分が表側副通路溝332の始端部分である。図7では明確に記載していないが、計測用流路面430を有する回路パッケージ400の左右両側には、貫通部が設けられていて、計測用流路面430を有する回路パッケージ400の左右両側で裏側副通路溝334と表側副通路溝332とが繋がっている。
3.2 Structure and Effect of Sub-Flow-Flow Detection Unit FIG. 7 is a partially enlarged view showing a state in which the measurement channel surface 430 of the circuit package 400 is arranged inside the sub-passage groove. FIG. Note that this figure is a conceptual diagram, and the details shown in FIGS. 5 and 6 are omitted and simplified in detail in FIG. 7, and the details are slightly modified. The left portion in FIG. 7 is the end portion of the back side auxiliary passage groove 334, and the right side portion is the starting end portion of the front side auxiliary passage groove 332. Although not clearly shown in FIG. 7, penetrating portions are provided on the left and right sides of the circuit package 400 having the measurement channel surface 430, and the back sides are provided on the left and right sides of the circuit package 400 having the measurement channel surface 430. The sub passage groove 334 and the front side sub passage groove 332 are connected.
 入口350から取り込まれ、裏側副通路溝334により構成される裏側副通路を流れた被計測気体30は、図7の左側から導かれ、被計測気体30の一部は、回路パッケージ400の上流部342の貫通部を介して、回路パッケージ400の計測用流路面430の表面と表カバー303に設けられた突起部356で作られる流路386の方を流れ、他の被計測気体30は計測用流路面裏面431と裏カバー304で作られる流路387の方を流れる。その後、流路387を流れた被計測気体30は、回路パッケージ400の下流部341の貫通部を介して表側副通路溝332の方に移り、流路386を流れている被計測気体30と合流し、表側副通路溝332を流れ、出口352から主通路124に排出される。 The gas to be measured 30 taken from the inlet 350 and flowing through the back side sub-passage formed by the back side sub-passage groove 334 is guided from the left side of FIG. 7, and a part of the gas to be measured 30 is upstream of the circuit package 400. 342 flows through the surface of the measurement channel surface 430 of the circuit package 400 and the channel 386 formed by the protrusion 356 provided on the front cover 303 via the through-hole 342, and the other gas to be measured 30 is used for measurement. It flows in the direction of the flow path 387 formed by the flow path surface back surface 431 and the back cover 304. Thereafter, the gas to be measured 30 that has flowed through the flow path 387 moves toward the front side sub-passage groove 332 through the penetration portion of the downstream portion 341 of the circuit package 400, and merges with the gas to be measured 30 that is flowing through the flow path 386. Then, it flows through the front side auxiliary passage groove 332 and is discharged from the outlet 352 to the main passage 124.
 裏側副通路溝334から回路パッケージ400の上流部342の貫通部を介して流路386に導かれる被計測気体30の方が、流路387に導かれる流路よりも曲りが大きくなるように、副通路溝が成形されているので、被計測気体30に含まれるごみなどの質量の大きい物質は、曲りの少ない流路387の方に集まる。このため流路386への異物の流入はほとんど無い。 The measured gas 30 led to the flow path 386 from the back side sub-passage groove 334 through the penetration part of the upstream part 342 of the circuit package 400 is bent more than the flow path guided to the flow path 387. Since the sub-passage groove is formed, a substance having a large mass such as dust contained in the gas to be measured 30 gathers in the flow path 387 having a small bend. For this reason, almost no foreign substance flows into the flow path 386.
 流路386では、表側副通路溝332の最先端部に連続して、表カバー303に設けられ突起部356が計測用流路面430の方に徐々に突出することにより、絞りが成形される構造を成している。流路386の絞り部の一方側に計測用流路面430が配置され、計測用流路面430には流量検出部602が被計測気体30との間で熱伝達を行うための熱伝達面露出部436が設けられている。流量検出部602の計測が高精度で行われるためには、熱伝達面露出部436の部分で被計測気体30が渦の少ない層流であることが望ましい。また流速が速い方が計測精度が向上する。このために計測用流路面430に対向して表カバー303に設けられた突起部356が計測用流路面430に向かって滑らかに突出することにより絞りが成形される。この絞りは、被計測気体30の渦を減少させて層流に近づけている作用をする。さらに絞り部分では流速が速くなり、この絞り部分に流量を計測するための熱伝達面露出部436が配置されているので、流量の計測精度が向上している。 In the flow path 386, a structure is formed in which the throttle is formed by the protrusion 356 provided on the front cover 303 projecting gradually toward the measurement flow path surface 430 continuously from the most distal portion of the front side sub-passage groove 332. Is made. A flow path surface for measurement 430 is arranged on one side of the throttle part of the flow path 386, and a heat transfer surface exposed part for allowing the flow rate detection unit 602 to transfer heat to the measurement target gas 30 on the flow path surface for measurement 430. 436 is provided. In order to measure the flow rate detection unit 602 with high accuracy, it is desirable that the measurement target gas 30 is a laminar flow with few vortices in the heat transfer surface exposed portion 436. In addition, the measurement accuracy is improved when the flow velocity is high. For this purpose, the diaphragm is formed by the projection 356 provided on the front cover 303 facing the measurement channel surface 430 smoothly projecting toward the measurement channel surface 430. This restriction acts to reduce the vortex of the measured gas 30 and bring it closer to the laminar flow. Further, the flow velocity is increased in the throttle portion, and since the heat transfer surface exposed portion 436 for measuring the flow rate is arranged in the throttle portion, the flow rate measurement accuracy is improved.
 計測用流路面430に設けた熱伝達面露出部436に対向するようにして突起部356を副通路溝内に突出させることで絞りを成形して、計測精度を向上することができる。絞りを成形するための突起部356は、計測用流路面430に設けた熱伝達面露出部436に対向する方のカバーに設けることになる。図7では計測用流路面430に設けた熱伝達面露出部436に対向する方のカバーが表カバー303であるので表カバー303に突起部356を設けているが、表カバー303あるいは裏カバー304の内の計測用流路面430に設けた熱伝達面露出部436に対向する方のカバーに設ければ良い。回路パッケージ400における計測用流路面430および熱伝達面露出部436を設ける面がどちらになるかにより、熱伝達面露出部436に対向する方のカバーがどちらになるかが変わる。 Measured accuracy can be improved by forming a diaphragm by projecting the protrusion 356 into the sub-passage groove so as to face the heat transfer surface exposed portion 436 provided on the measurement flow path surface 430. The protrusion 356 for forming the aperture is provided on the cover facing the heat transfer surface exposed portion 436 provided on the measurement flow path surface 430. In FIG. 7, since the cover facing the heat transfer surface exposed portion 436 provided on the measurement flow path surface 430 is the front cover 303, the front cover 303 is provided with a protrusion 356, but the front cover 303 or the back cover 304 is provided. Of these, it may be provided on the cover facing the heat transfer surface exposed portion 436 provided on the measurement flow path surface 430. Depending on which of the measurement flow path surface 430 and the surface on which the heat transfer surface exposed portion 436 is provided in the circuit package 400, which of the covers facing the heat transfer surface exposed portion 436 is changed.
 図5および図6において、計測用流路面430に設けられた熱伝達面露出部436の裏面である計測用流路面裏面431に、回路パッケージ400の樹脂モールド工程で使用された金型の押さえ跡442が残っている。押さえ跡442は特に流量の計測の障害となるものではなく、そのまま押さえ跡442が残っていても問題ない。また後述するが、回路パッケージ400を樹脂モールドで成形する際に、流量検出部602が有する半導体ダイヤフラムの保護が重要となる。このために熱伝達面露出部436の裏面の押さえが重要である。また熱伝達面露出部436に回路パッケージ400を覆う樹脂が流れ込まないようにすることが大切である。このような観点から、熱伝達面露出部436を含む計測用流路面430を金型で囲い、また熱伝達面露出部436の背面を他の金型で押さえつけ、樹脂の流入を阻止する。回路パッケージ400はトランスファモールドで作られるので、樹脂の圧力が高く、熱伝達面露出部436の背面からの押さえが重要である。また流量検出部602には半導体ダイヤフラムが使用されており、半導体ダイヤフラムにより作られる空隙の通気用通路を成形することが望まれる。通気用通路を成形するためのプレートなどを保持固定するために、熱伝達面露出部436の裏面からの押さえは重要である。 In FIG. 5 and FIG. 6, the trace of the mold used in the resin molding process of the circuit package 400 is applied to the measurement channel surface rear surface 431 which is the back surface of the heat transfer surface exposed portion 436 provided on the measurement channel surface 430. 442 remains. The press mark 442 does not particularly hinder measurement of the flow rate, and there is no problem even if the press mark 442 remains as it is. As will be described later, when the circuit package 400 is molded with a resin mold, it is important to protect the semiconductor diaphragm of the flow rate detection unit 602. For this reason, it is important to hold the back surface of the heat transfer surface exposed portion 436. It is also important that the resin that covers the circuit package 400 does not flow into the heat transfer surface exposed portion 436. From this point of view, the measurement flow path surface 430 including the heat transfer surface exposed portion 436 is surrounded by a mold, and the back surface of the heat transfer surface exposed portion 436 is pressed by another mold to prevent the inflow of resin. Since the circuit package 400 is made by transfer molding, the pressure of the resin is high, and it is important to press the heat transfer surface exposed portion 436 from the back surface. Further, a semiconductor diaphragm is used for the flow rate detection unit 602, and it is desirable to form a ventilation passage formed by the semiconductor diaphragm. In order to hold and fix a plate or the like for forming the ventilation passage, it is important to press the heat transfer surface exposed portion 436 from the back surface.
 3.3 回路パッケージ400のハウジング302による固定構造と効果
 次に再び図5および図6を参照して、回路パッケージ400のハウジング302への樹脂モールド工程による固定について説明する。副通路を成形する副通路溝の所定の場所、例えば図5および図6に示す実施例では、表側副通路溝332と裏側副通路溝334のつながりの部分に、回路パッケージ400の表面に成形された計測用流路面430が配置されるように、回路パッケージ400がハウジング302に配置され固定されている。回路パッケージ400をハウジング302に樹脂モールドにより埋設して固定する部分が、副通路溝より少しフランジ312側に、回路パッケージ400をハウジング302に埋設固定するための固定部372として設けられている。固定部372は第1樹脂モールド工程により成形された回路パッケージ400の外周を覆うようにして埋設している。
3.3 Fixing Structure and Effect of Circuit Package 400 by Housing 302 Next, referring to FIGS. 5 and 6 again, fixing of the circuit package 400 to the housing 302 by a resin molding process will be described. In the embodiment shown in FIGS. 5 and 6, for example, in the embodiment shown in FIG. 5 and FIG. 6, the surface of the circuit package 400 is formed on the connecting portion of the front side sub passage groove 332 and the back side sub passage groove 334. The circuit package 400 is arranged and fixed to the housing 302 so that the measurement flow path surface 430 is arranged. A portion for embedding and fixing the circuit package 400 in the housing 302 with a resin mold is provided as a fixing portion 372 for embedding and fixing the circuit package 400 in the housing 302 on the flange 312 side slightly from the sub-passage groove. The fixing portion 372 is embedded so as to cover the outer periphery of the circuit package 400 formed by the first resin molding process.
 図5(B)に示す如く、回路パッケージ400は固定部372により固定されている。固定部372は表カバー303に接する高さの面と薄肉部376により回路パッケージ400を包含している。376の箇所を覆う樹脂の厚みを薄肉にすることで、固定部372の成形時に樹脂の温度が冷える時の収縮を緩和することができると共に、回路パッケージ400に加わる応力の集中を低減できる効果がある。図6(B)に示すとおり、回路パッケージ400の裏側も上述のような形状とすると、より効果が得られる。 As shown in FIG. 5B, the circuit package 400 is fixed by a fixing portion 372. The fixing portion 372 includes the circuit package 400 by a surface having a height in contact with the front cover 303 and a thin portion 376. By reducing the thickness of the resin covering the portion 376, the shrinkage when the temperature of the resin cools when the fixing portion 372 is molded can be reduced, and the concentration of stress applied to the circuit package 400 can be reduced. is there. As shown in FIG. 6B, when the back side of the circuit package 400 is also shaped as described above, more effects can be obtained.
 また、回路パッケージ400の全面を、ハウジング302を成形する樹脂で覆うのではなく、固定部372のフランジ312側に、回路パッケージ400の外壁が露出する部分を設けている。この図5および図6の実施例では、回路パッケージ400の外周面の内のハウジング302の樹脂に包含される部分の面積より、ハウジング302の樹脂に包含されないでハウジング302の樹脂から露出している面積の方が広くなっている。また回路パッケージ400の計測用流路面430の部分も、ハウジング302を形成している樹脂から露出している。 In addition, instead of covering the entire surface of the circuit package 400 with the resin for molding the housing 302, a portion where the outer wall of the circuit package 400 is exposed is provided on the flange 312 side of the fixing portion 372. 5 and 6, the area of the outer peripheral surface of the circuit package 400 that is included in the resin of the housing 302 is exposed from the resin of the housing 302 without being included in the resin of the housing 302. The area is wider. Further, the part of the measurement flow path surface 430 of the circuit package 400 is also exposed from the resin forming the housing 302.
 回路パッケージ400の外壁を帯状に全周にわたって覆っている固定部372の一部を薄肉とすることで、ハウジング302を成形するための第2樹脂モールド工程において、回路パッケージ400の周囲を包含するようにして固定部372を硬化させる過程での体積収縮による過度な応力の集中を低減している。過度な応力の集中は回路パッケージ400に対しても悪影響を及ぼす可能性がある。 By thinning a part of the fixing portion 372 that covers the outer wall of the circuit package 400 in a strip shape over the entire circumference, the periphery of the circuit package 400 is included in the second resin molding step for molding the housing 302. Thus, excessive stress concentration due to volume shrinkage in the process of hardening the fixing portion 372 is reduced. Excessive stress concentration may also adversely affect the circuit package 400.
 また、回路パッケージ400の外周面の内のハウジング302の樹脂に包含される部分の面積を少なくして、少ない面積で、より強固に回路パッケージ400を固定するには、固定部372における回路パッケージ400の外壁との密着性を高めることが望ましい。ハウジング302を成形する趣旨として熱可塑性樹脂を使用する場合には、熱可塑性樹脂の粘性が低い状態で回路パッケージ400の外壁の細かい凹凸に入り込み、前記外壁の細かい凹凸に入り込んだ状態で、熱可塑性樹脂が硬化することが望ましい。ハウジング302を成形する樹脂モールド工程において、熱可塑性樹脂の入口を固定部372にあるいはその近傍に設けることが望ましい。熱可塑性樹脂は温度の低下に基づいて粘性が増大し、硬化する。従って高温状態の熱可塑性樹脂を固定部372にあるいはその近傍から流し込むことで、粘性の低い状態の熱可塑性樹脂を回路パッケージ400の外壁に密着させ、硬化させることができる。このことにより、熱可塑性樹脂の温度低下が抑えられ、低粘性状態を長引かせ、回路パッケージ400と固定部372との密着性が向上する。 In addition, in order to more securely fix the circuit package 400 with a small area by reducing the area of the outer surface of the circuit package 400 included in the resin of the housing 302, the circuit package 400 in the fixing portion 372 can be fixed more firmly. It is desirable to improve the adhesion with the outer wall of the. When a thermoplastic resin is used for the purpose of molding the housing 302, the thermoplastic resin enters the fine irregularities of the outer wall of the circuit package 400 in a state where the viscosity of the thermoplastic resin is low, and the thermoplastic resin enters the fine irregularities of the outer wall. It is desirable for the resin to cure. In the resin molding process for molding the housing 302, it is desirable to provide an inlet for the thermoplastic resin at or near the fixed portion 372. The thermoplastic resin increases in viscosity based on a decrease in temperature and hardens. Accordingly, by pouring the high temperature thermoplastic resin into or from the fixing portion 372, the low viscosity thermoplastic resin can be brought into close contact with the outer wall of the circuit package 400 and cured. This suppresses the temperature drop of the thermoplastic resin, prolongs the low-viscosity state, and improves the adhesion between the circuit package 400 and the fixing portion 372.
 回路パッケージ400の外壁面を粗くすることにより回路パッケージ400と固定部372との密着性を向上することができる。回路パッケージ400の外壁面を粗くする方法として、回路パッケージ400を第1樹脂モールド工程で成形後に、例えば梨地処理といわれる処理方法のように、回路パッケージ400の表面に細かい凸凹を成形する粗化方法がある。回路パッケージ400の表面に細かい凹凸加工を施す粗化方法として、例えばサンドブラストにより粗化することができる。さらにレーザ加工により粗化することができる。 It is possible to improve the adhesion between the circuit package 400 and the fixing portion 372 by roughening the outer wall surface of the circuit package 400. As a method for roughening the outer wall surface of the circuit package 400, a roughening method for forming fine irregularities on the surface of the circuit package 400 after the circuit package 400 is formed in the first resin molding step, for example, a treatment method called matte treatment. There is. As a roughening method for applying fine irregularities to the surface of the circuit package 400, for example, it can be roughened by sandblasting. Further, it can be roughened by laser processing.
 回路パッケージ400を成形する熱硬化性樹脂と固定部372を備えるハウジング302を成形する熱可塑性樹脂とでは、熱膨張係数に差があり、この熱膨張係数差に基づいて生じる過度な応力が回路パッケージ400に加わらないようにすることが望ましい。 There is a difference in the thermal expansion coefficient between the thermosetting resin that forms the circuit package 400 and the thermoplastic resin that forms the housing 302 including the fixing portion 372, and an excessive stress generated based on the difference in the thermal expansion coefficient causes the circuit package. It is desirable not to join 400.
 さらに回路パッケージ400の外周を包含する固定部372の形状を帯状とし、帯の幅を狭くすることにより、回路パッケージ400に加わる熱膨張係数差による応力を低減できる。固定部372の帯の幅を10mm以下に、好ましくは8mm以下にすることが望ましい。本実施例では回路パッケージ400を固定部372だけでなく、ハウジング302の上流側外壁335の一部である外壁窪み部366でも回路パッケージ400を包含し回路パッケージ400を固定しているので、固定部372の帯の幅をさらに細くすることができる。例えば3mm以上の幅があれば回路パッケージ400を固定できる。 Furthermore, the stress due to the difference in thermal expansion coefficient applied to the circuit package 400 can be reduced by forming the fixed portion 372 including the outer periphery of the circuit package 400 in a band shape and narrowing the width of the band. It is desirable that the width of the band of the fixing portion 372 is 10 mm or less, preferably 8 mm or less. In the present embodiment, not only the fixing portion 372 but also the outer wall recess 366 that is a part of the upstream outer wall 335 of the housing 302 includes the circuit package 400 and fixes the circuit package 400. The width of the band 372 can be further reduced. For example, if there is a width of 3 mm or more, the circuit package 400 can be fixed.
 回路パッケージ400の表面に、熱膨張係数差による応力を低減するなどの目的のため、ハウジング302を成形する樹脂で覆う部分と覆わないで露出させる部分とを設けている。これら回路パッケージ400の表面がハウジング302の樹脂から露出する部分を、複数個設け、この内の一つは先に説明した熱伝達面露出部436を有する計測用流路面430であり、また他に、固定部372よりフランジ312側の部分に露出する部分を設けている。さらに外壁窪み部366を成形し、この外壁窪み部366より上流側の部分を露出させ、この露出部を、温度検出部452を支える支持部としている。回路パッケージ400の外表面の固定部372よりフランジ312側の部分は、その外周、特に回路パッケージ400の下流側からフランジ312に対向する側にかけて、さらに回路パッケージ400の端子に近い部分の上流側にかけて、回路パッケージ400を取り巻くように空隙が成形されている。このように回路パッケージ400の表面が露出している部分の周囲に空隙が成形されていることで、主通路124からフランジ312を介して回路パッケージ400に伝わる熱量を低減でき、熱の影響による計測精度の低下を抑制している。 The surface of the circuit package 400 is provided with a portion covered with a resin for molding the housing 302 and a portion exposed without being covered for the purpose of reducing stress due to a difference in thermal expansion coefficient. A plurality of portions where the surface of the circuit package 400 is exposed from the resin of the housing 302 are provided, one of which is the measurement flow path surface 430 having the heat transfer surface exposed portion 436 described above. A portion exposed to the flange 312 side from the fixing portion 372 is provided. Further, an outer wall recess 366 is formed, and a portion upstream of the outer wall recess 366 is exposed, and this exposed portion is used as a support for supporting the temperature detector 452. The portion of the outer surface of the circuit package 400 closer to the flange 312 than the fixing portion 372 extends from the outer periphery, particularly from the downstream side of the circuit package 400 to the side facing the flange 312, and further to the upstream side of the portion close to the terminal of the circuit package 400. The air gap is formed so as to surround the circuit package 400. Since the gap is formed around the portion where the surface of the circuit package 400 is exposed in this way, the amount of heat transferred from the main passage 124 to the circuit package 400 via the flange 312 can be reduced, and measurement due to the influence of heat. The decrease in accuracy is suppressed.
 回路パッケージ400とフランジ312との間に空隙が成形され、この空隙部分が端子接続部320として作用している。この端子接続部320で回路パッケージ400の接続端子412と外部端子306のハウジング302側に位置する外部端子内端361とがそれぞれスポット溶接あるいはレーザ溶接などにより電気的に接続される。端子接続部320の空隙は上述したようにハウジング302から回路パッケージ400への熱伝達を抑制する効果を奏すると共に、回路パッケージ400の接続端子412と外部端子306の外部端子内端361との接続作業のために使用可能なスペースとして確保されている。 A gap is formed between the circuit package 400 and the flange 312, and this gap portion acts as the terminal connection portion 320. At the terminal connection portion 320, the connection terminal 412 of the circuit package 400 and the external terminal inner end 361 located on the housing 302 side of the external terminal 306 are electrically connected by spot welding or laser welding, respectively. As described above, the gap of the terminal connection portion 320 has an effect of suppressing heat transfer from the housing 302 to the circuit package 400, and the connection work between the connection terminal 412 of the circuit package 400 and the external terminal inner end 361 of the external terminal 306. Is reserved as usable space for.
 3.4 第2樹脂モールド工程によるハウジング302成形と効果
 上述した図5および図6に示すハウジング302において、流量検出部602や処理部604を備える回路パッケージ400を第1樹脂モールド工程により製造し、次に、被計測気体30を流す副通路を成形する例えば表側副通路溝332や裏側副通路溝334を有するハウジング302を、第2樹脂モールド工程にて製造する。この第2樹脂モールド工程で、前記回路パッケージ400をハウジング302の樹脂内に内蔵して、ハウジング302内に樹脂モールドにより固定する。このようにすることで、流量検出部602が被計測気体30との間で熱伝達を行って流量を計測するための熱伝達面露出部436と副通路、例えば表側副通路溝332や裏側副通路溝334の形状との関係、例えば位置関係や方向の関係を、極めて高い精度で維持することが可能となる。回路パッケージ400毎に生じる誤差やばらつきを非常に小さい値に抑え込むことが可能となる。結果として回路パッケージ400の計測精度を大きく改善できる。例えば従来の接着剤を使用して固定する方式に比べ、2倍以上、計測精度を向上できる。熱式流量計300は量産により生産されることが多く、ここに厳密に計測しながら接着剤で接着する方法には、計測精度の向上に関して限界がある。しかし、本実施例のように第1樹脂モールド工程により回路パッケージ400を製造し、その後被計測気体30を流す副通路を成形する第2樹脂モールド工程にて副通路を成形すると同時に回路パッケージ400と前記副通路とを固定することで、計測精度のばらつきを大幅に低減でき、各熱式流量計300の計測精度を大幅に向上することが可能となる。このことは、図5や図6に示す実施例だけでなく、図7に示す実施例においても同様である。
3.4 Housing 302 Molding and Effects by Second Resin Molding Process In the housing 302 shown in FIGS. 5 and 6, the circuit package 400 including the flow rate detection unit 602 and the processing unit 604 is manufactured by the first resin molding process. Next, the housing 302 having, for example, the front side sub-passage groove 332 and the back side sub-passage groove 334 for forming the sub-passage through which the measurement target gas 30 flows is manufactured in the second resin molding process. In the second resin molding step, the circuit package 400 is built in the resin of the housing 302 and fixed in the housing 302 by a resin mold. By doing so, the heat transfer surface exposed portion 436 and the sub-passage, for example, the front-side sub-passage groove 332 and the back-side sub-passage for the heat-flow detecting unit 602 to perform heat transfer with the measurement target gas 30 and measure the flow rate. It becomes possible to maintain the relationship with the shape of the passage groove 334, for example, the positional relationship and the direction relationship, with extremely high accuracy. It is possible to suppress errors and variations occurring in each circuit package 400 to a very small value. As a result, the measurement accuracy of the circuit package 400 can be greatly improved. For example, the measurement accuracy can be improved by a factor of two or more compared to a conventional method of fixing using an adhesive. The thermal flow meter 300 is often produced by mass production, and the method of adhering with an adhesive while strictly measuring here has a limit in improving measurement accuracy. However, as in the present embodiment, the circuit package 400 is manufactured by the first resin molding process, and then the sub-passage is formed in the second resin molding process in which the sub-passage for flowing the measurement target gas 30 is formed. By fixing the auxiliary passage, variation in measurement accuracy can be greatly reduced, and the measurement accuracy of each thermal flow meter 300 can be greatly improved. This applies not only to the embodiment shown in FIGS. 5 and 6, but also to the embodiment shown in FIG.
 例えば図5や図6に示す実施例でさらに説明すると、表側副通路溝332と裏側副通路溝334と熱伝達面露出部436との間に関係を、規定の関係となるように高い精度で回路パッケージ400をハウジング302に固定できる。このことにより、量産される熱式流量計300においてそれぞれ、各回路パッケージ400の熱伝達面露出部436と副通路との位置関係や形状などの関係を、非常に高い精度で、定常的に得ることが可能となる。回路パッケージ400の熱伝達面露出部436を固定した副通路溝、例えば表側副通路溝332と裏側副通路溝334とが非常に高い精度で成形できるので、この副通路溝から副通路を成形する作業は、表カバー303や裏カバー304でハウジング302の両面を覆う作業である。この作業は大変シンプルで、計測精度を低下させる要因が少ない作業工程である。また、表カバー303や裏カバー304は成形精度の高い樹脂モールド工程により生産される。従って回路パッケージ400の熱伝達面露出部436と規定の関係で設けられる副通路を高い精度で完成することが可能である。このような方法により、計測精度の向上に加え、高い生産性が得られる。 For example, in the embodiment shown in FIG. 5 and FIG. 6, the relationship among the front side sub-passage groove 332, the back side sub-passage groove 334, and the heat transfer surface exposed portion 436 is set with high accuracy so as to be a prescribed relationship. The circuit package 400 can be fixed to the housing 302. As a result, in the mass production type thermal flow meter 300, the positional relationship between the heat transfer surface exposed portion 436 of each circuit package 400 and the sub-passage, such as the positional relationship and shape, are constantly obtained with very high accuracy. It becomes possible. Since the sub-passage groove, for example, the front-side sub-passage groove 332 and the back-side sub-passage groove 334, to which the heat transfer surface exposed portion 436 of the circuit package 400 is fixed can be formed with very high accuracy, the sub-passage is formed from the sub-passage groove. The work is a work of covering both surfaces of the housing 302 with the front cover 303 and the back cover 304. This work is very simple and is a work process with few factors that reduce the measurement accuracy. The front cover 303 and the back cover 304 are produced by a resin molding process with high molding accuracy. Accordingly, it is possible to complete the sub-passage provided in a defined relationship with the heat transfer surface exposed portion 436 of the circuit package 400 with high accuracy. By such a method, in addition to improvement of measurement accuracy, high productivity can be obtained.
 これに対して従来は、副通路を製造し、次に副通路に計測部を接着剤で接着することにより、熱式流量計を生産していた。このように接着剤を使用する方法は、接着剤の厚みのばらつきが大きく、また接着位置や接着角度が製品毎にばらつく。このため計測精度を上げることには限界があった。さらにこれらの作業を量産工程で行う場合に、計測精度の向上が大変難しくなる。 In contrast, in the past, a thermal flow meter was produced by manufacturing a secondary passage and then adhering a measuring section to the secondary passage with an adhesive. As described above, the method of using the adhesive has a large variation in the thickness of the adhesive, and the bonding position and the bonding angle vary from product to product. For this reason, there was a limit to increasing the measurement accuracy. Furthermore, when performing these operations in a mass production process, it is very difficult to improve measurement accuracy.
 本発明に係る実施例では、先ず、流量検出部602を備える回路パッケージ400を第1樹脂モールドにより生産し、次に回路パッケージ400を樹脂モールドにより固定すると共に同時に前記樹脂モールドで副通路を成形するための副通路溝を第2樹脂モールドにより、成形する。このようにすることにより、副通路溝の形状、および前記副通路溝に極めて高い精度で流量検出部602を固定できる。 In the embodiment according to the present invention, first, the circuit package 400 including the flow rate detecting unit 602 is produced by the first resin mold, and then the circuit package 400 is fixed by the resin mold and at the same time, the auxiliary passage is formed by the resin mold. For this purpose, a secondary passage groove is formed by the second resin mold. By doing in this way, the flow volume detection part 602 can be fixed to the shape of the sub passage groove and the sub passage groove with extremely high accuracy.
 流量の計測に関係する部分、例えば流量検出部602の熱伝達面露出部436や熱伝達面露出部436が取り付けられる計測用流路面430を、回路パッケージ400の表面に成形する。その後、計測用流路面430と熱伝達面露出部436はハウジング302を成形する樹脂から露出させる。すなわち熱伝達面露出部436および熱伝達面露出部436周辺の計測用流路面430を、ハウジング302を成形する樹脂で覆わないようにする。回路パッケージ400の樹脂モールドで成形した計測用流路面430や熱伝達面露出部436を、あるいは温度検出部452を、そのままハウジング302の樹脂モールド後も利用し、熱式流量計300の流量計測や温度計測に使用する。このようにすることで計測精度が向上する。 A portion related to the measurement of the flow rate, for example, the measurement flow path surface 430 to which the heat transfer surface exposed portion 436 and the heat transfer surface exposed portion 436 of the flow rate detection unit 602 are attached is formed on the surface of the circuit package 400. Thereafter, the measurement channel surface 430 and the heat transfer surface exposed portion 436 are exposed from the resin for molding the housing 302. That is, the heat transfer surface exposed portion 436 and the measurement flow path surface 430 around the heat transfer surface exposed portion 436 are not covered with the resin for molding the housing 302. The flow passage surface 430 for measurement and the heat transfer surface exposed portion 436 formed by the resin mold of the circuit package 400 or the temperature detection portion 452 are also used as they are after the resin molding of the housing 302 to measure the flow rate of the thermal flow meter 300. Used for temperature measurement. By doing so, the measurement accuracy is improved.
 本発明に係る実施例では、回路パッケージ400をハウジング302に一体成形することにより、副通路を有するハウジング302に回路パッケージ400を固定しているので、少ない固定面積で回路パッケージ400をハウジング302に固定できる。すなわち、ハウジング302に接触していない回路パッケージ400の表面積を多く取ることができる。前記ハウジング302に接触していない回路パッケージ400の表面は、例えば空隙に露出している。吸気管の熱はハウジング302に伝わり、ハウジング302から回路パッケージ400に伝わる。ハウジング302で回路パッケージ400の全面あるいは大部分を包含するのではなく、ハウジング302と回路パッケージ400との接触面積を小さくしても、高精度でしかも高い信頼性を維持して、回路パッケージ400をハウジング302に固定できる。このためハウジング302から回路パッケージ400への熱伝達を低く抑えることが可能となり、計測精度の低下を抑制できる。 In the embodiment according to the present invention, the circuit package 400 is fixed to the housing 302 with a small fixed area because the circuit package 400 is fixed to the housing 302 having the sub passage by integrally forming the circuit package 400 with the housing 302. it can. That is, the surface area of the circuit package 400 that is not in contact with the housing 302 can be increased. The surface of the circuit package 400 that is not in contact with the housing 302 is exposed to a gap, for example. The heat of the intake pipe is transmitted to the housing 302 and is transmitted from the housing 302 to the circuit package 400. The housing 302 does not include the entire surface or most of the circuit package 400, but the circuit package 400 can be maintained with high accuracy and high reliability even when the contact area between the housing 302 and the circuit package 400 is reduced. It can be fixed to the housing 302. For this reason, heat transfer from the housing 302 to the circuit package 400 can be suppressed to a low level, and a decrease in measurement accuracy can be suppressed.
 図5や図6に示す実施例では、回路パッケージ400の露出面の面積Aを、ハウジング302の成形用モールド材で覆われている面積Bと同等あるいは、面積Aを面積Bより多くすることが可能である。実施例では面積Aの方が面積Bより多くなっている。このようにすることにより、ハウジング302から回路パッケージ400への熱の伝達を抑制できる。また回路パッケージ400を成形している熱硬化性樹脂の熱膨張係数とハウジング302を成形している熱可塑性樹脂の膨張係数の差による応力を低減できる。 In the embodiment shown in FIGS. 5 and 6, the area A of the exposed surface of the circuit package 400 may be equal to the area B covered with the molding material of the housing 302 or the area A may be larger than the area B. Is possible. In the embodiment, the area A is larger than the area B. By doing so, heat transfer from the housing 302 to the circuit package 400 can be suppressed. Further, the stress due to the difference between the thermal expansion coefficient of the thermosetting resin forming the circuit package 400 and the expansion coefficient of the thermoplastic resin forming the housing 302 can be reduced.
 4. 回路パッケージ400の外観
 4.1 熱伝達面露出部436を備える計測用流路面430の成形
 図8に第1樹脂モールド工程で作られる回路パッケージ400の外観を示す。なお、回路パッケージ400の外観上に記載した斜線部分は、第1樹脂モールド工程で回路パッケージ400を製造した後に、第2樹脂モールド工程でハウジング302を成形する際に、第2樹脂モールド工程で使用される樹脂により回路パッケージ400が覆われる固定面432を示す。図8(A)は回路パッケージ400の左側面図、図8(B)は回路パッケージ400の正面図、図8(C)は回路パッケージ400の背面図である。回路パッケージ400は、後述する流量検出部602や処理部604を内蔵し、熱硬化性樹脂でこれらがモールドされ、一体成形される。
4. Appearance of the circuit package 400 4.1 Molding of the measurement flow path surface 430 including the heat transfer surface exposed portion 436 FIG. 8 shows the appearance of the circuit package 400 produced in the first resin molding step. The hatched portion described on the exterior of the circuit package 400 is used in the second resin molding process when the housing 302 is molded in the second resin molding process after the circuit package 400 is manufactured in the first resin molding process. The fixing surface 432 where the circuit package 400 is covered with the resin to be shown is shown. 8A is a left side view of the circuit package 400, FIG. 8B is a front view of the circuit package 400, and FIG. 8C is a rear view of the circuit package 400. The circuit package 400 incorporates a flow rate detection unit 602 and a processing unit 604, which will be described later, and these are molded with a thermosetting resin and integrally molded.
 図8(B)に示す回路パッケージ400の表面には、被計測気体30を流すための面として作用する計測用流路面430が被計測気体30の流れ方向に長く延びる形状で成形されている。この実施例では計測用流路面430は、被計測気体30の流れ方向に長く延びる長方形を成している。この計測用流路面430は、図8(A)に示す如く、他の部分より薄く作られていて、その一部に熱伝達面露出部436が設けられている。内蔵されている流量検出部602は、熱伝達面露出部436を介して被計測気体30と熱伝達を行い、被計測気体30の状態、例えば被計測気体30の流速を計測し、主通路124を流れる流量を表す電気信号を出力する。 On the surface of the circuit package 400 shown in FIG. 8B, a measurement channel surface 430 that functions as a surface for flowing the measurement gas 30 is formed in a shape extending in the flow direction of the measurement gas 30. In this embodiment, the measurement channel surface 430 has a rectangular shape extending in the flow direction of the measurement target gas 30. As shown in FIG. 8A, the measurement channel surface 430 is made thinner than other portions, and a heat transfer surface exposed portion 436 is provided in a part thereof. The built-in flow rate detection unit 602 performs heat transfer with the measurement target gas 30 via the heat transfer surface exposure unit 436, measures the state of the measurement target gas 30, for example, the flow velocity of the measurement target gas 30, and the main passage 124. An electric signal representing the flow rate flowing through the is output.
 内蔵されている流量検出部602(図16参照)が高精度で被計測気体30の状態を計測するには、熱伝達面露出部436の近傍を流れる気体が層流であり乱れが少ないことが望ましい。このため熱伝達面露出部436の流路側面と気体を導く計測用流路面430の面との段差はない方が好ましい。このような構成により、流量計測精度を高精度に保ちつつ、流量検出部602に不均等な応力および歪が作用するのを抑制することが可能となる。なお、上記段差は流量計測精度に影響を与えない程度の段差であれば設けてもよい。 In order for the built-in flow rate detection unit 602 (see FIG. 16) to measure the state of the gas 30 to be measured with high accuracy, the gas flowing in the vicinity of the heat transfer surface exposed portion 436 is laminar and less disturbed. desirable. For this reason, it is preferable that there is no step between the side surface of the heat transfer surface exposed portion 436 and the surface of the measurement channel surface 430 that guides the gas. With such a configuration, it is possible to suppress uneven stress and distortion from acting on the flow rate detection unit 602 while maintaining high accuracy in flow rate measurement. The step may be provided as long as it does not affect the flow rate measurement accuracy.
 熱伝達面露出部436を有する計測用流路面430の裏面には、図8(C)に示す如く、回路パッケージ400の樹脂モールド成形時に内部基板あるいはプレートを支持する金型の押さえの押さえ跡442が残っている。熱伝達面露出部436は被計測気体30との間で熱のやり取りを行うために使用される場所であり、被計測気体30の状態を正確に計測するためには、流量検出部602と被計測気体30との間の熱伝達が良好に行われることが望ましい。このため、熱伝達面露出部436の部分が第1樹脂モールド工程での樹脂で覆われるのを避けなければならない。熱伝達面露出部436とその裏面である計測用流路面裏面431の両面に金型を当て、この金型により熱伝達面露出部436への樹脂の流入を防止する。熱伝達面露出部436の裏面に凹部形状の押さえ跡442が成形されている。この部分は、流量検出部602等を構成する素子が近くに配置されており、これら素子の発熱をできるだけ外部に放熱することが望ましい。成形された凹部は、樹脂の影響が少なく、放熱し易い効果を奏している。 On the back surface of the measurement flow path surface 430 having the heat transfer surface exposed portion 436, as shown in FIG. 8 (C), a pressing mark 442 for pressing the mold that supports the internal substrate or plate when the circuit package 400 is molded with resin. Remains. The heat transfer surface exposed part 436 is a place used for exchanging heat with the gas to be measured 30. In order to accurately measure the state of the gas to be measured 30, the flow detection part 602 and the object to be measured are used. It is desirable that heat transfer with the measurement gas 30 be performed satisfactorily. For this reason, it is necessary to avoid that the heat transfer surface exposed portion 436 is covered with the resin in the first resin molding step. A mold is applied to both the heat transfer surface exposed portion 436 and the measurement flow path surface back surface 431 which is the back surface thereof, and the mold prevents the resin from flowing into the heat transfer surface exposed portion 436. A recessed trace 442 is formed on the back surface of the heat transfer surface exposed portion 436. In this portion, elements constituting the flow rate detection unit 602 and the like are arranged close to each other, and it is desirable to dissipate heat generated by these elements to the outside as much as possible. The molded recess has an effect of being easy to dissipate heat with little influence of the resin.
 半導体素子で構成される流量検出部(流量検出素子)602には、熱伝達面露出部436に相当する半導体ダイヤフラムが形成されており、半導体ダイヤフラムは、流量検出部602の裏面に空隙を成形することにより得ることができる。前記空隙を密閉すると温度変化による前記空隙内の圧力の変化により、半導体ダイヤフラムが変形し、計測精度が低下する。このためこの実施例では、半導体ダイヤフラム裏面の空隙と連通する開口438を回路パッケージ400の表面に設け、半導体ダイヤフラム裏面の空隙と開口438とを繋ぐ連通路を回路パッケージ400内部に設けている。なお、前記開口438は、第2樹脂モールド工程で、樹脂により塞がれることがないように、図8に示す斜線が記載されていない部分に設けられている。 A semiconductor diaphragm corresponding to the heat transfer surface exposed portion 436 is formed in the flow rate detection unit (flow rate detection element) 602 formed of a semiconductor element, and the semiconductor diaphragm forms a gap on the back surface of the flow rate detection unit 602. Can be obtained. When the gap is sealed, the semiconductor diaphragm is deformed due to a change in pressure in the gap due to a temperature change, and the measurement accuracy is lowered. Therefore, in this embodiment, an opening 438 communicating with the gap on the back surface of the semiconductor diaphragm is provided on the surface of the circuit package 400, and a communication path connecting the gap on the back surface of the semiconductor diaphragm and the opening 438 is provided inside the circuit package 400. Note that the opening 438 is provided in a portion where the hatched lines shown in FIG. 8 are not described so that the opening 438 is not blocked by the resin in the second resin molding step.
 第1樹脂モールド工程で前記開口438を成形することが必要であり、開口438の部分とその裏面とに金型を当て、表裏両面を金型で押すことにより、開口438の部分への樹脂の流入を阻止し、開口438を成形する。開口438および半導体ダイヤフラムの裏面の空隙と開口438とを繋ぐ連通路の成形については、後述する。 It is necessary to mold the opening 438 in the first resin molding step. A mold is applied to the opening 438 and the back surface thereof, and both the front and back surfaces are pressed with the mold, so that the resin to the opening 438 can be formed. Inflow is blocked and opening 438 is formed. The formation of the communication path that connects the opening 438 and the gap on the back surface of the semiconductor diaphragm and the opening 438 will be described later.
 4.2 温度検出部452および突出部424の成形と効果
 回路パッケージ400に設けられた温度検出部452は、温度検出部452を支持するために被計測気体30の上流方向に延びている突出部424の先端に設けられて、被計測気体30の温度を検出する機能を備えている。高精度に被計測気体30の温度を検出するには、被計測気体30以外部分との熱の伝達をできるだけ少なくすることが望ましい。温度検出部452を支持する突出部424は、その根元より、先端部分が細い形状を成し、その先端部分に温度検出部452を設けている。このような形状により、温度検出部452への突出部424の根元部からの熱の影響が低減される。
4.2 Molding and Effect of Temperature Detection Unit 452 and Projection 424 The temperature detection unit 452 provided in the circuit package 400 is a projection that extends in the upstream direction of the gas to be measured 30 to support the temperature detection unit 452. It is provided at the tip of 424 and has a function of detecting the temperature of the gas 30 to be measured. In order to detect the temperature of the gas to be measured 30 with high accuracy, it is desirable to reduce the heat transfer with the portion other than the gas to be measured 30 as much as possible. The protrusion 424 that supports the temperature detection unit 452 has a tip that is narrower than the base, and the temperature detection unit 452 is provided at the tip. With such a shape, the influence of heat from the base portion of the protruding portion 424 on the temperature detecting portion 452 is reduced.
 また、温度検出部452で被計測気体30の温度が検出された後、被計測気体30は突出部424に沿って流れ、突出部424の温度を被計測気体30の温度に近づける作用を為す。このことにより、突出部424の根元部の温度が温度検出部452に及ぼす影響が抑制されている。特にこの実施例では、温度検出部452を備える突出部424の近傍が細く、突出部424の根元に行くに従って太くなっている。このため、被計測気体30がこの突出部424の形状に沿って流れ、突出部424を効率的に冷却する。 Further, after the temperature of the measurement target gas 30 is detected by the temperature detection unit 452, the measurement target gas 30 flows along the protrusion 424, and acts to bring the temperature of the protrusion 424 close to the temperature of the measurement target gas 30. As a result, the influence of the temperature of the base portion of the protrusion 424 on the temperature detection unit 452 is suppressed. In particular, in this embodiment, the vicinity of the protruding portion 424 including the temperature detecting portion 452 is thin, and becomes thicker toward the root of the protruding portion 424. For this reason, the measurement target gas 30 flows along the shape of the protruding portion 424, and the protruding portion 424 is efficiently cooled.
 突出部424の根元部で斜線部は第2樹脂モールド工程でハウジング302を成形する樹脂により覆われる固定面432である。突出部424の根元部の斜線部に窪みが設けられている。これは、ハウジング302の樹脂に覆われない窪み形状の部分が設けられていることを示している。このように突出部424の根元部のハウジング302の樹脂に覆われない窪み形状の部分を作ることにより、被計測気体30により突出部424がさらに冷却し易くしている。 The hatched portion at the base portion of the protruding portion 424 is a fixed surface 432 covered with a resin that forms the housing 302 in the second resin molding step. A depression is provided in the shaded portion at the base of the protrusion 424. This indicates that a hollow portion that is not covered with the resin of the housing 302 is provided. In this way, by forming a hollow-shaped portion that is not covered with the resin of the housing 302 at the base of the protrusion 424, the protrusion 424 is further easily cooled by the measurement target gas 30.
 4.3 回路パッケージ400の端子
 回路パッケージ400には、内蔵する流量検出部602や処理部604を動作させるための電力の供給、および流量の計測値や温度の計測値を出力するために、接続端子412が設けられている。さらに、回路パッケージ400が正しく動作するかどうか、回路部品やその接続に異常が生じていないかの検査を行うために、端子414が設けられている。この実施例では、第1樹脂モールド工程で流量検出部602や処理部604を、熱硬化性樹脂を用いてトランスファモールドすることにより回路パッケージ400が作られる。トランスファモールド成形を行うことにより、回路パッケージ400の寸法精度を向上することができるが、トランスファモールド工程では、流量検出部602や処理部604を内蔵する密閉した金型の内部に加圧した高温の樹脂が圧入されるので、出来上がった回路パッケージ400について、流量検出部602や処理部604およびこれらの配線関係に損傷が無いかを検査することが望ましい。この実施例では、検査のための端子414を設け、生産された各回路パッケージ400についてそれぞれ検査を実施する。検査用の端子414は計測用には使用されないので、上述したように、端子414は外部端子内端361には接続されない。なお各接続端子412には、機械的弾性力を増すために、湾曲部416が設けられている。各接続端子412に機械的弾性力を持たせることで、第1樹脂モールド工程による樹脂と第2樹脂モールド工程による樹脂の熱膨張係数の相違に起因して発生する応力を吸収することができる。すなわち、各接続端子412は第1樹脂モールド工程による熱膨張の影響を受け、さらに各接続端子412に接続される外部端子内端361は第2樹脂モールド工程による樹脂の影響を受ける。これら樹脂の違いに起因する応力の発生を吸収することができる。
4.3 Terminals of the circuit package 400 The circuit package 400 is connected to supply power for operating the built-in flow rate detection unit 602 and processing unit 604, and to output flow rate measurement values and temperature measurement values. A terminal 412 is provided. Further, a terminal 414 is provided to inspect whether the circuit package 400 operates correctly and whether an abnormality has occurred in the circuit components or their connections. In this embodiment, the circuit package 400 is made by transfer molding the flow rate detection unit 602 and the processing unit 604 using a thermosetting resin in the first resin molding step. By performing transfer molding, the dimensional accuracy of the circuit package 400 can be improved. However, in the transfer molding process, a high-temperature pressure is applied to the inside of the sealed mold containing the flow rate detection unit 602 and the processing unit 604. Since the resin is injected, it is desirable to inspect the completed circuit package 400 for damage to the flow rate detection unit 602, the processing unit 604, and their wiring relationship. In this embodiment, a terminal 414 for inspection is provided, and each circuit package 400 produced is inspected. Since the inspection terminal 414 is not used for measurement, the terminal 414 is not connected to the external terminal inner end 361 as described above. Each connection terminal 412 is provided with a bending portion 416 in order to increase mechanical elastic force. By giving each connection terminal 412 a mechanical elastic force, it is possible to absorb stress generated due to a difference in thermal expansion coefficient between the resin in the first resin molding process and the resin in the second resin molding process. That is, each connection terminal 412 is affected by thermal expansion due to the first resin molding process, and the external terminal inner end 361 connected to each connection terminal 412 is affected by resin due to the second resin molding process. Generation | occurrence | production of the stress resulting from these resin differences can be absorbed.
 4.4 第2樹脂モールド工程による回路パッケージ400の固定とその効果
 図8で斜線の部分は、第2樹脂モールド工程において、ハウジング302に回路パッケージ400を固定するために、第2樹脂モールド工程で使用する熱可塑性樹脂で回路パッケージ400を覆うための、固定面432を示している。図5や図6を用いて説明したとおり、計測用流路面430および計測用流路面430に設けられている熱伝達面露出部436と副通路の形状との関係が、規定された関係となるように、高い精度で維持されることが重要である。第2樹脂モールド工程において、副通路を成形すると共に同時に副通路を成形するハウジング302に回路パッケージ400を固定するので、前記副通路と計測用流路面430および熱伝達面露出部436との関係を極めて高い精度で維持できる。すなわち、第2樹脂モールド工程において回路パッケージ400をハウジング302に固定するので、副通路を備えたハウジング302を成形するための金型内に、回路パッケージ400を高い精度で位置決めして固定することが可能となる。この金型内に高温の熱可塑性樹脂を注入することで、副通路が高い精度で成形されると共に、回路パッケージ400が高い精度で固定される。
4.4 Fixing of Circuit Package 400 by Second Resin Molding Process and Its Effect In FIG. 8, the hatched portion is the second resin molding process in order to fix circuit package 400 to housing 302 in the second resin molding process. The fixing surface 432 for covering the circuit package 400 with the thermoplastic resin to be used is shown. As described with reference to FIG. 5 and FIG. 6, the relationship between the measurement channel surface 430 and the heat transfer surface exposed portion 436 provided on the measurement channel surface 430 and the shape of the sub-passage is a prescribed relationship. As such, it is important that it be maintained with high accuracy. In the second resin molding step, the circuit package 400 is fixed to the housing 302 that molds the sub-passage and at the same time forms the sub-passage. It can be maintained with extremely high accuracy. That is, since the circuit package 400 is fixed to the housing 302 in the second resin molding step, the circuit package 400 can be positioned and fixed with high accuracy in a mold for forming the housing 302 having the sub-passage. It becomes possible. By injecting a high-temperature thermoplastic resin into the mold, the sub-passage is molded with high accuracy, and the circuit package 400 is fixed with high accuracy.
 この実施例では、回路パッケージ400の全面を、ハウジング302を成形する樹脂で覆う固定面432とするのではなく、回路パッケージ400の接続端子412側に表面が露出する、すなわちハウジング302用樹脂で覆われない部分を設けている。図8に示す実施例では、回路パッケージ400の表面の内、ハウジング302用樹脂に包含される固定面432の面積より、ハウジング302の樹脂に包含されないでハウジング302用樹脂から露出している面積の方が広くなっている。 In this embodiment, the entire surface of the circuit package 400 is not the fixing surface 432 that is covered with the resin for molding the housing 302, but the surface is exposed to the connection terminal 412 side of the circuit package 400, that is, the housing is covered with the resin for the housing 302. The part which is not broken is provided. In the embodiment shown in FIG. 8, the area of the surface of the circuit package 400 that is not included in the resin of the housing 302 and exposed from the resin for the housing 302 is larger than the area of the fixing surface 432 included in the resin for the housing 302. Is wider.
 回路パッケージ400を成形する熱硬化性樹脂と固定部372を備えるハウジング302を成形する熱可塑性樹脂とでは熱膨張係数に差があり、この熱膨張係数差に基づく応力が回路パッケージ400にできるだけ加わらないようにすることが望ましい。回路パッケージ400の表面の固定面432を少なくすることで、熱膨張係数の差に基づく影響を低減できる。例えば幅Lの帯状とすることにより、回路パッケージ400の表面の固定面432を少なくすることができる。 There is a difference in the thermal expansion coefficient between the thermosetting resin that forms the circuit package 400 and the thermoplastic resin that forms the housing 302 including the fixing portion 372, and stress based on this difference in thermal expansion coefficient is not applied to the circuit package 400 as much as possible. It is desirable to do so. By reducing the fixed surface 432 on the surface of the circuit package 400, the influence based on the difference in thermal expansion coefficient can be reduced. For example, the fixed surface 432 on the surface of the circuit package 400 can be reduced by forming a belt with a width L.
 また突出部424の根元に固定面432を設けることで、突出部424の機械的強度を増すことができる。回路パッケージ400の表面において、被計測気体30が流れる軸に沿う方向に帯状の固定面を設け、さらに被計測気体30が流れる軸と交差する方向の固定面を設けることで、より強固に回路パッケージ400とハウジング302とを互いに固定することができる。固定面432において、計測用流路面430に沿って幅Lで帯状に回路パッケージ400を取り巻いている部分が上述した被計測気体30の流れ軸に沿う方向の固定面であり、突出部424の根元を覆う部分が、被計測気体30の流れ軸を横切る方向の固定面である。 Also, the mechanical strength of the projecting portion 424 can be increased by providing the fixing surface 432 at the base of the projecting portion 424. On the surface of the circuit package 400, by providing a band-shaped fixed surface in a direction along the axis through which the measured gas 30 flows, and further providing a fixed surface in a direction intersecting with the axis through which the measured gas 30 flows, the circuit package is more firmly provided 400 and the housing 302 can be fixed to each other. In the fixed surface 432, a portion surrounding the circuit package 400 in a band shape with a width L along the measurement flow path surface 430 is a fixed surface in the direction along the flow axis of the measurement target gas 30 described above, and the root of the protrusion 424. The portion that covers is a fixed surface in the direction crossing the flow axis of the measurement target gas 30.
 5. 回路パッケージへの回路部品の搭載
 5.1 回路パッケージのリードフレーム511
 図9に回路パッケージ400のリードフレーム511およびリードフレーム511に搭載された回路部品の搭載状態を示す。なお、破線部508は、回路パッケージ400のモールド成形時に用いられる金型により覆われて樹脂で封止される樹脂封止領域を示す。そして、破線部509、510は、オーバーフローゲートを通過してキャビティからオーバーフローしたモールド樹脂が流れ込むオーバーフロー領域を示す。
5. Mounting of circuit components on circuit package 5.1 Circuit package lead frame 511
FIG. 9 shows the lead frame 511 of the circuit package 400 and the mounting state of the circuit components mounted on the lead frame 511. A broken line portion 508 indicates a resin sealing region that is covered with a mold used when the circuit package 400 is molded and sealed with resin. Dashed lines 509 and 510 indicate overflow regions where mold resin that has passed through the overflow gate and overflowed from the cavity flows.
 リードフレーム511は、複数本のリードと、これら複数本のリードに機械的に接続された支持枠512を有している。リードフレーム511の中央には、プレート532が搭載される実装部が設けられている。プレート532には、回路部品である、チップ状の流量検出部602およびLSIとして作られている処理部604が搭載されている。流量検出部602にはダイヤフラム672が設けられており、これが、上述したモールド成形により上述した熱伝達面露出部436に相当する。また、以下に説明する流量検出部602の各端子と処理部604とがワイヤ542で電気的に接続されている。さらに処理部604の各端子と対応するリード514とがワイヤ543で接続されている。また回路パッケージ400の接続端子となる部分とプレート532との間に位置するリード514は、それらの間に回路部品であるチップ部品516が接続されている。 The lead frame 511 has a plurality of leads and a support frame 512 mechanically connected to the plurality of leads. In the center of the lead frame 511, a mounting portion on which the plate 532 is mounted is provided. Mounted on the plate 532 are a chip-shaped flow rate detection unit 602 and a processing unit 604 made as an LSI, which are circuit components. The flow rate detection unit 602 is provided with a diaphragm 672, which corresponds to the heat transfer surface exposed portion 436 described above by the molding described above. Further, each terminal of the flow rate detection unit 602 described below and the processing unit 604 are electrically connected by wires 542. Further, each terminal of the processing unit 604 and the corresponding lead 514 are connected by a wire 543. Further, the lead 514 located between the portion serving as the connection terminal of the circuit package 400 and the plate 532 is connected to the chip component 516 which is a circuit component therebetween.
 このように回路パッケージ400として完成された場合の最も先端側に、ダイヤフラム672を有する流量検出部602を配置し、前記流量検出部602に対して接続端子となる方に処理部604がLSIの状態で配置され、さらに処理部604の端子側に接続用のワイヤ543が配置されている。このように回路パッケージ400の先端側から接続端子の方向に順に、流量検出部602、処理部604、ワイヤ543、チップ部品516、接続用のリード514と配置することで、全体がシンプルとなり、全体が簡潔とした配置となる。 In this way, when the circuit package 400 is completed, the flow rate detection unit 602 having the diaphragm 672 is disposed at the most distal end side, and the processing unit 604 is in an LSI state to be a connection terminal with respect to the flow rate detection unit 602. Further, a connection wire 543 is disposed on the terminal side of the processing unit 604. In this way, by arranging the flow rate detection unit 602, the processing unit 604, the wire 543, the chip component 516, and the connection lead 514 in order from the front end side of the circuit package 400 to the connection terminal, the whole is simplified, and the whole Is a concise arrangement.
 プレート532を支えるために、実装部が設けられており、この実装部はリード556やリード558により支持枠512に支持固定されている。なお、実装部は、プレート532の下面に接続されるプレート532と同等の面積の図示しないリード面を有しており、プレート532がこの実装部のリード面上に搭載される。これら実装部のリード面はグランド接地されている。これによって、上記流量検出部602や処理部604の回路内の接地を共通して上記リード面を介して行うことでノイズを抑えることができ、被計測気体30の計測精度を向上している。またプレート532から流路の上流側の方に、すなわち上述した流量検出部602や処理部604、チップ部品516の配列方向を横切る方向のX軸に沿って突出するようにして、リード544が設けられている。このリード544には温度検出素子518、例えばチップ状のサーミスタが接続されている。さらに前記突出部の根元である処理部604に近い方に、リード548が設けられ、リード544とリード548とはAuワイヤなどの細線546で電気的に接続されている。リード548とリード544とを直接接続すると、熱がこれらリード548とリード544とを介して温度検出素子518に伝わり、正確に被計測気体30の温度を計測することができなくなる。このため断面積の小さい線である熱抵抗の大きい線で接続することにより、リード548とリード544との間の熱抵抗を大きくすることができる。これにより、熱の影響が温度検出素子518に及ばないようにし、被計測気体30の温度の計測精度を向上している。 A mounting portion is provided to support the plate 532, and this mounting portion is supported and fixed to the support frame 512 by leads 556 and leads 558. The mounting portion has a lead surface (not shown) having an area equivalent to that of the plate 532 connected to the lower surface of the plate 532, and the plate 532 is mounted on the lead surface of the mounting portion. The lead surfaces of these mounting parts are grounded. Thus, noise can be suppressed by performing grounding in the circuits of the flow rate detection unit 602 and the processing unit 604 via the lead surface in common, and the measurement accuracy of the measurement target gas 30 is improved. Further, a lead 544 is provided so as to protrude from the plate 532 toward the upstream side of the flow path, that is, along the X axis in a direction crossing the arrangement direction of the flow rate detection unit 602, the processing unit 604, and the chip component 516 described above. It has been. A temperature detection element 518, for example, a chip-like thermistor is connected to the lead 544. Furthermore, a lead 548 is provided near the processing portion 604 that is the base of the protruding portion, and the lead 544 and the lead 548 are electrically connected by a thin wire 546 such as an Au wire. When the lead 548 and the lead 544 are directly connected, heat is transmitted to the temperature detection element 518 through the lead 548 and the lead 544, and the temperature of the measurement target gas 30 cannot be measured accurately. For this reason, the thermal resistance between the lead 548 and the lead 544 can be increased by connecting with a line having a small cross-sectional area and a large thermal resistance. Thereby, the influence of heat does not reach the temperature detection element 518, and the measurement accuracy of the temperature of the measurement target gas 30 is improved.
 またリード548はリード552やリード554により、支持枠512に固定されている。これらリード552やリード554と支持枠512との接続部分は、前記突出している温度検出素子518の突出方向に対して傾斜した状態で支持枠512に固定されており、金型もこの部分で斜めの配置となる。第1樹脂モールド工程でモールド用樹脂がこの斜めの状態に沿って流れることにより、温度検出素子518が設けられた先端部分に、第1樹脂モールド工程のモールド用樹脂がスムーズに流れ、信頼性が向上する。 The lead 548 is fixed to the support frame 512 by a lead 552 and a lead 554. The connecting portion between the lead 552 and the lead 554 and the support frame 512 is fixed to the support frame 512 in an inclined state with respect to the protruding direction of the protruding temperature detecting element 518, and the mold is also inclined at this portion. It becomes arrangement of. As the molding resin flows along this oblique state in the first resin molding step, the molding resin in the first resin molding step flows smoothly to the tip portion where the temperature detection element 518 is provided, and reliability is improved. improves.
 図9に樹脂の圧入方向を示す矢印592を示している。温度検出素子518、流量検出部602、処理部604やチップ部品516などの回路部品をリードフレーム511に搭載し、そのリードフレーム511を金型で覆い、金型の丸印の位置に設けた樹脂注入用の圧入孔(充填入口部)598から前記矢印592の方向に向かって、前記金型のキャビティ内に熱硬化性樹脂を注入する。圧入孔598は、回路パッケージ400の流量検出部602および温度検出素子518に対向する位置に設けられている。換言すると、前記圧入孔598から熱硬化性樹脂が注入される方向(矢印592の方向)の前方位置には、温度検出素子518及び流量検出部602が配置されている。温度検出素子518は、リード544に搭載されている。温度検出素子518及び流量検出部602よりも圧入孔598に接近した位置には、プレート532や処理部604、チップ部品516などの回路部品が設けられている。このように配置することで、第1樹脂モールド工程で樹脂がスムーズに流れる。第1樹脂モールド工程では、熱硬化性樹脂を使用しており、硬化する前に樹脂を全体に行き渡らせることが重要である。このためリード514における回路部品や配線の配置と、圧入孔598や圧入方向の関係がたいへん重要となる。 FIG. 9 shows an arrow 592 indicating the resin press-fitting direction. A resin in which circuit components such as a temperature detection element 518, a flow rate detection unit 602, a processing unit 604, and a chip component 516 are mounted on a lead frame 511, the lead frame 511 is covered with a mold, and the mold is provided at a circled position. A thermosetting resin is injected into the cavity of the mold in the direction of the arrow 592 from the injection press-fitting hole (filling inlet portion) 598. The press-fitting hole 598 is provided at a position facing the flow rate detection unit 602 and the temperature detection element 518 of the circuit package 400. In other words, the temperature detection element 518 and the flow rate detection unit 602 are disposed at a front position in the direction in which the thermosetting resin is injected from the press-fitting hole 598 (the direction of the arrow 592). The temperature detection element 518 is mounted on the lead 544. Circuit components such as a plate 532, a processing unit 604, and a chip component 516 are provided at a position closer to the press-fitting hole 598 than the temperature detection element 518 and the flow rate detection unit 602. By arranging in this way, the resin flows smoothly in the first resin molding step. In the first resin molding step, a thermosetting resin is used, and it is important to spread the resin throughout before curing. For this reason, the relationship between the arrangement of circuit components and wiring in the lead 514 and the press-fitting hole 598 and the press-fitting direction is very important.
 図10は、第1樹脂モールド工程で第1のモールド樹脂を金型内に充填した実施例を示す図である。
 回路パッケージ400は、回路部品が配置される本体部404と、本体部404から突出して温度検出素子518が配置される第1のパッケージ突出部401と、第1のパッケージ突出部401から離間して本体部404から突出して流量検出部602が配置される第2のパッケージ突出部402とを有している。そして、モールド樹脂を金型のキャビティ内に充填した際の入口となる充填入口部405が本体部404に設けられている。充填入口部405は、回路部品を間に介して第1のパッケージ突出部401及び第2のパッケージ突出部402に対向する位置に配置されている。
FIG. 10 is a diagram showing an example in which a first mold resin is filled in a mold in the first resin molding step.
The circuit package 400 is separated from the main body 404 where the circuit components are arranged, the first package protrusion 401 protruding from the main body 404 and the temperature detecting element 518 being arranged, and the first package protrusion 401. It has a second package protrusion 402 that protrudes from the main body 404 and on which the flow rate detector 602 is disposed. The main body 404 is provided with a filling inlet 405 serving as an inlet when the mold resin is filled into the mold cavity. The filling inlet 405 is disposed at a position facing the first package protrusion 401 and the second package protrusion 402 with the circuit components therebetween.
 本体部404は、平面視略矩形の平板形状を有しており、第1のパッケージ突出部401を有する上流辺部(第1辺部)と、上流辺部の一端側に配置されて第2のパッケージ突出部402を有する先端辺部(第2辺部)と、先端辺部の一端側に配置されて上流辺部に対向する下流辺部(第3辺部)と、下流辺部の一端側と上流辺部の他端側との間に配置されて先端辺部に対向しリードが突出する基端辺部(第4辺部)とを有している。 The main body portion 404 has a substantially rectangular flat plate shape in plan view, and is disposed on the upstream side portion (first side portion) having the first package projecting portion 401 and one end side of the upstream side portion. A tip side portion (second side portion) having the package protruding portion 402, a downstream side portion (third side portion) disposed on one end side of the tip side portion and facing the upstream side portion, and one end of the downstream side portion And a base end side portion (fourth side portion) which is disposed between the side and the other end side of the upstream side portion and faces the tip end side portion and from which the lead protrudes.
 本体部404は、下流辺部と基端辺部との間の角部403で且つ下流辺部に突設された凸部403Aを有しており、その凸部403Aに充填入口部405が配置されている。 The main body portion 404 has a convex portion 403A protruding from the downstream side portion at the corner portion 403 between the downstream side portion and the base end side portion, and the filling inlet portion 405 is disposed on the convex portion 403A. Has been.
 回路パッケージ400をモールド成形する金型のキャビティには、回路パッケージ400の角部403の充填入口部405に相当する位置に圧入孔598が設けられており、入口ゲート599Aが接続されている。入口ゲート599Aは、樹脂充填通路597からキャビティ内にモールド樹脂を供給するための分岐通路であり、本体部404の角部403を通過する対角線の延長線上に延在して圧入孔598に連続する。 In the mold cavity for molding the circuit package 400, a press-fitting hole 598 is provided at a position corresponding to the filling inlet 405 of the corner 403 of the circuit package 400, and an inlet gate 599A is connected thereto. The inlet gate 599A is a branch passage for supplying mold resin into the cavity from the resin filling passage 597, and extends on a diagonal extension passing through the corner portion 403 of the main body 404 and continues to the press-fitting hole 598. .
 樹脂充填通路597は、回路パッケージ400と同一平面上の離間した位置で、回路パッケージ400の基端辺部と先端辺部との間を結ぶY軸方向に沿って下流辺部と平行に延在して設けられている。入口ゲート599Aは、樹脂充填通路597の途中位置で分岐して、回路パッケージ400の対角線上に沿うようにY軸方向に対して斜めに延在して圧入孔598に接続されている。 The resin filling passage 597 extends in parallel to the downstream side portion along the Y-axis direction connecting the base end side portion and the tip end side portion of the circuit package 400 at a spaced position on the same plane as the circuit package 400. Is provided. The inlet gate 599A branches at a midpoint of the resin filling passage 597, extends obliquely with respect to the Y-axis direction along the diagonal line of the circuit package 400, and is connected to the press-fitting hole 598.
 そして、回路パッケージ400の第1のパッケージ突出部401の先端に相当する位置と、第2のパッケージ突出部402の先端に相当する位置には、キャビティ内からモールド樹脂の余剰分が流れ出る樹脂出口部509A、510Aが設けられており、それぞれオーバーフロー領域509,510に接続されている。 A resin outlet portion from which excess mold resin flows out from the cavity is located at a position corresponding to the tip of the first package protrusion 401 of the circuit package 400 and a position corresponding to the tip of the second package protrusion 402. 509A and 510A are provided and connected to overflow areas 509 and 510, respectively.
 回路パッケージ400は、本体部404の角部403でかつ下流辺部に突設された凸部403Aに充填入口部405が設けられており、本体部404の角部403を通過して対角線の延長線上に延在する入口ゲート599Aを介して、充填入口部405を形成する圧入孔598からキャビティ内にモールド樹脂を充填することによって形成されている。 In the circuit package 400, a filling inlet 405 is provided at a convex portion 403A protruding from the corner 403 of the main body 404 and on the downstream side. The circuit package 400 passes through the corner 403 of the main body 404 and extends a diagonal line. It is formed by filling a mold resin into a cavity from a press-fitting hole 598 forming a filling inlet portion 405 via an inlet gate 599A extending on a line.
 入口ゲート599Aは、本体部404のY軸方向に対して斜めに接続されているので、入口ゲート599Aからキャビティにモールド樹脂を充填した場合に、回路パッケージ400の対角線上に沿って流れ込ませることができ、角部403から対角線上に離れた位置に対向して配置されている第1のパッケージ突出部401および第2のパッケージ突出部402まで、円滑に樹脂を流れ込ませることができ、硬化する前にモールド樹脂をキャビティ全体に行き渡らせることができる。 Since the entrance gate 599A is connected obliquely with respect to the Y-axis direction of the main body 404, when the mold resin is filled into the cavity from the entrance gate 599A, the entrance gate 599A can flow along the diagonal line of the circuit package 400. The resin can flow smoothly to the first package protrusion 401 and the second package protrusion 402 that are arranged opposite to each other on the diagonal line from the corner 403, and before the resin is cured. The mold resin can be spread over the entire cavity.
 そして、角部403と、第1のパッケージ突出部401および第2のパッケージ突出部402との間には、処理部604やチップ部品516などの回路部品が配置されているので、入口ゲート599Aからキャビティ内に高温高圧で注入されたモールド樹脂は、回路部品に当接してこれらを迂回するようにキャビティ内に広がる。したがって、高温高圧のモールド樹脂が流量検出部602および温度検出素子518に直接衝突するのを防ぎ、モールド樹脂による流量検出部602および温度検出素子518への熱的ダメージを抑制することができる。 Since circuit parts such as the processing part 604 and the chip part 516 are arranged between the corner part 403 and the first package protrusion part 401 and the second package protrusion part 402, from the entrance gate 599A. The mold resin injected at high temperature and high pressure into the cavity spreads in the cavity so as to abut circuit components and bypass them. Accordingly, it is possible to prevent the high temperature / high pressure mold resin from directly colliding with the flow rate detection unit 602 and the temperature detection element 518, and to suppress thermal damage to the flow rate detection unit 602 and the temperature detection element 518 due to the mold resin.
 また、流量検出部602は、熱伝達面露出部436の部分がモールド樹脂で覆われるのを避けるために、熱伝達面露出部436とその裏面である計測用流路面裏面431の両面に金型の当接部を当接させて、熱伝達面露出部436を保持し、熱伝達面露出部436への樹脂の流入を防止しているので、モールド樹脂が金型の当接部に直接衝突するのを避けることによって、金型により保持する保持力を増大させることなく、熱伝達面露出部436への樹脂の流入を防ぐことができ、熱伝達面露出部436への樹脂漏れ(樹脂かぶり)の発生を防止できる。
 なお、樹脂硬化後における回路パッケージ400は、樹脂充填通路597や入口ゲート599Aの樹脂を切断して使用する。切断箇所の回路パッケージ400の樹脂表面状態はその他周辺の表面状態に比べて粗く、切断後に入口ゲートの位置を特定することは容易である。
In addition, the flow rate detection unit 602 has molds on both sides of the heat transfer surface exposed portion 436 and the measurement channel surface back surface 431 which is the back surface thereof in order to prevent the heat transfer surface exposed portion 436 from being covered with the mold resin. Since the heat transfer surface exposed portion 436 is held and the inflow of resin to the heat transfer surface exposed portion 436 is prevented, the mold resin directly collides with the contact portion of the mold. By avoiding this, it is possible to prevent the resin from flowing into the heat transfer surface exposed portion 436 without increasing the holding force held by the mold, and the resin leakage into the heat transfer surface exposed portion 436 (resin fogging) ) Can be prevented.
The circuit package 400 after the resin is cured is used by cutting the resin in the resin filling passage 597 and the entrance gate 599A. The resin surface state of the circuit package 400 at the cut location is rougher than the other peripheral surface states, and it is easy to specify the position of the entrance gate after cutting.
 図11は、第1樹脂モールド工程で第1のモールド樹脂を金型内に注入した他の実施例を示す図である。
 本実施例では、回路パッケージ400は、本体部404の角部403で且つ基端辺部に充填入口部405が設けられており、入口ゲート599Bを介してキャビティ内にモールド樹脂を充填して形成された構成を有している。入口ゲート599Bは、樹脂充填通路597の途中位置で分岐して、本体部404のY軸方向に沿って下流辺部と同方向に延在して、角部403で且つ基端辺部に設けられた圧入孔598に接続されている。本体部404の基端辺部から突出するリード514は、入口ゲート599Bを設けた分だけ上流辺部側に偏位するように屈曲された形状を有している。
FIG. 11 is a view showing another embodiment in which the first molding resin is injected into the mold in the first resin molding step.
In this embodiment, the circuit package 400 is formed by filling the mold resin into the cavity via the inlet gate 599B, which is provided with a filling inlet 405 at the corner 403 of the main body 404 and at the base end. It has the structure which was made. The entrance gate 599B branches at a midpoint of the resin filling passage 597, extends in the same direction as the downstream side along the Y-axis direction of the main body 404, and is provided at the corner 403 and at the base end side. The press-fitting hole 598 is connected. The lead 514 protruding from the base end side portion of the main body portion 404 has a bent shape so as to be displaced toward the upstream side portion by the amount provided with the entrance gate 599B.
 入口ゲート599Bは、本体部404のY軸方向に沿って延在しているので、入口ゲート599Bからキャビティにモールド樹脂を充填した場合に、回路パッケージ400の対角線上に拡がるように流れ込ませることができ、角部403から対角線上に離れた位置に対向して配置されている第1のパッケージ突出部401および第2のパッケージ突出部402まで、円滑に樹脂を流れ込ませることができ、硬化する前にモールド樹脂をキャビティ全体に行き渡らせることができる。 Since the entrance gate 599B extends along the Y-axis direction of the main body 404, when the mold resin is filled into the cavity from the entrance gate 599B, the entrance gate 599B can be caused to flow so as to expand on a diagonal line of the circuit package 400. The resin can flow smoothly to the first package protrusion 401 and the second package protrusion 402 that are arranged opposite to each other on the diagonal line from the corner 403, and before the resin is cured. The mold resin can be spread over the entire cavity.
 そして、上記した実施例と同様に、高温高圧のモールド樹脂が流量検出部602および温度検出素子518に直接衝突するのを防ぎ、モールド樹脂による流量検出部602および温度検出素子518への熱的ダメージを抑制することができ、また、金型により保持する保持力を増大させることなく、熱伝達面露出部436への樹脂の流入を防いで、熱伝達面露出部436への樹脂漏れの発生を防止できる。 As in the above-described embodiment, the high temperature and high pressure mold resin is prevented from directly colliding with the flow rate detection unit 602 and the temperature detection element 518, and thermal damage to the flow rate detection unit 602 and the temperature detection element 518 due to the mold resin. In addition, it is possible to prevent the resin from flowing into the heat transfer surface exposed portion 436 without increasing the holding force held by the mold, and to prevent the resin leakage to the heat transfer surface exposed portion 436. Can be prevented.
 本実施例では、入口ゲート599Bが樹脂充填通路597と平行に延在しているので、図10に示す実施例と比較して、回路パッケージ400の角部403に凸部403Aを設ける必要がない。したがって、回路パッケージ400の外形形状をより単純な形状にすることができ、また、樹脂充填通路597の位置を、凸部403Aの省略分d1だけ回路パッケージ400に接近させることができ、金型およびリードフレーム511を小型化することができる。 In this embodiment, since the entrance gate 599B extends in parallel with the resin filling passage 597, it is not necessary to provide the convex portion 403A at the corner portion 403 of the circuit package 400 as compared with the embodiment shown in FIG. . Therefore, the outer shape of the circuit package 400 can be made a simpler shape, and the position of the resin filling passage 597 can be made closer to the circuit package 400 by the omitted portion d1 of the convex portion 403A. The lead frame 511 can be reduced in size.
 図12は、第1樹脂モールド工程で第1のモールド樹脂を金型内に注入した他の実施例を示す図である。
 本実施例では、回路パッケージ400は、本体部404の角部403で且つ下流辺部に充填入口部405が設けられており、入口ゲート599Cを介してキャビティ内にモールド樹脂を充填して形成された構成を有している。入口ゲート599Cは、樹脂充填通路597の先端付近で分岐して、本体部404のX軸方向に沿って基端辺部と同方向に延在して、角部403で且つ下流辺部に設けられた圧入孔598に接続されている。
FIG. 12 is a view showing another embodiment in which the first molding resin is injected into the mold in the first resin molding step.
In this embodiment, the circuit package 400 is formed by filling the mold resin into the cavity via the inlet gate 599C, which is provided with a filling inlet 405 at the corner 403 of the main body 404 and at the downstream side. It has a configuration. The inlet gate 599C branches near the tip of the resin filling passage 597, extends in the same direction as the base side along the X-axis direction of the main body 404, and is provided at the corner 403 and on the downstream side. The press-fitting hole 598 is connected.
 入口ゲート599Cは、本体部404のX軸方向に沿って延在しているので、入口ゲート599Cからキャビティにモールド樹脂を充填した場合に、回路パッケージ400の対角線上に拡がるように流れ込ませることができ、角部403から対角線上に離れた位置に対向して配置されている第1のパッケージ突出部401および第2のパッケージ突出部402まで、円滑に樹脂を流れ込ませることができ、硬化する前にモールド樹脂をキャビティ全体に行き渡らせることができる。 Since the entrance gate 599C extends along the X-axis direction of the main body portion 404, when the cavity is filled with mold resin from the entrance gate 599C, the entrance gate 599C can be caused to flow so as to expand on a diagonal line of the circuit package 400. The resin can flow smoothly to the first package protrusion 401 and the second package protrusion 402 that are arranged opposite to each other on the diagonal line from the corner 403, and before the resin is cured. The mold resin can be spread over the entire cavity.
 そして、上記した実施例と同様に、高温高圧のモールド樹脂が流量検出部602および温度検出素子518に直接衝突するのを防ぎ、モールド樹脂による流量検出部602および温度検出素子518への熱的ダメージを抑制することができ、また、金型により保持する保持力を増大させることなく、熱伝達面露出部436への樹脂の流入を防いで、熱伝達面露出部436への樹脂漏れの発生を防止できる。 As in the above-described embodiment, the high temperature and high pressure mold resin is prevented from directly colliding with the flow rate detection unit 602 and the temperature detection element 518, and thermal damage to the flow rate detection unit 602 and the temperature detection element 518 due to the mold resin. In addition, it is possible to prevent the resin from flowing into the heat transfer surface exposed portion 436 without increasing the holding force held by the mold, and to prevent the resin leakage to the heat transfer surface exposed portion 436. Can be prevented.
 本実施例では、入口ゲート599Cが樹脂充填通路597に直交する方向に延在しているので、図10に示す実施例と比較して、回路パッケージ400の角部403に凸部403Aを設ける必要がなく、また、図11に示す実施例と比較して、リード514の形状を変更する必要がない。したがって、回路パッケージ400とリード514の形状をより単純な形状にすることができ、また、樹脂充填通路597の位置を、凸部403Aの省略分d1だけ回路パッケージ400に接近させることができ、金型およびリードフレーム511を小型化することができる。 In this embodiment, since the entrance gate 599C extends in a direction orthogonal to the resin filling passage 597, it is necessary to provide a convex portion 403A at the corner portion 403 of the circuit package 400 as compared with the embodiment shown in FIG. In addition, it is not necessary to change the shape of the lead 514 as compared with the embodiment shown in FIG. Accordingly, the shape of the circuit package 400 and the lead 514 can be made simpler, and the position of the resin filling passage 597 can be brought closer to the circuit package 400 by the omission d1 of the convex portion 403A. The mold and the lead frame 511 can be reduced in size.
 5.2 ダイヤフラム裏面の空隙と開口とを繋ぐ構造
 図13は、図9のC-C断面の1部を示す図であり、ダイヤフラム672および流量検出部(流量検出素子)602の内部に設けられた空隙674と孔520とを繋ぐ連通孔676を説明する、説明図である。
5.2 Structure for Connecting the Gap and Opening on the Back of the Diaphragm FIG. 13 is a view showing a part of the CC cross section of FIG. 9 and is provided inside the diaphragm 672 and the flow rate detection unit (flow rate detection element) 602. It is explanatory drawing explaining the communicating hole 676 which connects the gap | interval 674 and the hole 520.
 後述するように被計測気体30の流量を計測する流量検出部602にはダイヤフラム672が設けられており、ダイヤフラム672の背面には空隙674が設けられている。ダイヤフラム672には図示していないが被計測気体30と熱のやり取りを行い、これによって流量を計測するための素子が設けられている。ダイヤフラム672に成形させている素子間に、被計測気体30との熱のやり取りとは別に、ダイヤフラム672を介して素子間に熱が伝わると、正確に流量を計測することが困難となる。このためダイヤフラム672は熱抵抗を大きくする必要があり、ダイヤフラム672ができるだけ薄く作られている。 As will be described later, a diaphragm 672 is provided in the flow rate detection unit 602 that measures the flow rate of the gas 30 to be measured, and a gap 674 is provided in the back surface of the diaphragm 672. Although not shown in the drawing, the diaphragm 672 is provided with an element for exchanging heat with the measurement target gas 30 and thereby measuring the flow rate. If heat is transmitted between the elements via the diaphragm 672 separately from the exchange of heat with the gas to be measured 30 between the elements formed in the diaphragm 672, it is difficult to accurately measure the flow rate. For this reason, the diaphragm 672 needs to increase the thermal resistance, and the diaphragm 672 is made as thin as possible.
 流量検出部(流量検出素子)602は、ダイヤフラム672の熱伝達面672が露出するように、第1樹脂モールド工程により成形された回路パッケージ400の第1樹脂に埋設されて固定されている。ダイヤフラム672の表面は図示しない前記素子(図17に示す発熱体608、上流測温抵抗体である抵抗652、抵抗654と下流測温抵抗体である抵抗656、抵抗658など)が設けられている。前記素子は、ダイヤフラム672に相当する熱伝達面露出部436において素子表面の熱伝達面437を介して図示していない被計測気体30と互いに熱の伝達を行う。熱伝達面437は各素子の表面で構成しても良いし、その上に薄い保護膜を設けても良い。素子と被計測気体30との熱伝達がスムーズに行われ、一方で素子間の直接的な熱伝達ができるだけ少ない方が望ましい。 The flow rate detection unit (flow rate detection element) 602 is embedded and fixed in the first resin of the circuit package 400 formed by the first resin molding process so that the heat transfer surface 672 of the diaphragm 672 is exposed. The surface of the diaphragm 672 is provided with the above-described elements (the heating element 608 shown in FIG. 17, the resistor 652 that is the upstream resistance temperature detector, the resistor 654 and the resistor 656 that is the downstream resistance temperature detector, the resistor 658, etc.). . The element transmits heat to the measurement target gas 30 (not shown) through the heat transfer surface 437 on the element surface in the heat transfer surface exposed portion 436 corresponding to the diaphragm 672. The heat transfer surface 437 may be constituted by the surface of each element, or a thin protective film may be provided thereon. It is desirable that the heat transfer between the element and the measurement target gas 30 is performed smoothly, while the direct heat transfer between the elements is as small as possible.
 流量検出部(流量検出素子)602の前記素子が設けられている部分は、計測用流路面430の熱伝達面露出部436に配置されていて、熱伝達面437が計測用流路面430を成形している樹脂から露出している。流量検出部602の外周部は計測用流路面430を成形している第1樹脂モールド工程で使用された熱硬化性樹脂で覆われている。仮に流量検出部602の側面のみが前記熱硬化性樹脂で覆われ、流量検出部602の外周部の表面側(すなわちダイヤフラム672の周りの領域)に熱硬化性樹脂で覆われていないとすると、計測用流路面430を成形している樹脂に生じる応力を流量検出部602の側面のみで受けることとなり、ダイヤフラム672に歪が生じ、特性が劣化する恐れがある。図13に示すように流量検出部602の表側外周部も前記熱硬化性樹脂で覆われる状態とすることにより、ダイヤフラム672の歪が低減される。一方熱伝達面437と被計測気体30が流れる計測用流路面430との段差が大きいと、被計測気体30の流れが乱れ、計測精度が低下する。従って熱伝達面437と被計測気体30が流れる計測用流路面430との段差Wが小さいことが望ましい。 The portion of the flow rate detection unit (flow rate detection element) 602 where the element is provided is disposed in the heat transfer surface exposed portion 436 of the measurement flow channel surface 430, and the heat transfer surface 437 forms the measurement flow channel surface 430. Exposed from the resin. The outer peripheral portion of the flow rate detection unit 602 is covered with the thermosetting resin used in the first resin molding process for forming the measurement flow path surface 430. If only the side surface of the flow rate detection unit 602 is covered with the thermosetting resin, and the surface side of the outer peripheral portion of the flow rate detection unit 602 (that is, the region around the diaphragm 672) is not covered with the thermosetting resin, The stress generated in the resin forming the measurement flow path surface 430 is received only by the side surface of the flow rate detection unit 602, and the diaphragm 672 may be distorted to deteriorate the characteristics. As shown in FIG. 13, the distortion of the diaphragm 672 is reduced by setting the front side outer peripheral portion of the flow rate detection unit 602 to be covered with the thermosetting resin. On the other hand, if the level difference between the heat transfer surface 437 and the measurement flow path surface 430 through which the measurement target gas 30 flows is large, the flow of the measurement target gas 30 is disturbed, and the measurement accuracy decreases. Therefore, it is desirable that the step W between the heat transfer surface 437 and the measurement flow path surface 430 through which the measurement target gas 30 flows is small.
 ダイヤフラム672は各素子間の熱伝達を抑制するために非常に薄く作られていて、流量検出部602の裏面に空隙674を成形することにより薄肉化が図られている。この空隙674を密閉すると温度変化により、ダイヤフラム672の裏面に形成されている空隙674の圧力が温度に基づき変化する。空隙674とダイヤフラム672の表面との圧力差が大きくなると、ダイヤフラム672が圧力を受けて歪を生じ、高精度の計測が困難となる。このため、プレート532には外部に開口する開口438に繋がる孔520が設けられ、この孔520と空隙674とを繋ぐ連通孔676が設けられている。この連通孔676は例えば第1プレート532と第2プレート536の2枚のプレートで作られる。第1プレート532には孔520と孔521が設けられ、さらに連通孔676を作るための溝が設けられている。第2プレート536で溝および孔520と孔521を塞ぐことで、連通孔676が作られる。この連通孔676と孔520とにより、ダイヤフラム672の表面および裏面に作用する気圧が略等しくなり、計測精度が向上する。 The diaphragm 672 is made extremely thin in order to suppress heat transfer between the elements, and the thickness is reduced by forming a gap 674 on the back surface of the flow rate detection unit 602. When the gap 674 is sealed, the pressure of the gap 674 formed on the back surface of the diaphragm 672 changes based on the temperature due to a temperature change. When the pressure difference between the gap 674 and the surface of the diaphragm 672 becomes large, the diaphragm 672 receives a pressure to cause distortion, and high-precision measurement becomes difficult. For this reason, the plate 532 is provided with a hole 520 that is connected to the opening 438 that opens to the outside, and a communication hole 676 that connects the hole 520 and the gap 674. The communication hole 676 is made of two plates, for example, a first plate 532 and a second plate 536. The first plate 532 is provided with a hole 520 and a hole 521, and further a groove for forming a communication hole 676. The communication hole 676 is formed by closing the groove and the hole 520 and the hole 521 with the second plate 536. By the communication hole 676 and the hole 520, the air pressure acting on the front surface and the back surface of the diaphragm 672 becomes substantially equal, and the measurement accuracy is improved.
 上述のとおり、第2プレート536で溝および孔520と孔521を塞ぐことにより、連通孔676を作ることができるが、他の方法として、リードフレームを第2プレート536として使用することができる。図16に記載のように、プレート532の上にはダイヤフラム672および処理部604として動作するLSIが設けられている。これらの下側には、ダイヤフラム672および処理部604を搭載したプレート532を支えるためのリードフレームが設けられている。従ってこのリードフレームを利用することにより、構造がよりシンプルとなる。また前記リードフレームをグランド電極として使用することができる。このように第2プレート536の役割を前記リードフレームに持たせ、このリードフレームを用いて、第1プレート532に成形された孔520と孔521を塞ぐと共に第1プレート532に成形された溝を前記リードフレームで覆うようにして塞ぐことにより連通孔676を形成することで、全体構造がシンプルとなるのに加え、リードフレームのグランド電極としての作用により、ダイヤフラム672および処理部604に対する外部からのノイズの影響を低減できる。 As described above, the communication hole 676 can be formed by closing the groove and the hole 520 and the hole 521 with the second plate 536. Alternatively, the lead frame can be used as the second plate 536. As illustrated in FIG. 16, an LSI that operates as a diaphragm 672 and a processing unit 604 is provided on the plate 532. A lead frame for supporting a plate 532 on which the diaphragm 672 and the processing unit 604 are mounted is provided below these. Therefore, the structure becomes simpler by using this lead frame. The lead frame can be used as a ground electrode. In this way, the lead frame has the role of the second plate 536, and the lead frame is used to close the hole 520 and the hole 521 formed in the first plate 532 and to form the groove formed in the first plate 532. By forming the communication hole 676 by covering the lead frame so as to cover the lead frame, the entire structure is simplified, and the lead frame acts as a ground electrode, so that the diaphragm 672 and the processing unit 604 are externally connected. The influence of noise can be reduced.
 回路パッケージ400において、熱伝達面露出部436が形成されている回路パッケージ400の裏面に、押さえ跡442が残っている。第1樹脂モールド工程において、熱伝達面露出部436への樹脂の流入を防止するために熱伝達面露出部436の部分に金型、例えば入れ駒を当て、さらにその反対面の押さえ跡442の部分に金型を当て、両金型により熱伝達面露出部436への樹脂の流入を阻止する。このようにして熱伝達面露出部436の部分を成形することにより、極めて高い精度で、被計測気体30の流量を計測できる。 In the circuit package 400, a pressing trace 442 remains on the back surface of the circuit package 400 where the heat transfer surface exposed portion 436 is formed. In the first resin molding step, in order to prevent the resin from flowing into the heat transfer surface exposed portion 436, a mold, for example, a insert piece is applied to the heat transfer surface exposed portion 436, and the pressing trace 442 on the opposite surface is further formed. A mold is applied to the portion, and both molds prevent the resin from flowing into the heat transfer surface exposed portion 436. By forming the heat transfer surface exposed portion 436 in this manner, the flow rate of the measurement target gas 30 can be measured with extremely high accuracy.
 図14は第1樹脂モールド工程により図9に示すリードフレームを熱硬化性樹脂でモールドし、熱硬化性樹脂で覆われた状態を示す。このモールド成形により、回路パッケージ400の表面に計測用流路面430が成形され、熱伝達面露出部436が計測用流路面430に設けられている。また熱伝達面露出部436に相当するダイヤフラム672の裏面の空隙674は開口438とつながる構成となっている。突出部424の先端部に被計測気体30の温度を計測するための温度検出部452が設けられており、内部に温度検出素子518が内蔵されている。突出部424の内部では、熱伝達を抑制するために、温度検出素子518の電気信号を取り出すためのリードが分断され、熱抵抗の大きい接続線546が配置されている。これにより、温度検出部452への突出部424の根元からの熱伝達が抑制され、熱による影響が抑制される。 FIG. 14 shows a state in which the lead frame shown in FIG. 9 is molded with a thermosetting resin and covered with the thermosetting resin in the first resin molding step. By this molding, the measurement flow path surface 430 is formed on the surface of the circuit package 400, and the heat transfer surface exposed portion 436 is provided on the measurement flow path surface 430. Further, a gap 674 on the back surface of the diaphragm 672 corresponding to the heat transfer surface exposed portion 436 is configured to be connected to the opening 438. A temperature detection unit 452 for measuring the temperature of the measurement target gas 30 is provided at the tip of the protrusion 424, and a temperature detection element 518 is incorporated therein. Inside the protruding portion 424, in order to suppress heat transfer, a lead for taking out an electric signal of the temperature detection element 518 is divided, and a connection line 546 having a large thermal resistance is disposed. Thereby, the heat transfer from the base of the protrusion part 424 to the temperature detection part 452 is suppressed, and the influence by heat is suppressed.
 さらに突出部424の根元に傾斜部594や傾斜部596が作られている。第1樹脂モールド工程での樹脂の流れがスムーズになると共に、車に装着されて動作している状態で、傾斜部594や傾斜部596により、温度検出部452で計測された被計測気体30が突出部424からその根元の方にスムーズに流れ、突出部424の根元が冷却され、温度検出部452への熱の影響を低減できる効果がある。この図14の状態の後、リード514が端子毎に切り離され、接続端子412や端子414となる。 Further, an inclined portion 594 and an inclined portion 596 are formed at the base of the protruding portion 424. While the flow of the resin in the first resin molding step is smooth, the measurement target gas 30 measured by the temperature detection unit 452 is measured by the inclined portion 594 and the inclined portion 596 in a state where the resin is mounted on the vehicle and operating. The projection flows smoothly from the protrusion 424 toward the root, and the root of the protrusion 424 is cooled, so that the effect of heat on the temperature detection unit 452 can be reduced. After the state shown in FIG. 14, the lead 514 is disconnected for each terminal to become the connection terminal 412 and the terminal 414.
 第1樹脂モールド工程において、熱伝達面露出部436や開口438への樹脂の流れ込みを防ぐことが必要である。このため、第1樹脂モールド工程では、熱伝達面露出部436や開口438の位置に、樹脂の流れ込みを阻止する、例えばダイヤフラム672より大きい入れ駒を当て、その裏面に押さえを当て、両面から挟み込む。図8(C)に示すように、図14の熱伝達面露出部436や開口438あるいは図8(B)の熱伝達面露出部436や開口438と対応する裏面には、押さえ跡442や押さえ跡441が残っている。 In the first resin molding step, it is necessary to prevent the resin from flowing into the heat transfer surface exposed portion 436 and the opening 438. For this reason, in the first resin molding step, the resin flow is blocked at the position of the heat transfer surface exposed portion 436 and the opening 438, for example, a piece larger than the diaphragm 672 is applied, and the back surface is pressed and sandwiched from both sides. . As shown in FIG. 8C, the heat transfer surface exposed portion 436 and the opening 438 in FIG. 14 or the back surface corresponding to the heat transfer surface exposed portion 436 and the opening 438 in FIG. A trace 441 remains.
 図14でリードフレーム511の支持枠512から切り離されたリードの切断面が、樹脂面から露出することにより、リードの切断面から水分などが使用中に内部に侵入する恐れがある。このようなことがないようにすることが耐久性向上の観点や信頼性向上の観点で重要である。例えば傾斜部594や傾斜部596のリード切断部が第2樹脂モールド工程で樹脂により覆われ、図9に示すリード552やリード554の支持枠512との切断面が、前記樹脂により覆われる。このことによりリード552やリード554の切断面の腐食や切断部からの水の侵入が防止される。リード552やリード554の切断面は温度検出部452の電気信号を伝える重要なリード部分と近接している。従って切断面を第2樹脂モールド工程で覆うことが望ましい。 In FIG. 14, the lead cut surface separated from the support frame 512 of the lead frame 511 is exposed from the resin surface, so that moisture or the like may enter the inside from the cut surface of the lead during use. It is important to prevent this from the viewpoint of improving durability and improving reliability. For example, the lead cutting portions of the inclined portion 594 and the inclined portion 596 are covered with resin in the second resin molding step, and the cutting surfaces of the leads 552 and the leads 554 shown in FIG. 9 and the support frame 512 are covered with the resin. This prevents corrosion of the cut surfaces of the lead 552 and the lead 554 and intrusion of water from the cut portion. The cut surfaces of the lead 552 and the lead 554 are close to an important lead portion that transmits an electrical signal of the temperature detection unit 452. Therefore, it is desirable to cover the cut surface with the second resin molding process.
 6. 熱式流量計300の生産工程
 6.1 回路パッケージ400の生産工程
 図15A、図15Bは熱式流量計300の生産工程を示し、図15Aは回路パッケージ400の生産工程を示し、図15Bは熱式流量計の生産工程を示す。図15Aにおいて、ステップ1は図9に示すリードフレームを生産する工程を示す。このリードフレームは例えばプレス加工によって作られる。
6. Production Process of Thermal Flow Meter 300 6.1 Production Process of Circuit Package 400 FIGS. 15A and 15B show the production process of thermal flow meter 300, FIG. 15A shows the production process of circuit package 400, and FIG. Indicates the production process of the thermal flow meter. In FIG. 15A, Step 1 shows a process of producing the lead frame shown in FIG. This lead frame is made by, for example, press working.
 ステップ2は、ステップ1で作られたリードフレームに、まずプレート532を搭載し、さらにプレート532に流量検出部602や処理部604を搭載し、さらに温度検出素子518、チップコンデンサなどの回路部品を搭載する。またステップ2では、回路部品間や回路部品とリード間、リード同士の電気的な配線を行う。このステップ2で、リード544とリード548間を、熱抵抗を大きくするための接続線546で接続する。ステップ2では、図9に示す、回路部品がリードフレーム511に搭載され、さらに電気的な接続がなされた電気回路が作られる。 In step 2, the plate 532 is first mounted on the lead frame produced in step 1, and the flow rate detection unit 602 and the processing unit 604 are further mounted on the plate 532, and circuit components such as a temperature detection element 518 and a chip capacitor are further mounted. Mount. In step 2, electrical wiring is performed between circuit components, between circuit components and leads, and between leads. In step 2, the lead 544 and the lead 548 are connected by a connection line 546 for increasing the thermal resistance. In step 2, the circuit component shown in FIG. 9 is mounted on the lead frame 511, and an electric circuit is further formed in which electrical connection is made.
 次にステップ3で、第1樹脂モールド工程により、熱硬化性樹脂でモールドされる。この状態を図14に示す。また、ステップ3で、接続されているリードをそれぞれリードフレーム511の支持枠512から切り離し、さらにリード間も切り離し、図8に示す回路パッケージ400を完成する。この回路パッケージ400には、図8に示す通り、計測用流路面430や熱伝達面露出部436が成形されている。 Next, in step 3, it is molded with a thermosetting resin by the first resin molding process. This state is shown in FIG. In step 3, the connected leads are separated from the support frame 512 of the lead frame 511, and the leads are also separated, thereby completing the circuit package 400 shown in FIG. In the circuit package 400, as shown in FIG. 8, a measurement flow path surface 430 and a heat transfer surface exposed portion 436 are formed.
 ステップ4で、出来上がった回路パッケージ400の外観検査や動作の検査を行う。ステップ3の第1樹脂モールド工程では、ステップ2で作られた電気回路を金型内に固定し、金型に高温の樹脂を高い圧力で注入するので、電気部品や電気配線の異常が生じていないかを検査することが望ましい。この検査のために図8に示す接続端子412に加え端子414が使用される。なお、端子414はその後使用されないので、この検査の後、根元から切断しても良い。 In step 4, the appearance inspection and operation inspection of the completed circuit package 400 are performed. In the first resin molding process of Step 3, the electric circuit made in Step 2 is fixed in the mold, and high temperature resin is injected into the mold at a high pressure. It is desirable to check for this. For this inspection, a terminal 414 is used in addition to the connection terminal 412 shown in FIG. Since the terminal 414 is not used thereafter, the terminal 414 may be cut from the root after this inspection.
 6.2 熱式流量計300の生産工程と特性の補正
 図15Bに示す工程では、図15Aにより生産された回路パッケージ400と外部端子306とが使用され、ステップ5で第2樹脂モールド工程によりハウジング302がつくられる。このハウジング302は樹脂製の副通路溝やフランジ312や外部接続部305が作られると共に、図8に示す回路パッケージ400の斜線部分が第2樹脂モールド工程の樹脂で覆われ、回路パッケージ400がハウジング302に固定される。前記第1樹脂モールド工程による回路パッケージ400の生産(ステップ3)と第2樹脂モールド工程による熱式流量計300のハウジング302の成形との組み合わせにより、流量検出精度が大幅に改善される。ステップ6で各外部端子内端361の切り離しが行われ、接続端子412と外部端子内端361との接続がステップ7で行われる。
6.2 Production Process of Thermal Flow Meter 300 and Correction of Characteristics In the process shown in FIG. 15B, the circuit package 400 and the external terminal 306 produced according to FIG. 15A are used. 302 is created. The housing 302 is formed with a resin-made sub-passage groove, a flange 312 and an external connection portion 305, and the hatched portion of the circuit package 400 shown in FIG. 8 is covered with the resin in the second resin molding process. 302 is fixed. The combination of the production of the circuit package 400 by the first resin molding process (step 3) and the molding of the housing 302 of the thermal flow meter 300 by the second resin molding process significantly improves the flow rate detection accuracy. In step 6, each internal terminal inner end 361 is disconnected, and connection terminal 412 and external terminal inner end 361 are connected in step 7.
 ステップ7によりハウジング302が完成すると次にステップ8で、表カバー303と裏カバー304がハウジング302に取り付けられ、ハウジング302の内部が表カバー303と裏カバー304で密閉されるとともに、被計測気体30を流すための副通路が完成する。さらに、図7で説明した絞り構造が表カバー303あるいは裏カバー304に設けられた突起部356により、作られる。なお、この表カバー303はステップ10でモールド成形により作られ、裏カバー304はステップ11でモールド成形によって作られる。また、これら表カバー303と裏カバー304はそれぞれ別工程で作られ、それぞれ異なる金型により成形されて作られる。 When the housing 302 is completed in step 7, next, in step 8, the front cover 303 and the back cover 304 are attached to the housing 302, the inside of the housing 302 is sealed with the front cover 303 and the back cover 304, and the measured gas 30 A sub-passage for the flow is completed. Further, the diaphragm structure described with reference to FIG. 7 is formed by the protrusions 356 provided on the front cover 303 or the back cover 304. The front cover 303 is made by molding in step 10, and the back cover 304 is made by molding in step 11. Further, the front cover 303 and the back cover 304 are made in different processes, and are made by molding with different molds.
 ステップ9で、実際に副通路に気体が導かれ、特性の試験が行われる。上述したように副通路と流量検出部の関係が高い精度で維持されているので、特性の試験による特性補正を行うことで、非常に高い計測精度が得られる。また第1樹脂モールド工程と第2樹脂モールド工程で副通路と流量検出部の関係を左右する位置決めや形状関係の成形が行われるので、長期間使用しても特性の変化が少なく、高精度に加え高信頼性が確保される。 In step 9, the gas is actually introduced into the sub-passage and the characteristics are tested. As described above, since the relationship between the sub passage and the flow rate detection unit is maintained with high accuracy, very high measurement accuracy can be obtained by performing characteristic correction by a characteristic test. In addition, since the positioning and shape-related molding that affects the relationship between the sub-passage and the flow rate detection unit are performed in the first resin molding process and the second resin molding process, there is little change in characteristics even with long-term use, and high accuracy. In addition, high reliability is ensured.
 7. 熱式流量計300の回路構成
 7.1 熱式流量計300の回路構成の全体
 図16は熱式流量計300の流量検出回路601を示す回路図である。なお、先に実施例で説明した温度検出部452に関する計測回路も熱式流量計300に設けられているが、図16では省略している。熱式流量計300の流量検出回路601は、発熱体608を有する流量検出部602と処理部604とを備えている。処理部604は、流量検出部602の発熱体608の発熱量を制御すると共に、流量検出部602の出力に基づいて流量を表す信号を、端子662を介して出力する。前記処理を行うために、処理部604は、Central Processing Unit(以下CPUと記す)612と入力回路614、出力回路616、補正値や計測値と流量との関係を表すデータを保持するメモリ618、一定電圧をそれぞれ必要な回路に供給する電源回路622を備えている。電源回路622には車載バッテリなどの外部電源から、端子664と図示していないグランド端子を介して直流電力が供給される。
7. Circuit Configuration of Thermal Flow Meter 300 7.1 Overall Circuit Configuration of Thermal Flow Meter 300 FIG. 16 is a circuit diagram showing a flow rate detection circuit 601 of the thermal flow meter 300. Note that a measurement circuit related to the temperature detection unit 452 described in the embodiment is also provided in the thermal flow meter 300, but is omitted in FIG. The flow rate detection circuit 601 of the thermal type flow meter 300 includes a flow rate detection unit 602 having a heating element 608 and a processing unit 604. The processing unit 604 controls the amount of heat generated by the heating element 608 of the flow rate detection unit 602 and outputs a signal indicating the flow rate based on the output of the flow rate detection unit 602 via the terminal 662. In order to perform the processing, the processing unit 604 includes a central processing unit (hereinafter referred to as a CPU) 612, an input circuit 614, an output circuit 616, a memory 618 that holds data representing a relationship between a correction value, a measured value, and a flow rate, A power supply circuit 622 is provided to supply a constant voltage to each necessary circuit. The power supply circuit 622 is supplied with DC power from an external power source such as an in-vehicle battery via a terminal 664 and a ground terminal (not shown).
 流量検出部602には被計測気体30を熱するための発熱体608が設けられている。電源回路622から、発熱体608の電流供給回路を構成するトランジスタ606のコレクタに電圧V1が供給され、CPU612から出力回路616を介して前記トランジスタ606のベースに制御信号が加えられ、この制御信号に基づいて前記トランジスタ606から端子624を介して発熱体608に電流が供給される。発熱体608に供給される電流量は前記CPU612から出力回路616を介して発熱体608の電流供給回路を構成するトランジスタ606に加えられる制御信号により制御される。処理部604は、発熱体608で熱せられることにより被計測気体30の温度が当初の温度より所定温度、例えば100℃、だけ高くなるように発熱体608の発熱量を制御する。 The flow rate detector 602 is provided with a heating element 608 for heating the measurement target gas 30. The voltage V1 is supplied from the power supply circuit 622 to the collector of the transistor 606 constituting the current supply circuit of the heating element 608, and a control signal is applied from the CPU 612 to the base of the transistor 606 via the output circuit 616. Accordingly, a current is supplied from the transistor 606 to the heating element 608 through the terminal 624. The amount of current supplied to the heating element 608 is controlled by a control signal applied from the CPU 612 to the transistor 606 constituting the current supply circuit of the heating element 608 via the output circuit 616. The processing unit 604 controls the amount of heat generated by the heating element 608 so that the temperature of the measurement target gas 30 is higher than the initial temperature by a predetermined temperature, for example, 100 ° C., when heated by the heating element 608.
 流量検出部602は、発熱体608の発熱量を制御するための発熱制御ブリッジ640と、流量を計測するための流量検知ブリッジ650と、を有している。発熱制御ブリッジ640の一端には、電源回路622から一定電圧V3が端子626を介して供給され、発熱制御ブリッジ640の他端はグランド端子630に接続されている。また流量検知ブリッジ650の一端には、電源回路622から一定電圧V2が端子625を介して供給され、流量検知ブリッジ650の他端はグランド端子630に接続されている。 The flow rate detection unit 602 has a heat generation control bridge 640 for controlling the heat generation amount of the heating element 608 and a flow rate detection bridge 650 for measuring the flow rate. One end of the heat generation control bridge 640 is supplied with a constant voltage V3 from the power supply circuit 622 via a terminal 626, and the other end of the heat generation control bridge 640 is connected to the ground terminal 630. A constant voltage V2 is supplied from one end of the flow rate detection bridge 650 from the power supply circuit 622 via a terminal 625, and the other end of the flow rate detection bridge 650 is connected to the ground terminal 630.
 発熱制御ブリッジ640は、熱せられた被計測気体30の温度に基づいて抵抗値が変化する測温抵抗体である抵抗642を有しており、抵抗642と抵抗644、抵抗646、抵抗648はブリッジ回路を構成している。抵抗642と抵抗646の交点Aおよび抵抗644と抵抗648との交点Bの電位差が端子627および端子628を介して入力回路614に入力され、CPU612は交点Aと交点B間の電位差が所定値、この実施例ではゼロボルト、になるようにトランジスタ606から供給される電流を制御して発熱体608の発熱量を制御する。図16に記載の流量検出回路601は、被計測気体30のもとの温度に対して一定温度、例えば常に100℃、高くなるように発熱体608で被計測気体30を加熱する。この加熱制御を高精度に行えるように、発熱体608で暖められた被計測気体30の温度が当初の温度に対して一定温度、例えば常に100℃、高くなったときに、前記交点Aと交点B間の電位差がゼロボルトとなるように発熱制御ブリッジ640を構成する各抵抗の抵抗値が設定されている。従って図16に記載の流量検出回路601では、CPU612は交点Aと交点B間の電位差がゼロボルトとなるよう発熱体608への供給電流を制御する。 The heat generation control bridge 640 includes a resistor 642 that is a resistance temperature detector whose resistance value changes based on the temperature of the heated measurement target gas 30. The resistor 642, the resistor 644, the resistor 646, and the resistor 648 are bridges. The circuit is configured. The potential difference between the intersection A of the resistor 642 and the resistor 646 and the potential B at the intersection B of the resistor 644 and 648 is input to the input circuit 614 via the terminal 627 and the terminal 628, and the CPU 612 has a predetermined potential difference between the intersection A and the intersection B. In this embodiment, the amount of heat generated by the heating element 608 is controlled by controlling the current supplied from the transistor 606 so as to be zero volts. The flow rate detection circuit 601 illustrated in FIG. 16 heats the measurement gas 30 with the heating element 608 so as to be higher than the original temperature of the measurement gas 30 by a constant temperature, for example, 100 ° C. at all times. In order to perform this heating control with high accuracy, the intersection point A and the intersection point A when the temperature of the gas 30 to be measured heated by the heating element 608 becomes a constant temperature, for example, 100 ° C., always higher than the initial temperature. The resistance value of each resistor constituting the heat generation control bridge 640 is set so that the potential difference between B becomes zero volts. Therefore, in the flow rate detection circuit 601 shown in FIG. 16, the CPU 612 controls the current supplied to the heating element 608 so that the potential difference between the intersection A and the intersection B becomes zero volts.
 流量検知ブリッジ650は、抵抗652と抵抗654、抵抗656、抵抗658の4つの測温抵抗体で構成されている。これら4つの測温抵抗体は被計測気体30の流れに沿って配置されており、抵抗652と抵抗654は発熱体608に対して被計測気体30の流路における上流側に配置され、抵抗656と抵抗658は発熱体608に対して被計測気体30の流路における下流側に配置されている。また計測精度を上げるために抵抗652と抵抗654は発熱体608までの距離が互いに略同じくなるように配置されており、抵抗656と抵抗658は発熱体608までの距離が互いに略同じくなるように配置されている。 The flow rate detection bridge 650 includes four resistance temperature detectors, a resistor 652, a resistor 654, a resistor 656, and a resistor 658. These four resistance temperature detectors are arranged along the flow of the gas to be measured 30, and the resistor 652 and the resistor 654 are arranged upstream of the heating element 608 in the flow path of the gas to be measured 30, and the resistor 656. And the resistor 658 are arranged on the downstream side in the flow path of the measurement target gas 30 with respect to the heating element 608. In order to increase the measurement accuracy, the resistor 652 and the resistor 654 are arranged so that the distance to the heating element 608 is substantially the same, and the resistor 656 and the resistor 658 are substantially the same distance to the heating element 608. Has been placed.
 抵抗652と抵抗656との交点Cと、抵抗654と抵抗658との交点Dとの間の電位差が端子631と端子632を介して入力回路614に入力される。計測精度を高めるために、例えば被計測気体30の流れがゼロの状態で、前記交点Cと交点Dとの間の電位差がゼロとなるように流量検知ブリッジ650の各抵抗が設定されている。従って前記交点Cと交点Dとの間の電位差が、例えばゼロボルトの状態では、CPU612は被計測気体30の流量がゼロとの計測結果に基づき、主通路124の流量がゼロを意味する電気信号を端子662から出力する。 The potential difference between the intersection C of the resistor 652 and the resistor 656 and the intersection D of the resistor 654 and the resistor 658 is input to the input circuit 614 via the terminal 631 and the terminal 632. In order to improve the measurement accuracy, for example, each resistance of the flow rate detection bridge 650 is set so that the potential difference between the intersection C and the intersection D becomes zero when the flow of the measurement target gas 30 is zero. Therefore, when the potential difference between the intersection point C and the intersection point D is, for example, zero volts, the CPU 612 generates an electric signal indicating that the flow rate of the main passage 124 is zero based on the measurement result that the flow rate of the measurement target gas 30 is zero. Output from the terminal 662.
 被計測気体30が図16の矢印方向に流れている場合、上流側に配置されている抵抗652や抵抗654は、被計測気体30によって冷却され、被計測気体30の下流側に配置されている抵抗656と抵抗658は、発熱体608により暖められた被計測気体30により暖められ、これら抵抗656と抵抗658の温度が上昇する。このため、流量検知ブリッジ650の交点Cと交点Dとの間に電位差が発生し、この電位差が端子631と端子632を介して、入力回路614に入力される。CPU612は流量検知ブリッジ650の交点Cと交点Dとの間の電位差に基づいて、メモリ618に記憶されている前記電位差と主通路124の流量との関係を表すデータを検索し、主通路124の流量を求める。このようにして求められた主通路124の流量を表す電気信号が端子662を介して出力される。なお、図16に示す端子664および端子662は新たに参照番号を記載しているが、先に説明した図5や図6に示す接続端子412に含まれている。 When the gas to be measured 30 flows in the direction of the arrow in FIG. 16, the resistor 652 and the resistor 654 arranged on the upstream side are cooled by the gas to be measured 30 and arranged downstream of the gas to be measured 30. The resistors 656 and 658 are heated by the measurement target gas 30 heated by the heating element 608, and the temperatures of the resistors 656 and 658 are increased. Therefore, a potential difference is generated between the intersection C and the intersection D of the flow rate detection bridge 650, and this potential difference is input to the input circuit 614 via the terminal 631 and the terminal 632. The CPU 612 retrieves data representing the relationship between the potential difference stored in the memory 618 and the flow rate of the main passage 124 based on the potential difference between the intersection C and the intersection D of the flow rate detection bridge 650, and Find the flow rate. An electrical signal representing the flow rate of the main passage 124 obtained in this way is output via the terminal 662. Note that the terminal 664 and the terminal 662 illustrated in FIG. 16 are newly described with reference numerals, but are included in the connection terminal 412 illustrated in FIGS. 5 and 6 described above.
 上記メモリ618には、上記交点Cと交点Dとの電位差と主通路124の流量との関係を表すデータが記憶されており、さらに回路パッケージ400の生産後に、気体の実測値に基づいて求められた、ばらつきなどの測定誤差の低減のための補正データが記憶されている。なお、回路パッケージ400の生産後の気体の実測およびそれに基づく補正値のメモリ618への書き込みは、図4に示す外部端子306や補正用端子307を使用して行われる。本実施例では、被計測気体30を流す副通路と計測用流路面430との配置関係や、被計測気体30を流す副通路と熱伝達面露出部436との配置関係が、高精度に非常にばらつきが少ない状態で、回路パッケージ400が生産されているので、前記補正値による補正で、極めて高い精度の計測結果が得られる。 The memory 618 stores data representing the relationship between the potential difference between the intersection C and the intersection D and the flow rate of the main passage 124, and is obtained based on the actual measured value of gas after the circuit package 400 is produced. In addition, correction data for reducing measurement errors such as variations is stored. Note that the actual measurement of the gas after production of the circuit package 400 and the writing of the correction value based on it into the memory 618 are performed using the external terminal 306 and the correction terminal 307 shown in FIG. In the present embodiment, the arrangement relationship between the sub-passage through which the measurement target gas 30 flows and the measurement flow path surface 430 and the arrangement relationship between the sub-passage through which the measurement target gas 30 flows and the heat transfer surface exposed portion 436 are highly accurate. Since the circuit package 400 is produced in a state where there is little variation, the measurement result with extremely high accuracy can be obtained by the correction using the correction value.
 7.2 流量検出回路601の構成
 図17は、上述した図16の流量検出回路601の回路配置を示す回路構成図である。流量検出回路601は矩形形状の半導体チップとして作られており、図17に示す流量検出回路601の左側から右側に向って、矢印の方向に、被計測気体30が流れる。
7.2 Configuration of Flow Rate Detection Circuit 601 FIG. 17 is a circuit configuration diagram showing a circuit arrangement of the flow rate detection circuit 601 of FIG. 16 described above. The flow rate detection circuit 601 is made as a rectangular semiconductor chip, and the measured gas 30 flows in the direction of the arrow from the left side to the right side of the flow rate detection circuit 601 shown in FIG.
 半導体チップで構成される流量検出部(流量検出素子)602には、半導体チップの厚さを薄くした矩形形状のダイヤフラム672が成形されて、このダイヤフラム672には、破線で示す薄厚領域(すなわち上述した熱伝達面)603が設けられている。この薄厚領域603の裏面側には、上述した空隙が成形されており、前記空隙が図8や図5に示す開口438に連通し、前記空隙内の気圧は開口438から導かれる気圧に依存する。 A rectangular diaphragm 672 in which the thickness of the semiconductor chip is reduced is formed in the flow rate detection unit (flow rate detection element) 602 formed of a semiconductor chip. The diaphragm 672 includes a thin region (that is, the above-described thin area). Heat transfer surface) 603 is provided. The above-described gap is formed on the back surface side of the thin region 603, the gap communicates with the opening 438 shown in FIGS. 8 and 5, and the pressure in the gap depends on the pressure introduced from the opening 438. .
 ダイヤフラム672の厚さを薄くすることで、熱伝導率が低くなっており、ダイヤフラム672の薄厚領域(熱伝達面)603に設けられた抵抗652や抵抗654、抵抗658、抵抗656へのダイヤフラム672を介しての熱伝達が抑えられ、被計測気体30との熱伝達により、これらの抵抗の温度が略定まる。 By reducing the thickness of the diaphragm 672, the thermal conductivity is lowered, and the diaphragm 672 to the resistor 652, the resistor 654, the resistor 658, and the resistor 656 provided in the thin region (heat transfer surface) 603 of the diaphragm 672 is reduced. The heat transfer through is suppressed, and the temperature of these resistors is substantially determined by the heat transfer with the gas 30 to be measured.
 ダイヤフラム672の薄厚領域603の中央部には、発熱体608が設けられており、この発熱体608の周囲に発熱制御ブリッジ640を構成する抵抗642が設けられている。そして、薄厚領域603の外側に発熱制御ブリッジ640を構成する抵抗644、646、648が設けられている。このように成形された抵抗642、644、646、648によって発熱制御ブリッジ640が構成される。 A heating element 608 is provided at the center of the thin region 603 of the diaphragm 672, and a resistor 642 constituting a heating control bridge 640 is provided around the heating element 608. Resistors 644, 646, and 648 constituting the heat generation control bridge 640 are provided outside the thin region 603. The resistors 642, 644, 646, and 648 formed in this way constitute a heat generation control bridge 640.
 また、発熱体608を挟むように、上流測温抵抗体である抵抗652、抵抗654と下流測温抵抗体である抵抗656、抵抗658が配置されており、発熱体608に対して被計測気体30が流れる矢印方向の上流側に、上流測温抵抗体である抵抗652、抵抗654が配置され、発熱体608に対して被計測気体30が流れる矢印方向の下流側に下流測温抵抗体である抵抗656、抵抗658が配置されている。このようにして、薄厚領域603に配置されている抵抗652、抵抗654と抵抗656、抵抗658とにより流量検知ブリッジ650が成形される。 In addition, a resistor 652 and a resistor 654 which are upstream temperature measuring resistors and a resistor 656 and a resistor 658 which are downstream temperature measuring resistors are arranged so as to sandwich the heating element 608, and the gas to be measured is placed on the heating element 608. An upstream resistance temperature detector 652 and a resistance 654 are arranged on the upstream side in the direction of the arrow through which 30 flows, and a downstream resistance temperature detector on the downstream side in the direction of the arrow in which the measured gas 30 flows with respect to the heating element 608. A certain resistor 656 and resistor 658 are arranged. In this manner, the flow rate detection bridge 650 is formed by the resistor 652, the resistor 654, the resistor 656, and the resistor 658 arranged in the thin region 603.
 また、上記発熱体608の双方の端部は、図17の下側に記載した端子624および629にそれぞれ接続されている。ここで、図16に示すように、端子624にはトランジスタ606から発熱体608に供給される電流が加えられ、端子629はグランドとして接地される。 Further, both ends of the heating element 608 are connected to terminals 624 and 629 described at the lower side of FIG. Here, as shown in FIG. 16, a current supplied from the transistor 606 to the heating element 608 is applied to the terminal 624, and the terminal 629 is grounded.
 発熱制御ブリッジ640を構成する抵抗642、抵抗644、抵抗646、抵抗648は、それぞれ接続されて、端子626と630に接続される。図16に示すように、端子626には電源回路622から一定電圧V3が供給され、端子630はグランドとして接地される。また、上記抵抗642と抵抗646との間、抵抗646と抵抗648との間かの接続点は、端子627と端子628に接続される。図17に記載の如く、端子627は抵抗642と抵抗646との交点Aの電位を出力し、端子627は抵抗644と抵抗648との交点Bの電位を出力する。図16に示すように、端子625には、電源回路622から一定電圧V2が供給され、端子630はグランド端子として接地グランドされる。また、上記抵抗654と抵抗658との接続点は端子631に接続され、端子631は図16の点Bの電位を出力する。抵抗652と抵抗656との接続点は端子632に接続され、端子632は図16に示す交点Cの電位を出力する。 The resistor 642, the resistor 644, the resistor 646, and the resistor 648 constituting the heat generation control bridge 640 are connected to the terminals 626 and 630, respectively. As shown in FIG. 16, a constant voltage V3 is supplied to the terminal 626 from the power supply circuit 622, and the terminal 630 is grounded as a ground. A connection point between the resistor 642 and the resistor 646 and between the resistor 646 and the resistor 648 is connected to a terminal 627 and a terminal 628. As illustrated in FIG. 17, the terminal 627 outputs the potential at the intersection A between the resistor 642 and the resistor 646, and the terminal 627 outputs the potential at the intersection B between the resistor 644 and the resistor 648. As shown in FIG. 16, a constant voltage V2 is supplied to the terminal 625 from the power supply circuit 622, and the terminal 630 is grounded as a ground terminal. The connection point between the resistor 654 and the resistor 658 is connected to the terminal 631, and the terminal 631 outputs the potential at the point B in FIG. A connection point between the resistor 652 and the resistor 656 is connected to a terminal 632, and the terminal 632 outputs a potential at the intersection C shown in FIG.
 図17に示すように、発熱制御ブリッジ640を構成する抵抗642は、発熱体608の近傍に成形されているので、発熱体608からの発熱で暖められた気体の温度を精度良く計測することができる。一方、発熱制御ブリッジ640を構成する抵抗644、646、648は、発熱体608から離れて配置されているので、発熱体608からの発熱の影響を受け難い構成に成っている。抵抗642は発熱体608で暖められた気体の温度に敏感に反応するように構成されており、抵抗644や抵抗646、抵抗648は発熱体608の影響を受けにくい構成となっている。このため、発熱制御ブリッジ640による被計測気体30の検出精度が高く、被計測気体30をその初期温度に対して所定温度だけ高める制御を高精度で行うことができる。 As shown in FIG. 17, the resistor 642 constituting the heat generation control bridge 640 is formed in the vicinity of the heating element 608, so that the temperature of the gas warmed by the heat generated from the heating element 608 can be accurately measured. it can. On the other hand, the resistors 644, 646, and 648 constituting the heat generation control bridge 640 are arranged away from the heat generating body 608, and thus are configured not to be affected by heat generated from the heat generating body 608. The resistor 642 is configured to react sensitively to the temperature of the gas heated by the heating element 608, and the resistor 644, the resistance 646, and the resistance 648 are configured not to be affected by the heating element 608. For this reason, the detection accuracy of the measurement target gas 30 by the heat generation control bridge 640 is high, and the control for increasing the measurement target gas 30 by a predetermined temperature with respect to the initial temperature can be performed with high accuracy.
 この実施例では、ダイヤフラム672の裏面側に空隙が形成されており、この空隙が図8や図5に記載の開口438に連通しており、ダイヤフラム672の裏面側空隙の圧力とダイヤフラム672の表側の圧力との差が大きくならないようにしている。この圧力差によるダイヤフラム672の歪を抑制できる。このことは流量計測精度の向上に繋がる。 In this embodiment, an air gap is formed on the back surface side of the diaphragm 672, and this air space communicates with the opening 438 shown in FIGS. 8 and 5. The difference from the pressure is not increased. Distortion of the diaphragm 672 due to this pressure difference can be suppressed. This leads to an improvement in flow rate measurement accuracy.
 上述したようにダイヤフラム672は薄厚領域603を成形し、薄厚領域603を含む部分の厚さを非常に薄くしており、ダイヤフラム672を介しての熱伝導を極力抑制している。従って流量検知ブリッジ650や発熱制御ブリッジ640は、ダイヤフラム672を介しての熱伝導の影響が抑制され、被計測気体30の温度に依存して動作する傾向がより強まり、計測動作が改善される。このため高い計測精度が得られる。 As described above, the diaphragm 672 is formed with the thin region 603, and the thickness of the portion including the thin region 603 is very thin, and heat conduction through the diaphragm 672 is suppressed as much as possible. Therefore, the flow rate detection bridge 650 and the heat generation control bridge 640 are less affected by heat conduction through the diaphragm 672, and the tendency to operate depending on the temperature of the measurement target gas 30 is further increased, and the measurement operation is improved. For this reason, high measurement accuracy is obtained.
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本発明は、上述した気体の流量を計測するための計測装置に適用できる。 The present invention can be applied to the measuring device for measuring the gas flow rate described above.
 300…熱式流量計
 302…ハウジング
 303…表カバー
 304…裏カバー
 305…外部接続部
 306…外部端子
 307…補正用端子
 310…計測部
 320…端子接続部
 332…表側副通路溝
 334…裏側副通路溝
 356…突起部
 359…樹脂部
 361…外部端子内端
 372…固定部
 400…回路パッケージ
 401…第1のパッケージ突出部
 402…第2のパッケージ突出部
 403…角部
 403A…凸部
 404…本体部
 405…充填入口部
 412…接続端子
 414…端子
 424…突出部
 430…計測用流路面
 432…固定面
 436…熱伝達面露出部
 438…開口
 452…温度検出部
 511…リードフレーム
 516…チップ部品(回路部品)
 518…温度検出素子
 597…樹脂充填通路
 598…圧入孔
 599A、599B、599C…入口ゲート
 594…傾斜部
 596…傾斜部
 601…流量検出回路
 602…流量検出部
 604…処理部(回路部品)
 608…発熱体
 640…発熱制御ブリッジ
 650…流量検知ブリッジ
 672…ダイヤフラム
DESCRIPTION OF SYMBOLS 300 ... Thermal flow meter 302 ... Housing 303 ... Front cover 304 ... Back cover 305 ... External connection part 306 ... External terminal 307 ... Correction terminal 310 ... Measurement part 320 ... Terminal connection part 332 ... Front side auxiliary passage groove 334 ... Back side auxiliary Passage groove 356 ... Projection 359 ... Resin 361 ... External terminal inner end 372 ... Fixed part 400 ... Circuit package 401 ... First package protrusion 402 ... Second package protrusion 403 ... Corner 403A ... Projection 404 ... Main body 405 ... Filling inlet 412 ... Connection terminal 414 ... Terminal 424 ... Projection 430 ... Measurement flow path surface 432 ... Fixed surface 436 ... Heat transfer surface exposed part 438 ... Opening 452 ... Temperature detection part 511 ... Lead frame 516 ... Chip Parts (circuit parts)
518 ... Temperature detection element 597 ... Resin filling passage 598 ... Press- fit hole 599A, 599B, 599C ... Inlet gate 594 ... Inclined part 596 ... Inclined part 601 ... Flow rate detection circuit 602 ... Flow rate detection part 604 ... Processing part (circuit parts)
608 ... Heating element 640 ... Heat generation control bridge 650 ... Flow rate detection bridge 672 ... Diaphragm

Claims (6)

  1.  温度検出素子と、流量検出素子と、回路部品とをリードに搭載して金型内に配置し、該金型内にモールド樹脂を充填して形成された回路パッケージを有する熱式流量計であって、
     前記回路パッケージは、前記回路部品が配置される本体部と、前記本体部から突出して前記温度検出素子が配置される第1のパッケージ突出部と、該第1のパッケージ突出部から離間して前記本体部から突出して前記流量検出部が配置される第2のパッケージ突出部と、を有し、前記モールド樹脂を前記金型内に充填した充填入口部が前記本体部に設けられており、該充填入口部が前記回路部品を間に介して前記第1のパッケージ突出部及び前記第2のパッケージ突出部に対向する位置に配置された構成を有することを特徴とする熱式流量計。
    A thermal flow meter having a circuit package formed by mounting a temperature detection element, a flow rate detection element, and a circuit component on a lead and placing the lead in a mold and filling the mold with mold resin. And
    The circuit package includes a main body portion on which the circuit component is disposed, a first package protrusion portion that protrudes from the main body portion and on which the temperature detection element is disposed, and is spaced apart from the first package protrusion portion. A second package projecting portion that projects from the main body portion and the flow rate detecting portion is disposed, and a filling inlet portion that fills the mold with the mold resin is provided in the main body portion, A thermal flow meter, wherein a filling inlet portion is arranged at a position facing the first package protrusion and the second package protrusion with the circuit component interposed therebetween.
  2.  前記本体部は、前記第1のパッケージ突出部を有する第1辺部と、該第1辺部の一端側に配置されて前記第2のパッケージ突出部を有する第2辺部と、該第2辺部の一端側に配置されて前記第1辺部に対向する第3辺部と、該第3辺部の一端側と前記第1辺部の他端側との間に配置されて前記第2辺部に対向し前記リードが突出する第4辺部と、を有し、 前記充填入口部は、前記第3辺部と前記第4辺部との間の角部に配置されていることを特徴とする請求項1に記載の熱式流量計。 The main body includes a first side having the first package protrusion, a second side having the second package protrusion disposed on one end side of the first side, and the second side. A third side portion disposed on one end side of the side portion and facing the first side portion; and disposed between one end side of the third side portion and the other end side of the first side portion. 4th side part which the said lead protrudes facing 2 sides, The said filling inlet part is arrange | positioned at the corner | angular part between the said 3rd side part and the said 4th side part The thermal flow meter according to claim 1.
  3.  前記回路パッケージは、前記本体部の前記角部で且つ前記第3辺部に突設された凸部に前記充填入口部が設けられており、前記本体部の前記角部を通過する対角線の延長線上に延在して前記充填入口部に連続する前記金型の入口ゲートを介して前記金型内に前記モールド樹脂を充填して形成された構成を有していることを特徴とする請求項2に記載の熱式流量計。 In the circuit package, the filling inlet portion is provided at a convex portion protruding from the corner portion of the main body portion and the third side portion, and an extension of a diagonal line passing through the corner portion of the main body portion. The mold resin is formed by filling the mold resin through an inlet gate of the mold that extends on a line and continues to the filling inlet portion. 2. The thermal flow meter according to 2.
  4.  前記回路パッケージは、前記本体部の前記角部で且つ前記第4辺部に前記充填入口部が設けられており、前記第3辺部と同方向に延在して前記充填入口部に連続する前記金型の入口ゲートを介して前記金型内に前記モールド樹脂を充填して形成された構成を有していることを特徴とする請求項2に記載の熱式流量計。 The circuit package is provided with the filling inlet portion at the corner portion of the main body portion and at the fourth side portion, and extends in the same direction as the third side portion and is continuous with the filling inlet portion. The thermal flowmeter according to claim 2, wherein the mold is filled with the mold resin through an entrance gate of the mold.
  5.  前記回路パッケージは、前記本体部の前記角部で且つ前記第3辺部に前記充填入口部が設けられており、前記第4辺部と同方向に延在して前記充填入口部に連続する前記金型の入口ゲートを介して前記金型内に前記モールド樹脂を充填して形成された構成を有していることを特徴とする請求項2に記載の熱式流量計。 The circuit package is provided with the filling inlet portion at the corner portion of the main body portion and at the third side portion, and extends in the same direction as the fourth side portion and continues to the filling inlet portion. The thermal flowmeter according to claim 2, wherein the mold is filled with the mold resin through an entrance gate of the mold.
  6.  前記回路パッケージは、前記第1のパッケージ突出部の先端位置と前記第2のパッケージ突出部の先端位置に前記モールド樹脂の余剰分が流れ出る樹脂出口部が配置された構成を有することを特徴とする請求項1から請求項5のいずれか一項に記載の熱式流量計。 The circuit package has a configuration in which a resin outlet portion from which excess of the mold resin flows is arranged at a tip position of the first package protrusion and a tip position of the second package protrusion. The thermal type flow meter according to any one of claims 1 to 5.
PCT/JP2013/065130 2012-06-15 2013-05-31 Thermal flow meter WO2013187246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136390 2012-06-15
JP2012136390A JP5666508B2 (en) 2012-06-15 2012-06-15 Thermal flow meter

Publications (1)

Publication Number Publication Date
WO2013187246A1 true WO2013187246A1 (en) 2013-12-19

Family

ID=49758075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065130 WO2013187246A1 (en) 2012-06-15 2013-05-31 Thermal flow meter

Country Status (2)

Country Link
JP (1) JP5666508B2 (en)
WO (1) WO2013187246A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107003164B (en) * 2014-12-08 2019-12-03 日立汽车系统株式会社 Measuring physical
JP6474342B2 (en) * 2015-10-28 2019-02-27 日立オートモティブシステムズ株式会社 Physical quantity detection device
JP6950653B2 (en) 2018-09-06 2021-10-13 株式会社デンソー Physical quantity measuring device and manufacturing method of physical quantity measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426606B2 (en) * 2007-06-29 2010-03-03 三菱電機株式会社 Flow measuring device
JP2012058075A (en) * 2010-09-09 2012-03-22 Hitachi Automotive Systems Ltd Thermal air meter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208099B2 (en) * 2009-12-11 2013-06-12 日立オートモティブシステムズ株式会社 Flow sensor, method for manufacturing the same, and flow sensor module
JP5195819B2 (en) * 2010-06-02 2013-05-15 株式会社デンソー Air flow measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426606B2 (en) * 2007-06-29 2010-03-03 三菱電機株式会社 Flow measuring device
JP2012058075A (en) * 2010-09-09 2012-03-22 Hitachi Automotive Systems Ltd Thermal air meter

Also Published As

Publication number Publication date
JP2014001992A (en) 2014-01-09
JP5666508B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP6014665B2 (en) Thermal flow meter
JP5763590B2 (en) Thermal flow meter
JP5632881B2 (en) Thermal flow meter
JP5662382B2 (en) Thermal flow meter
JP5662381B2 (en) Thermal flow meter
WO2013187169A1 (en) Thermal flow meter
JP5675706B2 (en) Thermal flow meter
JP5676527B2 (en) Thermal flow meter
WO2013187170A1 (en) Thermal flow meter
JP6272399B2 (en) Thermal flow meter
JP5759943B2 (en) Thermal flow meter
JP5759942B2 (en) Thermal flow meter
JP5961731B2 (en) Thermal flow meter
JP5666508B2 (en) Thermal flow meter
JP5841211B2 (en) Physical quantity measuring apparatus and manufacturing method thereof
JP5998251B2 (en) Physical quantity detector
JP6040284B2 (en) Thermal flow meter
JP6240795B2 (en) Thermal flow meter
JP5976167B2 (en) Thermal flow meter
JP6081088B2 (en) Thermal flow meter
JP2015042991A (en) Thermal type flowmeter
JP2018066754A (en) Thermal flowmeter
JP2014001976A (en) Thermal flowmeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804229

Country of ref document: EP

Kind code of ref document: A1