WO2013185656A1 - 一种实现跨线卡msp的方法、主控芯片和ptn设备 - Google Patents

一种实现跨线卡msp的方法、主控芯片和ptn设备 Download PDF

Info

Publication number
WO2013185656A1
WO2013185656A1 PCT/CN2013/078179 CN2013078179W WO2013185656A1 WO 2013185656 A1 WO2013185656 A1 WO 2013185656A1 CN 2013078179 W CN2013078179 W CN 2013078179W WO 2013185656 A1 WO2013185656 A1 WO 2013185656A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
line card
service
designated
stm
Prior art date
Application number
PCT/CN2013/078179
Other languages
English (en)
French (fr)
Inventor
潘庭山
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013185656A1 publication Critical patent/WO2013185656A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13292Time division multiplexing, TDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13367Hierarchical multiplexing, add-drop multiplexing

Definitions

  • Embodiments of the present invention relate to a network device such as a switch, and in particular, to a method for implementing a multi-segment protect (MSP), a main control chip, and a PTN (Packet Transport Network) device. .
  • MSP multi-segment protect
  • main control chip main control chip
  • PTN Packet Transport Network
  • the multiplex section protection is an SDH (Synchronous Digital Hierarchy) protection mechanism, referred to as MSP, which can be used to protect services on the SDH network.
  • MSP Synchronous Digital Hierarchy
  • Linear multiplex section protection includes 1+1 unidirectional/bidirectional linear multiplex section protection and 1:1 linear multiplex section protection, which protect the traffic transmitted on the working channel through the protection channel.
  • STM-N SDH Transfer Module, synchronous digital system transmission mode, for example, STM-1, STM-4, STM-16, etc.
  • the APS Automatic Switch Switch
  • the linear multiplex section transmits the protocol status and the switching status through the protection channel.
  • the devices at both ends perform service switching according to the protocol status and switching status.
  • MSP is mainly deployed at the edge of the network for MSTP (Multi-Service Transfer Platform, SDH-based multi-service transport platform) or RNC (Radio Network Controller) / BSC (Base Station Controller) .
  • MSTP Multi-Service Transfer Platform, SDH-based multi-service transport platform
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • the PTN devices are connected to each other to complete the service protection function.
  • the PTN device generally implements the linear protection function of the MSP. According to the specific protection configuration mode, it is divided into three types: line card protection, line card protection, and inter-rack protection.
  • the protection inside the line card is mainly internal protection of the SDH line card, and the technology is relatively mature.
  • the protection between the racks is mainly controlled at the protocol level, and the technology is also very mature.
  • the MSP protection between the line cards of the PTN equipment is for the service switching. The service is switched once. After the number of services is large, some services may fail to switch within 50ms. At the same time, switching and service associations require more hardware resources, such as ACL (Access Control List) resources. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method, a main control chip and a PTN device for implementing an over-the-line card MSP to improve MSP protection switching performance.
  • the present invention provides a cross-line card multi-multiplex section protection.
  • the main control chip establishes a connection relationship between the first cascade port and the first synchronous digital system transmission mode (STM) line card, and establishes a connection relationship between the second cascade port and the second STM line card;
  • STM synchronous digital system transmission mode
  • the master chip configures the designated port of the first STM line card and the designated port of the second STM line card to form an MSP group, and establishes a correspondence between the first cascade port and the second cascade port and the MSP group. Relationship
  • the master control chip After receiving the service in the uplink direction, the master control chip selects the specified port of the first STM line card and the designated port of the second STM line card according to the state of the MSP group. Receiving a service of one of the designated ports for forwarding;
  • the master control chip After receiving the service corresponding to the designated port in the downlink direction, the master control chip selects to forward the service through the first cascade port and/or the second cascade port according to the state of the MSP group.
  • the step of the master chip identifying that the service is from a designated port of the first STM line card and a designated port of the second STM line card comprises:
  • the master chip identifies the port of the STM line card corresponding to the service by using the access control list matching concatenation port and the bit of the specified N bit of the internal control pseudowire uplink multi-protocol label switching (MPLS) tag.
  • MPLS pseudowire uplink multi-protocol label switching
  • the step of configuring the MSP group by the designated chip of the first STM line card and the designated port of the second STM line card by the main control chip includes:
  • the master chip delivers the same service configuration to the designated port of the first STM line card and the designated port of the second STM line card.
  • the step of forwarding the service by using the first level port and/or the second level port according to the state of the MSP group includes:
  • the master control chip modifies the egress port in the forwarding table corresponding to the service corresponding to the designated port as Specify the port value
  • the first cascade port and the second cascade port are selected to forward the service according to the state of the MSP group and the specified port value;
  • the first cascade port or the second cascade port is selected to forward the service according to the state of the MSP group and the specified port value.
  • the present invention also provides a main control chip, including:
  • a first module configured to transmit a first cascade port and a first synchronous digital system
  • the line card establishes a connection relationship, and establishes a connection relationship between the second cascade port and the second STM line card;
  • the second module is configured to configure the designated port of the first STM line card and the designated port of the second STM line card Forming a multiple multiplex section protection (MSP) group, establishing a correspondence between the first cascading port and the second cascading port and the MSP group;
  • MSP multiple multiplex section protection
  • a third module configured to: after receiving the service in the uplink direction, if the service is identified from the designated port of the first STM line card and the designated port of the second STM line card, according to the MSP group
  • the fourth module is configured to receive the service corresponding to the designated port in the downlink direction, and select the status according to the state of the MSP group.
  • the first-level port and/or the second-level port forward the service.
  • the above main control chip also has the following features:
  • the second module is further configured to: in the process of configuring the designated port of the first STM line card and the designated port of the second STM line card to form a multiple multiplex section protection (MSP) group, to: the first STM line card The specified port and the designated port of the second STM line card deliver the same service configuration.
  • MSP multiple multiplex section protection
  • the above main control chip also has the following features:
  • the third module identifies that the service is from the designated port of the first STM line card and the designated port of the second STM line card by: matching the cascade port and the internal control pseudowire uplink multi-protocol through the access control list
  • a designated N-bit bit of the Label Switching (MPLS) tag identifies the port of the STM line card corresponding to the service.
  • MPLS Label Switching
  • the above main control chip further has the following features:
  • the fourth module includes:
  • a first unit configured to: after receiving the service corresponding to the designated port in the downlink direction, modify an egress port in the forwarding table corresponding to the service corresponding to the designated port to a specified port value; Setting to match the specified port value by using an access control list, where the specified port value corresponds to the first cascade port and the second cascade port;
  • a third unit configured to select the first-level port and/or the second-level port to forward the service according to the state of the MSP group and the specified port value.
  • the above main control chip also has the following features:
  • the third unit is configured to: if the MSP group is MSP1+1 protection, select the first cascade port and the second cascade port according to the state of the MSP group and the specified port value Forwarding the service; if the MSP group is MSP1:1, the first or the second expansion port is selected to forward the service according to the state of the MSP group and the specified port value.
  • the present invention further provides a packet transport network device, including at least two synchronous digital system transmission mode (STM) line cards and a main control chip;
  • STM synchronous digital system transmission mode
  • the main control chip includes: a first module configured to transmit a first cascade port and a first synchronous digital system
  • the line card establishes a connection relationship, and establishes a connection relationship between the second cascade port and the second STM line card;
  • the second module is configured to configure the designated port of the first STM line card and the designated port of the second STM line card Forming a multi-multiplex section protection (MSP) group, establishing a correspondence between the first cascade port and the second cascade port and the MSP group; and a third module, configured to receive a service in an uplink direction After the service is identified from the designated port of the first STM line card and the designated port of the second STM line card, the service of selecting one of the designated ports is selected according to the state of the MSP group. Forwarding; and a fourth module configured to receive a service corresponding to the designated port in a downlink direction, And forwarding, according to the state of the MSP group, the service by using the first expansion port and/or the second expansion port.
  • MSP multi-multiplex section protection
  • the above packet transport network device also has the following features:
  • the second module is further configured in the process of configuring a designated port of the first STM line card and a designated port of the second STM line card to form a multiple multiplex section protection (MSP) group:
  • MSP multiple multiplex section protection
  • the above packet transport network device also has the following features:
  • the third module identifies that the service is from the designated port of the first STM line card and the designated port of the second STM line card by: matching the cascade port and the internal control pseudowire uplink multi-protocol through the access control list
  • a designated N-bit bit of the Label Switching (MPLS) tag identifies the port of the STM line card corresponding to the service.
  • the above packet transport network device also has the following features:
  • the fourth module includes:
  • a first unit configured to: after receiving the service corresponding to the designated port in the downlink direction, modify an egress port in the forwarding table corresponding to the service corresponding to the designated port to a specified port value; Setting to match the specified port value by using an access control list, where the specified port value corresponds to the first cascade port and the second cascade port;
  • a third unit configured to select the first-level port and/or the second-level port to forward the service according to the state of the MSP group and the specified port value.
  • the present invention provides a method for implementing over-the-line card MSP protection, a main control chip, and a PTN device, which are related to a series of main control chips (usually ASIC (Application Specific Integrated Circuit) switching chips).
  • ASIC Application Specific Integrated Circuit
  • the setting mainly provides PTN equipment cross-line card MSP protection high-performance devices and systems. The high performance is mainly reflected in the switching time and the number of services, while saving hardware ACL and other resources.
  • FIG. 1 is a flowchart of a method for implementing an over-the-line card MSP according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a PTN device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a main control chip according to an embodiment of the present invention. Preferred embodiment of the invention
  • the system allocates a pair of internal control pseudo between the online card and the main control chip.
  • the MPLS (Multi-Protocol Label Switching) label (including the uplink internal control MPLS label and the downlink internal control MPLS label) communicates.
  • the STM line card uses TDM (Time Division Multiplex and Multiplexer) or ATM (Asynchronous Transfer Mode) services according to PWE3 (Pseudo-Wire Emulation Edge to Edge).
  • TDM Time Division Multiplex and Multiplexer
  • ATM Asynchronous Transfer Mode
  • PWE3 Pseudo-Wire Emulation Edge to Edge
  • Step 12 The main control chip performs MPLS label switching according to the uplink internal control pseudowire MPLS label, and exchanges the uplink MPLS label of the pseudowire on the network side, and encapsulates the tunnel MPLS label, the destination MAC (Media Access Control), and the source. MAC, VLAN (Virtual Local Area Network) information, etc., are sent out from the network side port.
  • Step 21 After the main control strips the downlink MPLS label of the tunnel, the MPLS label is exchanged according to the downlink MPLS label of the pseudowire, and is exchanged as the downlink MPLS label of the internal control of the user side.
  • Step 22 After receiving the packet, the STM line card forwards the user-side service according to the downlink MPLS label identification service of the internal control.
  • the embodiment of the present invention provides a method for the cross-line card MSP, as shown in FIG. 1 , including the following steps:
  • the main control chip establishes a connection relationship between the first cascade interface and the first STM line card, and establishes a connection relationship between the second secondary interface and the second STM line card.
  • the main control chip configures a designated port of the first STM line card and a designated port of the second STM line card to form an MSP group, and establishes a correspondence between the first cascade port and the second cascade port and the MSP group. ;
  • the S300 After receiving the service in the uplink direction, the S300, if the service is identified from the designated port of the first STM line card and the designated port of the second STM line card, is selected according to the state of the MSP group. Receiving a service of one of the designated ports for forwarding;
  • the main control chip After receiving the service corresponding to the designated port in the downlink direction, the main control chip selects to forward the service through the first cascade port and/or the second cascade port according to the state of the MSP group.
  • the main control chip converts the MSP protection between the STM ports of the cross-line card into the protection between the cascade ports of the main control chip, so that multiple MSP protection groups of the inter-line card can be converted into the main control chip.
  • the protection between the same pair of expansion ports is not only related to the number of services, but multiple MSP protection groups may correspond to the same pair of expansion ports, which can greatly save hardware resources such as ACL and improve handover performance.
  • the service that needs to be protected by the expansion port needs to be differentiated.
  • the outbound port of the service that needs to be protected by the cascade port is modified to a special invalid port (each special invalid port corresponds to a pair. Cascade port protection).
  • the port of the switch chip is usually (modulid), portld (port identifier).
  • moduleld has 8bit.
  • module 1-255 can be used as a special flag, for example: It is modular 0, cascade port 1 , if the service needs to be protected between the port 1 and port 2, the master chip can protect the service between the port 1 and port 2 in the forwarding table.
  • the line card does not pass the ACL matching cascade port + internal control uplink pseudo-line label (corresponding to one service) to receive and receive, but directly through the ACL to match the cascade port (device line card) + internal control uplink
  • the last few bits of the pseudowire label (of course, you can also specify the bits of other bits, such as the middle of the bit) (if the STM-1 line card does not need to match; if it is the STM-4 line card, the last 2 bits are required) , 00 represents STM port 1, 01 represents port 2, 10 represents port 3, 11 represents port 4; if it is STM-16 line card, it needs to match the last 4 bits, and so on), that is, directly through
  • the ACL identifies all services on a port on the STM line card at a time.
  • the number of ACL rules is independent of the number of services. This greatly saves hardware resources such as ACLs. At the same time, it is not related to services when receiving. Improve the switching performance of the selection.
  • Specifically implementing the MSP protection by using the present invention may further include the following steps:
  • the line card and the main control chip identify the service through the internal control tag, but the main control chip can identify the port number of the STM through the specified N-bit bit (for example, the lowest number) of the internal control pseudo-line tag, so the system
  • N-bit bit for example, the lowest number
  • the system When assigning the upstream label of the internal control pseudowire, you need to pay attention to assign different label types to different STM ports.
  • STM-4 line cards only the minimum 2 bits can be allocated for the service on port 1 of the STM line card.
  • For the service on port 3 of the STM line card only the MPLS label with a minimum of 2 bits is allocated.
  • the service on port 4 of the line card can only allocate MPLS labels with a minimum of 2 bits of 3.
  • the downlink MPLS label of the internal control pseudowire label is not limited.
  • the downstream main control chip sends to the two line cards simultaneously Send the same traffic (change the port of the forwarding table corresponding to the MPLS label in the downstream direction of the network to a special value, and then redirect the port to the port bitmap through the ACL matching the special value port, including two cascades. Mouth, realize the double-issue of two line cards).
  • the two line cards send traffic to the main control chip at the same time.
  • the main control chip selects and receives one of the traffic according to the state of the MSP protection group (the LTE matches the cascade port + the internal control pseudowire.
  • the lower bits of the uplink MPLS label (STM-4) For a minimum of 2, the STM-16 is the lowest 4 digits) and discard one of them >3 ⁇ 4 text).
  • the downlink control chip sends traffic to only one of the line cards (changes the port of the forwarding table corresponding to the MPLS label in the downstream direction of the network to a special value, and then matches by ACL.
  • the special value port redirects the packet to one of the two cascade ports according to the protection group status.
  • the useful information in the uplink direction will only be sent to the master chip on one line card, but if there is no traffic on the other line card, the idle frame will be sent to the master, so the uplink direction is the same as the MSP 1+1 protection.
  • the MSP protection group status is selected to receive one of the traffic (through the ACL matching cascade port + internal control pseudowire upstream MPLS label lower bits (for example, STM-4 lowest 2 bits, STM-16 lowest 4 bits) discard one of them Message).
  • the embodiment of the present invention provides a device and a system for protecting a high performance of a PTN device across the line card MSP.
  • the switching time is independent of the number of services, greatly improving the switching performance, and saving a large amount of hardware resources such as ACL.
  • STM-4 line card 1 port 1 carries 64 E1 services. (All services are protected by port 4 of line card 2) List 2 services for description.
  • the E1 service 1 goes out of the network side through the pseudowire 1 (network side) carrying the tunnel 100.
  • the uplink MPLS label of the tunnel 100 is 1000
  • the downlink MPLS label is 2000
  • the uplink MPLS label of the pseudo line 1 is 100
  • the downlink MPLS label is 200.
  • the E1 service 2 goes out of the network side through the pseudowire 2 (network side) carrying the tunnel 100.
  • the uplink MPLS label of tunnel 100 is 1000
  • the downlink MPLS label is 2000
  • the upstream MPLS of pseudowire 2 is The label is 101 and the downstream MPLS label is 201.
  • STM-4 line card 1 port 3 carries 64 E1 services. (All services are not configured with MSP protection) List 1 business descriptions.
  • the E1 service 3 goes out of the network side through the pseudowire 3 (network side) carrying the tunnel 100.
  • the uplink MPLS label of the tunnel 100 is 1000
  • the downlink MPLS label is 2000
  • the uplink MPLS label of the pseudo line 3 is 102
  • the downlink MPLS label is 202.
  • Step 101 Line card 2 port 4 The same configuration as the line card 1 port 1 is issued.
  • Step 102 The main control chip allocates the uplink pseudowire MPLS label 16 of the internal control to the E1 service 1 and the downlink pseudowire MPLS label 3016 of the internal control.
  • the E1 service 2 is assigned an internal control uplink pseudowire MPLS label 20 and an internal control downlink pseudowire MPLS label 3020,
  • the E1 service 3 is assigned an internal control uplink pseudowire MPLS label 18 and an internal control downlink pseudowire MPLS label 3018,
  • the main control chip can identify the port of the line card according to the uplink pseudowire MPLS label of the internal control coming from the line card.
  • the lowest 2 bits of the 16 and 20 labels are 0, so the STM port 1; the lowest 2 bits of the 18 label is 2, so STM port 3.
  • the main control chip can identify the STM port through the label, and the STM line card number can be known through the cascade port, so that the packet on the specific STM port of the specific STM line card can be completely identified on the main control chip for ACL discarding to realize selective reception.
  • Step 103 The main control chip sends an uplink forwarding table, and the MPLS label 16 is switched to the MPLS label 100, and the tunnel MPLS label 1000 is encapsulated.
  • the egress port of the forwarding table is the destination port on the network side.
  • the MPLS label 20 is switched to the MPLS label 101 and encapsulates the tunnel MPLS label 1000.
  • the outgoing port of the forwarding table is the destination port on the network side.
  • the MPLS label 18 is switched to the MPLS label 102 and encapsulates the tunnel MPLS label 1000.
  • the outgoing port of the forwarding table is the destination port on the network side.
  • Step 104 The main control chip sends a downlink forwarding table, the tunnel MPLS label 2000 is stripped (multiple services may be multiplexed), and the service 1 is switched to the MPLS label 3016 according to the pseudowire MPLS label 200, and the egress port of the forwarding table is a cascade port. 1.
  • the service 2 is switched to the MPLS label 3020 according to the pseudowire MPLS label 201, and the egress port of the forwarding table is the concatenation port 1.
  • Service 3 is based on the pseudowire MPLS label 202 Switch to MPLS label 3018.
  • the egress port of the forwarding table is cascade port 1.
  • the main control chip Since there are 3 services in the downlink, where the services 1 and 2 are the port 1 of the STM-4 line card 1 and the port 4 of the STM-4 line card 2 constitute the over-the-line card MSP protection, the main control chip needs to be converted into the cascade port. Protection between 1, 2, protection between the cascade ports of the main control chip is identified by a special port (modify module is 1), service 3 is the service of port 3 of STM-4 line card 1, no composition span The line card MSP protection, so the label forwarding table corresponding to 200, 201 needs to change the moduleel in the port number to 1, and the forwarding table port number corresponding to the label 202 of the service 3 does not need to change or 0.
  • Step 105 Because it is MSP1+1 protection, the uplink of the main control chip needs to be set to receive the ACL. If the MSP protection group works in the main, set the ACL to match the cascade port 2 (protection line card) + the internal control pseudo line. The lower 2 bits of the label are 11 (the service whose protection port is 4). The action is discarded, and the traffic on the STM port 4 of the backup line card is discarded. If the MSP protection group is working in standby, set the ACL to match the cascade port 1 (working Line card) + The lower 2 bits of the upstream label of the internal control pseudowire are 0 (the service with the working port is 1), and the action is discarded, and the traffic on the STM port 1 of the main line card is discarded.
  • Step 106 Because the MSP1+1 protection is performed, the ACL of the main control chip needs to be set to perform the dual-issue, and the ACL matches the packet with the port module being 1 and performs the action redirection packet to the cascade port 1 and the cascade port 2 .
  • the above embodiment mainly describes the implementation of the protection of the over-the-line card MSP1+1.
  • the protection of the over-the-line card MSP1:1 is slightly different.
  • the ACL is not required for dual-issue when the downlink is in the downlink.
  • the status of the ACL rule can be updated.
  • the port information is changed to cascade port 1 or cascade port 2.
  • FIG. 3 is a schematic diagram of a main control chip 300 according to an embodiment of the present invention. As shown in FIG. 3, the main control chip of this embodiment includes:
  • a first module 301 configured to establish a connection relationship between the first cascade port and the first synchronous digital system transmission mode (STM) line card, and establish a connection relationship between the second cascade port and the second STM line card;
  • the module 302 is configured to configure a designated port of the first STM line card and a designated port of the second STM line card to form a multiple multiplex section protection (MSP) group, and establish the first cascade port and the second cascade Correspondence between the port and the MSP group;
  • a third module 303 configured to: after receiving the service in the uplink direction, if the service is identified from the designated port of the first STM line card and the designated port of the second STM line card, according to the MSP group State selection to receive traffic for one of the designated ports for forwarding;
  • the fourth module 304 is configured to: after receiving the service corresponding to the designated port in the downlink direction, select, according to the state of the MSP group, to forward through the first cascade port and/or the second cascade port Business.
  • the second module 302 is further configured to: in the process of configuring a designated port of the first STM line card and a designated port of the second STM line card to form a multiple multiplex section protection (MSP) group: The designated service port of the STM line card and the designated port of the second STM line card deliver the same service configuration.
  • MSP multiple multiplex section protection
  • the third module 303 identifies that the service is from the designated port of the first STM line card and the designated port of the second STM line card by: matching the cascade port and the internal control pseudo line through the access control list
  • the designated N-bit bit of the uplink Multi-Protocol Label Switching (MPLS) tag identifies the port of the STM line card corresponding to the service.
  • the fourth module 304 may include:
  • a first unit configured to: after receiving the service corresponding to the designated port in the downlink direction, modify an egress port in the forwarding table corresponding to the service corresponding to the designated port to a specified port value; Setting to match the specified port value by using an access control list, where the specified port value corresponds to the first cascade port and the second cascade port;
  • a third unit configured to select the first-level port and/or the second-level port to forward the service according to the state of the MSP group and the specified port value.
  • the third unit is configured to: if the MSP group is MSP1+1 protection, select the first cascade port and the second cascade port according to the state of the MSP group and the specified port value. Forwarding the service; if the MSP group is MSP1:1, the first or the second expansion port is selected to forward the service according to the state of the MSP group and the specified port value. .
  • the embodiment of the invention provides a method for implementing the MSP protection of the cross-line card, the main control chip and the PTN device, and relates to a series of settings of the main control chip (usually an ASIC (Application Specific Integrated Circuit) switching chip). It mainly provides PTN equipment cross-line card MSP protection high-performance devices and systems. The high performance is mainly reflected in the switching time and the number of services, while saving hardware ACL and other resources.
  • ASIC Application Specific Integrated Circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种实现跨线卡MSP保护的方法及主控芯片、PTN设备,该方法包括:主控芯片将第一级联口与第一STM线卡建立连接关系,将第二级联口与第二STM线卡建立连接关系;主控芯片配置第一STM线卡的指定端口和第二STM线卡的指定端口组成MSP组,建立第一级联口和第二级联口与该MSP组的对应关系;主控芯片接收到上行方向上的业务后,若识别所述业务来自所述指定端口,根据MSP组的状态选收所述指定端口中的一个端口的业务进行转发;主控芯片接收到下行方向上的与所述指定端口对应业务后,根据MSP组的状态选择通过第一级联口和/或第二级联口转发所述业务。本发明可以提高MSP保护切换性能。

Description

一种实现跨线卡 MSP的方法、 主控芯片和 PTN设备
技术领域
本发明的实施例涉及交换机等网络设备, 具体地, 涉及实现跨线卡 MSP ( Multi-segment Protect, 多复用段保护) 的方法、 主控芯片和 PTN ( Packet Transport Network, 分组传送网)设备。
背景技术
复用段保护是一种 SDH ( Synchronous Digital Hierarchy, 同步数字体系) 的保护机制, 简称为 MSP, 可以用于保护 SDH网络上的业务。 本文主要阐 述应用在 PTN网络中的 MSP保护, 即线性复用段保护。 线性复用段保护包 括 1+1单向 /双向线性复用段保护和 1 :1 线性复用段保护, 它们通过保护通道 保护工作通道上传送的业务。 当工作通道发生故障时, 业务将倒换到保护通 道上, 适用于 STM-N ( SDH Transfer Module, 同步数字体系的传输模式, 例如, STM-1 , STM-4, STM-16等)接口。线性复用段保护的 APS ( Automatic Protect Switch, 自动倒换)协议通过保护通道传送, 相互传递协议状态和倒 换状态, 两端设备根据协议状态和倒换状态, 进行业务倒换。
MSP 主要部署在网络的边缘, 用于与 MSTP ( Multi-Service Transfer Platform,基于 SDH的多业务传送平台)或者 RNC ( Radio Network Controller, 无线网络控制器 ) /BSC ( Base Station Controller, 基站控制器 )。 PTN设备进 行对接共同完成业务保护功能。
PTN设备中一般实现 MSP的线性保护功能, 按照具体的保护配置方式, 分成三种类型: 线卡内保护、 线卡间保护和机架间保护。 线卡内保护主要是 SDH线卡内部进行保护, 技术比较成熟, ; 机架间保护主要是协议层面进行 控制, 技术也很成熟; 目前 PTN设备的线卡间 MSP保护是针对业务进行切 换, 每条业务切换一次, 业务数量多了以后, 有些业务可能在 50ms以内无法 进行切换, 同时切换和业务关联需要花费更多的硬件资源,比如 ACL ( Access Control List, 访问控制列表) 资源等。 发明内容
本发明要解决的技术问题是提供一种实现跨线卡 MSP的方法、主控芯片 和 PTN设备, 以提高 MSP保护切换性能。
为了解决上述技术问题, 本发明提供了一种实现跨线卡多复用段保护
( MSP ) 的方法, 包括:
主控芯片将第一级联口与第一同步数字体系的传输模式(STM )线卡建 立连接关系, 将第二级联口与第二 STM线卡建立连接关系;
所述主控芯片配置第一 STM线卡的指定端口和第二 STM线卡的指定端 口组成 MSP组, 建立所述第一级联口和所述第二级联口与所述 MSP组的对 应关系;
所述主控芯片接收到上行方向上的业务后, 若识别所述业务来自所述第 一 STM线卡的指定端口和所述第二 STM线卡的指定端口,根据所述 MSP组 的状态选择接收所述指定端口中的一个端口的业务进行转发; 以及
所述主控芯片接收到下行方向上的与所述指定端口对应的业务后, 根据 所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述业务。
上述方法还具有下面特点: 所述主控芯片识别所述业务来自所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口的步骤包括:
所述主控芯片通过访问控制列表匹配级联口和内控伪线上行多协议标签 交换(MPLS )标签的指定 N位的比特位, 来识别所述业务对应的 STM线卡 的端口。
上述方法还具有下面特点:所述主控芯片配置第一 STM线卡的指定端口 和第二 STM线卡的指定端口组成 MSP组的步骤包括:
所述主控芯片向所述第一 STM线卡的指定端口和所述第二 STM线卡的 指定端口下发相同的业务配置。
上述方法还具有下面特点:所述根据所述 MSP组的状态选择通过第一级 联口和 /或所述第二级联口转发所述业务的步骤包括:
所述主控芯片将所述指定端口对应业务对应的转发表中的出端口修改为 指定端口值;
通过访问控制列表匹配所述指定端口值, 所述指定端口值对应所述第一 级联口和所述第二级联口; 以及
根据所述多复用段保护组的状态和所述指定端口值选择所述第一级联口 和 /或所述第二级联口转发所述业务。
上述方法还具有下面特点:
如所述 MSP组为 MSP1+1保护, 则根据所述 MSP组的状态和所述指定 端口值选择所述第一级联口和所述第二级联口转发所述业务;
如所述 MSP组为 MSP1:1保护, 则根据所述 MSP组的状态和所述指定 端口值选择所述第一级联口或所述第二级联口转发所述业务。
为了解决上述问题, 本发明还提供了一种主控芯片, 包括:
第一模块, 其设置成将第一级联口与第一同步数字体系的传输模式
( STM )线卡建立连接关系, 将第二级联口与第二 STM线卡建立连接关系; 第二模块, 其设置成配置第一 STM线卡的指定端口和第二 STM线卡的 指定端口组成多复用段保护 (MSP )组, 建立所述第一级联口和所述第二级 联口与所述 MSP组的对应关系;
第三模块, 其设置成接收到上行方向上的业务后, 若识别所述业务来自 所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口, 根据所述 MSP组的状态选择接收所述指定端口中的一个端口的业务进行转发; 以及 第四模块,其设置成接收到下行方向上的与所述指定端口对应的业务后, 根据所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述 业务。
上述主控芯片还具有下面特点:
所述第二模块, 在配置第一 STM线卡的指定端口和第二 STM线卡的指 定端口组成多复用段保护(MSP )组的过程中还设置成: 向所述第一 STM线 卡的指定端口和所述第二 STM线卡的指定端口下发相同的业务配置。
上述主控芯片还具有下面特点: 所述第三模块通过如下方式识别所述业务来自所述第一 STM线卡的指 定端口和所述第二 STM线卡的指定端口:通过访问控制列表匹配级联口和内 控伪线上行多协议标签交换(MPLS )标签的指定 N位的比特位, 来识别所 述业务对应的 STM线卡的端口。
上述主控芯片还具有下面特点: 所述第四模块包括:
第一单元 ,其设置成接收到下行方向上的与所述指定端口对应的业务后 , 将所述指定端口对应的业务对应的转发表中的出端口修改为指定端口值; 第二单元, 其设置成通过访问控制列表匹配所述指定端口值, 所述指定 端口值对应所述第一级联口和所述第二级联口; 以及
第三单元,其设置成根据所述 MSP组的状态和所述指定端口值选择所述 第一级联口和 /或所述第二级联口转发所述业务。
上述主控芯片还具有下面特点:
所述第三单元是设置成: 如所述 MSP组为 MSP1+1保护, 则根据所述 MSP组的状态和所述指定端口值选择所述第一级联口和所述第二级联口转发 所述业务; 如所述 MSP组为 MSP1:1保护, 则根据所述 MSP组的状态和所 述指定端口值选择所述第一级联口或所述第二级联口转发所述业务。 为了解决上述问题, 本发明还提供了一种分组传送网设备, 包括至少两 个同步数字体系的传输模式(STM )线卡和主控芯片; 其中,
所述主控芯片包括: 第一模块, 其设置成将第一级联口与第一同步数字体系的传输模式
( STM )线卡建立连接关系, 将第二级联口与第二 STM线卡建立连接关系; 第二模块, 其设置成配置第一 STM线卡的指定端口和第二 STM线卡的 指定端口组成多复用段保护 (MSP )组, 建立所述第一级联口和所述第二级 联口与所述 MSP组的对应关系; 第三模块, 其设置成接收到上行方向上的业务后, 若识别所述业务来自 所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口, 根据所述 MSP组的状态选择接收所述指定端口中的一个端口的业务进行转发; 以及 第四模块,其设置成接收到下行方向上的与所述指定端口对应的业务后, 根据所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述 业务。
上述分组传送网设备还具有下面特点:
所述第二模块在配置第一 STM线卡的指定端口和第二 STM线卡的指定 端口组成多复用段保护 (MSP )组的过程中还设置成:
向所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口下发 相同的业务配置。
上述分组传送网设备还具有下面特点:
所述第三模块通过如下方式识别所述业务来自所述第一 STM线卡的指 定端口和所述第二 STM线卡的指定端口:通过访问控制列表匹配级联口和内 控伪线上行多协议标签交换(MPLS )标签的指定 N位的比特位, 来识别所 述业务对应的 STM线卡的端口。
上述分组传送网设备还具有下面特点:
所述第四模块包括:
第一单元,其设置成接收到下行方向上的与所述指定端口对应的业务后, 将所述指定端口对应的业务对应的转发表中的出端口修改为指定端口值; 第二单元, 其设置成通过访问控制列表匹配所述指定端口值, 所述指定 端口值对应所述第一级联口和所述第二级联口; 以及
第三单元,其设置成根据所述 MSP组的状态和所述指定端口值选择所述 第一级联口和 /或所述第二级联口转发所述业务。
综上所述,本发明提供一种实现跨线卡 MSP保护的方法及主控芯片、 PTN 设备, 涉及到主控芯片 (一般是 ASIC ( Application Specific Integrated Circuit, 专用集成电路) 交换芯片)一系列的设置, 主要提供 PTN设备跨线卡 MSP 保护高性能的装置和系统, 高性能主要体现在切换时间和业务数量无关, 同 时可以节省硬件的 ACL等资源。 附图概述
图 1为本发明实施例的实现跨线卡 MSP的方法的流程图。
图 2为本发明实施例的 PTN设备的示意图。
图 3为本发明实施例的主控芯片的示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
利用本发明的实施例实现基本业务(不包括 MSP保护)需要以下步骤: 针对 STM线卡上面每个业务(对应网络侧一个伪线), 系统会在线卡和 主控芯片间分配一对内控伪线 MPLS ( Multi-Protocol Label Switching, 多协议 标签交换)标签(包括上行内控伪线 MPLS标签和下行内控伪线 MPLS标签) 进行通信。
上行:
步骤 11、 STM线卡把 TDM ( Time Division Multiplex and Multiplexer, 时 分复用 )或者 ATM ( Asynchronous Transfer Mode, 异步传输模式)业务根据 PWE3(Pseudo-Wire Emulation Edge to Edge ,伪线的端到端仿真)协议用内控的 上行伪线 MPLS标签进行封装后发送给主控芯片。
步骤 12、主控芯片根据上行的内控伪线 MPLS标签进行 MPLS标签交换, 交换为网络侧的伪线上行 MPLS标签, 同时封装隧道 MPLS标签, 目的 MAC ( Media Access Control,媒体接入控制),源 MAC, VLAN( Virtual Local Area Network, 虚拟局域网)信息等, 从网络侧端口发送出去。
下行:
步骤 21、 主控剥离隧道下行 MPLS标签后, 根据伪线下行 MPLS标签进 行 MPLS标签交换, 交换为用户侧的内控的伪线下行 MPLS标签。
步骤 22、 STM线卡收到报文后,根据内控的伪线下行 MPLS标签识别业 务进行用户侧业务的转发。 为了实现跨线卡高性能的 MSP保护, 针对主控芯片, 本发明实施例提供 了跨线卡 MSP的方法, 如图 1所示, 包括以下步骤:
S100、主控芯片将第一级联口与第一 STM线卡建立连接关系, 以及将第 二级联口与第二 STM线卡建立连接关系;
S200、 主控芯片配置第一 STM线卡的指定端口和第二 STM线卡的指定 端口组成 MSP组, 建立所述第一级联口和所述第二级联口与该 MSP组的对 应关系;
S300、 主控芯片接收到上行方向上的业务后, 若识别所述业务来自所述 第一 STM线卡的指定端口和所述第二 STM线卡的指定端口, 根据所述 MSP 组的状态选收所述指定端口中的一个端口的业务进行转发; 以及
S400、 主控芯片接收到下行方向上的与所述指定端口对应业务后, 根据 所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述业务。
对于下行来说, 主控芯片把跨线卡的 STM端口之间的 MSP保护转换成 主控芯片的级联口之间的保护,这样跨线卡的多个 MSP保护组可以转换为主 控芯片上同一对级联口之间的保护, 不但和业务数量无关, 而且多个 MSP保 护组可能对应到同一对级联口, 可以大大节省 ACL等硬件资源, 同时提高切 换性能。
由于不是级联口上的业务都需要保护(对于 STM-4线卡来说, 主控芯片 一个级联口对应线卡的 4个 STM端口, 不是所有 STM端口都配置了跨线卡 MSP保护) , 所以对于需要进行级联口保护的业务需要区分, 在伪线对应的 标签转发表里面把需要级联口保护的业务的出端口修改为特殊的无效端口 (每个特殊的无效端口对应到一对级联口保护 ) 。
交换芯片的端口一般是( moduleld (模块标识), portld (端口标识) ), 比如, moduleld有 8bit, 如果系统只有一个交换芯片, 那么 moduleld 1-255 就可以作为特殊标志, 比如: 业务本来出端口是 moduleld 0, 级联口 port 1 , 如果业务需要在级联口 port 1、 port 2之间进行保护, 那么主控芯片可以把级 联口 port 1、 port 2之间的保护的业务在转发表用 module 1 , port 1来标志, 然后通过 ACL (直接匹配特殊的 moduleld 就可以) 进行双发 (如果是 MSPl+1 ) , 或者切换。
由于是多个伪线转发表都对应到 1个 ACL规则, 所以在节省 ACL资源 的同时, 对于 MSP 1:1来说切换性能也大大提高, 和业务数量无关, 一对级 联口之间只需要切换一次。 (跨线卡 MSP1+1保护下行不需要切换, 永远双 发。 )
对于上行来说, 线卡上面不再通过 ACL匹配级联口 +内控的上行伪线标 签(对应一个业务)进行选择接收, 而是直接通过 ACL匹配级联口 (设备线 卡) +内控的上行伪线标签的最后几个 bit (当然, 也可以指定其它位的比特 位, 如中间几个 bit ) (如果是 STM-1线卡不需要匹配; 如果是 STM-4线卡 需要最后 2个 bit, 00代表 STM的端口 1 , 01代表端口 2, 10代表端口 3 , 11代表端口 4; 如果是 STM-16线卡那么需要匹配最后 4个 bit, 以此类推) 进行选收, 也就是直接通过 ACL在主控芯片上面一次识别 STM线卡上面某 个端口的所有业务, ACL 的规则数目和业务数量无关, 大大地节省了 ACL 等硬件资源, 同时选择接收的时候也和业务无关了, 可以大大提高选收的切 换性能。
具体地利用本发明实现 MSP保护还可以包括以下步骤:
1 : 如果存在跨线卡的 MSP保护, 不管是 MSP 1+1保护还是 MSP 1:1保 护, 两块线卡上面的工作 STM端口和保护 STM端口上面的业务配置要求一 样。
2: 线卡和主控芯片间通过内控标签识别业务, 但是主控芯片同时可以通 过内控伪线标签的指定 N位比特位( bit ) (例如最低几位 )来识别 STM的 端口号,所以系统在分配内控伪线的上行标签的时候,需要注意给不同的 STM 端口分配不同的标签类型, 比如, 对于 STM-4线卡来说, 对于 STM线卡的 端口 1上面的业务只能分配最低 2bit为 0的 MPLS标签,对于 STM线卡的端 口 2上面的业务只能分配最低 2bit为 1的 MPLS标签,对于 STM线卡的端口 3上面的业务只能分配最低 2bit为 2的 MPLS标签, 对于 STM线卡的端口 4 上面的业务只能分配最低 2bit为 3的 MPLS标签。内控伪线标签的下行 MPLS 标签没有限制。
3: 如果是跨线卡 MSP 1+1保护, 下行方向主控芯片向两块线卡同时发 送同样的流量(把网络侧下行方向的 MPLS标签对应的转发表的端口修改为 特殊值, 然后通过 ACL匹配特殊值端口, 把^艮文重定向到端口位图, 包括主 备两个级联口, 实现两块线卡的双发) 。 上行方向两个线卡同时向主控芯片 发送流量,主控芯片根据 MSP保护组状态选择接收其中一份流量 (通过 ACL 匹配级联口 +内控伪线上行 MPLS 标签的低几位( STM-4为最低 2 ,位 STM-16 为最低 4位)丟弃其中一份 >¾文) 。
4: 如果是跨线卡 MSP 1 : 1保护, 下行方向主控芯片只向其中一块线卡 发送流量(把网络侧下行方向的 MPLS标签对应的转发表的端口修改为特殊 值, 然后通过 ACL匹配特殊值端口, 根据保护组状态, 把报文重定向到两个 级联口中的一个) 。 上行方向的有用信息只会在一块线卡上面往主控芯片发 送, 但是如果另外一块线卡没有流量也会往主控发送空闲帧, 所以上行方向 和 MSP 1+1保护一样,主控根据 MSP保护组状态选择接收其中一份流量(通 过 ACL匹配级联口 +内控伪线上行 MPLS 标签的低几位(例如, STM-4最低 2位, STM-16最低 4位)丟弃其中一份报文) 。
与相关技术相比较, 本发明实施例提出了 PTN设备跨线卡 MSP保护高 性能的装置和系统, 切换时间和业务数量无关, 大大地提升了切换性能, 同 时可以节省大量的 ACL等硬件资源。
如图 2所示, 假设 PTN设备存在两块 STM-4线卡, 分别是线卡 1和 2 , STM-4线卡 1和主控芯片的级联口 1相连, STM-4线卡 2和主控芯片的级联 口 2相连, 线卡 1的端口 1和线卡 2的端口 4组成 MSP 1+1 保护。
STM-4线卡 1端口 1上面承载了 64条 E1业务。 (所有业务被线卡 2的 端口 4保护) 列出 2条业务进行描述。
E1业务 1通过伪线 1 (网络侧 ) 载走隧道 100从网络侧出去。 隧道 100 的上行 MPLS标签是 1000, 下行 MPLS标签是 2000, 伪线 1的上行 MPLS 标签是 100, 下行 MPLS标签是 200。
E1业务 2通过伪线 2 (网络侧 ) 载走隧道 100从网络侧出去。 隧道 100 的上行 MPLS标签是 1000, 下行 MPLS标签是 2000, 伪线 2的上行 MPLS 标签是 101 , 下行 MPLS标签是 201。
STM-4线卡 1端口 3上面承载了 64条 E1业务。 (所有业务没有配置 MSP保护) 列出 1条业务进行描述。
E1业务 3通过伪线 3 (网络侧 ) 载走隧道 100从网络侧出去。 隧道 100 的上行 MPLS标签是 1000 , 下行 MPLS标签是 2000 , 伪线 3的上行 MPLS 标签是 102 , 下行 MPLS标签是 202。
那么线卡和主控芯片的操作步骤如下:
步骤 101 : 线卡 2端口 4上面下发和线卡 1端口 1一样的配置。
步骤 102: 主控芯片给 E1业务 1分配内控的上行伪线 MPLS标签 16和 内控的下行伪线 MPLS标签 3016。
给 E1业务 2分配内控的上行伪线 MPLS标签 20和内控的下行伪线 MPLS 标签 3020 ,
给 E1业务 3分配内控的上行伪线 MPLS标签 18和内控的下行伪线 MPLS 标签 3018 ,
这样主控芯片根据线卡过来的内控的上行伪线 MPLS标签就可以识别线 卡的端口, 16、 20标签的最低 2bit是 0 , 所以是 STM端口 1 ; 18标签的最低 2bit是 2 , 所以是 STM端口 3。 主控芯片通过标签可以识别 STM端口, 通过 级联口就可以知道 STM线卡号 ,从而可以在主控芯片上面完全识别特定 STM 线卡特定 STM端口的报文进行 ACL丟弃实现选择接收。
步骤 103 : 主控芯片下发上行的转发表, MPLS标签 16交换到 MPLS标 签 100 , 同时封装隧道 MPLS标签 1000 , 转发表的出端口是网络侧的目的端 口。 MPLS标签 20交换到 MPLS标签 101 , 同时封装隧道 MPLS标签 1000 , 转发表的出端口是网络侧的目的端口。 MPLS标签 18交换到 MPLS标签 102 , 同时封装隧道 MPLS标签 1000 , 转发表的出端口是网络侧的目的端口。
步骤 104: 主控芯片下发下行的转发表, 隧道 MPLS标签 2000剥离 (多 个业务可能复用),业务 1根据伪线 MPLS标签 200交换到 MPLS标签 3016 , 转发表的出端口是级联口 1。 业务 2根据伪线 MPLS标签 201交换到 MPLS 标签 3020 , 转发表的出端口是级联口 1。 业务 3根据伪线 MPLS标签 202交 换到 MPLS标签 3018, 转发表的出端口是级联口 1。 由于下行有 3个业务, 其中, 业务 1、 2是 STM-4线卡 1的端口 1和 STM-4线卡 2的端口 4组成跨 线卡 MSP保护, 那么主控芯片需要转换为级联口 1、 2之间的保护, 主控芯 片的级联口之间的保护用特殊的端口来识别 (修改 moduleld为 1 ) , 业务 3 是 STM-4线卡 1的端口 3的业务,没有组成跨线卡 MSP保护,所以对于 200、 201对应的标签转发表需要把端口号里面的 moduleld修改为 1 , 业务 3的标 签 202对应的转发表端口号不需要变化还是 0。
步骤 105: 由于是 MSP1+1保护, 那么主控芯片的上行需要设置 ACL进 行选择接收, 如果 MSP保护组工作在主, 那么设置 ACL匹配级联口 2 (保护 线卡) +内控伪线的上行标签的低 2bit为 11 (保护端口为 4的业务) , 执行 动作丟弃, 丟弃备用线卡 STM端口 4上的流量; 如果 MSP保护组工作在备, 那么设置 ACL匹配级联口 1 (工作线卡) +内控伪线的上行标签的低 2bit为 0 (工作端口为 1的业务), 执行动作丟弃, 丟弃主用线卡 STM端口 1上的流 量。
步骤 106: 由于是 MSP1+1保护, 那么主控芯片的下行需要设置 ACL进 行双发, ACL匹配出端口 module为 1的报文,执行动作重定向报文到级联口 1和级联口 2。
上述实施例主要描述了跨线卡 MSP1+1保护的实现情况,跨线卡 MSP1 :1 保护略有差异, 对于主控芯片来说就是下行的时候不需要 ACL进行双发, 只 需要根据保护组的状态更新 ACL规则的出端口信息就可以了, 即将出端口信 息改为级联口 1或级联口 2。
图 3为本发明实施例的主控芯片 300的示意图, 如图 3所示, 本实施例 的主控芯片包括:
第一模块 301 , 其设置成将第一级联口与第一同步数字体系的传输模式 ( STM )线卡建立连接关系, 将第二级联口与第二 STM线卡建立连接关系; 第二模块 302, 其设置成配置第一 STM线卡的指定端口和第二 STM线 卡的指定端口组成多复用段保护 (MSP )组, 建立所述第一级联口和所述第 二级联口与该 MSP组的对应关系; 第三模块 303 , 其设置成接收到上行方向上的业务后, 若识别所述业务 来自所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口, 根据 所述 MSP组的状态选择接收所述指定端口中的一个端口的业务进行转发; 以 及
第四模块 304, 其设置成接收到下行方向上的与所述指定端口对应的业 务后, 根据所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转 发所述业务。
其中, 所述第二模块 302,在配置第一 STM线卡的指定端口和第二 STM 线卡的指定端口组成多复用段保护 (MSP )组的过程中还设置成: 向所述第 一 STM线卡的指定端口和所述第二 STM线卡的指定端口下发相同的业务配 置。
其中, 所述第三模块 303通过如下方式识别所述业务来自所述第一 STM 线卡的指定端口和所述第二 STM线卡的指定端口:通过访问控制列表匹配级 联口和内控伪线上行多协议标签交换(MPLS )标签的指定 N位的比特位, 来识别所述业务对应的 STM线卡的端口。
其中, 所述第四模块 304可以包括:
第一单元 ,其设置成接收到下行方向上的与所述指定端口对应的业务后 , 将所述指定端口对应的业务对应的转发表中的出端口修改为指定端口值; 第二单元, 其设置成通过访问控制列表匹配所述指定端口值, 所述指定 端口值对应所述第一级联口和所述第二级联口; 以及
第三单元,其设置成根据所述 MSP组的状态和所述指定端口值选择所述 第一级联口和 /或所述第二级联口转发所述业务。
其中, 第三单元是设置成: 如所述 MSP组为 MSP1+1保护, 则根据所述 MSP组的状态和所述指定端口值选择所述第一级联口和所述第二级联口转发 所述业务; 如所述 MSP组为 MSP1:1保护, 则根据所述 MSP组的状态和所 述指定端口值选择所述第一级联口或所述第二级联口转发所述业务。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。
工业实用性
本发明实施例提供一种实现跨线卡 MSP保护的方法及主控芯片、 PTN设 备, 涉及到主控芯片 (一般是 ASIC ( Application Specific Integrated Circuit, 专用集成电路) 交换芯片)一系列的设置, 主要提供 PTN设备跨线卡 MSP 保护高性能的装置和系统, 高性能主要体现在切换时间和业务数量无关, 同 时可以节省硬件的 ACL等资源。

Claims

权 利 要 求 书
1、 一种实现跨线卡多复用段保护 (MSP ) 的方法, 包括:
主控芯片将第一级联口与第一同步数字体系的传输模式(STM )线卡建 立连接关系, 将第二级联口与第二 STM线卡建立连接关系;
所述主控芯片配置第一 STM线卡的指定端口和第二 STM线卡的指定端 口组成 MSP组, 建立所述第一级联口和所述第二级联口与所述 MSP组的对 应关系;
所述主控芯片接收到上行方向上的业务后, 若识别所述业务来自所述第 一 STM线卡的指定端口和所述第二 STM线卡的指定端口,根据所述 MSP组 的状态选择接收所述指定端口中的一个端口的业务进行转发; 以及
所述主控芯片接收到下行方向上的与所述指定端口对应的业务后, 根据 所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述业务。
2、 如权利要求 1所述的方法, 其中: 所述主控芯片识别所述业务来自所 述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口的步骤包括: 所述主控芯片通过访问控制列表匹配级联口和内控伪线上行多协议标签 交换(MPLS )标签的指定 N位的比特位, 来识别所述业务对应的 STM线卡 的端口。
3、 如权利要求 1所述的方法, 其中: 所述主控芯片配置第一 STM线卡 的指定端口和第二 STM线卡的指定端口组成 MSP组的步骤包括:
所述主控芯片向所述第一 STM线卡的指定端口和所述第二 STM线卡的 指定端口下发相同的业务配置。
4、 如权利要求 1-3任一项所述的方法, 其中: 所述根据所述 MSP组的 状态选择通过第一级联口和 /或所述第二级联口转发所述业务的步骤包括: 所述主控芯片将所述指定端口的对应业务对应的转发表中的出端口修改 为指定端口值;
通过访问控制列表匹配所述指定端口值, 所述指定端口值对应所述第一 级联口和所述第二级联口; 以及 根据所述多复用段保护组的状态和所述指定端口值选择所述第一级联口 和 /或所述第二级联口转发所述业务。
5、 如权利要求 4所述的方法, 其中:
如所述 MSP组为 MSP1+1保护, 则根据所述 MSP组的状态和所述指定 端口值选择所述第一级联口和所述第二级联口转发所述业务;
如所述 MSP组为 MSP1:1保护, 则根据所述 MSP组的状态和所述指定 端口值选择所述第一级联口或所述第二级联口转发所述业务。
6、 一种主控芯片, 包括:
第一模块, 其设置成将第一级联口与第一同步数字体系的传输模式 ( STM )线卡建立连接关系, 将第二级联口与第二 STM线卡建立连接关系; 第二模块, 其设置成配置第一 STM线卡的指定端口和第二 STM线卡的 指定端口组成多复用段保护 (MSP )组, 建立所述第一级联口和所述第二级 联口与所述 MSP组的对应关系;
第三模块, 其设置成接收到上行方向上的业务后, 若识别所述业务来自 所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口, 根据所述 MSP组的状态选择接收所述指定端口中的一个端口的业务进行转发; 以及 第四模块,其设置成接收到下行方向上的与所述指定端口对应的业务后, 根据所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述 业务。
7、 如权利要求 6所述的主控芯片, 其中:
所述第二模块, 在配置第一 STM线卡的指定端口和第二 STM线卡的指 定端口组成多复用段保护 (MSP )组的过程中还设置成:
向所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口下发 相同的业务配置。
8、 如权利要求 6所述的主控芯片, 其中:
所述第三模块通过如下方式识别所述业务来自所述第一 STM线卡的指 定端口和所述第二 STM线卡的指定端口:通过访问控制列表匹配级联口和内 控伪线上行多协议标签交换(MPLS )标签的指定 N位的比特位, 来识别所 述业务对应的 STM线卡的端口。
9、 如权利要求 6-8任一项所述的主控芯片, 其中, 所述第四模块包括: 第一单元 ,其设置成接收到下行方向上的与所述指定端口对应的业务后 , 将所述指定端口对应的业务对应的转发表中的出端口修改为指定端口值; 第二单元, 其设置成通过访问控制列表匹配所述指定端口值, 所述指定 端口值对应所述第一级联口和所述第二级联口; 以及
第三单元,其设置成根据所述 MSP组的状态和所述指定端口值选择所述 第一级联口和 /或所述第二级联口转发所述业务。
10、 如权利要求 9所述的主控芯片, 其中:
所述第三单元是设置成: 如所述 MSP组为 MSP1+1保护, 则根据所述 MSP组的状态和所述指定端口值选择所述第一级联口和所述第二级联口转发 所述业务; 如所述 MSP组为 MSP1:1保护, 则根据所述 MSP组的状态和所 述指定端口值选择所述第一级联口或所述第二级联口转发所述业务。
11、 一种分组传送网设备, 包括: 至少两个同步数字体系的传输模式
( STM )线卡和主控芯片; 其中,
所述主控芯片包括:
第一模块, 其设置成将第一级联口与第一同步数字体系的传输模式 ( STM )线卡建立连接关系, 将第二级联口与第二 STM线卡建立连接关系; 第二模块, 其设置成配置第一 STM线卡的指定端口和第二 STM线卡的 指定端口组成多复用段保护 (MSP )组, 建立所述第一级联口和所述第二级 联口与所述 MSP组的对应关系;
第三模块, 其设置成接收到上行方向上的业务后, 若识别所述业务来自 所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口, 根据所述 MSP组的状态选择接收所述指定端口中的一个端口的业务进行转发; 以及 第四模块,其设置成接收到下行方向上的与所述指定端口对应的业务后, 根据所述 MSP组的状态选择通过第一级联口和 /或所述第二级联口转发所述 业务。
12、 如权利要求 11所述的分组传送网设备, 其中:
所述第二模块在配置第一 STM线卡的指定端口和第二 STM线卡的指定 端口组成多复用段保护 (MSP )组的过程中还设置成:
向所述第一 STM线卡的指定端口和所述第二 STM线卡的指定端口下发 相同的业务配置。
13、 如权利要求 11所述的分组传送网设备, 其中:
所述第三模块通过如下方式识别所述业务来自所述第一 STM线卡的指 定端口和所述第二 STM线卡的指定端口:通过访问控制列表匹配级联口和内 控伪线上行多协议标签交换(MPLS )标签的指定 N位的比特位, 来识别所 述业务对应的 STM线卡的端口。
14、 如权利要求 11-13任一项所述的分组传送网设备, 其中, 所述第四 模块包括:
第一单元 ,其设置成接收到下行方向上的与所述指定端口对应的业务后 , 将所述指定端口对应的业务对应的转发表中的出端口修改为指定端口值; 第二单元, 其设置成通过访问控制列表匹配所述指定端口值, 所述指定 端口值对应所述第一级联口和所述第二级联口; 以及
第三单元,其设置成根据所述 MSP组的状态和所述指定端口值选择所述 第一级联口和 /或所述第二级联口转发所述业务。
PCT/CN2013/078179 2012-07-05 2013-06-27 一种实现跨线卡msp的方法、主控芯片和ptn设备 WO2013185656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210230876.6 2012-07-05
CN201210230876.6A CN102801611B (zh) 2012-07-05 2012-07-05 一种实现跨线卡msp的方法、主控芯片和ptn设备

Publications (1)

Publication Number Publication Date
WO2013185656A1 true WO2013185656A1 (zh) 2013-12-19

Family

ID=47200580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078179 WO2013185656A1 (zh) 2012-07-05 2013-06-27 一种实现跨线卡msp的方法、主控芯片和ptn设备

Country Status (2)

Country Link
CN (1) CN102801611B (zh)
WO (1) WO2013185656A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801611B (zh) * 2012-07-05 2018-11-16 南京中兴新软件有限责任公司 一种实现跨线卡msp的方法、主控芯片和ptn设备
CN104683078B (zh) * 2015-02-06 2019-04-16 烽火通信科技股份有限公司 基于组播方式的复用段保护系统及保护方法
CN109271205B (zh) * 2018-08-21 2021-07-06 烽火通信科技股份有限公司 一种分布式业务单盘处理msp保护配置方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131435A (ja) * 1993-11-08 1995-05-19 Nec Corp Apsチャネル取り込み回路
US6628617B1 (en) * 1999-03-03 2003-09-30 Lucent Technologies Inc. Technique for internetworking traffic on connectionless and connection-oriented networks
CN101170837A (zh) * 2006-10-27 2008-04-30 中兴通讯股份有限公司 一种在吉比特无源光网络设备上实现跨线卡保护的方法
CN101951303A (zh) * 2010-09-26 2011-01-19 中兴通讯股份有限公司 一种实现复用段双向线性保护倒换的方法及节点设备
WO2012079328A1 (zh) * 2010-12-16 2012-06-21 中兴通讯股份有限公司 复用段保护的倒换方法、系统及分组传输网设备
CN102801611A (zh) * 2012-07-05 2012-11-28 中兴通讯股份有限公司 一种实现跨线卡msp的方法、主控芯片和ptn设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047547B (zh) * 2006-03-30 2012-04-18 华为技术有限公司 实现端口保护的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131435A (ja) * 1993-11-08 1995-05-19 Nec Corp Apsチャネル取り込み回路
US6628617B1 (en) * 1999-03-03 2003-09-30 Lucent Technologies Inc. Technique for internetworking traffic on connectionless and connection-oriented networks
CN101170837A (zh) * 2006-10-27 2008-04-30 中兴通讯股份有限公司 一种在吉比特无源光网络设备上实现跨线卡保护的方法
CN101951303A (zh) * 2010-09-26 2011-01-19 中兴通讯股份有限公司 一种实现复用段双向线性保护倒换的方法及节点设备
WO2012079328A1 (zh) * 2010-12-16 2012-06-21 中兴通讯股份有限公司 复用段保护的倒换方法、系统及分组传输网设备
CN102801611A (zh) * 2012-07-05 2012-11-28 中兴通讯股份有限公司 一种实现跨线卡msp的方法、主控芯片和ptn设备

Also Published As

Publication number Publication date
CN102801611B (zh) 2018-11-16
CN102801611A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN1625176B (zh) 基于边缘到边缘伪线仿真协议的通信方法
US7460554B2 (en) Any size and location of concatenated packet data across SONET frames in a SONET signal
CN100550823C (zh) 一种具有快速保护和公平特性的以太网传送设备及方法
US7433359B2 (en) Application of an Ethernet/MPLS half bridge to provide Ethernet multiplexing functions (EMF) in SONET network elements (NEs)
EP3255840B1 (en) Label distribution method and device
US20020176450A1 (en) System and methods for selectively transmitting ethernet traffic over SONET/SDH optical network
US8416770B2 (en) Universal service transport transitional encoding
US6990121B1 (en) Method and apparatus for switching data of different protocols
JP2005341583A (ja) 仮想プライベートネットワーク、マルチサービスプロビジョニングプラットフォーム及び方法
EP2571203B1 (en) Tunnel switching method and system for multi-protocol label switching services
WO2004036836A1 (fr) Procede d'emission de service de donnees sur un reseau numerique synchrone
WO2011140945A1 (zh) 一种业务数据传输方法及装置
CN110753010B (zh) 一种报文转发方法及装置
CN102014041A (zh) 分组传送网络设备和电路仿真业务设备
WO2014029286A1 (zh) 跨线卡保护方法、相关装置及线卡业务接入ptn的方法及系统
EP2485451B1 (en) Two-layer forwarding method for a pseudo wire (pw) service and system thereof
WO2013185656A1 (zh) 一种实现跨线卡msp的方法、主控芯片和ptn设备
WO2011095135A1 (zh) 一种相交环网保护方法、装置和系统
CN100508475C (zh) 传送多种业务的方法、节点设备及多业务传送平台
EP2222022B1 (en) A forwarding device and a forwarding method of signaling communication network information and management communication network information
WO2002017545A2 (en) SYSTEM AND METHOD OF nxSTS-1 BANDWIDTH SHARING AND RING PROTECTION
Bernstein et al. VCAT-LCAS in a clamshell
WO2004039001A1 (fr) Procede d'emission a debit secondaire d'un service de donnees utilisateur dans un emetteur de reseau longue distance
EP1699156B1 (en) A unit of the packet service dispatching and the method thereof
US20090232150A1 (en) Service edge platform architecture for a multi-service access network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803439

Country of ref document: EP

Kind code of ref document: A1