WO2013185525A1 - 多点协作的传输装置及方法、通信系统 - Google Patents

多点协作的传输装置及方法、通信系统 Download PDF

Info

Publication number
WO2013185525A1
WO2013185525A1 PCT/CN2013/075956 CN2013075956W WO2013185525A1 WO 2013185525 A1 WO2013185525 A1 WO 2013185525A1 CN 2013075956 W CN2013075956 W CN 2013075956W WO 2013185525 A1 WO2013185525 A1 WO 2013185525A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
signal
matrix
transmission
precoding matrix
Prior art date
Application number
PCT/CN2013/075956
Other languages
English (en)
French (fr)
Inventor
张翼
周华
吴建明
黄宇胜
郭爱煌
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Publication of WO2013185525A1 publication Critical patent/WO2013185525A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • H04L1/0077Cooperative coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas

Definitions

  • a new scenario of the coordinated multi-point transmission scheme in Rel. 11 is determined.
  • the low-power nodes in the traditional cell such as remote radio heads (RRHs)
  • RRHs remote radio heads
  • Different scenarios are studied.
  • the RRH inserted in the heterogeneous network can cause serious interference. Therefore, one of the most important tasks in the downlink is to try to eliminate mutual interference between users.
  • CoMP Coordinated Multiple Points
  • the CoMP scheme can reduce cell edge interference, improve cell edge spectrum efficiency, and increase effective coverage by multiple radio access point cooperation in the base station, base station and its associated relay cooperation and inter-base station cooperation.
  • the inventors have found that the defects of the prior art are: At present, the error rate of the CoMP technology is high, and the effective coverage cannot be increased, and the system performance needs to be further improved.
  • Embodiments of the present invention provide a multi-point coordinated transmission apparatus and method, and a communication system, aiming at reducing a bit error rate and increasing effective coverage, thereby further improving system performance.
  • a multi-point coordinated transmission apparatus which is applied to include multiple a base station side of the transmission point, where the multiple transmission points serve a plurality of user equipments, the transmission apparatus includes: an encoding unit, configured to modulate data to be sent by each user equipment to obtain two data streams, and Performing space-time block code encoding on the two data streams to obtain a signal matrix;
  • a calculating unit configured to calculate a precoding matrix of each user equipment for eliminating inter-layer interference between the user equipment and the user equipment;
  • a signal generating unit configured to multiply the signal matrix of each user equipment and the precoding matrix, add the multiplied results of the plurality of user equipments to generate a transmission signal, and send the transmission point through the transmission point The transmitted signal.
  • a multipoint coordinated transmission apparatus which is applied to a user equipment side, and the transmission apparatus includes:
  • a receiving unit configured to receive a signal sent by the base station side, where the signal is generated by multiplying a signal matrix of the multiple user equipments and a precoding matrix respectively;
  • the signal matrix is obtained by modulating data to be transmitted to obtain two data streams, and obtaining the space time block code encoding of the two data streams; the precoding matrix is used for eliminating user equipment and user equipment. Inter-layer interference.
  • a communication system for multi-point cooperation includes:
  • the transmitting device modulates data to be sent by each user equipment to obtain two data streams, and performs space time block code encoding on the two data streams to obtain a signal matrix; calculating each user equipment a precoding matrix for eliminating inter-layer interference between the user equipment and the user equipment; and multiplying the signal matrix of each user equipment by the precoding matrix, and adding the multiplication results of all user equipments to generate a transmission Signaling, and transmitting the transmitted signal through a plurality of transmission points;
  • the user equipment receiving signals transmitted by the plurality of transmission points, and performing demodulation to obtain required data.
  • a multi-point coordinated transmission method which is applied to a base station side that includes multiple transmission points, where the multiple transmission points serve multiple user equipments, and the transmission method includes:
  • a multipoint coordinated transmission method which is applied to a user equipment side, where the transmission method includes:
  • the signal is generated by multiplying a signal matrix of the plurality of user equipments and a precoding matrix respectively;
  • the signal matrix is obtained by modulating data to be transmitted to obtain two data streams, and obtaining the space time block code encoding of the two data streams; the precoding matrix is used for eliminating user equipment and user equipment. Inter-layer interference.
  • the invention has the beneficial effects that: by using space time block code coding and precoding matrix for eliminating inter-layer interference, signals can be transmitted in parallel on two spatial channels, so that the coding rate reaches the full rate; and the bit error rate can be reduced, and the effective coverage can be increased. , further improve system performance.
  • FIG. 1 is a schematic diagram showing the configuration of a transmission apparatus according to Embodiment 1 of the present invention
  • 2 is a schematic structural diagram of a virtual MIMO system according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a scenario of multipoint coordinated transmission according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a computing unit according to Embodiment 1 of the present invention.
  • Figure 5 is a block diagram showing another configuration of a computing unit according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of simulation of bit error rate under different transmission methods according to Embodiment 1 of the present invention.
  • Figure 7 is a block diagram showing the configuration of a transmission apparatus according to Embodiment 2 of the present invention.
  • Figure 8 is a flowchart of a transmission method of Embodiment 3 of the present invention.
  • Figure 9 is a schematic diagram of data transmission in Embodiment 3 of the present invention.
  • Figure 10 is a flowchart of a transmission method of Embodiment 4 of the present invention.
  • FIG 11 is a diagram showing the data reception in Embodiment 4 of the present invention. detailed description
  • MIMO Multi-Input Multi-Output
  • STBC Space Time Block Coding
  • STBC is a space-time coding based on orthogonal design that maximizes the diversity gain and lower code complexity at the expense of coding gain and partial band utilization.
  • the Alamouti space-time block code can only be transmitted at full rate when the number of transmit antennas is 2, and in most cases,
  • Embodiments of the present invention provide a method for combining STBC and CoMP, which can decompose a high-speed data stream into two sub-streams in a CoMP system by using a multi-point cooperative transmission method, and transmit Alamouti STBC symbols in parallel on two spatial channels, so that STBC coding is performed. Achieve a rate of 1 to improve system performance. Multiple users are multiplexed on the same time-frequency resource by precoding, which improves the spectrum efficiency of the system. The details are described below. Example 1
  • An embodiment of the present invention provides a multi-point coordinated transmission apparatus, which is applied to a base station side that includes multiple transmission points, where multiple transmission points provide services for multiple user equipments.
  • the transmission apparatus 100 includes: an encoding unit 101, a calculation unit 102, and a signal generation unit 103. Other parts of the transmission device 100 may refer to the prior art and will not be described herein.
  • the encoding unit 101 is configured to modulate data to be sent by each user equipment to obtain two data streams, and perform space time block code encoding on two data streams to obtain a signal matrix.
  • the calculating unit 102 is configured to calculate each a precoding matrix of the user equipment for eliminating inter-layer interference between the user equipment and the user equipment;
  • the signal generating unit 103 is configured to multiply the signal matrix of each user equipment and the precoding matrix to multiply the plurality of user equipments The result is added to generate a transmitted signal and transmitted through a plurality of transmission points.
  • the transmission point may be a Macro eNB, or may be a Pico eNB or an RRH.
  • Each transmission point and user equipment can have multiple antennas, and multiple user equipments and transmission points can form a virtual MIMO system.
  • the transmission device 100 can be configured on a transmission point, for example, can be configured in a macro base station.
  • Micro eNB may also be configured in a micro base station (for example, Pico eNB) or RRH. In addition, it may be distributedly arranged on the base station side (e.g., distributed over a plurality of base stations). However, it is not limited to this, and a specific implementation scenario may be determined according to actual conditions.
  • the data to be sent by the user equipment can be STBC-encoded, and transmitted through multiple transmission points after multi-point cooperation; after receiving the signal sent by the base station side, the user equipment can perform decoding, thereby obtaining the required information. data.
  • the data to be transmitted by each user equipment is modulated to obtain two data streams, and the two data streams are subjected to space time block code encoding; the STBC symbols can be transmitted in parallel on the two spatial channels, so that the STBC code reaches 1 Rate, get space diversity, and improve system performance.
  • the computing unit 102 may calculate a precoding matrix for each user equipment for eliminating inter-layer interference between the user equipment and the user equipment, and may perform calculation by a block diagonal (BD) algorithm.
  • BD block diagonal
  • ZF Zero Forcing
  • the transmission device will be described in detail below by taking only the BD algorithm as an example.
  • Figure 3 is the present invention A schematic diagram of a scenario of coordinated multi-point transmission in an embodiment, as shown in FIG. 3, it can be assumed that the macro-cell base stations e NB 1 and RR 3 ⁇ 4, RH 2 ... RRH M- i (total of M transmission points) are responsible for the user UE ⁇ UE 2 ... cooperative transmission of UE N (total of N user equipments).
  • Each eNB and RRH has N, one transmit antenna, and each UE has one receive antenna.
  • a total of N paired UEs and A cooperative transmission points form a virtual MV, x NN virtual
  • the system structure diagram of the MIMO system can be as shown in FIG. 2.
  • the encoding unit 101 can perform STBC encoding on the data to be transmitted by each user equipment.
  • the data stream sent to the Mth user equipment is subjected to channel coding modulation, and two data streams can be formed for two streams of data.
  • the signal moment c 2 c 4 array S can be obtained by Alamouti method space time coding, which can be expressed as
  • computing unit 102 may calculate a precoding matrix for each user equipment for eliminating inter-layer interference between the user equipment and the user equipment by the BD algorithm.
  • FIG. 4 is a schematic diagram of a configuration of a computing unit according to an embodiment of the present invention.
  • the computing unit 102 may specifically include: a channel measuring unit 401, a first decomposing unit 402, and a matrix generating unit 403.
  • the channel measurement unit 401 can obtain a channel matrix of the user equipment and other user equipments by using channel measurement;
  • the first decomposition unit 402 can perform singular value decomposition on a matrix composed of channel matrices of other user equipments, and obtain the The orthogonal basis of the zero space of the matrix;
  • the matrix generation unit 403 may generate a precoding matrix of the user equipment according to the orthogonal basis of the zero space.
  • the channel measurement unit 401 can use the reciprocity of the channel and the measurement of the pilot signal to obtain a channel matrix of the nth subcarrier of the coordinated user point for the u user equipment.
  • ( «) is a matrix of ⁇ ⁇ , which represents the channel transmission coefficient of the "user equipment from the first transmitting antenna to the 'th root receiving antenna", and the complex Gaussian with a mean of 0 and a variance of 1. distributed.
  • the channel matrix of the "subcarriers" in this CoMP virtual MIMO system can be expressed as
  • the precoding vector of the user equipment can be calculated by the BD algorithm.
  • the BD algorithm is a CoMP solution in the case where each receiver is multi-antenna, which can eliminate interference between all user equipments in the group.
  • is a diagonal matrix with a singular value of diagonal elements and a dimension equal tochel.
  • K (1) consists of a singular vector corresponding to a non-zero singular value, °) consisting of a singular vector corresponding to a zero singular value, (0) is.
  • the first decomposition unit 402 can obtain orthogonal bases of zero space.
  • 2, L u cannot be larger than ⁇ .
  • the matrix generation unit 403 can select the £ ⁇ column as the M , that is, select two columns in the null space as the two-dimensional coding matrix of the user equipment M.
  • the precoding matrix can be expressed as
  • H(«) can be made to form a diagonalization of the block, that is, the interference caused by other user equipments that are cooperatively transmitted to the current user equipment can be eliminated.
  • FIG. 5 is a schematic diagram of a configuration of a computing unit according to an embodiment of the present invention.
  • the computing unit 102 may specifically include: a channel measuring unit 401, a first decomposing unit 402, and a matrix generating unit 403, as described above.
  • the calculating unit 102 may further include: a second decomposing unit 504, performing singular value decomposition on a product of a signal matrix of the user equipment and an orthogonal basis of the zero space to obtain a non-zero eigenvalue Corresponding feature vector; and, the matrix generating unit 403 is further configured to generate a precoding matrix of the user equipment according to the orthogonal basis of the zero space and the feature vector corresponding to the non-zero feature value.
  • H(() Q) ( «) can be decomposed by SVD on the basis of equation (5) to further increase the system capacity.
  • K W («) is a eigenvector corresponding to a non-zero eigenvalue, which is used to maximize the reception of the user equipment ⁇ S/N? . Therefore, the precoding matrix of the first subcarrier can be expressed as
  • the signal generating unit 103 can generate a transmission signal and transmit the transmission signal through a plurality of transmission points.
  • the signal generating unit 103 can generate a transmission signal and transmit the transmission signal through a plurality of transmission points.
  • the precoding matrix of the user equipment can be expressed as ("£" (> ⁇ 2;), then the signal to be transmitted by CoMP is
  • Figure 6 is a simulation diagram of the bit error rate Monte-Carol under different transmission methods in the simulation environment of Table 1.
  • 4 rounds of 4 double-layer STBC system (4 X 4 STBC-Dual Layer) 4 rounds of 4 receive VBLAST system (4X4 VBLAST), 2 rounds of 2 receive STBC encoding system (2X2 STBC), 4 rounds 4 Receive STBC coding system (4X4 STBC) and 4 rounds and 4 sets of double precoding system (4X4 double layer precoding, which is the invention).
  • VBLAST uses the MMSE detection algorithm for continuous interference cancellation
  • 2x2STBC uses the Alamouti transmit diversity scheme, and the receiver uses the maximum likelihood detection decoding method
  • 4x4STBC uses the quasi-orthogonal coding method with the coding rate of 1.
  • the STBC bilayer precoding of the present invention can greatly improve the error performance of the system, because it uses all the transmit power on the virtual subchannel with better channel conditions on the one hand, without interference.
  • the transmission is performed on the large virtual subchannel; on the other hand, the partial channel capacity is exchanged for the improvement of the error performance, and the additional diversity gain can be brought on the basis of the double layer precoding method, which is improved by about 2 dB.
  • double STBC precoding method can not provide the same high VBLAST transmission rate, but much lower than VBLAST error rate, bit error rate is reduced by about 10dB SNR at 10-2, the transmission rate to avoid focusing VBLAST The situation is very poor reliability. It can be seen from the above embodiment that by using space time block code coding and precoding matrix for eliminating inter-layer interference, signals can be transmitted in parallel on two spatial channels, so that the coding rate reaches 1 rate; and the bit error rate can be reduced, and effective coverage is increased. Further improve system performance.
  • Example 2
  • the embodiment of the invention provides a multi-point coordinated transmission device, which is applied to the user equipment side.
  • the transmission device can be configured in the user equipment, and the same content as that in Embodiment 1 will not be described again.
  • Fig. 7 is a block diagram showing the configuration of a transmission apparatus according to an embodiment of the present invention.
  • the transmission device 700 includes a receiving unit 701.
  • Other parts of the transmission device 700 may refer to the prior art, and details are not described herein again.
  • the receiving unit 701 is configured to receive a signal sent by the base station side, where the signal is generated by multiplying and multiplying a signal matrix of the plurality of user equipments and a precoding matrix, where the signal matrix is to modulate data to be sent. Obtaining two data streams and performing space time block code encoding on the two data streams; the precoding matrix is used to eliminate inter-layer interference between the user equipment and the user equipment.
  • the transmission apparatus 700 may further include: a demodulation unit 702; and a demodulation unit 702 for demodulating the received signal to obtain required data.
  • the signal received by the receiving unit 701 can be expressed as
  • the demodulation unit 702 can demodulate by the Minimum Mean-square Error (MMSE) algorithm, and the pseudo-inverse matrix G of the channel matrix H can be obtained.
  • MMSE Minimum Mean-square Error
  • the receiving end can continuously receive symbols, and after forming a pair of STBC codes, the signals received after MMSE equalization can be expressed.
  • the decoding matrix is a
  • the decoded symbol can be expressed as In equation (15), The first element in 2.
  • the user equipment can obtain data sent by the base station side. Thereby, the process in which the eNB cooperates with the RRH to transmit data for the target user equipment is completed.
  • the diversity gain of the STBC can be brought on the basis of the original CoMP cooperation method, the bit error rate is reduced, the effective coverage is increased, and the original cell is brought higher. System capacity.
  • An embodiment of the present invention provides a multipoint coordinated transmission method, which is applied to a base station side that includes multiple transmission points, where the multiple transmission points serve multiple user equipments.
  • This embodiment corresponds to the transmission device in Embodiment 1, and the same content will not be described again.
  • FIG. 8 is a flowchart of a transmission method according to an embodiment of the present invention.
  • the transmission method includes: Step 801: Modulate data to be sent by each user equipment to obtain two data streams, and perform space time block code encoding on two data streams to obtain a signal matrix; Step 802: Calculate a precoding matrix of each user equipment for eliminating inter-layer interference between the user equipment and the user equipment.
  • Step 803 Multiply the signal matrix of each user equipment and the precoding matrix, add the multiplication results of the plurality of user equipments to generate a transmission signal, and send the transmission signal through multiple transmission points.
  • a precoding matrix for each user equipment for eliminating inter-layer interference between the user equipment and the user equipment may be calculated by a block diagonal algorithm.
  • calculating a precoding matrix of each user equipment for eliminating inter-layer interference between the user equipment and the user equipment may include: obtaining, by using channel measurement, a channel matrix of the user equipment and other user equipment; A matrix composed of a channel matrix of the user equipment performs singular value decomposition to obtain an orthogonal basis of the zero space of the matrix; and generates a precoding matrix of the user equipment according to the orthogonal basis of the zero space.
  • the step 802 may further include: performing singular value decomposition on a product of a signal matrix of the user equipment and an orthogonal basis of the zero space to obtain a feature vector corresponding to the non-zero eigenvalue; and, according to the orthogonal basis of the zero space and The feature vector corresponding to the non-zero feature value is used to generate a precoding matrix of the user equipment.
  • FIG. 9 is a schematic diagram of data transmission according to an embodiment of the present invention.
  • data to be transmitted by each user equipment can be modulated to obtain two data streams, and space-time block code encoding is performed on the two data streams to obtain signals.
  • the signal matrix is multiplied by the precoding matrix F u , and the multiplied results of the plurality of user equipments are added to generate a transmission signal and transmitted.
  • the embodiment of the present invention provides a multi-point cooperative transmission method, which is applied to the user equipment side.
  • This embodiment corresponds to the transmission apparatus in Embodiment 2, and the same content is not described herein again.
  • FIG. 10 is a flowchart of a transmission method according to an embodiment of the present invention. As shown in FIG. 10, the transmission method includes: Step 1001: Receive a signal sent by a base station side;
  • the signal is generated by multiplying a signal matrix of the plurality of user equipments and a precoding matrix respectively;
  • the signal matrix is obtained by modulating data to be transmitted to obtain two data streams, and performing space time block code encoding on two data streams;
  • the precoding matrix is used to eliminate interlayer interference between the user equipment and the user equipment.
  • the transmission method may further include:
  • Step 1002 Demodulate the received signal to obtain the required data.
  • FIG. 11 is a schematic diagram of data reception in an embodiment of the present invention. As shown in FIG. 11, after receiving the signal from the base station side, the UE can perform demodulation to obtain the required data.
  • An embodiment of the present invention provides a multipoint coordinated communication system, where the communication system includes the transmission device as described in Embodiment 1, and a plurality of user equipments.
  • the user equipment may comprise a transmission device as described in embodiment 2.
  • the transmitting device on the base station side modulates data to be transmitted by each user equipment to obtain two data streams, and performs space time block code encoding on the two data streams to obtain a signal matrix; a precoding matrix of the device for eliminating inter-layer interference between the user equipment and the user equipment; and multiplying the signal matrix of each user equipment by the precoding matrix to add the multiplication results of all user equipments
  • a transmit signal is generated and transmitted through a plurality of transmission points.
  • the user equipment receives the transmission signal transmitted by the base station side and performs demodulation to obtain the required data.
  • the transmission device may be configured on a transmission point on the base station side, for example, may be configured in
  • the Macro eNB can also be configured on a Pico eNB or an RRH. In addition, it can also be distributed on the base station side (for example, distributed over multiple base stations). However, it is not limited to this, and the specific implementation of the field can be determined according to the actual situation.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • This hair also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提供一种多点协作的传输装置及方法、通信系统,该传输装置包括:编码单元,用于对每一用户设备要发送的数据进行调制以获得两路数据流,并对所述两路数据流进行空时块码编码以获得信号矩阵;计算单元,用于计算每一用户设备的用于消除用户设备与用户设备之间层间干扰的预编码矩阵;信号生成单元,用于将每一用户设备的所述信号矩阵和所述预编码矩阵相乘,将所述多个用户设备的相乘结果相加以生成发射信号,并通过多个传输点发送所述发射信号。通过本发明实施例,可以在两路空间信道并行发射信号,使编码速率达到1速率;并且降低误码率及增加有效覆盖,进一步提高系统性能;通过多个用户在相同时频资源上传输,提高系统容量。

Description

多点协作的传输装置及方法、 通信系统
本申请要求了 2012年 06月 12日递交的申请号为 201210193738. 5, 发明名称为 "多 点协作的传输装置及方法、通信系统" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域 本发明涉及通信领域, 特别涉及一种多点协作的传输装置及方法、 通信系统。 背景技术
在 RAN1#63会议之后, 确定了 Rel. 11中多点协作传输方案的新场景, 对于在传 统小区内加入低功率节点, 例如远端无线头 (RRH, Remote Radio Heads), 构成异构 网等不同的场景进行研究。 而在异构网中插入的 RRH会带来严重的干扰。 因此, 下 行链路中最重要的工作之一就是努力消除各用户之间的相互干扰。
目前, 多点协作(CoMP, Coordinated Multiple Points)可以认为是一种新的干扰 消除机制, 是将干扰转变为协作的一种方案。 CoMP方案通过基站内不同射频接入点 协作、基站和其所属中继协作和基站间协作等多种多点协作方式, 可以减小小区边缘 干扰、 提高小区边缘频谱效率、 增加有效覆盖。
但是, 发明人发现现有技术的缺陷在于: 目前 CoMP技术中误码率较高, 不能增 加有效覆盖, 系统性能有待进一步提高。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例提供一种多点协作的传输装置及方法、通信系统, 目的在于降低误 码率并增加有效覆盖, 进一步提高系统性能。
根据本发明实施例的一个方面, 提供一种多点协作的传输装置, 应用于包括多个 传输点的基站侧, 所述多个传输点为多个用户设备服务, 所述传输装置包括: 编码单元, 用于对每一用户设备要发送的数据进行调制以获得两路数据流, 并对 所述两路数据流进行空时块码编码以获得信号矩阵;
计算单元,用于计算每一用户设备的用于消除用户设备与用户设备之间层间干扰 的预编码矩阵;
信号生成单元, 用于将每一用户设备的所述信号矩阵和所述预编码矩阵相乘, 将 所述多个用户设备的相乘结果相加以生成发射信号,并通过所述传输点发送所述发射 信号。
根据本发明实施例的又一个方面, 提供一种多点协作传输装置, 应用于用户设备 侧, 所述传输装置包括:
接收单元, 用于接收基站侧发送的信号; 所述信号由多个用户设备的信号矩阵和 预编码矩阵分别相乘后相加而生成;
其中, 所述信号矩阵是对要发送的数据进行调制获得两路数据流, 并对所述两路 数据流进行空时块码编码而获得;所述预编码矩阵用于消除用户设备与用户设备之间 层间干扰。
根据本发明实施例的又一个方面, 提供一种多点协作的通信系统, 所述通信系统 包括:
传输装置,所述传输装置对每一用户设备要发送的数据进行调制以获得两路数据 流, 并对所述两路数据流进行空时块码编码以获得信号矩阵; 计算每一用户设备的用 于消除用户设备与用户设备之间层间干扰的预编码矩阵; 以及将每一用户设备的所述 信号矩阵和所述预编码矩阵相乘, 将所有用户设备的相乘结果相加以生成发射信号, 并通过多个传输点发送所述发射信号;
多个用户设备, 所述用户设备接收所述多个传输点发送的信号, 并进行解调以获 得需要的数据。
根据本发明实施例的又一个方面, 提供一种多点协作传输方法, 应用于包括多个 传输点的基站侧, 所述多个传输点为多个用户设备服务, 所述传输方法包括:
对每一用户设备要发送的数据进行调制以获得两路数据流,并对所述两路数据流 进行空时块码编码以获得信号矩阵;
计算每一用户设备的用于消除用户设备与用户设备之间层间干扰的预编码矩阵; 将每一用户设备的所述信号矩阵和所述预编码矩阵相乘,将所述多个用户设备的 相乘结果相加以生成发射信号, 并通过所述多个传输点发送所述发射信号。
根据本发明实施例的又一个方面, 提供一种多点协作传输方法, 应用于用户设备 侧, 所述传输方法包括:
接收基站侧发送的信号;所述信号由多个用户设备的信号矩阵和预编码矩阵分别 相乘后相加而生成;
其中, 所述信号矩阵是对要发送的数据进行调制获得两路数据流, 并对所述两路 数据流进行空时块码编码而获得;所述预编码矩阵用于消除用户设备与用户设备之间 层间干扰。
本发明的有益效果在于: 通过空时块码编码以及消除层间干扰的预编码矩阵, 可 以在两路空间信道并行发射信号, 使编码速率达到全速率; 并且可以降低误码率, 增 加有效覆盖, 进一步提高系统性能。
参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语 "包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个 其它附图或实施方式中示出的元素和特征相结合。 此外, 在附图中, 类似的标号表示 几个附图中对应的部件, 并可用于指示多于一种实施方式中使用的对应部件。
图 1是本发明实施例 1的传输装置的构成示意图; 图 2是本发明实施例 1的虚拟 MIMO系统的结构示意图;
图 3是本发明实施例 1的多点协作传输的场景示意图;
图 4是本发明实施例 1的计算单元的一构成示意图;
图 5是本发明实施例 1的计算单元的另一构成示意图;
图 6是本发明实施例 1的不同传输方法下误码率的仿真示意图;
图 7是本发明实施例 2的传输装置的构成示意图;
图 8是本发明实施例 3的传输方法的流程图;
图 9是本发明实施例 3的数据发送的示意图;
图 10是本发明实施例 4的传输方法的流程图;
图 11是本发明实施例 4的数据接收的示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得明显。 在说明 书和附图中, 具体公开了本发明的特定实施方式, 其表明了其中可以采用本发明的原 则的部分实施方式, 应了解的是, 本发明不限于所描述的实施方式, 相反, 本发明包 括落入所附权利要求的范围内的全部修改、 变型以及等同物。
目前, 在多输入多输出 (MIMO, Multi-Input Multi-OutPut)系统中, 双流传输技 术和空时块码(STBC, Space Time Block Coding)可以分别获取复用增益和分集增益, 在不增加带宽的情况下, 提高系统容量和频谱利用率。
STBC是一种基于正交设计的空时编码, 以编码增益和部分频带利用率为代价换 取最大分集增益和较低的编译码复杂度。对于复正交设计的空时分组码来说, 只有当 发射天线数为 2时的 Alamouti空时分组码才能以全速率传输, 而在大部分情况下,
MIMO系统中发射天线数 N,≥3, 因而编码速率均小于 1, 会带来一定的速率损失。 本发明实施例提供一种 STBC与 CoMP结合起来的方法, 能够在 CoMP系统中 利用多点协作传输方法将高速数据流分解成两路子流, 在两路空间信道并行发射 Alamouti STBC符号, 使 STBC编码达到 1速率, 从而提升系统性能。 多个用户通过 预编码的方法复用在相同的时频资源上传输, 提高了系统的频谱效率。 以下进行详细 说明。 实施例 1
本发明实施例提供一种多点协作的传输装置, 应用于包括多个传输点的基站侧, 其中多个传输点为多个用户设备提供服务。
图 1是本发明实施例的传输装置的构成示意图, 如图 1所示, 该传输装置 100包 括: 编码单元 101, 计算单元 102和信号生成单元 103。 传输装置 100的其他部分可 以参考现有技术, 此处不再赘述。
其中,编码单元 101用于对每一用户设备要发送的数据进行调制以获得两路数据 流, 并对两路数据流进行空时块码编码以获得信号矩阵; 计算单元 102用于计算每一 用户设备的用于消除用户设备与用户设备之间层间干扰的预编码矩阵;信号生成单元 103用于将每一用户设备的信号矩阵和预编码矩阵相乘, 将多个用户设备的相乘结果 相加以生成发射信号, 并通过多个传输点发送该发射信号。
在本实施例中, 参与协作的传输点和用户设备均可以为多个, 其中传输点可以是 Macro eNB, 也可以是 Pico eNB或者 RRH。 每个传输点和用户设备均可以有多个天 线, 多个用户设备和传输点可以形成一个虚拟的 MIMO系统。
在本实施例中, 该传输装置 100可以配置于一传输点上, 例如可以配置于宏基站
(Macro eNB), 也可以配置于微基站 (例如 Pico eNB) 或者 RRH等。 此外, 还可以 分布式地配置在基站侧 (例如分布在多个基站上)。 但不限于此, 可以根据实际情况 确定具体的实施场景。
图 2是本发明实施例的虚拟 MIMO系统的结构示意图。 如图 2所示, 用户设备 待发送的数据可以进行 STBC编码, 经过多点协作之后经多个传输点发送出去; 用户 设备接收基站侧发送的信号后可以进行译码, 以此得到所需的数据。
由此通过对每一用户设备要发送的数据进行调制以获得两路数据流,并对两路数 据流进行空时块码编码; 可以在两路空间信道并行发射 STBC符号, 使 STBC编码达 到 1速率, 获取空间分集, 从而提升系统性能。
在本实施例中,计算单元 102可以计算每一用户设备的用于消除用户设备与用户 设备之间层间干扰的预编码矩阵, 可以通过块对角 (BD, Block Diagonal) 算法进行 计算。 但不限于此, 例如还可以通过 ZF (Zero Forcing) 等实现。 以下仅以 BD算法 为例, 对该传输装置进行详细说明。
在本实施例中, 首先可以确定参与协作传输的传输点和用户设备。 图 3是本发明 实施例的多点协作传输的场景示意图, 如图 3 所示, 可以假设宏小区基站 eNB1与 RR¾、 RH2...RRHM-i (总共 M个传输点) 负责用户 UE^ UE2...UEN (总共 N个用 户设备) 的协作传输。
如图 3所示。 每个 eNB和 RRH有 N,个发射天线, 每个 UE有 个接收天线。 在下行传输时, 共有 N个配对 UE 和 A 个协作传输点形成一个 MV, x NN 的虚拟
MIMO系统, 该 MIMO系统的系统结构图可以如图 2所示。
其次, 编码单元 101可以对于每一用户设备要发送的数据进行 STBC编码。 其中, 向第 M个用户设备发送的数据流经过信道编码调制后, 可以形成两路数据 流 对于两流数据, 可以用 Alamouti方法空时编码得到信号矩 c2 c4 阵 S, 可以表示为
Figure imgf000008_0001
其中, 表示 S中第 层第《个时隙发送的符号。 那么第 M个用户要在第 1 和第 2层上发射的数据可以表示为 suAn)
S„ n = 具体如何使用 STBC方法可以 参考现有技术。
再次,计算单元 102可以通过 BD算法计算每一用户设备的用于消除用户设备与 用户设备之间层间干扰的预编码矩阵。
图 4是本发明实施例的计算单元的一构成示意图, 如图 4所示, 计算单元 102具 体可以包括: 信道测量单元 401、 第一分解单元 402和矩阵生成单元 403。 其中对于 一个用户设备,信道测量单元 401可以通过信道测量获得该用户设备以及其他用户设 备的信道矩阵;第一分解单元 402可以对由其他用户设备的信道矩阵组成的矩阵进行 奇异值分解, 获得该矩阵的零空间的正交基; 矩阵生成单元 403可以根据该零空间的 正交基生成该用户设备的预编码矩阵。 在具体实施时, 信道测量单元 401可以利用信道的互易性及导频信号的测量, 得 到协作传输点对于 u个用户设备第 n个子载波的信道矩阵
Figure imgf000009_0001
在 (2)式中, («)是^^ ^的矩阵, 表示第《个用户设备从第 根发射天 线到第 '根接收天线的信道传输系数, 服从均值为 0、方差为 1的复高斯分布。那么, 这个 CoMP虚拟 MIMO系统中第《个子载波的信道矩阵可以表示为
Figure imgf000009_0002
在本实施例中, 可以由 BD算法计算用户设备的预编码向量。 BD算法是每一个 接收端是多天线的情况下的一个 CoMP解决方案,能够消除组内的所有用户设备间的 干扰。
在具体实施时, 是除了用户设备 ^之外的其他所有用户设备的信道矩阵
H^ ^H^ H^H^H^ (4) 将由所有非第 M个用户设备的信道矩阵组成的矩阵 经过奇异值分解, 得到该 矩阵的线性无关向量组, 即对 ^ ί进行奇异值分解 ( SVD, Singular Value Decomposition), 可以得到 „的表达式
Figure imgf000009_0003
其中, ^是一个以 „的奇异值为对角线元素的对角矩阵,维数等于 „的秩。 K (1) 由与非零奇异值对应的奇异向量组成, °)由零奇异值对应的奇异向量组成, (0)是. H„的零空间的一组正交基。 由此第一分解单元 402可以得到零空间的正交基。 在本实施例中,为形成双流传输,可以令用户设备《的独立数据流个数 ^ = 2, Lu 不能大于 β)的列数。 矩阵生成单元 403可以从 °)中选择 £Μ列作为 M, 即 的零 化空间中选择两列, 作为用户设备 M的二维编码矩阵。
由此, 预编码矩阵可以表示为
Figure imgf000010_0001
由 («), 能够令 H(«) (^形成块对角化, 也就是说, 可以消除协作传输的其 他用户设备对当前用户设备造成的干扰。使用 BD算法在完全匹配的情况下可以实现 /^ M = 0,( ≠M;)。 但是实际系统中由于反馈时延, 量化误差等原因, 不可能达到完 全匹配, 会有残留干扰的存在。
在本实施例中, 计算单元 102还可以进一步进行奇异值分解。 图 5是本发明实施 例的计算单元的一构成示意图, 如图 5所示, 计算单元 102具体可以包括: 信道测量 单元 401、 第一分解单元 402和矩阵生成单元 403, 如上所述。
如图 5所示, 计算单元 102还可以进一步包括: 第二分解单元 504, 第二分解单 元 504对用户设备的信号矩阵与零空间的正交基的乘积进行奇异值分解,获得非零特 征值对应的特征向量; 并且, 矩阵生成单元 403还用于根据零空间的正交基以及非零 特征值对应的特征向量来生成用户设备的预编码矩阵。
在具体实施时, 可以在式(5 )的基础上对 H„(«) Q) («)作 SVD分解, 进一步提 升系统容量,
Figure imgf000010_0002
在式 (7) 中, KW («)为非 0特征值对应的特征向量, 用于最大化用户设备 ^的 接收《S/N?。 因此, 第《个子载波的预编码矩阵可以表示为
Figure imgf000010_0003
最后,信号生成单元 103可以生成发射信号,并通过多个传输点发送该发射信号。 多个传输点具体如何发射信号可以参考现有技术, 此处不再赘述。
在具体实施时, 第《个用户设备的预编码矩阵可以表示为 (《)£( ><2;), 那么 经过 CoMP要发射的信号为
T(n) = jFu(n)Su(n) = F(n)S(n
Figure imgf000011_0001
其中, 在式 (9)中, S(") = [ ("广 S2{nf … 在本实施例中, 还提供了本发明的 STBC双层预编码的仿真分析。对于 STBC双 层预编码在改善误码率方面的性能分析, 为在 CoMP 多点协作传输系统中结合双层 STBC方法提供仿真依据。
表 1 仿真环境
Figure imgf000011_0002
图 6是在表 1仿真环境下不同传输方法下误码率 Monte-Carol的仿真示意图。 如 图 6所示,分别是 4发 4收双层 STBC系统(4 X 4 STBC-Dual Layer ) 4发 4收 VBLAST 系统 (4X4 VBLAST)、 2发 2收 STBC编码系统 (2X2 STBC)、 4发 4收 STBC编 码系统(4X4 STBC) 以及 4发 4收双层预编码系统(4X4双层预编码, 即本发明)。 其中, VBLAST使用连续干扰抵消的 MMSE检测算法; 2x2STBC使用了 Alamouti 发射分集方案, 接收端使用最大似然检测译码方法; 4x4STBC使用了编码速率为 1 的准正交编码方法。
由图 6可见, 本发明的 STBC双层预编码可以大幅提高系统的误码性能, 这是因 为它一方面将全部发射功率用在了信道条件较好的虚拟子信道上,而没有在干扰较大 的虚拟子信道上作传输; 另一方面用部分信道容量换取了误码性能的提高, 能够在双 层预编码方法的基础上带来额外的分集增益, 提高了约 2dB。
STBC双层预编码方法虽然不能提供 VBLAST同样高的传输速率,但是误码率却 比 VBLAST低得多,误码率在 10—2时信噪比降低了约 10dB,可以避免 VBLAST注重 于传输速率而可靠性非常差的情况。 由上述实施例可知, 通过空时块码编码以及消除层间干扰的预编码矩阵, 可以在 两路空间信道并行发射信号, 使编码速率达到 1速率; 并且可以降低误码率, 增加有 效覆盖, 进一步提高系统性能。 实施例 2
本发明实施例提供一种多点协作传输装置, 应用于用户设备侧。该传输装置可以 配置于用户设备中, 与实施例 1相同的内容不再赘述。
图 7是本发明实施例的传输装置的构成示意图。如图 7所示, 该传输装置 700包 括接收单元 701, 传输装置 700的其他部分可以参考现有技术, 此处不再赘述。
其中, 接收单元 701用于接收基站侧发送的信号; 该信号由多个用户设备的信号 矩阵和预编码矩阵分别相乘后相加而生成; 其中, 该信号矩阵是对要发送的数据进行 调制获得两路数据流、并对两路数据流进行空时块码编码而获得; 该预编码矩阵用于 消除用户设备与用户设备之间层间干扰。
如图 7所示, 该传输装置 700还可以包括: 解调单元 702; 解调单元 702用于对 接收到的信号进行解调以获得需要的数据。
在具体实施时, 接收单元 701接收到的信号可以表示为
Ru (n) = Hu {n) JFi {n)St (n) + N(n)
= Hu(n)Fu(n)Su(n)…期望的信号
+ Ha(«) ;Fa(«;)Sa(«;)-其他协作 RRH的干扰信号 (10)
+∑HaW^ )SK^其他非协作 RRH的干扰信号
+ V(")…噪声
解调单元 702可以采用最小均方误差 (MMSE, Minimum Mean-square Error)算 法解调, 可以求得信道矩阵 H的伪逆矩阵 G
G (n) = C" CUCU H2/ + Χ Cu cC +∑ (Ci (11) 在式 (11)中,
Cu
Figure imgf000012_0001
(12) 其中 C„可通过信道估计的方法来获取, 2/ + ^ ^ + ( ) 可通过 干扰估计的方法来获取。
接收端可以连续地接收符号, 构成一组成对 STBC码后, 经过 MMSE均衡后接 收的信号可以表
Figure imgf000013_0001
译码矩阵为
1 0 0 1 yl
0 -1 1 0 y2
(14)
1 0 0 -1 y3
0 1 1 0
则译码符号可以表示为
Figure imgf000013_0002
在式 (15)中,
Figure imgf000013_0003
2中的第 个元素。
最后, 用户设备经过解调和并 /串变换后, 可以得到基站侧所发送的数据。 由此, 完成了 eNB与 RRH协作为目标用户设备传输数据的过程。
在本实施例中, 通过 STBC和 CoMP多点协作方法的引入, 可以在原有 CoMP 协作方法的基础上带来 STBC的分集增益, 降低误码率, 增加有效覆盖, 为原小区带 来更高的系统容量。 实施例 3
本发明实施例提供一种多点协作传输方法, 应用于包括多个传输点的基站侧, 所 述多个传输点为多个用户设备服务。本实施例对应于实施例 1中的传输装置, 相同的 内容不再赘述。
图 8是本发明实施例的传输方法的流程图。 如图 8所示, 该传输方法包括: 步骤 801, 对每一用户设备要发送的数据进行调制以获得两路数据流, 并对两路 数据流进行空时块码编码以获得信号矩阵; 步骤 802, 计算每一用户设备的用于消除用户设备与用户设备之间层间干扰的预 编码矩阵;
步骤 803, 将每一用户设备的信号矩阵和预编码矩阵相乘, 将多个用户设备的相 乘结果相加以生成发射信号, 并通过多个传输点发送该发射信号。
在本实施例中,步骤 802中可以通过块对角算法计算每一用户设备的用于消除用 户设备与用户设备之间层间干扰的预编码矩阵。
在具体实施时,计算每一用户设备的用于消除用户设备与用户设备之间层间干扰 的预编码矩阵具体可以包括:通过信道测量获得该用户设备以及其他用户设备的信道 矩阵; 对由其他用户设备的信道矩阵组成的矩阵进行奇异值分解, 获得该矩阵的零空 间的正交基; 根据零空间的正交基生成该用户设备的预编码矩阵。
进一步地, 步骤 802中还可以包括: 对用户设备的信号矩阵与零空间的正交基的 乘积进行奇异值分解, 获得非零特征值对应的特征向量; 并且, 根据零空间的正交基 以及非零特征值对应的特征向量来生成用户设备的预编码矩阵。
图 9是本发明实施例的数据发送的示意图。如图 9所示,对于如图 2所示的系统, 对于每一用户设备要发送的数据, 可以进行调制以获得两路数据流, 并对两路数据流 进行空时块码编码以获得信号矩阵 Su(n);并且对于每一用户设备获得信道矩阵 Hu(n), 计算用于消除用户设备与用户设备之间层间干扰的预编码矩阵 Fu; 然后将每一用户 设备的信号矩阵 和预编码矩阵 Fu相乘, 并将多个用户设备的相乘结果相加以生 成发射信号并发送。
由上述实施例可知, 通过空时块码编码以及消除层间干扰的预编码矩阵, 可以在 两路空间信道并行发射信号, 使编码速率达到全速率; 并且可以降低误码率, 增加有 效覆盖, 进一步提高系统性能。 实施例 4
本发明实施例提供一种多点协作传输方法, 应用于用户设备侧, 本实施例对应于 实施例 2中的传输装置, 相同的内容不再赘述。
图 10是本发明实施例的传输方法的流程图, 如图 10所示, 该传输方法包括: 步骤 1001, 接收基站侧发送的信号;
其中, 该信号由多个用户设备的信号矩阵和预编码矩阵分别相乘后相加而生成; 该信号矩阵是对要发送的数据进行调制获得两路数据流、并对两路数据流进行空时块 码编码而获得; 该预编码矩阵用于消除用户设备与用户设备之间层间干扰。
如图 10所示, 该传输方法还可以包括:
步骤 1002, 对接收到的信号进行解调以获得需要的数据。
图 11是本发明实施例的数据接收的示意图。 如图 11所示, UE接收到基站侧的 信号之后, 可以进行解调得到所需要的数据。
由上述实施例可知, 通过空时块码编码以及消除层间干扰的预编码矩阵, 可以在 两路空间信道并行发射信号, 使编码速率达到全速率; 并且可以降低误码率, 增加有 效覆盖, 进一步提高系统性能。 实施例 5
本发明实施例提供一种多点协作的通信系统,所述通信系统包括如实施例 1所述 的传输装置, 以及多个用户设备。 该用户设备可包括如实施例 2所述的传输装置。
也就是说,基站侧的传输装置对每一用户设备要发送的数据进行调制以获得两路 数据流, 并对所述两路数据流进行空时块码编码以获得信号矩阵; 计算每一用户设备 的用于消除用户设备与用户设备之间层间干扰的预编码矩阵; 以及将每一用户设备的 所述信号矩阵和所述预编码矩阵相乘,将所有用户设备的相乘结果相加以生成发射信 号, 并通过多个传输点发送该发射信号。 该用户设备接收基站侧发送的发射信号, 并 进行解调以获得需要的数据。
在本实施例中, 该传输装置可以配置于基站侧的一个传输点上, 例如可以配置于
Macro eNB, 也可以配置于 Pico eNB或者 RRH等。 此外, 还可以分布式地配置在基 站侧 (例如分布在多个基站上)。 但不限于此, 可以根据实际情况确定具体的实施场 牙、。
由上述实施例可知, 通过空时块码编码以及消除层间干扰的预编码矩阵, 可以在 两路空间信道并行发射信号, 使编码速率达到全速率; 并且可以降低误码率, 增加有 效覆盖, 进一步提高系统性能。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。本发 明还涉及用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器 等。
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员应该清楚, 这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

禾'』 ^
1、 一种多点协作的传输装置, 应用于包括多个传输点的基站侧, 所述多个传输 点为多个用户设备服务, 所述传输装置包括:
编码单元, 用于对每一用户设备要发送的数据进行调制以获得两路数据流, 并对 所述两路数据流进行空时块码编码以获得信号矩阵;
计算单元,用于计算每一用户设备的用于消除用户设备与用户设备之间层间干扰 的预编码矩阵;
信号生成单元, 用于将每一用户设备的所述信号矩阵和所述预编码矩阵相乘, 将 所述多个用户设备的相乘结果相加以生成发射信号,并通过所述多个传输点发送所述 发射信号。
2、 根据权利要求 1所述的传输装置, 其中, 所述计算单元通过块对角算法计算 每一用户设备的用于消除用户设备与用户设备之间层间干扰的预编码矩阵。
3、 根据权利要求 2所述的传输装置, 其中, 所述计算单元具体包括: 信道测量单元, 通过信道测量获得所述用户设备以及其他用户设备的信道矩阵; 第一分解单元, 对由所述其他用户设备的信道矩阵组成的矩阵进行奇异值分解, 获得所述矩阵的零空间的正交基;
矩阵生成单元, 根据所述零空间的正交基生成所述用户设备的预编码矩阵。
4、 根据权利要求 3所述的传输装置, 其中, 所述计算单元进一步包括: 第二分解单元,对所述用户设备的信号矩阵与所述零空间的正交基的乘积进行奇 异值分解, 获得非零特征值对应的特征向量;
并且,所述矩阵生成单元还用于根据所述零空间的正交基以及所述非零特征值对 应的特征向量来生成所述用户设备的预编码矩阵。
5、 一种多点协作传输装置, 应用于用户设备侧, 所述传输装置包括: 接收单元, 用于接收基站侧发送的信号; 所述信号由多个用户设备的信号矩阵和 预编码矩阵分别相乘后相加而生成;
其中, 所述信号矩阵是对要发送的数据进行调制获得两路数据流, 并对所述两路 数据流进行空时块码编码而获得;所述预编码矩阵用于消除用户设备与用户设备之间 层间干扰。
6、 根据权利要求 5所述的传输装置, 其中, 所述传输装置还包括:
解调单元, 对接收到的所述信号进行解调以获得需要的数据。
7、 一种多点协作的通信系统, 所述通信系统包括:
传输装置,所述传输装置对每一用户设备要发送的数据进行调制以获得两路数据 流, 并对所述两路数据流进行空时块码编码以获得信号矩阵; 计算每一用户设备的用 于消除用户设备与用户设备之间层间干扰的预编码矩阵; 以及将每一用户设备的所述 信号矩阵和所述预编码矩阵相乘, 将所有用户设备的相乘结果相加以生成发射信号, 并通过多个传输点发送所述发射信号;
多个用户设备, 所述用户设备接收所述多个传输点发送的信号, 并进行解调以获 得需要的数据。
8、 一种多点协作传输方法, 应用于包括多个传输点的基站侧, 所述多个传输点 为多个用户设备服务, 所述传输方法包括:
对每一用户设备要发送的数据进行调制以获得两路数据流,并对所述两路数据流 进行空时块码编码以获得信号矩阵;
计算每一用户设备的用于消除用户设备与用户设备之间层间干扰的预编码矩阵; 将每一用户设备的所述信号矩阵和所述预编码矩阵相乘,将所述多个用户设备的 相乘结果相加以生成发射信号, 并通过所述多个传输点发送所述发射信号。
9、 根据权利要求 8所述的传输方法, 其中, 通过块对角算法计算每一用户设备 的用于消除用户设备与用户设备之间层间干扰的预编码矩阵。
10、 根据权利要求 9所述的传输方法, 其中, 计算每一用户设备的用于消除用户 设备与用户设备之间层间干扰的预编码矩阵具体包括:
通过信道测量获得所述用户设备以及其他用户设备的信道矩阵;
对由所述其他用户设备的信道矩阵组成的矩阵进行奇异值分解,获得所述矩阵的 零空间的正交基;
根据所述零空间的正交基生成所述用户设备的预编码矩阵。
11、 根据权利要求 10所述的传输方法, 其中, 计算每一用户设备的用于消除用 户设备与用户设备之间层间干扰的预编码矩阵进一步包括:
对所述用户设备的信号矩阵与所述零空间的正交基的乘积进行奇异值分解,获得 非零特征值对应的特征向量; 并且,根据所述零空间的正交基以及所述非零特征值对应的特征向量来生成所述 用户设备的预编码矩阵。
12、 一种多点协作传输方法, 应用于用户设备侧, 所述传输方法包括: 接收基站侧发送的信号;所述信号由多个用户设备的信号矩阵和预编码矩阵分别 相乘后相加而生成;
其中, 所述信号矩阵是对要发送的数据进行调制获得两路数据流, 并对所述两 路数据流进行空时块码编码而获得;所述预编码矩阵用于消除用户设备与用户设备之 间层间干扰。
13、 根据权利要求 12所述的传输方法, 其中, 所述传输方法还包括: 对接收到的所述信号进行解调以获得需要的数据。
14、 一种基站, 所述基站包括:
编码单元, 用于对每一用户设备要发送的数据进行调制以获得两路数据流, 并 对所述两路数据流进行空时块码编码以获得信号矩阵;
计算单元, 用于计算每一用户设备的用于消除用户设备与用户设备之间层间干 扰的预编码矩阵;
信号生成单元, 用于将每一用户设备的所述信号矩阵和所述预编码矩阵相乘, 并将所有用户设备的相乘结果相加以生成发射信号,并通过多个传输点发送所述发射 信号。
15、 根据权利要求 14所述的基站, 其中, 所述计算单元通过块对角算法计算每 一用户设备的用于消除用户设备与用户设备之间层间干扰的预编码矩阵。
16、 一种用户设备, 所述用户设备包括:
接收单元, 用于接收基站侧发送的信号; 所述信号由多个用户设备的信号矩阵 和预编码矩阵分别相乘后相加而生成;
其中, 所述信号矩阵是对要发送的数据进行调制获得两路数据流, 并对所述两 路数据流进行空时块码编码而获得;所述预编码矩阵用于消除用户设备与用户设备之 间层间干扰。
17、 一种计算机可读程序, 其中当在用户设备中执行所述程序时, 所述程序使 得计算机在所述用户设备中执行如权利要求 12或 13所述的多点协作传输方法。
18、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计 算机在用户设备中执行如权利要求 12或 13所述的多点协作传输方法。
19、 一种计算机可读程序, 其中当在基站中执行所述程序时, 所述程序使得计 算机在所述基站中执行如权利要求 8至 11任一项所述的多点协作传输方法。
20、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计 算机在基站中执行如权利要求 8至 11任一项所述的多点协作传输方法。
PCT/CN2013/075956 2012-06-12 2013-05-21 多点协作的传输装置及方法、通信系统 WO2013185525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210193738.5A CN103490862A (zh) 2012-06-12 2012-06-12 多点协作的传输装置及方法、通信系统
CN201210193738.5 2012-06-12

Publications (1)

Publication Number Publication Date
WO2013185525A1 true WO2013185525A1 (zh) 2013-12-19

Family

ID=49757491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075956 WO2013185525A1 (zh) 2012-06-12 2013-05-21 多点协作的传输装置及方法、通信系统

Country Status (2)

Country Link
CN (1) CN103490862A (zh)
WO (1) WO2013185525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189265B (zh) * 2021-11-29 2022-10-14 中国船舶重工集团公司第七一六研究所 一种快速高精度多点协作传输方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820405A (zh) * 2009-02-27 2010-09-01 富士通株式会社 多输入多输出合作通信方法、预编码装置和无线通信系统
CN101877609A (zh) * 2009-04-30 2010-11-03 富士通株式会社 通信装置、基站和多点合作通信方法
CN102007707A (zh) * 2008-05-07 2011-04-06 Lg电子株式会社 协作多输入多输出移动通信系统中的数据传送和接收方法
WO2011065763A2 (ko) * 2009-11-30 2011-06-03 엘지전자 주식회사 프리코딩 행렬 정보를 전송하는 방법 및 사용자기기와, 복수의 사용자기기에 데이터를 전송하는 방법 및 기지국

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834701B (zh) * 2010-05-12 2015-10-21 中兴通讯股份有限公司 一种实现多点协作传输的方法、系统和移动终端
CN102231659A (zh) * 2011-06-22 2011-11-02 中兴通讯股份有限公司 多点协作传输的预编码方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007707A (zh) * 2008-05-07 2011-04-06 Lg电子株式会社 协作多输入多输出移动通信系统中的数据传送和接收方法
CN101820405A (zh) * 2009-02-27 2010-09-01 富士通株式会社 多输入多输出合作通信方法、预编码装置和无线通信系统
CN101877609A (zh) * 2009-04-30 2010-11-03 富士通株式会社 通信装置、基站和多点合作通信方法
WO2011065763A2 (ko) * 2009-11-30 2011-06-03 엘지전자 주식회사 프리코딩 행렬 정보를 전송하는 방법 및 사용자기기와, 복수의 사용자기기에 데이터를 전송하는 방법 및 기지국

Also Published As

Publication number Publication date
CN103490862A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
US10554264B2 (en) System and method for reducing pilot signal contamination using orthogonal pilot signals
Wang et al. An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications
US9537549B2 (en) Method, terminal and base station for multi-user interference suppression
WO2013034088A1 (zh) 多用户多输入多输出系统中线性预编码的方法及装置
KR20100085884A (ko) 다중 사용자 다중 송·수신안테나 무선 통신 시스템에서 신호 송·수신을 위한 방법
KR20170022938A (ko) 송신 다이버시티를 위한 방법 및 장치
WO2018028331A1 (zh) 数据发送、接收方法和装置
Li et al. Product superposition for MIMO broadcast channels
Law et al. General-rank transmit beamforming for multi-group multicasting networks using OSTBC
WO2017101586A1 (en) System and method for quantization of angles for beamforming feedback
US10348384B1 (en) Method and apparatus for determining channel state information (CSI) in a multiple input/multiple output (MIMO) wireless communication system
Flores et al. Rate-splitting meets cell-free MIMO communications
WO2013078743A1 (zh) 协作多点多用户mimo系统的预编码方法及矩阵生成装置
Shanechi et al. Comparison of practical feedback algorithms for multiuser MIMO
CN109314563B (zh) 用于确定mimo无线通信系统中的csi的方法和装置
Prashar et al. Performance Analysis of MIMO-NOMA and SISO-NOMA in Downlink Communication Systems
WO2012159266A1 (zh) 自适应多流波束赋形方法和基站
Shrivastava et al. Combined beamforming with space-time-frequency coding for MIMO–OFDM systems
WO2013185525A1 (zh) 多点协作的传输装置及方法、通信系统
Castillo Soria et al. Multiuser MIMO downlink transmission using SSK and orthogonal Walsh codes
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
WO2012113258A1 (zh) 一种下行信号预处理发送方法及装置
Jiang et al. Channel Smoothing for 802.11 ax Beamformed MIMO-OFDM
Hou et al. Impact of nonorthogonal training on performance of downlink base station cooperative transmission
WO2019201251A1 (zh) 一种多天线系统发射和接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804864

Country of ref document: EP

Kind code of ref document: A1