WO2013183961A1 - Protopanaxatriol biosynthesis gene and promoting composition - Google Patents

Protopanaxatriol biosynthesis gene and promoting composition Download PDF

Info

Publication number
WO2013183961A1
WO2013183961A1 PCT/KR2013/005033 KR2013005033W WO2013183961A1 WO 2013183961 A1 WO2013183961 A1 WO 2013183961A1 KR 2013005033 W KR2013005033 W KR 2013005033W WO 2013183961 A1 WO2013183961 A1 WO 2013183961A1
Authority
WO
WIPO (PCT)
Prior art keywords
protopanaxatriol
gene
biosynthesis
ginseng
yeast
Prior art date
Application number
PCT/KR2013/005033
Other languages
French (fr)
Korean (ko)
Inventor
최용의
한정연
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Publication of WO2013183961A1 publication Critical patent/WO2013183961A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Definitions

  • the present invention relates to a protopanaxatriol biosynthesis gene and a facilitation composition, and more particularly, a CYP716A53v2 protein or a CYP716A53v2 gene encoding the same, which is involved in protopanaxatriol biosynthesis. It relates to a composition for promoting protopanaxatriol biosynthesis.
  • Ginseng saponins are almost triterpenoid-based dammarane saponins. This is a unique saponin that exists only in plants of the genus Panax, and has the pharmacological effect that ginseng is different from other saponin-containing plants. Dozens of ginseng saponins have been identified to date, and these are called ginsenosides as glycosides contained in ginseng.
  • Triterpenoid saponins are secondary metabolites of isoprene compounds and are found in many higher plants. They exhibit a wide range of structural diversity and biological activities among plant species. These molecules also have considerable commercial value and are used as drugs (Hostettmann, KA, Marston, A. (1995) Saponins. Chemistry and Pharmacology of Natural Products.Cambridge University Press, Cambridge; Vogler, BK et al. (1999), Eur. J. Clin. Pharmacol. 55: 567575; Shibata, S. (2001) J. Korean Med. Sci. 16: S28S37).
  • triterpenoid saponins are oleanane ( ⁇ -amyrin), ursane ( ⁇ -amyrin), lupeol or dammarene-type triterpenoids It is a skeleton.
  • Ginsenosides are known to be the major constituents of ginseng roots that exhibit their biological activity. have. P. ginseng roots contain at least 4% ginsenosides by dry weight (Shibata, 2001). Seven damaren-type tetracyclic triterpenes (ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) are known as major ginsenoside components, and only ginsenoside Ro is oleic. Anan-type pentacyclic triterpenes found in P. ginseng very few.
  • the damarene-type ginsenosides are panaxadiol (Rb1, Rb2, Rc and Rd) and panaxatriol groups (Rg1, Re, Rf, and Rg2) depending on the aglycone structure. Are divided into two groups. Damarene-type triterpenes are described by Panax (Kushiro, T. et al. (1997), Biol. Pharm. Bull. 20: 292-294) and Gynostemma (Cui, JF et al. (1999), Eur. J. Pharm. Sci. 8 187-191) are well known as major compounds.
  • the first step in dama-type ginsenoside biosynthesis is the cycling of 2,3-oxidosqualene into dammarenediol, which is a dammarenediol synthase.
  • dammarenediol synthase Is catalyzed by (Fig. 1), P. ginseng Two homologous dammarenediol synthase enzymes DDS And PNA end Known (Tansakul, P. et al. (2006), FEBS Lett. 580: 5143-5149 .; Han, J.Y. Et al (2006) Plant Cell Physiol. 47: 1653-1662).
  • Dammarenediol-II is a hydroxylation of the cytochrome P450 (CYP) enzyme (Shibuya, M. et al.
  • CYP and GT are located in the supergene families of the plant genome.
  • CYP plays an important role in oxidation during the biosynthesis of various plant secondary metabolites, lignin, terpenoids, sterols, fatty acids, hormones, pigments, and defense-related phytoalexins (Schuler). , M. (1996) Plant cytochrome P450 monooxygenases.Crit . Rev. Plant Sci. 15: 235-284).
  • P. ginseng two CYP genes are thought to be involved in damarene-type ginsenoside biosynthesis. One of these genes may be involved in dammarenediol hydroxylation at the C-12 position for protopanaxadiol synthesis.
  • This gene is the CYP716A47 gene, which was first discovered by the inventors of the world (Han et al. 2011) and filed for patent application (Korean Patent Application No. 10-2011-0113784, PCT International Application No. PCT / KR2012 / 003246 ).
  • Another gene may be involved in protopanaxadiol hydroxylation at the C-6 position for protopanaxatriol synthesis, and these two compounds may be used for damarene-type ginsenosides. Used as backbones.
  • the present inventors have proved through experiments that CYP716A47 is a protoparnaxadiol synthase that plays a very important role in ginsenoside biosynthesis (Han et al. 2011, Plant and Cell Physiology, 52: 2062-2073). However, no enzyme has been identified for the synthesis of ProtoPanaxatriol from ProtoPanacodiol.
  • CYP716A is among the putative full CYP gene sequences obtained from the EST sequences of the adventitious roots.
  • CYP716A53v2 a family of genes, is a protofaxatriol synthase that plays a very important role in ginsenoside biosynthesis.
  • An object of the present invention is CYP71653v2, which is a promoter for protofanaxadiol biosynthesis CYP716A53v2 gene or encoded therefrom It is to provide a composition for promoting protopanaxatriol biosynthesis containing a protein.
  • Another object of the present invention is to provide a host cell transformed with the composition.
  • Another object of the present invention to provide a transformed plant transformed with the composition.
  • Another object of the present invention is the CYP716A53v2 It is to provide a method for increasing the production of protoparnaxatriol by increasing the expression of the protofanaxatriol biosynthesis promoting gene.
  • the present invention provides a composition for promoting protopanaxatriol biosynthesis comprising a CYP716A53v2 protein or a CYP716A53v2 gene encoding the same.
  • the gene may be composed of the nucleotide sequence of SEQ ID NO: 1
  • the protein may be composed of the amino acid sequence of SEQ ID NO: 2.
  • the composition is a CYP716A53v2 encoding the CYP716A53v2 protein It may include a recombinant vector or plasmid containing the gene.
  • the CYP716A53v2 protein is characterized in that the protopanaxadiol 6-hydroxylase (protopanaxadiol 6-hydroxylase). Therefore, the composition for promoting protopanaxatriol biosynthesis of the present invention may increase the synthesis of protopanaxatriol in protopanaxadiol through activation of the protopanaxatriol.
  • the present invention also provides a host cell which is transformed with the recombinant vector or plasmid capable of synthesizing protopanaxatriol.
  • the host cell may be yeast or E. coli.
  • the present invention also provides a transformed plant transformed with the recombinant vector or plasmid.
  • the present invention also provides a method of increasing the production of the CYP716A53v2 gene consisting of the nucleotide sequence of SEQ ID NO: 1 or CYP716A53v2 protein consisting of the amino acid sequence of SEQ ID NO: 2 to increase the production of protopanaxtriol.
  • the method may comprise overexpressing the CYP716A53v2 gene or protein by transforming the host with a recombinant vector or plasmid.
  • the host may be a plant including yeast, Escherichia coli or Panax ginseng.
  • the present invention can be usefully used in a method for mass-producing protopanaxatriol or increasing the ginseng saponin biosynthesis of the protopanaxanatriol family.
  • Figure 1 shows the biosynthetic pathway of ginsenosides expected in ginseng ( P. ginseng) .
  • Squalene epoxidase converts squalene into 2,3-oxidosquane, which is triterpene aglycones (dammarenediol or beta) by dammarenediol synthetase or beta-amirin synthase. Amirine).
  • Triterpene aglycones are subsequently oxidized and glycosylated to eventually triterpene saponins (ginsenosides).
  • FIG. 2 shows the phylogenies identified from amino acid sequences inferred for P. ginseng CYPs (bold) and other plant CYPs.
  • Gm Glycine max ;
  • At Arabidopsis thaliana ;
  • Gu Glycyrrhiza uralensis ;
  • Mt Medicago truncatula ;
  • Sb Sorghum bicolor ;
  • Vv Vitis vinifera .
  • Bar 0.1 amino acid substitutions / site.
  • Figure 3 is a total ion chromatogram of LC / APCIMS analysis for the CYP716A53v2 product in yeast.
  • A LC chromatogram of yeast cell extract with empty vector as a control.
  • B LC chromatogram of yeast cell extract with pYES2-CYP716A53v2 vector.
  • C Protopananaxtriol standard LC chromatogram.
  • D Protoparanaxadiol standard LC chromatogram.
  • FIG. 4 is an LC / APCIMS spectrum of peaks detected in yeast with CYP716A53v2.
  • A MS spectrum of the peak detected in the ProtoPanaxatriol standard.
  • B MS spectrum of peak detected in yeast with CYP716A53v2.
  • the present invention provides a CYP716A53v2 protein, which is a cytochrome P450 enzyme derived from ginseng involved in protopanaxatriol biosynthesis, and a CYP716A53v2 encoding the same.
  • the present invention relates to the use of the gene, and provides a method of increasing the production of protopanaxatriol using the CYP716A53v2 gene and its protein.
  • the CYP superfamily is a large and diverse group of enzymes. 246 CYP genes have been reported in A. thaliana (Nelson, D. (2006) Plant cytochrome P450s from moss to poplar.Phytochem . Rev. 5: 193-204).
  • Ginseng saponin is called "ginsenoside” in the sense of ginseng glycoside to distinguish it from other plant-based saponins, and these ginsenoids are from sequualene to dammarenediol as shown in FIG. Produced via II and Protopananacodiol. Accordingly, the present invention provides a composition for promoting protopanaxatriol biosynthesis that can significantly increase the synthesis of protopanaxanatriol, which is an intermediate in the ginsenoid biosynthesis process.
  • CYP716A53v2 as a protopanaxatriol synthase with the ability to activate protopanaxadiol 6-hydroxylase using yeast expression analysis. That is, the recombinant CYP716A53v2 expressing yeast was prepared, and after the feeding of the protopanaxadiol to the yeast, it was confirmed that the protopanaxanatriol was produced from the protopanaxadiol. After expression, only this enzyme was extracted and reacted with protopanaxadiol to confirm that protopanaxanatriol was produced.
  • Ginseng P. ginseng
  • panaxadiol Rb1, Rb2, Rc, and Rd
  • panaxatriol Rg1, depending on the aglycone structure
  • Re, Rf, and Rg2 group is divided into two groups.
  • Each ginsenoside has been found to have different pharmacological effects such as anti-stress, anti-diabetic, anti-inflammatory, anti-oxidant, anti-cancer as well as immune system abnormalities (Briskin, DP (2000) Plant Physiol. 124: 50714 Shibata, 2001).
  • the discovery of the genes and enzymes that produce the protopananasporidium according to the present invention can be introduced into yeast, ginseng and other plants to induce the biosynthesis of the protopanaxanatriol and through the metabolic engineering method. It can be an effective way to drastically increase biosynthesis.
  • the present invention provides a CYP716A53v2 protein or CYP716A53v2 encoding the same. It is possible to provide a composition for promoting protopanaxatriol biosynthesis comprising a gene.
  • the range of the CYP716A53v2 protein includes a protein having an amino acid sequence represented by SEQ ID NO: 2 isolated from ginseng and a functional equivalent of the protein.
  • “functional equivalent” means at least 70%, preferably 80% or more, more preferably 90% or more of the amino acid sequence represented by SEQ ID NO: 2 as a result of the addition, substitution or deletion of an amino acid. Preferably it refers to a protein having a sequence homology of 95% or more, and exhibits substantially the same physiological activity as the protein represented by SEQ ID NO: 2.
  • substantially homogeneous physiological activity refers to the activity involved in protopanaxanatriol biosynthesis in plants.
  • the CYP716A53v2 gene according to the present invention includes all genomic DNA encoding the CYP716A53v2 protein.
  • the gene of the present invention that is, the cDNA of CYP716A53v2 may be composed of the nucleotide sequence represented by SEQ ID NO: 1.
  • variants of the base sequence may be included within the scope of the present invention. Specifically, the variant may include a nucleotide sequence having at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% homology with the nucleotide sequence of SEQ ID NO: 1, respectively. Can be.
  • % sequence homology to the polynucleotide is identified by comparing the two optimally arranged sequences with the comparison region, wherein a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (additional Or does not include deletion) or addition or deletion (gap).
  • the present invention can provide a composition for promoting protopanaxatriol biosynthesis comprising a recombinant vector or plasmid comprising the CYP716A53v2 gene according to the present invention.
  • the recombinant vector is preferably a recombinant yeast expression vector or a recombinant plant expression vector.
  • recombinant refers to a cell expressing a heterologous nucleic acid, expressing the nucleic acid, or expressing a protein encoded by a peptide, heterologous peptide, or heterologous nucleic acid.
  • the recombinant cell transformed with the vector may express a gene or a gene fragment which is not expressed in the natural form of the cell in one of the sense and antisense forms.
  • recombinant cells may express genes expressed in cells in a natural state, but the genes are modified and reintroduced into cells by artificial means.
  • Vector refers to DNA fragment (s), nucleic acid molecules that are delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells. “Delivers” can often be used interchangeably with “vectors.”
  • An "expression vector” refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence necessary to express a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
  • Yeast expression vectors can include promoter genes, genes encoding target proteins from which translational initiation and termination codons have been removed, and the promoter genes are genes selected from the group consisting of GAPDH, PGK, ADH, PHO5, GAL1 and GAL10. Is preferably, but is not limited thereto.
  • the CYP716A53v2 gene of the present invention comprises a nucleic acid sequence encoding a signal peptide, which allows for the export of the expressed protein.
  • the nucleic acid sequence encoding the signal peptide is preferably bound directly to 5 'of the heterologous gene to be expressed.
  • fusion with a protein sequence having a signal sequence at the N-terminus is required to steer the polypeptide into the secretion apparatus.
  • the vector may be both an integrative yeast plasmid (YIp) and an extrachromosomal plasmid vector (YP).
  • the extrachromosomal plasmid vector is divided into an episomal yeast plasmid (YEp), a replicative yeast plasmid (YRp), and a yeast centromeric plasmid (YCp). Furthermore, artificial yeast chromosomes (YACs) are also possible as expression vectors according to the present invention.
  • YEp episomal yeast plasmid
  • YRp replicative yeast plasmid
  • YCp yeast centromeric plasmid
  • YACs artificial yeast chromosomes
  • yeast vectors are yeast replication plasmids that can be propagated and selected in E. coli , containing the origin of replication ori and an antibiotic resistance cassette. Furthermore, they have ARS sequences capable of independent chromosome replication in yeast cells, such as HARS1 from H. polymorpha, and metabolic yeast selection markers such as URA3 or HLEU2.
  • Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells.
  • a suitable host such as Agrobacterium tumerfaciens
  • Another type of Ti-plasmid vector (see EP 0116718 B1) is currently used to transfer hybrid DNA sequences to protoplasts from which plant cells or new plants can be produced which properly insert hybrid DNA into the genome of the plant.
  • a particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0120516 B1 and US Pat. No. 4,940,838.
  • viral vectors such as those that can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc.
  • CaMV double stranded plant viruses
  • gemini viruses single stranded viruses
  • it may be selected from an incomplete plant viral vector.
  • the use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
  • the expression vector will preferably comprise one or more selectable markers.
  • the marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, which corresponds to all genes capable of distinguishing transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotic resistance genes such as kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. It is not limited to this.
  • the promoter of the plant expression vector may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter.
  • the term “promoter” refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
  • a "plant promoter” is a promoter capable of initiating transcription in plant cells.
  • a “constitutive promoter” is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the possibility of selection.
  • the terminator may use a conventional terminator, and examples thereof include nopaline synthase (NOS), rice ⁇ -amylase RAmy1 A terminator, phaseoline terminator, agrobacterium tumefaciens (ocrobacterium tumefaciens) Terminator of the Fine (Octopine) gene, etc., but is not limited thereto.
  • NOS nopaline synthase
  • rice ⁇ -amylase RAmy1 A terminator phaseoline terminator
  • agrobacterium tumefaciens ocrobacterium tumefaciens
  • Terminator of the Fine (Octopine) gene etc.
  • the present invention can be provided with a host cell capable of transforming the recombinant vector or plasmid according to the present invention capable of protopananax triol biosynthesis.
  • the host cell may be, but is not limited to, yeast and E. coli.
  • the present invention may provide a transformed yeast transformed with a recombinant yeast vector comprising the CYP716A53v2 gene.
  • the yeast may be a genus selected from Pichia, Hansenula, Candida, Torulopsis, Saccharomyces, Schizosaccharomyces, Kluyveromyces and Yarrowia.
  • the microorganism may belong to a species selected from Hansenula polymorpha, Saccharomyces Cervisiae, Schizosaccharomyces pombe, Kluyveromyces lactis and Yarrowia lipolytica.
  • Transformation of yeast can cause the nucleic acid molecule or vector to be introduced into cells by standard methods known to those skilled in the art, preferably by electroporation, chemical transformation, transformation by plasma fusion, or particle bombardment.
  • Current Protocols in Molecular Biology John Wiley & Sons, Edited by: Fred M. Ausubel et al .; Molecular Cloning: A Laboratory Manual (Third Edition), J. Sambrook and D. Russell, 2001, Cold Spring Harbor Laboratory Press ).
  • the present invention can provide a transgenic plant capable of protofa naxatriol biosynthesis by transformation with a recombinant vector or plasmid comprising the CYP716A53v2 gene of the present invention.
  • the plant may include, but is not limited to, tobacco, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, chard, sweet potato, celery, carrot, buttercup, parsley, cabbage, cabbage, gall, watermelon, melon, Cucumber pumpkin, gourd, strawberry, soybeans, green beans, kidney beans and peas can be a dicotyledonous plant characterized in that selected from, but is preferably Arabidopsis.
  • Plant transformation refers to any method of transferring DNA to a plant.
  • transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including dicotyledonous plants as well as monocotyledonous quantum.
  • any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells.
  • Method is calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), protoplasts Electroporation (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microscopic injection into plant elements (Crossway A.
  • Preferred methods according to the invention include Agrobacterium mediated DNA delivery. Especially preferred is the use of the so-called binary vector technology as described in EPA 120516 and US Pat. No. 4,940,838.
  • Plant cells used for plant transformation may be any plant cells.
  • Plant cells may be cultured cells, cultured tissues, cultured organs or whole plants, preferably cultured cells, cultured tissues or cultured organs and more preferably any form of cultured cells.
  • Plant tissue refers to the tissues of differentiated or undifferentiated plants, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie single cells, protoplasts. (protoplast), shoots and callus tissue.
  • the plant tissue may be in planta or in an organ culture, tissue culture or cell culture.
  • the present invention can provide a method of increasing the production of the CYP716A53v2 gene or the CYP716A53v2 protein encoded therefrom, thereby increasing the production of protopanaxtriol.
  • the method may also include overexpressing the CYP716A53v2 gene or protein by transforming the host with the recombinant vector or plasmid according to the present invention.
  • the host may be, but is not limited to, yeast, E. coli, plants, especially ginseng.
  • the CYP716A53v2 gene of the present invention promotes the synthesis of protopanaxtriol in protopanaxadiol through the activation of protopanaxadiol 6-hydroxylase, such a protopanaxanatriol It is possible to provide a composition for promoting biosynthesis and a transformed plant which is excessively produced with ProtoPanaxatriol, and also provides a method for increasing the production of ProtoPanaxatriol.
  • DH10B was used as the host strain and pDNR-LIB was used as the cloning vector.
  • CYP716A47 is a Protopanaxadiol synthetic gene (see our patent application No. 10-2011-0113784) in the EST sequence in ginseng MeJA-treated adventitious roots.
  • the full length of the gene CYP716A53v2 was obtained and registered in GenBank, and the access numbers are CYP716A53v2 JX036031 .
  • CYP716A53v2 gene belongs to the CYP716A family, the amino acid sequence has only 49% similarity to the previously known CYP716A47 gene, which is a gene that is completely different from the gene related to protopanaxadiol synthesis.
  • CYP716A12 found in Medicago truncatula plants, is a multifunctional gene that makes oleanolic acid from beta-amyrin ( ⁇ -amyrin and erythrodiol). It is a completely different gene because it has the same sex.
  • CYP72A219, CYP73A100, CYP736A12, CYP82H23, CYP82D47, CYP71D312, CYP71D313, CYP749A22, and CYP716A47 The amino acid sequence deduced from CYP716A53v2 is 44% of the CYP716A47 gene, Medicago truncatula Origin Only 53% homology with that of CYP716A12.
  • ORFs open reading frames
  • PCR was carried out 25 cycles of 94 °C 40 seconds, 55 °C 40 seconds and 72 °C 2 minutes, using Pfu DNA polymerase (Stratagene).
  • Pfu DNA polymerase (Stratagene).
  • the PCR product was cloned into pYES2.1 using the TOPO TA expression kit (Invitrogen). Primer pairs used to isolate cDNAs are as follows:
  • PCR products were cloned into pYES2.1 / V5-His-TOPO vector and Escherichia coli was transformed.
  • the ORFs were then operably conjugated to the GAL1 promoter.
  • the nucleotide sequence of the inserted DNA was confirmed by sequencing.
  • CYP716A53v2 and the empty vectors were expressed in Saccharomyces cerevisiae strain WAT21 carrying Arabidopsis thaliana NADPH-CYP reductase (Urban, P. et al. (1997) J. Biol. Chem. 272, 19176-19186).
  • WAT21 yeast cells were transformed by known modified lithium acetate methods (Gietz, D., St Jean, A., Woods, RA, Schiestl, RH (1992) Improved method for high efficiency transformation of intact yeast cells.Nucleic Acids Res. 20: 1425). Transformed cells were selected with SC-U (uracil deficient SC minimal medium), cultured for 3 days and passaged in YPG medium (Kribii et al., 1997).
  • SC-U uracil deficient SC minimal medium
  • LC-APCIMS analysis was performed on a Surveyor LC system (Thermo Finnigan Co., San Jose, CA, USA). It consists of four solvent pumps, a Rheodyne injector (5 ml loop) and an HTP Pal autosampler (CTC Analytics, Zwingen, Switzerland). The analytical column used YMC pack-pro C18 RS (5 mm, 2.0 ⁇ 150 mm, YMC Co. LTD. Japan) stored at 408 ° C.
  • Water and acetonitrile gradient application time and composition ratio are as follows: 0 min, 80% acetonitrile and 20% water; 30 minutes, 10% acetonitrile and 90% water; 32 min, 5% acetonitrile and 95% water; 34 minutes, 5% acetonitrile and 95% water; 36 minutes, 80% acetonitrile and 20% water; And 45 min, 80% acetonitrile and 20% water, flow rate of 0.2 ml min ⁇ 1 .
  • Finnigan TSQ Quantum Ultra (Thermo Electron Co., San Jose, Calif., USA), a triple quadrupole mass spectrometer, equipped with an atmospheric pressure chemical ionization (APCI) system, was used for detection.
  • the analytical conditions were as follows: positive mode of 5.0 mA discharge current, vaporizer temperature of 320 ° C. and ion-transfer capillary temperature of 320 ° C. Nitrogen was used as sheath (15 psi) and auxiliary gas (10 psi). For HPLC-UV detection, ginsenosides were observed at 202 nm wavelength. The original protopanaxadiol and protopanaxatriol were tested under the same conditions, and both materials were used as the standard for LC / APCIMS analysis.
  • CYP716A53v2 The full length cDNA clone of (JX036031) is 1,560 bp in size, has an open reading frame (ORF) of 470-amino acids, and produces a protein whose molecular weight is predicted to be 55.3 kDa.
  • ORF open reading frame
  • CYP716A53v2 The ORF region of the cDNA was inserted into the pYES2.1 expression vector and expressed under the control of the GAL1 promoter in WAT21 yeast. Yeast extracts were analyzed using total ion chromatograms from liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC / APCIMS).
  • yeast expressing the CYP716A53v2 gene the protofanaxatriol signal was analyzed using MS fragmentation patterns at a retention time of 19.2 minutes (FIG. 4).
  • yeast expressing the CYP716A53v2 gene the LC / APCIMS fragmentation pattern is m / s of 405 [M-3H 2 O + H] + , 423 [M-2H 2 O + H] + , and 441 [MH 2 O + H] + . z ratios were included, which was the same as for the original ProtoPanaxatriol (FIG. 4).

Abstract

The present invention relates to a ginseng-derived cytochrome P450 enzyme CYP716A53v2 gene which is involved in protopanaxatriol biosynthesis, and more specifically relates to, inter alia: a protopanaxatriol biosynthesis promoting composition comprising ginseng-derived CYP716A53v2 protein or a CYP716A53v2 gene coding therefor; a recombinant vector or plasmid comprising the CYP716A53v2 gene; and a method for increasing protopanaxatriol production by increasing expression of the CYP716A53v2 gene or the direct production of protopanaxatriol from a transformant resulting from genetic alteration by means of the composition. The ginseng-derived CYP716A53v2 gene according to the present invention, which is involved in protopanaxatriol biosynthesis, can be used advantageously in a method for synthesising protopanaxatriol in volume or increasing the biosynthesis of protopanaxatriol-based ginseng saponins.

Description

프로토파낙사트리올 생합성 유전자 및 촉진용 조성물ProtoPanaxatriol Biosynthesis Gene and Composition for Promotion
본 발명은 프로토파낙사트리올(protopanaxatriol) 생합성 유전자 및 촉진용 조성물에 관한 것으로, 보다 구체적으로는 프로토 파낙사트리올(protopanaxatriol) 생합성에 관여하는 CYP716A53v2 단백질 또는 이를 코딩하는 CYP716A53v2 유전자를 포함하는 프로토파낙사트리올(protopanaxatriol) 생합성 촉진용 조성물에 관한 것이다.The present invention relates to a protopanaxatriol biosynthesis gene and a facilitation composition, and more particularly, a CYP716A53v2 protein or a CYP716A53v2 gene encoding the same, which is involved in protopanaxatriol biosynthesis. It relates to a composition for promoting protopanaxatriol biosynthesis.
인삼의 사포닌은 거의 트리테르페노이드계의 다마란(dammarane)계 사포닌이다. 이는 인삼(panax) 속 식물에만 존재하는 특유의 사포닌으로서 인삼이 다른 사포닌 함유 식물과 차별되는 약리 효능을 갖게 한다. 지금까지 수십 종의 인삼 사포닌이 밝혀졌고, 이들은 인삼에 함유된 배당체라 해서 진세노사이드(ginsenoside)라 불린다. Ginseng saponins are almost triterpenoid-based dammarane saponins. This is a unique saponin that exists only in plants of the genus Panax, and has the pharmacological effect that ginseng is different from other saponin-containing plants. Dozens of ginseng saponins have been identified to date, and these are called ginsenosides as glycosides contained in ginseng.
트리테르페노이드계 사포닌(triterpenoid saponin)은 이소프렌계 화합물(isoprenoidal compounds)의 2차 대사산물이며 많은 고등식물에서 발견된다. 그들은 식물 종들 사이에서 광범위한 구조적 다양성 및 생물학적 활성들을 나타낸다. 또한 이 분자들은 상당한 상업적 가치를 가지며 약물로 이용된다(Hostettmann, K.A., Marston, A. (1995) Saponins. Chemistry and Pharmacology of Natural Products. Cambridge University Press, Cambridge; Vogler, B.K. 등 (1999), Eur. J. Clin. Pharmacol. 55: 567575; Shibata, S. (2001) J. Korean Med. Sci. 16: S28S37). 트리테르페노이드 사포닌의 핵심적인 구성분들은 올레아난(oleanane) (β-amyrin), 우르세인(ursane) (α-amyrin), 루페올(lupeol) 또는 다마렌(dammarene)-타입 트리테르페노이드 골격이다.Triterpenoid saponins are secondary metabolites of isoprene compounds and are found in many higher plants. They exhibit a wide range of structural diversity and biological activities among plant species. These molecules also have considerable commercial value and are used as drugs (Hostettmann, KA, Marston, A. (1995) Saponins. Chemistry and Pharmacology of Natural Products.Cambridge University Press, Cambridge; Vogler, BK et al. (1999), Eur. J. Clin. Pharmacol. 55: 567575; Shibata, S. (2001) J. Korean Med. Sci. 16: S28S37). The key components of triterpenoid saponins are oleanane (β-amyrin), ursane (α-amyrin), lupeol or dammarene-type triterpenoids It is a skeleton.
인삼(Panax ginseng)은 특히 암, 당뇨병, 신경퇴행성 질환 등에서 뛰어난 약리효과를 나타내는 것으로 소비자들 사이에서 잘 알려져 있는데, 진세노사이드(ginsenosides)는 그 생물활성을 나타내는 인삼 뿌리의 주된 구성분인 것으로 알려져 있다. P. ginseng 뿌리는 건조중량으로 적어도 4%의 진세노사이드를 함유한다(Shibata, 2001). 7개의 다마렌-타입 테트라사이클릭(tetracyclic) 트리테르펜(진세노사이드 Rb1, Rb2, Rc, Rd, Re, Rf, 및 Rg1)은 주요한 진세노사이드 구성분으로 알려져 있고, 진세노사이드 Ro만이 올레아난-타입 펜타사이클릭(pentacyclic) 트리테르펜으로 P. ginseng에서 아주 적게 발견된다. 상기 다마렌-타입 진세노사이드들은 아글리콘(aglycone) 구조에 따라 파낙사디올(panaxadiol) (Rb1, Rb2, Rc 및 Rd) 과 파낙사트리올(panaxatriol) 그룹(Rg1, Re, Rf, 및 Rg2)의 두 개의 그룹으로 나누어진다. 다마렌-타입 트리테르펜은 Panax (Kushiro, T. 등 (1997), Biol. Pharm. Bull. 20: 292-294) 및 Gynostemma (Cui, J.F. 등 (1999), Eur. J. Pharm. Sci. 8: 187-191) 속에서 주요한 화합물로 잘 알려져 있다. Panax ginseng is well known among consumers for its excellent pharmacological effects, especially in cancer, diabetes, and neurodegenerative diseases. Ginsenosides are known to be the major constituents of ginseng roots that exhibit their biological activity. have. P. ginseng roots contain at least 4% ginsenosides by dry weight (Shibata, 2001). Seven damaren-type tetracyclic triterpenes (ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1) are known as major ginsenoside components, and only ginsenoside Ro is oleic. Anan-type pentacyclic triterpenes found in P. ginseng very few. The damarene-type ginsenosides are panaxadiol (Rb1, Rb2, Rc and Rd) and panaxatriol groups (Rg1, Re, Rf, and Rg2) depending on the aglycone structure. Are divided into two groups. Damarene-type triterpenes are described by Panax (Kushiro, T. et al. (1997), Biol. Pharm. Bull. 20: 292-294) and Gynostemma (Cui, JF et al. (1999), Eur. J. Pharm. Sci. 8 187-191) are well known as major compounds.
다마렌-타입 진세노사이드 생합성의 첫 번째 단계는 2, 3-옥시도스퀄렌(oxidosqualene)을 담마레네디올(dammarenediol)에 사이클링(cycling)시키는 것이며, 이 반응은 담마레네디올 합성효소(dammarenediol synthase)에 의해 촉매되는데(도 1), P. ginseng의 두 개의 동족(homologous) 담마레네디올 합성효소인 DDSPNA 알려져 있다(Tansakul, P. 등 (2006), FEBS Lett. 580:5143-5149.; Han, J.Y. 등 (2006) Plant Cell Physiol. 47:1653-1662). 담마레네디올-II 는 시토크롬(cytochrome) P450 (CYP) 효소의 히드록실화(hydroxylation) (Shibuya, M. 등 (2006), FEBS J. 273:948-959) 및 뒤따르는 글리코실 전달효소(glycosyl transferase) (GT)의 글리코실화(glycosylation) (Kushiro, T. 등 (1997), Biol. Pharm. Bull. 20: 292~294; Shibuya et al., 2006; Choi, D.W. 등 (2005), Plant Cell Rep. 23:557-566)에 의해 진세노사이드로 변환되는 것으로 보이며, 진세노사이드 Ro는 베타-아미린(β-amyrin)의 산물인 올레아놀릭산(oleanolic acid)으로부터 합성되는 것으로 생각된다(Shibata, S. (1977) Saponins with biological and pharmacological activity. In: H. Wagner and P. Wolff (Eds.), New natural products and plant drugs with pharmacological or therapeutical activity. Springer-Verlag, NewYork pp.177-196).The first step in dama-type ginsenoside biosynthesis is the cycling of 2,3-oxidosqualene into dammarenediol, which is a dammarenediol synthase. Is catalyzed by (Fig. 1),P. ginsengTwo homologous dammarenediol synthase enzymesDDS AndPNAend Known (Tansakul, P. et al. (2006),FEBS Lett.580: 5143-5149 .; Han, J.Y. Et al (2006)Plant Cell Physiol.47: 1653-1662). Dammarenediol-II is a hydroxylation of the cytochrome P450 (CYP) enzyme (Shibuya, M. et al. (2006),FEBS J.273: 948-959) and subsequent glycosylation of glycosyl transferase (GT) (Kushiro, T. et al. (1997),Biol. Pharm. Bull.20: 292-294; Shibuya et al., 2006; Choi, D.W. Et al. (2005),Plant Cell Rep.23: 557-566), and ginsenoside Ro is thought to be synthesized from oleanolic acid, a product of β-amyrin (Shibata, S (1977) Saponins with biological and pharmacological activity.In: H. Wagner and P. Wolff (Eds.), New natural products and plant drugs with pharmacological or therapeutical activity.Springer-Verlag, New York pp. 177-196).
CYP 및 GT 는 식물 유전체의 슈퍼유전자 패밀리(supergene families)에 위치한다. 식물에서, CYP는 다양한 식물의 2차 대사산물들, 리그닌, 테르페노이드, 스테롤, 지방산, 호르몬, 색소, 및 방어 관련 파이토알렉신(phytoalexins)의 생합성 동안 산화반응에서 중요한 역할을 담당한다(Schuler, M. (1996) Plant cytochrome P450 monooxygenases. Crit. Rev. Plant Sci. 15:235-284). P. ginseng에서, 두 개의 CYP 유전자들은 다마렌-타입 진세노사이드 생합성에 관여할 것으로 생각된다. 이 유전자들 중 하나는 프로토파낙사디올(protopanaxadiol) 합성을 위해 C-12 위치에서 담마레네디올 히드록실화에 관여할 수 있다. 이 유전자는 CYP716A47 유전자로, 본 발명자들이 세계 최초로 밝혀냈으며 (Han et al. 2011), 특허출원도 하였다 (대한민국 특허출원번호: 제10-2011-0113784호, PCT 국제출원번호: PCT/KR2012/003246). 또 다른 유전자는 프로토파낙사트리올(protopanaxatriol) 합성을 위해 C-6 위치에서 프로토파낙사디올(protopanaxadiol) 히드록실화에 관여할 수 있으며, 이 두 개의 화합물들은 다마렌-타입 진세노사이드를 위한 골격(backbones)으로 사용된다. 이에 본 발명자들은 CYP716A47이 진세노사이드 생합성에 매우 중요한 역할을 하는 프로토파낙사디올 합성효소라는 것을 실험을 통해 증명하였다 (Han et al. 2011, Plant and Cell Physiology, 52: 2062-2073). 그렇지만 프로토파낙사디올에서 프로토파낙사트리올을 합성하게 하는 효소는 밝혀지지 않았다. CYP and GT are located in the supergene families of the plant genome. In plants, CYP plays an important role in oxidation during the biosynthesis of various plant secondary metabolites, lignin, terpenoids, sterols, fatty acids, hormones, pigments, and defense-related phytoalexins (Schuler). , M. (1996) Plant cytochrome P450 monooxygenases.Crit . Rev. Plant Sci. 15: 235-284). In P. ginseng , two CYP genes are thought to be involved in damarene-type ginsenoside biosynthesis. One of these genes may be involved in dammarenediol hydroxylation at the C-12 position for protopanaxadiol synthesis. This gene is the CYP716A47 gene, which was first discovered by the inventors of the world (Han et al. 2011) and filed for patent application (Korean Patent Application No. 10-2011-0113784, PCT International Application No. PCT / KR2012 / 003246 ). Another gene may be involved in protopanaxadiol hydroxylation at the C-6 position for protopanaxatriol synthesis, and these two compounds may be used for damarene-type ginsenosides. Used as backbones. The present inventors have proved through experiments that CYP716A47 is a protoparnaxadiol synthase that plays a very important role in ginsenoside biosynthesis (Han et al. 2011, Plant and Cell Physiology, 52: 2062-2073). However, no enzyme has been identified for the synthesis of ProtoPanaxatriol from ProtoPanacodiol.
본 발명에서는 프로토파낙사디올로부터 프로토파낙사트리올 생합성에 관여하는 새로운 유전자를 동정하였으며, 이 유전자는 CYP716A53v2로 밝혀졌다. In the present invention, a new gene involved in proto-paroxal triol biosynthesis was identified from proto-paranse diol, which was found to be CYP716A53v2 .
이에 본 발명자들은 인삼 부정근(adventitious roots)의 EST 서열들로부터 얻어진 CYP 유전자 서열들(putative full CYP gene sequences) 중 CYP716A 계열의 유전자의 하나인 CYP716A53v2이 진세노사이드 생합성에 매우 중요한 역할을 하는 프로토파낙사트리올 합성효소라는 것을 실험을 통해 증명하였다.Therefore, the inventors have found that CYP716A is among the putative full CYP gene sequences obtained from the EST sequences of the adventitious roots. Experiments have demonstrated that CYP716A53v2, a family of genes, is a protofaxatriol synthase that plays a very important role in ginsenoside biosynthesis.
본 발명의 목적은 프로토파낙사디올 생합성 촉진 유전자인 CYP71653v2 유전자 또는 이로부터 코딩되는 CYP716A53v2 단백질을 포함하는 프로토파낙사트리올(protopanaxatriol) 생합성 촉진용 조성물을 제공하는 것이다.An object of the present invention is CYP71653v2, which is a promoter for protofanaxadiol biosynthesis CYP716A53v2 gene or encoded therefrom It is to provide a composition for promoting protopanaxatriol biosynthesis containing a protein.
또한, 본 발명의 다른 목적은 상기 조성물로 형질전환된 숙주세포를 제공하는 것이다.Another object of the present invention is to provide a host cell transformed with the composition.
또한, 본 발명의 다른 목적은 상기 조성물로 형질전환된 형질전환 식물을 제공하는 것이다.In addition, another object of the present invention to provide a transformed plant transformed with the composition.
또한, 본 발명의 다른 목적은 상기 CYP716A53v2 프로토파낙사트리올 생합성 촉진 유전자의 발현을 증가시켜 프로토파낙사트리올 생산을 증가시키는 방법을 제공하는 것이다.In addition, another object of the present invention is the CYP716A53v2 It is to provide a method for increasing the production of protoparnaxatriol by increasing the expression of the protofanaxatriol biosynthesis promoting gene.
상기 목적을 달성하기 위하여, 본 발명은 CYP716A53v2 단백질 또는 이를 코딩하는 CYP716A53v2 유전자를 포함하는 프로토파낙사트리올(protopanaxatriol) 생합성 촉진용 조성물을 제공한다. In order to achieve the above object, the present invention provides a composition for promoting protopanaxatriol biosynthesis comprising a CYP716A53v2 protein or a CYP716A53v2 gene encoding the same.
본 발명의 일 실시예에 있어서, 상기 유전자는 서열번호 1의 염기서열로 구성될 수 있고, 상기 단백질은 서열번호 2의 아미노산 서열로 구성될 수 있다.In one embodiment of the present invention, the gene may be composed of the nucleotide sequence of SEQ ID NO: 1, the protein may be composed of the amino acid sequence of SEQ ID NO: 2.
본 발명의 일 실시예에 있어서, 상기 조성물은 CYP716A53v2 단백질을 코딩하는 CYP716A53v2 유전자를 포함하는 재조합 벡터 또는 플라스미드를 포함할 수 있다.In one embodiment of the invention, the composition is a CYP716A53v2 encoding the CYP716A53v2 protein It may include a recombinant vector or plasmid containing the gene.
본 발명의 일 실시예에 있어서, 상기 CYP716A53v2 단백질은 프로토파낙사디올 6-히드록실라아제(protopanaxadiol 6-hydroxylase)인 것을 특징으로 한다. 따라서 본 발명의 프로토파낙사트리올(protopanaxatriol) 생합성 촉진용 조성물은 프로토파낙사디올의 활성화를 통해 프로토파낙사디올(protopanaxadiol)에서 프로토파낙사트리올(protopanaxatriol)의 합성을 증가시킬 수 있다.In one embodiment of the present invention, the CYP716A53v2 protein is characterized in that the protopanaxadiol 6-hydroxylase (protopanaxadiol 6-hydroxylase). Therefore, the composition for promoting protopanaxatriol biosynthesis of the present invention may increase the synthesis of protopanaxatriol in protopanaxadiol through activation of the protopanaxatriol.
또한, 본 발명은 상기 재조합 벡터 또는 플라스미드로 형질전환되어 프로토파낙사트리올의 합성이 가능한 숙주세포를 제공한다.The present invention also provides a host cell which is transformed with the recombinant vector or plasmid capable of synthesizing protopanaxatriol.
본 발명의 일 실시예에 있어서, 상기 숙주세포는 효모 또는 대장균일 수 있다.In one embodiment of the present invention, the host cell may be yeast or E. coli.
또한, 본 발명은 상기 재조합 벡터 또는 플라스미드로 형질전환된 형질전환 식물을 제공한다.The present invention also provides a transformed plant transformed with the recombinant vector or plasmid.
또한, 본 발명은 서열번호 1의 염기서열로 구성된 CYP716A53v2 유전자 또는 서열번호 2의 아미노산 서열로 구성된 CYP716A53v2 단백질의 발현을 증가시켜 프로토파낙사트리올 생산을 증가시키는 방법을 제공한다.The present invention also provides a method of increasing the production of the CYP716A53v2 gene consisting of the nucleotide sequence of SEQ ID NO: 1 or CYP716A53v2 protein consisting of the amino acid sequence of SEQ ID NO: 2 to increase the production of protopanaxtriol.
본 발명의 일 실시예에 있어서, 상기 방법은 재조합 벡터 또는 플라스미드로 숙주를 형질전환시켜 CYP716A53v2 유전자 또는 단백질을 과발현시키는 단계를 포함할 수 있다. In one embodiment of the invention, the method may comprise overexpressing the CYP716A53v2 gene or protein by transforming the host with a recombinant vector or plasmid.
본 발명의 일 실시예에 있어서, 상기 숙주는 효모, 대장균 또는 인삼(Panax ginseng)을 포함한 식물일 수 있다.In one embodiment of the present invention, the host may be a plant including yeast, Escherichia coli or Panax ginseng.
본 발명에 따른 프로토파낙사트리올 생합성에 관여하는 인삼 유래의 CYP716A53v2 유전자를 숙주에 형질전환시킬 경우 프로토파낙사트리올 생합성을 증가시킬 수 있음을 확인하였다. 따라서 본 발명은 프로토파낙사트리올을 대량 합성하거나 프로토파낙사트리올 계열의 인삼 사포닌 생합성을 증가시키기 위한 방법에 유용하게 이용될 수 있다.It was confirmed that the ginseng-derived CYP716A53v2 gene, which is involved in the protofaxatriol biosynthesis according to the present invention, may increase the protofanaxatriol biosynthesis. Therefore, the present invention can be usefully used in a method for mass-producing protopanaxatriol or increasing the ginseng saponin biosynthesis of the protopanaxanatriol family.
도 1은 인삼(P. ginseng)에서 예상되는 진세노사이드의 생합성 경로를 나타낸다. 스퀄렌 에폭시다아제(squalene epoxidase)는 squalene을 2,3-oxidosquane로 변환하고, 이것은 담마레네디올 합성효소 또는 베타-아미린 합성효소에 의해 트리테르펜 아글리콘(triterpene aglycones) (담마레네디올 또는 베타-아미린)으로 변환된다. 트리테르펜 아글리콘은 연속적으로 산화 및 글리코실화를 거쳐 종국적으로 트리테르펜 사포닌(진세노사이드)이 된다.Figure 1 shows the biosynthetic pathway of ginsenosides expected in ginseng ( P. ginseng) . Squalene epoxidase converts squalene into 2,3-oxidosquane, which is triterpene aglycones (dammarenediol or beta) by dammarenediol synthetase or beta-amirin synthase. Amirine). Triterpene aglycones are subsequently oxidized and glycosylated to eventually triterpene saponins (ginsenosides).
도 2는 P. ginseng CYPs(볼드체) 및 다른 식물 CYPs에 대해 유추된 아미노산 서열로부터 파악한 계통관계를 보여준다. Gm, Glycine max; At, Arabidopsis thaliana; Gu, Glycyrrhiza uralensis; Mt, Medicago truncatula; Pg. Panax ginseng; Sb, Sorghum bicolor; Vv, Vitis vinifera. Bar = 0.1 amino acid substitutions/site.2 shows the phylogenies identified from amino acid sequences inferred for P. ginseng CYPs (bold) and other plant CYPs. Gm , Glycine max ; At , Arabidopsis thaliana ; Gu , Glycyrrhiza uralensis ; Mt, Medicago truncatula ; Pg. Panax ginseng; Sb , Sorghum bicolor ; Vv, Vitis vinifera . Bar = 0.1 amino acid substitutions / site.
도 3은 효모에서 CYP716A53v2 산물에 대한 LC/APCIMS 분석의 총 이온 크로마토그램이다. (A) 대조군으로서 빈 벡터를 가진 효모 세포 추출물의 LC 크로마토그램. (B) pYES2-CYP716A53v2 벡터를 가진 효모 세포 추출물의 LC 크로마토그램. (C) 프로토파낙사트리올 표준 LC 크로마토그램. (D) 프로토파낙사디올 표준 LC 크로마토그램.Figure 3 is a total ion chromatogram of LC / APCIMS analysis for the CYP716A53v2 product in yeast. (A) LC chromatogram of yeast cell extract with empty vector as a control. (B) LC chromatogram of yeast cell extract with pYES2-CYP716A53v2 vector. (C) Protopananaxtriol standard LC chromatogram. (D) Protoparanaxadiol standard LC chromatogram.
도 4는 CYP716A53v2을 가진 효모에서 검출된 피크의 LC/APCIMS 스펙트럼이다. (A) 프로토파낙사트리올 표준에서 검출된 피크의 MS 스펙트럼. (B) CYP716A53v2을 가진 효모에서 검출된 피크의 MS 스펙트럼. 4 is an LC / APCIMS spectrum of peaks detected in yeast with CYP716A53v2. (A) MS spectrum of the peak detected in the ProtoPanaxatriol standard. (B) MS spectrum of peak detected in yeast with CYP716A53v2.
본 발명은 프로토파낙사트리올(protopanaxatriol) 생합성에 관여하는 인삼 유래의 시토크롬 P450 효소인 CYP716A53v2 단백질 및 이를 코딩하는 CYP716A53v2 유전자의 용도에 관한 것으로서, 상기 CYP716A53v2 유전자 및 그의 단백질을 이용하여 프로토파낙사트리올의 생산을 증가시킬 수 있는 방법을 제공한다.The present invention provides a CYP716A53v2 protein, which is a cytochrome P450 enzyme derived from ginseng involved in protopanaxatriol biosynthesis, and a CYP716A53v2 encoding the same. The present invention relates to the use of the gene, and provides a method of increasing the production of protopanaxatriol using the CYP716A53v2 gene and its protein.
CYP 슈퍼패밀리(superfamily)는 크고 다양한 효소 그룹이다. A. thaliana에서는 246개의 CYP 유전자들이 보고된 바 있다(Nelson, D. (2006) Plant cytochrome P450s from moss to poplar. Phytochem. Rev. 5:193-204). The CYP superfamily is a large and diverse group of enzymes. 246 CYP genes have been reported in A. thaliana (Nelson, D. (2006) Plant cytochrome P450s from moss to poplar.Phytochem . Rev. 5: 193-204).
본 발명자들은 진세노사이드 생합성과 관련된 CYP 유전자를 찾기 위해, MeJA-처리된 인삼 부정근 뿌리의 EST 서열에서 CYP716A53v2 를 성공적으로 분리하였고, CYP716A53v2를 신규한 프로토파낙사트리올 합성효소(protopanaxatriol synthase)로 동정하였다.To successfully find the CYP gene associated with ginsenoside biosynthesis, we have successfully isolated CYP716A53v2 from the EST sequence of MeJA-treated ginseng root root and identified CYP716A53v2 as a novel protopanaxatriol synthase. It was.
인삼사포닌은 타 식물계 사포닌과 구별하기 위해서 인삼(ginseng) 배당체(glycoside)란 의미로 "진세노사이드(ginsenoside)"라고 부르며, 이러한 진세노이드는 도 1에서와 같이 스퀄렌(squualene)에서부터 담마레네디올 Ⅱ 및 프로토파낙사디올을 거쳐 생성된다. 이에 본 발명에서는 상기 진세노이드 생합성 과정에서의 중간체인 프로토파낙사트리올의 합성을 탁월하게 증대시킬 수 있는 프로토파낙사트리올 생합성 촉진용 조성물을 제공한다.Ginseng saponin is called "ginsenoside" in the sense of ginseng glycoside to distinguish it from other plant-based saponins, and these ginsenoids are from sequualene to dammarenediol as shown in FIG. Produced via II and Protopananacodiol. Accordingly, the present invention provides a composition for promoting protopanaxatriol biosynthesis that can significantly increase the synthesis of protopanaxanatriol, which is an intermediate in the ginsenoid biosynthesis process.
*또한 본 발명자들은 효모 발현 분석을 이용하여, CYP716A53v2을 프로토파낙사다이올 6-히드록실화 효소(protopanaxadiol 6-hydroxylase) 활성화 능력을 갖는 프로토파낙사트리올 합성효소(protopanaxatriol synthase)로 동정하였다. 즉, 재조합 CYP716A53v2 발현 효모를 제작하고, 효모에 프로토파낙사다이올을 섭식시킨 후에 프로토파낙사다이올로부터 프로토파낙사트리올을 생성하는 것을 확인하였으며, 더불어 효모에 프로토파낙사트리올 합성효소를 발현시킨 후 이 효소만을 추출하고 프로토파낙사다이올과 반응시켜 프로토파낙사트리올 생성됨을 확인하였다. The inventors also identified CYP716A53v2 as a protopanaxatriol synthase with the ability to activate protopanaxadiol 6-hydroxylase using yeast expression analysis. That is, the recombinant CYP716A53v2 expressing yeast was prepared, and after the feeding of the protopanaxadiol to the yeast, it was confirmed that the protopanaxanatriol was produced from the protopanaxadiol. After expression, only this enzyme was extracted and reacted with protopanaxadiol to confirm that protopanaxanatriol was produced.
인삼(P. ginseng)에서 30개 이상의 진세노사이드가 동정되었고, 이들은 아글리콘 구조에 따라 파낙사디올(panaxadiol) (Rb1, Rb2, Rc, 및 Rd) 및 파낙사트리올(panaxatriol) (Rg1, Re, Rf, 및 Rg2) 그룹의 두 개의 그룹으로 나뉜다. 각각의 진세노사이드는 항-스트레스, 항-당뇨, 항-염증, 항-산화, 항암 뿐만 아니라 면역시스템 이상과 같은 약리 효과들이 상이한 것으로 밝혀졌다(Briskin, D.P. (2000) Plant Physiol. 124: 50714; Shibata, 2001). More than 30 ginsenosides have been identified in Ginseng (P. ginseng) , which are panaxadiol (Rb1, Rb2, Rc, and Rd) and panaxatriol (Rg1, depending on the aglycone structure). Re, Rf, and Rg2) group is divided into two groups. Each ginsenoside has been found to have different pharmacological effects such as anti-stress, anti-diabetic, anti-inflammatory, anti-oxidant, anti-cancer as well as immune system abnormalities (Briskin, DP (2000) Plant Physiol. 124: 50714 Shibata, 2001).
또한, 최근의 연구들은 진세노사이드 대사산물들이 진세노사이드 보다 더 큰 생물학적 효과를 갖는다는 것을 보고하였다(Jia, W. 등, (2004) J Clin Oncol ASCO Annual Meeting Proceedings (Post-Meeting Edition). 22:9663). 더불어 다양한 진세노사이드로부터 가수분해된 트리테르펜 아글리콘인 프로토파낙사디올이 암 세포에서 다양한 신호전달 경로를 통해 세포사멸 효과를 나타낸다는 것과 멀티드럭-저항성 종양에 대한 세포독성이 보고되었다(Jia et al. 2004; Popovich and Kitts 2004 Li et al. 2006). 이에 따라, 일부 제약회사(PanaGin Pharmaceuticals (British Columbia, Canada))는 프로토파낙사디올(Pandimex)을 함유한 암 치료제를 개발하고 있는 실정이다.In addition, recent studies have reported that ginsenoside metabolites have greater biological effects than ginsenosides (Jia, W. et al., (2004) J Clin Oncol ASCO Annual Meeting Proceedings (Post-Meeting Edition). 22: 9663). In addition, it has been reported that protopanaxadiol, a triterpene aglyconate hydrolyzed from various ginsenosides, has apoptosis effects through various signaling pathways in cancer cells and cytotoxicity against multidrug-resistant tumors (Jia et. al. 2004; Popovich and Kitts 2004 Li et al. 2006). Accordingly, some pharmaceutical companies (PanaGin Pharmaceuticals (British Columbia, Canada)) are developing cancer treatments containing Pandimex.
현실적으로 유기합성법으로는 트리테르펜의 합성에 어려움이 있으므로, 이 화합물은 자연에서 분리되거나 진세노사이드 가수분해에 의해 얻어야 한다. In reality, the synthesis of triterpenes in organic synthesis is difficult, so the compound must be separated from nature or obtained by ginsenoside hydrolysis.
그리하여 본 발명에 따른 프로토파낙사트리올 생성하는 유전자 및 효소의 발견은 효모나 인삼 및 기타 식물에 도입하여 프로토파낙사트리올의 생합성을 유도할 수 있고 대사공학적인 방법을 통하여 프로토파낙사트리올의 생합성을 획기적으로 높일 수 있는 효과적인 방법이 될 수 있다.Therefore, the discovery of the genes and enzymes that produce the protopananasporidium according to the present invention can be introduced into yeast, ginseng and other plants to induce the biosynthesis of the protopanaxanatriol and through the metabolic engineering method. It can be an effective way to drastically increase biosynthesis.
따라서 본 발명은 CYP716A53v2 단백질 또는 이를 코딩하는 CYP716A53v2 유전자를 포함하는 프로토파낙사트리올(protopanaxatriol) 생합성 촉진용 조성물을 제공할 수 있다. 상기 CYP716A53v2 단백질의 범위는 인삼으로부터 분리된 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. Therefore, the present invention provides a CYP716A53v2 protein or CYP716A53v2 encoding the same. It is possible to provide a composition for promoting protopanaxatriol biosynthesis comprising a gene. The range of the CYP716A53v2 protein includes a protein having an amino acid sequence represented by SEQ ID NO: 2 isolated from ginseng and a functional equivalent of the protein.
여기에서 "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. 여기에서 "실질적으로 동질의 생리활성"이란 식물체 내에서 프로토파낙사트리올 생합성에 관여하는 활성을 의미한다.As used herein, "functional equivalent" means at least 70%, preferably 80% or more, more preferably 90% or more of the amino acid sequence represented by SEQ ID NO: 2 as a result of the addition, substitution or deletion of an amino acid. Preferably it refers to a protein having a sequence homology of 95% or more, and exhibits substantially the same physiological activity as the protein represented by SEQ ID NO: 2. As used herein, "substantially homogeneous physiological activity" refers to the activity involved in protopanaxanatriol biosynthesis in plants.
또한, 본 발명에 따른 상기 CYP716A53v2 유전자는 CYP716A53v2 단백질을 코딩하는 게놈 DNA를 모두 포함한다. 바람직하게는, 본 발명의 유전자, 즉 CYP716A53v2의 cDNA는 서열번호 1로 표시되는 염기서열로 구성될 수 있다. 또한, 상기 염기서열의 변이체도 본 발명의 범위 내에 포함될 수 있다. 구체적으로, 상기 변이체는 서열번호 1의 염기서열과 각각 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. In addition, the CYP716A53v2 gene according to the present invention includes all genomic DNA encoding the CYP716A53v2 protein. Preferably, the gene of the present invention, that is, the cDNA of CYP716A53v2 may be composed of the nucleotide sequence represented by SEQ ID NO: 1. In addition, variants of the base sequence may be included within the scope of the present invention. Specifically, the variant may include a nucleotide sequence having at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% homology with the nucleotide sequence of SEQ ID NO: 1, respectively. Can be.
여기에서 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(gap)를 포함할 수 있다.Wherein the “% sequence homology” to the polynucleotide is identified by comparing the two optimally arranged sequences with the comparison region, wherein a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (additional Or does not include deletion) or addition or deletion (gap).
또한, 본 발명은 본 발명에 따른 CYP716A53v2 유전자를 포함하는 재조합 벡터 또는 플라스미드를 포함하는 프로토파낙사트리올 생합성 촉진용 조성물을 제공할 수 있다. 이에 제한되는 것은 아니나, 상기 재조합 벡터는 바람직하게는 재조합 효모 발현 벡터 또는 재조합 식물 발현 벡터이다. In addition, the present invention can provide a composition for promoting protopanaxatriol biosynthesis comprising a recombinant vector or plasmid comprising the CYP716A53v2 gene according to the present invention. Although not limited thereto, the recombinant vector is preferably a recombinant yeast expression vector or a recombinant plant expression vector.
여기에서 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 것을 지칭하는 것이다. 상기 벡터로 형질전환된 재조합 세포는 상기 세포의 자연 형태에서는 발현되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 자연 상태의 세포에서 발현되는 유전자를 발현할 수 있으나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다. As used herein, "recombinant" refers to a cell expressing a heterologous nucleic acid, expressing the nucleic acid, or expressing a protein encoded by a peptide, heterologous peptide, or heterologous nucleic acid. The recombinant cell transformed with the vector may express a gene or a gene fragment which is not expressed in the natural form of the cell in one of the sense and antisense forms. In addition, recombinant cells may express genes expressed in cells in a natural state, but the genes are modified and reintroduced into cells by artificial means.
여기에서 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭한다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. "전달체"는 흔히 "벡터"와 호환하여 사용될 수 있다. "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다."Vector" as used herein refers to DNA fragment (s), nucleic acid molecules that are delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells. "Delivers" can often be used interchangeably with "vectors." An "expression vector" refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence necessary to express a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.
효모 발현 벡터는 프로모터 유전자, 해독개시 및 종결코돈이 제거된 목적 단백질을 코딩하는 유전자 및 터미네이터를 포함할 수 있으며, 프로모터 유전자는 GAPDH, PGK, ADH, PHO5, GAL1 및 GAL10으로 구성된 군으로부터 선택되는 유전자인 것이 바람직하나, 이에 제한되지 않는다. Yeast expression vectors can include promoter genes, genes encoding target proteins from which translational initiation and termination codons have been removed, and the promoter genes are genes selected from the group consisting of GAPDH, PGK, ADH, PHO5, GAL1 and GAL10. Is preferably, but is not limited thereto.
한편, 본 발명의 CYP716A53v2 유전자는 신호 펩타이드를 코딩하는 핵산 서열을 포함하며, 이것은 발현된 단백질의 배출(export)을 가능하게 한다. 여기에서 신호 펩타이드를 코딩하는 핵산 서열은 발현되는 이형 유전자의 5'에 직접적으로 결합되는 것이 바람직하다. 많은 진핵 세포 단백질의 분비 및 변형에 있어서, 폴리펩타이드를 분비 기구(secretion apparatus) 속으로 배출하기(steer) 위해서는 N-말단에 신호 서열을 가지는 단백질 서열과의 융합이 필요하다. 상기 벡터는 조합 효모 플라스미드(YIp : integrative yeast plasmid) 및 염색체외 플라스미드 벡터(extrachromosomal plasmid vector)가 모두 가능하다. 상기 염색체외 플라스미드 벡터는 에피솜 효모 플라스미드(YEp : episomal yeast plasmid), 복제 효모 플라스미드(YRp : replicative yeast plasmid) 및 효모 중심체 플라스미드(YCp : yeast centromer plasmid)로 나뉘어진다. 더 나아가, 인위적 효모 염색체들(YACs : artificial yeast chromosomes)도 본 발명에 따른 발현 벡터로서 가능하다. On the other hand, the CYP716A53v2 gene of the present invention comprises a nucleic acid sequence encoding a signal peptide, which allows for the export of the expressed protein. Here, the nucleic acid sequence encoding the signal peptide is preferably bound directly to 5 'of the heterologous gene to be expressed. In the secretion and modification of many eukaryotic cell proteins, fusion with a protein sequence having a signal sequence at the N-terminus is required to steer the polypeptide into the secretion apparatus. The vector may be both an integrative yeast plasmid (YIp) and an extrachromosomal plasmid vector (YP). The extrachromosomal plasmid vector is divided into an episomal yeast plasmid (YEp), a replicative yeast plasmid (YRp), and a yeast centromeric plasmid (YCp). Furthermore, artificial yeast chromosomes (YACs) are also possible as expression vectors according to the present invention.
또한, 특히 바람직한 효모 벡터는 복제 원점 ori 및 항생물질 저항성 카세트(antibiotic resistance cassette)를 함유하여 E. coli 에서 증식되고 선택될 수 있는 효모 복제 플라스미드(yeast replication plasmid)이다. 더 나아가, 이들은 H. polymorpha로부터의 HARS1과 같이 효모 세포에서 염색체와 관계없이 독립적 복제를 할 수 있는 ARS 서열, 그리고 URA3 또는 HLEU2와 같은 대사성 효모 선택 마커(metabolic yeast selection marker)를 가진다.In addition, particularly preferred yeast vectors are yeast replication plasmids that can be propagated and selected in E. coli , containing the origin of replication ori and an antibiotic resistance cassette. Furthermore, they have ARS sequences capable of independent chromosome replication in yeast cells, such as HARS1 from H. polymorpha, and metabolic yeast selection markers such as URA3 or HLEU2.
식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0116718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0120516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. Preferred examples of plant expression vectors are Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells. Another type of Ti-plasmid vector (see EP 0116718 B1) is currently used to transfer hybrid DNA sequences to protoplasts from which plant cells or new plants can be produced which properly insert hybrid DNA into the genome of the plant. A particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0120516 B1 and US Pat. No. 4,940,838.
본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host are viral vectors, such as those that can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc. For example, it may be selected from an incomplete plant viral vector. The use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.
발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신과 같은 제초제 저항성 유전자, 카나마이신(Kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, which corresponds to all genes capable of distinguishing transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotic resistance genes such as kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. It is not limited to this.
본 발명의 일실시예에 있어서, 식물 발현 벡터의 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적 (constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In one embodiment of the present invention, the promoter of the plant expression vector may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter. The term "promoter" refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the possibility of selection.
상기 터미네이터는, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알고 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.The terminator may use a conventional terminator, and examples thereof include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, agrobacterium tumefaciens (ocrobacterium tumefaciens) Terminator of the Fine (Octopine) gene, etc., but is not limited thereto. With regard to the need for terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly desirable in the context of the present invention.
또한, 본 발명은 상기 본 발명에 따른 재조합 벡터 또는 플라스미드로 형질전환되어 프로토파낙사트리올 생합성이 가능한 숙주세포를 제공할 수 있다. 이에 제한되지는 않으나, 상기 숙주세포는 효모, 대장균일 수 있다.In addition, the present invention can be provided with a host cell capable of transforming the recombinant vector or plasmid according to the present invention capable of protopananax triol biosynthesis. The host cell may be, but is not limited to, yeast and E. coli.
구체적으로, 본 발명은 CYP716A53v2 유전자를 포함하는 재조합 효모 벡터가 형질전환된 형질전환 효모를 제공할 수 있다. 바람직하게는, 상기 효모가 Pichia, Hansenula, Candida, Torulopsis, Saccharomyces, Schizosaccharomyces, Kluyveromyces 및 Yarrowia 중에서 선택되는 속(genus)일 수 있다. 특히 바람직하게는, 상기 미생물이 Hansenula polymorpha, Saccharomyces Cervisiae, Schizosaccharomyces pombe, Kluyveromyces lactis 및 Yarrowia lipolytica 중에서 선택되는 종에 속하는 것일 수 있다.Specifically, the present invention may provide a transformed yeast transformed with a recombinant yeast vector comprising the CYP716A53v2 gene. Preferably, the yeast may be a genus selected from Pichia, Hansenula, Candida, Torulopsis, Saccharomyces, Schizosaccharomyces, Kluyveromyces and Yarrowia. Particularly preferably, the microorganism may belong to a species selected from Hansenula polymorpha, Saccharomyces Cervisiae, Schizosaccharomyces pombe, Kluyveromyces lactis and Yarrowia lipolytica.
효모의 형질전환은 핵산 분자 또는 벡터를 당업자에게 공지된 표준 방법, 바람직하게는 전기천공, 화학적 형질 전환, 원형질 융합에 의한 형질전환, 또는 입자 봄바드먼트 (bombardment)에 의해 세포내로 도입되게 할 수 있다(Current Protocols in Molecular Biology, John Wiley & Sons, Edited by: Fred M. Ausubel et al.;Molecular Cloning: A Laboratory Manual (Third Edition) , J. Sambrook and D. Russell, 2001, Cold Spring Harbor Laboratory Press).Transformation of yeast can cause the nucleic acid molecule or vector to be introduced into cells by standard methods known to those skilled in the art, preferably by electroporation, chemical transformation, transformation by plasma fusion, or particle bombardment. Current Protocols in Molecular Biology, John Wiley & Sons, Edited by: Fred M. Ausubel et al .; Molecular Cloning: A Laboratory Manual (Third Edition), J. Sambrook and D. Russell, 2001, Cold Spring Harbor Laboratory Press ).
또한, 본 발명은 본 발명의 CYP716A53v2 유전자를 포함하는 재조합 벡터 또는 플라스미드로 형질전환되어 프로토파낙사트리올 생합성이 가능한 형질전환 식물을 제공할 수 있다. In addition, the present invention can provide a transgenic plant capable of protofa naxatriol biosynthesis by transformation with a recombinant vector or plasmid comprising the CYP716A53v2 gene of the present invention.
이에 제한되지는 않으나 상기 식물은 담배, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이 호박, 박, 딸기, 대두, 녹두, 강낭콩 및 완두 중에서 선택되는 것을 특징으로 하는 쌍자엽 식물일 수 있으나, 바람직하게는 애기장대이다. 식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. The plant may include, but is not limited to, tobacco, eggplant, tobacco, pepper, tomato, burdock, garland chrysanthemum, lettuce, bellflower, spinach, chard, sweet potato, celery, carrot, buttercup, parsley, cabbage, cabbage, gall, watermelon, melon, Cucumber pumpkin, gourd, strawberry, soybeans, green beans, kidney beans and peas can be a dicotyledonous plant characterized in that selected from, but is preferably Arabidopsis. Plant transformation refers to any method of transferring DNA to a plant.
그러한 형질전환 방법은 반드시 재생 및 (또는) 조직 배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등 으로부터 적당하게 선택될 수 있다. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including dicotyledonous plants as well as monocotyledonous quantum. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. Method is calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), protoplasts Electroporation (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microscopic injection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185 ), Agrobacterium tumulopasis (DNA or RNA-coated) particle bombardment (Klein TM et al., 1987, Nature 327, 70), invasion of plants or transformation of mature pollen or vesicles And may be appropriately selected from infection with (incomplete) virus (EP 0 301 316) in en mediated gene transfer.
본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EPA 120516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다. Preferred methods according to the invention include Agrobacterium mediated DNA delivery. Especially preferred is the use of the so-called binary vector technology as described in EPA 120516 and US Pat. No. 4,940,838.
식물의 형질전환에 이용되는 "식물 세포"는 어떤 식물 세포도 된다. 식물 세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물, 바람직하게는 배양 세포, 배양 조직 또는 배양 기관 및 더욱 바람직하게는 배양 세포의 어떤 형태도 된다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다.The "plant cells" used for plant transformation may be any plant cells. Plant cells may be cultured cells, cultured tissues, cultured organs or whole plants, preferably cultured cells, cultured tissues or cultured organs and more preferably any form of cultured cells. "Plant tissue" refers to the tissues of differentiated or undifferentiated plants, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie single cells, protoplasts. (protoplast), shoots and callus tissue. The plant tissue may be in planta or in an organ culture, tissue culture or cell culture.
따라서, 본 발명은 CYP716A53v2 유전자 또는 상기 유전자로부터 코딩된 CYP716A53v2 단백질의 발현을 증가시켜 프로토파낙사트리올 생산을 증가시키는 방법을 제공할 수 있다. 또한 상기 방법은 본 발명에 따른 상기 재조합 벡터 또는 플라스미드로 숙주를 형질전환시켜 CYP716A53v2 유전자 또는 단백질을 과발현시키는 단계를 포함하게 된다. 이에 제한되지는 않으나, 상기 숙주는 효모, 대장균, 식물, 특히 인삼 일 수 있다.Thus, the present invention can provide a method of increasing the production of the CYP716A53v2 gene or the CYP716A53v2 protein encoded therefrom, thereby increasing the production of protopanaxtriol. The method may also include overexpressing the CYP716A53v2 gene or protein by transforming the host with the recombinant vector or plasmid according to the present invention. The host may be, but is not limited to, yeast, E. coli, plants, especially ginseng.
본 발명의 CYP716A53v2 유전자는 프로토파낙사디올 6-히드록실라아제(hydroxylase)의 활성화를 통해 프로토파낙사디올(protopanaxadiol)에서 프로토파낙사트리올의 합성을 촉진시키므로, 상기와 같은 프로토파낙사트리올 생합성 촉진용 조성물 및 상기 조성물을 이용하여 프로토파낙사트리올이 과다 생성된 형질전환된 식물을 제공할 수 있으며, 프로토파낙사트리올 생산을 증가시키는 방법 또한 제공한다.Since the CYP716A53v2 gene of the present invention promotes the synthesis of protopanaxtriol in protopanaxadiol through the activation of protopanaxadiol 6-hydroxylase, such a protopanaxanatriol It is possible to provide a composition for promoting biosynthesis and a transformed plant which is excessively produced with ProtoPanaxatriol, and also provides a method for increasing the production of ProtoPanaxatriol.
이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, these examples are intended to illustrate the present invention in more detail, and the scope of the present invention is not limited to these examples.
<실시예 1><Example 1>
P. ginsengP. ginseng EST 라이브러리로부터의 CYP 유전자의 분리(isolation) Isolation of the CYP Gene from the EST Library
<1-1> 식물재료 및 EST 라이브러리 제작<1-1> Plant Materials and EST Library
시험관 내 배양한 인삼의 부정근(adventitious roots)에서 총 RNA를 추출하였다. Poly (A) quick mRNA isolation kit (Stratagene)를 사용하여 Poly(A)+RNA를 추출하였다. Creator SMART cDNA library construction kit (Clontech)를 사용하여 cDNA 라이브러리를 만들었다. 숙주 균주로 DH10B를 사용하였고, 클로닝 벡터로 pDNR-LIB을 사용하였다.Total RNA was extracted from adventitious roots of ginseng cultured in vitro. Poly (A) + RNA was extracted using Poly (A) quick mRNA isolation kit (Stratagene). The Creator SMART cDNA library construction kit (Clontech) was used to create the cDNA library. DH10B was used as the host strain and pDNR-LIB was used as the cloning vector.
자동 DNA 시퀀서(ABI Prism 3700, Applied Biosystems)를 사용하여 싱글패스(single-pass) 부분 서열을 측정하였다. 총 4,226 cDNA 가닥들(NCBI GenBank dbEST accession Nos. HS076062HS080287)을 임의로 추출하고 ABI 3730 XL 자동 DNA 시퀀서(Applied Biosystems)를 사용하여 5' 말단에서부터 시퀀싱하였다. ESTs 결과물을 NCBI 웹사이트 상의 BLASTX 알고리즘을 사용하여 GenBank 및 dbEST 서열들과 비교하였다.Single-pass partial sequences were measured using an automated DNA sequencer (ABI Prism 3700, Applied Biosystems). A total of 4,226 cDNA strands (NCBI GenBank dbEST accession Nos. HS076062HS080287) were randomly extracted and sequenced from the 5 'end using an ABI 3730 XL automated DNA sequencer (Applied Biosystems). ESTs results were compared to GenBank and dbEST sequences using the BLASTX algorithm on the NCBI website.
<1-2> CYP716 패밀리의 동정 및 분석<1-2> Identification and Analysis of CYP716 Family
인삼 MeJA-처리 부정근(adventitious roots)에서 EST 서열 중에 CYP716A47은 프로토파낙사디올 (Protopanaxadiol) 합성 유전자임(본 발명자의 특허출원 제10-2011-0113784호 참조)이 이미 밝혀졌기 때문에 CYP716A 동일 계열의 유전자인 CYP716A53v2 유전자의 전장을 얻고 GenBank에 등록하였으며, 접근번호(accession numbers)는 CYP716A53v2 JX036031이다. CYP716A47 is a Protopanaxadiol synthetic gene (see our patent application No. 10-2011-0113784) in the EST sequence in ginseng MeJA-treated adventitious roots. The full length of the gene CYP716A53v2 was obtained and registered in GenBank, and the access numbers are CYP716A53v2 JX036031 .
표 1
CYP450 family Typical EST ID GenBank 접근번호 EST 수 CYPs 명명 Homology to(species name) Description Accession No. E-Value
CYP71 KYERRC001 46-A08 JN604540 7 CYP71D312 CYP71D55(Hyoscyamus muticus) Premnaspirodiene Oxygenase EF569601 2e-09
KYERRC001 36-B03 JN604541 5 CYP71D313
KYERRC001 26-F07 1 CYP71D314
KYERRC001 18-F12 1 CYP71D315v2
KYERRC001 17-H02 2 CYP71D315v1
KYERRC001 10-D12 1 CYP71D316
KYERRC001 19-G01 1 CYP71D317
KYERRC001 43-F04 1 CYP71D318v1
KYERRC001 45-G06 1 CYP71D318v2
CYP72 KYERRC001 39-E08 JN604542 2 CYP72A129 CYP72A57(Nicotianat abacum) Unknown DQ350360 3e-64
KYERRC001 42-H03 1 CYP72A220
KYERRC001 31-H09 1 CYP72A221
CYP73 KYERRC001_19-F10 JN604543 5 CYP73A100 CYP73A5(Arabidopsi sthaliana) Cinnamic acid 4-hydroxylase D78596 3e-166
CYP82 KYERRC001 42-G11 JN604544 3 CYP82H23 CYP82A1(Pisumsativum) UnknownWound-inducible P450 hydroxylase AF175278 2e-09
KYERRC001 19-F02 1 CYP82H24
KYERRC001 01-H12 JN604545 1 CYP82D47
CYP90 KYERRC001_12-D12 3 CYP90A29 CYP90 A2(Pisumsativum) Putativebrassinosteroid C-23 hydroxylase AB218762 9e-122
CYP94 KYERRC001_27-A10 1 CYP94A33 CYP94A1(Viciasativa) Fatty acidomega-hydroxylase 081117 0.0
CYP98 KYERRC001 26-B07 1 CYP98A58 CYP98A13(Ocimumbasilicum) p-coumaroyl shikimate 3'-hydroxylase AY082612 1x10-141
KYERRC001 08-H05 1 CYP98A59
CYP716 KYERRC001_23-C09 JN604536 7 CYP716A47 CYP716A2(Medicagotruncatula) Oxidation of β-amyrin and erythrodiol at the C-28 position FN 995112 6e-169
CYP734 KYERRC001_09-G04 1 CYP734A23 CYP734 A7(Lycopersiconesculentum) Brassinosteroid C-26 hydroxylase AB223042 5e-49
CYP736 KYERRC001_22-F01 JN604539 3 CYP736A12 CYP736B(Vitisarizonicax Vitisrupestris) UnknowmDisease Responsive FJ828518 5e-24
CYP749 KYERRC001_20-C10 JN604538 2 CYP749A20 CYP86A22(Petuniaxhybrida) Fatty acyl-CoA-Hydroxylase DQ099540 2e-17
Table 1
CYP450 family Typical EST ID GenBank Access Number EST Count Naming CYPs Homology to (species name) Description Accession No. E-Value
CYP71 KYERRC001 46-A08 JN604540 7 CYP71D312 CYP71D55 ( Hyoscyamus muticus ) Premnaspirodiene Oxygenase EF569601 2e -09
KYERRC001 36-B03 JN604541 5 CYP71D313
KYERRC001 26-F07 One CYP71D314
KYERRC001 18-F12 One CYP71D315v2
KYERRC001 17-H02 2 CYP71D315v1
KYERRC001 10-D12 One CYP71D316
KYERRC001 19-G01 One CYP71D317
KYERRC001 43-F04 One CYP71D318v1
KYERRC001 45-G06 One CYP71D318v2
CYP72 KYERRC001 39-E08 JN604542 2 CYP72A129 CYP72A57 ( Nicotianat abacum ) Unknown DQ350360 3e -64
KYERRC001 42-H03 One CYP72A220
KYERRC001 31-H09 One CYP72A221
CYP73 KYERRC001_19-F10 JN604543 5 CYP73A100 CYP73A5 ( Arabidopsi sthaliana ) Cinnamic acid 4-hydroxylase D78596 3e -166
CYP82 KYERRC001 42-G11 JN604544 3 CYP82H23 CYP82A1 ( Pisumsativum ) UnknownWound-inducible P450 hydroxylase AF175278 2e -09
KYERRC001 19-F02 One CYP82H24
KYERRC001 01-H12 JN604545 One CYP82D47
CYP90 KYERRC001_12-D12 3 CYP90A29 CYP90 A2 ( Pisumsativum ) Putativebrassinosteroid C-23 hydroxylase AB218762 9e -122
CYP94 KYERRC001_27-A10 One CYP94A33 CYP94A1 ( Viciasativa ) Fatty acidomega-hydroxylase 081117 0.0
CYP98 KYERRC001 26-B07 One CYP98A58 CYP98A13 ( Ocimumbasilicum ) p-coumaroyl shikimate 3'-hydroxylase AY082612 1 x 10 -141
KYERRC001 08-H05 One CYP98A59
CYP716 KYERRC001_23-C09 JN604536 7 CYP716A47 CYP716A2 ( Medicagotruncatula ) Oxidation of β-amyrin and erythrodiol at the C-28 position FN 995 112 6e -169
CYP734 KYERRC001_09-G04 One CYP734A23 CYP734 A7 (Lycopersiconesculentum) Brassinosteroid C-26 hydroxylase AB223042 5e -49
CYP736 KYERRC001_22-F01 JN604539 3 CYP736A12 CYP736B ( Vitisarizonicax Vitisrupestris ) UnknowmDisease Responsive FJ828518 5e -24
CYP749 KYERRC001_20-C10 JN604538 2 CYP749A20 CYP86A22 ( Petuniaxhybrida ) Fatty acyl-CoA-Hydroxylase DQ099540 2e -17
(P. ginseng의 부정근으로부터 얻은 CYP 유전자에 상동성이 있는 EST 서열)(EST sequence homologous to the CYP gene from the root of P. ginseng )
CYP716A53v2 유전자가 CYP716A 계열에 속할지라도 아미노산 염기서열은 이전에 밝혀진 프로토파낙사디올 합성 관련 유전자인 CYP716A47 유전자와는 오직 49%만의 유사성을 갖기 때문에 프로토파낙사디올 합성 관련 유전자와는 전혀 다른 유전자임을 알수 있다. 한편 Medicago truncatula 식물에서 밝혀진 CYP716A12는 베타-아밀린(β-amyrin 과 에리트리오다이올 (erythrodiol)로부터 올레아놀릭에시드 (oleanolic acid)를 만들게 하는 다기능성 유전자인데 이 유전자와는 53%의 아미노산 염기서열 상동성을 갖기 때문에 전혀 다른 유전자이다. Although the CYP716A53v2 gene belongs to the CYP716A family, the amino acid sequence has only 49% similarity to the previously known CYP716A47 gene, which is a gene that is completely different from the gene related to protopanaxadiol synthesis. . Meanwhile, CYP716A12, found in Medicago truncatula plants, is a multifunctional gene that makes oleanolic acid from beta-amyrin (β-amyrin and erythrodiol). It is a completely different gene because it has the same sex.
<실시예 2><Example 2>
<2-1> 시토크롬 P450 단백질 서열의 분리 및 비교<2-1> Isolation and Comparison of Cytochrome P450 Protein Sequences
DNASIS 프로그램(Hitachi Software Engineering Co.)을 사용하여 그들의 뉴클레오티드 및 예상되는 아미노산 서열들을 분석하였다. 이 유전자 서열들 사이의 계통관계를 분석하기 위하여, EMBL, GenBank 및 DDBJ 서열 데이터로부터 아미노산 서열들을 얻었다. CLUSTAL W 프로그램을 사용하여 멀티플 시퀀스 얼라인먼트(multiple sequence alignments)를 만들었다(Thompson, J.D. 등 (1994) Nucl. Acids Res. 22: 46734680). 추론된 아미노산 얼라인먼트의 계통발생적 분석은 트리뷰(TreeView) 소프트웨어를 이용한 네이버-조이닝(neighbor-joining) 방법을 사용하여 수행하였다(Page, R.D. (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357358). 트리(tree)에서 노드(nodes)의 강도 측정은 1000 레플리케이트(replicates)의 부트스트랩(bootstrap) 분석을 사용하였다(Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791).Their nucleotide and expected amino acid sequences were analyzed using the DNASIS program (Hitachi Software Engineering Co.). To analyze the lineage between these gene sequences, amino acid sequences were obtained from EMBL, GenBank and DDBJ sequence data. Multiple sequence alignments were made using the CLUSTAL W program (Thompson, JD et al. (1994) Nucl. Acids Res. 22: 46734680). Phylogenetic analysis of deduced amino acid alignments was performed using a neighbor-joining method using TreeView software (Page, RD (1996) TreeView: an application to display phylogenetic trees on personal computers Comput.Appl.Biosci . 12, 357358). Strength measurement of nodes (nodes) in the tree (tree) was used to bootstrap (bootstrap) analysis of 1000 replicon Kate (replicates) (Felsenstein, J. ( 1985) Confidence limits on phylogenies:. An approach using the bootstrap Evolution 39: 783791).
<2-2> 계통분석 결과<2-2> System Analysis Results
P. ginseng의 9개의 잠재적인 CYP 유전자들(예를 들어, CYP72A219, CYP73A100, CYP736A12, CYP82H23, CYP82D47, CYP71D312, CYP71D313, CYP749A22 및 CYP716A47)과 다른 식물의 CYP 유전자들 사이의 유연관계를 분석하였으며(도 2 참조), CYP716A53v2에서 추론된 아미노산 서열은 CYP716A47유전자와는 44%, Medicago truncatula유래인 CYP716A12의 것과 53%에 불과한 상동성을 나타내었다. P. ginsengWe analyzed the flexible relationship between the nine potential CYP genes (e.g., CYP72A219, CYP73A100, CYP736A12, CYP82H23, CYP82D47, CYP71D312, CYP71D313, CYP749A22, and CYP716A47) of CYP genes (see FIG. 2). , The amino acid sequence deduced from CYP716A53v2 is 44% of the CYP716A47 gene,Medicago truncatulaOrigin Only 53% homology with that of CYP716A12.
<실시예 3><Example 3>
WAT21 효모에서 CYP716A53v2 cDNA의 ectopic 발현Ectopic Expression of CYP716A53v2 cDNA in WAT21 Yeast
<3-1> 효모에서 CYP716A53v2의 발현<3-1> Expression of CYP716A53v2 in Yeast
효모에 대한 발현 플라스미드 벡터를 제작하기 위하여, CYP716A53v2의 cDNA로부터 PCR을 이용하여 오픈 리딩 프레임(ORFs)을 증폭하였다. PCR은 94℃ 40초, 55℃ 40초 및 72℃ 2분의 25 사이클을 수행하였고, Pfu DNA 중합효소(Stratagene)를 사용하였다. 위 PCR 산물을 TOPO TA expression kit (Invitrogen)를 사용하여 pYES2.1에 클로닝하였다. cDNAs를 분리하는데 사용한 프라이머 쌍은 다음과 같다:To prepare expression plasmid vectors for yeast, open reading frames (ORFs) were amplified using PCR from the cDNA of CYP716A53v2. PCR was carried out 25 cycles of 94 ℃ 40 seconds, 55 ℃ 40 seconds and 72 ℃ 2 minutes, using Pfu DNA polymerase (Stratagene). The PCR product was cloned into pYES2.1 using the TOPO TA expression kit (Invitrogen). Primer pairs used to isolate cDNAs are as follows:
CYP716A53v2 합성효소에 대하여,For CYP716A53v2 Synthetase,
5′-ATG GAT CTC TTT ATC TCA TCT CAA-3′(서열번호 3) 및5′-ATG GAT CTC TTT ATC TCA TCT CAA-3 ′ (SEQ ID NO: 3) and
5′-TTA AAG CGT ACA AGG TGA TAG ACG-3′(서열번호 4)5′-TTA AAG CGT ACA AGG TGA TAG ACG-3 ′ (SEQ ID NO: 4)
PCR 산물을 pYES2.1/V5-His-TOPO 벡터에 클로닝하고, Escherichia coli를 형질전환시켰다. 그 후 ORFs를 GAL1 프로모터에 작동가능하게 접합시켰다. 삽입된 DNA의 뉴클레오티드 서열을 시퀀싱을 통해 확인하였다. CYP716A53v2 및 빈 벡터를 Arabidopsis thaliana NADPH-CYP 환원효소(reductase)를 보유하고 있는 Saccharomyces cerevisiaestrain WAT21에서 발현시켰다(Urban, P. 등 (1997) J. Biol. Chem. 272, 19176~19186).PCR products were cloned into pYES2.1 / V5-His-TOPO vector and Escherichia coli was transformed. The ORFs were then operably conjugated to the GAL1 promoter. The nucleotide sequence of the inserted DNA was confirmed by sequencing. CYP716A53v2 and the empty vectors were expressed in Saccharomyces cerevisiae strain WAT21 carrying Arabidopsis thaliana NADPH-CYP reductase (Urban, P. et al. (1997) J. Biol. Chem. 272, 19176-19186).
WAT21 효모 세포들을 공지되어 있는 변형된 리튬 아세테이트 방법으로 형질전환시켰다(Gietz, D., St Jean, A., Woods, R.A., Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425). SC-U (우라실(uracil) 결핍 SC 최소배지)로 형질전환 세포들을 선별하고, 3일 간 배양한 뒤 YPG 배지에 계대배양하였다(Kribii et al., 1997). WAT21 yeast cells were transformed by known modified lithium acetate methods (Gietz, D., St Jean, A., Woods, RA, Schiestl, RH (1992) Improved method for high efficiency transformation of intact yeast cells.Nucleic Acids Res. 20: 1425). Transformed cells were selected with SC-U (uracil deficient SC minimal medium), cultured for 3 days and passaged in YPG medium (Kribii et al., 1997).
갈락토오스에 의한 유도 및 트리테르펜 모노알콜 분획(triterpene monoalcohol fraction)의 준비를 위한 배양조건 및 방법은, 프로토파낙사디올 (50 mg L-1)를 기질로서 배지에 첨가한 것을 제외하고는, 공지의 방법을 따랐다(Kushiro, T., Ohno, Y., Shibuya, Y., Ebizuka, Y. (1997) In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes. Biol. Pharm. Bull. 20: 292294). 하루 동안 갈락토오스 유도를 한 후에, 500 g 로 5분간 원심분리하여 세포들을 모으고, 2 ml 20% KOH/ 50% EtOH 로 5분간 환류(reflux)시켰다. 같은 부피의 헥산으로 추출한 후에, 추출물을 LC/APCIMS로 분석하였다.Culture conditions and methods for induction by galactose and preparation of the triterpene monoalcohol fraction are known, except that protopanaxadiol (50 mg L- 1 ) is added to the medium as a substrate. Methods were followed (Kushiro, T., Ohno, Y., Shibuya, Y., Ebizuka, Y. (1997) In vitro conversion of 2,3-oxidosqualene into dammarenediol by Panax ginseng microsomes.Biol . Pharm. Bull. 20: 292294). After 1 day of galactose induction, cells were collected by centrifugation at 500 g for 5 minutes and refluxed with 2 ml 20% KOH / 50% EtOH for 5 minutes. After extraction with the same volume of hexane, the extract was analyzed by LC / APCIMS.
<3-2> 재조합 효모의 LC/APCIMS 분석<3-2> LC / APCIMS Analysis of Recombinant Yeast
Surveyor LC system (Thermo Finnigan Co., San Jose, CA, USA)에서 LC-APCIMS 분석을 수행하였다. 이는 4개의 용매 펌프(solvent pumps), Rheodyne injector (5 ml loop) 및 HTP Pal autosampler (CTC Analytics, Zwingen, Switzerland)로 구성되어 있다. 분석 칼럼은 408℃에서 보관된 YMC pack-pro C18 RS (5 mm, 2.0×150 mm, YMC Co. LTD. Japan)를 사용하였다. 물 및 아세토나이트릴(acetonitrile) 구배(gradient) 적용 시간 및 구성비율은 다음과 같다: 0분, 80% 아세토나이트릴 및 20% 물; 30분, 10% 아세토나이트릴 및 90% 물; 32분, 5% 아세토나이트릴 및 95% 물; 34분, 5% 아세토나이트릴 및 95% 물; 36분, 80% 아세토나이트릴 및 20% 물; 및 45분, 80% 아세토나이트릴 및 20% 물, 0.2 ml min-1의 유량(flow rate). LC-APCIMS analysis was performed on a Surveyor LC system (Thermo Finnigan Co., San Jose, CA, USA). It consists of four solvent pumps, a Rheodyne injector (5 ml loop) and an HTP Pal autosampler (CTC Analytics, Zwingen, Switzerland). The analytical column used YMC pack-pro C18 RS (5 mm, 2.0 × 150 mm, YMC Co. LTD. Japan) stored at 408 ° C. Water and acetonitrile gradient application time and composition ratio are as follows: 0 min, 80% acetonitrile and 20% water; 30 minutes, 10% acetonitrile and 90% water; 32 min, 5% acetonitrile and 95% water; 34 minutes, 5% acetonitrile and 95% water; 36 minutes, 80% acetonitrile and 20% water; And 45 min, 80% acetonitrile and 20% water, flow rate of 0.2 ml min −1 .
APCI (atmospheric pressure chemical ionization) 시스템이 설치된, 삼단계 사중극자형 질량분석기(triple quadrupole mass spectrometer)인 Finnigan TSQ Quantum Ultra (Thermo Electron Co., San Jose, CA, USA)를 검출에 사용하였다. 분석조건은 다음과 같다: 5.0 mA 방전류(discharge current)의 positive mode, 320℃의 vaporizer 온도 및 320℃의 ion-transfer capillary 온도. 질소를 sheath (15 psi) 및 보조가스(auxiliary gas) (10 psi)로 사용하였다. HPLC-UV 검출을 위해, 202 nm 파장에서 진세노사이드를 관찰하였다. 본래의 프로토파낙사디올(protopanaxadiol) 및 프로토파낙사트리올 (protopanaxatriol)을 같은 조건에서 실험하였으며, 이 두 물질을 LC/APCIMS 분석의 표준(standard)으로 사용하였다. Finnigan TSQ Quantum Ultra (Thermo Electron Co., San Jose, Calif., USA), a triple quadrupole mass spectrometer, equipped with an atmospheric pressure chemical ionization (APCI) system, was used for detection. The analytical conditions were as follows: positive mode of 5.0 mA discharge current, vaporizer temperature of 320 ° C. and ion-transfer capillary temperature of 320 ° C. Nitrogen was used as sheath (15 psi) and auxiliary gas (10 psi). For HPLC-UV detection, ginsenosides were observed at 202 nm wavelength. The original protopanaxadiol and protopanaxatriol were tested under the same conditions, and both materials were used as the standard for LC / APCIMS analysis.
<3-3> 프로토파낙사트리올 생합성 여부 분석<3-3> Biosynthesis Analysis of Protoparnaxatriol
CYP716A53v2 (JX036031)의 전장 cDNA 클론은 1,560 bp 의 크기이며, 470-아미노산의 오픈 리딩 프레임(open reading frame) (ORF)을 가지고 있으며, 분자량이 55.3 kDa으로 예측되는 단백질을 생산한다. 프로토파낙사트리올 생산에 있어서 CYP716A53v2의 히드록실화(hydroxylation) 활성을 측정하기 위하여, CYP716A53v2 cDNA의 ORF 영역을 pYES2.1 발현 벡터에 삽입하여, WAT21 효모(yeast)에서 GAL1 프로모터의 조절 하에 발현시켰다. LC/APCIMS (liquid chromatography-atmospheric pressure chemical ionization mass spectrometry)로부터 총 이온 크로마토그램(total ion chromatograms)을 사용하여 효모추출물을 분석하였다. CYP716A53v2 The full length cDNA clone of (JX036031) is 1,560 bp in size, has an open reading frame (ORF) of 470-amino acids, and produces a protein whose molecular weight is predicted to be 55.3 kDa. In order to measure the hydroxylation activity of CYP716A53v2 in the production of ProtoPanaxatriol, CYP716A53v2 The ORF region of the cDNA was inserted into the pYES2.1 expression vector and expressed under the control of the GAL1 promoter in WAT21 yeast. Yeast extracts were analyzed using total ion chromatograms from liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC / APCIMS).
프로토파낙사디올 (protopanaxadiol)은 외인적으로(exogenously) 효모에 적용되었기 때문에, 프로토파낙사디올(protopanaxadiol) 및 프로토파낙사트리올(protopanaxatriol) 모두 LC/APCIMS로부터 총 이온 크로마토그램에서 측정하였다(도 3B). 표준 프로토파낙사디올과 프로토파낙사트리올 피크(peak)의 보존시간(retention time)은 각각 33.6분 및 19.2분이었다(도 3C, 3D). 프로토파낙사디올과 프로토파낙사트리올 모두 LC/APCI-MS를 사용하여 CYP716A53v2-발현 효모에서 확인하였다(도 3B). 빈 벡터를 가진 대조군 효모 추출물에서는, 외인적으로 첨가한 프로토파낙사디올의 피크는 검출되었으나, 프로토파낙사트리올 신호는 검출되지 않았다(도 3A). Since protopanaxadiol was applied exogenously to yeast, both protopanaxadiol and protopanaxatriol were measured in total ion chromatograms from LC / APCIMS (Fig. 3B). Retention times of the standard ProtoPanaxadiol and ProtoPanaxtriol peaks were 33.6 minutes and 19.2 minutes, respectively (Figures 3C, 3D). Both ProtoPanaxadiol and ProtoPanaxtriol were identified in CYP716A53v2-expressing yeast using LC / APCI-MS (FIG. 3B). In the control yeast extract with an empty vector, the peak of the exogenously added protopanaxadiol was detected, but the protopanaxanatriol signal was not detected (FIG. 3A).
CYP716A53v2 유전자를 발현하는 효모에서 19.2분의 보존시간(retention time)에서 프로토파낙사트리올 신호를 MS 단편화(fragmentation) 패턴을 이용하여 분석하였다(도 4). CYP716A53v2 유전자를 발현하는 효모에서 LC/APCIMS 단편화 패턴은 405 [M-3H2O+H]+, 423 [M-2H2O+H]+, 및 441 [M-H2O+H]+의 m/z 비율을 포함하였으며, 이는 원래의 프로토파낙사트리올에 대한 것과 동일하였다(도 4). 이러한 결과는 CYP716A53v2가 프로토파낙사디올 6-히드록실화 효소(protopanaxadiol 6-hydroxylase) 유전자이며 프로토파낙사디올을 프로토파낙사트리올로 변환시킨다는 것을 보여준다.In yeast expressing the CYP716A53v2 gene, the protofanaxatriol signal was analyzed using MS fragmentation patterns at a retention time of 19.2 minutes (FIG. 4). In yeast expressing the CYP716A53v2 gene, the LC / APCIMS fragmentation pattern is m / s of 405 [M-3H 2 O + H] + , 423 [M-2H 2 O + H] + , and 441 [MH 2 O + H] + . z ratios were included, which was the same as for the original ProtoPanaxatriol (FIG. 4). These results show that CYP716A53v2 is a protopanaxadiol 6-hydroxylase gene and converts protoparanadiol to protopanaxtriol.
이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.
<110> KNU-Industry Cooperation Foundation<110> KNU-Industry Cooperation Foundation
<120> Genes for the Biosynthesis of Protopanaxatriol and Composition<120> Genes for the Biosynthesis of Protopanaxatriol and Composition
for Promoting and Activating Biosynthesis of Protopanaxatriol         for Promoting and Activating Biosynthesis of Protopanaxatriol
<130> OP13-1014<130> OP13-1014
<150> KR 12/061070<150> KR 12/061070
<151> 2012-06-07<151> 2012-06-07
<160> 4<160> 4
<170> KopatentIn 2.0<170> KopatentIn 2.0
<210> 1<210> 1
<211> 1560<211> 1560
<212> DNA<212> DNA
<213> Panax ginseng<213> Panax ginseng
<400> 1<400> 1
gaccactcac caccttcatt ttcatttctg aattttgggc aaaatcacag aattcttgat 60gaccactcac caccttcatt ttcatttctg aattttgggc aaaatcacag aattcttgat 60
ccatggatct ctttatctca tctcaactac ttcttctact agtcttttgc ttattcctct 120ccatggatct ctttatctca tctcaactac ttcttctact agtcttttgc ttattcctct 120
tttggaattt caaaccaagt agccaaaaca aactgcctcc gggcaaaaca ggatggccca 180tttggaattt caaaccaagt agccaaaaca aactgcctcc gggcaaaaca ggatggccca 180
taattggaga aacactagaa ttcatctcct gtggccaaaa aggcaaccct gaaaagttcg 240taattggaga aacactagaa ttcatctcct gtggccaaaa aggcaaccct gaaaagttcg 240
taacacaaag aatgaacaaa tactcccctg atgtcttcac aacatcctta gcaggcgaga 300taacacaaag aatgaacaaa tactcccctg atgtcttcac aacatcctta gcaggcgaga 300
aaatggtagt tttctgcggt gcctcgggga acaaattcat tttctccaac gaaaacaagc 360aaatggtagt tttctgcggt gcctcgggga acaaattcat tttctccaac gaaaacaagc 360
ttgttgtgtc ctggtggccc cctgccatat ccaaaatcct aactgcaaca ataccttcgg 420ttgttgtgtc ctggtggccc cctgccatat ccaaaatcct aactgcaaca ataccttcgg 420
tagagaaaag caaagccttg cggagtctaa ttgttgaatt cttaaaaccc gaagcgctcc 480tagagaaaag caaagccttg cggagtctaa ttgttgaatt cttaaaaccc gaagcgctcc 480
acaagtttat ttctgtcatg gatcggacaa cgaggcagca ctttgaagac aaatggaacg 540acaagtttat ttctgtcatg gatcggacaa cgaggcagca ctttgaagac aaatggaacg 540
ggagtacaga agtgaaagct ttcgctatgt cagagtcgct gacttttgag ttggcctgtt 600ggagtacaga agtgaaagct ttcgctatgt cagagtcgct gacttttgag ttggcctgtt 600
ggctgctctt tagcataaat gatccggtgc aggtgcagaa gctttctcat ctttttgaga 660ggctgctctt tagcataaat gatccggtgc aggtgcagaa gctttctcat ctttttgaga 660
aggttaaagc gggattattg tctttacctt taaattttcc gggcacggct tttaaccgtg 720aggttaaagc gggattattg tctttacctt taaattttcc gggcacggct tttaaccgtg 720
ggatcaaggc cgccaatctt attagaaaag agctttcggt ggtgataaaa cagaggagaa 780ggatcaaggc cgccaatctt attagaaaag agctttcggt ggtgataaaa cagaggagaa 780
gtgataaatt acagactcga aaggatcttt tgtcccacgt tatgctttcc aatggcgagg 840gtgataaatt acagactcga aaggatcttt tgtcccacgt tatgctttcc aatggcgagg 840
gcgagaaatt tttcagcgaa atggatattg cggacgttgt tcttaattta ctgattgcta 900gcgagaaatt tttcagcgaa atggatattg cggacgttgt tcttaattta ctgattgcta 900
gccatgatac cactagcagt gccatgggct ctgtggtcta ctttcttgca gatcatcctc 960gccatgatac cactagcagt gccatgggct ctgtggtcta ctttcttgca gatcatcctc 960
acatctatgc taaagttctc acagaacaaa tggagatcgc aaagtcgaaa ggggcagaag 1020acatctatgc taaagttctc acagaacaaa tggagatcgc aaagtcgaaa ggggcagaag 1020
aacttttgag ctgggaggac ataaagagga tgaagtattc ccgcaatgtt ataaatgaag 1080aacttttgag ctgggaggac ataaagagga tgaagtattc ccgcaatgtt ataaatgaag 1080
ctatgagatt agtacctcct tctcaaggag gttttaaagt agttacaagt aaattcagtt 1140ctatgagatt agtacctcct tctcaaggag gttttaaagt agttacaagt aaattcagtt 1140
acgcaaactt catcattccc aaaggatgga agatcttttg gagcgtatac tcgacacata 1200acgcaaactt catcattccc aaaggatgga agatcttttg gagcgtatac tcgacacata 1200
aagatcccaa atactttaaa aatccagagg agtttgatcc ttcaagattt gaaggagatg 1260aagatcccaa atactttaaa aatccagagg agtttgatcc ttcaagattt gaaggagatg 1260
gacctatgcc attcacattt ataccatttg gaggaggacc aaggatgtgc cctgggagtg 1320gacctatgcc attcacattt ataccatttg gaggaggacc aaggatgtgc cctgggagtg 1320
agtttgctcg tctggaggta ctaatattca tgcaccattt ggttaccaat tttaagtggg 1380agtttgctcg tctggaggta ctaatattca tgcaccattt ggttaccaat tttaagtggg 1380
agaaggtgtt tcccaatgaa aagattattt atactccatt tcccttcccg gagaatggtc 1440agaaggtgtt tcccaatgaa aagattattt atactccatt tcccttcccg gagaatggtc 1440
ttcctattcg tctatcacct tgtacgcttt aattttttgg cttttgttaa ggtgaacatt 1500ttcctattcg tctatcacct tgtacgcttt aattttttgg cttttgttaa ggtgaacatt 1500
ttctaatttg tattaatggt gttcatgttt gtgtgatgta ttcaawttat aatgtttcac 1560ttctaatttg tattaatggt gttcatgttt gtgtgatgta ttcaawttat aatgtttcac 1560
1560                                                                        1560
<210> 2<210> 2
<211> 469<211> 469
<212> PRT<212> PRT
<213> Panax ginseng<213> Panax ginseng
<400> 2<400> 2
Met Asp Leu Phe Ile Ser Ser Gln Leu Leu Leu Leu Leu Val Phe CysMet Asp Leu Phe Ile Ser Ser Gln Leu Leu Leu Leu Leu Val Phe Cys
1 5 10 15   1 5 10 15
Leu Phe Leu Phe Trp Asn Phe Lys Pro Ser Ser Gln Asn Lys Leu ProLeu Phe Leu Phe Trp Asn Phe Lys Pro Ser Ser Gln Asn Lys Leu Pro
20 25 30              20 25 30
Pro Gly Lys Thr Gly Trp Pro Ile Ile Gly Glu Thr Leu Glu Phe IlePro Gly Lys Thr Gly Trp Pro Ile Ile Gly Glu Thr Leu Glu Phe Ile
35 40 45          35 40 45
Ser Cys Gly Gln Lys Gly Asn Pro Glu Lys Phe Val Thr Gln Arg MetSer Cys Gly Gln Lys Gly Asn Pro Glu Lys Phe Val Thr Gln Arg Met
50 55 60      50 55 60
Asn Lys Tyr Ser Pro Asp Val Phe Thr Thr Ser Leu Ala Gly Glu LysAsn Lys Tyr Ser Pro Asp Val Phe Thr Thr Ser Leu Ala Gly Glu Lys
65 70 75 80  65 70 75 80
Met Val Val Phe Cys Gly Ala Ser Gly Asn Lys Phe Ile Phe Ser AsnMet Val Val Phe Cys Gly Ala Ser Gly Asn Lys Phe Ile Phe Ser Asn
85 90 95                  85 90 95
Glu Asn Lys Leu Val Val Ser Trp Trp Pro Pro Ala Ile Ser Lys IleGlu Asn Lys Leu Val Val Ser Trp Trp Pro Pro Ala Ile Ser Lys Ile
100 105 110             100 105 110
Leu Thr Ala Thr Ile Pro Ser Val Glu Lys Ser Lys Ala Leu Arg SerLeu Thr Ala Thr Ile Pro Ser Val Glu Lys Ser Lys Ala Leu Arg Ser
115 120 125         115 120 125
Leu Ile Val Glu Phe Leu Lys Pro Glu Ala Leu His Lys Phe Ile SerLeu Ile Val Glu Phe Leu Lys Pro Glu Ala Leu His Lys Phe Ile Ser
130 135 140     130 135 140
Val Met Asp Arg Thr Thr Arg Gln His Phe Glu Asp Lys Trp Asn GlyVal Met Asp Arg Thr Thr Arg Gln His Phe Glu Asp Lys Trp Asn Gly
145 150 155 160 145 150 155 160
Ser Thr Glu Val Lys Ala Phe Ala Met Ser Glu Ser Leu Thr Phe GluSer Thr Glu Val Lys Ala Phe Ala Met Ser Glu Ser Leu Thr Phe Glu
165 170 175                 165 170 175
Leu Ala Cys Trp Leu Leu Phe Ser Ile Asn Asp Pro Val Gln Val GlnLeu Ala Cys Trp Leu Leu Phe Ser Ile Asn Asp Pro Val Gln Val Gln
180 185 190             180 185 190
Lys Leu Ser His Leu Phe Glu Lys Val Lys Ala Gly Leu Leu Ser LeuLys Leu Ser His Leu Phe Glu Lys Val Lys Ala Gly Leu Leu Ser Leu
195 200 205         195 200 205
Pro Leu Asn Phe Pro Gly Thr Ala Phe Asn Arg Gly Ile Lys Ala AlaPro Leu Asn Phe Pro Gly Thr Ala Phe Asn Arg Gly Ile Lys Ala Ala
210 215 220     210 215 220
Asn Leu Ile Arg Lys Glu Leu Ser Val Val Ile Lys Gln Arg Arg SerAsn Leu Ile Arg Lys Glu Leu Ser Val Val Ile Lys Gln Arg Arg Ser
225 230 235 240 225 230 235 240
Asp Lys Leu Gln Thr Arg Lys Asp Leu Leu Ser His Val Met Leu SerAsp Lys Leu Gln Thr Arg Lys Asp Leu Leu Ser His Val Met Leu Ser
245 250 255                 245 250 255
Asn Gly Glu Gly Glu Lys Phe Phe Ser Glu Met Asp Ile Ala Asp ValAsn Gly Glu Gly Glu Lys Phe Phe Ser Glu Met Asp Ile Ala Asp Val
260 265 270             260 265 270
Val Leu Asn Leu Leu Ile Ala Ser His Asp Thr Thr Ser Ser Ala MetVal Leu Asn Leu Leu Ile Ala Ser His Asp Thr Thr Ser Ser Ala Met
275 280 285         275 280 285
Gly Ser Val Val Tyr Phe Leu Ala Asp His Pro His Ile Tyr Ala LysGly Ser Val Val Tyr Phe Leu Ala Asp His Pro His Ile Tyr Ala Lys
290 295 300     290 295 300
Val Leu Thr Glu Gln Met Glu Ile Ala Lys Ser Lys Gly Ala Glu GluVal Leu Thr Glu Gln Met Glu Ile Ala Lys Ser Lys Gly Ala Glu Glu
305 310 315 320 305 310 315 320
Leu Leu Ser Trp Glu Asp Ile Lys Arg Met Lys Tyr Ser Arg Asn ValLeu Leu Ser Trp Glu Asp Ile Lys Arg Met Lys Tyr Ser Arg Asn Val
325 330 335                 325 330 335
Ile Asn Glu Ala Met Arg Leu Val Pro Pro Ser Gln Gly Gly Phe LysIle Asn Glu Ala Met Arg Leu Val Pro Pro Ser Gln Gly Gly Phe Lys
340 345 350             340 345 350
Val Val Thr Ser Lys Phe Ser Tyr Ala Asn Phe Ile Ile Pro Lys GlyVal Val Thr Ser Lys Phe Ser Tyr Ala Asn Phe Ile Ile Pro Lys Gly
355 360 365         355 360 365
Trp Lys Ile Phe Trp Ser Val Tyr Ser Thr His Lys Asp Pro Lys TyrTrp Lys Ile Phe Trp Ser Val Tyr Ser Thr His Lys Asp Pro Lys Tyr
370 375 380     370 375 380
Phe Lys Asn Pro Glu Glu Phe Asp Pro Ser Arg Phe Glu Gly Asp GlyPhe Lys Asn Pro Glu Glu Phe Asp Pro Ser Arg Phe Glu Gly Asp Gly
385 390 395 400 385 390 395 400
Pro Met Pro Phe Thr Phe Ile Pro Phe Gly Gly Gly Pro Arg Met CysPro Met Pro Phe Thr Phe Ile Pro Phe Gly Gly Gly Pro Arg Met Cys
405 410 415                 405 410 415
Pro Gly Ser Glu Phe Ala Arg Leu Glu Val Leu Ile Phe Met His HisPro Gly Ser Glu Phe Ala Arg Leu Glu Val Leu Ile Phe Met His His
420 425 430             420 425 430
Leu Val Thr Asn Phe Lys Trp Glu Lys Val Phe Pro Asn Glu Lys IleLeu Val Thr Asn Phe Lys Trp Glu Lys Val Phe Pro Asn Glu Lys Ile
435 440 445         435 440 445
Ile Tyr Thr Pro Phe Pro Phe Pro Glu Asn Gly Leu Pro Ile Arg LeuIle Tyr Thr Pro Phe Pro Phe Pro Glu Asn Gly Leu Pro Ile Arg Leu
450 455 460     450 455 460
Ser Pro Cys Thr LeuSer Pro Cys Thr Leu
465 465
<210> 3<210> 3
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> CYP716A53v2 forward primer<223> CYP716A53v2 forward primer
<400> 3<400> 3
atggatctct ttatctcatc tcaa 24atggatctct ttatctcatc tcaa 24
<210> 4<210> 4
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> CYP716A53v2 reverse primer<223> CYP716A53v2 reverse primer
<400> 4<400> 4
ttaaagcgta caaggtgata gacg 24ttaaagcgta caaggtgata gacg 24

Claims (11)

  1. CYP716A53v2 단백질 또는 이를 코딩하는 CYP716A53v2 유전자를 포함하는 프로토파낙사트리올(protopanaxatriol) 생합성 촉진용 조성물.A composition for promoting protopanaxatriol biosynthesis comprising a CYP716A53v2 protein or a CYP716A53v2 gene encoding the same.
  2. 제1항에 있어서,The method of claim 1,
    상기 CYP716A53v2 유전자는 서열번호 1의 염기서열로 구성되는 것을 특징으로 하는 프로토파낙사트리올 생합성 촉진용 조성물.The CYP716A53v2 gene is a composition for promoting protopanaxatriol biosynthesis, characterized in that consisting of the nucleotide sequence of SEQ ID NO: 1.
  3. 제1항에 있어서,The method of claim 1,
    상기 CYP716A53v2 단백질은 서열번호 2의 아미노산 서열로 구성되는 것을 특징으로 하는 프로토파낙사트리올 생합성 촉진용 조성물.CYP716A53v2 Protein is a composition for promoting protopanaxatriol biosynthesis, characterized in that consisting of the amino acid sequence of SEQ ID NO: 2.
  4. 제1항에 있어서,The method of claim 1,
    상기 조성물은 CYP716A53v2 유전자를 포함하는 재조합 벡터 또는 플라스미드를 포함하는 것을 특징으로 하는 프로토파낙사트리올 생합성 촉진용 조성물.The composition is a composition for promoting protopanaxatriol biosynthesis, characterized in that it comprises a recombinant vector or plasmid containing the CYP716A53v2 gene.
  5. 제1항에 있어서,The method of claim 1,
    상기 CYP716A53v2 단백질은 프로토파낙사디올 6-히드록실라아제(protopanaxadiol 6-hydroxylase)인 것을 특징으로 하는 프로토파낙사트리올 생합성 촉진용 조성물.The CYP716A53v2 protein is protopanaxadiol 6-hydroxylase (protopanaxadiol 6-hydroxylase), characterized in that the composition for promoting protopanaxatriol biosynthesis.
  6. 제4항의 재조합 벡터 또는 플라스미드로 형질전환된 숙주세포.A host cell transformed with the recombinant vector or plasmid of claim 4.
  7. 제6항에 있어서, The method of claim 6,
    상기 숙주세포는 효모 또는 대장균인 것을 특징으로 하는 형질전환된 숙주 세포.The host cell is transformed host cell, characterized in that yeast or E. coli.
  8. 제4항의 재조합 벡터 또는 플라스미드로 형질전환된 형질전환 식물.Transgenic plant transformed with the recombinant vector or plasmid of claim 4.
  9. 서열번호 2의 아미노산 서열로 구성된 CYP716A53v2 단백질 또는 이를 코딩하는 CYP716A53v2 유전자의 발현을 증가시켜 프로토파낙사트리올 생산을 증가시키는 방법.A method of increasing the production of CYP716A53v2 protein consisting of the amino acid sequence of SEQ ID NO: 2 or CYP716A53v2 gene encoding the same, thereby increasing the production of protopanaxatriol.
  10. 제9에 있어서,The method according to claim 9,
    상기 방법은 제4항의 재조합 벡터 또는 플라스미드로 숙주를 형질전환시켜 CYP716A53v2 유전자 또는 단백질을 과발현시키는 단계를 포함하는 것을 특징으로 하는 프로토파낙사트리올 생산을 증가시키는 방법.The method comprises the step of transforming the host with the recombinant vector or plasmid of claim 4, overexpressing the CYP716A53v2 gene or protein.
  11. 제10항에 있어서,The method of claim 10,
    상기 숙주는 효모, 대장균 또는 식물인 것을 특징으로 하는 프로토파낙사트리올 생산을 증가시키는 방법.Said host is yeast, Escherichia coli or plant.
PCT/KR2013/005033 2012-06-07 2013-06-07 Protopanaxatriol biosynthesis gene and promoting composition WO2013183961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120061070A KR101446391B1 (en) 2012-06-07 2012-06-07 Genes for the Biosynthesis of Protopanaxatriol and Composition for Promoting and Activating Biosynthesis of Protopanaxatriol
KR10-2012-0061070 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013183961A1 true WO2013183961A1 (en) 2013-12-12

Family

ID=49712294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005033 WO2013183961A1 (en) 2012-06-07 2013-06-07 Protopanaxatriol biosynthesis gene and promoting composition

Country Status (2)

Country Link
KR (1) KR101446391B1 (en)
WO (1) WO2013183961A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441476A1 (en) * 2017-08-09 2019-02-13 Intelligent Synthetic Biology Center Increased production of ginsenosides through improvement of protein-folding machinery of yeast
CN111118095A (en) * 2019-12-10 2020-05-08 武汉克鲁金生物科技有限公司 Method for producing ginsenoside CK extract by hydrolyzing ginsenoside with Kluyveromyces lactis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507646B (en) * 2020-11-17 2023-11-10 生合万物(上海)生物科技有限公司 Cytochrome P450 mutant protein and application thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 31 July 2012 (2012-07-31), "Cytochrome P450 CYP716A53v2[Panax ginseng]", accession no. F063031.1 *
DATABASE NUCLEOTIDE 31 July 2012 (2012-07-31), "Panax ginseng cytochrome P450 CYP716A53v2 mRNA, complete cds", accession no. X036031.1 *
HAN, J-Y. ET AL.: "Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng", PLANT CELL PHYSIOLOGY, vol. 53, no. 9, September 2012 (2012-09-01), pages 1535 - 1545 *
YUE, C-J. ET AL.: "Manipulation of ginsenoside heterogeneity of Panax notoginseng cells in flask and bioreactor cultivations with addition of phenobarbital", BIOPROCESS BIOSYST ENG., vol. 31, 16 August 2007 (2007-08-16), pages 95 - 100 *
YUE, C-J. ET AL.: "Protopanaxadiol 6-hydroxylase and its role in regulating the ginsenoside heterogeneity in Panax notoginseng cells", BIOTECHNOLOGY AND BIOENGINEERING, vol. 100, no. 5, 1 August 2008 (2008-08-01), pages 933 - 940 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3441476A1 (en) * 2017-08-09 2019-02-13 Intelligent Synthetic Biology Center Increased production of ginsenosides through improvement of protein-folding machinery of yeast
US11046990B2 (en) 2017-08-09 2021-06-29 Korea Research Institute Of Chemical Technology Increased production of ginsenosides through improvement of protein-folding machinery of yeast
CN111118095A (en) * 2019-12-10 2020-05-08 武汉克鲁金生物科技有限公司 Method for producing ginsenoside CK extract by hydrolyzing ginsenoside with Kluyveromyces lactis
CN111118095B (en) * 2019-12-10 2023-10-24 武汉克鲁金生物科技有限公司 Method for producing ginsenoside CK extract by hydrolyzing ginsenoside by kluyveromyces lactis

Also Published As

Publication number Publication date
KR101446391B1 (en) 2014-10-30
KR20130137443A (en) 2013-12-17

Similar Documents

Publication Publication Date Title
WO2015167282A1 (en) A novel method for glycosylation of ginsenoside using a glycosyltransferase derived from panax ginseng
WO2013183961A1 (en) Protopanaxatriol biosynthesis gene and promoting composition
US11208667B2 (en) Means and methods for regulating secondary metabolite production in plants
WO2013065917A1 (en) Composition for stimulating protopanaxadiol biosynthesis
WO2014035179A1 (en) Mitochondrial targeting peptide
Gachotte et al. An Arabidopsis mutant deficient in sterol biosynthesis: heterologous complementation by ERG 3 encoding a Δ7‐sterol‐C‐5‐desaturase from yeast
EP3990643A1 (en) Transferase enzymes
WO2011025242A2 (en) Dna fragment for improving translation efficiency, and recombinant vector containing same
WO2021201615A1 (en) Novel immunoactive interleukin 2 analog
Fujioka et al. Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana
Zhang et al. De novo biosynthesis of oleanane-type ginsenosides in Saccharomyces cerevisiae using two types of glycosyltransferases from Panax ginseng
WO2011159092A9 (en) Novel soil microorganism, novel oxidoreductase separated from the soil microorganism, gene encoding the oxidoreductase, and method for producing aglycones using the microorganism, the oxidoreductase and the gene
WO2012134215A2 (en) Expression vector for animal cells
KR20090065933A (en) Ginseng ppds gene involved in protopanaxadiol biosynthetic pathway
WO2015199386A1 (en) Helicobacter pylori α-1,2 fucosyltransferase gene and protein with improved soluble protein expression, and application to production of α-1,2 fucosyloligosaccharide
KR20160039867A (en) Composition for Promoting Biosysthesis of Oleanane-Type Ginsenoside
WO2023027402A1 (en) Vaccine for preventing african swine fever, comprising african swine fever virus-derived antigen protein
WO2022119380A1 (en) Novel ace2 variant and use thereof
WO2016013844A1 (en) Production method of phenylacetyl homoserine lactone derivative
WO2015105273A1 (en) Composition for promoting cytokinin transport, comprising abcg14 protein of plant
WO2019031804A9 (en) E. coli and corynebacterium glutamicum shuttle vector for regulating expression of target gene
WO2023121426A1 (en) Production of rebaudioside
WO2021101351A2 (en) Antibody produced using afucosylated tobacco and use thereof
WO2020022847A1 (en) Recombinant yeast strain having sterol productivity, preparation method therefor and use thereof
WO2020054934A1 (en) Ceramide precursor-producing yeast, saccharomyces cerevisiae mutant strain, and generation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801203

Country of ref document: EP

Kind code of ref document: A1