WO2013183600A1 - Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same - Google Patents

Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same Download PDF

Info

Publication number
WO2013183600A1
WO2013183600A1 PCT/JP2013/065397 JP2013065397W WO2013183600A1 WO 2013183600 A1 WO2013183600 A1 WO 2013183600A1 JP 2013065397 W JP2013065397 W JP 2013065397W WO 2013183600 A1 WO2013183600 A1 WO 2013183600A1
Authority
WO
WIPO (PCT)
Prior art keywords
butene
group
adhesive composition
polymer
pressure
Prior art date
Application number
PCT/JP2013/065397
Other languages
French (fr)
Japanese (ja)
Inventor
金丸 正実
井上 雅雄
中村 信一
一裕 飯島
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2013183600A1 publication Critical patent/WO2013183600A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09J123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention relates to an adhesive composition containing a butene polymer and a pressure-sensitive adhesive tape using the same.
  • Patent Document 1 discloses a protective film produced by mixing an ethylene-based polymer with liquid polybutene or polyisobutylene as a tackifier.
  • Patent Document 2 discloses an adhesive tape made of an olefin polymer and an adhesive resin.
  • a polybutene-based material as an adhesive substrate.
  • the viscosity is too low, or conversely, it is too high, which is difficult to use.
  • the tackiness was not controlled by the polybutene material itself, and the tackiness was adjusted by the blending amount.
  • An object of the present invention is to provide a pressure-sensitive adhesive composition having an excellent adhesive force and a pressure-sensitive adhesive tape using the same, using a butene polymer.
  • (1) Mesopentad fraction [mmmm] is 3 to 80 mol%.
  • (1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
  • (2) The melting endotherm ⁇ HD is 40 J / g or less.
  • the adhesive composition according to [1] including 10% by mass or more of the butene polymer and 10% by mass or more of the tackifier.
  • the 1,4-bond fraction observed by 13 C-NMR is 0.5 mol% or less
  • the 2,1-bond fraction is The adhesive composition according to any one of the above [1] to [3], which is 0.5 mol% or less.
  • the adhesive composition of the present invention is characterized by containing a butene-based polymer described later.
  • the adhesive composition of the present invention preferably contains 10 to 100% by mass, more preferably 40 to 100% by mass of the butene polymer based on the solid content excluding the solvent. More preferably, the content is 70% by mass.
  • the adhesive composition of the present invention may further contain a tackifier, and the ratio thereof is preferably 10% by mass or more, more preferably based on the solid content excluding the solvent. Is 10 to 60% by mass, more preferably 30 to 60% by mass. When the ratio of the tackifier is within the above range, the cohesive force is improved.
  • butene polymer The butene polymer is a 1-butene homopolymer satisfying the following (1) and (2) and / or a 1-butene-propylene copolymer satisfying the following (1 ′) and (2).
  • (1) Mesopentad fraction [mmmm] is 3 to 80 mol%.
  • (1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
  • the melting endotherm ⁇ HD is 40 J / g or less.
  • the butene polymer in the present invention preferably satisfies the following (3) to (6).
  • the melting point (Tm-D) defined as the peak top of the peak observed is not observed or is 0-100 ° C.
  • the molecular weight distribution (Mw / Mn) measured by the gel permeation chromatograph (GPC) method is 4.0 or less.
  • the weight average molecular weight (Mw) measured by GPC method is 5,000 to 1,000,000.
  • the mesopentad fraction [mmmm], 1,4-bond fraction, and 2,1-bond fraction are reported in “Polymer Journal, 16, 717 (1984)”, J. Asakura et al. “Macromol. Chem. Phys., C29, 201 (1989)” reported by Randall et al. It was determined according to the method proposed in “Macromol. Chem. Phys., 198, 1257 (1997)” reported by Busico et al. Specifically, signals of methylene group and methine group were measured using 13 C nuclear magnetic resonance spectrum, and mesopentad fraction [mmmm] 1,4-bond fraction and 2,1-bond in poly (1-butene) chain The fraction was determined.
  • the butene polymer preferably has a 1,4-bond fraction in the butene monomer (1-butene) chain portion of 0.5 mol% or less, more preferably 0.3 mol% or less, More preferably, it is 1 mol% or less.
  • the 2,1-bond fraction in the butene monomer (1-butene) chain is preferably 0.5 mol% or less, more preferably 0.3 mol% or less. More preferably, it is 0.1 mol% or less.
  • 1,4-bond fraction and 2,1-bond fraction can be calculated by the following formula from the measurement result of the 13 C-NMR spectrum.
  • 1,4-bond fraction E / (A + B + C + D + E) ⁇ 100 (mol%)
  • 2,1-bond fraction ⁇ (A + B + D) / 3 ⁇ / (A + B + C + D) ⁇ 100 (mol%)
  • C Integration value of 38.3 to 36.5 ppm
  • D Integration value of 43.6 to 42.8 ppm
  • E 31.1 ppm integrated value
  • the butene polymer requires a melting endotherm ⁇ HD as measured by DSC of 40 J / g or less, and a melting endotherm ⁇ HD is preferably 36 J / g, preferably 25 J / g or less. It is more preferable. If the melting endotherm ⁇ HD is more than 40 J / g, the adhesive performance changes greatly during the crystallization process, which may make it difficult to use as an adhesive substrate.
  • the lower limit of the melting endotherm ⁇ HD is 0 J / g (not observed).
  • the melting point ( ⁇ HD) is 0 J / g because the crystallization speed is extremely slow or does not crystallize in the DSC measurement, so that the crystal melting peak cannot be substantially observed, and the melting endotherm is It means that it cannot be observed.
  • the melting endotherm ⁇ H-D was increased at 10 ° C./min after holding a 10 mg sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere using a differential scanning calorimeter (Perkin Elmer, DSC-7). It was obtained by heating.
  • the butene polymer is preferably a crystalline resin in which the Tm-D is not observed or the Tm-D is 0 to 100 ° C., preferably 0 to 80 ° C.
  • Tm-D is determined by DSC measurement. That is, a differential scanning calorimeter (manufactured by Perkin Elmer, DSC-7) was used to hold a 10 mg sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. The peak top of the peak observed on the highest temperature side of the melting endotherm curve is the melting point: Tm-D.
  • the fact that the melting point (Tm ⁇ D) is not observed with a differential scanning calorimeter (DSC) means that the crystal melting peak cannot be substantially observed because the crystallization rate is very slow in the DSC measurement.
  • the butene polymer preferably has a molecular weight distribution (Mw / Mn) measured by GPC method of 4 or less, more preferably 3.5 or less, and particularly preferably 3.0 or less. When the molecular weight distribution (Mw / Mn) is 4 or less, when used as an adhesive material, the remainder is reduced.
  • the butene polymer preferably has a weight average molecular weight (Mw) measured by GPC method of 5,000 to 1,000,000, more preferably 9,000 to 200,000, still more preferably 20,000. ⁇ 100,000. If Mw is 5,000 or more, stickiness is reduced. Moreover, fluidity
  • the said molecular weight distribution (Mw / Mn) is the value computed from the weight average molecular weight (Mw) and number average molecular weight (Mn) of polystyrene conversion measured with the following apparatus and conditions by GPC method.
  • Calibration curve Universal Calibration Analysis program: HT-GPC (Ver. 1.0)
  • the butene-based polymer was melted at 190 ° C. for 5 minutes, quenched and solidified with ice water, allowed to stand at room temperature for 1 hour, and then analyzed by X-ray diffraction to obtain a type II crystal fraction.
  • (CII) is preferably 50% or less, more preferably 20% or less, and still more preferably 0%.
  • the type II crystal fraction (CII) It was determined according to the method proposed in “Polymer, 7, 23 (1966)” reported by Turner Jones et al. That is, the peak of the type I crystal state and the peak of the type II crystal state were measured by X-ray diffraction analysis, and the type II crystal fraction (CII) in the butene polymer crystal was determined.
  • X-ray diffraction analysis was performed using a counter cathode type rotor flex RU-200 manufactured by Rigaku Corporation under the following conditions. Sample state: Melted at 190 ° C. for 5 minutes, rapidly cooled and solidified with ice water, then left at room temperature for 1 hour Output: 30 kV, 200 mA Detector: PSPC (position sensitive proportional counter) Total time: 200 seconds
  • the above-mentioned butene-based polymer preferably has a tensile elastic modulus measured by a tensile test according to JIS K-7113 of 500 MPa or less, and more preferably 300 MPa or less. It is because sufficient softness may not be obtained when it exceeds 500 MPa.
  • the 1-butene homopolymer satisfies the following (1) and (2).
  • Mesopentad fraction [mmmm] is 3 to 80 mol%.
  • the melting endotherm ⁇ HD is 0 to 40 J / g.
  • the 1-butene homopolymer needs to have a mesopentad fraction [mmmm] of 3 to 80 mol%, preferably 30 to 85 mol%, and more preferably 30 to 80 mol%.
  • the mesopentad fraction is less than 3 mol%, stickiness of the surface of the molded body and a decrease in transparency may occur.
  • it exceeds 80 mol% the flexibility and the adhesiveness may be lowered.
  • the adhesive composition of the present invention has a mesopentad fraction [mmmm] of preferably 3 to 40 mol%, more preferably 3 to 25 mol% from the viewpoint of repeated adhesive bonding. It is particularly preferred to be ⁇ 10 mol%.
  • [A ′] 1-butene-propylene copolymer The 1-butene-propylene copolymer satisfies the following (1 ′) and (2).
  • (1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
  • the melting endotherm ⁇ HD is 0 to 40 J / g.
  • the 1-butene-propylene copolymer requires a meso-dyad fraction [m] of 30 to 95 mol%, preferably 40 to 90 mol%, and more preferably 50 to 85 mol%. When the meso-dyad fraction is less than 30 mol%, the syndiotactic property becomes strong and the heat resistance may be deteriorated.
  • the 1-butene-propylene copolymer is preferably a random copolymer. It is also preferable to use a 1-butene-propylene copolymer from the viewpoint of repeated adhesive bonding of the above-mentioned adhesive composition of the present invention.
  • the structural unit obtained from 1-butene is preferably 15 mol% or more, more preferably 50 mol% or more, and particularly preferably 75 mol% or more.
  • the 1-butene unit is 15 mol% or more, the low temperature characteristics of the pressure-sensitive adhesive containing the same polymer are improved. From the viewpoint of low temperature characteristics, it is better that the number of structural units obtained from 1-butene is larger.
  • the above mesopentad and mesodyad are both indicators of the structural stereoregularity of the polymer. In the case of a 1-butene homopolymer, the methyl group signal in the polymer chain is measured and the 1-butene-propylene copolymer is measured.
  • each structural unit in the 1-butene-propylene copolymer can be calculated as follows from the measurement result of the 13 C-NMR spectrum. [Dyad chain strength] a (propylene-propylene chain): integral value of 48.0 to 46.2 ppm b (propylene-butene chain): integral value of 44.4 to 43.0 ppm c (butene-butene chain): 40.8 to 39.
  • the mesodyad fraction [m] can be calculated by the following formula.
  • Mesodyad fraction [m] (integrated value of 40.4 to 39.9 ppm) / (integrated value of 40.4-39.9 ppm + integrated value of 40.7 to 40.4 ppm)
  • butene polymer production method As a method for producing a butene polymer, a method for producing the 1-butene homopolymer by homopolymerizing 1-butene using a metallocene catalyst, 1-butene and propylene (further used if necessary) And a method of producing the 1-butene-propylene copolymer by copolymerizing an ⁇ -olefin having 5 to 20 carbon atoms.
  • the metallocene catalyst include JP-A-58-19309, JP-A-61-130314, JP-A-3-163088, JP-A-4-300787, JP-A-4-21694, and special tables.
  • Transition metal compounds having one or two ligands such as a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, and a substituted indenyl group as described in JP-A-1-503636 Examples thereof include a catalyst obtained by combining a transition metal compound whose ligand is geometrically controlled and a promoter.
  • the ligand is preferably composed of a transition metal compound that forms a crosslinked structure via a crosslinking group, and in particular, the crosslinked structure is formed via two crosslinking groups.
  • a method using a metallocene catalyst obtained by combining the formed transition metal compound and the promoter is further preferred. Specifically, (A) the general formula (I)
  • M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series
  • E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, and a heterocyclopentadienyl group, respectively.
  • X represents a sigma-binding ligand, and when there are a plurality of X, the plurality of Xs may be the same or different, and other X, E1, It may be cross-linked with E2 or Y.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • B (B-1) a compound capable of reacting with the transition metal compound of component (A) or a derivative thereof to form an ionic complex, and (B-2) an aluminoxane.
  • a method of homopolymerizing 1-butene in the presence of a polymerization catalyst containing a component selected from 1 or a copolymer of 1-butene and propylene (and an ⁇ -olefin having 5 to 20 carbon atoms if necessary) The method of letting it be mentioned.
  • M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium. Among them, titanium, zirconium and hafnium are preferable from the viewpoint of olefin polymerization activity.
  • E 1 and E 2 are respectively substituted cyclopentadienyl group, indenyl group, substituted indenyl group, heterocyclopentadienyl group, substituted heterocyclopentadienyl group, amide group (—N ⁇ ), phosphine group (—P ⁇ ), Hydrocarbon group [>CR-,> C ⁇ ] and silicon-containing group [>SiR-,> Si ⁇ ] (where R is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a heteroatom-containing group)
  • a ligand selected from among (A) A ligand selected from among (A), and a crosslinked structure is formed via A 1 and A 2 .
  • E 1 and E 2 may be the same or different.
  • a substituted cyclopentadienyl group, an indenyl group and a substituted indenyl group are preferable.
  • the substituent include a hydrocarbon group having 1 to 20 carbon atoms and a silicon-containing group.
  • X represents a ⁇ -bonding ligand, and when there are a plurality of X, the plurality of Xs may be the same or different and may be cross-linked with other X, E 1 , E 2 or Y. .
  • X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, carbon Examples thereof include silicon-containing groups having 1 to 20 carbon atoms, phosphide groups having 1 to 20 carbon atoms, sulfide groups having 1 to 20 carbon atoms, and acyl groups having 1 to 20 carbon atoms.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X.
  • Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like.
  • a 1 and A 2 are divalent bridging groups for linking two ligands, including a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and silicon-containing groups.
  • R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same May be different.
  • Examples of such a bridging group include a general formula
  • R 2 and R 3 are each a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different, and are bonded to each other to form a ring structure.
  • E represents an integer of 1 to 4
  • ethylene group an isopropylidene group, and a dimethylsilylene group are preferable.
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • transition metal compounds represented by the general formula (I) the general formula (II)
  • the transition metal compound which makes the ligand the double bridge type biscyclopentadienyl derivative represented by these is preferable.
  • X 1 represents a ⁇ -bonding ligand, and when plural X 1, a plurality of X 1 may be the same or different, may be crosslinked with other X 1 or Y 1. Specific examples of X 1 include the same examples as those exemplified in the description of X in formula (I).
  • Y 1 represents a Lewis base, if Y 1 is plural, Y 1 may be the same or different, may be crosslinked with other Y 1 or X 1. Specific examples of Y 1 are the same as those exemplified in the description of Y in the general formula (I).
  • R 4 to R 9 each represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group.
  • R 4 to R 9 may be the same or different from each other, and adjacent groups may be bonded to each other to form a ring. Among these, it is preferable that R 6 and R 7 form a ring and R 8 and R 9 form a ring.
  • R 4 and R 5 a group containing a heteroatom such as oxygen, halogen, or silicon is preferable from the viewpoint of increasing the polymerization activity.
  • R 4 and R 6 or R 6 and R 7 preferably form a ring
  • R 5 and R 8 or R 8 and R 9 preferably form a ring
  • a substituent in the case where R 4, R 5 , R 7 and R 9 do not form a ring a group containing a heteroatom such as oxygen, halogen or silicon is preferable in view of increasing the polymerization activity.
  • the transition metal compound having the double-bridged biscyclopentadienyl derivative as a ligand preferably contains silicon in the bridging group between the ligands.
  • the transition metal compound represented by the general formula (I) specific examples described in WO02 / 16450A1 International Publication are also preferable examples in the present invention.
  • the ligand is a crosslinking group.
  • a transition metal compound in which a ligand exists without a crosslinking group (non-crosslinked) It is preferable to select a transition metal compound which forms a cross-linked structure via a half metallocene complex or two cross-linking groups and has a substituent on the ligand or the cross-linking group.
  • More preferable specific examples include (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindenyl) zirconium dichloride, (1,2′-methylphenylsilylene) (2 , 1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride (Sym.), (1,1′-ethylene) (2,2′-tetramethyldisylylene) bisindenylzirconium dichloride, etc.
  • the 1-butene homopolymer satisfying the above (1) and (2) and / or the 1-butene-propylene copolymer satisfying the following (1 ′) and (2) A polymer can be provided.
  • the component (B-1) in the component (B) is any compound that can react with the transition metal compound of the component (A) to form an ionic complex.
  • the following general formulas (III) and (IV) [L 1 ⁇ R 10 ] k + ) a ([Z] ⁇ ) b (III) ([L 2 ] k + ) a ([Z] ⁇ ) b (IV) (However, L 2 is M 2, R 11 R 12 M 3, R 13 3 C or R 14 M 3.)
  • L 1 is a Lewis base
  • [Z] ⁇ is a non-coordinating anion [Z1] ⁇ and [Z 2 ] ⁇
  • [Z 1 ] ⁇ is a plurality of groups Is an anion bonded to the element, that is, [M 1 G 1 G 2 ...
  • G f ] ⁇ (where M 1 represents a group 5-15 element of the periodic table, preferably a group 13-15 element of the periodic table.
  • G 1 to G f are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms, respectively.
  • G 1 ⁇ G f represents a hydrogen group may form a ring.
  • f represents an integer of [(valence of central metal M 1 ) +1].
  • [Z 2] - is the logarithm of the reciprocal of the acid dissociation constant (pKa) -10 below Bronsted acid alone or Bronsted acid and Lewis acid combination of conjugate base, or a general superacid defined
  • the conjugate base of the acid to be produced is shown.
  • a Lewis base may be coordinated.
  • R 10 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, or an arylalkyl group.
  • R 11 and R 12 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, or a fluorenyl group.
  • R 13 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group.
  • R 14 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
  • M 2 includes elements in groups 1 to 3, 11 to 13, and 17 of the periodic table, and M 3 represents elements in groups 7 to 12 of the periodic table. ] What is represented by these can be used conveniently.
  • L 1 examples include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, Amines such as pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, benzoic acid Examples thereof include esters such as ethyl acid, and nitriles such as acetonitrile and benzonitrile.
  • R 10 include hydrogen, methyl group, ethyl group, benzyl group, and trityl group.
  • R 11 and R 12 include cyclopentadienyl group and methylcyclopentadienyl group. , Ethylcyclopentadienyl group, pentamethylcyclopentadienyl group, and the like.
  • R 13 include a phenyl group, p-tolyl group, p-methoxyphenyl group, and specific examples of R 14 include tetraphenylporphine, phthalocyanine, allyl, methallyl, and the like. .
  • M 2 include Li, Na, K, Ag, Cu, Br, I, and I 3.
  • M 3 include Mn, Fe, Co, Ni, and Zn. And so on.
  • [Z 1 ] ⁇ that is, [M 1 G 1 G 2 ... G f ]
  • specific examples of M 1 include B, Al, Si, P, As, Sb, etc., preferably B and Al are Can be mentioned.
  • Specific examples of G 1 and G 2 to G f include a dimethylamino group and a diethylamino group as a dialkylamino group, a methoxy group, an ethoxy group, an n-butoxy group, a phenoxy group as an alkoxy group or an aryloxy group, and the like.
  • Hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t -Butylphenyl group, 3,5-dimethylphenyl group, etc., fluorine, chlorine, bromine, iodine as halogen atoms, p-fluorophenyl group, 3,5-difluorophenyl group, pentachlorophenyl group as heteroatom-containing hydrocarbon groups, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3,5-bis (trifluoro Oromechiru) phenyl group, such as bis (trimethylsilyl) methyl group, pentamethyl antimony group as organic metalloid group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group,
  • the non-coordinating anion namely the combination of a conjugate base with a pKa of -10 or less Bronsted acid alone or Bronsted acid and Lewis acid [Z 2] - trifluoromethanesulfonic acid anion
  • (CF 3 SO 3 ) ⁇ bis (trifluoromethanesulfonyl) methyl anion, bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide, perchlorate anion (ClO 4 ) ⁇ , trifluoroacetate anion (CF 3 CO 2 ) - , Hexafluoroantimony anion (SbF 6 ) - , fluorosulfonic acid anion (FSO 3 ) - , chlorosulfonic acid anion (ClSO 3 ) - , fluorosulfonic acid anion / 5-antimony fluoride (FSO 3 / Sb
  • an ionic compound that reacts with the transition metal compound of the component (A) to form an ionic complex that is, the (B-1) component compound
  • an ionic compound that reacts with the transition metal compound of the component (A) to form an ionic complex include triethylammonium tetraphenylborate, tetraphenylboric acid.
  • Tri-n-butylammonium trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl (tri-n-butyl) ammonium tetraphenylborate, benzylammonium tetraphenylborate (tri-n-butyl) ammonium Ammonium, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, benzylpyridinium tetraphenylborate, tetrapheny Methyl borate (2-cyanopyridinium), tetrakis (pentafluorophenyl) triethylammonium borate, tetrakis (pentafluorophenyl) tri-n-butylammonium borate, tetra
  • the general formula (V) (Wherein R 15 represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, or a halogen atom, and w represents an average degree of polymerization. Usually, it is an integer of 2 to 50, preferably 2 to 40. Note that each R 15 may be the same or different.
  • a chain aluminoxane represented by the general formula (VI) (In the formula, R 15 and w are the same as those in the general formula (V).) The cyclic aluminoxane shown by these can be mentioned.
  • Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited and may be reacted according to a known method.
  • a method in which an organoaluminum compound is dissolved in an organic solvent and contacting it with water (ii) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (iii) a metal
  • a method of reacting water adsorbed on a salt or the like with water adsorbed on an inorganic or organic substance with an organoaluminum compound and (iv) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water.
  • the aluminoxane may be insoluble in toluene.
  • the use ratio of (A) catalyst component to (B) catalyst component is preferably 10: 1 to 1: 100 in terms of molar ratio when (B-1) compound is used as (B) catalyst component.
  • the range of 2: 1 to 1:10 is desirable, and if it deviates from the above range, the catalyst cost per unit mass polymer becomes high, which is not practical.
  • the compound (B-2) is used, the molar ratio is preferably 1: 1 to 1: 1000000, more preferably 1:10 to 1: 10000. When deviating from this range, the catalyst cost per unit mass polymer becomes high, which is not practical.
  • the catalyst component (B) (B-1) and (B-2) may be used alone or in combination of two or more.
  • the catalyst for polymerization in the above production method can use an organoaluminum compound as the component (C) in addition to the components (A) and (B).
  • the organoaluminum compound of the component (C) the general formula (VII) R 16 v AlJ 3-v (VII) [Wherein R 16 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. (It is an integer) The compound shown by these is used.
  • the compound represented by the general formula (VII) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like. These organoaluminum compounds may be used alone or in combination of two or more.
  • a preliminary contact can also be performed using (A) component, (B) component, and (C) component mentioned above.
  • the preliminary contact can be performed by, for example, bringing the component (A) into contact with the component (B), but the method is not particularly limited, and a known method can be used.
  • These preliminary contacts are effective in reducing the catalyst cost, such as improving the catalyst activity and reducing the proportion of the (B) component that is the promoter.
  • an effect of improving the molecular weight can be seen together with the above effect.
  • the preliminary contact temperature is usually -20 ° C to 200 ° C, preferably -10 ° C to 150 ° C, more preferably 0 ° C to 80 ° C.
  • an aliphatic hydrocarbon, an aromatic hydrocarbon, or the like can be used as the inert hydrocarbon of the solvent. Of these, particularly preferred are aliphatic hydrocarbons.
  • the use ratio of the catalyst component (A) to the catalyst component (C) is preferably 1: 1 to 1: 10000, more preferably 1: 5 to 1: 2000, still more preferably 1:10 to 1 in terms of molar ratio. : The range of 1000 is desirable.
  • the catalyst component (C) the polymerization activity per transition metal can be improved. However, if the amount is too large, the organoaluminum compound is wasted and a large amount remains in the polymer, which is not preferable.
  • the catalyst components can be supported on a suitable carrier and used.
  • the type of the carrier is not particularly limited, and any of inorganic oxide carriers, other inorganic carriers, and organic carriers can be used.
  • inorganic oxide carriers or other inorganic carriers are preferable.
  • Specific examples of the inorganic oxide carrier include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , Fe 2 O 3 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof. Examples thereof include silica alumina, zeolite, ferrite, and glass fiber. Of these, SiO 2 and Al 2 O 3 are particularly preferable.
  • the inorganic oxide carrier may contain a small amount of carbonate, nitrate, sulfate and the like.
  • a magnesium compound represented by the general formula MgR 17 X X 1 y typified by MgCl 2 , Mg (OC 2 H 5 ) 2 or the like, or a complex salt thereof can be used.
  • R 17 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms
  • X 1 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms
  • x is 0 to 2
  • y is 0 to 2
  • x + y 2.
  • the organic carrier include polymers such as polystyrene, styrene-divinylbenzene copolymer, polyethylene, poly 1-butene, substituted polystyrene, polyarylate, starch, and carbon.
  • MgCl 2 , MgCl (OC 2 H 5 ), Mg (OC 2 H 5 ) 2 , SiO 2 , Al 2 O 3 and the like are preferable.
  • the properties of the carrier vary depending on the type and production method, but the average particle size is usually 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m. If the particle size is small, fine powder in the polymer increases, and if the particle size is large, coarse particles in the polymer increase, which causes a decrease in bulk density and clogging of the hopper.
  • the specific surface area of the carrier is usually 1 to 1000 m 2 / g, preferably 50 to 500 m 2 / g, and the pore volume is usually 0.1 to 5 cm 3 / g, preferably 0.3 to 3 cm 3 / g. is there. When either the specific surface area or the pore volume deviates from the above range, the catalytic activity may decrease.
  • the specific surface area and pore volume can be determined from the volume of nitrogen gas adsorbed according to the BET method, for example.
  • the carrier is an inorganic oxide carrier, it is usually desirable to use it after firing at 150 to 1000 ° C., preferably 200 to 800 ° C.
  • At least one kind of catalyst component is supported on the carrier, it is desirable to support at least one of (A) catalyst component and (B) catalyst component, preferably both (A) catalyst component and (B) catalyst component.
  • the method for supporting at least one of the component (A) and the component (B) on the carrier is not particularly limited. For example, (i) at least one of the component (A) and the component (B) is mixed with the carrier.
  • a method (ii) a method in which a support is treated with an organoaluminum compound or a halogen-containing silicon compound and then mixed with at least one of the component (A) and the component (B) in an inert solvent, (iii) the support and (A) A method of reacting the component and / or the component (B) with the organoaluminum compound or the halogen-containing silicon compound, (iv) after the component (A) or the component (B) is supported on the carrier, the component (B) or (A ) A method of mixing with the component, (v) a method of mixing the contact reaction product of the component (A) with the component (B) with the carrier, and (vi) a carrier during the contact reaction of the component (A) with the component (B). Coexist Or the like can be used that way.
  • an organoaluminum compound as component (C) can also be added.
  • the catalyst when contacting the (A), (B), and (C), the catalyst may be prepared by irradiating elastic waves.
  • the elastic wave include a normal sound wave, particularly preferably an ultrasonic wave.
  • an ultrasonic wave having a frequency of 1 to 1000 kHz, preferably an ultrasonic wave having a frequency of 10 to 500 kHz can be mentioned.
  • the catalyst thus obtained may be used for polymerization after removing the solvent once and taking out as a solid, or may be used for polymerization as it is.
  • a catalyst can be produced
  • the use ratio of the component (B-1) to the carrier is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 in terms of mass ratio.
  • the use ratio of the component and the carrier is preferably 1: 0.5 to 1: 1000, more preferably 1: 1 to 1:50 in terms of mass ratio.
  • the use ratio of each component (B) and the carrier is within the above range in terms of mass ratio.
  • the ratio of the component (A) to the carrier used in mass ratio is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500. If the proportion of the component (B) [component (B-1) or component (B-2)] and the carrier, or the proportion of component (A) and the carrier used deviates from the above ranges, the activity may decrease. is there.
  • the average particle size of the polymerization catalyst of the present invention thus prepared is usually 2 to 200 ⁇ m, preferably 10 to 150 ⁇ m, particularly preferably 20 to 100 ⁇ m, and the specific surface area is usually 20 to 1000 m 2 / g. It is preferably 50 to 500 m 2 / g. If the average particle size is less than 2 ⁇ m, fine powder in the polymer may increase, and if it exceeds 200 ⁇ m, coarse particles in the polymer may increase. When the specific surface area is less than 20 m 2 / g, the activity may decrease, and when it exceeds 1000 m 2 / g, the bulk density of the polymer may decrease.
  • the amount of transition metal in 100 g of the support is usually 0.05 to 10 g, particularly preferably 0.1 to 2 g. If the amount of transition metal is outside the above range, the activity may be lowered. In this way, a polymer having an industrially advantageous high bulk density and an excellent particle size distribution can be obtained by supporting it on a carrier.
  • the above-mentioned polymerization catalyst is used to homopolymerize 1-butene to produce the 1-butene homopolymer, or by copolymerizing 1-butene and propylene.
  • the 1-butene-propylene copolymer can be produced.
  • the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, or a suspension polymerization method may be used.
  • a polymerization method is particularly preferred.
  • the polymerization temperature is usually ⁇ 100 to 250 ° C., preferably ⁇ 50 to 200 ° C., more preferably 0 to 130 ° C.
  • the ratio of the catalyst to the reaction raw material is preferably 10 5 to 10 8 , particularly 10 6 to 10 7 , preferably from raw material monomer / component (A) (molar ratio).
  • the polymerization time is usually from 5 minutes to 10 hours, and the reaction pressure is preferably from atmospheric pressure to 3 MPa (gauge), more preferably from atmospheric pressure to 2 MPa (gauge). Examples of the method for adjusting the molecular weight of the polymer include selection of the type, amount used, and polymerization temperature of each catalyst component, and further polymerization in the presence of hydrogen.
  • a polymerization solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane , Halogenated hydrocarbons such as chloroform and dichloromethane can be used. These solvents may be used alone or in combination of two or more. A monomer such as ⁇ -olefin may be used as a solvent. Depending on the polymerization method, it can be carried out without solvent.
  • aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane
  • prepolymerization can be performed using the polymerization catalyst.
  • the prepolymerization can be performed, for example, by bringing a small amount of olefin into contact with the solid catalyst component, but the method is not particularly limited, and a known method can be used.
  • the olefin used in the prepolymerization is not particularly limited, and examples thereof include ethylene, ⁇ -olefin having 3 to 20 carbon atoms, or a mixture thereof. It is advantageous to use the same olefin as that used in the polymerization. It is.
  • the prepolymerization temperature is usually ⁇ 20 to 200 ° C., preferably ⁇ 10 to 130 ° C., more preferably 0 to 80 ° C.
  • an aliphatic hydrocarbon, aromatic hydrocarbon, monomer or the like can be used as a solvent. Of these, aliphatic hydrocarbons are particularly preferred. Moreover, you may perform prepolymerization without a solvent.
  • the intrinsic viscosity [ ⁇ ] (measured in decalin at 135 ° C.) of the prepolymerized product is 0.2 deciliter / g or more, particularly 0.5 deciliter / g or more, per 1 mmol of transition metal component in the catalyst. It is desirable to adjust the conditions so that the amount of the prepolymerized product is 1 to 10000 g, particularly 10 to 1000 g.
  • tackifying resins [II] As tackifying resins [II], Idemitsu Petrochemical's Imabu P-125, Imabu P-100, Imabu P-90, Sanyo Chemical Industries Umex 1001, Mitsui Chemicals Highlets T1115, Yashara Chemicals Clearon K100, Tonex Examples include ECR227 manufactured by the same company, Escoretz 2101, Alcon P100 manufactured by Arakawa Chemical, and Regalrez 1078 manufactured by Hercules. In the present invention, it is preferable to use a hydrogenated product in consideration of compatibility with a butene polymer. Among them, a hydride of petroleum resin having excellent thermal stability is more preferable.
  • the adhesive composition of the present invention is a butene modified with 5 mol% or more (more preferably 10 mol% or more) of the terminal vinylidene group of the butene polymer as a functional group. It may contain a functionalized polymer.
  • the functional group is preferably one or more functional groups selected from a hydroxyl group, an epoxy group, an alkoxysilicon group, an alkylsilicon group, a carboxyl group, an amino group, and an isocyanate group.
  • the butene polymer functionalized product may have an acid anhydride structure.
  • An acid anhydride structure is a structure in which one molecule of water is lost from two carboxyls of a carboxylic acid and two acyl groups share one oxygen atom.
  • R 1 COOCOR 2 For example, maleic anhydride, succinic anhydride, phthalic anhydride and the like can be mentioned.
  • the functionalized butene polymer has a functional group, thereby improving compatibility and dispersibility with polar compounds, making it easy to obtain compositions with various polymers, and polarities such as water. Solubility and dispersibility in a solvent can be improved.
  • Examples of functional group introduction methods include maleic anhydride ene addition reaction; introduction of hydroxyl group with formic acid / hydrogen peroxide; epoxidation with peracetic acid; trimethoxysilane, triethoxysilane, triisopropoxysilane, methyldimethoxysilane, Introduction of an alkoxysilicon group by reaction with an alkoxysilane such as ethyldiethoxysilane, phenyldimethoxysilane, phenyldiethoxysilane; introduction of an alkylsilicon group by reaction with an alkylsilane such as tri-hexylsilane, tri-normal octylsilane; Carboxylation with copper bromide / tertiary butyl peroxyacetate; introduction of amino group by reaction of anhydrous maleate and diamine compound; introduction of isocyanate group by reaction of anhydrous maleate and diisocyanate compound It is.
  • the functional group is introduced by hydroboration with BH 3 .THF; boronation with 9-boranebicyclo [3,3,1] nonane; metalation with isobutylaluminum hydride or the like; halogen with dibromo or hydrogen bromide Hydroformylation with formic acid / cobalt catalyst; aldehyde formation with carbon monoxide / dicobalt octacarbonyl catalyst; sulfonation with acetic anhydride / sulfuric acid, etc. can be used.
  • the adhesive composition of the present invention may contain a solvent, and specific examples thereof include ethyl acetate, acetone, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, ethylene Glycol monomethyl ether acetate, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether acetate, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, butyl cellosolve acetate, benzene, toluene, xylene, ethylbenzene, methoxybenzene, 1,
  • organic solvents such as aromatic hydrocarbons such as 2-dimethoxybenzene, hexane, cyclohexane, heptane, and pentane.
  • the ratio of the solvent in the adhesive composition of the present invention is 70% by mass or less based on the total amount of the adhesive composition, except for the case of preparing a solution for the purpose of preparing the composition. It is preferably 50% by mass or less, and more preferably 30% by mass or less.
  • An additive may be added to the adhesive composition of the present invention, and as the additive, a conventionally known additive can be blended, for example, a foaming agent, an anti-wrinkle stabilizer, an ultraviolet absorber, light Stabilizer, heat stabilizer, antistatic agent, flame retardant, synthetic oil, wax, electrical property improver, oil, viscosity modifier, anti-coloring agent, antifogging agent, pigment, dye, plasticizer, softener, aging Additives such as an inhibitor, a hydrochloric acid absorbent, a chlorine scavenger, and an antioxidant can be mentioned.
  • a foaming agent for example, a foaming agent, an anti-wrinkle stabilizer, an ultraviolet absorber, light Stabilizer, heat stabilizer, antistatic agent, flame retardant, synthetic oil, wax, electrical property improver, oil, viscosity modifier, anti-coloring agent, antifogging agent, pigment, dye, plasticizer, softener, aging
  • Additives such as an inhibitor, a hydrochloric
  • the pressure-sensitive adhesive tape of the present invention uses the above adhesive composition for an adhesive layer, and the adhesive composition may be applied directly on a support or on an auxiliary support. And then transferred onto the final support.
  • the material of the support is not particularly limited, and for example, woven fabric, knit, scrim, non-woven fabric, laminate, net, film, paper, tissue, foam, foam film, etc. can be used.
  • Examples of the film include polypropylene, polyethylene, polybutene, oriented polyester, hard PVC and soft PVC, polyolefin foam, polyurethane foam, EPDM, and chloroprene foam.
  • the support can be prepared chemically by priming or by physical pretreatment such as corona prior to abutting the adhesive composition.
  • the back side of the support can be provided with an anti-adhesive physical treatment or coating.
  • the lithium salt obtained above was dissolved in 50 mL of toluene under a nitrogen stream.
  • the solution was cooled to ⁇ 78 ° C., and a suspension of 0.33 g (1.42 mmol) of zirconium tetrachloride previously cooled to ⁇ 78 ° C. in toluene (50 mL) was added dropwise thereto, followed by stirring at room temperature for 6 hours. Thereafter, the mixture was filtered, and the solvent of the filtrate was distilled off.
  • the 2-methylphenylsilylindene was dissolved in THF (180 ml), cooled in an ice bath, and then LDA (245 mmol) was added dropwise using the same pressure dropping funnel. After raising the temperature to room temperature, the solvent was distilled off under vacuum, and the resulting foam solid was extracted with hexane (500 ml ⁇ 2) to obtain (1,2′-methylphenylsilylene) (2,1′- Methylphenylsilylene) bisindene was obtained as a white foamy solid (40.0 g, 85.5 mmol, 70%).
  • 1,2-dichlorotetramethyldisilane (9.4 ml, 5.1 mmol) was added dropwise at 0 ° C. After stirring the reaction mixture at room temperature for 1 hour, the solvent was distilled off, the residue was extracted with hexane (150 ml ⁇ 2), and 1,2-di (1H-inden-2-yl) -1,1,2 , 2-tetramethyldisilane was obtained as a white solid (15.4 grams, 44.4 mmol, 86% yield).
  • ⁇ GPC measurement device Column: TOSO GMHHR-H (S) HT Detector: RI detector for liquid chromatogram WATERS 150C ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml Injection volume: 160 ⁇ l Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
  • Production Example 2 (Production of 1-butene homopolymer)
  • complex B (10 ⁇ mol / mL, 0.12 mL, 1.2 ⁇ mol) was used instead of complex A, and the amount of heptane slurry of dimethylanilinium tetrakis (pentafluorophenyl) borate used was 3.6 ⁇ mol ( 10 ⁇ mol / mL, 0.36 mL) and 40 g of 1-butene homopolymer was obtained in the same manner as in Production Example 1 except that the polymerization temperature was 50 ° C. (Polymer B).
  • the physical properties of the polymer B are shown in Table 1.
  • Production Example 3 (Production of 1-butene homopolymer)
  • Complex C (10 ⁇ mol / mL, 0.20 mL, 2.0 ⁇ mol) was used, and instead of dimethylanilinium tetrakis (pentafluorophenyl) borate, MAO manufactured by Tosoh Finechem Corporation (2000 ⁇ mol) was used in the same manner as in Production Example 1 except that the polymerization temperature was changed to 70 ° C., to obtain 82 g of a 1-butene homopolymer (Polymer C).
  • the physical properties of the polymer C are shown in Table 1.
  • the total pressure was set to 0.8 MPa by bringing propylene into the temperature at 60 ° C. while stirring. Then, after 20 minutes of polymerization, the polymerization was stopped with 5 mL of ethanol, and the reaction product was dried under reduced pressure to obtain 57 g of 1-butene-propylene copolymer (Polymer D).
  • the physical properties of the polymer D are shown in Table 1.
  • the total pressure was set to 0.6 MPa by introducing propylene at the same time as the temperature was 60 ° C. while stirring. Then, after 20 minutes of polymerization, the polymerization was stopped with 5 mL of ethanol, and the reaction product was dried under reduced pressure to obtain 45 g of 1-butene-propylene copolymer (Polymer E).
  • the physical properties of the polymer E are shown in Table 1.
  • Production Example 6 In Production Example 5, a polymer was produced in the same manner as Polymer G except that the total pressure when propylene was applied was 0.55 MPa. Table 2 shows the physical properties of the polymer G.
  • Example 1 (Preparation of adhesive composition and pressure-sensitive adhesive tape) 1.35 g of polymer A produced in Production Example 1, 1.35 g of hydrogenated petroleum resin Imabe (P-100) manufactured by Idemitsu Kosan Co., Ltd., 0.3 g of Diana Process Oil (PW-90) manufactured by Idemitsu Kosan Co., Ltd. 20 mL of toluene was mixed and dissolved in a 50 mL sample bottle to prepare a solution-like adhesive composition.
  • Diana process oil may be added to an adhesion layer as a viscosity modifier, it is added also in the present Example, and does not make addition essential.
  • the adhesive layers are pasted together so that the adhesive layers are in contact with each other, and the pasted part is rolled twice with a force of 2.0 kg / 25 mm.
  • the pressure was applied to make it stick.
  • a tensile tester manufactured by Shimadzu Corporation, trade name: Autograph AG-I
  • the initial length L 0 was set to 120 mm
  • the sample was pulled at a speed of 300 mm / min, and a T-shaped peel test was performed.
  • the average load at the time of the peel test was taken at five points, and the average was taken as the adhesive strength.
  • Example 2 (Preparation of adhesive composition and adhesive tape) An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer B was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 3 (Production of adhesive composition and pressure-sensitive adhesive tape) An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer C was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 4 (Preparation of adhesive composition and adhesive tape) An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer D was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 5 (Preparation of adhesive composition and adhesive tape) Except having used the polymer E instead of the polymer A in Example 1, it carried out similarly to Example 1 and obtained the adhesive composition and the adhesive tape test piece. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 6 (Production of adhesive composition and pressure-sensitive adhesive tape) An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer G was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Comparative Example 1 (Preparation of adhesive composition and adhesive tape) An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer F was used instead of the polymer A in Example 1. Table 3 shows the evaluation results of the test pieces.
  • Example 7 Preparation of adhesive composition and adhesive tape
  • a polypropylene film (thickness: 0.5 ⁇ m) was used instead of the PET film in Example 1
  • the same procedure as in Example 1 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was.
  • the evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 8 Preparation of adhesive composition and pressure-sensitive adhesive tape
  • a polypropylene film thickness: 0.5 ⁇ m
  • Example 2 the same procedure as in Example 2 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was.
  • Table 3 shows the evaluation results of the test pieces.
  • Example 9 (Production of adhesive composition and pressure-sensitive adhesive tape) Except that a polypropylene film (thickness: 0.5 ⁇ m) was used instead of the PET film in Example 3, the same procedure as in Example 3 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 10 (Preparation of adhesive composition and adhesive tape) Except that a polypropylene film (thickness: 0.5 ⁇ m) was used instead of the PET film in Example 4, the same procedure as in Example 4 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. Table 3 shows the evaluation results of the test pieces.
  • Example 11 Preparation of adhesive composition and adhesive tape
  • a polypropylene film (thickness: 0.5 ⁇ m) was used instead of the PET film in Example 5
  • the same procedure as in Example 5 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was.
  • the evaluation results of the test pieces are shown in Tables 3 and 4.
  • Example 12 (Preparation of adhesive composition and adhesive tape) Except that a polypropylene film (thickness: 0.5 ⁇ m) was used instead of the PET film in Example 6, the same procedure as in Example 6 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Comparative Example 2 (Production of adhesive composition and adhesive tape) Except for using a polypropylene film (thickness: 0.5 ⁇ m) instead of the PET film in Comparative Example 1, the same procedure as in Comparative Example 1 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
  • Comparative Example 3 (Preparation of adhesive composition and adhesive tape) An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained in the same manner as in Example 1 except that the polymer H was used in place of the polymer A in Example 1. Thereafter, a thermostatic bath was installed at the test piece mounting portion of the tensile tester, and a tensile test was performed at ⁇ 20 ° C. to determine the adhesive strength. The results are shown in Table 6.
  • Example 13 (Preparation of adhesive composition and adhesive tape) A test piece was produced using the polymer B in the same manner as in Example 2, and a tensile test was performed at ⁇ 20 ° C. to determine the adhesive strength. The results are shown in Table 6.
  • the adhesive composition of the present invention can be used in the field of pressure-sensitive adhesive tapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A pressure-sensitive adhesive composition containing a butene-based polymer, said butene-based polymer consisting of a 1-butene homopolymer that satisfies conditions (1) and (2) given below and/or a 1-butene-propylene copolymer that satisfies conditions (1') and (2) given below, and a pressure-sensitive adhesive tape using said pressure-sensitive adhesive composition in a pressure-sensitive adhesive layer make it possible to provide a highly adhesive pressure-sensitive adhesive composition and a pressure-sensitive adhesive tape using same. (1) The meso pentad fraction (mmmm) is between 3 and 80 mol%, inclusive. (1') The meso dyad fraction (m) is between 30 and 95 mol%, inclusive. (2) The latent heat of fusion (ΔHd) is less than or equal to 40 J/g.

Description

粘接着剤組成物及びこれを用いた粘着テープAdhesive composition and pressure-sensitive adhesive tape using the same
 本発明は、ブテン系重合体を含む粘接着剤組成物及びこれを用いた粘着テープに関する。 The present invention relates to an adhesive composition containing a butene polymer and a pressure-sensitive adhesive tape using the same.
 従来、ポリオレフィン系の材料を基材とするプロテクトフィルムや粘着剤は安価であることから、様々に検討されてきた。例えば、特許文献1には、エチレン系ポリマーに粘着付与剤として液体ポリブテンやポリイソブチレンを混合することにより製造されるプロテクトフィルムが開示されている。また、特許文献2には、オレフィンポリマーおよび粘着樹脂よりなる粘着テープが開示されている。
 しかしながら、ポリブテン系の材料を粘着基材として用いる例は少ない。また、ポリブテン系材料を基材とする場合、粘度が低すぎたり、逆に高過ぎたりして、使い辛かった。また、ポリブテン系材料自体によって粘着性を制御することはなく、粘着力に関しては配合量で調整していた。
Conventionally, protective films and adhesives based on polyolefin-based materials have been studied in various ways because they are inexpensive. For example, Patent Document 1 discloses a protective film produced by mixing an ethylene-based polymer with liquid polybutene or polyisobutylene as a tackifier. Patent Document 2 discloses an adhesive tape made of an olefin polymer and an adhesive resin.
However, there are few examples of using a polybutene-based material as an adhesive substrate. Moreover, when a polybutene-based material is used as a base material, the viscosity is too low, or conversely, it is too high, which is difficult to use. Further, the tackiness was not controlled by the polybutene material itself, and the tackiness was adjusted by the blending amount.
特公平6-4729JP 6-4729 特表2011-519989Special table 2011-519989
 本発明の目的は、ブテン系重合体を用いて、粘着力の優れた粘接着剤組成物及びこれを用いた粘着テープを提供することである。 An object of the present invention is to provide a pressure-sensitive adhesive composition having an excellent adhesive force and a pressure-sensitive adhesive tape using the same, using a butene polymer.
 本発明によれば、以下の発明が提供される。
[1]ブテン系重合体を含む粘接着剤組成物であって、該ブテン系重合体が、下記(1)及び(2)を満たす1-ブテン単独重合体、及び/又は下記(1’)及び(2)を満たす1-ブテン-プロピレン共重合体である粘接着剤組成物。
(1)メソペンタッド分率[mmmm]が3~80モル%である。
(1’)メソダイアッド分率[m]が30~95モル%である。
(2)融解吸熱量ΔH-Dが40J/g以下である。
[2]前記ブテン系重合体を10質量%以上、かつ、粘着性付与材を10質量%以上含む[1]に記載の粘接着剤組成物。
[3]前記1-ブテン単独重合体、あるいは1-ブテン-プロピレン共重合体が下記(3)~(5)を満たす上記[1]又は[2]に記載の粘接着剤組成物。
(3)示差走査型熱量計(DSC)で試料を窒素雰囲気下、-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が、観測されないか、または、0~100℃である。
(4)ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4.0以下である。
(5)GPC法により測定した重量平均分子量(Mw)が5,000~1,000,000である。
[4]前記ブテン系重合体のブテンモノマー連鎖部において、13C-NMRで観測される1,4-結合分率が0.5モル%以下であり、かつ、2,1-結合分率が0.5モル%以下である上記[1]~[3]のいずれかに記載の粘接着剤組成物。
[5]前記ブテン系重合体が下記(6)を満たす上記[1]~[4]のいずれかに記載の粘接着剤組成物。
(6)190℃で5分間溶融させ、氷水にて急冷固化した後、室温にて1時間放置した後に、X線回折により分析して得られたII型結晶分率(CII)が50%以下である。
[6][1]~[5]のいずれかに記載の粘接着剤組成物を粘接着層に用いた粘着テープ。
According to the present invention, the following inventions are provided.
[1] An adhesive composition containing a butene polymer, wherein the butene polymer satisfies the following (1) and (2) and / or the following (1 ′ ) And (2), an adhesive composition which is a 1-butene-propylene copolymer.
(1) Mesopentad fraction [mmmm] is 3 to 80 mol%.
(1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
(2) The melting endotherm ΔHD is 40 J / g or less.
[2] The adhesive composition according to [1], including 10% by mass or more of the butene polymer and 10% by mass or more of the tackifier.
[3] The adhesive composition according to [1] or [2], wherein the 1-butene homopolymer or 1-butene-propylene copolymer satisfies the following (3) to (5).
(3) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed is not observed or is 0-100 ° C.
(4) The molecular weight distribution (Mw / Mn) measured by the gel permeation chromatograph (GPC) method is 4.0 or less.
(5) The weight average molecular weight (Mw) measured by GPC method is 5,000 to 1,000,000.
[4] In the butene monomer chain portion of the butene polymer, the 1,4-bond fraction observed by 13 C-NMR is 0.5 mol% or less, and the 2,1-bond fraction is The adhesive composition according to any one of the above [1] to [3], which is 0.5 mol% or less.
[5] The adhesive composition according to any one of [1] to [4], wherein the butene polymer satisfies the following (6).
(6) After being melted at 190 ° C. for 5 minutes, rapidly cooled and solidified with ice water, left at room temperature for 1 hour, and then analyzed by X-ray diffraction, the type II crystal fraction (CII) is 50% or less It is.
[6] A pressure-sensitive adhesive tape using the adhesive composition according to any one of [1] to [5] as an adhesive layer.
 本発明によれば、ブテン系重合体を用いて、粘着力の優れた粘接着剤組成物及びこれを用いた粘着テープを提供できる。 According to the present invention, it is possible to provide a pressure-sensitive adhesive composition having excellent adhesive strength and a pressure-sensitive adhesive tape using the same, using a butene polymer.
<粘接着剤組成物>
 本発明の粘接着剤組成物は、後述するブテン系重合体を含むことを特徴とする。
 本発明の粘接着剤組成物は、上記ブテン系重合体を、溶媒を除いた固形分基準で、10~100質量%含むことが好ましく、40~100質量%含むことがより好ましく、40~70質量%含むことがさらに好ましい。ブテン系重合体の比率が10質量%以上であると、凝集力が向上する。
 また、本発明の粘接着剤組成物は、さらに粘着性付与材を含んでいてもよく、その比率は、溶媒を除いた固形分基準で、10質量%以上であることが好ましく、より好ましくは10~60質量%であり、さらに好ましくは30~60質量%である。粘着性付与材の比率が上記範囲内であると、凝集力が改善する。
<Adhesive composition>
The adhesive composition of the present invention is characterized by containing a butene-based polymer described later.
The adhesive composition of the present invention preferably contains 10 to 100% by mass, more preferably 40 to 100% by mass of the butene polymer based on the solid content excluding the solvent. More preferably, the content is 70% by mass. When the ratio of the butene polymer is 10% by mass or more, the cohesive force is improved.
Further, the adhesive composition of the present invention may further contain a tackifier, and the ratio thereof is preferably 10% by mass or more, more preferably based on the solid content excluding the solvent. Is 10 to 60% by mass, more preferably 30 to 60% by mass. When the ratio of the tackifier is within the above range, the cohesive force is improved.
[ブテン系重合体]
 上記ブテン系重合体は、下記(1)及び(2)を満たす1-ブテン単独重合体、及び/又は下記(1’)及び(2)を満たす1-ブテン-プロピレン共重合体である。
(1)メソペンタッド分率[mmmm]が3~80モル%である。
(1’)メソダイアッド分率[m]が30~95モル%である。
(2)融解吸熱量ΔH-Dが40J/g以下である。
[Butene polymer]
The butene polymer is a 1-butene homopolymer satisfying the following (1) and (2) and / or a 1-butene-propylene copolymer satisfying the following (1 ′) and (2).
(1) Mesopentad fraction [mmmm] is 3 to 80 mol%.
(1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
(2) The melting endotherm ΔHD is 40 J / g or less.
 また、本発明におけるブテン系重合体は、下記(3)~(6)を満たすことが好ましい。
(3)示差走査型熱量計(DSC)で試料を窒素雰囲気下、-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が、観測されないか、または、0~100℃である。
(4)ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4.0以下である。
(5)GPC法により測定した重量平均分子量(Mw)が5,000~1,000,000である。
(6)190℃で5分間溶融させ、氷水にて急冷固化した後、室温にて1時間放置した後に、X線回折により分析して得られたII型結晶分率(CII)が50%以下である。
In addition, the butene polymer in the present invention preferably satisfies the following (3) to (6).
(3) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed is not observed or is 0-100 ° C.
(4) The molecular weight distribution (Mw / Mn) measured by the gel permeation chromatograph (GPC) method is 4.0 or less.
(5) The weight average molecular weight (Mw) measured by GPC method is 5,000 to 1,000,000.
(6) After being melted at 190 ° C. for 5 minutes, rapidly cooled and solidified with ice water, left at room temperature for 1 hour, and then analyzed by X-ray diffraction, the type II crystal fraction (CII) is 50% or less It is.
 本発明において、メソペンタッド分率[mmmm]、1,4-結合分率及び2,1-結合分率は、朝倉らにより報告された「Polymer Journal,16,717(1984)」、J.  Randallらにより報告された「Macromol.Chem.Phys.,C29,201(1989)」及びV.Busicoらにより報告された「Macromol.Chem.Phys.,198,1257(1997)」で提案された方法に準拠して求めた。すなわち、13C核磁気共鳴スペクトルを用いてメチレン基、メチン基のシグナルを測定し、ポリ(1-ブテン)連鎖中のメソペンタッド分率[mmmm]1,4-結合分率及び2,1-結合分率を求めた。
 13C-NMRスペクトルの測定は、下記の装置及び条件にて行った。
  装置:日本電子(株)製JNM-EX400型13C-NMR装置
  方法:プロトン完全デカップリング法
  濃度:230mg/ミリリットル
  溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
  温度:130℃
  パルス幅:45°
  パルス繰り返し時間:4秒
  積算:10000回
In the present invention, the mesopentad fraction [mmmm], 1,4-bond fraction, and 2,1-bond fraction are reported in “Polymer Journal, 16, 717 (1984)”, J. Asakura et al. “Macromol. Chem. Phys., C29, 201 (1989)” reported by Randall et al. It was determined according to the method proposed in “Macromol. Chem. Phys., 198, 1257 (1997)” reported by Busico et al. Specifically, signals of methylene group and methine group were measured using 13 C nuclear magnetic resonance spectrum, and mesopentad fraction [mmmm] 1,4-bond fraction and 2,1-bond in poly (1-butene) chain The fraction was determined.
The 13 C-NMR spectrum was measured with the following apparatus and conditions.
Apparatus: JNM-EX400 type 13 C-NMR apparatus manufactured by JEOL Ltd. Method: Proton complete decoupling method Concentration: 230 mg / ml Solvent: 90:10 (volume ratio) of 1,2,4-trichlorobenzene and heavy benzene Mixed solvent temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds Integration: 10,000 times
 ブテン系重合体は、ブテンモノマー(1-ブテン)連鎖部における1,4-結合分率が0.5モル%以下であることが好ましく、0.3モル%以下であることがより好ましく、0.1モル%以下であることがさらに好ましい。
 また、ブテン系重合体は、ブテンモノマー(1-ブテン)連鎖部における2,1-結合分率が0.5モル%以下であることが好ましく、0.3モル%以下であることがより好ましく、0.1モル%以下であることがさらに好ましい。
 これらが上記範囲内であると、低温での流動性が良好となり、低温接着性が改善し、また、粘着性付与材との相溶性が良好となる。
The butene polymer preferably has a 1,4-bond fraction in the butene monomer (1-butene) chain portion of 0.5 mol% or less, more preferably 0.3 mol% or less, More preferably, it is 1 mol% or less.
In the butene polymer, the 2,1-bond fraction in the butene monomer (1-butene) chain is preferably 0.5 mol% or less, more preferably 0.3 mol% or less. More preferably, it is 0.1 mol% or less.
When these are within the above range, the fluidity at low temperature is good, the low-temperature adhesiveness is improved, and the compatibility with the tackifier is good.
 上記1,4-結合分率及び2,1-結合分率は、上述の13C-NMRスペクトルの測定結果より、下記式にて算出できる。
1,4-結合分率=E/(A+B+C+D+E)×100(モル%)
2,1-結合分率={(A+B+D)/3}/(A+B+C+D)×100(モル%)
A:29.0~28.2ppmの積分値
B:35.4~34.6ppmの積分値
C:38.3~36.5ppmの積分値
D:43.6~42.8ppmの積分値
E:31.1ppmの積分値
The 1,4-bond fraction and 2,1-bond fraction can be calculated by the following formula from the measurement result of the 13 C-NMR spectrum.
1,4-bond fraction = E / (A + B + C + D + E) × 100 (mol%)
2,1-bond fraction = {(A + B + D) / 3} / (A + B + C + D) × 100 (mol%)
A: Integration value of 29.0 to 28.2 ppm B: Integration value of 35.4 to 34.6 ppm C: Integration value of 38.3 to 36.5 ppm D: Integration value of 43.6 to 42.8 ppm E: 31.1 ppm integrated value
 上記ブテン系重合体は、DSC測定による融解吸熱量ΔH-Dが40J/g以下であることを要し、融解吸熱量ΔH-Dが36J/gであることが好ましく、25J/g以下であることがより好ましい。融解吸熱量ΔH-Dが40J/g超であると、結晶化過程での粘着性能変化が大きく、粘着剤基材として使用困難となる可能性がある。融解吸熱量ΔH-Dの下限値は、0J/g(観測されない)である。
 ここで、融点(ΔH-D)が0J/gであるとは、DSC測定において結晶化速度が極めて遅いため、もしくは結晶化しないため、結晶融解ピークを実質的に観測できず、融解吸熱量を観測できないことをいう。
 上記融解吸熱量ΔH-Dは、示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られたものである。
The butene polymer requires a melting endotherm ΔHD as measured by DSC of 40 J / g or less, and a melting endotherm ΔHD is preferably 36 J / g, preferably 25 J / g or less. It is more preferable. If the melting endotherm ΔHD is more than 40 J / g, the adhesive performance changes greatly during the crystallization process, which may make it difficult to use as an adhesive substrate. The lower limit of the melting endotherm ΔHD is 0 J / g (not observed).
Here, the melting point (ΔHD) is 0 J / g because the crystallization speed is extremely slow or does not crystallize in the DSC measurement, so that the crystal melting peak cannot be substantially observed, and the melting endotherm is It means that it cannot be observed.
The melting endotherm ΔH-D was increased at 10 ° C./min after holding a 10 mg sample at −10 ° C. for 5 minutes in a nitrogen atmosphere using a differential scanning calorimeter (Perkin Elmer, DSC-7). It was obtained by heating.
 また、ブテン系重合体は、前記Tm-Dが観測されないか、または、Tm-Dが0~100℃の結晶性樹脂であることが好ましく、好ましくは0~80℃である。なお、Tm-Dは、DSC測定により求める。すなわち、示差走査型熱量計(パーキン・エルマー社製, DSC-7)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップが融点:Tm-Dである。
 本発明において、融点(Tm-D)が示差走査熱量計(DSC)で観測されないとは、DSC測定において結晶化速度が極めて遅いため結晶融解ピークを実質的に観測できないことをいう。
The butene polymer is preferably a crystalline resin in which the Tm-D is not observed or the Tm-D is 0 to 100 ° C., preferably 0 to 80 ° C. Tm-D is determined by DSC measurement. That is, a differential scanning calorimeter (manufactured by Perkin Elmer, DSC-7) was used to hold a 10 mg sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. The peak top of the peak observed on the highest temperature side of the melting endotherm curve is the melting point: Tm-D.
In the present invention, the fact that the melting point (Tm−D) is not observed with a differential scanning calorimeter (DSC) means that the crystal melting peak cannot be substantially observed because the crystallization rate is very slow in the DSC measurement.
 ブテン系重合体は、GPC法により測定した分子量分布(Mw/Mn)が4以下であることが好ましく、より好ましくは3.5以下、特に好ましくは3.0以下である。分子量分布(Mw/Mn)が4以下であると粘接着剤原料に用いた場合、後残りが低減される。
 ブテン系重合体は、GPC法により測定した重量平均分子量(Mw)が5,000~1,000,000であると好ましく、より好ましくは9,000~200,000、さらに好ましくは、20,000~100,000である。Mwが5,000以上であると、べたつきが低減される。またMwが1,000,000以下であると、流動性が向上し、成形性が良好となる。
 なお、上記分子量分布(Mw/Mn)は、GPC法により、下記の装置及び条件で測定したポリスチレン換算の重量平均分子量(Mw)及び数平均分子量(Mn)より算出した値である。
GPC測定装置
  カラム   :TOSO GMHHR-H(S)HT
  検出器   :液体クロマトグラム用RI検出器 WATERS 150C
測定条件
  溶媒    :1,2,4-トリクロロベンゼン
  測定温度  :145℃
  流速    :1.0ミリリットル/分
  試料濃度  :2.2mg/ミリリットル
  注入量   :160マイクロリットル
  検量線   :Universal Calibration 解析プログラム:HT-GPC(Ver.1.0)
The butene polymer preferably has a molecular weight distribution (Mw / Mn) measured by GPC method of 4 or less, more preferably 3.5 or less, and particularly preferably 3.0 or less. When the molecular weight distribution (Mw / Mn) is 4 or less, when used as an adhesive material, the remainder is reduced.
The butene polymer preferably has a weight average molecular weight (Mw) measured by GPC method of 5,000 to 1,000,000, more preferably 9,000 to 200,000, still more preferably 20,000. ~ 100,000. If Mw is 5,000 or more, stickiness is reduced. Moreover, fluidity | liquidity improves that Mw is 1,000,000 or less, and a moldability becomes favorable.
In addition, the said molecular weight distribution (Mw / Mn) is the value computed from the weight average molecular weight (Mw) and number average molecular weight (Mn) of polystyrene conversion measured with the following apparatus and conditions by GPC method.
GPC measurement device Column: TOSO GMHHR-H (S) HT
Detector: RI detector for liquid chromatogram WATERS 150C
Measurement conditions Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml Injection volume: 160 microliter Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver. 1.0)
 また、上記ブテン系重合体は、190℃にて5分間融解させ、氷水にて急冷固化した後、室温にて1時間放置した後に、X線回折により分析して得られたII型結晶分率(CII)が50%以下であることが好ましく、より好ましくは20%以下、さらに好ましくは0%である。
 本発明において、II型結晶分率(CII)は、A.Turner Jonesらにより報告された「Polymer,7,23(1966)」で提案された方法に準拠して求めた。すなわち、X線回折分析によりI型結晶状態のピーク及びII型結晶状態のピークを測定し、ブテン系重合体の結晶中のII型結晶分率(CII)を求めた。X線回折分析(WAXD)は、理学電気(株)製の対陰極型ロータフレックスRU-200を用い、下記の条件にて行った。
 試料状態:190℃にて5分間融解させ、氷水にて急冷固化した後、室温にて1時間放置
 出力:30kV,200mA
 検出器:PSPC(位置敏感比例計数管)
 積算時間:200秒
The butene-based polymer was melted at 190 ° C. for 5 minutes, quenched and solidified with ice water, allowed to stand at room temperature for 1 hour, and then analyzed by X-ray diffraction to obtain a type II crystal fraction. (CII) is preferably 50% or less, more preferably 20% or less, and still more preferably 0%.
In the present invention, the type II crystal fraction (CII) It was determined according to the method proposed in “Polymer, 7, 23 (1966)” reported by Turner Jones et al. That is, the peak of the type I crystal state and the peak of the type II crystal state were measured by X-ray diffraction analysis, and the type II crystal fraction (CII) in the butene polymer crystal was determined. X-ray diffraction analysis (WAXD) was performed using a counter cathode type rotor flex RU-200 manufactured by Rigaku Corporation under the following conditions.
Sample state: Melted at 190 ° C. for 5 minutes, rapidly cooled and solidified with ice water, then left at room temperature for 1 hour Output: 30 kV, 200 mA
Detector: PSPC (position sensitive proportional counter)
Total time: 200 seconds
 上記ブテン系重合体は、JIS K-7113に準拠した引張試験により測定した引張弾性率が500MPa以下であることが好ましく、300MPa以下であることがさらに好ましい。500MPaを超えると十分な軟質性が得られない場合があるからである。 The above-mentioned butene-based polymer preferably has a tensile elastic modulus measured by a tensile test according to JIS K-7113 of 500 MPa or less, and more preferably 300 MPa or less. It is because sufficient softness may not be obtained when it exceeds 500 MPa.
[a]1-ブテン単独重合体
 上記1-ブテン単独重合体は、下記(1)及び(2)を満たす。
(1)メソペンタッド分率[mmmm]が3~80モル%である。
(2)融解吸熱量ΔH-Dが0~40J/g。
 1-ブテン単独重合体は、メソペンタッド分率[mmmm]が3~80モル%であることを要し、30~85モル%であると好ましく、30~80モル%であるとさらに好ましい。メソペンタッド分率が3モル%未満の場合、成形体表面のべたつきや透明性の低下が生じる可能性がある。一方、80モル%を超えると、柔軟性の低下、粘着性の低下が生じる場合がある。
 一方、本発明の粘接着剤組成物は繰り返し粘接着する観点からは、メソペンタッド分率[mmmm]が3~40モル%であると好ましく、3~25モル%であるとより好ましく、3~10モル%であると特に好ましい。
[A] 1-Butene Homopolymer The 1-butene homopolymer satisfies the following (1) and (2).
(1) Mesopentad fraction [mmmm] is 3 to 80 mol%.
(2) The melting endotherm ΔHD is 0 to 40 J / g.
The 1-butene homopolymer needs to have a mesopentad fraction [mmmm] of 3 to 80 mol%, preferably 30 to 85 mol%, and more preferably 30 to 80 mol%. When the mesopentad fraction is less than 3 mol%, stickiness of the surface of the molded body and a decrease in transparency may occur. On the other hand, when it exceeds 80 mol%, the flexibility and the adhesiveness may be lowered.
On the other hand, the adhesive composition of the present invention has a mesopentad fraction [mmmm] of preferably 3 to 40 mol%, more preferably 3 to 25 mol% from the viewpoint of repeated adhesive bonding. It is particularly preferred to be ˜10 mol%.
[a’]1-ブテン-プロピレン共重合体
 上記1-ブテン-プロピレン共重合体は、下記(1’)及び(2)を満たす。
(1’)メソダイアッド分率[m]が30~95モル%である。
(2)融解吸熱量ΔH-Dが0~40J/g。
 1-ブテン-プロピレン共重合体は、メソダイアッド分率[m]が30~95モル%であることを要し、40~90モル%であると好ましく、50~85モル%であるとさらに好ましい。メソダイアッド分率が30モル%未満の場合、シンジオタクチック性が強くなり、耐熱性が悪化する可能性がある。一方、95モル%を超えると、柔軟性の低下、粘着性の低下が生じる場合がある。
 上記1-ブテン-プロピレン共重合体は、ランダム共重合体が好ましい。
 上述の本発明の粘接着剤組成物は繰り返し粘接着する観点からは、1-ブテン-プロピレン共重合体を用いることもまた好ましい。
[A ′] 1-butene-propylene copolymer The 1-butene-propylene copolymer satisfies the following (1 ′) and (2).
(1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
(2) The melting endotherm ΔHD is 0 to 40 J / g.
The 1-butene-propylene copolymer requires a meso-dyad fraction [m] of 30 to 95 mol%, preferably 40 to 90 mol%, and more preferably 50 to 85 mol%. When the meso-dyad fraction is less than 30 mol%, the syndiotactic property becomes strong and the heat resistance may be deteriorated. On the other hand, when it exceeds 95 mol%, the flexibility and the adhesiveness may be lowered.
The 1-butene-propylene copolymer is preferably a random copolymer.
It is also preferable to use a 1-butene-propylene copolymer from the viewpoint of repeated adhesive bonding of the above-mentioned adhesive composition of the present invention.
 また、1-ブテン-プロピレン共重合体は、1-ブテンから得られる構造単位が15モル%以上であることが好ましく、より好ましくは50モル%以上であり、特に好ましくは75モル%以上である。1-ブテン単位が15モル%以上の場合には、同重合体を含む粘着剤の低温特性が向上する。低温特性の観点からは、1-ブテンから得られる構造単位が多い方がよい。
 上記メソペンタッドとメソダイアッドは、いずれも重合体の構造立体規則性を示す指標であり1-ブテン単独重合体の場合は、重合体連鎖中のメチル基のシグナルを測定し、1-ブテン-プロピレン共重合体の場合は、重合体連鎖中のメチル基のシグナルが同じ立体規則性でもブテン-1連鎖のみの場合とブテン-1/プロピレン連鎖の場合で異なることから、以下の測定方法により構造立体規則性を示している。
 1-ブテン-プロピレン共重合体における、各構造単位は、上述の13C-NMRスペクトルの測定結果より、下記のように算出できる。
[ダイアッド連鎖強度]
a(プロピレン-プロピレン連鎖):48.0~46.2ppmの積分値
b(プロピレン-ブテン連鎖):44.4~43.0ppmの積分値
c(ブテン-ブテン連鎖):40.8~39.8ppmの積分値
[ダイアッド連鎖分率(モル%)]
d(プロピレン-プロピレン連鎖分率)=a/(a+b+c)×100(モル%)
e(プロピレン-ブテン連鎖分率)=b/(a+b+c)×100(モル%)
f(ブテン-ブテン連鎖分率)=c/(a+b+c)×100(モル%)
[共重合比(モル%)]
プロピレン単位共重合比=d+e/2
1-ブテン単位共重合比=f+e/2
In the 1-butene-propylene copolymer, the structural unit obtained from 1-butene is preferably 15 mol% or more, more preferably 50 mol% or more, and particularly preferably 75 mol% or more. . When the 1-butene unit is 15 mol% or more, the low temperature characteristics of the pressure-sensitive adhesive containing the same polymer are improved. From the viewpoint of low temperature characteristics, it is better that the number of structural units obtained from 1-butene is larger.
The above mesopentad and mesodyad are both indicators of the structural stereoregularity of the polymer. In the case of a 1-butene homopolymer, the methyl group signal in the polymer chain is measured and the 1-butene-propylene copolymer is measured. In the case of a polymer, even if the signal of the methyl group in the polymer chain is the same stereoregularity, the structure stereoregularity is different according to the following measurement method because it differs in the case of butene-1 only and butene-1 / propylene Is shown.
Each structural unit in the 1-butene-propylene copolymer can be calculated as follows from the measurement result of the 13 C-NMR spectrum.
[Dyad chain strength]
a (propylene-propylene chain): integral value of 48.0 to 46.2 ppm b (propylene-butene chain): integral value of 44.4 to 43.0 ppm c (butene-butene chain): 40.8 to 39. Integral value of 8 ppm [Dyad chain fraction (mol%)]
d (propylene-propylene chain fraction) = a / (a + b + c) × 100 (mol%)
e (propylene-butene chain fraction) = b / (a + b + c) × 100 (mol%)
f (butene-butene chain fraction) = c / (a + b + c) × 100 (mol%)
[Copolymerization ratio (mol%)]
Propylene unit copolymerization ratio = d + e / 2
1-butene unit copolymerization ratio = f + e / 2
 また、上記13C-NMRスペクトルの測定結果より、メソダイアッド分率[m]は以下に示す式より算出できる。
 メソダイアッド分率[m]=(40.4~39.9ppmの積分値)/(40.4-39.9ppmの積分値+40.7~40.4ppmの積分値)
Further, from the measurement result of the 13 C-NMR spectrum, the mesodyad fraction [m] can be calculated by the following formula.
Mesodyad fraction [m] = (integrated value of 40.4 to 39.9 ppm) / (integrated value of 40.4-39.9 ppm + integrated value of 40.7 to 40.4 ppm)
[ブテン系重合体の製造方法]
 ブテン系重合体の製造方法としては、メタロセン触媒を用いて、1-ブテンを単独重合して上記1-ブテン単独重合体を製造する方法や、1-ブテンとプロピレン(さらに必要に応じて用いられる炭素数5~20のα-オレフィン)を共重合して上記1-ブテン-プロピレン共重合体を製造する方法が挙げられる。
 メタロセン系触媒としては、特開昭58-19309号公報、特開昭61-130314号公報、特開平3-163088号公報、特開平4-300887号公報、特開平4-211694号公報、特表平1-502036号公報等に記載されるようなシクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基、置換インデニル基等を1又は2個配位子とする遷移金属化合物、及び該配位子が幾何学的に制御された遷移金属化合物と助触媒を組み合わせて得られる触媒が挙げられる。
[Butene polymer production method]
As a method for producing a butene polymer, a method for producing the 1-butene homopolymer by homopolymerizing 1-butene using a metallocene catalyst, 1-butene and propylene (further used if necessary) And a method of producing the 1-butene-propylene copolymer by copolymerizing an α-olefin having 5 to 20 carbon atoms.
Examples of the metallocene catalyst include JP-A-58-19309, JP-A-61-130314, JP-A-3-163088, JP-A-4-300787, JP-A-4-21694, and special tables. Transition metal compounds having one or two ligands such as a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, and a substituted indenyl group as described in JP-A-1-503636 Examples thereof include a catalyst obtained by combining a transition metal compound whose ligand is geometrically controlled and a promoter.
 本発明においては、メタロセン触媒のなかでも、配位子が架橋基を介して架橋構造を形成している遷移金属化合物からなる場合が好ましく、なかでも、2個の架橋基を介して架橋構造を形成している遷移金属化合物と助触媒を組み合わせて得られるメタロセン触媒を用いる方法がさらに好ましい。
 具体的に例示すれば、(A)一般式(I)
In the present invention, among metallocene catalysts, the ligand is preferably composed of a transition metal compound that forms a crosslinked structure via a crosslinking group, and in particular, the crosslinked structure is formed via two crosslinking groups. A method using a metallocene catalyst obtained by combining the formed transition metal compound and the promoter is further preferred.
Specifically, (A) the general formula (I)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
〔式中、Mは周期律表第3~10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基,ホスフィド基,炭化水素基及び珪素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、またそれらはたがいに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX, E1 ,E2 又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E1,E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO2-、-Se-、-NR1-、-PR1-、-P(O)R1-、-BR1-又は-AlR1-を示し、R1は水素原子、ハロゲン原子、炭素数1~20の炭化水素基又は炭素数1~20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。〕
で表される遷移金属化合物、及び(B)(B-1)該(A)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(B-2)アルミノキサンから選ばれる成分を含有する重合用触媒の存在下、1-ブテンを単独重合させる方法、又は1-ブテンとプロピレン(さらに必要に応じて用いられる炭素数5~20のα-オレフィン)を共重合させる方法が挙げられる。
[Wherein M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, and a heterocyclopentadienyl group, respectively. , A substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group and a silicon-containing group, which form a cross-linked structure via A 1 and A 2 And they may be the same or different, X represents a sigma-binding ligand, and when there are a plurality of X, the plurality of Xs may be the same or different, and other X, E1, It may be cross-linked with E2 or Y. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3. ]
And (B) (B-1) a compound capable of reacting with the transition metal compound of component (A) or a derivative thereof to form an ionic complex, and (B-2) an aluminoxane. A method of homopolymerizing 1-butene in the presence of a polymerization catalyst containing a component selected from 1 or a copolymer of 1-butene and propylene (and an α-olefin having 5 to 20 carbon atoms if necessary) The method of letting it be mentioned.
 上記一般式(I)において、Mは周期律表第3~10族又はランタノイド系列の金属元素を示し、具体例としてはチタン,ジルコニウム,ハフニウム,イットリウム,バナジウム,クロム,マンガン,ニッケル,コバルト,パラジウム及びランタノイド系金属などが挙げられるが、これらの中ではオレフィン重合活性などの点からチタン,ジルコニウム及びハフニウムが好適である。
 E1及びE2はそれぞれ、置換シクロペンタジエニル基,インデニル基,置換インデニル基,ヘテロシクロペンタジエニル基,置換ヘテロシクロペンタジエニル基,アミド基(-N<),ホスフィン基(-P<),炭化水素基〔>CR-,>C<〕及び珪素含有基〔>SiR-,   >Si<〕(但し、Rは水素又は炭素数1~20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A1及びA2を介して架橋構造を形成している。また、E1及びE2はたがいに同一でも異なっていてもよい。このE1及びE2としては、置換シクロペンタジエニル基,インデニル基及び置換インデニル基が好ましい。置換基としては、炭素数1~20の炭化水素基、珪素含有基などが挙げられる。
 また、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX,E1,E2又はYと架橋していてもよい。該Xの具体例としては、ハロゲン原子,炭素数1~20の炭化水素基,炭素数1~20のアルコキシ基,炭素数6~20のアリールオキシ基,炭素数1~20のアミド基,炭素数1~20の珪素含有基,炭素数1~20のホスフィド基,炭素数1~20のスルフィド基,炭素数1~20のアシル基などが挙げられる。
In the above general formula (I), M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium. Among them, titanium, zirconium and hafnium are preferable from the viewpoint of olefin polymerization activity.
E 1 and E 2 are respectively substituted cyclopentadienyl group, indenyl group, substituted indenyl group, heterocyclopentadienyl group, substituted heterocyclopentadienyl group, amide group (—N <), phosphine group (—P <), Hydrocarbon group [>CR-,> C <] and silicon-containing group [>SiR-,> Si <] (where R is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, or a heteroatom-containing group) A ligand selected from among (A), and a crosslinked structure is formed via A 1 and A 2 . E 1 and E 2 may be the same or different. As E 1 and E 2 , a substituted cyclopentadienyl group, an indenyl group and a substituted indenyl group are preferable. Examples of the substituent include a hydrocarbon group having 1 to 20 carbon atoms and a silicon-containing group.
X represents a σ-bonding ligand, and when there are a plurality of X, the plurality of Xs may be the same or different and may be cross-linked with other X, E 1 , E 2 or Y. . Specific examples of X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, carbon Examples thereof include silicon-containing groups having 1 to 20 carbon atoms, phosphide groups having 1 to 20 carbon atoms, sulfide groups having 1 to 20 carbon atoms, and acyl groups having 1 to 20 carbon atoms.
 一方、Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のYやE1,E2又はXと架橋していてもよい。該Yのルイス塩基の具体例としては、アミン類,エーテル類,ホスフィン類,チオエーテル類などを挙げることができる。 次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO2-、-Se-、-NR1-、-PR1-、-P(O)R1-、-BR1-又は-AlR1-を示し、R1は水素原子、ハロゲン原子又は炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基を示し、それらはたがいに同一でも異なっていてもよい。このような架橋基としては、例えば一般式 On the other hand, Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X. Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like. Next, A 1 and A 2 are divalent bridging groups for linking two ligands, including a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and silicon-containing groups. Group, germanium-containing group, tin-containing group, —O—, —CO—, —S—, —SO 2 —, —Se—, —NR 1 —, —PR 1 —, —P (O) R 1 —, —BR 1 — or —AlR 1 —, wherein R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same May be different. Examples of such a bridging group include a general formula
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(Dは炭素、ケイ素又はスズ、R2及びR3はそれぞれ水素原子又は炭素数1~20の炭化水素基で、それらはたがいに同一でも異なっていてもよく、またたがいに結合して環構造を形成していてもよい。eは1~4の整数を示す。)
で表されるものが挙げられ、その具体例としては、メチレン基,エチレン基,エチリデン基,プロピリデン基,イソプロピリデン基,シクロヘキシリデン基,1,2-シクロヘキシレン基,ビニリデン基(CH2=C=),ジメチルシリレン基,ジフェニルシリレン基,メチルフェニルシリレン基,ジメチルゲルミレン基,ジメチルスタニレン基,テトラメチルジシリレン基,ジフェニルジシリレン基などを挙げることができる。これらの中で、エチレン基,イソプロピリデン基及びジメチルシリレン基が好適である。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。
(D is carbon, silicon or tin, R 2 and R 3 are each a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, which may be the same or different, and are bonded to each other to form a ring structure. (E represents an integer of 1 to 4)
Specific examples thereof include methylene group, ethylene group, ethylidene group, propylidene group, isopropylidene group, cyclohexylidene group, 1,2-cyclohexylene group, vinylidene group (CH 2 = C =), a dimethylsilylene group, a diphenylsilylene group, a methylphenylsilylene group, a dimethylgermylene group, a dimethylstannylene group, a tetramethyldisilylene group, a diphenyldisilylene group, and the like. Among these, an ethylene group, an isopropylidene group, and a dimethylsilylene group are preferable. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
 このような一般式(I)で表される遷移金属化合物の中では、一般式(II)
Figure JPOXMLDOC01-appb-C000003

で表される二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物が好ましい。
Among the transition metal compounds represented by the general formula (I), the general formula (II)
Figure JPOXMLDOC01-appb-C000003

The transition metal compound which makes the ligand the double bridge type biscyclopentadienyl derivative represented by these is preferable.
 上記一般式(II)において、M,A1,A2,q及びrは上記と同じである。
 X1はσ結合性の配位子を示し、X1が複数ある場合、複数のX1は同じでも異なっていてもよく、他のX1又はY1と架橋していてもよい。このX1の具体例としては、一般式(I)のXの説明で例示したものと同じものを挙げることができる。
 Y1はルイス塩基を示し、Y1が複数ある場合、複数のY1は同じでも異なっていてもよく、他のY1又はX1と架橋していてもよい。このY1の具体例としては、一般式(I)のYの説明で例示したものと同じものを挙げることができる。R4~R9はそれぞれ水素原子,ハロゲン原子,炭素数1~20の炭化水素基,炭素数1~20のハロゲン含有炭化水素基,珪素含有基又はヘテロ原子含有基を示すが、その少なくとも一つは水素原子でないことが必要である。また、R4~R9はたがいに同一でも異なっていてもよく、隣接する基同士がたがいに結合して環を形成していてもよい。なかでも、R6とR7は環を形成していること及びR8とR9は環を形成していることが好ましい。R4及びR5としては、酸素、ハロゲン、珪素等のヘテロ原子を含有する基が、重合活性が高くなる点で好ましい。別の好ましい形態として、R4とR6あるいはR6とR7は環を形成していること及びR5とR8あるいはR8とR9は環を形成していることが好ましい。R4及びR5、R7、R9が環を形成していない場合の置換基としては、酸素、ハロゲン、珪素等のヘテロ原子を含有する基が、重合活性が高くなる点で好ましい。
 この二重架橋型ビスシクロペンタジエニル誘導体を配位子とする遷移金属化合物は、配位子間の架橋基にケイ素を含むものが好ましい。
In the above general formula (II), M, A 1 , A 2 , q and r are the same as described above.
X 1 represents a σ-bonding ligand, and when plural X 1, a plurality of X 1 may be the same or different, may be crosslinked with other X 1 or Y 1. Specific examples of X 1 include the same examples as those exemplified in the description of X in formula (I).
Y 1 represents a Lewis base, if Y 1 is plural, Y 1 may be the same or different, may be crosslinked with other Y 1 or X 1. Specific examples of Y 1 are the same as those exemplified in the description of Y in the general formula (I). R 4 to R 9 each represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a heteroatom-containing group. One must not be a hydrogen atom. R 4 to R 9 may be the same or different from each other, and adjacent groups may be bonded to each other to form a ring. Among these, it is preferable that R 6 and R 7 form a ring and R 8 and R 9 form a ring. As R 4 and R 5 , a group containing a heteroatom such as oxygen, halogen, or silicon is preferable from the viewpoint of increasing the polymerization activity. In another preferred embodiment, R 4 and R 6 or R 6 and R 7 preferably form a ring, and R 5 and R 8 or R 8 and R 9 preferably form a ring. As a substituent in the case where R 4, R 5 , R 7 and R 9 do not form a ring, a group containing a heteroatom such as oxygen, halogen or silicon is preferable in view of increasing the polymerization activity.
The transition metal compound having the double-bridged biscyclopentadienyl derivative as a ligand preferably contains silicon in the bridging group between the ligands.
 一般式(I)で表される遷移金属化合物の具体例としては、WO02/16450A1国際公開公報に記載の具体例が本発明においても好適な例として挙げられる。
 中でも、前述の(1)の要件を満たす1-ブテン単独重合体または、前述の(1’)の要件を満たす1-ブテン-プロピレン共重合体を提供するためには、配位子が架橋基を介して架橋構造を形成している遷移金属化合物(単架橋)もしくは、2個の架橋基を介して架橋構造を形成している遷移金属化合物であって、メソ型構造を有する遷移金属化合物や、配位子や架橋基に置換基を有する遷移金属化合物を選択することが好ましい。
 また、(2)の要件を満たす1-ブテン単独重合体または1-ブテン-プロピレン共重合体を提供するためには、配位子が架橋基を介さず存在する遷移金属化合物(非架橋)、ハーフメタロセン錯体や、2個の架橋基を介して架橋構造を形成している遷移金属化合物であって、配位子や架橋基に置換基を有する遷移金属化合物を選択することが好ましい。
 より好ましい具体例としては、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロライド、(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド(Sym.)、(1,1’-エチレン)(2,2’-テトラメチルジシリレン)ビスインデニルジルコニウムジクロライドなどがあり、該好ましい具体例を選択することで、前述した(1)及び(2)を満たす1-ブテン単独重合体、及び/又は下記(1’)及び(2)を満たす1-ブテン-プロピレン共重合体を提供するができる。
As specific examples of the transition metal compound represented by the general formula (I), specific examples described in WO02 / 16450A1 International Publication are also preferable examples in the present invention.
Among them, in order to provide a 1-butene homopolymer that satisfies the above-mentioned requirement (1) or a 1-butene-propylene copolymer that satisfies the above-mentioned requirement (1 ′), the ligand is a crosslinking group. A transition metal compound (single bridge) that forms a cross-linked structure via a transition metal compound that forms a cross-linked structure via two cross-linking groups, a transition metal compound having a meso-type structure, It is preferable to select a transition metal compound having a substituent in the ligand or bridging group.
Further, in order to provide a 1-butene homopolymer or 1-butene-propylene copolymer satisfying the requirement of (2), a transition metal compound in which a ligand exists without a crosslinking group (non-crosslinked), It is preferable to select a transition metal compound which forms a cross-linked structure via a half metallocene complex or two cross-linking groups and has a substituent on the ligand or the cross-linking group.
More preferable specific examples include (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindenyl) zirconium dichloride, (1,2′-methylphenylsilylene) (2 , 1′-methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride (Sym.), (1,1′-ethylene) (2,2′-tetramethyldisylylene) bisindenylzirconium dichloride, etc. By selecting the preferred specific examples, the 1-butene homopolymer satisfying the above (1) and (2) and / or the 1-butene-propylene copolymer satisfying the following (1 ′) and (2) A polymer can be provided.
 次に、(B)成分のうちの(B-1)成分としては、上記(A)成分の遷移金属化合物と反応して、イオン性の錯体を形成しうる化合物であれば、いずれのものでも使用できるが、次の一般式(III),(IV)
   (〔L1-R10k+a (〔Z〕-b   ・・・(III)
   (〔L2k+a(〔Z〕-b       ・・・(IV)
(ただし、L2はM2、R11123、R13 3C又はR143である。)
〔(III),(IV)式中、L1はルイス塩基、〔Z〕-は、非配位性アニオン〔Z1〕-及び〔Z2-、ここで〔Z1-は複数の基が元素に結合したアニオンすなわち〔M112・・・Gf-(ここで、M1は周期律表第5~15族元素、好ましくは周期律表第13~15族元素を示す。G1~Gfはそれぞれ水素原子,ハロゲン原子,炭素数1~20のアルキル基,炭素数2~40のジアルキルアミノ基,炭素数1~20のアルコキシ基,炭素数6~20のアリール基,炭素数6~20のアリールオキシ基,炭素数7~40のアルキルアリール基,炭素数7~40のアリールアルキル基,炭素数1~20のハロゲン置換炭化水素基,炭素数1~20のアシルオキシ基,有機メタロイド基、又は炭素数2~20のヘテロ原子含有炭化水素基を示す。G1~Gfのうち2つ以上が環を形成していてもよい。
 fは〔(中心金属M1の原子価)+1〕の整数を示す。)、〔Z2-は、酸解離定数の逆数の対数(pKa)が-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、あるいは一般的に超強酸と定義される酸の共役塩基を示す。また、ルイス塩基が配位していてもよい。
 また、R10は水素原子,炭素数1~20のアルキル基,炭素数6~20のアリール基,アルキルアリール基又はアリールアルキル基を示す。
 R11及びR12はそれぞれシクロペンタジエニル基,置換シクロペンタジエニル基,インデニル基又はフルオレニル基を示す。
 R13は炭素数1~20のアルキル基,アリール基,アルキルアリール基又はアリールアルキル基を示す。
 R14はテトラフェニルポルフィリン,フタロシアニン等の大環状配位子を示す。kは〔L1-R10〕,〔L2〕のイオン価数で1~3の整数、aは1以上の整数、b=(k×a)である。M2は、周期律表第1~3、11~13、17族元素を含むものであり、M3は、周期律表第7~12族元素を示す。〕
で表されるものを好適に使用することができる。
Next, the component (B-1) in the component (B) is any compound that can react with the transition metal compound of the component (A) to form an ionic complex. The following general formulas (III) and (IV)
([L 1 −R 10 ] k + ) a ([Z] ) b (III)
([L 2 ] k + ) a ([Z] ) b (IV)
(However, L 2 is M 2, R 11 R 12 M 3, R 13 3 C or R 14 M 3.)
[In the formulas (III) and (IV), L 1 is a Lewis base, [Z] is a non-coordinating anion [Z1] and [Z 2 ] , where [Z 1 ] is a plurality of groups Is an anion bonded to the element, that is, [M 1 G 1 G 2 ... G f ] (where M 1 represents a group 5-15 element of the periodic table, preferably a group 13-15 element of the periodic table. G 1 to G f are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms, respectively. Group, aryloxy group having 6 to 20 carbon atoms, alkylaryl group having 7 to 40 carbon atoms, arylalkyl group having 7 to 40 carbon atoms, halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms Acyloxy group, organic metalloid group, or C2-C20 heteroatom-containing charcoal Two or more of .G 1 ~ G f represents a hydrogen group may form a ring.
f represents an integer of [(valence of central metal M 1 ) +1]. ), [Z 2] - is the logarithm of the reciprocal of the acid dissociation constant (pKa) -10 below Bronsted acid alone or Bronsted acid and Lewis acid combination of conjugate base, or a general superacid defined The conjugate base of the acid to be produced is shown. In addition, a Lewis base may be coordinated.
R 10 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, or an arylalkyl group.
R 11 and R 12 each represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group, or a fluorenyl group.
R 13 represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an alkylaryl group or an arylalkyl group.
R 14 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine. k is an ionic valence of [L 1 −R 10 ], [L 2 ], an integer of 1 to 3, a is an integer of 1 or more, and b = (k × a). M 2 includes elements in groups 1 to 3, 11 to 13, and 17 of the periodic table, and M 3 represents elements in groups 7 to 12 of the periodic table. ]
What is represented by these can be used conveniently.
 ここで、L1の具体例としては、アンモニア,メチルアミン,アニリン,ジメチルアミン,ジエチルアミン,N-メチルアニリン,ジフェニルアミン,N,N-ジメチルアニリン,トリメチルアミン,トリエチルアミン,トリ-n-ブチルアミン,メチルジフェニルアミン,ピリジン,p-ブロモ-N,N-ジメチルアニリン,p-ニトロ-N,N-ジメチルアニリンなどのアミン類、トリエチルホスフィン,トリフェニルホスフィン,ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル,ベンゾニトリルなどのニトリル類などを挙げることができる。
 R10の具体例としては水素,メチル基,エチル基,ベンジル基,トリチル基などを挙げることができ、R11,R12の具体例としては、シクロペンタジエニル基,メチルシクロペンタジエニル基,エチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などを挙げることができる。R13の具体例としては、フェニル基,p-トリル基,p-メトキシフェニル基などを挙げることができ、R14の具体例としてはテトラフェニルポルフィン,フタロシアニン,アリル,メタリルなどを挙げることができる。また、M2の具体例としては、Li,Na,K,Ag,Cu,Br,I,I3などを挙げることができ、M3の具体例としては、Mn,Fe,Co,Ni,Znなどを挙げることができる。
 また、〔Z1-、すなわち〔M112・・・Gf〕において、M1の具体例としてはB,Al,Si,P,As,Sbなど、好ましくはB及びAlが挙げられる。また、G1,G2~Gfの具体例としては、ジアルキルアミノ基としてジメチルアミノ基,ジエチルアミノ基など、アルコキシ基若しくはアリールオキシ基としてメトキシ基,エトキシ基,n-ブトキシ基,フェノキシ基など、炭化水素基としてメチル基,エチル基,n-プロピル基,イソプロピル基,n-ブチル基,イソブチル基,n-オクチル基,n-エイコシル基,フェニル基,p-トリル基,ベンジル基,4-t-ブチルフェニル基,3,5-ジメチルフェニル基など、ハロゲン原子としてフッ素,塩素,臭素,ヨウ素,ヘテロ原子含有炭化水素基としてp-フルオロフェニル基,3,5-ジフルオロフェニル基,ペンタクロロフェニル基,3,4,5-トリフルオロフェニル基,ペンタフルオロフェニル基,3,5-ビス(トリフルオロメチル)フェニル基,ビス(トリメチルシリル)メチル基など、有機メタロイド基としてペンタメチルアンチモン基、トリメチルシリル基,トリメチルゲルミル基,ジフェニルアルシン基,ジシクロヘキシルアンチモン基,ジフェニル硼素などが挙げられる。
Here, specific examples of L 1 include ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, Amines such as pyridine, p-bromo-N, N-dimethylaniline, p-nitro-N, N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, benzoic acid Examples thereof include esters such as ethyl acid, and nitriles such as acetonitrile and benzonitrile.
Specific examples of R 10 include hydrogen, methyl group, ethyl group, benzyl group, and trityl group. Specific examples of R 11 and R 12 include cyclopentadienyl group and methylcyclopentadienyl group. , Ethylcyclopentadienyl group, pentamethylcyclopentadienyl group, and the like. Specific examples of R 13 include a phenyl group, p-tolyl group, p-methoxyphenyl group, and specific examples of R 14 include tetraphenylporphine, phthalocyanine, allyl, methallyl, and the like. . Specific examples of M 2 include Li, Na, K, Ag, Cu, Br, I, and I 3. Specific examples of M 3 include Mn, Fe, Co, Ni, and Zn. And so on.
In [Z 1 ] , that is, [M 1 G 1 G 2 ... G f ], specific examples of M 1 include B, Al, Si, P, As, Sb, etc., preferably B and Al are Can be mentioned. Specific examples of G 1 and G 2 to G f include a dimethylamino group and a diethylamino group as a dialkylamino group, a methoxy group, an ethoxy group, an n-butoxy group, a phenoxy group as an alkoxy group or an aryloxy group, and the like. Hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t -Butylphenyl group, 3,5-dimethylphenyl group, etc., fluorine, chlorine, bromine, iodine as halogen atoms, p-fluorophenyl group, 3,5-difluorophenyl group, pentachlorophenyl group as heteroatom-containing hydrocarbon groups, 3,4,5-trifluorophenyl group, pentafluorophenyl group, 3,5-bis (trifluoro Oromechiru) phenyl group, such as bis (trimethylsilyl) methyl group, pentamethyl antimony group as organic metalloid group, trimethylsilyl group, trimethylgermyl group, diphenylarsine group, dicyclohexyl antimony group, such as diphenyl boron and the like.
 また、非配位性のアニオンすなわちpKaが-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基〔Z2-の具体例としてはトリフルオロメタンスルホン酸アニオン(CF3SO3-,ビス(トリフルオロメタンスルホニル)メチルアニオン,ビス(トリフルオロメタンスルホニル)ベンジルアニオン,ビス(トリフルオロメタンスルホニル)アミド,過塩素酸アニオン(ClO4-,トリフルオロ酢酸アニオン(CF3CO2-,ヘキサフルオロアンチモンアニオン(SbF6-,フルオロスルホン酸アニオン(FSO3-,クロロスルホン酸アニオン(ClSO3-,フルオロスルホン酸アニオン/5-フッ化アンチモン(FSO3/SbF5-,フルオロスルホン酸アニオン/5-フッ化砒素(FSO3/AsF5-,トリフルオロメタンスルホン酸/5-フッ化アンチモン(CF3SO3/SbF5-などを挙げることができる。 The non-coordinating anion namely the combination of a conjugate base with a pKa of -10 or less Bronsted acid alone or Bronsted acid and Lewis acid [Z 2] - trifluoromethanesulfonic acid anion Specific examples of (CF 3 SO 3 ) , bis (trifluoromethanesulfonyl) methyl anion, bis (trifluoromethanesulfonyl) benzyl anion, bis (trifluoromethanesulfonyl) amide, perchlorate anion (ClO 4 ) , trifluoroacetate anion (CF 3 CO 2 ) - , Hexafluoroantimony anion (SbF 6 ) - , fluorosulfonic acid anion (FSO 3 ) - , chlorosulfonic acid anion (ClSO 3 ) - , fluorosulfonic acid anion / 5-antimony fluoride (FSO 3 / SbF 5 ) -, fluoro sulfonic acid anion / - fluoride arsenic (FSO 3 / AsF 5) - , trifluoromethanesulfonic acid / antimony pentafluoride (CF 3 SO 3 / SbF 5 ) - and the like.
 このような前記(A)成分の遷移金属化合物と反応してイオン性の錯体を形成するイオン性化合物、すなわち(B-1)成分化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム,テトラフェニル硼酸トリ-n-ブチルアンモニウム,テトラフェニル硼酸トリメチルアンモニウム,テトラフェニル硼酸テトラエチルアンモニウム,テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム,テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム,テトラフェニル硼酸ジメチルジフェニルアンモニウム,テトラフェニル硼酸トリフェニル(メチル)アンモニウム,テトラフェニル硼酸トリメチルアニリニウム,テトラフェニル硼酸メチルピリジニウム,テトラフェニル硼酸ベンジルピリジニウム,テトラフェニル硼酸メチル(2-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリ-n-ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラ-n-ブチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ-n-ブチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム,テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム,テトラキス(ペンタフルオロフェニル)硼酸メチル(2-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸メチル(4-シアノピリジニウム),テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム,テトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム,テトラフェニル硼酸フェロセニウム,テトラフェニル硼酸銀,テトラフェニル硼酸トリチル,テトラフェニル硼酸テトラフェニルポルフィリンマンガン,テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸(1,1’-ジメチルフェロセニウム),テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム,テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル,テトラキス(ペンタフルオロフェニル)硼酸リチウム,テトラキス(ペンタフルオロフェニル)硼酸ナトリウム,テトラキス(ペンタフルオロフェニル)硼酸テオラフェニルポルフィリンマンガン,テトラフルオロ硼酸銀,ヘキサフルオロ燐酸銀,ヘキサフルオロ砒素酸銀,過塩素酸銀,トリフルオロ酢酸銀,トリフルオロメタンスルホン酸銀などを挙げることができる。
 (B-1)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
Specific examples of such an ionic compound that reacts with the transition metal compound of the component (A) to form an ionic complex, that is, the (B-1) component compound, include triethylammonium tetraphenylborate, tetraphenylboric acid. Tri-n-butylammonium, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl (tri-n-butyl) ammonium tetraphenylborate, benzylammonium tetraphenylborate (tri-n-butyl) ammonium Ammonium, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, benzylpyridinium tetraphenylborate, tetrapheny Methyl borate (2-cyanopyridinium), tetrakis (pentafluorophenyl) triethylammonium borate, tetrakis (pentafluorophenyl) tri-n-butylammonium borate, tetrakis (pentafluorophenyl) triphenylammonium borate, tetrakis (pentafluorophenyl) Tetra-n-butylammonium borate, tetrakis (pentafluorophenyl) tetraethylammonium borate, tetrakis (pentafluorophenyl) benzyl benzyl (tri-n-butyl) borate, tetrakis (pentafluorophenyl) methyldiphenylammonium borate, tetrakis (pentafluoro) Phenyl) triphenyl (methyl) ammonium borate, tetrakis (pentafluorophenyl) methylanilinium borate, Dimethylanilinium trakis (pentafluorophenyl) borate, trimethylanilinium tetrakis (pentafluorophenyl) borate, methylpyridinium tetrakis (pentafluorophenyl) borate, benzylpyridinium tetrakis (pentafluorophenyl) borate, methyl tetrakis (pentafluorophenyl) borate (2-cyanopyridinium), benzyl tetrakis (pentafluorophenyl) borate (2-cyanopyridinium), methyl tetrakis (pentafluorophenyl) borate (4-cyanopyridinium), triphenylphosphonium tetrakis (pentafluorophenyl) borate, tetrakis [ Bis (3,5-ditrifluoromethyl) phenyl] dimethylanilinium borate, ferrocenium tetraphenylborate, tetrapheni Silver ruborate, trityl tetraphenylborate, tetraphenylporphyrin manganese tetraphenylborate, ferrocenium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) borate (1,1'-dimethylferrocenium), tetrakis (pentafluorophenyl) ) Decamethylferrocenium borate, silver tetrakis (pentafluorophenyl) borate, trityl tetrakis (pentafluorophenyl) trityl borate, lithium tetrakis (pentafluorophenyl) borate, sodium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) Teoraphenylporphyrin manganese borate, silver tetrafluoroborate, silver hexafluorophosphate, silver hexafluoroarsenate, silver perchlorate, silver trifluoroacetate, tri Examples thereof include silver fluoromethanesulfonate.
(B-1) may be used singly or in combination of two or more.
 一方、(B-2)成分のアルミノキサンとしては、一般式(V)
Figure JPOXMLDOC01-appb-C000004
   

(式中、R15は炭素数1~20、好ましくは1~12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2~50、好ましくは2~40の整数である。なお、各R15は同じでも異なっていてもよい。)
で示される鎖状アルミノキサン、及び一般式(VI)
Figure JPOXMLDOC01-appb-C000005
(式中、R15及びwは前記一般式(V)におけるものと同じである。)
で示される環状アルミノキサンを挙げることができる。
On the other hand, as the aluminoxane of the component (B-2), the general formula (V)
Figure JPOXMLDOC01-appb-C000004


(Wherein R 15 represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, or a halogen atom, and w represents an average degree of polymerization. Usually, it is an integer of 2 to 50, preferably 2 to 40. Note that each R 15 may be the same or different.
A chain aluminoxane represented by the general formula (VI)
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 15 and w are the same as those in the general formula (V).)
The cyclic aluminoxane shown by these can be mentioned.
 前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。例えば、(i)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(ii)重合時に当初有機アルミニウム化合物を加えておき、後に水を添加する方法、(iii)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(iv)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、さらに水を反応させる方法などがある。なお、アルミノキサンとしては、トルエン不溶性のものであってもよい。
 これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited and may be reacted according to a known method. For example, (i) a method in which an organoaluminum compound is dissolved in an organic solvent and contacting it with water, (ii) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (iii) a metal There are a method of reacting water adsorbed on a salt or the like with water adsorbed on an inorganic or organic substance with an organoaluminum compound, and (iv) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water. . The aluminoxane may be insoluble in toluene.
These aluminoxanes may be used alone or in combination of two or more.
 (A)触媒成分と(B)触媒成分との使用割合は、(B)触媒成分として(B-1)化合物を用いた場合には、モル比で好ましくは10:1~1:100、より好ましくは2:1~1:10の範囲が望ましく、上記範囲を逸脱する場合は、単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。また(B-2)化合物を用いた場合には、モル比で好ましくは1:1~1:1000000、より好ましくは1:10~1:10000の範囲が望ましい。この範囲を逸脱する場合は単位質量ポリマーあたりの触媒コストが高くなり、実用的でない。また、触媒成分(B)としては(B-1),(B-2)を単独又は二種以上組み合わせて用いることもできる。 The use ratio of (A) catalyst component to (B) catalyst component is preferably 10: 1 to 1: 100 in terms of molar ratio when (B-1) compound is used as (B) catalyst component. The range of 2: 1 to 1:10 is desirable, and if it deviates from the above range, the catalyst cost per unit mass polymer becomes high, which is not practical. When the compound (B-2) is used, the molar ratio is preferably 1: 1 to 1: 1000000, more preferably 1:10 to 1: 10000. When deviating from this range, the catalyst cost per unit mass polymer becomes high, which is not practical. Further, as the catalyst component (B), (B-1) and (B-2) may be used alone or in combination of two or more.
 上記製造方法における重合用触媒は、上記(A)成分及び(B)成分に加えて(C)成分として有機アルミニウム化合物を用いることができる。
 ここで、(C)成分の有機アルミニウム化合物としては、一般式(VII)
     R16 v AlJ3-v    ・・・(VII)
〔式中、R16は炭素数1~10のアルキル基、Jは水素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数である〕
で示される化合物が用いられる。
 前記一般式(VII)で示される化合物の具体例としては、トリメチルアルミニウム,トリエチルアルミニウム,トリイソプロピルアルミニウム,トリイソブチルアルミニウム,ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,メチルアルミニウムジクロリド,エチルアルミニウムジクロリド,ジメチルアルミニウムフルオリド,ジイソブチルアルミニウムヒドリド,ジエチルアルミニウムヒドリド,エチルアルミニウムセスキクロリド等が挙げられる。
 これらの有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。
The catalyst for polymerization in the above production method can use an organoaluminum compound as the component (C) in addition to the components (A) and (B).
Here, as the organoaluminum compound of the component (C), the general formula (VII)
R 16 v AlJ 3-v (VII)
[Wherein R 16 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. (It is an integer)
The compound shown by these is used.
Specific examples of the compound represented by the general formula (VII) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like.
These organoaluminum compounds may be used alone or in combination of two or more.
 上記製造方法においては、上述した(A)成分、(B)成分及び(C)成分を用いて予備接触を行なうこともできる。予備接触は、(A)成分に、例えば、(B)成分を接触させることにより行なうことができるが、その方法に特に制限はなく、公知の方法を用いることができる。これら予備接触により触媒活性の向上や、助触媒である(B)成分の使用割合の低減など、触媒コストの低減に効果的である。また、さらに、(A)成分と(B-2)成分を接触させることにより、上記効果と共に、分子量向上効果も見られる。また、予備接触温度は、通常-20℃~200℃、好ましくは-10℃~150℃、より好ましくは、0℃~80℃である。予備接触においては、溶媒の不活性炭化水素として、脂肪族炭化水素、芳香族炭化水素などを用いることができる。これらの中で特に好ましいものは、脂肪族炭化水素である。
 前記(A)触媒成分と(C)触媒成分との使用割合は、モル比で好ましくは1:1~1:10000、より好ましくは1:5~1:2000、さらに好ましくは1:10ないし1:1000の範囲が望ましい。該(C)触媒成分を用いることにより、遷移金属当たりの重合活性を向上させることができるが、あまり多いと有機アルミニウム化合物が無駄になるとともに、重合体中に多量に残存し、好ましくない。
In the said manufacturing method, a preliminary contact can also be performed using (A) component, (B) component, and (C) component mentioned above. The preliminary contact can be performed by, for example, bringing the component (A) into contact with the component (B), but the method is not particularly limited, and a known method can be used. These preliminary contacts are effective in reducing the catalyst cost, such as improving the catalyst activity and reducing the proportion of the (B) component that is the promoter. Furthermore, when the component (A) and the component (B-2) are brought into contact with each other, an effect of improving the molecular weight can be seen together with the above effect. The preliminary contact temperature is usually -20 ° C to 200 ° C, preferably -10 ° C to 150 ° C, more preferably 0 ° C to 80 ° C. In the preliminary contact, an aliphatic hydrocarbon, an aromatic hydrocarbon, or the like can be used as the inert hydrocarbon of the solvent. Of these, particularly preferred are aliphatic hydrocarbons.
The use ratio of the catalyst component (A) to the catalyst component (C) is preferably 1: 1 to 1: 10000, more preferably 1: 5 to 1: 2000, still more preferably 1:10 to 1 in terms of molar ratio. : The range of 1000 is desirable. By using the catalyst component (C), the polymerization activity per transition metal can be improved. However, if the amount is too large, the organoaluminum compound is wasted and a large amount remains in the polymer, which is not preferable.
 本発明においては、触媒成分の少なくとも一種を適当な担体に担持して用いることができる。該担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特に無機酸化物担体あるいはそれ以外の無機担体が好ましい。
 無機酸化物担体としては、具体的には、SiO2,Al23,MgO,ZrO2,TiO2,Fe23,B23,CaO,ZnO,BaO,ThO2やこれらの混合物、例えばシリカアルミナ,ゼオライト,フェライト,グラスファイバーなどが挙げられる。これらの中では、特にSiO2,Al23が好ましい。なお、上記無機酸化物担体は、少量の炭酸塩,硝酸塩,硫酸塩などを含有してもよい。
 一方、上記以外の担体として、MgCl2,Mg(OC252などで代表される一般式MgR17 X1 yで表されるマグネシウム化合物やその錯塩などを挙げることができる。ここで、R17は炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数6~20のアリール基、X1はハロゲン原子又は炭素数1~20のアルキル基を示し、xは0~2、yは0~2であり、かつx+y=2である。各R17及び各X1はそれぞれ同一でもよく、また異なってもいてもよい。
 また、有機担体としては、ポリスチレン,スチレン-ジビニルベンゼン共重合体,ポリエチレン,ポリ1-ブテン,置換ポリスチレン,ポリアリレートなどの重合体やスターチ,カーボンなどを挙げることができる。
 上記製造方法において用いられる担体としては、MgCl2,MgCl(OC25),Mg(OC252,SiO2,Al23などが好ましい。また担体の性状は、その種類及び製法により異なるが、平均粒径は通常1~300μm、好ましくは10~200μm、より好ましくは20~100μmである。
 粒径が小さいと重合体中の微粉が増大し、粒径が大きいと重合体中の粗大粒子が増大し嵩密度の低下やホッパーの詰まりの原因になる。
 また、担体の比表面積は、通常1~1000m2/g、好ましくは50~500m2/g、細孔容積は通常0.1~5cm3/g、好ましくは0.3~3cm3/gである。
 比表面積又は細孔容積のいずれかが上記範囲を逸脱すると、触媒活性が低下することがある。なお、比表面積及び細孔容積は、例えばBET法に従って吸着された窒素ガスの体積から求めることができる。
 さらに、上記担体が無機酸化物担体である場合には、通常150~1000℃、好ましくは200~800℃で焼成して用いることが望ましい。
In the present invention, at least one of the catalyst components can be supported on a suitable carrier and used. The type of the carrier is not particularly limited, and any of inorganic oxide carriers, other inorganic carriers, and organic carriers can be used. In particular, inorganic oxide carriers or other inorganic carriers are preferable.
Specific examples of the inorganic oxide carrier include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , Fe 2 O 3 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof. Examples thereof include silica alumina, zeolite, ferrite, and glass fiber. Of these, SiO 2 and Al 2 O 3 are particularly preferable. The inorganic oxide carrier may contain a small amount of carbonate, nitrate, sulfate and the like.
On the other hand, as a carrier other than the above, a magnesium compound represented by the general formula MgR 17 X X 1 y typified by MgCl 2 , Mg (OC 2 H 5 ) 2 or the like, or a complex salt thereof can be used. Here, R 17 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, X 1 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms, x is 0 to 2, y is 0 to 2, and x + y = 2. Each R 17 and each X 1 may be the same or different.
Examples of the organic carrier include polymers such as polystyrene, styrene-divinylbenzene copolymer, polyethylene, poly 1-butene, substituted polystyrene, polyarylate, starch, and carbon.
As the carrier used in the above production method, MgCl 2 , MgCl (OC 2 H 5 ), Mg (OC 2 H 5 ) 2 , SiO 2 , Al 2 O 3 and the like are preferable. The properties of the carrier vary depending on the type and production method, but the average particle size is usually 1 to 300 μm, preferably 10 to 200 μm, more preferably 20 to 100 μm.
If the particle size is small, fine powder in the polymer increases, and if the particle size is large, coarse particles in the polymer increase, which causes a decrease in bulk density and clogging of the hopper.
The specific surface area of the carrier is usually 1 to 1000 m 2 / g, preferably 50 to 500 m 2 / g, and the pore volume is usually 0.1 to 5 cm 3 / g, preferably 0.3 to 3 cm 3 / g. is there.
When either the specific surface area or the pore volume deviates from the above range, the catalytic activity may decrease. The specific surface area and pore volume can be determined from the volume of nitrogen gas adsorbed according to the BET method, for example.
Further, when the carrier is an inorganic oxide carrier, it is usually desirable to use it after firing at 150 to 1000 ° C., preferably 200 to 800 ° C.
 触媒成分の少なくとも一種を前記担体に担持させる場合、(A)触媒成分及び(B)触媒成分の少なくとも一方を、好ましくは(A)触媒成分及び(B)触媒成分の両方を担持させるのが望ましい。
 該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば(i)(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、(ii)担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理したのち、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、(iii)担体と(A)成分及び/又は(B)成分と有機アルミニウム化合物又はハロゲン含有ケイ素化合物とを反応させる方法、(iv)(A)成分又は(B)成分を担体に担持させたのち、(B)成分又は(A)成分と混合する方法、(v)(A)成分と(B)成分との接触反応物を担体と混合する方法、(vi)(A)成分と(B)成分との接触反応に際して、担体を共存させる方法などを用いることができる。
 なお、上記(iv)、(v)及び(vi)の反応において、(C)成分の有機アルミニウム化合物を添加することもできる。
When at least one kind of catalyst component is supported on the carrier, it is desirable to support at least one of (A) catalyst component and (B) catalyst component, preferably both (A) catalyst component and (B) catalyst component. .
The method for supporting at least one of the component (A) and the component (B) on the carrier is not particularly limited. For example, (i) at least one of the component (A) and the component (B) is mixed with the carrier. A method, (ii) a method in which a support is treated with an organoaluminum compound or a halogen-containing silicon compound and then mixed with at least one of the component (A) and the component (B) in an inert solvent, (iii) the support and (A) A method of reacting the component and / or the component (B) with the organoaluminum compound or the halogen-containing silicon compound, (iv) after the component (A) or the component (B) is supported on the carrier, the component (B) or (A ) A method of mixing with the component, (v) a method of mixing the contact reaction product of the component (A) with the component (B) with the carrier, and (vi) a carrier during the contact reaction of the component (A) with the component (B). Coexist Or the like can be used that way.
In the above reactions (iv), (v) and (vi), an organoaluminum compound as component (C) can also be added.
 本発明においては、前記(A),(B),(C)を接触させる際に、弾性波を照射させて触媒を調製してもよい。弾性波としては、通常音波、特に好ましくは超音波が挙げられる。具体的には、周波数が1~1000kHzの超音波、好ましくは10~500kHzの超音波が挙げられる。
 このようにして得られた触媒は、いったん溶媒留去を行って固体として取り出してから重合に用いてもよいし、そのまま重合に用いてもよい。
 また、本発明においては、(A)成分及び(B)成分の少なくとも一方の担体への担持操作を重合系内で行うことにより触媒を生成させることができる。例えば(A)成分及び(B)成分の少なくとも一方と担体とさらに必要により前記(C)成分の有機アルミニウム化合物を加え、エチレンなどのオレフィンを常圧~2MPa(gauge)加えて、-20~200℃で1分~2時間程度予備重合を行い触媒粒子を生成させる方法を用いることができる。
 本発明においては、(B-1)成分と担体との使用割合は、質量比で好ましくは1:5~1:10000、より好ましくは1:10~1:500とするのが望ましく、(B-2)成分と担体との使用割合は、質量比で好ましくは1:0.5~1:1000、より好ましくは1:1~1:50とするのが望ましい。(B)成分として二種以上を混合して用いる場合は、各(B)成分と担体との使用割合が質量比で上記範囲内にあることが望ましい。また、(A)成分と担体との使用割合は、質量比で、好ましくは1:5~1:10000、より好ましくは1:10~1:500とするのが望ましい。
 (B)成分〔(B-1)成分又は(B-2)成分〕と担体との使用割合、又は(A)成分と担体との使用割合が上記範囲を逸脱すると、活性が低下することがある。このようにして調製された本発明の重合用触媒の平均粒径は、通常2~200μm、好ましくは10~150μm、特に好ましくは20~100μmであり、比表面積は、通常20~1000m2/g、好ましくは50~500m2/gである。平均粒径が2μm未満であると重合体中の微粉が増大することがあり、200μmを超えると重合体中の粗大粒子が増大することがある。比表面積が20m2/g未満であると活性が低下することがあり、1000m2/gを超えると重合体の嵩密度が低下することがある。また、本発明の触媒において、担体100g中の遷移金属量は、通常0.05~10g、特に0.1~2gであることが好ましい。遷移金属量が上記範囲外であると、活性が低くなることがある。
 このように担体に担持することによって工業的に有利な高い嵩密度と優れた粒径分布を有する重合体を得ることができる。
In the present invention, when contacting the (A), (B), and (C), the catalyst may be prepared by irradiating elastic waves. Examples of the elastic wave include a normal sound wave, particularly preferably an ultrasonic wave. Specifically, an ultrasonic wave having a frequency of 1 to 1000 kHz, preferably an ultrasonic wave having a frequency of 10 to 500 kHz can be mentioned.
The catalyst thus obtained may be used for polymerization after removing the solvent once and taking out as a solid, or may be used for polymerization as it is.
Moreover, in this invention, a catalyst can be produced | generated by performing the carrying | support operation to the support | carrier of at least one of (A) component and (B) component within a polymerization system. For example, at least one of the component (A) and the component (B), a carrier, and, if necessary, the organoaluminum compound of the component (C) are added, and an olefin such as ethylene is added at normal pressure to 2 MPa (gauge), and -20 to 200 A method in which prepolymerization is performed at a temperature of about 1 minute to 2 hours to form catalyst particles can be used.
In the present invention, the use ratio of the component (B-1) to the carrier is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500 in terms of mass ratio. -2) The use ratio of the component and the carrier is preferably 1: 0.5 to 1: 1000, more preferably 1: 1 to 1:50 in terms of mass ratio. When using 2 or more types as a component (B), it is desirable that the use ratio of each component (B) and the carrier is within the above range in terms of mass ratio. In addition, the ratio of the component (A) to the carrier used in mass ratio is preferably 1: 5 to 1: 10000, more preferably 1:10 to 1: 500.
If the proportion of the component (B) [component (B-1) or component (B-2)] and the carrier, or the proportion of component (A) and the carrier used deviates from the above ranges, the activity may decrease. is there. The average particle size of the polymerization catalyst of the present invention thus prepared is usually 2 to 200 μm, preferably 10 to 150 μm, particularly preferably 20 to 100 μm, and the specific surface area is usually 20 to 1000 m 2 / g. It is preferably 50 to 500 m 2 / g. If the average particle size is less than 2 μm, fine powder in the polymer may increase, and if it exceeds 200 μm, coarse particles in the polymer may increase. When the specific surface area is less than 20 m 2 / g, the activity may decrease, and when it exceeds 1000 m 2 / g, the bulk density of the polymer may decrease. In the catalyst of the present invention, the amount of transition metal in 100 g of the support is usually 0.05 to 10 g, particularly preferably 0.1 to 2 g. If the amount of transition metal is outside the above range, the activity may be lowered.
In this way, a polymer having an industrially advantageous high bulk density and an excellent particle size distribution can be obtained by supporting it on a carrier.
 本発明で用いるブテン系重合体としては、上述した重合用触媒を用いて、1-ブテンを単独重合して上記1-ブテン単独重合体を製造したり、1-ブテンとプロピレンを共重合して上記1-ブテン-プロピレン共重合体を製造することができる。
 この場合、重合方法は特に制限されず、スラリー重合法,気相重合法,塊状重合法,溶液重合法,懸濁重合法などのいずれの方法を用いてもよいが、スラリー重合法,気相重合法が特に好ましい。
 重合条件については、重合温度は通常-100~250℃、好ましくは-50~200℃、より好ましくは0~130℃である。また、反応原料に対する触媒の使用割合は、原料モノマー/上記(A)成分(モル比)が好ましくは105~108、特に106~107となることが好ましい。さらに、重合時間は通常5分~10時間、反応圧力は好ましくは常圧~3MPa(gauge)さらに好ましくは常圧~2MPa(gauge)である。
 重合体の分子量の調節方法としては、各触媒成分の種類,使用量,重合温度の選択、さらには水素存在下での重合などがある。
As the butene polymer used in the present invention, the above-mentioned polymerization catalyst is used to homopolymerize 1-butene to produce the 1-butene homopolymer, or by copolymerizing 1-butene and propylene. The 1-butene-propylene copolymer can be produced.
In this case, the polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, or a suspension polymerization method may be used. A polymerization method is particularly preferred.
Regarding the polymerization conditions, the polymerization temperature is usually −100 to 250 ° C., preferably −50 to 200 ° C., more preferably 0 to 130 ° C. The ratio of the catalyst to the reaction raw material is preferably 10 5 to 10 8 , particularly 10 6 to 10 7 , preferably from raw material monomer / component (A) (molar ratio). Further, the polymerization time is usually from 5 minutes to 10 hours, and the reaction pressure is preferably from atmospheric pressure to 3 MPa (gauge), more preferably from atmospheric pressure to 2 MPa (gauge).
Examples of the method for adjusting the molecular weight of the polymer include selection of the type, amount used, and polymerization temperature of each catalyst component, and further polymerization in the presence of hydrogen.
 重合溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタンなどのハロゲン化炭化水素などを用いることができる。これらの溶媒は一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。また、α-オレフィンなどのモノマーを溶媒として用いてもよい。なお、重合方法によっては無溶媒で行うことができる。
 重合に際しては、前記重合用触媒を用いて予備重合を行うことができる。予備重合は、固体触媒成分に、例えば、少量のオレフィンを接触させることにより行うことができるが、その方法に特に制限はなく、公知の方法を用いることができる。予備重合に用いるオレフィンについては特に制限はなく、例えばエチレン、炭素数3~20のα-オレフィン、あるいはこれらの混合物などを挙げることができるが、該重合において用いるオレフィンと同じオレフィンを用いることが有利である。
 また、予備重合温度は、通常-20~200℃、好ましくは-10~130℃、より好ましくは0~80℃である。予備重合においては、溶媒として、脂肪族炭化水素,芳香族炭化水素,モノマーなどを用いることができる。これらの中で特に好ましいのは脂肪族炭化水素である。また、予備重合は無溶媒で行ってもよい。
 予備重合においては、予備重合生成物の極限粘度[η](135℃デカリン中で測定)が0.2デシリットル/g以上、特に0.5デシリットル/g以上、触媒中の遷移金属成分1ミリモル当たりに対する予備重合生成物の量が1~10000g、特に10~1000gとなるように条件を調整することが望ましい。
When using a polymerization solvent, for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane , Halogenated hydrocarbons such as chloroform and dichloromethane can be used. These solvents may be used alone or in combination of two or more. A monomer such as α-olefin may be used as a solvent. Depending on the polymerization method, it can be carried out without solvent.
In the polymerization, prepolymerization can be performed using the polymerization catalyst. The prepolymerization can be performed, for example, by bringing a small amount of olefin into contact with the solid catalyst component, but the method is not particularly limited, and a known method can be used. The olefin used in the prepolymerization is not particularly limited, and examples thereof include ethylene, α-olefin having 3 to 20 carbon atoms, or a mixture thereof. It is advantageous to use the same olefin as that used in the polymerization. It is.
The prepolymerization temperature is usually −20 to 200 ° C., preferably −10 to 130 ° C., more preferably 0 to 80 ° C. In the prepolymerization, an aliphatic hydrocarbon, aromatic hydrocarbon, monomer or the like can be used as a solvent. Of these, aliphatic hydrocarbons are particularly preferred. Moreover, you may perform prepolymerization without a solvent.
In the prepolymerization, the intrinsic viscosity [η] (measured in decalin at 135 ° C.) of the prepolymerized product is 0.2 deciliter / g or more, particularly 0.5 deciliter / g or more, per 1 mmol of transition metal component in the catalyst. It is desirable to adjust the conditions so that the amount of the prepolymerized product is 1 to 10000 g, particularly 10 to 1000 g.
[粘着性付与材]
 粘着性付与樹脂[II]としては、出光石油化学製 アイマーブ P-125、同アイマーブ P-100、同アイマーブ P-90、三洋化成工業製 ユーメックス 1001、三井化学製 ハイレッツ T1115、ヤスハラケミカル製 クリアロンK100、トーネックス製 ECR227、同エスコレッツ2101、荒川化学製 アルコンP100、ハーキュレス(Hercules)製 Regalrez 1078などを挙げることができる。
 本発明では、ブテン系重合体との相溶性を考慮し、水素添加物を用いることが好ましい。中でも、熱安定性に優れる石油樹脂の水素化物がより好ましい。
[Tackifier]
As tackifying resins [II], Idemitsu Petrochemical's Imabu P-125, Imabu P-100, Imabu P-90, Sanyo Chemical Industries Umex 1001, Mitsui Chemicals Highlets T1115, Yashara Chemicals Clearon K100, Tonex Examples include ECR227 manufactured by the same company, Escoretz 2101, Alcon P100 manufactured by Arakawa Chemical, and Regalrez 1078 manufactured by Hercules.
In the present invention, it is preferable to use a hydrogenated product in consideration of compatibility with a butene polymer. Among them, a hydride of petroleum resin having excellent thermal stability is more preferable.
[ブテン系重合体官能化物]
 本発明の粘接着剤組成物は、上記ブテン系重合体の他に、上記ブテン系重合体の末端ビニリデン基の5モル%以上(より好ましくは10モル%以上)を官能基に変性したブテン系重合体官能化物を含んでいてもよい。
 当該官能基は、好ましくは水酸基、エポキシ基、アルコキシ珪素基、アルキル珪素基、カルボキシル基、アミノ基及びイソシアナート基から選択される1以上の官能基である。
 また、上記ブテン系重合体官能化物は、酸無水物構造を有していてもよい。酸無水物構造とは、カルボン酸のカルボキシル2個から1分子の水が失われ、2つのアシル基が1個の酸素原子を共有する構造である。一般に、R1COOCOR2で示される。例えば、無水マレイン酸、無水コハク酸、無水フタル酸等が挙げられる。
[Butene polymer functionalized product]
In addition to the butene polymer, the adhesive composition of the present invention is a butene modified with 5 mol% or more (more preferably 10 mol% or more) of the terminal vinylidene group of the butene polymer as a functional group. It may contain a functionalized polymer.
The functional group is preferably one or more functional groups selected from a hydroxyl group, an epoxy group, an alkoxysilicon group, an alkylsilicon group, a carboxyl group, an amino group, and an isocyanate group.
Moreover, the butene polymer functionalized product may have an acid anhydride structure. An acid anhydride structure is a structure in which one molecule of water is lost from two carboxyls of a carboxylic acid and two acyl groups share one oxygen atom. Generally indicated by R 1 COOCOR 2 . For example, maleic anhydride, succinic anhydride, phthalic anhydride and the like can be mentioned.
 ブテン系重合体官能化物は、官能基を有することで、極性化合物との相溶性及び分散性を向上させることができ、各種ポリマーとの組成物を得ることが容易となり、また、水等の極性溶媒への溶解性及び分散性を向上させることができる。 The functionalized butene polymer has a functional group, thereby improving compatibility and dispersibility with polar compounds, making it easy to obtain compositions with various polymers, and polarities such as water. Solubility and dispersibility in a solvent can be improved.
 官能基の導入方法としては、例えば無水マレイン酸のエン付加反応;蟻酸/過酸化水素による水酸基の導入;過酢酸によるエポキシ化;トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、メチルジメトキシシラン、エチルジエトキシシラン、フェニルジメトキシシラン、フェニルジエトキシシラン等のアルコキシシランとの反応によるアルコキシ珪素基の導入;トリノルマルへキシルシラン、トリノルマルオクチルシラン等のアルキルシラン類との反応によるアルキル珪素基の導入;臭化銅/ターシャリブチルパーオキシアセテートによるカルボキシル化;無水マレイン化物とジアミン化合物との反応によるアミノ基の導入;無水マレイン化物とジイソシアネート化合物との反応によるイソシアネート基の導入等が挙げられる。 Examples of functional group introduction methods include maleic anhydride ene addition reaction; introduction of hydroxyl group with formic acid / hydrogen peroxide; epoxidation with peracetic acid; trimethoxysilane, triethoxysilane, triisopropoxysilane, methyldimethoxysilane, Introduction of an alkoxysilicon group by reaction with an alkoxysilane such as ethyldiethoxysilane, phenyldimethoxysilane, phenyldiethoxysilane; introduction of an alkylsilicon group by reaction with an alkylsilane such as tri-hexylsilane, tri-normal octylsilane; Carboxylation with copper bromide / tertiary butyl peroxyacetate; introduction of amino group by reaction of anhydrous maleate and diamine compound; introduction of isocyanate group by reaction of anhydrous maleate and diisocyanate compound It is.
 官能基の導入方法は上記のほか、BH3・THFによるヒドロ硼素化;9-ボランビシクロ[3,3,1]ノナンによる硼素化;イソブチルアルミニウムハイドライド等によるメタル化;ジブロム又は臭化水素によるハロゲン化;蟻酸/コバルト系触媒によるヒドロホルミル化;一酸化炭素/ジコバルトオクタカルボニル触媒によるアルデヒド化;無水酢酸/硫酸によるスルホン化等を用いることができる In addition to the above, the functional group is introduced by hydroboration with BH 3 .THF; boronation with 9-boranebicyclo [3,3,1] nonane; metalation with isobutylaluminum hydride or the like; halogen with dibromo or hydrogen bromide Hydroformylation with formic acid / cobalt catalyst; aldehyde formation with carbon monoxide / dicobalt octacarbonyl catalyst; sulfonation with acetic anhydride / sulfuric acid, etc. can be used.
[溶媒]
 本発明の粘接着剤組成物は溶媒を含有していてもよく、その具体例としては、酢酸エチル、アセトン、tert-ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテルアセタート、エチルセルソルブ、エチルセルソルブアセタート、ブチルセルソルブ、ブチルセルソルブアセタート等や、ベンゼン、トルエン、キシレン、エチルベンゼン、メトキシベンゼン、1,2-ジメトキシベンゼン、ヘキサン、シクロヘキサン、ヘプタン、ペンタンなどの芳香族炭化水素類などの有機溶媒を挙げることができる。
 本発明の粘接着剤組成物中における溶媒の比率は、組成物を調製するなどの目的のために溶液状とする場合を除き、粘接着剤組成物全量基準で70質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
[solvent]
The adhesive composition of the present invention may contain a solvent, and specific examples thereof include ethyl acetate, acetone, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, ethylene Glycol monomethyl ether acetate, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether acetate, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, butyl cellosolve acetate, benzene, toluene, xylene, ethylbenzene, methoxybenzene, 1, Examples thereof include organic solvents such as aromatic hydrocarbons such as 2-dimethoxybenzene, hexane, cyclohexane, heptane, and pentane.
The ratio of the solvent in the adhesive composition of the present invention is 70% by mass or less based on the total amount of the adhesive composition, except for the case of preparing a solution for the purpose of preparing the composition. It is preferably 50% by mass or less, and more preferably 30% by mass or less.
[添加剤]
 本発明の粘接着剤組成物には添加剤を加えてもよく、添加剤としては、従来公知の添加剤を配合することができ、例えば、発泡剤、耐侯安定剤、紫外線吸収剤,光安定剤,耐熱安定剤、帯電防止剤、難燃剤,合成油,ワックス、電気的性質改良剤、オイル、粘度調製剤、着色防止剤、防曇剤、顔料、染料、可塑剤、軟化剤、老化防止剤、塩酸吸収剤、塩素捕捉剤,酸化防止剤などの添加剤が挙げられる。
[Additive]
An additive may be added to the adhesive composition of the present invention, and as the additive, a conventionally known additive can be blended, for example, a foaming agent, an anti-wrinkle stabilizer, an ultraviolet absorber, light Stabilizer, heat stabilizer, antistatic agent, flame retardant, synthetic oil, wax, electrical property improver, oil, viscosity modifier, anti-coloring agent, antifogging agent, pigment, dye, plasticizer, softener, aging Additives such as an inhibitor, a hydrochloric acid absorbent, a chlorine scavenger, and an antioxidant can be mentioned.
<粘着テープ>
 本発明の粘着テープは、上記粘接着剤組成物を粘接着層に用いたものであり、粘接着剤組成物は、支持体上に直接塗布してもよく、または補助支持体上に塗着し、それから最終的な支持体上に転写してもよい。支持体の材料は特に限定されないが、例えば、織物、ニット、スクリム、不織布、ラミネート、ネット、フィルム、紙、ティシュー、発泡体、発泡フィルム等を使用することができる。フィルムとしては、ポリプロピレン、ポリエチレン、ポリブテン、配向ポリエステル、硬質PVCおよび軟質PVC、ポリオレフィン発泡体、ポリウレタン発泡体、EPDM、クロロプレン発泡体等が挙げられる。
 支持体は、粘接着剤組成物と突き合わせる前に、下塗りによって化学的に、またはコロナなどの物理的前処理によって、準備することができる。支持体の背面には、抗接着性の物理的処理またはコーティングを施すことができる。
<Adhesive tape>
The pressure-sensitive adhesive tape of the present invention uses the above adhesive composition for an adhesive layer, and the adhesive composition may be applied directly on a support or on an auxiliary support. And then transferred onto the final support. The material of the support is not particularly limited, and for example, woven fabric, knit, scrim, non-woven fabric, laminate, net, film, paper, tissue, foam, foam film, etc. can be used. Examples of the film include polypropylene, polyethylene, polybutene, oriented polyester, hard PVC and soft PVC, polyolefin foam, polyurethane foam, EPDM, and chloroprene foam.
The support can be prepared chemically by priming or by physical pretreatment such as corona prior to abutting the adhesive composition. The back side of the support can be provided with an anti-adhesive physical treatment or coating.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。物性の測定方法および測定装置を以下に示す。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The physical property measuring method and measuring apparatus are shown below.
合成例1 [錯体A((1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロライド)の合成]
 シュレンク瓶に(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(インデン)を0.83g(2.4mmol)とエーテル50mLを入れた。-78℃に冷却しn-BuLi(ヘキサン溶液1.6M)を3.1mL(5.0mmol)加えた後、室温で12時間攪拌した。溶媒を留去し得られた固体をヘキサン20mLで洗浄することによりリチウム塩をエーテル付加体として1.1g(2.3mmol)得た。このリチウム塩をTHF50mLに溶解し-78℃に冷却した。臭化n-ブチル0.57mL(5.3mmol)をゆっくりと滴下し室温で12時間攪拌した。溶媒を留去しヘキサン50mLで抽出したあと溶媒を除去して(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチルインデン)を0.81g(1.77mmol)得た。(収率74%)
 次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチルインデン)を0.81g(1.77mmol)とエーテル100mLを入れた。-78℃に冷却しn-BuLi(ヘキサン溶液1.54M)を2.7mL(4.15mmol)加えた後、室温で12時間攪拌した。溶媒を留去し、得られた固体をヘキサンで洗浄することによりリチウム塩をエーテル付加体として0.28g(1.43mmol)得た。
 窒素気流下で前記で得られたリチウム塩をトルエン50mLに溶解した。-78℃に冷却し、ここへ予め-78℃に冷却した四塩化ジルコニウム0.33g(1.42mmol)のトルエン(50mL)懸濁液を滴下し、滴下後、室温で6時間攪拌した。その後ろ過し、ろ液の溶媒を留去した。ジクロロメタンより再結晶化することにより(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-n-ブチルインデニル)ジルコニウムジクロライドを0.2g(0.32mmol)得た。(収率22%)
1H-NMR(90MHz,CDCl3)による測定の結果は、:δ0.88,0.99(12H,ジメチルシリレン),0.7-1.0,1.1-1.5(18H,n-Bu),7.0-7.6(8H,ベンゼン環プロトン)であった。
Synthesis Example 1 [Synthesis of Complex A ((1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindenyl) zirconium dichloride)]
A Schlenk bottle was charged with 0.83 g (2.4 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (indene) and 50 mL of ether. After cooling to −78 ° C. and adding 3.1 mL (5.0 mmol) of n-BuLi (hexane solution 1.6 M), the mixture was stirred at room temperature for 12 hours. The solid obtained by distilling off the solvent was washed with 20 mL of hexane to obtain 1.1 g (2.3 mmol) of a lithium salt as an ether adduct. This lithium salt was dissolved in 50 mL of THF and cooled to -78 ° C. 0.57 mL (5.3 mmol) of n-butyl bromide was slowly added dropwise and stirred at room temperature for 12 hours. After the solvent was distilled off and extraction was performed with 50 mL of hexane, the solvent was removed and 0.81 g (1. 1'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n-butylindene) was added. 77 mmol). (Yield 74%)
Next, 0.81 g (1.77 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindene) obtained above was placed in a Schlenk bottle under a nitrogen stream. ) And 100 mL of ether. After cooling to −78 ° C. and adding 2.7 mL (4.15 mmol) of n-BuLi (hexane solution 1.54 M), the mixture was stirred at room temperature for 12 hours. The solvent was distilled off, and the resulting solid was washed with hexane to obtain 0.28 g (1.43 mmol) of a lithium salt as an ether adduct.
The lithium salt obtained above was dissolved in 50 mL of toluene under a nitrogen stream. The solution was cooled to −78 ° C., and a suspension of 0.33 g (1.42 mmol) of zirconium tetrachloride previously cooled to −78 ° C. in toluene (50 mL) was added dropwise thereto, followed by stirring at room temperature for 6 hours. Thereafter, the mixture was filtered, and the solvent of the filtrate was distilled off. Recrystallization from dichloromethane yielded 0.2 g (0.32 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-n-butylindenyl) zirconium dichloride. (Yield 22%)
The results of measurement by 1 H-NMR (90 MHz, CDCl 3 ) are: δ 0.88, 0.99 (12H, dimethylsilylene), 0.7-1.0, 1.1-1.5 (18H, n -Bu), 7.0-7.6 (8H, benzene ring proton).
合成例2 [錯体B((1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド(シス体))の製造]
(2-メチルフェニルシリルインデンの合成)
 2L三口フラスコにマグネシウム(20.0g,833mmol)及びTHF(250ml)を投入した後、1,2-ジブロモエタン(1.0ml)を加え、室温下で15分間攪拌させ、マグネシウム表面を活性化させた。ここへ2-ブロモインデン(78.3g,401mmol)のTHF(250ml)溶液を同圧滴下漏斗を用いて滴下し、滴下終了後室温下で30分間攪拌させた。得られたグリニャード溶液を氷浴を用いて冷却し、ここへジクロロメチルフェニルシラン(65.0ml,400mmol)を投入し、室温に戻してから30分間攪拌させた。反応混合物を留去し、真空下で十分乾燥させた後ヘキサン(1L)を用いて抽出し、ヘキサン溶液を留去する事で、2-メチルフェニルシリルインデンを淡黄色オイルとして得た(66.3g,245mmol,66%)。
1H-NMR (CDCl3):δ0.920(s,3H,SiMe),δ3.60(2H,IndH2),δ7.3~7.7(5H,aromatics)
Synthesis Example 2 [Production of Complex B ((1,2′-Methylphenylsilylene) (2,1′-Methylphenylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium Dichloride (Cis))]
(Synthesis of 2-methylphenylsilylindene)
After putting magnesium (20.0 g, 833 mmol) and THF (250 ml) into a 2 L three-necked flask, 1,2-dibromoethane (1.0 ml) was added and stirred at room temperature for 15 minutes to activate the magnesium surface. It was. A solution of 2-bromoindene (78.3 g, 401 mmol) in THF (250 ml) was added dropwise thereto using the same pressure dropping funnel, and the mixture was stirred at room temperature for 30 minutes after completion of the addition. The obtained Grignard solution was cooled using an ice bath, dichloromethylphenylsilane (65.0 ml, 400 mmol) was added thereto, and the mixture was returned to room temperature and stirred for 30 minutes. The reaction mixture was evaporated, sufficiently dried under vacuum, extracted with hexane (1 L), and the hexane solution was evaporated to give 2-methylphenylsilylindene as a pale yellow oil (66. 3 g, 245 mmol, 66%).
1 H-NMR (CDCl 3 ): δ 0.920 (s, 3H, SiMe), δ 3.60 (2H, IndH 2 ), δ 7.3 to 7.7 (5H, aromatics)
 上記2-メチルフェニルシリルインデンをTHF(180ml)に溶解させ、氷浴で冷却させてからLDA(245mmol)を同圧滴下漏斗を用いて滴下した。室温まで昇温した後、真空下で溶媒を留去し、得られた泡状固体をヘキサン(500ml×2)で抽出することで(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビスインデンを白色泡状固体として得た(40.0g,85.5mmol,70%)。
 上記(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビスインデンをジエチルエーテル(220ml)に溶解させ、氷浴により冷却しながらn-ブチルリチウムヘキサン溶液(67.0ml,181mmol)を滴下し、室温まで昇温し15分間攪拌させた。反応混合物の上澄みから得られる固体をヘキサンにより洗浄することにより白色固体として(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビスインデン(シス体リッチ)のリチウム塩を得た。(31.5g,51.2mmol,63%,シス体:トランス体=74:26)
1H-NMR(THF-d8):δ0.742(s,6H,SiMe-トランス体),δ0.844(s,6H,SiMe-シス体),δ6.54(s,2H,IndH-トランス体),δ6.61(s,2H,IndH-シス体),δ6.4~7.8(8H,aromatics)
The 2-methylphenylsilylindene was dissolved in THF (180 ml), cooled in an ice bath, and then LDA (245 mmol) was added dropwise using the same pressure dropping funnel. After raising the temperature to room temperature, the solvent was distilled off under vacuum, and the resulting foam solid was extracted with hexane (500 ml × 2) to obtain (1,2′-methylphenylsilylene) (2,1′- Methylphenylsilylene) bisindene was obtained as a white foamy solid (40.0 g, 85.5 mmol, 70%).
The above (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) bisindene was dissolved in diethyl ether (220 ml), and cooled with an ice bath while being cooled with an n-butyllithium hexane solution (67.0 ml, 181 mmol). ) Was dropped, and the mixture was warmed to room temperature and stirred for 15 minutes. The solid obtained from the supernatant of the reaction mixture was washed with hexane to obtain a lithium salt of (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) bisindene (cis isomer rich) as a white solid. . (31.5 g, 51.2 mmol, 63%, cis isomer: trans isomer = 74: 26)
1 H-NMR (THF-d 8 ): δ 0.742 (s, 6H, SiMe-trans isomer), δ 0.844 (s, 6H, SiMe-cis isomer), δ 6.54 (s, 2H, IndH-trans ), Δ 6.61 (s, 2H, IndH-cis isomer), δ 6.4 to 7.8 (8H, aromatics)
 (1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)ビスインデン(シス体体過剰)のリチウム塩を全てTHF(200ml)に溶解させ、氷浴を用いて冷却させた。ここにヨードメチルトリメチルシラン(16.0ml,108mmol)を滴下し、滴下終了後室温下で一時間攪拌させた後水によりクエンチし、有機層より(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)(ビス-3-トリメチルシリルメチルインデン)を黄色―茶色粘張固体として得た(32.4g,50.6mmol,99%)。
上記(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)(ビス-3-トリメチルシリルメチルインデン)をジエチルエーテルに溶解させ、氷浴で冷却させた後、n-ブチルリチウム(40.0ml,106mmol)を滴下する事により析出した淡黄色粉末を上澄みから分離し、ヘキサンにより洗浄することにより(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)(ビス-3-トリメチルシリルメチルインデン)のリチウム塩を得た(19.3g,25.3mmol,50%)
1H-NMR(THF-d8):δ-0.115(s,18H,CH2SiMe3-Asym),δ-0.03(s,18H,CH2SiMe3-Sym.),δ2.4~2.6(4H,CH2SMe3),δ6.3~7.7(aromatics)
 上記(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)(ビス-3-トリメチルシリルメチルインデン)のリチウム塩をヘキサンに懸濁させ、ドライアイス-エタノールバスにより-30℃まで冷却し、ここへ四塩化ジルコニウム(5.9g,25mmol)のヘキサン懸濁液を滴下した。終夜攪拌後、沈殿した黄色固体を上澄みから分離し、この黄色固体を塩化メチレンにより抽出することにより(1,2’-メチルフェニルシリレン)(2,1’-メチルフェニルシリレン)(ビス-3-トリメチルシリルメチルインデニル)ジルコニウムジクロライド(シス体)を黄色粉末として得た(7.35g,9.24mmol,37%,シス体:トランス体=100:0)。
1H-NMR of L25-Sym.(CDCl3,):δ-0.07(s,18H,CH2SiMe3),δ0.929(s,6H,SiMe),δ2.26,2.29(d,2H,CH2SiMe3)δ2.71,2.75(d,2H,CH2SiMe3)δ6.9~7.5(8H, aromatics)
All lithium salts of (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) bisindene (cis isomer excess) were dissolved in THF (200 ml) and cooled using an ice bath. Iodomethyltrimethylsilane (16.0 ml, 108 mmol) was added dropwise thereto, and after completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour and then quenched with water. From the organic layer, (1,2'-methylphenylsilylene) (2, 1′-methylphenylsilylene) (bis-3-trimethylsilylmethylindene) was obtained as a yellow-brown viscous solid (32.4 g, 50.6 mmol, 99%).
The above (1,2′-methylphenylsilylene) (2,1′-methylphenylsilylene) (bis-3-trimethylsilylmethylindene) was dissolved in diethyl ether, cooled in an ice bath, and then n-butyllithium ( (40.0 ml, 106 mmol) was added dropwise, and the pale yellow powder precipitated was separated from the supernatant and washed with hexane to obtain (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) (bis -3-trimethylsilylmethylindene) lithium salt was obtained (19.3 g, 25.3 mmol, 50%)
1 H-NMR (THF-d 8 ): δ-0.115 (s, 18H, CH 2 SiMe 3 -Asym), δ-0.03 (s, 18H, CH 2 SiMe 3 -Sym.), Δ2. 4 to 2.6 (4H, CH 2 SMe 3 ), δ 6.3 to 7.7 (aromatics)
Suspend the lithium salt of (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) (bis-3-trimethylsilylmethylindene) in hexane, and bring it to -30 ° C with a dry ice-ethanol bath After cooling, a hexane suspension of zirconium tetrachloride (5.9 g, 25 mmol) was added dropwise thereto. After stirring overnight, the precipitated yellow solid was separated from the supernatant, and this yellow solid was extracted with methylene chloride to extract (1,2'-methylphenylsilylene) (2,1'-methylphenylsilylene) (bis-3- Trimethylsilylmethylindenyl) zirconium dichloride (cis isomer) was obtained as a yellow powder (7.35 g, 9.24 mmol, 37%, cis isomer: trans isomer = 100: 0).
1 H-NMR of L25-Sym. (CDCl 3 ): δ-0.07 (s, 18H, CH 2 SiMe 3 ), δ 0.929 (s, 6H, SiMe), δ 2.26, 2.29 (d, 2H, CH 2 SiMe 3 ) δ2.71, 2.75 (d, 2H, CH 2 SiMe 3 ) δ6.9-7.5 (8H, aromatics)
合成例3 [錯体C((1,1’-エチレン)(2,2’-テトラメチルジシリレン)ビスインデニルジルコニウムジクロライド)の製造]
 500ミリリットル2口フラスコにマグネシウム(12グラム,500ミリモル)及びテトラヒドロフラン(30ミリリットル)を投入し、1,2-ジブロモエタン(0.2ミリリットル)を滴下することでマグネシウムを活性化した。ここへテトラヒドロフラン(150ミリリットル)に溶解させた2-ブロモインデン(20グラム,103ミリモル)を滴下し、室温で1時間攪拌した。その後、1,2-ジクロロテトラメチルジシラン(9.4ミリリットル,5.1ミリモル)を0℃で滴下した。反応混合物を室温で1時間攪拌した後、溶媒を留去し、残渣をヘキサン(150ミリリットル×2)で抽出し、1,2-ジ(1H-インデン-2-イル)-1,1,2,2-テトラメチルジシランを白色固体として得た(15.4グラム,44.4ミリモル,収率86%)。
 これをジエチルエーテル(100ミリリットル)に溶解し、0℃でn-ブチルリチウム(2.6モル/リットル,38ミリリットル,98ミリモル)を滴下し、室温で1時間攪拌したところ白色粉末が沈殿した。上澄みを除去し、固体をヘキサン(80ミリリットル)で洗浄して、リチウム塩を白色粉末状固体として得た(14.6グラム,33.8ミリモル,76%)。
 これをテトラヒドロフラン(120ミリリットル)に溶解させ、-30℃で1,2‐ジブロモエタン(2.88ミリリットル,33.8ミリモル)を滴下した。反応混合物を室温で1時間攪拌した後、乾固し、残渣をヘキサン(150ミリリットル)で抽出することにより2架橋配位子を無色オイル状液体として得た(14.2グラム,37.9ミリモル)。
 これをジエチルエーテル(120ミリリットル)に溶解させ、0℃でn-ブチルリチウム(2.6モル/リットル,32ミリリットル,84ミリモル)を滴下し、室温で1時間攪拌したところ白色粉末が沈殿した。上澄みを除去し、固体をヘキサン(70ミリリットル)で洗浄することにより2架橋配位子のリチウム塩を白色粉末として得た(14.0グラム,31ミリモル,収率81%)。
 得られた2架橋配位子のリチウム塩(3.00グラム,6.54ミリモル)のトルエン(30ミリリットル)懸濁液に、-78℃で四塩化ジルコニウム(1.52グラム,6.54ミリモル)のトルエン(30ミリリットル)懸濁液をキャヌラーにより滴下した。反応混合物を室温で2時間攪拌した後、上澄み液を分離し、さらに残渣をトルエンで抽出した。
 減圧下、上澄み液及び抽出液の溶媒を留去して乾固することにより黄色固体として下記式(1)に示す(1,1’-エチレン)(2,2’-テトラメチルジシリレン)ビスインデニルジルコニウムジクロライドを得た(2.5グラム,4.7ミリモル,収率72%)。
Synthesis Example 3 [Production of Complex C ((1,1′-Ethylene) (2,2′-Tetramethyldisilylene) bisindenylzirconium Dichloride)]
Magnesium (12 grams, 500 mmol) and tetrahydrofuran (30 ml) were charged into a 500 ml two-necked flask, and magnesium was activated by dropwise addition of 1,2-dibromoethane (0.2 ml). To this was added dropwise 2-bromoindene (20 grams, 103 mmol) dissolved in tetrahydrofuran (150 milliliters), and the mixture was stirred at room temperature for 1 hour. Thereafter, 1,2-dichlorotetramethyldisilane (9.4 ml, 5.1 mmol) was added dropwise at 0 ° C. After stirring the reaction mixture at room temperature for 1 hour, the solvent was distilled off, the residue was extracted with hexane (150 ml × 2), and 1,2-di (1H-inden-2-yl) -1,1,2 , 2-tetramethyldisilane was obtained as a white solid (15.4 grams, 44.4 mmol, 86% yield).
This was dissolved in diethyl ether (100 ml), n-butyllithium (2.6 mol / l, 38 ml, 98 mmol) was added dropwise at 0 ° C., and the mixture was stirred at room temperature for 1 hour to precipitate a white powder. The supernatant was removed and the solid was washed with hexane (80 ml) to give the lithium salt as a white powdery solid (14.6 grams, 33.8 mmol, 76%).
This was dissolved in tetrahydrofuran (120 ml), and 1,2-dibromoethane (2.88 ml, 33.8 mmol) was added dropwise at -30 ° C. The reaction mixture was stirred at room temperature for 1 hour and then evaporated to dryness, and the residue was extracted with hexane (150 ml) to give a bi-bridged ligand as a colorless oily liquid (14.2 grams, 37.9 mmol). ).
This was dissolved in diethyl ether (120 ml), n-butyllithium (2.6 mol / liter, 32 ml, 84 mmol) was added dropwise at 0 ° C., and the mixture was stirred at room temperature for 1 hour to precipitate a white powder. The supernatant was removed, and the solid was washed with hexane (70 ml) to give a lithium salt of the bi-bridged ligand as a white powder (14.0 grams, 31 mmol, 81% yield).
To a suspension of the obtained lithium salt of the bi-bridged ligand (3.00 g, 6.54 mmol) in toluene (30 mL) at −78 ° C., zirconium tetrachloride (1.52 g, 6.54 mmol). ) In toluene (30 ml) was added dropwise with a cannula. After the reaction mixture was stirred at room temperature for 2 hours, the supernatant was separated and the residue was extracted with toluene.
Under reduced pressure, the solvent of the supernatant and the extract was distilled off to dryness to give (1,1′-ethylene) (2,2′-tetramethyldisilene) bis represented by the following formula (1) as a yellow solid. Indenyl zirconium dichloride was obtained (2.5 grams, 4.7 mmol, 72% yield).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 1H-NMRの測定結果を以下に示す。
1H-NMR(CDCl3):δ0.617(s,6H,-SiMe2-),0.623(s,6H,-SiMe2-),3.65-3.74,4.05-4.15(m,4H,CH2CH2),6.79(s,2H,CpH),7.0-7.5(m,8H,Aromatic-H)
The measurement result of 1 H-NMR is shown below.
1 H-NMR (CDCl 3 ): δ 0.617 (s, 6H, —SiMe 2 —), 0.623 (s, 6H, —SiMe 2 —), 3.65-3.74, 4.05-4 .15 (m, 4H, CH 2 CH 2 ), 6.79 (s, 2H, CpH), 7.0-7.5 (m, 8H, Aromatic-H)
合成例4 [錯体D(ジメチルシリレンビス(2-メチルベンゾインデニル)ジルコニウムジクロリド)]
 文献(Organometallics 1994, 13, 954)の記載に従って下記(ジメチルシリレンビス(2-メチルベンゾインデニル)ジルコニウムジクロリド)を合成した。
Synthesis Example 4 [Complex D (Dimethylsilylenebis (2-methylbenzoindenyl) zirconium dichloride)]
The following (dimethylsilylene bis (2-methylbenzoindenyl) zirconium dichloride) was synthesized according to the description in the literature (Organometallics 1994, 13, 954).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
製造例1(1-ブテン単独重合体の製造)
 加熱乾燥した1リットルオートクレーブに、ヘプタン(200mL)、トリイソブチルアルミニム(2M、0.2mL、0.4mmol)、ブテン-1(200mL)、錯体Aのヘプタンスラリー(10μmol/mL、0.04mL、0.4μmol)、ジメチルアニリリニウムテトラキス(ペンタフルオロフェニル)ボレートのヘプタンスラリー(10μmol/mL、0.12mL、1.2μmol)を加え、さらに水素0.1MPa導入した。撹絆しながら温度を52℃にした後、30分間重合した。重合反応終了後、5mLのエタノールで重合を停止し、反応物を減圧下、乾燥することにより、1-ブテン単独重合体を83g得た(重合体A)。
Production Example 1 (Production of 1-butene homopolymer)
To a heat-dried 1 liter autoclave, heptane (200 mL), triisobutylaluminium (2M, 0.2 mL, 0.4 mmol), butene-1 (200 mL), complex A heptane slurry (10 μmol / mL, 0.04 mL, 0.4 μmol), heptane slurry of dimethylanilinium tetrakis (pentafluorophenyl) borate (10 μmol / mL, 0.12 mL, 1.2 μmol) was added, and 0.1 MPa of hydrogen was further introduced. While stirring, the temperature was raised to 52 ° C. and polymerization was carried out for 30 minutes. After completion of the polymerization reaction, the polymerization was stopped with 5 mL of ethanol, and the reaction product was dried under reduced pressure to obtain 83 g of 1-butene homopolymer (Polymer A).
13C-NMR測定]
 上記重合体aについて、下記の装置及び条件にて13C-NMRスペクトルの測定を行い、メソペンタッド分率[mmmm]、メソダイアッド分率[m]、1,4-結合分率及び2,1-結合分率を求めた。結果を第1表に示す。
  装置:日本電子(株)製JNM-EX400型13C-NMR装置
  方法:プロトン完全デカップリング法
  濃度:230mg/ミリリットル
  溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
  温度:130℃
  パルス幅:45°
  パルス繰り返し時間:4秒
  積算:10000回
[ 13 C-NMR measurement]
The polymer a was measured for 13 C-NMR spectrum using the following apparatus and conditions, and mesopentad fraction [mmmm], mesodyad fraction [m], 1,4-bond fraction, and 2,1-bond. The fraction was determined. The results are shown in Table 1.
Apparatus: JNM-EX400 type 13 C-NMR apparatus manufactured by JEOL Ltd. Method: Proton complete decoupling method Concentration: 230 mg / ml Solvent: 90:10 (volume ratio) of 1,2,4-trichlorobenzene and heavy benzene Mixed solvent temperature: 130 ° C
Pulse width: 45 °
Pulse repetition time: 4 seconds Integration: 10,000 times
[DSC測定]
 上記重合体aについて、示差走査型熱量計(パーキン・エルマー社製、DSC-7)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱量をΔH-Dとし、また、このとき得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップを融点Tm-Dとを求めた。結果を第1表に示す。
[DSC measurement]
Using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer Co.), a 10 mg sample is held at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min. The melting endotherm obtained by the above step was defined as ΔHD, and the peak top of the peak observed on the highest temperature side of the melting endotherm curve obtained at this time was determined as the melting point Tm-D. The results are shown in Table 1.
[GPC測定]
 上記重合体aについて、ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)および分子量分布(Mw/Mn)を求めた。測定には、下記の装置及び条件を使用し、ポリスチレン換算の重量平均分子量を得た。結果を第1表に示す。
<GPC測定装置>
カラム     :TOSO GMHHR-H(S)HT
検出器     :液体クロマトグラム用RI検出器 WATERS 150C
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0ml/分
 試料濃度   :2.2mg/ml
 注入量    :160μl
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
[GPC measurement]
About the said polymer a, the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) were calculated | required by the gel permeation chromatography (GPC) method. The following apparatus and conditions were used for the measurement, and a weight average molecular weight in terms of polystyrene was obtained. The results are shown in Table 1.
<GPC measurement device>
Column: TOSO GMHHR-H (S) HT
Detector: RI detector for liquid chromatogram WATERS 150C
<Measurement conditions>
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 ml / min Sample concentration: 2.2 mg / ml
Injection volume: 160 μl
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
[II型結晶分率(CII)]
 上記重合体aについて、X線回折分析によりI型結晶状態のピーク及びII型結晶状態のピークを測定し、結晶中のII型結晶分率(CII)を求めた。X線回折分析(WAXD)は、理学電気(株)製の対陰極型ロータフレックスRU-200を用い、下記の条件にて行った。結果を第1表に示す。
 試料状態:190℃にて5分間融解させ、氷水にて急冷固化した後、室温にて1時間放置
 出力:30kV,200mA
 検出器:PSPC(位置敏感比例計数管)
 積算時間:200秒
[Type II crystal fraction (CII)]
About the said polymer a, the peak of the I type crystal state and the peak of the II type crystal state were measured by X-ray diffraction analysis, and the II type crystal fraction (CII) in a crystal | crystallization was calculated | required. X-ray diffraction analysis (WAXD) was performed using a counter cathode type rotor flex RU-200 manufactured by Rigaku Corporation under the following conditions. The results are shown in Table 1.
Sample state: Melted at 190 ° C. for 5 minutes, rapidly cooled and solidified with ice water, then left at room temperature for 1 hour Output: 30 kV, 200 mA
Detector: PSPC (position sensitive proportional counter)
Total time: 200 seconds
[極限粘度[η]]
 上記重合体aについて、粘度計((株)離合社製、商品名:「VMR-053U-PC・F01」)、ウベローデ型粘度管(測時球容積:2~3ml、毛細管直径:0.44~0.48mm)、溶媒として1,2,4-トリクロルベンゼンを用いて、0.02~0.16g/dLの溶液を145℃にて測定した。結果を第1表に示す。
[Intrinsic viscosity [η]]
With respect to the polymer a, a viscometer (manufactured by Kogai Co., Ltd., trade name: “VMR-053U-PC • F01”), Ubbelohde type viscosity tube (time volume of bulb: 2-3 ml, capillary diameter: 0.44) And a solution of 0.02 to 0.16 g / dL was measured at 145 ° C. using 1,2,4-trichlorobenzene as a solvent. The results are shown in Table 1.
製造例2(1-ブテン単独重合体の製造)
 製造例1において、錯体Aに代えて錯体B(10μmol/mL、0.12mL、1.2μmol)を用い、ジメチルアニリリニウムテトラキス(ペンタフルオロフェニル)ボレートのヘプタンスラリーの使用量を3.6μmol(10μmol/mL、0.36mL)とし、重合温度を50℃にした以外は製造例1と同様にすることにより、1-ブテン単独重合体を40g得た(重合体B)。重合体Bの物性を第1表に示す。
Production Example 2 (Production of 1-butene homopolymer)
In Production Example 1, complex B (10 μmol / mL, 0.12 mL, 1.2 μmol) was used instead of complex A, and the amount of heptane slurry of dimethylanilinium tetrakis (pentafluorophenyl) borate used was 3.6 μmol ( 10 μmol / mL, 0.36 mL) and 40 g of 1-butene homopolymer was obtained in the same manner as in Production Example 1 except that the polymerization temperature was 50 ° C. (Polymer B). The physical properties of the polymer B are shown in Table 1.
製造例3(1-ブテン単独重合体の製造)
 製造例1において、錯体Aに代えて錯体C(10μmol/mL、0.20mL、2.0μmol)を用い、ジメチルアニリリニウムテトラキス(ペンタフルオロフェニル)ボレートに代えて、東ソーファインケム社製MAO(2000μmol)を用い、重合温度を70℃にした以外は製造例1と同様にすることにより、1-ブテン単独重合体を82g得た(重合体C)。重合体Cの物性を第1表に示す。
Production Example 3 (Production of 1-butene homopolymer)
In Production Example 1, instead of Complex A, Complex C (10 μmol / mL, 0.20 mL, 2.0 μmol) was used, and instead of dimethylanilinium tetrakis (pentafluorophenyl) borate, MAO manufactured by Tosoh Finechem Corporation (2000 μmol) Was used in the same manner as in Production Example 1 except that the polymerization temperature was changed to 70 ° C., to obtain 82 g of a 1-butene homopolymer (Polymer C). The physical properties of the polymer C are shown in Table 1.
製造例4(1-ブテン-プロピレン共重合体の製造)
 加熱乾燥した1リットルオートクレーブに、ヘプタン(300mL)、トリイソブチルアルミニム(2M、0.2mL、0.4mmol)、ブテン-1(60mL)、錯体Aのヘプタンスラリー(10μmol/mL、0.02mL、0.2μmol)、ジメチルアニリリニウムテトラキス(ペンタフルオロフェニル)ボレートのヘプタンスラリー(10μmol/mL、0.06mL、0.6μmol)を加え、さらに水素0.05MPa導入した。撹絆しながら温度を60℃にすると同時にプロピレンを導入することにより、全圧を0.8MPaとした。その後、20分間重合した後、5mLのエタノールで重合を停止し、反応物を減圧下、乾燥することにより、1-ブテン-プロピレン共重合体を57g得た(重合体D)。重合体Dの物性を第1表に示す。
Production Example 4 (Production of 1-butene-propylene copolymer)
To a heat-dried 1 liter autoclave, heptane (300 mL), triisobutylaluminum (2M, 0.2 mL, 0.4 mmol), butene-1 (60 mL), complex A heptane slurry (10 μmol / mL, 0.02 mL, 0.2 μmol) and heptane slurry of dimethylanilinium tetrakis (pentafluorophenyl) borate (10 μmol / mL, 0.06 mL, 0.6 μmol) were added, and 0.05 MPa of hydrogen was further introduced. The total pressure was set to 0.8 MPa by bringing propylene into the temperature at 60 ° C. while stirring. Then, after 20 minutes of polymerization, the polymerization was stopped with 5 mL of ethanol, and the reaction product was dried under reduced pressure to obtain 57 g of 1-butene-propylene copolymer (Polymer D). The physical properties of the polymer D are shown in Table 1.
製造例5(1-ブテン-プロピレン共重合体の製造)
 加熱乾燥した1リットルオートクレーブに、ヘプタン(180mL)、トリイソブチルアルミニム(2M、0.2mL、0.4mmol)、ブテン-1(180mL)、錯体Aのヘプタンスラリー(10μmol/mL、0.02mL、0.2μmol)、ジメチルアニリリニウムテトラキス(ペンタフルオロフェニル)ボレートのヘプタンスラリー(10μmol/mL、0.06mL、0.6μmol)を加え、さらに水素0.05MPa導入した。撹絆しながら温度を60℃にすると同時にプロピレンを導入することにより、全圧を0.6MPaとした。その後、20分間重合した後、5mLのエタノールで重合を停止し、反応物を減圧下、乾燥することにより、1-ブテン-プロピレン共重合体を45g得た(重合体E)。重合体Eの物性を第1表に示す。
Production Example 5 (Production of 1-butene-propylene copolymer)
To a heat-dried 1 liter autoclave, heptane (180 mL), triisobutylaluminum (2 M, 0.2 mL, 0.4 mmol), butene-1 (180 mL), complex A heptane slurry (10 μmol / mL, 0.02 mL, 0.2 μmol), heptane slurry of dimethylanilinium tetrakis (pentafluorophenyl) borate (10 μmol / mL, 0.06 mL, 0.6 μmol) was added, and 0.05 MPa of hydrogen was further introduced. The total pressure was set to 0.6 MPa by introducing propylene at the same time as the temperature was 60 ° C. while stirring. Then, after 20 minutes of polymerization, the polymerization was stopped with 5 mL of ethanol, and the reaction product was dried under reduced pressure to obtain 45 g of 1-butene-propylene copolymer (Polymer E). The physical properties of the polymer E are shown in Table 1.
比較製造例1(1-ブテン単独重合体の製造)
 製造例1において、錯体Aに代えて錯体D(10μmol/mL、0.30mL、0.6μmol)を用い、ジメチルアニリリニウムテトラキス(ペンタフルオロフェニル)ボレートのヘプタンスラリーの使用量を1.8μmol(10μmol/mL、0.18mL)とし、重合温度を70℃にした以外は製造例1と同様にすることにより、1-ブテン単独重合体を68g得た(重合体F)。重合体Fの物性を第1表に示す。
Comparative Production Example 1 (Production of 1-butene homopolymer)
In Production Example 1, complex D (10 μmol / mL, 0.30 mL, 0.6 μmol) was used instead of complex A, and the amount of heptane slurry of dimethylanilinium tetrakis (pentafluorophenyl) borate used was 1.8 μmol ( 10 μmol / mL, 0.18 mL), and the same procedure as in Production Example 1 except that the polymerization temperature was 70 ° C., yielded 68 g of 1-butene homopolymer (Polymer F). The physical properties of the polymer F are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
製造例6
 製造例5においてプロピレンを張り込んだ時の全圧を0.55MPaとした以外は同様に重合体を製造し重合体Gとした。重合体Gの物性を第2表に示す。
Production Example 6
In Production Example 5, a polymer was produced in the same manner as Polymer G except that the total pressure when propylene was applied was 0.55 MPa. Table 2 shows the physical properties of the polymer G.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例1(粘接着剤組成物及び粘着テープの作製)
 製造例1で製造した重合体Aを1.35g、出光興産株式会社製水添石油樹脂アイマーブ(P-100)1.35g、出光興産株式会社製ダイアナプロセスオイル(PW-90)0.3g、トルエン20mLを50mLのサンプル瓶中で混合、溶解し、溶液状の粘接着剤組成物を調製した。
 なお、ダイアナプロセスオイルは、粘度調製剤として、粘着層に添加されることがある為、本実施例においても添加したものであって、添加を必須とするものではない。
 80mm×25mm厚さ50μmのPETフィルム(東レ社製、ルミラーT60)の端10mm幅に、粘接着剤組成物を、乾燥後の粘着層が18~20μmになるように、塗布、乾燥することにより、粘着テープの試験片を得た。
Example 1 (Preparation of adhesive composition and pressure-sensitive adhesive tape)
1.35 g of polymer A produced in Production Example 1, 1.35 g of hydrogenated petroleum resin Imabe (P-100) manufactured by Idemitsu Kosan Co., Ltd., 0.3 g of Diana Process Oil (PW-90) manufactured by Idemitsu Kosan Co., Ltd. 20 mL of toluene was mixed and dissolved in a 50 mL sample bottle to prepare a solution-like adhesive composition.
In addition, since Diana process oil may be added to an adhesion layer as a viscosity modifier, it is added also in the present Example, and does not make addition essential.
Apply and dry the adhesive composition on the 10 mm width of 80 mm x 25 mm 50 μm thick PET film (Toray Industries, Lumirror T60) so that the pressure-sensitive adhesive layer after drying is 18-20 μm. Thus, a test piece of an adhesive tape was obtained.
(接着力評価)
 その後、2つの試験片を用いて、粘着層が形成されている25mm幅の端部にて、粘着層同士が接触するように互いに張り合わせ、張り合わせ部を2.0kg/25mmの力で2回ローラーで力を加え、粘着させた。引張試験機((株)島津製作所製、商品名:オートグラフAG-I)を用いて、初期長L0を120mmに設定し、速度300mm/minで引張り、T字剥離試験を行った。剥離試験の際の、平均的な荷重を5点取り、その平均を接着力とした。また、剥離試験の際、スリップスティックやジッピングが起きた場合は、応力値のバラつきが発生する為、最大値と最小値それぞれ4番目の数値の平均値を接着力とした。結果を第3表に示す。
 また、上記試験にて一度剥がした2つの試験片を再度張り合わせ、上記と同様に接着力を評価した。結果を第4表に示す。
(Adhesive strength evaluation)
Then, using two test pieces, at the end of the 25 mm width where the adhesive layer is formed, the adhesive layers are pasted together so that the adhesive layers are in contact with each other, and the pasted part is rolled twice with a force of 2.0 kg / 25 mm. The pressure was applied to make it stick. Using a tensile tester (manufactured by Shimadzu Corporation, trade name: Autograph AG-I), the initial length L 0 was set to 120 mm, the sample was pulled at a speed of 300 mm / min, and a T-shaped peel test was performed. The average load at the time of the peel test was taken at five points, and the average was taken as the adhesive strength. Further, when slip sticking or zipping occurred during the peeling test, the stress value varied, and the average value of the fourth value for the maximum value and the minimum value was taken as the adhesive strength. The results are shown in Table 3.
Moreover, the two test pieces peeled once in the above test were pasted together again, and the adhesive strength was evaluated in the same manner as described above. The results are shown in Table 4.
実施例2(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aの代わりに重合体Bを用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 2 (Preparation of adhesive composition and adhesive tape)
An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer B was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例3(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aの代わりに重合体Cを用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 3 (Production of adhesive composition and pressure-sensitive adhesive tape)
An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer C was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例4(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aの代わりに重合体Dを用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 4 (Preparation of adhesive composition and adhesive tape)
An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer D was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例5(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aの代わりに重合体Eを用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 5 (Preparation of adhesive composition and adhesive tape)
Except having used the polymer E instead of the polymer A in Example 1, it carried out similarly to Example 1 and obtained the adhesive composition and the adhesive tape test piece. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例6(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aの代わりに重合体Gを用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 6 (Production of adhesive composition and pressure-sensitive adhesive tape)
An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer G was used instead of the polymer A in Example 1. The evaluation results of the test pieces are shown in Tables 3 and 4.
比較例1(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aの代わりに重合体Fを用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表に示す。
Comparative Example 1 (Preparation of adhesive composition and adhesive tape)
An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained by the same operation as in Example 1 except that the polymer F was used instead of the polymer A in Example 1. Table 3 shows the evaluation results of the test pieces.
実施例7(粘接着剤組成物及び粘着テープの作製)
 実施例1でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、実施例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 7 (Preparation of adhesive composition and adhesive tape)
Except that a polypropylene film (thickness: 0.5 μm) was used instead of the PET film in Example 1, the same procedure as in Example 1 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例8(粘接着剤組成物及び粘着テープの作製)
 実施例2でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、実施例2と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表に示す。
Example 8 (Preparation of adhesive composition and pressure-sensitive adhesive tape)
Except that a polypropylene film (thickness: 0.5 μm) was used instead of the PET film in Example 2, the same procedure as in Example 2 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. Table 3 shows the evaluation results of the test pieces.
実施例9(粘接着剤組成物及び粘着テープの作製)
 実施例3でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、実施例3と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 9 (Production of adhesive composition and pressure-sensitive adhesive tape)
Except that a polypropylene film (thickness: 0.5 μm) was used instead of the PET film in Example 3, the same procedure as in Example 3 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例10(粘接着剤組成物及び粘着テープの作製)
 実施例4でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、実施例4と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表に示す。
Example 10 (Preparation of adhesive composition and adhesive tape)
Except that a polypropylene film (thickness: 0.5 μm) was used instead of the PET film in Example 4, the same procedure as in Example 4 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. Table 3 shows the evaluation results of the test pieces.
実施例11(粘接着剤組成物及び粘着テープの作製)
 実施例5でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、実施例5と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 11 (Preparation of adhesive composition and adhesive tape)
Except that a polypropylene film (thickness: 0.5 μm) was used instead of the PET film in Example 5, the same procedure as in Example 5 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
実施例12(粘接着剤組成物及び粘着テープの作製)
 実施例6でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、実施例6と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Example 12 (Preparation of adhesive composition and adhesive tape)
Except that a polypropylene film (thickness: 0.5 μm) was used instead of the PET film in Example 6, the same procedure as in Example 6 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
比較例2(粘接着剤組成物及び粘着テープの作製)
 比較例1でPETフィルムの代わりにポリプロピレンフィルム(厚さ:0.5μm)を用いた以外は、比較例1と同様な操作をすることにより、粘接着剤組成物及び粘着テープ試験片を得た。試験片の評価結果を第3表及び第4表に示す。
Comparative Example 2 (Production of adhesive composition and adhesive tape)
Except for using a polypropylene film (thickness: 0.5 μm) instead of the PET film in Comparative Example 1, the same procedure as in Comparative Example 1 was performed to obtain an adhesive composition and a pressure-sensitive adhesive tape test piece. It was. The evaluation results of the test pieces are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
比較製造例2(プロピレン単独重合体の製造)
 1Lのオートクレーブに、25℃で、窒素気流下、ヘプタン(400mL)を加え、トリイソブチルアルミニウムのヘプタン溶液(2M、0.4mmol、0.2mL)を投入した。1分間攪拌した後、錯体A(0.1mL、0.2μmol)投入した。次に、水素を0.04MPa、プロピレンを全圧0.7MPaになるように導入すると同時に攪拌しながら70℃まで3分程度かけて昇温した。その後、圧力が一定になるようにプロピレンを15分間連続的に導入した。その後、5mLのエタノールで重合を停止し、反応物を減圧下、乾燥することにより、プロピレン単独重合体を75g得た(重合体H)。重合体Hの物性を第5表に示す。
Comparative Production Example 2 (Production of propylene homopolymer)
To a 1 L autoclave, heptane (400 mL) was added at 25 ° C. under a nitrogen stream, and a heptane solution of triisobutylaluminum (2 M, 0.4 mmol, 0.2 mL) was added. After stirring for 1 minute, Complex A (0.1 mL, 0.2 μmol) was added. Next, hydrogen was introduced to 0.04 MPa and propylene to a total pressure of 0.7 MPa, and at the same time, the temperature was raised to 70 ° C. over about 3 minutes while stirring. Thereafter, propylene was continuously introduced for 15 minutes so that the pressure became constant. Thereafter, the polymerization was stopped with 5 mL of ethanol, and the reaction product was dried under reduced pressure to obtain 75 g of a propylene homopolymer (polymer H). Table 5 shows the physical properties of the polymer H.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
比較例3(粘接着剤組成物及び粘着テープの作製)
 実施例1で重合体Aに代えて、重合体Hを用いた以外は、実施例1と同様にして粘接着剤組成物及び粘着テープ試験片を得た。
 その後、引張試験機の試験片装着部に恒温槽を設置し、-20℃にて引張試験を実施し、接着力を求めた。結果を第6表に示す。
Comparative Example 3 (Preparation of adhesive composition and adhesive tape)
An adhesive composition and a pressure-sensitive adhesive tape test piece were obtained in the same manner as in Example 1 except that the polymer H was used in place of the polymer A in Example 1.
Thereafter, a thermostatic bath was installed at the test piece mounting portion of the tensile tester, and a tensile test was performed at −20 ° C. to determine the adhesive strength. The results are shown in Table 6.
実施例13(粘接着剤組成物及び粘着テープの作製)
 実施例2と同様に重合体Bを用いて試験片を製造し、-20℃にて引張試験を実施し、粘着力を求めた。結果を第6表に示す。
Figure JPOXMLDOC01-appb-T000013
Example 13 (Preparation of adhesive composition and adhesive tape)
A test piece was produced using the polymer B in the same manner as in Example 2, and a tensile test was performed at −20 ° C. to determine the adhesive strength. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000013
 本発明の粘接着剤組成物は、粘着テープの分野等に利用できる。 The adhesive composition of the present invention can be used in the field of pressure-sensitive adhesive tapes.

Claims (6)

  1.  ブテン系重合体を含む粘接着剤組成物であって、該ブテン系重合体が、下記(1)及び(2)を満たす1-ブテン単独重合体、及び/又は下記(1’)及び(2)を満たす1-ブテン-プロピレン共重合体である粘接着剤組成物。
    (1)メソペンタッド分率[mmmm]が3~80モル%である。
    (1’)メソダイアッド分率[m]が30~95モル%である。
    (2)融解吸熱量ΔH-Dが40J/g以下である。
    An adhesive composition comprising a butene polymer, wherein the butene polymer satisfies the following (1) and (2) and / or the following (1 ′) and ( An adhesive composition which is a 1-butene-propylene copolymer satisfying 2).
    (1) Mesopentad fraction [mmmm] is 3 to 80 mol%.
    (1 ′) Mesodyad fraction [m] is 30 to 95 mol%.
    (2) The melting endotherm ΔHD is 40 J / g or less.
  2.  前記ブテン系重合体を10質量%以上、かつ、粘着性付与材を10質量%以上含む請求項1に記載の粘接着剤組成物。 The adhesive composition according to claim 1, comprising 10% by mass or more of the butene polymer and 10% by mass or more of the tackifier.
  3.  前記1-ブテン単独重合体、あるいは1-ブテン-プロピレン共重合体が下記(3)~(5)を満たす請求項1又は2に記載の粘接着剤組成物。
    (3)示差走査型熱量計(DSC)で試料を窒素雰囲気下、-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が、観測されないか、または、0~100℃である。
    (4)ゲルパーミエイションクロマトグラフ(GPC)法により測定した分子量分布(Mw/Mn)が4.0以下である。
    (5)GPC法により測定した重量平均分子量(Mw)が5,000~1,000,000である。
    The adhesive composition according to claim 1 or 2, wherein the 1-butene homopolymer or 1-butene-propylene copolymer satisfies the following (3) to (5).
    (3) Using a differential scanning calorimeter (DSC), hold the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed is not observed or is 0-100 ° C.
    (4) The molecular weight distribution (Mw / Mn) measured by the gel permeation chromatograph (GPC) method is 4.0 or less.
    (5) The weight average molecular weight (Mw) measured by GPC method is 5,000 to 1,000,000.
  4.  前記ブテン系重合体のブテンモノマー連鎖部において、13C-NMRで観測される1,4-結合分率が0.5モル%以下であり、かつ、2,1-結合分率が0.5モル%以下である請求項1~3のいずれかに記載の粘接着剤組成物。 In the butene monomer chain portion of the butene polymer, the 1,4-bond fraction observed by 13 C-NMR is 0.5 mol% or less, and the 2,1-bond fraction is 0.5 The adhesive composition according to any one of claims 1 to 3, which is not more than mol%.
  5.  前記ブテン系重合体が下記(6)を満たす請求項1~4のいずれかに記載の粘接着剤組成物。
    (6)190℃で5分間溶融させ、氷水にて急冷固化した後、室温にて1時間放置した後に、X線回折により分析して得られたII型結晶分率(CII)が50%以下である。
    The adhesive composition according to any one of claims 1 to 4, wherein the butene polymer satisfies the following (6).
    (6) After being melted at 190 ° C. for 5 minutes, rapidly cooled and solidified with ice water, left at room temperature for 1 hour, and then analyzed by X-ray diffraction, the type II crystal fraction (CII) is 50% or less It is.
  6.  請求項1~5のいずれかに記載の粘接着剤組成物を粘接着層に用いた粘着テープ。 6. An adhesive tape using the adhesive composition according to any one of claims 1 to 5 for an adhesive layer.
PCT/JP2013/065397 2012-06-04 2013-06-03 Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same WO2013183600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-127517 2012-06-04
JP2012127517 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183600A1 true WO2013183600A1 (en) 2013-12-12

Family

ID=49711992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065397 WO2013183600A1 (en) 2012-06-04 2013-06-03 Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same

Country Status (1)

Country Link
WO (1) WO2013183600A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265892A (en) * 2001-03-07 2002-09-18 Idemitsu Petrochem Co Ltd Substrate for adhesive tape, adhesive tape and can- sealing tape
JP2003238750A (en) * 2002-02-21 2003-08-27 Idemitsu Petrochem Co Ltd Resin composite material
JP2004217798A (en) * 2003-01-15 2004-08-05 Idemitsu Petrochem Co Ltd 1-butene-based polymer and method for producing the same
JP2005530914A (en) * 2002-06-24 2005-10-13 バセル ポリオレフィン イタリア エス.ピー.エー. Liquid phase method for the polymerization of α-olefins
JP2006063123A (en) * 2004-08-25 2006-03-09 Sumitomo Chemical Co Ltd Composition for adhesive
JP2007197736A (en) * 2002-02-21 2007-08-09 Idemitsu Kosan Co Ltd Modifier for polyolefin-based resin
JP2007536421A (en) * 2004-05-04 2007-12-13 バセル ポリオレフィン ジーエムビーエイチ Process for producing atactic 1-butene polymers
JP2008506825A (en) * 2004-07-22 2008-03-06 バーゼル・ポリオレフィン・ゲーエムベーハー Process for producing fractionable 1-butene polymers
JP2008517130A (en) * 2004-10-18 2008-05-22 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Butene-1 (co) polymer with low isotacticity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265892A (en) * 2001-03-07 2002-09-18 Idemitsu Petrochem Co Ltd Substrate for adhesive tape, adhesive tape and can- sealing tape
JP2003238750A (en) * 2002-02-21 2003-08-27 Idemitsu Petrochem Co Ltd Resin composite material
JP2007197736A (en) * 2002-02-21 2007-08-09 Idemitsu Kosan Co Ltd Modifier for polyolefin-based resin
JP2005530914A (en) * 2002-06-24 2005-10-13 バセル ポリオレフィン イタリア エス.ピー.エー. Liquid phase method for the polymerization of α-olefins
JP2004217798A (en) * 2003-01-15 2004-08-05 Idemitsu Petrochem Co Ltd 1-butene-based polymer and method for producing the same
JP2007536421A (en) * 2004-05-04 2007-12-13 バセル ポリオレフィン ジーエムビーエイチ Process for producing atactic 1-butene polymers
JP2008506825A (en) * 2004-07-22 2008-03-06 バーゼル・ポリオレフィン・ゲーエムベーハー Process for producing fractionable 1-butene polymers
JP2006063123A (en) * 2004-08-25 2006-03-09 Sumitomo Chemical Co Ltd Composition for adhesive
JP2008517130A (en) * 2004-10-18 2008-05-22 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Butene-1 (co) polymer with low isotacticity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOAKI TAKEBE ET AL.: "Characteristic Properties and Applicaion Development of Low-Isotacticity Polyolefins", JOURNAL OF THE JAPAN SOCIETY OF POLYMER PROCESSING, vol. 21, no. 4, 6 January 2010 (2010-01-06), pages 202 - 207 *

Similar Documents

Publication Publication Date Title
JP6263125B2 (en) Adhesive composition and pressure-sensitive adhesive tape using the same
JP6263126B2 (en) Propylene polymer and hot melt adhesive
US7459503B2 (en) Process for production of modified propylene polymers and modified propylene polymers produced by the process
JP6357464B2 (en) Propylene polymer and hot melt adhesive
JP3979997B2 (en) Highly fluid 1-butene polymer and process for producing the same
JP6307435B2 (en) Polyolefin, adhesive composition containing the same, and adhesive tape using the same
JP6357471B2 (en) Base polymer for hot melt adhesive and hot melt adhesive
JP2006348153A (en) Modified alpha-olefin polymer and method for producing its crosslinked product
JP2000344833A (en) Propylene resin composition, its production, and molding
JP6470952B2 (en) Hot melt adhesive for woodworking
JP2015013920A (en) ACID-MODIFIED α-OLEFIN POLYMER, AND TACKY ADHESIVE COMPOSITION AND ADHESIVE TAPE USING THE SAME
JP2007197736A (en) Modifier for polyolefin-based resin
JP2003238750A (en) Resin composite material
WO2013183600A1 (en) Pressure-sensitive adhesive composition and pressure-sensitive adhesive tape using same
US20230235202A1 (en) Plasticizer for resins
JP2015124298A (en) Adhesive for glass, sealant for glass, glass molding and laminated glass
JP2009013424A (en) Propylene polymer and composition containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP