WO2013183532A1 - Resin composition for coating materials - Google Patents

Resin composition for coating materials Download PDF

Info

Publication number
WO2013183532A1
WO2013183532A1 PCT/JP2013/065007 JP2013065007W WO2013183532A1 WO 2013183532 A1 WO2013183532 A1 WO 2013183532A1 JP 2013065007 W JP2013065007 W JP 2013065007W WO 2013183532 A1 WO2013183532 A1 WO 2013183532A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
meth
component
atom
Prior art date
Application number
PCT/JP2013/065007
Other languages
French (fr)
Japanese (ja)
Inventor
慶次 後藤
貴子 星野
公彦 依田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2014519956A priority Critical patent/JP6105574B2/en
Priority to KR1020147033269A priority patent/KR102135467B1/en
Priority to CN201380029992.4A priority patent/CN104350111B/en
Publication of WO2013183532A1 publication Critical patent/WO2013183532A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a heterocyclic ring containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a heterocyclic ring containing sulfur

Definitions

  • the present invention relates to a resin composition for a coating material used for various sensor elements, display elements and the like, and further to a high refractive index resin composition used for a high refractive index layer of an antireflection film or an optical waveguide film.
  • a coating layer made of an inorganic substance or an organic substance is provided for the purpose of protecting the surface. Furthermore, in recent years, a covering layer in which high refractive index layers and low refractive index layers are alternately stacked is used for the purpose of imparting functions such as antireflection and optical waveguide to the surface protective layer.
  • This high refractive index layer contains a high refractive index inorganic film formed by vapor deposition of ceramics such as titania, zirconia and alumina, and radical polymerizable monomers such as bisphenol A type epoxy (meth) acrylate and urethane (meth) acrylate.
  • the high-refractive-index organic film that is cured by irradiating energy rays such as ultraviolet rays after coating is used according to the purpose, but the former inorganic film is in close contact when the substrate is a film or sheet.
  • photocurable high-refractive-index organic films blended with radically polymerizable monomers have been widely used. It is like that.
  • Patent Documents 1 to 3 disclose a resin composition using sulfur-containing (meth) acrylate. Also known are photocurable resin compositions. Further, for example, Patent Document 4 discloses an active energy ray-curable composition using urethane (meth) acrylate having a diphenyl sulfone structure.
  • 4,4′-dimercaptodiphenyl sulfide dimethacrylate is a bisphenol A type. Although it has a higher refractive index than a compound having an aromatic ring such as epoxy (meth) acrylate, these compounds generally absorb light with a wavelength of 450 nm or less, so they are colored yellow and the transparency tends to decrease. There was a problem that it was difficult to adhere to.
  • Patent Document 5 discloses a compound and a polymer having a dinaphthothiophene skeleton.
  • a photocured film prepared by diluting a photopolymerizable composition using dinaphthothiophene having an ethylenically unsaturated double bond with a solvent such as ethyl acetate is disclosed. (Paragraph number [0143]).
  • the residual solvent due to the influence of the residual solvent, it may cause a decrease in strength and outgassing, and good reliability cannot be obtained, or crystalline components tend to precipitate in the composition when stored for a long time. , The refractive index fluctuates and the coating cannot be performed.
  • the present invention has been made in view of such circumstances, and provides a resin composition for a coating material that has a high refractive index and high transparency and does not require the use of a solvent.
  • a dinaphthothiophene compound having one or more polymerizable functional groups having an ethylenically unsaturated double bond represented by the following general formula (1):
  • each X is independently a single bond, a divalent organic group or a divalent atom
  • each R 1 is independently a hydrogen atom or a methyl group
  • c + d is C is an integer of 0 to 4
  • d is an integer of 0 to 4.
  • X is a divalent organic group, X is an oxygen atom;
  • the dinaphthothiophene compound as shown in the general formula (1) does not use a solvent.
  • a precipitate that does not easily dissolve is generated after standing for a while, as a resin composition for a coating material. It was found that it was difficult to use (Comparative Example 2). Accordingly, further investigations have been made to solve such problems.
  • a monofunctional (meth) acrylate containing one or more aromatic rings is used in place of the polyfunctional epoxy acrylate, this is the case.
  • the component (B) is a monofunctional (meth) acrylate containing one aromatic ring.
  • the component (B) includes one or more selected from benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
  • the polymerizable functional group is a (meth) acryloyl group or an allyl ether group.
  • the component (A) is 6- (meth) acryloylmethyldinaphthothiophene, 6- (meth) acryloylethyldinaphthothiophene, 2,12-diallyl ether dinaphthothiophene, and 3,11-diallyl ether diene. Including one or more selected from naphthothiophene.
  • the content ratio of the component (C) is 0.2 to 10 parts by mass with respect to the total amount of the composition.
  • a covering material comprising the above-described resin composition for a covering material, and a base material (eg, glass, film or sheet) on which the covering material is formed.
  • a base material eg, glass, film or sheet
  • a layer having a refractive index lower than that of the above-mentioned resin composition for a coating material is formed after a layer made of the above-described resin composition for a coating material is formed on a substrate.
  • the resin composition of the present invention comprises a resin composition for a coating material containing a dinaphthothiophene compound having a polymerizable functional group, a monofunctional (meth) acrylate having an aromatic ring, and a radical polymerization initiator in a specific ratio. Therefore, it has characteristics such as high refractive index and transparency required for surface protection of sensor elements, display elements, antireflection films, optical waveguide films, and the like, and excellent adhesion. Moreover, since the resin composition for coating
  • a coating material is a coating on a substrate such as a glass substrate, a plastic film, or a plastic sheet for the purpose of imparting surface protection, designability, and functionality such as antireflection or optical waveguide. Means the material to be.
  • the energy beam curable resin composition according to the present embodiment has a difunctional dimer having one or more polymerizable functional groups having an ethylenically unsaturated double bond represented by the following general formula (1) as the component (A). It has a naphthothiophene compound.
  • each X is independently a single bond, a divalent organic group or a divalent atom
  • each R 1 is independently a hydrogen atom or a methyl group
  • c + d is C is an integer of 0 to 4
  • d is an integer of 0 to 4.
  • X is a divalent organic group, X is an oxygen atom;
  • a tin atom that may have a bond with other atoms A phosphorus atom that may have a bond, wherein X may be bonded to any of the substitutable carbon atoms in the naphthalene ring to which they are bonded, wherein (R) a or (R) b is means a or b identical or different substituents, which may be attached to any of the substitutable carbon atoms in the naphthalene ring to which they are attached, and each R is independently an organic A group, a hydroxyl group, an amino group, a nitro group, a thiol group, a sulfo group, a halogen atom, or an optionally substituted silyl group, a is an integer of 0 to 5, and b is an integer of 0 to 5 (It is an integer.)
  • Examples of the polymerizable functional group include a vinyl group, a styryl group, a vinyl ether group, an allyl group, an allyl ether group, a (meth) acryloyl group, a (meth) acrylonitrile group, etc., but transparency and adhesion to a substrate.
  • a (meth) acryloyl group or an allyl ether group is preferable, and a (meth) acryloyl group is particularly preferable.
  • dinaphthothiophene compound examples include 6-vinyldinaphthothiophene, 6- (meth) acryloyloxymethyldinaphthothiophene, 6- (meth) acryloyloxyethyl dinaphthothiophene, 6-vinyl ether dinaphthothiophene, 6-allyldinaphthothiophene, 6-allyloxydinaphthothiophene, 2,12-divinyldinaphthothiophene, 3,11-divinyldinaphthothiophene, 5,9-divinyldinaphthothiophene, 2,12-di (meth) Acryloyloxymethyldinaphthothiophene, 3,11-di (meth) acryloyloxymethyldinaphthothiophene, 2,12-diallyloxymethyldinaphthothiophene, 3,11
  • 6- (meth) acryloyloxymethyldinaphthothiophene 6- (meth) acryloyloxyethyl dinaphthothiophene, 2,12 -Diallyloxydinaphthothiophene and 3,11-diallyloxydinaphthothiophene are preferred, and 6- (meth) acryloyloxymethyldinaphthothiophene is particularly preferred.
  • the content ratio of the component (A) is preferably 15 to 60 parts by mass with respect to the total amount of the resin composition.
  • 15 to 50 parts by mass is more preferable, 17 to 50 parts by mass is further preferable, and 20 to 40 parts by mass is most preferable.
  • the total amount of the resin composition is preferably 100 parts by mass in total of the component (A) and the component (B).
  • the dinaphthothiophene-based compound can be produced by a production method exemplified in Japanese Patent Application Laid-Open No. 2011-178985 (Patent Document 5) and Japanese Patent Application Laid-Open No. 2012-136576 (Patent Document 6).
  • a product manufactured by any manufacturing method is not limited.
  • the resin composition of the present invention contains a monofunctional (meth) acrylate having one or more aromatic rings as the component (B).
  • the number of aromatic rings is, for example, 1, 2, 3, and preferably one.
  • the monofunctional (meth) acrylate examples include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, and phenoxyhexaethylene glycol (meth) acrylate.
  • Nonylphenyl (meth) acrylate, ethylene oxide modified nonylphenyl (meth) acrylate, phthalic acid modified (meth) acrylate, naphthyl (meth) acrylate, bisphenylfluorene (meth) acrylate, 2- (o-phenylphenoxy) ethyl ( (Meth) acrylate and the like can be exemplified, but from the viewpoint of compatibility with the component (A), refractive index, and transparency, benzyl (meth) acrylate and / or phenoxyethyl (meth) ) Acrylate is particularly preferred.
  • the content ratio of the component (B) is preferably 40 to 85 parts by mass with respect to the total amount of the resin composition, particularly the refractive index, transparency, adhesion to the substrate, and compatibility with the component (A).
  • 50 to 85 parts by mass is more preferable, 50 to 83 parts by mass is further preferable, and 60 to 80 parts by mass is most preferable.
  • the resin composition of the present invention may contain a monofunctional (meth) acrylate compound having no aromatic ring or a polyfunctional (meth) acrylate as long as the effects of the invention are not impaired.
  • the resin composition of the present embodiment contains (C) a radical photopolymerization initiator.
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals when irradiated with energy rays.
  • photo radical polymerization initiator examples include benzyl derivatives such as benzyl, benzoin, benzoin benzoic acid, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether, benzophenone derivatives such as benzophenone and 4-phenylbenzophenone, and 2,2-diethoxy Alkyl acetophenone derivatives such as acetophenone, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4- (2-hydroxyethoxy) -Phenyl) -2-hydroxy-2-methyl-1-propan-1-one, ⁇ -hydroxyacetophenone derivatives such as 2-hydroxy-2-methyl-1-phenylpropan-1-one Bisdiethylaminobenzophenone, 2-methyl-1- (4- (methylthio) phenyl) -2
  • the content of component (C) is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on the total amount of the resin composition. If it is in the range of 0.1 to 10 parts by mass, the curability will not be deteriorated and the transparency will not be lowered.
  • an antioxidant such as an acrylic rubber and a urethane rubber, a photosensitizer, a light stabilizer, a solvent, an extender, a filler, a reinforcing material
  • additives such as a plasticizer, a thickener, a dye, a pigment, a flame retardant, and surfactant.
  • the method for producing the resin composition according to this embodiment is not particularly limited as long as the above materials can be sufficiently mixed.
  • the mixing method of the material is not particularly limited, and examples thereof include a stirring method using a stirring force accompanying rotation of a propeller, a method using a normal disperser such as a planetary stirrer by rotation and revolution, and the like. These mixing methods are preferable because stable mixing can be performed at low cost.
  • the resin composition can be cured by irradiation with energy rays using the following light source.
  • the light source used for curing the resin composition is not particularly limited, but is a halogen lamp, a metal halide lamp, a high-power metal halide lamp (containing indium or the like), a low-pressure mercury lamp, a high-pressure mercury lamp, or an ultra-high pressure.
  • LED light emitting diode
  • the above light sources have different emission wavelengths and energy distributions. Therefore, the light source is appropriately selected depending on the reaction wavelength of the photopolymerization initiator. Natural light (sunlight) can also be a reaction initiation light source.
  • the light source may perform direct irradiation, focused irradiation with a reflecting mirror or the like, or focused irradiation with a fiber or the like.
  • a low wavelength cut filter, a heat ray cut filter, a cold mirror, or the like can also be used.
  • the resin composition having the above-mentioned structure is quickly cured by irradiation with energy rays, a cured product excellent in optical properties such as high transparency and high refractive index can be provided.
  • the resin composition having the above structure is excellent in optical properties such as high transparency and high refractive index, and has excellent adhesion to substrates such as glass, plastic film, and plastic sheet. Can be offered as.
  • the resin composition having the above structure is excellent in optical properties such as high transparency and high refractive index, it can be used as a high refractive index layer of an antireflection film or an optical waveguide film.
  • An optical waveguide film can be provided.
  • the antireflection film and optical waveguide film are coated with a layer made of the resin composition of the present invention (hereinafter referred to as a high refractive index layer) on various substrates such as glass, plastic film, plastic sheet, etc., and irradiated with energy rays. Then, a layer having a lower refractive index than the high refractive index layer (hereinafter referred to as a low refractive index layer) is formed on the high refractive index layer.
  • a layer made of the resin composition of the present invention hereinafter referred to as a high refractive index layer
  • a low refractive index layer a layer having a lower refractive index than the high refractive index layer
  • Base materials include glass base materials such as alkali-free glass, alkali glass, borosilicate glass, and quartz, ceramic base materials such as silica, alumina, and silicon nitride, and metals such as silicone, aluminum, stainless steel, iron, copper, and silver. From resins such as base materials, acrylic resins, styrene resins, carbonate resins, olefin resins, polyester resins, polyimide resins, polyamide resins, epoxy resins, silicone resins, fluorine resins, and cellulose resins A film base material, a sheet base material, and the like can be used.
  • the low refractive index layer examples include inorganic films such as alkali metal fluorides such as magnesium fluoride and potassium fluoride, silica, and the like, and organic films such as fluoropolymers such as polyperfluoroethylene and perfluorocycloolefin.
  • organic films such as fluoropolymers such as polyperfluoroethylene and perfluorocycloolefin.
  • Polyether resins such as polyethylene glycol, silicone resins, acrylic resins, epoxy resins, urethane resins and their fluorine-modified resins can be used.
  • the resin composition having the above structure is excellent in optical properties such as high transparency and high refractive index, and therefore has a high liquid crystal panel, an organic electroluminescence panel, a touch panel, a projector, a smartphone, a mobile phone, a digital camera, a digital movie display element, It can be used as a coating material used for various sensor parts such as CCD, CMOS, and biochip, semiconductor elements such as flash memory, DRAM, and semiconductor laser, and also as a high refractive index layer of an antireflection film or an optical waveguide film.
  • DNTMA 6-Methacryloyloxymethyldinaphthothiophene
  • VDNT 6-vinyldinaphthothiophene
  • EDNTMA 6-methacryloyloxyethyldinaphthothioph
  • B Monofunctional (meth) acrylate having an aromatic ring (B-1) benzyl methacrylate (“Light Ester BZ” manufactured by Kyoeisha Chemical Co., Ltd.) (B-2) Benzyl acrylate (Osaka Organic Chemical Co., Ltd. “Biscoat # 160”) (B-3) Phenoxyethyl methacrylate (Kyoeisha Chemical Co., Ltd.
  • Light Ester PO Phenoxyethyl acrylate (“Light acrylate PO-A” manufactured by Kyoeisha Chemical Co., Ltd.) (B-5) 2- (o-phenylphenoxy) ethyl acrylate (“NK Ester A-LEN-10” manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • C Photoradical polymerization initiator (C-1) Benzyldimethyl ketal (“IRGACURE 651” manufactured by BASF) (C-2) 1-hydroxy-cyclohexyl phenyl ketone (“Irgacure 184” manufactured by BASF) (C-3) Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (“Irgacure 819” manufactured by BASF)
  • Examples 1 to 18, Comparative Examples 1 to 6 The raw materials of the types shown in Tables 1 to 3 were mixed in the composition ratios (units are parts by mass) shown in Tables 1 to 3, to prepare resin compositions for coating materials, and the evaluation described below was performed. No solvent was used. Various evaluation results are shown in Tables 1 to 3. Unless otherwise specified, the test was carried out in an environment of 23 ° C. and 50% humidity.
  • a cured product test piece cured under conditions of an irradiation intensity of a wavelength of 30 mW / cm 2 and an integrated light amount of 30,000 mJ / cm 2 was prepared, and a refractive index was evaluated.
  • the refractive index was evaluated by measuring the refractive index at a wavelength of 633 nm using a spectroscopic prism coupler refractive index measuring device ("MODEL 2010 PRISM COUPLER" manufactured by Metricon).
  • the resin composition was applied on a heat-resistant glass (trade name “heat-resistant Pyrex (registered trademark) glass”, 25 mm ⁇ 25 mm ⁇ 2.0 mm) with a film thickness of 30 ⁇ m, and then an ultra-high pressure mercury lamp mounting device (“UL-” manufactured by HOYA). 750 "), a test piece cured under the conditions of an irradiation intensity of a wavelength of 365 nm of 50 mW / cm 2 and an integrated light quantity of 30,000 mJ / cm 2 was prepared, and an ultraviolet-visible spectrophotometer (Shimadzu Corporation" UV “ -2550 "), and the transmittance was measured at 450 nm using a heat resistant glass as a reference.
  • a heat-resistant glass trade name “heat-resistant Pyrex (registered trademark) glass”, 25 mm ⁇ 25 mm ⁇ 2.0 mm
  • UL- ultra-high pressure mercury lamp mounting device
  • a cut line was placed in the cured film so as to be 2 mm long ⁇ 2 mm wide ⁇ 25 squares in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and then cellophane.
  • a tape (model CT-405AP manufactured by Nichiban Co., Ltd .: width 24 mm, adhesive strength 23 N / 10 mm) was applied and 180 ° peeling was performed. The number of cells remaining after 180 ° peeling was counted and evaluated according to the following criteria. Other conditions that were not specified were in accordance with JIS K 5600-5-6. ⁇ : All 25 sheets remained ⁇ : 15 or more and 24 or less remained x: Less than 14 sheets
  • Example 1 In Examples 1 to 18, excellent results were obtained in terms of liquid stability, refractive index, spectral transmittance, and adhesion. However, in Example 1, since the blending ratio of the dinaphthothiophene compound was small, the refractive index was slightly low. In Example 6, since the compounding ratio of the dinaphthothiophene compound was large, the liquid stability and adhesion were slightly deteriorated. In Example 10 using a dinaphthothiophene compound having a vinyl group, Examples 1 to 9 and Examples 11 to 14 using a dinaphthothiophene compound having a (meth) acryloyl group or an allyl ether group were used.
  • Example 3 In comparison, liquid stability, spectral transmittance and adhesion were not preferred. This result shows the advantage of using a dinaphthothiophene compound having a (meth) acryloyl group or an allyl ether group. Further, comparing Example 3 with Examples 11 to 13, it was found that when DNTMA was used as in Example 3, the refractive index and spectral transmittance were particularly high. Furthermore, as in Example 14, when an acrylate having two aromatic rings was used as the component (B), the liquid stability, spectral transmittance, and adhesion were deteriorated.
  • Comparative Example 1 since the dinaphthothiophene compound was not used, the refractive index was not sufficient. In Comparative Example 2, since polyfunctional acrylate (bisphenol A type epoxy acrylate) was used, the liquid stability was very poor, and a test piece for evaluation of refractive index and spectral transmittance could not be prepared. In Comparative Example 3, since a compound (styrene) having an aromatic ring but not (meth) acrylate was used instead of the component (B), curing did not occur sufficiently even when light irradiation was performed.
  • Comparative Example 4 since monofunctional (meth) acrylate (methyl methacrylate) having no aromatic ring was used instead of component (B), the liquid stability was poor and precipitates that did not dissolve easily were generated. It was. In Comparative Example 5, since a dinaphthothiophene compound (dinaphthothiophene) having no functional group was used, the liquid stability was poor and precipitates that were not easily dissolved were generated. In Comparative Example 6, since there was too little (B) component, the liquid stability was bad and the precipitate which does not melt
  • the resin composition of the present invention is excellent in optical properties such as high transparency and high refractive index, a high liquid crystal panel, organic electroluminescence panel, touch panel, projector, smartphone, mobile phone, digital camera, digital movie display element, Suitable for use as sensor elements for various sensor components such as CCD, CMOS, biochip, coating materials used for semiconductor elements such as flash memory, DRAM, and semiconductor laser, and as a high refractive index layer for antireflection films and optical waveguide films. Can be very useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a resin composition for coating materials, which has high refractive index and high transparency without requiring the use of a solvent. The present invention provides (1) a resin composition for coating materials, which is characterized by containing a specific dinaphthothiophene compound that has one or more polymerizable functional groups having an ethylenically unsaturated double bond (component (A)), a monofunctional (meth)acrylate that contains one or more aromatic rings (component (B)), and a radical photopolymerization initiator (component (C)), and which is also characterized in that the content ratio of the component (A) is within the range of 15-60 parts by mass and the content ratio of the component (B) is within the range of 40-85 parts by mass.

Description

被覆材用樹脂組成物Resin composition for coating material
 本発明は、各種センサー素子、表示素子等に用いられる被覆材用樹脂組成物に関し、さらには反射防止膜や光導波路膜の高屈折率層に用いられる高屈折率樹脂組成物に関する。 The present invention relates to a resin composition for a coating material used for various sensor elements, display elements and the like, and further to a high refractive index resin composition used for a high refractive index layer of an antireflection film or an optical waveguide film.
 従来、CCD、CMOS等のセンサー素子や、ディスプレイ等の表示素子に用いられるガラス、フィルムおよびシートの表面には、表面を保護する目的で、無機物又は有機物からなる被覆層が設けられる。さらに、近年では、前記の表面保護層に、反射防止や光導波等の機能を付与する目的で高屈折率層と低屈折率層を交互に積層した被覆層等が用いられている。この高屈折率層には、チタニア、ジルコニアおよびアルミナといったセラミックスを蒸着等により形成した高屈折率無機膜や、ビスフェノールA型エポキシ(メタ)アクリレートやウレタン(メタ)アクリレート等のラジカル重合性モノマーを配合し、塗布後に紫外線等のエネルギー線を照射して硬化膜とする高屈折率有機膜とが目的に応じて用いられているが、前者の無機膜では基材がフィルムやシートの場合に、密着性が不足したり、膜が脆く、フィルムを曲げた際に割れてしまったりする等の課題があり、近年ではラジカル重合性モノマーを配合した光硬化型の高屈折率有機膜が広く使用されるようになっている。 Conventionally, on the surfaces of glass, films and sheets used for sensor elements such as CCD and CMOS, and display elements such as displays, a coating layer made of an inorganic substance or an organic substance is provided for the purpose of protecting the surface. Furthermore, in recent years, a covering layer in which high refractive index layers and low refractive index layers are alternately stacked is used for the purpose of imparting functions such as antireflection and optical waveguide to the surface protective layer. This high refractive index layer contains a high refractive index inorganic film formed by vapor deposition of ceramics such as titania, zirconia and alumina, and radical polymerizable monomers such as bisphenol A type epoxy (meth) acrylate and urethane (meth) acrylate. However, the high-refractive-index organic film that is cured by irradiating energy rays such as ultraviolet rays after coating is used according to the purpose, but the former inorganic film is in close contact when the substrate is a film or sheet. In recent years, photocurable high-refractive-index organic films blended with radically polymerizable monomers have been widely used. It is like that.
 反射防止膜や光導波路膜に用いられる高屈折率層に適用可能な高屈折率を有する樹脂組成物としては、例えば特許文献1~3には、硫黄含有(メタ)アクリレートを用いた樹脂組成物および光硬化性樹脂組成物が公知である。また例えば特許文献4には、ジフェニルスルフォン構造を有するウレタン(メタ)アクリレートを用いた活性エネルギー線硬化性組成物が開示されている。 As a resin composition having a high refractive index applicable to a high refractive index layer used for an antireflection film or an optical waveguide film, for example, Patent Documents 1 to 3 disclose a resin composition using sulfur-containing (meth) acrylate. Also known are photocurable resin compositions. Further, for example, Patent Document 4 discloses an active energy ray-curable composition using urethane (meth) acrylate having a diphenyl sulfone structure.
特開平11-5952号公報JP-A-11-5952 特開2002-97224号公報JP 2002-97224 A 特表2006-526037号公報JP 2006-526037 Gazette 特開2011-157543号公報JP 2011-157543 A 特開2011-178985号公報JP 2011-178985 A 特開2012-136576号公報JP 2012-136576 A
 しかしながら、前記の特許文献に記載の主成分である、硫黄含有(メタ)アクリレートや、ジフェニルスルフォン構造を有するウレタン(メタ)アクリレートでは、4,4'-ジメルカプトジフェニルサルファイドジメタクリレートは、ビスフェノールA型エポキシ(メタ)アクリレート等の芳香環を有する化合物よりは高い屈折率を有してはいるものの、これら化合物は一般に波長450nm以下の光を吸収するため、黄色く着色し透明性が低下しやすい、フィルムと密着しにくいという課題があった。 However, in the case of sulfur-containing (meth) acrylate and urethane (meth) acrylate having a diphenylsulfone structure, which are the main components described in the above-mentioned patent documents, 4,4′-dimercaptodiphenyl sulfide dimethacrylate is a bisphenol A type. Although it has a higher refractive index than a compound having an aromatic ring such as epoxy (meth) acrylate, these compounds generally absorb light with a wavelength of 450 nm or less, so they are colored yellow and the transparency tends to decrease. There was a problem that it was difficult to adhere to.
 前記の様な課題に対して高い屈折率と高い透明性を有する化合物として特許文献5にジナフトチオフェン骨格を有する化合物および重合体が開示されている。特許文献5の実施例では、エチレン性不飽和二重結合を有するジナフトチオフェンを用いた光重合性組成物を、酢酸エチル等の溶剤を用いて希釈して作成した光硬化膜が開示されている(段落番号[0143])。しかしながら、残存溶剤の影響で強度の低下や、アウトガス発生の要因となり、良好な信頼性を得ることができなかったり、あるいは長時間保存した場合等に結晶性の成分が組成物中に析出しやすく、屈折率が変動したり、塗布できなくなったりするといった欠点があった。 As a compound having a high refractive index and high transparency with respect to the above-described problems, Patent Document 5 discloses a compound and a polymer having a dinaphthothiophene skeleton. In Examples of Patent Document 5, a photocured film prepared by diluting a photopolymerizable composition using dinaphthothiophene having an ethylenically unsaturated double bond with a solvent such as ethyl acetate is disclosed. (Paragraph number [0143]). However, due to the influence of the residual solvent, it may cause a decrease in strength and outgassing, and good reliability cannot be obtained, or crystalline components tend to precipitate in the composition when stored for a long time. , The refractive index fluctuates and the coating cannot be performed.
 本発明はこのような事情に鑑みてなされたものであり、高い屈折率と高い透明性を有し且つ溶剤の使用が不要である被覆材用樹脂組成物を提供するものである。 The present invention has been made in view of such circumstances, and provides a resin composition for a coating material that has a high refractive index and high transparency and does not require the use of a solvent.
 本発明によれば、
(1)(A)成分として、下記一般式(1)で表されるエチレン性不飽和二重結合を有する重合性官能基を1つ以上有するジナフトチオフェン系化合物、
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中、各Xは、それぞれ独立に、単結合、二価の有機基又は二価の原子であり、各Rは、それぞれ独立に水素原子又はメチル基であり、c+dが1~4の整数であることを条件として、cは0~4の整数であり、dは0~4の整数である。Xが二価の有機基である場合、Xとしては、酸素原子、硫黄原子又は窒素原子からなるヘテロ原子を含んでもよいアルキレン基、アラルキレン基、アルケニレン基、エステル結合、アミド結合、イミド結合又はこれらの結合を主鎖に含むアルキレン基、アリーレン基、アラルキレン基、二価の置換芳香族基、二価の置換へテロ芳香族基、二価の置換シリル基である。また、Xが二価の原子である場合、Xとしては、酸素原子、硫黄原子、他の原子と結合を有してもよい錫原子、他の原子と結合を有してもよい燐原子である。なお、Xは、それらが結合するナフタレン環における置換可能な炭素原子のいずれと結合してもよい。(R)a又は(R)bは、それぞれa個又はb個の同一又は異なる置換基を意味し、当該置換基は、それらが結合するナフタレン環における置換可能な炭素原子のいずれに結合してもよく、各Rは、それぞれ独立に、有機基、水酸基、アミノ基、ニトロ基、チオール基、スルホ基、ハロゲン原子、又は置換されてもよいシリル基を表す。また、aは、0~5の整数であり、bは、0~5の整数である。)
 (B)成分として、1つ以上の芳香環を含有する単官能(メタ)アクリレート、
 (C)成分として、光ラジカル重合開始剤、
を含有し、組成物の総量に対して、前記(A)成分の含有割合は15~60質量部の範囲であり、前記(B)成分の含有割合は40~85質量部の範囲であることを特徴とする被覆材用樹脂組成物が提供される。
According to the present invention,
(1) As a component (A), a dinaphthothiophene compound having one or more polymerizable functional groups having an ethylenically unsaturated double bond represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), each X is independently a single bond, a divalent organic group or a divalent atom, each R 1 is independently a hydrogen atom or a methyl group, and c + d is C is an integer of 0 to 4, and d is an integer of 0 to 4. provided that X is a divalent organic group, X is an oxygen atom; An alkylene group, an aralkylene group, an alkenylene group, an ester bond, an amide bond, an imide bond or an alkylene group containing these bonds in the main chain, an arylene group, an aralkylene group, a divalent group which may contain a hetero atom consisting of a sulfur atom or a nitrogen atom A substituted aromatic group, a divalent substituted heteroaromatic group, a divalent substituted silyl group, and when X is a divalent atom, X may be an oxygen atom, a sulfur atom, or another atom. And a tin atom that may have a bond with other atoms A phosphorus atom that may have a bond, wherein X may be bonded to any of the substitutable carbon atoms in the naphthalene ring to which they are bonded, wherein (R) a or (R) b is means a or b identical or different substituents, which may be attached to any of the substitutable carbon atoms in the naphthalene ring to which they are attached, and each R is independently an organic A group, a hydroxyl group, an amino group, a nitro group, a thiol group, a sulfo group, a halogen atom, or an optionally substituted silyl group, a is an integer of 0 to 5, and b is an integer of 0 to 5 (It is an integer.)
(B) As a component, a monofunctional (meth) acrylate containing one or more aromatic rings,
(C) As a component, radical photopolymerization initiator,
The content of the component (A) is in the range of 15 to 60 parts by mass and the content of the component (B) is in the range of 40 to 85 parts by mass with respect to the total amount of the composition. A resin composition for a coating material is provided.
 本発明者らは、被覆材用樹脂組成物に適した組成物を得るべく鋭意検討を行なっていたところ、上記一般式(1)に示すようなジナフトチオフェン系化合物は、溶媒を用いずに、特許文献5の[0143]に記載のような多官能エポキシアクリレート及び光ラジカル重合開始剤と混合すると、しばらく静置した後に、容易に溶解しない析出物が発生し、被覆材用樹脂組成物として利用することが難しいことが分かった(比較例2)。そこで、このような問題を解決すべく、さらに検討を進めたところ、多官能エポキシアクリレートの代わりに、1つ以上の芳香環を含有する単官能(メタ)アクリレートを用いた場合には、このような析出物や分離物が発生しないか、発生しても容易に溶解可能であることが分かった。さらに、芳香環を含有する単官能(メタ)アクリレートの代わりに、芳香環を有するが(メタ)アクリレートではない化合物を用いた場合(比較例3)、光照射を行なっても十分に硬化が起こらず、被覆材用樹脂組成物としての利用が困難であることが分かった。さらに、芳香環を有さない単官能(メタ)アクリレートを用いた場合(比較例4)、容易に溶解しない析出物が発生してしまった。
 また、重合性官能基を有するジナフトチオフェン系化合物の代わりに、このような官能基を有さないジナフトチオフェン系化合物を用いた場合(比較例5)、容易に溶解しない析出物が発生してしまった。さらに、ジナフトチオフェン系化合物を用いなかった場合(比較例1)、屈折率が低くなってしまった。
 以上より、重合性官能基を有するジナフトチオフェン系化合物と、芳香環を含有する単官能(メタ)アクリレートと、光ラジカル重合開始剤との組み合わせによる相乗効果によって、高い屈折率と高い透明性を有し且つ溶剤の使用が不要である被覆材用樹脂組成物が得られることが分かった。
The present inventors have intensively studied to obtain a composition suitable for the resin composition for a coating material. As a result, the dinaphthothiophene compound as shown in the general formula (1) does not use a solvent. When mixed with a polyfunctional epoxy acrylate and a radical photopolymerization initiator as described in [0143] of Patent Document 5, a precipitate that does not easily dissolve is generated after standing for a while, as a resin composition for a coating material. It was found that it was difficult to use (Comparative Example 2). Accordingly, further investigations have been made to solve such problems. When a monofunctional (meth) acrylate containing one or more aromatic rings is used in place of the polyfunctional epoxy acrylate, this is the case. It was found that no precipitates or separations were generated, or even if generated, they could be easily dissolved. Further, when a compound having an aromatic ring but not (meth) acrylate is used instead of a monofunctional (meth) acrylate containing an aromatic ring (Comparative Example 3), sufficient curing occurs even when light irradiation is performed. Therefore, it was found that it was difficult to use as a resin composition for a coating material. Furthermore, when a monofunctional (meth) acrylate having no aromatic ring was used (Comparative Example 4), a precipitate that was not easily dissolved was generated.
Further, when a dinaphthothiophene compound having no functional group is used instead of the dinaphthothiophene compound having a polymerizable functional group (Comparative Example 5), a precipitate that does not easily dissolve is generated. I have. Furthermore, when a dinaphthothiophene compound was not used (Comparative Example 1), the refractive index was low.
From the above, high refractive index and high transparency are achieved by the synergistic effect of the combination of a dinaphthothiophene compound having a polymerizable functional group, a monofunctional (meth) acrylate containing an aromatic ring, and a photo radical polymerization initiator. It has been found that a resin composition for a coating material that has a solvent and does not require the use of a solvent can be obtained.
 好ましくは、前記(B)成分は、1つの芳香環を含有する単官能(メタ)アクリレートである。
 好ましくは、前記(B)成分が、ベンジル(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートから選ばれる1つ以上を含む。
 好ましくは、前記重合性官能基は、(メタ)アクリロイル基又はアリルエーテル基である。
 好ましくは、前記一般式(1)において、a=b=c=0であり、d=1である。
 好ましくは、前記(A)成分は、6-(メタ)アクリロイルメチルジナフトチオフェン、6-(メタ)アクリロイルエチルジナフトチオフェン、2,12-ジアリルエーテルジナフトチオフェン、及び3,11-ジアリルエーテルジナフトチオフェンから選ばれる1つ以上を含む。
 好ましくは、前記(C)成分の含有割合は、組成物の総量に対して、0.2~10質量部である。
Preferably, the component (B) is a monofunctional (meth) acrylate containing one aromatic ring.
Preferably, the component (B) includes one or more selected from benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
Preferably, the polymerizable functional group is a (meth) acryloyl group or an allyl ether group.
Preferably, in the general formula (1), a = b = c = 0 and d = 1.
Preferably, the component (A) is 6- (meth) acryloylmethyldinaphthothiophene, 6- (meth) acryloylethyldinaphthothiophene, 2,12-diallyl ether dinaphthothiophene, and 3,11-diallyl ether diene. Including one or more selected from naphthothiophene.
Preferably, the content ratio of the component (C) is 0.2 to 10 parts by mass with respect to the total amount of the composition.
 また、本発明の別の観点によれば、上記記載の被覆材用樹脂組成物からなることを特徴とする被覆材、及びこの被覆材を形成した基材(例:ガラス、フィルム又はシート)が提供される。 According to another aspect of the present invention, there is provided a covering material comprising the above-described resin composition for a covering material, and a base material (eg, glass, film or sheet) on which the covering material is formed. Provided.
 また、本発明のさらに別の観点によれば、上記記載の被覆材用樹脂組成物からなる層を基板上に形成したのちに、前記の被覆材用樹脂組成物より低い屈折率を有する層を形成してなること特徴とする膜(例:反射防止膜又は光導波路膜)、このような膜を有する基材、及びこのような基材を有する素子(例:センサー素子又は表示素子)が提供される。 According to still another aspect of the present invention, a layer having a refractive index lower than that of the above-mentioned resin composition for a coating material is formed after a layer made of the above-described resin composition for a coating material is formed on a substrate. Provided is a film formed by being formed (eg, an antireflection film or an optical waveguide film), a base material having such a film, and an element (eg, sensor element or display element) having such a base material Is done.
 本発明の樹脂組成物は、重合性官能基を有するジナフトチオフェン系化合物、芳香環を有する単官能(メタ)アクリレート、ラジカル重合開始剤を特定の割合で含有する被覆材用樹脂組成物からなるので、センサー素子、表示素子等の表面保護や、反射防止膜、光導波路膜等に求められる高い屈折率と透明性、および優れた密着性を有するという特徴を有している。また、本発明の被覆材用樹脂組成物は、溶媒を使用する必要がないため、残存溶剤の影響による強度低下や、アウトガス発生の問題を回避することができる。 The resin composition of the present invention comprises a resin composition for a coating material containing a dinaphthothiophene compound having a polymerizable functional group, a monofunctional (meth) acrylate having an aromatic ring, and a radical polymerization initiator in a specific ratio. Therefore, it has characteristics such as high refractive index and transparency required for surface protection of sensor elements, display elements, antireflection films, optical waveguide films, and the like, and excellent adhesion. Moreover, since the resin composition for coating | covering material of this invention does not need to use a solvent, the strength fall by the influence of a residual solvent and the problem of outgas generation | occurrence | production can be avoided.
<用語の説明>
 本明細書において、被覆材とは、ガラス基板、プラスチックフィルム、プラスチックシート等の基材上を、表面保護、意匠性を付与、および反射防止や光導波といった機能性を付与することを目的に被覆する材料を意味する。
<Explanation of terms>
In this specification, a coating material is a coating on a substrate such as a glass substrate, a plastic film, or a plastic sheet for the purpose of imparting surface protection, designability, and functionality such as antireflection or optical waveguide. Means the material to be.
 本実施形態に係る樹脂組成物の成分について説明する。 The components of the resin composition according to this embodiment will be described.
 本実施形態に係るエネルギー線硬化性樹脂組成物は、(A)成分として、下記一般式(1)式で表されるエチレン性不飽和二重結合を有する重合性官能基を1つ以上有するジナフトチオフェン系化合物を有する。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、各Xは、それぞれ独立に、単結合、二価の有機基又は二価の原子であり、各Rは、それぞれ独立に水素原子又はメチル基であり、c+dが1~4の整数であることを条件として、cは0~4の整数であり、dは0~4の整数である。Xが二価の有機基である場合、Xとしては、酸素原子、硫黄原子又は窒素原子からなるヘテロ原子を含んでもよいアルキレン基、アラルキレン基、アルケニレン基、エステル結合、アミド結合、イミド結合又はこれらの結合を主鎖に含むアルキレン基、アリーレン基、アラルキレン基、二価の置換芳香族基、二価の置換へテロ芳香族基、二価の置換シリル基である。また、Xが二価の原子である場合、Xとしては、酸素原子、硫黄原子、他の原子と結合を有してもよい錫原子、他の原子と結合を有してもよい燐原子である。なお、Xは、それらが結合するナフタレン環における置換可能な炭素原子のいずれと結合してもよい。(R)a又は(R)bは、それぞれa個又はb個の同一又は異なる置換基を意味し、当該置換基は、それらが結合するナフタレン環における置換可能な炭素原子のいずれに結合してもよく、各Rは、それぞれ独立に、有機基、水酸基、アミノ基、ニトロ基、チオール基、スルホ基、ハロゲン原子、又は置換されてもよいシリル基を表す。また、aは、0~5の整数であり、bは、0~5の整数である。)
The energy beam curable resin composition according to the present embodiment has a difunctional dimer having one or more polymerizable functional groups having an ethylenically unsaturated double bond represented by the following general formula (1) as the component (A). It has a naphthothiophene compound.
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), each X is independently a single bond, a divalent organic group or a divalent atom, each R 1 is independently a hydrogen atom or a methyl group, and c + d is C is an integer of 0 to 4, and d is an integer of 0 to 4. provided that X is a divalent organic group, X is an oxygen atom; An alkylene group, an aralkylene group, an alkenylene group, an ester bond, an amide bond, an imide bond, or an alkylene group containing these bonds in the main chain, an arylene group, an aralkylene group, a divalent group that may contain a hetero atom consisting of a sulfur atom or a nitrogen atom A substituted aromatic group, a divalent substituted heteroaromatic group, a divalent substituted silyl group, and when X is a divalent atom, X may be an oxygen atom, a sulfur atom, or another atom. And a tin atom that may have a bond with other atoms A phosphorus atom that may have a bond, wherein X may be bonded to any of the substitutable carbon atoms in the naphthalene ring to which they are bonded, wherein (R) a or (R) b is means a or b identical or different substituents, which may be attached to any of the substitutable carbon atoms in the naphthalene ring to which they are attached, and each R is independently an organic A group, a hydroxyl group, an amino group, a nitro group, a thiol group, a sulfo group, a halogen atom, or an optionally substituted silyl group, a is an integer of 0 to 5, and b is an integer of 0 to 5 (It is an integer.)
 上記重合性官能基としては、ビニル基、スチリル基、ビニルエーテル基、アリル基、アリルエーテル基、(メタ)アクリロイル基、(メタ)アクリロニトリル基等が例示できるが、透明性、基材との密着性の点で、(メタ)アクリロイル基又はアリルエーテル基が好ましく、(メタ)アクリロイル基が特に好ましい。 Examples of the polymerizable functional group include a vinyl group, a styryl group, a vinyl ether group, an allyl group, an allyl ether group, a (meth) acryloyl group, a (meth) acrylonitrile group, etc., but transparency and adhesion to a substrate. In this respect, a (meth) acryloyl group or an allyl ether group is preferable, and a (meth) acryloyl group is particularly preferable.
 上記ジナフトチオフェン系化合物の具体例としては、6-ビニルジナフトチオフェン、6-(メタ)アクリロイルオキシメチルジナフトチオフェン、6-(メタ)アクリロイルオキシエチルジナフトチオフェン、6-ビニルエーテルジナフトチオフェン、6-アリルジナフトチオフェン、6-アリルオキシジナフトチオフェン、2,12-ジビニルジナフトチオフェン、3,11-ジビニルジナフトチオフェン、5,9-ジビニルジナフトチオフェン、2,12-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、3,11-ジ(メタ)アクリロイルオキシメチルジナフトチオフェン、2,12-ジアリルオキシメチルジナフトチオフェン、3,11-ジアリルオキシジナフトチオフェン、2,12-ジビニルオキシメチルジナフトチオフェン、3,11-ジビニルオキシジナフトチオフェン等が挙げられるが、透明性の点で、6-(メタ)アクリロイルオキシメチルジナフトチオフェン、6-(メタ)アクリロイルオキシエチルジナフトチオフェン、2,12-ジアリルオキシジナフトチオフェン、及び3,11-ジアリルオキシジナフトチオフェンが好ましく、6-(メタ)アクリロイルオキシメチルジナフトチオフェンが特に好ましい。 Specific examples of the dinaphthothiophene compound include 6-vinyldinaphthothiophene, 6- (meth) acryloyloxymethyldinaphthothiophene, 6- (meth) acryloyloxyethyl dinaphthothiophene, 6-vinyl ether dinaphthothiophene, 6-allyldinaphthothiophene, 6-allyloxydinaphthothiophene, 2,12-divinyldinaphthothiophene, 3,11-divinyldinaphthothiophene, 5,9-divinyldinaphthothiophene, 2,12-di (meth) Acryloyloxymethyldinaphthothiophene, 3,11-di (meth) acryloyloxymethyldinaphthothiophene, 2,12-diallyloxymethyldinaphthothiophene, 3,11-diallyloxydinaphthothiophene, 2,12-divinyloxymethyl Genaf Examples thereof include thiophene and 3,11-divinyloxydinaphthothiophene. From the viewpoint of transparency, 6- (meth) acryloyloxymethyldinaphthothiophene, 6- (meth) acryloyloxyethyl dinaphthothiophene, 2,12 -Diallyloxydinaphthothiophene and 3,11-diallyloxydinaphthothiophene are preferred, and 6- (meth) acryloyloxymethyldinaphthothiophene is particularly preferred.
 (A)成分の含有割合は、樹脂組成物の総量に対して15~60質量部であることが好ましく、特に屈折率、透明性、基材との密着性、(B)成分との相溶性の点で、15~50質量部がより好ましく、17~50質量部がさらに好ましく、20~40質量部が最も好ましい。ここで、樹脂組成物の総量とは、(A)成分と(B)成分の合計100質量部であることが好ましい。 The content ratio of the component (A) is preferably 15 to 60 parts by mass with respect to the total amount of the resin composition. Particularly, the refractive index, transparency, adhesion to the substrate, and compatibility with the component (B). In this respect, 15 to 50 parts by mass is more preferable, 17 to 50 parts by mass is further preferable, and 20 to 40 parts by mass is most preferable. Here, the total amount of the resin composition is preferably 100 parts by mass in total of the component (A) and the component (B).
 上記ジナフトチオフェン系化合物は、特開2011-178985号公報(上記特許文献5)、特開2012-136576(上記特許文献6)に例示される製造方法をもって製造することができるが、この方法に限らずいかなる製造方法によって製造されたものでも使用できる。 The dinaphthothiophene-based compound can be produced by a production method exemplified in Japanese Patent Application Laid-Open No. 2011-178985 (Patent Document 5) and Japanese Patent Application Laid-Open No. 2012-136576 (Patent Document 6). A product manufactured by any manufacturing method is not limited.
<(B)成分:単官能(メタ)アクリレート>
 本発明の樹脂組成物は(B)成分として、1つ以上の芳香環を有する単官能(メタ)アクリレートを含有する。芳香環の数は、例えば、1,2,3であり、好ましくは、1つである。
<(B) component: monofunctional (meth) acrylate>
The resin composition of the present invention contains a monofunctional (meth) acrylate having one or more aromatic rings as the component (B). The number of aromatic rings is, for example, 1, 2, 3, and preferably one.
 上記単官能(メタ)アクリレートの具体例としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、エチレンオキサイド変性ノニルフェニル(メタ)アクリレート、フタル酸変性(メタ)アクリレート、ナフチル(メタ)アクリレート、ビスフェニルフルオレン(メタ)アクリレート、2-(o-フェニルフェノキシ)エチル(メタ)アクリレート等が例示できるが、(A)成分との相溶性、屈折率、透明性の点から、ベンジル(メタ)アクリレートおよび/またはフェノキシエチル(メタ)アクリレートが特に好ましい。 Specific examples of the monofunctional (meth) acrylate include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, and phenoxyhexaethylene glycol (meth) acrylate. , Nonylphenyl (meth) acrylate, ethylene oxide modified nonylphenyl (meth) acrylate, phthalic acid modified (meth) acrylate, naphthyl (meth) acrylate, bisphenylfluorene (meth) acrylate, 2- (o-phenylphenoxy) ethyl ( (Meth) acrylate and the like can be exemplified, but from the viewpoint of compatibility with the component (A), refractive index, and transparency, benzyl (meth) acrylate and / or phenoxyethyl (meth) ) Acrylate is particularly preferred.
 (B)成分の含有割合は、樹脂組成物の総量に対して40~85質量部であることが好ましく、特に屈折率、透明性、基材との密着性、(A)成分との相溶性の点で、50~85質量部がより好ましく、50~83質量部がさらに好ましく、60~80質量部が最も好ましい。 The content ratio of the component (B) is preferably 40 to 85 parts by mass with respect to the total amount of the resin composition, particularly the refractive index, transparency, adhesion to the substrate, and compatibility with the component (A). In this respect, 50 to 85 parts by mass is more preferable, 50 to 83 parts by mass is further preferable, and 60 to 80 parts by mass is most preferable.
 本発明の樹脂組成物には、発明の効果を損なわない範囲で、芳香環を有さない単官能(メタ)アクリレート化合物や、多官能の(メタ)アクリレートを含有しても良い。 The resin composition of the present invention may contain a monofunctional (meth) acrylate compound having no aromatic ring or a polyfunctional (meth) acrylate as long as the effects of the invention are not impaired.
<(C)成分:光ラジカル重合開始剤>
 本実施の樹脂組成物は、(C)光ラジカル重合開始剤を含有する。光ラジカル重合開始剤は、エネルギー線を照射することによりラジカルが発生する化合物であれば、特に制限されない。
<(C) component: radical photopolymerization initiator>
The resin composition of the present embodiment contains (C) a radical photopolymerization initiator. The radical photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals when irradiated with energy rays.
 上記光ラジカル重合開始剤としては、ベンジル、ベンゾイン、ベンゾイン安息香酸、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン誘導体、ベンゾフェノン、4-フェニルベンゾフェノン等のベンゾフェノン誘導体、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール等のアルキルアセトフェノン誘導体、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のα-ヒドロキシアセトフェノン誘導体、ビスジエチルアミノベンゾフェノン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン-1等のα-アミノアルキルアセトフェノン誘導体、イソブチリル-メチルフォスフィン酸メチルエステル、イソブチリル-フェニルフォスフィン酸メチルエステル、ピバロイル-フェニルフォスフィン酸メチルエステル、2-エチルヘキサノイル-フェニルフォスフィン酸メチルエステル、ピバロイル-フェニルフォスフィン酸イソプロピルエステル、p-トルイル-フェニルフォスフィン酸メチルエステル、o-トルイル-フェニルフォスフィン酸メチルエステル、2,4-ジメチルベンゾイル-フェニルフォスフィン酸メチルエステル、p-3級ブチルベンゾイル-フェニルフォスフィン酸イソプロピルエステル、ビバロイル-(4-メチルフェニル)-フォスフィン酸メチルエステル、ピバロイル-フェニルフォスフィン酸ビニルエステル、(メタ)アクリロイル-フェニルフォスフィン酸メチルエステル、イソブチリル-ジフェニルフォスフィンオキサイド、ピバロイル-ジフェニルフォスフィンオキサイド、1-メチル-1-シクロヘキサノイル-ジフェニルフォスフィンオキサイド、2-エチルヘキサノイル-ジフェニルフォスフィンオキサイド、p-トルイル-ジフェニルフォスフィンオキサイド、o-トルイル-ジフェニルフォスフィンオキサイド、p-3級ブチルベンゾイル-ジフェニルフォスフィンオキサイド、(メタ)アクリロイルジフェニルフォスフィンオキサイド、ベンゾイル-ジフェニルフォスフィンオキサイド、2,2-ジメチル-ヘプタノイル-ジフェニルフォスフィンオキサイド、テレフタロイル-ビス-ジフェニルフォスフィンオキサイド、アジポイル-ビス-ジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイル-フェニルフォスフィン酸メチルエステル、2,6-ジメチルベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイル-ジフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニルフォスフィン酸メチルエステル、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、2,3,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-トリフォスフィン酸メチルエステル、2,4,6-トリメトキシベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジクロルベンゾイル-フェニルフォスフィン酸エステル、2,6-ジクロルベンゾイル-ジフェニルフォスフィンオキサイド、2,3,4,6-テトラメチルベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジブロムベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニルフォスフィン酸メチルエステル、2,6-ジクロルベンゾイル-若しくは2,6-ジメトキシベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド等のアシルフォスフィンオキサイド誘導体、1,2-オクタンジオン,1-〔-4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)〕、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物が挙げられる。これらの中では、アルキルアセトフェノン誘導体、α-ヒドロキシアセトフェノン類、ホスフィンオキサイド類からなる1種以上が、反応性、透明性に優れる点で、好ましい。これらは1種又は2種以上組み合わせて用いることができる。 Examples of the photo radical polymerization initiator include benzyl derivatives such as benzyl, benzoin, benzoin benzoic acid, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether, benzophenone derivatives such as benzophenone and 4-phenylbenzophenone, and 2,2-diethoxy Alkyl acetophenone derivatives such as acetophenone, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4- (2-hydroxyethoxy) -Phenyl) -2-hydroxy-2-methyl-1-propan-1-one, α-hydroxyacetophenone derivatives such as 2-hydroxy-2-methyl-1-phenylpropan-1-one Bisdiethylaminobenzophenone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1- Α-Aminoalkylacetophenone derivatives such as butanone-1, isobutyryl-methylphosphinic acid methyl ester, isobutyryl-phenylphosphinic acid methyl ester, pivaloyl-phenylphosphinic acid methyl ester, 2-ethylhexanoyl-phenylphosphinic acid methyl ester Esters, pivaloyl-phenylphosphinic acid isopropyl ester, p-toluyl-phenylphosphinic acid methyl ester, o-toluyl-phenylphosphinic acid methyl ester, 2,4-dimethylbenzoyl-phenylphosphine Methyl ester, p-tert-butylbenzoyl-phenylphosphinic acid isopropyl ester, bivaloyl- (4-methylphenyl) -phosphinic acid methyl ester, pivaloyl-phenylphosphinic acid vinyl ester, (meth) acryloyl-phenylphosphinic acid methyl ester Ester, isobutyryl-diphenylphosphine oxide, pivaloyl-diphenylphosphine oxide, 1-methyl-1-cyclohexanoyl-diphenylphosphine oxide, 2-ethylhexanoyl-diphenylphosphine oxide, p-toluyl-diphenylphosphine oxide , O-Toluyl-diphenylphosphine oxide, p-tert-butylbenzoyl-diphenylphosphine oxide, (meth) acryloyl diphe Nylphosphine oxide, benzoyl-diphenylphosphine oxide, 2,2-dimethyl-heptanoyl-diphenylphosphine oxide, terephthaloyl-bis-diphenylphosphine oxide, adipoyl-bis-diphenylphosphine oxide, 2,6-dimethylbenzoyl- Diphenylphosphine oxide, 2,6-dimethoxybenzoyl-phenylphosphinic acid methyl ester, 2,6-dimethylbenzoyl-diphenylphosphine oxide, 2,6-dimethoxybenzoyl-diphosphine oxide, 2,4,6-trimethyl Benzoyl-phenylphosphinic acid methyl ester, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2,3,6-trimethylbenzoy -Diphenylphosphine oxide, 2,4,6-trimethylbenzoyl-triphosphinic acid methyl ester, 2,4,6-trimethoxybenzoyl-diphenylphosphine oxide, 2,6-dichlorobenzoyl-phenylphosphinic acid ester, 2,6-dichlorobenzoyl-diphenylphosphine oxide, 2,3,4,6-tetramethylbenzoyl-diphenylphosphine oxide, 2,6-dibromobenzoyl-diphenylphosphine oxide, 2,6-dimethylbenzoyldiphenyl Phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyl-phenylphosphinic acid methyl ester, 2,6-dichlorobenzoyl-young 2,6-dimethoxybenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine Acylphosphine oxide derivatives such as oxide, 1,2-octanedione, 1-[-4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone 1- [9-ethyl-6- (2- And oxime ester compounds such as methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime). Among these, one or more of alkyl acetophenone derivatives, α-hydroxyacetophenones, and phosphine oxides are preferable in terms of excellent reactivity and transparency. These can be used alone or in combination of two or more.
 (C)成分の含有割合は、樹脂組成物の総量に対して、0.1~10質量部の割合で含有させることが好ましく、特に0.5~5質量部がより好ましい。0.1~10質量部の範囲にあれば硬化性が悪くなることもないし、透明性も低下させることもない。 The content of component (C) is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on the total amount of the resin composition. If it is in the range of 0.1 to 10 parts by mass, the curability will not be deteriorated and the transparency will not be lowered.
<その他の添加剤>
 本実施形態の目的を損なわない範囲で、酸化防止剤、シランカップリング剤、アクリルゴム、ウレタンゴム等の各種エラストマー、光増感剤、光安定剤、溶剤、増量材、充填剤、補強材、可塑剤、増粘剤、染料、顔料、難燃剤及び界面活性剤等の添加剤を含有しても良い。
<Other additives>
As long as the purpose of the present embodiment is not impaired, an antioxidant, a silane coupling agent, various elastomers such as an acrylic rubber and a urethane rubber, a photosensitizer, a light stabilizer, a solvent, an extender, a filler, a reinforcing material, You may contain additives, such as a plasticizer, a thickener, a dye, a pigment, a flame retardant, and surfactant.
 本実施形態に係る樹脂組成物の製造方法については、上記の材料を十分に混合できれば特に制限はない。材料の混合方法としては、特に限定されないが、プロペラの回転に伴う撹拌力を利用する撹拌法、自転公転による遊星式撹拌機等の通常の分散機を利用する方法等が挙げられる。これらの混合方法は、低コストで、安定した混合を行えるので好ましい。 The method for producing the resin composition according to this embodiment is not particularly limited as long as the above materials can be sufficiently mixed. The mixing method of the material is not particularly limited, and examples thereof include a stirring method using a stirring force accompanying rotation of a propeller, a method using a normal disperser such as a planetary stirrer by rotation and revolution, and the like. These mixing methods are preferable because stable mixing can be performed at low cost.
 上記の混合を行った後、下記の光源を用いたエネルギー線の照射により、樹脂組成物の硬化を行うことができる。 After the above mixing, the resin composition can be cured by irradiation with energy rays using the following light source.
 本実施形態において、樹脂組成物の硬化に用いられる光源としては、特に限定されないが、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ(インジウム等を含有する)、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、キセノンエキシマランプ、キセノンフラッシュランプ、ライトエミッティングダイオード(以下、LEDという)等が挙げられる。これらの光源は、それぞれの光ラジカル重合開始剤の反応波長に対応したエネルギー線の照射を効率よく行える点で、好ましい。 In the present embodiment, the light source used for curing the resin composition is not particularly limited, but is a halogen lamp, a metal halide lamp, a high-power metal halide lamp (containing indium or the like), a low-pressure mercury lamp, a high-pressure mercury lamp, or an ultra-high pressure. Examples thereof include a mercury lamp, a xenon lamp, a xenon excimer lamp, a xenon flash lamp, and a light emitting diode (hereinafter referred to as LED). These light sources are preferable in that they can efficiently irradiate energy rays corresponding to the reaction wavelengths of the respective radical photopolymerization initiators.
 上記光源は、各々放射波長、エネルギー分布が異なる。そのため、上記光源は光重合開始剤の反応波長等により適宜選択される。又、自然光(太陽光)も反応開始光源になり得る。 The above light sources have different emission wavelengths and energy distributions. Therefore, the light source is appropriately selected depending on the reaction wavelength of the photopolymerization initiator. Natural light (sunlight) can also be a reaction initiation light source.
 上記光源は、直接照射、反射鏡等による集光照射、ファイバー等による集光照射を行ってもよい。低波長カットフィルター、熱線カットフィルター、コールドミラー等も用いることもできる。 The light source may perform direct irradiation, focused irradiation with a reflecting mirror or the like, or focused irradiation with a fiber or the like. A low wavelength cut filter, a heat ray cut filter, a cold mirror, or the like can also be used.
 上記構成からなる樹脂組成物は、エネルギー線の照射により速やかに硬化するため、高透明性、高屈折率等の光学特性に優れた硬化体を提供することができる。 Since the resin composition having the above-mentioned structure is quickly cured by irradiation with energy rays, a cured product excellent in optical properties such as high transparency and high refractive index can be provided.
 また、上記構成からなる樹脂組成物は、高透明性、高屈折率などの光学特性が優れ、ガラス、プラスチックフィルム、プラスチックシート等の基材への密着性が優れるため、これら基材の被覆材として提供することができる。 In addition, the resin composition having the above structure is excellent in optical properties such as high transparency and high refractive index, and has excellent adhesion to substrates such as glass, plastic film, and plastic sheet. Can be offered as.
 さらに、上記構成からなる樹脂組成物は、高透明性、高屈折率など光学特性に優れるため、反射防止膜や光導波膜の高屈折率層として用いることができ、そのため優れた反射防止膜や光導波路膜を提供できる。 Furthermore, since the resin composition having the above structure is excellent in optical properties such as high transparency and high refractive index, it can be used as a high refractive index layer of an antireflection film or an optical waveguide film. An optical waveguide film can be provided.
 反射防止膜、および光導波路膜は、ガラス、プラスチックフィルム、プラスチックシート等の各種基材の上に、本発明の樹脂組成物からなる層(以下、高屈折率層という)を塗布、エネルギー線照射により形成した後、高屈折率層上に、高屈折率層より低い屈折率を有する層(以下、低屈折率層という)を形成することで作製される。 The antireflection film and optical waveguide film are coated with a layer made of the resin composition of the present invention (hereinafter referred to as a high refractive index layer) on various substrates such as glass, plastic film, plastic sheet, etc., and irradiated with energy rays. Then, a layer having a lower refractive index than the high refractive index layer (hereinafter referred to as a low refractive index layer) is formed on the high refractive index layer.
 基材としては、無アルカリガラス、アルカリガラス、硼珪酸ガラス、石英等のガラス基材や、シリカ、アルミナ、窒化珪素等のセラミックス基材、シリコーン、アルミ、ステンレス、鉄、銅、銀等の金属基材、アクリル系樹脂、スチレン系樹脂、カーボネート系樹脂、オレフィン系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、エポキシ系樹脂、シリコーン系樹脂、フッ素系樹脂、セルロース系樹脂等の樹脂からなるフィルム基材、シート基材などを用いることができる。 Base materials include glass base materials such as alkali-free glass, alkali glass, borosilicate glass, and quartz, ceramic base materials such as silica, alumina, and silicon nitride, and metals such as silicone, aluminum, stainless steel, iron, copper, and silver. From resins such as base materials, acrylic resins, styrene resins, carbonate resins, olefin resins, polyester resins, polyimide resins, polyamide resins, epoxy resins, silicone resins, fluorine resins, and cellulose resins A film base material, a sheet base material, and the like can be used.
 低屈折率層としては、無機膜としてはフッ化マグネシウム、フッ化カリウム等のアルカリ金属のフッ化物や、シリカ等が例示でき、有機膜としてはポリパーフルオロエチレン、パーフルオロシクロオレフィン等のフッ素樹脂、ポリエチレングリコール等のポリエーテル樹脂、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂およびそれらのフッ素変性樹脂などを用いることができる。 Examples of the low refractive index layer include inorganic films such as alkali metal fluorides such as magnesium fluoride and potassium fluoride, silica, and the like, and organic films such as fluoropolymers such as polyperfluoroethylene and perfluorocycloolefin. Polyether resins such as polyethylene glycol, silicone resins, acrylic resins, epoxy resins, urethane resins and their fluorine-modified resins can be used.
 上記構成からなる樹脂組成物は、高透明性、高屈折率など光学特性に優れるため、高液晶パネル、有機エレクトロルミネッセンスパネル、タッチパネル、プロジェクター、スマートフォン、携帯電話、デジタルカメラ、デジタルムービーの表示素子や、CCD、CMOS、バイオチップ等の各種センサー部品、フラッシュメモリー、DRAM、半導体レーザー等の半導体素子に用いられる被覆材、さらには反射防止膜や光導波膜の高屈折率層として用いることができる。 The resin composition having the above structure is excellent in optical properties such as high transparency and high refractive index, and therefore has a high liquid crystal panel, an organic electroluminescence panel, a touch panel, a projector, a smartphone, a mobile phone, a digital camera, a digital movie display element, It can be used as a coating material used for various sensor parts such as CCD, CMOS, and biochip, semiconductor elements such as flash memory, DRAM, and semiconductor laser, and also as a high refractive index layer of an antireflection film or an optical waveguide film.
 以下に、実施例及び比較例を挙げて、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例では、以下の化合物を使用した。 In the examples, the following compounds were used.
(A)ジナフトチオフェン化合物
 ジナフトチオフェン化合物は、特開2011-178985(上記特許文献5)に記載の合成方法([実施例][0106]~[0121])にて製造したものを用いた。
(A-1)6-メタクリロイルオキシメチルジナフトチオフェン(略号:DNTMA)
(A-2)6-ビニルジナフトチオフェン(略号:VDNT)
(A-3)6-メタクリロイルオキシエチルジナフトチオフェン(略号:EDNTMA)
(A-4)2,12-ジアリルオキシジナフトチオフェン(略号:DAODNT)
(A-5)3,11-ジアリルオキシジナフトチオフェン(略号:i-DAODNT)
(A-6)ジナフトチオフェン(略号:DNT)
(A) Dinaphthothiophene compound The dinaphthothiophene compound used was prepared by the synthesis method described in JP2011-178985 (Patent Document 5) ([Example] [0106] to [0121]). .
(A-1) 6-Methacryloyloxymethyldinaphthothiophene (abbreviation: DNTMA)
(A-2) 6-vinyldinaphthothiophene (abbreviation: VDNT)
(A-3) 6-methacryloyloxyethyldinaphthothiophene (abbreviation: EDNTMA)
(A-4) 2,12-diallyloxydinaphthothiophene (abbreviation: DAODNT)
(A-5) 3,11-diallyloxydinaphthothiophene (abbreviation: i-DAODNT)
(A-6) Dinaphthothiophene (abbreviation: DNT)
(B)芳香環を有する単官能(メタ)アクリレート
(B-1)ベンジルメタクリレート(共栄社化学社製「ライトエステルBZ」)
(B-2)ベンジルアクリレート(大阪有機化学工業社製「ビスコート#160」)
(B-3)フェノキシエチルメタクリレート(共栄社化学社製「ライトエステルPO」)
(B-4)フェノキシエチルアクリレート(共栄社化学社製「ライトアクリレートPO-A」)
(B-5)2-(o-フェニルフェノキシ)エチルアクリレート(新中村化学工業社製「NKエステルA-LEN-10」)
(B) Monofunctional (meth) acrylate having an aromatic ring (B-1) benzyl methacrylate (“Light Ester BZ” manufactured by Kyoeisha Chemical Co., Ltd.)
(B-2) Benzyl acrylate (Osaka Organic Chemical Co., Ltd. “Biscoat # 160”)
(B-3) Phenoxyethyl methacrylate (Kyoeisha Chemical Co., Ltd. “Light Ester PO”)
(B-4) Phenoxyethyl acrylate (“Light acrylate PO-A” manufactured by Kyoeisha Chemical Co., Ltd.)
(B-5) 2- (o-phenylphenoxy) ethyl acrylate (“NK Ester A-LEN-10” manufactured by Shin-Nakamura Chemical Co., Ltd.)
(C)光ラジカル重合開始剤
(C-1)ベンジルジメチルケタール(BASF社製「イルガキュアー651」)
(C-2)1-ヒドロキシ-シクロヘキシルフェニルケトン(BASF社製「イルガキュアー184」)
(C-3)ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASF社製「イルガキュアー819」)
(C) Photoradical polymerization initiator (C-1) Benzyldimethyl ketal (“IRGACURE 651” manufactured by BASF)
(C-2) 1-hydroxy-cyclohexyl phenyl ketone (“Irgacure 184” manufactured by BASF)
(C-3) Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (“Irgacure 819” manufactured by BASF)
 その他の化合物として、下記を用いた。
(D-1)ビスフェノールA型エポキシアクリレート(共栄社化学社製「エポキシエステル3002M」)
(D-2)スチレン(和光純薬工業社製「スチレン」)
(D-3)メチルメタクリレート(三菱ガス化学社製「MMA」)
(D-4)9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン(大阪ガスケミカル社製「BPFEA」)
The following were used as other compounds.
(D-1) Bisphenol A type epoxy acrylate (“Epoxy ester 3002M” manufactured by Kyoeisha Chemical Co., Ltd.)
(D-2) Styrene (“Styrene” manufactured by Wako Pure Chemical Industries, Ltd.)
(D-3) Methyl methacrylate (Mitsubishi Gas Chemical "MMA")
(D-4) 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (“BPFEA” manufactured by Osaka Gas Chemical Company)
(実施例1~18、比較例1~6)
 表1~表3に示す種類の原材料を、表1~表3に示す組成割合(単位は質量部)で混合し、被覆材用樹脂組成物を調製し、後述の評価を実施した。溶媒は用いなかった。各種評価結果を表1~表3に示す。特記しない限り、23℃、湿度50%の環境下で実施した。
(Examples 1 to 18, Comparative Examples 1 to 6)
The raw materials of the types shown in Tables 1 to 3 were mixed in the composition ratios (units are parts by mass) shown in Tables 1 to 3, to prepare resin compositions for coating materials, and the evaluation described below was performed. No solvent was used. Various evaluation results are shown in Tables 1 to 3. Unless otherwise specified, the test was carried out in an environment of 23 ° C. and 50% humidity.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔液安定性評価〕
 30mlのバイアル瓶に樹脂組成物10mlを入れ密封したサンプルを準備し、サンプルを温度23℃の雰囲気中に24時間静置し、24時間後の液の状態を目視で確認し、以下の基準で評価した。
○:静置前と変化がなかった
△:析出物や分離物がみられるが50℃加温により再溶解した
×:析出物や分離物がみられ50℃加温でも再溶解しなかった
 尚、混合後の液の状態を目視で確認し、析出物や分離物がみられた試料については続く評価は実施しなかった。
(Liquid stability evaluation)
Prepare a sealed sample by placing 10 ml of the resin composition in a 30 ml vial, leave the sample in an atmosphere at a temperature of 23 ° C. for 24 hours, visually check the liquid state after 24 hours, and use the following criteria: evaluated.
◯: No change from before standing Δ: Precipitates and isolates were seen but redissolved by heating at 50 ° C. x: Precipitates and isolates were seen and did not dissolve again even at 50 ° C. The state of the liquid after mixing was visually confirmed, and subsequent evaluation was not carried out for the sample in which precipitates and separated matters were observed.
〔屈折率の評価〕
(1)液屈折率
 液屈折率の評価は、多波長アッベ屈折率計(アタゴ社製「DR-M2」)を用いて、温度25℃、波長589nmにおける屈折率を測定した。
(2)硬化物屈折率
 樹脂組成物を容積15mm×15mm×1.0mmのシリコーンゴム製の型枠に流し込み、超高圧水銀ランプ搭載装置(HOYA社製「UL-750」)にて、365nmの波長の照射強度30mW/cm、積算光量30,000mJ/cmの条件にて硬化した硬化物試験片を作成し、屈折率を評価した。屈折率の評価は、分光プリズムカプラ屈折率測定装置(メトリコン社製「MODEL 2010 PRISM COUPLER」)を用いて、波長633nmにおける屈折率を測定した。
(Evaluation of refractive index)
(1) Liquid Refractive Index The liquid refractive index was evaluated by measuring the refractive index at a temperature of 25 ° C. and a wavelength of 589 nm using a multi-wavelength Abbe refractometer (“DR-M2” manufactured by Atago Co., Ltd.).
(2) Refractive index of cured product The resin composition was poured into a silicone rubber mold having a volume of 15 mm × 15 mm × 1.0 mm, and a film having a thickness of 365 nm was measured using an ultra-high pressure mercury lamp mounting device (“UL-750” manufactured by HOYA). A cured product test piece cured under conditions of an irradiation intensity of a wavelength of 30 mW / cm 2 and an integrated light amount of 30,000 mJ / cm 2 was prepared, and a refractive index was evaluated. The refractive index was evaluated by measuring the refractive index at a wavelength of 633 nm using a spectroscopic prism coupler refractive index measuring device ("MODEL 2010 PRISM COUPLER" manufactured by Metricon).
〔分光透過率測定〕
 樹脂組成物を耐熱ガラス(商品名「耐熱パイレックス(登録商標)ガラス」、25mm×25mm×2.0mm)上に膜厚30μmで塗布した後に、超高圧水銀ランプ搭載装置(HOYA社製「UL-750」)にて、365nmの波長の照射強度50mW/cm、積算光量30,000mJ/cmの条件にて硬化した試験片を作成し、紫外-可視分光光度計(島津製作所社製「UV-2550」)、リファレンスを耐熱ガラスとして、450nmの透過率を測定した。
(Spectral transmittance measurement)
The resin composition was applied on a heat-resistant glass (trade name “heat-resistant Pyrex (registered trademark) glass”, 25 mm × 25 mm × 2.0 mm) with a film thickness of 30 μm, and then an ultra-high pressure mercury lamp mounting device (“UL-” manufactured by HOYA). 750 "), a test piece cured under the conditions of an irradiation intensity of a wavelength of 365 nm of 50 mW / cm 2 and an integrated light quantity of 30,000 mJ / cm 2 was prepared, and an ultraviolet-visible spectrophotometer (Shimadzu Corporation" UV " -2550 "), and the transmittance was measured at 450 nm using a heat resistant glass as a reference.
〔密着性評価(クロスカット試験)〕
 125μm厚のポリエステルフィルム(東洋紡社製「コスモシャインA4100」)上に、樹脂組成物を超高圧水銀ランプ搭載装置(HOYA社製「UL-750」)にて、365nmの波長の照射強度50mW/cm、積算光量30,000mJ/cm、窒素雰囲気下の条件にて硬化して形状が20mm×20mm×80μmの樹脂組成物の硬化膜を形成した試験片を作製した。
 このようにして得られた各試験片に対して、温度23℃、相対湿度50%の環境下で、硬化膜に縦2mm×横2mm×25マスになるようにカットラインを入れた後、セロファンテープ(ニチバン社製型式CT-405AP:幅24mm、粘着力23N/10mm)を貼り付けて180°剥離を実施した。180°剥離後に残ったマスの数を数え、以下の基準で評価した。その他、特に明示のない条件はJIS K 5600-5-6に従った。
○:25枚全て残った
△:15枚以上24枚以下残った
×:14枚未満であった
[Adhesion evaluation (cross cut test)]
On a polyester film of 125 μm thickness (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.), the resin composition was irradiated with an ultra-high pressure mercury lamp (“UL-750” manufactured by HOYA) with an irradiation intensity of 50 nm at a wavelength of 365 nm. 2. A test piece was prepared in which a cured film of a resin composition having a shape of 20 mm × 20 mm × 80 μm was formed by curing under the condition of an integrated light quantity of 30,000 mJ / cm 2 and a nitrogen atmosphere.
For each test piece obtained in this manner, a cut line was placed in the cured film so as to be 2 mm long × 2 mm wide × 25 squares in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and then cellophane. A tape (model CT-405AP manufactured by Nichiban Co., Ltd .: width 24 mm, adhesive strength 23 N / 10 mm) was applied and 180 ° peeling was performed. The number of cells remaining after 180 ° peeling was counted and evaluated according to the following criteria. Other conditions that were not specified were in accordance with JIS K 5600-5-6.
○: All 25 sheets remained Δ: 15 or more and 24 or less remained x: Less than 14 sheets
<考察>
 実施例1~18では、何れも液安定性・屈折率・分光透過率・密着性の点で優れた結果が得られた。但し、実施例1では、ジナフトチオフェン系化合物の配合割合が少ないため、屈折率が若干低かった。実施例6では、ジナフトチオフェン系化合物の配合割合が多いため、液安定性及び密着性が若干悪化した。また、ビニル基を有するジナフトチオフェン系化合物を用いた実施例10では、(メタ)アクリロイル基又はアリルエーテル基を有するジナフトチオフェン系化合物を用いた実施例1~9、実施例11~14に比べて、液安定性、分光透過率及び密着性が好ましくなかった。この結果は、(メタ)アクリロイル基又はアリルエーテル基を有するジナフトチオフェン系化合物を用いることの優位性を示している。さらに、実施例3と実施例11~13を比較すると、実施例3のようにDNTMAを用いた場合、屈折率及び分光透過率が特に高くなることが分かった。さらに、実施例14のように、(B)成分として芳香環を2つ有するアクリレートを用いたところ、液安定性、分光透過率及び密着性が悪化した。
<Discussion>
In Examples 1 to 18, excellent results were obtained in terms of liquid stability, refractive index, spectral transmittance, and adhesion. However, in Example 1, since the blending ratio of the dinaphthothiophene compound was small, the refractive index was slightly low. In Example 6, since the compounding ratio of the dinaphthothiophene compound was large, the liquid stability and adhesion were slightly deteriorated. In Example 10 using a dinaphthothiophene compound having a vinyl group, Examples 1 to 9 and Examples 11 to 14 using a dinaphthothiophene compound having a (meth) acryloyl group or an allyl ether group were used. In comparison, liquid stability, spectral transmittance and adhesion were not preferred. This result shows the advantage of using a dinaphthothiophene compound having a (meth) acryloyl group or an allyl ether group. Further, comparing Example 3 with Examples 11 to 13, it was found that when DNTMA was used as in Example 3, the refractive index and spectral transmittance were particularly high. Furthermore, as in Example 14, when an acrylate having two aromatic rings was used as the component (B), the liquid stability, spectral transmittance, and adhesion were deteriorated.
 また、比較例1では、ジナフトチオフェン系化合物を用いなかったため、屈折率が十分でなかった。比較例2では、多官能アクリレート(ビスフェノールA型エポキシアクリレート)を用いたため、液安定性が非常に悪く、屈折率・分光透過率評価のための試験片を作成することができなかった。比較例3では、(B)成分の代わりに、芳香環を有するが(メタ)アクリレートではない化合物(スチレン)を用いたため、光照射を行なっても十分に硬化が起こらなかった。比較例4では、(B)成分の代わりに、芳香環を有さない単官能(メタ)アクリレート(メチルメタクリレート)を用いたため、液安定性が悪く、容易に溶解しない析出物が発生してしまった。比較例5では、官能基を有さないジナフトチオフェン系化合物(ジナフトチオフェン)を用いたため、液安定性が悪く、容易に溶解しない析出物が発生してしまった。比較例6では、(B)成分が少なすぎたために、液安定性が悪く、容易に溶解しない析出物が発生してしまった。 In Comparative Example 1, since the dinaphthothiophene compound was not used, the refractive index was not sufficient. In Comparative Example 2, since polyfunctional acrylate (bisphenol A type epoxy acrylate) was used, the liquid stability was very poor, and a test piece for evaluation of refractive index and spectral transmittance could not be prepared. In Comparative Example 3, since a compound (styrene) having an aromatic ring but not (meth) acrylate was used instead of the component (B), curing did not occur sufficiently even when light irradiation was performed. In Comparative Example 4, since monofunctional (meth) acrylate (methyl methacrylate) having no aromatic ring was used instead of component (B), the liquid stability was poor and precipitates that did not dissolve easily were generated. It was. In Comparative Example 5, since a dinaphthothiophene compound (dinaphthothiophene) having no functional group was used, the liquid stability was poor and precipitates that were not easily dissolved were generated. In Comparative Example 6, since there was too little (B) component, the liquid stability was bad and the precipitate which does not melt | dissolve easily occurred.
 本発明の樹脂組成物は、高透明性、高屈折率など光学特性に優れるため、高液晶パネル、有機エレクトロルミネッセンスパネル、タッチパネル、プロジェクター、スマートフォン、携帯電話、デジタルカメラ、デジタルムービーの表示素子や、CCD、CMOS、バイオチップ等の各種センサー部品のセンサー素子、フラッシュメモリー、DRAM、半導体レーザー等の半導体素子に用いられる被覆材、さらには反射防止膜や光導波膜の高屈折率層として好適に用いることができ、産業上非常に有用である。
 
 
Since the resin composition of the present invention is excellent in optical properties such as high transparency and high refractive index, a high liquid crystal panel, organic electroluminescence panel, touch panel, projector, smartphone, mobile phone, digital camera, digital movie display element, Suitable for use as sensor elements for various sensor components such as CCD, CMOS, biochip, coating materials used for semiconductor elements such as flash memory, DRAM, and semiconductor laser, and as a high refractive index layer for antireflection films and optical waveguide films. Can be very useful in industry.

Claims (12)

  1.  (A)成分として、下記一般式(1)で表されるエチレン性不飽和二重結合を有する重合性官能基を1つ以上有するジナフトチオフェン系化合物、
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、各Xは、それぞれ独立に、単結合、二価の有機基又は二価の原子であり、各Rは、それぞれ独立に水素原子又はメチル基であり、c+dが1~4の整数であることを条件として、cは0~4の整数であり、dは0~4の整数である。Xが二価の有機基である場合、Xとしては、酸素原子、硫黄原子又は窒素原子からなるヘテロ原子を含んでもよいアルキレン基、アラルキレン基、アルケニレン基、エステル結合、アミド結合、イミド結合又はこれらの結合を主鎖に含むアルキレン基、アリーレン基、アラルキレン基、二価の置換芳香族基、二価の置換へテロ芳香族基、二価の置換シリル基である。また、Xが二価の原子である場合、Xとしては、酸素原子、硫黄原子、他の原子と結合を有してもよい錫原子、他の原子と結合を有してもよい燐原子である。なお、Xは、それらが結合するナフタレン環における置換可能な炭素原子のいずれと結合してもよい。(R)a又は(R)bは、それぞれa個又はb個の同一又は異なる置換基を意味し、当該置換基は、それらが結合するナフタレン環における置換可能な炭素原子のいずれに結合してもよく、各Rは、それぞれ独立に、有機基、水酸基、アミノ基、ニトロ基、チオール基、スルホ基、ハロゲン原子、又は置換されてもよいシリル基を表す。また、aは、0~5の整数であり、bは、0~5の整数である。)
     (B)成分として、1つ以上の芳香環を含有する単官能(メタ)アクリレート、
     (C)成分として、光ラジカル重合開始剤、
    を含有し、組成物の総量に対して、前記(A)成分の含有割合は15~60質量部の範囲であり、前記(B)成分の含有割合は40~85質量部の範囲であることを特徴とする被覆材用樹脂組成物。
    As the component (A), a dinaphthothiophene compound having one or more polymerizable functional groups having an ethylenically unsaturated double bond represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), each X is independently a single bond, a divalent organic group or a divalent atom, each R 1 is independently a hydrogen atom or a methyl group, and c + d is C is an integer of 0 to 4, and d is an integer of 0 to 4. provided that X is a divalent organic group, X is an oxygen atom; An alkylene group, an aralkylene group, an alkenylene group, an ester bond, an amide bond, an imide bond, or an alkylene group containing these bonds in the main chain, an arylene group, an aralkylene group, a divalent group that may contain a hetero atom consisting of a sulfur atom or a nitrogen atom A substituted aromatic group, a divalent substituted heteroaromatic group, a divalent substituted silyl group, and when X is a divalent atom, X may be an oxygen atom, a sulfur atom, or another atom. And a tin atom that may have a bond with other atoms A phosphorus atom that may have a bond, wherein X may be bonded to any of the substitutable carbon atoms in the naphthalene ring to which they are bonded, wherein (R) a or (R) b is means a or b identical or different substituents, which may be attached to any of the substitutable carbon atoms in the naphthalene ring to which they are attached, and each R is independently an organic A group, a hydroxyl group, an amino group, a nitro group, a thiol group, a sulfo group, a halogen atom, or an optionally substituted silyl group, a is an integer of 0 to 5, and b is an integer of 0 to 5 (It is an integer.)
    (B) As a component, a monofunctional (meth) acrylate containing one or more aromatic rings,
    (C) As a component, radical photopolymerization initiator,
    The content of the component (A) is in the range of 15 to 60 parts by mass and the content of the component (B) is in the range of 40 to 85 parts by mass with respect to the total amount of the composition. A resin composition for a coating material.
  2.  前記(B)成分は、1つの芳香環を含有する単官能(メタ)アクリレートである請求項1に記載の被覆材用樹脂組成物。 The resin composition for a coating material according to claim 1, wherein the component (B) is a monofunctional (meth) acrylate containing one aromatic ring.
  3.  前記(B)成分は、ベンジル(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートから選ばれる1つ以上を含むことを特徴とする請求項1又は2に記載の被覆材用樹脂組成物。 The resin composition for a coating material according to claim 1 or 2, wherein the component (B) includes one or more selected from benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
  4.  前記重合性官能基は、(メタ)アクリロイル基又はアリルエーテル基であることを特徴とする請求項1~3の何れか1項に記載の被覆材用樹脂組成物。 The resin composition for a covering material according to any one of claims 1 to 3, wherein the polymerizable functional group is a (meth) acryloyl group or an allyl ether group.
  5.  前記一般式(1)において、a=b=c=0であり、d=1である請求項1~3のいずれか1項に記載の被覆材用樹脂組成物。 The resin composition for a coating material according to any one of claims 1 to 3, wherein, in the general formula (1), a = b = c = 0 and d = 1.
  6.  前記(A)成分は、6-(メタ)アクリロイルオキシメチルジナフトチオフェン、6-(メタ)アクリロイルオキシエチルジナフトチオフェン、2,12-ジアリルオキシジナフトチオフェン、及び3,11-ジアリルオキシジナフトチオフェンから選ばれる1つ以上を含む請求項1~5のいずれか1項に記載の被覆材用樹脂組成物。 The component (A) is 6- (meth) acryloyloxymethyldinaphthothiophene, 6- (meth) acryloyloxyethyl dinaphthothiophene, 2,12-diallyloxydinaphthothiophene, and 3,11-diallyloxydinaphtho The resin composition for a coating material according to any one of claims 1 to 5, comprising one or more selected from thiophene.
  7.  前記(C)成分の含有割合は、組成物の総量に対して、0.2~10質量部である請求項1~6のいずれか1項に記載の被覆材用樹脂組成物。 The resin composition for a coating material according to any one of claims 1 to 6, wherein a content ratio of the component (C) is 0.2 to 10 parts by mass with respect to a total amount of the composition.
  8.  請求項1~7のいずれか1項に記載の被覆材用樹脂組成物からなることを特徴とする被覆材。 A coating material comprising the resin composition for a coating material according to any one of claims 1 to 7.
  9.  請求項8に記載の被覆材を形成した基材。 A base material on which the coating material according to claim 8 is formed.
  10.  請求項1~7のいずれか1項に記載の被覆材用樹脂組成物からなる層を基板上に形成したのちに、前記の被覆材用樹脂組成物より低い屈折率を有する層を形成してなること特徴とする膜。 A layer having a refractive index lower than that of the resin composition for a coating material is formed after forming the layer made of the resin composition for a coating material according to any one of claims 1 to 7 on the substrate. A film characterized by.
  11.  請求項10に記載の膜を有する基材。 A substrate having the film according to claim 10.
  12.  請求項11に記載の基材を有する素子。 An element having the base material according to claim 11.
PCT/JP2013/065007 2012-06-06 2013-05-30 Resin composition for coating materials WO2013183532A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014519956A JP6105574B2 (en) 2012-06-06 2013-05-30 Resin composition for coating material
KR1020147033269A KR102135467B1 (en) 2012-06-06 2013-05-30 Resin composition for coating materials
CN201380029992.4A CN104350111B (en) 2012-06-06 2013-05-30 Lining material resin combination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-129380 2012-06-06
JP2012129380 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183532A1 true WO2013183532A1 (en) 2013-12-12

Family

ID=49711924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065007 WO2013183532A1 (en) 2012-06-06 2013-05-30 Resin composition for coating materials

Country Status (5)

Country Link
JP (1) JP6105574B2 (en)
KR (1) KR102135467B1 (en)
CN (1) CN104350111B (en)
TW (1) TWI574978B (en)
WO (1) WO2013183532A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029996A1 (en) * 2013-08-30 2015-03-05 電気化学工業株式会社 Coating material resin composition
JP2015048368A (en) * 2013-08-30 2015-03-16 電気化学工業株式会社 High refractive index adhesive composition for optical component
JP2017177681A (en) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 Laminate film
JP2018083774A (en) * 2016-11-22 2018-05-31 スガイ化学工業株式会社 Dinaphthothiophene derivative and method for producing the same
WO2019167947A1 (en) * 2018-02-27 2019-09-06 ソニー株式会社 Compound, polymer, and organic material
WO2023068239A1 (en) * 2021-10-19 2023-04-27 積水化学工業株式会社 Resin composition for sealing use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109741858B (en) * 2018-12-04 2020-07-14 广州中国科学院先进技术研究所 Green printed all-polymer flexible transparent electrode and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115952A (en) * 1997-06-19 1999-01-12 Aader:Kk Optical adhesive composition
JP2007197400A (en) * 2006-01-30 2007-08-09 Tosoh Corp Dibenzothiophene derivative, production method, and application thereof
JP2010007004A (en) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd Active energy ray-curable resin composition
JP2011157543A (en) * 2010-01-07 2011-08-18 Nippon Synthetic Chem Ind Co Ltd:The Actinic radiation curable composition and use thereof
JP2011162584A (en) * 2010-02-04 2011-08-25 Kanagawa Univ Method of increasing or adjusting refractive index-improving effect by dibenzothiophene skeleton-bearing compound
JP2011178985A (en) * 2010-02-04 2011-09-15 Kanagawa Univ Refractive index improver, and resin composition, polymerizable or curable composition, and optical material including the same
JP2012136576A (en) * 2010-12-24 2012-07-19 Kanagawa Univ Curable composition having resistance to cure shrinkage, and cured product obtained by curing the curable composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956597B2 (en) 2000-09-26 2007-08-08 三菱化学株式会社 Photocurable composition and cured product thereof
JP4778416B2 (en) 2003-04-17 2011-09-21 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Photocurable adhesive composition and its use in optical field
JP5246062B2 (en) * 2009-06-25 2013-07-24 トヨタ自動車株式会社 In-vehicle control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115952A (en) * 1997-06-19 1999-01-12 Aader:Kk Optical adhesive composition
JP2007197400A (en) * 2006-01-30 2007-08-09 Tosoh Corp Dibenzothiophene derivative, production method, and application thereof
JP2010007004A (en) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd Active energy ray-curable resin composition
JP2011157543A (en) * 2010-01-07 2011-08-18 Nippon Synthetic Chem Ind Co Ltd:The Actinic radiation curable composition and use thereof
JP2011162584A (en) * 2010-02-04 2011-08-25 Kanagawa Univ Method of increasing or adjusting refractive index-improving effect by dibenzothiophene skeleton-bearing compound
JP2011178985A (en) * 2010-02-04 2011-09-15 Kanagawa Univ Refractive index improver, and resin composition, polymerizable or curable composition, and optical material including the same
JP2012136576A (en) * 2010-12-24 2012-07-19 Kanagawa Univ Curable composition having resistance to cure shrinkage, and cured product obtained by curing the curable composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAROON SADORN ET AL.: "An efficient synthesis of dinaphthothiophene derivatives", TETRAHEDRON LETTERS, vol. 49, 2008, pages 4519 - 4521 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029996A1 (en) * 2013-08-30 2015-03-05 電気化学工業株式会社 Coating material resin composition
JP2015048368A (en) * 2013-08-30 2015-03-16 電気化学工業株式会社 High refractive index adhesive composition for optical component
JP2017177681A (en) * 2016-03-31 2017-10-05 三菱ケミカル株式会社 Laminate film
JP2018083774A (en) * 2016-11-22 2018-05-31 スガイ化学工業株式会社 Dinaphthothiophene derivative and method for producing the same
WO2019167947A1 (en) * 2018-02-27 2019-09-06 ソニー株式会社 Compound, polymer, and organic material
JPWO2019167947A1 (en) * 2018-02-27 2021-03-04 ソニー株式会社 Compounds, polymers and organic materials
WO2023068239A1 (en) * 2021-10-19 2023-04-27 積水化学工業株式会社 Resin composition for sealing use

Also Published As

Publication number Publication date
TW201404787A (en) 2014-02-01
CN104350111A (en) 2015-02-11
JPWO2013183532A1 (en) 2016-01-28
KR102135467B1 (en) 2020-07-17
JP6105574B2 (en) 2017-03-29
KR20150024319A (en) 2015-03-06
CN104350111B (en) 2017-10-10
TWI574978B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JP6105574B2 (en) Resin composition for coating material
JP5878830B2 (en) Adhesive composition for optical parts
CN106414525B (en) Photocurable resin composition
JP6063228B2 (en) Photocurable resin composition
JP2020090671A (en) Resin composition for coating material
KR20110058683A (en) Resin composition and display device
JP6155449B2 (en) High refractive index adhesive composition for optical components
KR101679137B1 (en) Resin composition, transparent film for touch panel sensors using same, and touch panel
JP5793855B2 (en) Photo-curable adhesive and display element
JP5810611B2 (en) Curable composition and optical adhesive
JP6174942B2 (en) Photocurable resin composition for optical parts and method for producing optical parts
JP5754233B2 (en) Curable composition and optical adhesive
JP7002237B2 (en) Photocurable high refractive index resin composition
JP7035728B2 (en) A liquid crystal panel encapsulant resin composition and a film liquid crystal panel whose ends are sealed with the liquid crystal panel encapsulant resin composition.
WO2023188968A1 (en) Polyfunctional (meth)acrylate thioester composition, curable composition, cured product, molded body, optical material, and method for producing polyfunctional (meth)acrylate thioester composition
JP5849432B2 (en) Curable composition and optical adhesive
JP6507683B2 (en) Resin composition and optical member
KR20210086896A (en) Curable composition, method for preparing the curable composition, cured material of the curable composition, method for preparing the cured material and device including the cured material
KR102316405B1 (en) Curable resin composition
JP2021055051A (en) Ultraviolet curable resin composition, light-emitting device, and method for manufacturing light-emitting device
JP7283993B2 (en) Infrared cut hard coat resin and hard coat film using the same
JP6726554B2 (en) Photopolymerizable composition and cured product thereof, and microlens forming agent and microlens using the same
WO2022196516A1 (en) Curable composition and optical material obtained therefrom
JP2023039162A (en) Curable resin composition and cured material
JP2021041543A (en) Substrate-fitted laminate, laminate and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519956

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147033269

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800368

Country of ref document: EP

Kind code of ref document: A1