WO2013183203A1 - Infrared radiation element - Google Patents

Infrared radiation element Download PDF

Info

Publication number
WO2013183203A1
WO2013183203A1 PCT/JP2013/001624 JP2013001624W WO2013183203A1 WO 2013183203 A1 WO2013183203 A1 WO 2013183203A1 JP 2013001624 W JP2013001624 W JP 2013001624W WO 2013183203 A1 WO2013183203 A1 WO 2013183203A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating element
layer
infrared radiation
opening
Prior art date
Application number
PCT/JP2013/001624
Other languages
French (fr)
Japanese (ja)
Inventor
吉祥 永谷
辻 幸司
吉原 孝明
植田 充彦
桐原 昌男
弘貴 松浪
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014519804A priority Critical patent/JP5884053B2/en
Publication of WO2013183203A1 publication Critical patent/WO2013183203A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range

Definitions

  • the present invention relates to an infrared radiation element.
  • infrared radiation element manufactured using a manufacturing technology of MEMS (micro-electromechanical systems) has been researched and developed.
  • This type of infrared radiation element can be used as an infrared light source (infrared light source) such as a gas sensor or an optical analyzer.
  • an infrared radiating element 70 having the structure shown in FIGS. 4 and 5 has been proposed (Document 1 [Japanese Patent Publication No. 11-274553]).
  • the infrared radiation element 70 includes an element substrate 21 made of n-type silicon.
  • the element substrate 21 is provided with a hole 22 penetrating in a trapezoidal shape from the one surface 21a side to the opposite surface 21b side.
  • the infrared radiation element 70 is formed on the one surface 21 a side of the element substrate 21 so that a band-shaped diaphragm portion 23 made of a p-type semiconductor closes one opening surface of the hole 22.
  • a heat generating portion 74 made of an n-type semiconductor is formed on the surface of the diaphragm portion 23, and first and second electrodes 55 and 56 made of a metal material are provided at both ends of the surface of the heat generating portion 74. It has been.
  • the infrared radiation element 70 when a voltage is applied between the first electrode 55 and the second electrode 56, a current flows through the heat generating portion 74, the heat generating portion 74 generates heat, and emits infrared light.
  • the one surface 21a side of the element substrate 21 and the surface of the diaphragm part 23 are covered with a silicon oxide film 27 not only for the purpose of surface protection but also for promoting infrared radiation.
  • the width of the central portion 74a of the heat generating portion 74 is widened, and the widths of both end portions 74b and 74c are narrowed.
  • the region of the high temperature portion where the temperature is relatively high in the heat generating portion 74 is widened, and the infrared radiation density is increased.
  • the infrared radiation element is intermittently driven to emit infrared light intermittently, and the output of the light receiving element for detecting the infrared light is locked. It is known that the S / N ratio of the output of the gas sensor can be improved by amplifying with an in-amplifier.
  • infrared radiation element 70 stress is likely to be concentrated on the corner portion of the rectangular region overlapping the one opening surface of the hole 22 in the diaphragm portion 23 due to the thermal stress generated during operation. For this reason, in the infrared radiating element 70, when the output is increased or the chopping speed for intermittently emitting infrared rays is increased, the diaphragm 23 starts from the corner of the rectangular region of the diaphragm 23 as a starting point. There is a concern that it will break.
  • the diaphragm portion 23 is formed by ion-implanting boron into the one surface 21a side of the element substrate 21 for annealing. For this reason, in the infrared radiation element 70, it is assumed that the thermal conductivity of the diaphragm part 23 is equivalent to the thermal conductivity of the element substrate 21, the thermal resistance of the diaphragm part 23 is small, and it is difficult to further increase the output. It is inferred.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared radiation element capable of increasing the output and improving the reliability. is there.
  • the infrared radiation element of the 1st form which concerns on this invention is equipped with a board
  • the substrate has one surface orthogonal to the thickness direction.
  • the opening penetrates the substrate in the thickness direction.
  • the first insulating layer is disposed on the one surface of the substrate so as to cover the opening.
  • the heating element layer is disposed on the opposite side of the first insulating layer from the substrate so as to be positioned inside the opening with a reference plane parallel to the one surface.
  • the second insulating layer is disposed on the opposite side of the first insulating layer from the substrate so as to cover the heating element layer.
  • the energization portion is disposed on the opposite side of the second insulating layer from the substrate and is electrically connected to the heating element layer.
  • the opening has a shape having an angle in a reference plane parallel to the one surface.
  • the energizing part has a reinforcing part that overlaps the corner of the opening in the thickness direction.
  • the first insulating layer, the second insulating layer, and the heating element layer have a tensile stress as a whole.
  • the energizing section in the first or second aspect, includes an electrode and a wiring.
  • the electrode is disposed on the substrate so as to be located outside the opening in the reference plane.
  • the wiring electrically connects the electrode to the heating element layer.
  • the opening is rectangular or square having the four corners.
  • the energization part has the four reinforcing parts respectively corresponding to the four corners.
  • the said electricity supply part has four said wiring.
  • Each of the four wirings includes four corresponding reinforcing portions.
  • the electrode in the fifth aspect, includes a first electrode and a second electrode.
  • the first electrode and the second electrode are disposed on both sides of the opening in a predetermined direction along one side of the opening in the reference plane.
  • the first electrode is connected to the wiring corresponding to two corners close to the first electrode among the four corners.
  • the second electrode is connected to the wiring corresponding to two corners close to the second electrode among the four corners.
  • the wiring has an end connected to the electrode.
  • the end portion becomes wider as it gets closer to the electrode.
  • the end portion is the reinforcing portion.
  • the said edge part has the concave surface.
  • the heating element layer has a rectangular or square shape having four second corners on the reference plane. It is.
  • the heating element layer has four sides parallel to the four sides of the opening on the reference plane.
  • Each of the four wirings is formed in a straight line passing through the second corner of the heating element layer and the corner of the opening closest to the second corner on the reference plane.
  • the opening is rectangular or square having four corners.
  • the electrode includes a first electrode and a second electrode.
  • the first electrode and the second electrode are disposed on both sides of the opening in a predetermined direction along one side of the opening on the reference plane.
  • the first electrode includes the reinforcing portions respectively corresponding to two corners close to the first electrode among the four corners.
  • the second electrode includes the reinforcing portions respectively corresponding to two corners close to the second electrode among the four corners.
  • the wiring is formed of a high melting point material.
  • the heating element layer is formed of a material having a melting point higher than that of the high melting point material.
  • the wiring is made of tantalum.
  • the heating element layer is formed of tantalum nitride.
  • the first insulating layer and the second insulating layer have thermal insulation and electrical insulation.
  • the heating element layer is configured to emit infrared rays when energized.
  • the first insulating layer, the heating element layer, and the second insulating layer constitute a thin film structure.
  • the thin film structure portion includes a diaphragm portion disposed on the opening, and a support portion disposed on the substrate and connected to the diaphragm portion.
  • FIG. 5 is a cross-sectional view taken along the line GG in FIG. 4.
  • the infrared radiation element 1 is formed on a substrate 2 and one surface (upper surface in FIG. 1B) 2b side of the substrate 2, and a laminated structure of a first insulating layer 3, a heating element layer 4, and a second insulating layer 5. And a thin film structure portion 6 having
  • the thin film structure 6 is laminated in the order of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 from the side close to the substrate 2.
  • the infrared radiation element 1 includes a pair of electrodes 9 (9A) that are penetrated in the thickness direction of the substrate 2 and have a rectangular opening shape (opening portion) 2a and electrically connected to the heating element layer 4. , 9 (9B) and wirings 8 (81 to 84) for electrically connecting each of the electrodes 9 and the heating element layer 4 to each other.
  • the thin film structure portion 6 includes a rectangular diaphragm portion 6D facing the opening 2a and a frame-shaped support portion 6S surrounding the diaphragm portion 6D.
  • the diaphragm portion 6D has a laminated structure of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 in the central portion.
  • the peripheral part of the diaphragm part 6 ⁇ / b> D and the support part 6 ⁇ / b> S have a laminated structure of the first insulating layer 3 and the second insulating layer 5.
  • the thin film structure portion 6 includes a diaphragm portion 6D disposed on the opening 2a and a support portion 6S disposed on the substrate 2 and connected to the diaphragm portion 6D.
  • each electrode 9 is disposed on the support portion 6S, and an energization portion 11 including each wiring 8 and each electrode 9 is placed on each corner portion 60 (61 to 64) of the diaphragm portion 6D. Passing through.
  • the infrared radiation element 1 emits infrared rays from the heating element layer 4 by energizing the heating element layer 4.
  • the substrate 2 has one surface (upper surface in FIG. 1 (b)) 2b and another surface (lower surface in FIG. 1 (b)) 2c which are both surfaces orthogonal to the thickness direction (vertical direction in FIG. 1 (b)).
  • the one surface 2b and the other surface 2c are flat surfaces.
  • the substrate 2 is formed of a single crystal silicon substrate having a (100) plane on one surface 2b, but is not limited thereto, and may be formed of a single crystal silicon substrate having a (110) plane.
  • the substrate 2 is not limited to a single crystal silicon substrate, but may be a polycrystalline silicon substrate or other than a silicon substrate.
  • the material of the substrate 2 is preferably a material having a higher thermal conductivity and a larger heat capacity than the material of the first insulating layer 3.
  • the outer peripheral shape of the substrate 2 is rectangular.
  • substrate 2 is not specifically limited, For example, it is preferable to set to 10 mm ⁇ or less (10 mm ⁇ 10 mm or less).
  • the opening 2a is formed so as to penetrate the substrate 2 in the thickness direction.
  • the opening 2 a has a shape having an angle 20 in a reference plane parallel to the one surface 2 b of the substrate 2.
  • the opening 2a is rectangular or square having four corners 20 (21 to 24).
  • the substrate 2 has a rectangular opening 2a.
  • the thin film structure 6 is formed on the one surface 2b of the substrate 2 so as to cover the opening 2a. Therefore, the four corners 60 (61 to 64) of the diaphragm 6D overlap with the corners 20 (21 to 24) of the opening 2a in the diaphragm 6D in the thickness direction (vertical direction in FIG. 1B). It is a part.
  • the opening 2a of the substrate 2 is formed in such a shape that the opening area on the other surface 2c side (the lower side in FIG. 1B) is larger than the one surface 2b side.
  • the opening 2 a of the substrate 2 is formed in a shape in which the opening area gradually increases as the distance from the first insulating layer 3 of the thin film structure 6 increases.
  • the opening 2 a of the substrate 2 is formed by etching the substrate 2.
  • the opening 2a of the substrate 2 may be formed by anisotropic etching using an alkaline solution as an etchant. it can.
  • the mask layer for forming the opening 2a when the mask layer for forming the opening 2a is made of an inorganic material at the time of manufacture, the mask layer may remain on the other surface 2c side of the substrate 2.
  • the mask layer for example, a laminated film of a silicon oxide film and a silicon nitride film can be employed.
  • the first insulating layer 3 has thermal insulation and electrical insulation.
  • the first insulating layer 3 is disposed on the one surface 2b of the substrate 2 so as to cover the opening 2a.
  • the first insulating layer 3 is made of, for example, a silicon oxide film on the substrate 2 side and a silicon nitride film laminated on the opposite side of the silicon oxide film from the substrate 2 side.
  • the first insulating layer 3 preferably has a tensile stress (residual tensile stress). In other words, the first insulating layer 3 preferably has no compressive stress (residual compressive stress). Therefore, the first insulating layer 3 is formed to have a tensile stress. Note that a method for forming an insulating layer having a tensile stress is well known, and thus description thereof is omitted.
  • the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 preferably have a tensile stress (residual tensile stress) as a whole. That is, it is preferable that the site
  • the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 may each have a tensile stress. Note that it is not necessary for all of the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 to have tensile stress. That is, any of the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 can be used as long as the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 have tensile stress as a whole. May have compressive stress or may not have compressive stress or tensile stress.
  • the insulating layer 5 and the heating element layer 4 have a tensile stress as a whole.
  • the first insulating layer 3 is not limited to a laminated film of a silicon oxide film and a silicon nitride film, and may be a single layer structure of a silicon oxide film or a silicon nitride film, a single layer structure made of other materials, 2 A laminated structure of more than one layer may be used.
  • the first insulating layer 3 also has a function as an etching stopper layer when the opening 2a is formed by etching the substrate 2 from the other surface 2c side of the substrate 2 when the infrared radiation element 1 is manufactured.
  • the heating element layer 4 is configured to emit infrared rays when energized.
  • the heating element layer 4 is on the opposite side of the first insulating layer 3 from the substrate 2 (upper side in FIG. 1B) so as to be positioned inside the opening 2a with a reference plane parallel to the one surface 2b of the substrate 2. Be placed.
  • the heating element layer 4 is disposed in the central portion of the opening 2a on the reference plane.
  • the heating element layer 4 has a rectangular shape or a square shape having four corners (second corners) 40 (41 to 44) on the reference plane.
  • the heating element layer 4 has four sides parallel to the four sides of the opening 2a on the reference plane.
  • the heating element layer 4 has a rectangular planar shape.
  • the planar size of the heating element layer 4 is set smaller than the planar size of the surface of the first insulating layer 3 facing the opening 2a. That is, the planar size of the heating element layer 4 is set smaller than the planar size of the diaphragm portion 6D.
  • the planar size of the diaphragm portion 6D is not particularly limited, but is preferably set to 5 mm ⁇ or less, for example.
  • the planar size of the heating element layer 4 is a radiation area excluding the contact area 4b that is interposed between the end portion (one end) 8a of the wiring 8 and the heating element layer 4 and that overlaps the contact portion 7 that electrically connects them.
  • the plane size of 4a is preferably set to be 3 mm ⁇ or less.
  • the material of the heating element layer 4 is tantalum nitride. That is, the heating element layer 4 is made of a tantalum nitride layer.
  • the material of the heating element layer 4 is not limited to tantalum nitride, for example, titanium nitride, nickel chromium, tungsten, titanium, thorium, platinum, zirconium, chromium, vanadium, rhodium, hafnium, ruthenium, boron, iridium, niobium, molybdenum, Tantalum, osmium, rhenium, nickel, holmium, cobalt, erbium, yttrium, iron, scandium, thulium, palladium, lutetium, and the like may be employed.
  • the heating element layer 4 may be composed of a conductive polysilicon layer.
  • the heating element layer 4 is preferably a tantalum nitride layer or a conductive polysilicon layer from the viewpoint of chemical stability at high temperatures and ease of design of sheet resistance.
  • the sheet resistance of the tantalum nitride layer can be changed by changing its composition.
  • the sheet resistance of the conductive polysilicon layer can be changed by changing the impurity concentration.
  • the conductive polysilicon layer can be composed of an n-type polysilicon layer or a p-type polysilicon layer doped with an n-type impurity or a p-type impurity at a high concentration.
  • the impurity concentration is, for example, in the range of about 1 ⁇ 10 18 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3. What is necessary is just to set suitably.
  • the impurity concentration is in the range of about 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3. What is necessary is just to set suitably.
  • the material of the heat generating body layer 4 from a viewpoint of preventing that the heat generating body layer 4 is destroyed by the thermal stress accompanying the linear expansion coefficient difference of the board
  • a material having a small difference in linear expansion coefficient from the above material is preferable.
  • the peak wavelength ⁇ of infrared rays emitted from the heating element layer 4 in the infrared radiation element 1 depends on the temperature of the heating element layer 4.
  • the absolute temperature T of the heating element layer 4 and the heating element The relationship with the peak wavelength ⁇ of infrared rays emitted from the layer 4 satisfies the Vienna displacement law.
  • the heating element layer 4 forms a black body.
  • the infrared radiation element 1 is estimated that the total energy E radiated per unit time of the unit area of the heating element layer 4 is approximately proportional to T4 (that is, it is assumed that the Stefan-Boltzmann law is satisfied). )
  • the infrared radiation element 1 can change Joule heat generated in the heating element layer 4 by adjusting input power applied between the pair of electrodes 9 and 9 from an external power source (not shown), for example.
  • the temperature of can be changed. Therefore, the infrared radiation element 1 can change the temperature of the heating element layer 4 in accordance with the input power to the heating element layer 4, and can change the temperature of the heating element layer 4 from the heating element layer 4.
  • the peak wavelength ⁇ of the emitted infrared light can be changed.
  • the infrared radiation element 1 of the present embodiment the amount of infrared radiation can be increased as the temperature of the heating element layer 4 is increased. For this reason, the infrared radiation element 1 can be used as a high-power infrared light source in a wide infrared wavelength range.
  • a gas sensor is designed to transmit a plurality of infrared rays having different wavelengths by designing an optical filter of a detector that receives infrared rays so that a plurality of types of gases can be used. Can be detected.
  • the second insulating layer 5 has thermal insulation and electrical insulation.
  • the second insulating layer 5 is disposed so as to cover the heating element layer 4 on the opposite side of the first insulating layer 3 from the substrate 2 (upper side in FIG. 1B).
  • the second insulating layer 5 is made of, for example, a silicon nitride film.
  • the second insulating layer 5 is not limited to this.
  • the second insulating layer 5 may be formed of a silicon oxide film, or may have a stacked structure of a silicon oxide film and a silicon nitride film.
  • the second insulating layer 5 preferably has a high transmittance with respect to infrared rays of a desired wavelength or wavelength range radiated from the heating element layer 4 when the heating element layer 4 is energized, but it is essential that the transmittance is 100%. It is not something to do.
  • the heating element layer 4 has a sheet resistance set so as to suppress a decrease in infrared emissivity due to impedance mismatch with a gas (for example, air, nitrogen gas, etc.) with which the second insulating layer 5 is in contact. Is preferred.
  • a gas for example, air, nitrogen gas, etc.
  • the sheet resistance of the heating element layer 4 is determined by the nitrogen gas used when the tantalum nitride layer that forms the basis of the heating element layer 4 is formed by reactive sputtering. It is possible to control by partial pressure.
  • the sheet resistance of the heating element layer 4 can be changed by changing the composition of the tantalum nitride layer.
  • the heating element layer 4 can be changed by changing the impurity concentration of the conductive polysilicon layer that is the basis of the heating element layer 4. It is possible to change the sheet resistance.
  • a method of controlling the impurity concentration of the conductive polysilicon layer there are a method of doping impurities after forming a non-doped polysilicon layer, a method of doping impurities during film formation, and the like.
  • the infrared radiation element 1 In the environment where the second insulating layer 5 is in contact with air, which is a gas, the infrared radiation element 1 has an infrared emissivity by impedance matching with air if the sheet resistance is 189 ⁇ / ⁇ (189 ⁇ / sq.). The maximum (50%) can be achieved.
  • the sheet resistance of the heating element layer 4 may be set in the range of 73 to 493 ⁇ / ⁇ . If the sheet resistance at which the emissivity is maximized at a desired use temperature is referred to as a prescribed sheet resistance, the sheet resistance of the heating element layer 4 at the desired use temperature is within a range of the prescribed sheet resistance ⁇ 10%. It is more preferable to set.
  • the infrared radiation element 1 takes into account the stress balance of the sandwich structure composed of the first insulating layer 3, the heating element layer 4 and the second insulating layer 5, and the first insulating layer 3 and the second insulating layer 5. It is preferable to set each material and thickness. Thereby, the infrared radiation element 1 can improve the stress balance of the above-described sandwich structure, and can further suppress the warpage and breakage of the sandwich structure, thereby further improving the mechanical strength. Can be achieved.
  • the thickness of the heating element layer 4 is preferably 0.2 ⁇ m or less from the viewpoint of reducing the heat capacity of the heating element layer 4.
  • the total thickness of the thickness of the first insulating layer 3, the thickness of the heating element layer 4, and the thickness of the second insulating layer 5 is the laminated structure of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5. From the viewpoint of reducing the heat capacity, for example, it is preferably set in the range of about 0.1 ⁇ m to 1 ⁇ m, more preferably 0.7 ⁇ m or less.
  • the infrared radiation element 1 further includes a contact portion 7 formed on the heating element layer 4 on the side opposite to the first insulating layer 3 (upper side in FIG. 1B).
  • a pair of contact portions 7 is formed.
  • the pair of contact portions 7 (7A) and 7 (7B) are formed on the one surface 2b side of the substrate 2 so as to be in contact with the peripheral portion of the heating element layer 4 (both left and right end portions in FIG. 1A).
  • Each contact portion 7 is formed on the heating element layer 4 through a contact hole 5 a formed in the second insulating layer 5, and is electrically connected to the heating element layer 4.
  • each contact portion 7 is in ohmic contact with the heating element layer 4. That is, the contact portion 7 is formed so as to be in ohmic contact with the heating element layer 4.
  • the planar shape of the heating element layer 4 is rectangular, and the planar shape of the pair of contact portions 7, 7 is a band-shaped shape along each of two parallel sides of the heating element layer 4. is there. More specifically, in the infrared radiation element 1, the planar shape of the pair of contact portions 7, 7 is a band shape along each side orthogonal to the direction in which the pair of electrodes 9, 9 are arranged.
  • each contact portion 7 a high melting point material is preferably used as will be described later.
  • the contact portion 7 is made of tantalum.
  • the material of the contact portion 7 does not necessarily need to be a high melting point material, and may be aluminum or an aluminum alloy (for example, Al—Si, Al—Cu).
  • the material of each contact part 7 is not specifically limited, For example, gold
  • each contact part 7 should just be a material in which at least the part which contact
  • each contact portion 7 has a first layer in contact with the heating element layer 4 in the thickness direction as a three-layer structure in which a first layer, a second layer, and a third layer are stacked in order from the heating element layer 4 side.
  • the material of the layer may be a refractory metal (such as chromium), the material of the second layer may be nickel, and the material of the third layer may be gold.
  • the electrode 9 includes a first electrode 9 (9A) and a second electrode 9 (9B).
  • Each electrode 9 (9A, 9B) is arranged on the support portion 6S as described above. That is, the electrode 9 is disposed on the substrate 2 so as to be located outside the opening 2a on the reference plane. That is, the electrode 9 is disposed on the substrate 2 in a region that does not overlap with the opening 2a in the thickness direction (a region that overlaps with the support 6S and does not overlap with the diaphragm 6D).
  • the first electrode 9A and the second electrode 9B are arranged on both sides of the opening 2a in a predetermined direction along the one side of the opening 2a in the reference plane (the left-right direction in FIG. 1A).
  • Each electrode 9 is formed in a strip shape (rectangular shape) having a longitudinal direction in a direction orthogonal to the direction in which both electrodes 9 are arranged in plan view.
  • Each electrode 9 has a length dimension so as to cross two diagonal extensions of the diaphragm portion 6D.
  • the wiring 8 is formed so as to electrically connect the electrode 9 to the heating element layer 4.
  • Two wirings 8 are provided between the heating element layer 4 and each electrode 9. That is, the energization unit 11 includes four wirings 8 (81 to 84). Each of the four wirings 8 is formed in a straight line passing through the second corner 40 of the heating element layer 4 and the corner (first corner) 20 of the opening 2a closest to the second corner 40 on the reference plane. . That is, the wirings 81, 82, 83, 84 are respectively connected to the second corners 41, 42, 43, 44 of the heating element layer 4 and the corner 21 of the opening 2 a closest to the second corners 41, 41, 42, 43. , 22, 23, 24. In the present embodiment, the opening 2a and the heating element layer 4 have a similar shape, and the center positions are equal to each other. Therefore, the wiring 8 is arrange
  • Each wiring 8 has one end (first end) 8a in the longitudinal direction connected to the contact portion 7 and the other end (second end) 8b connected to the electrode 9. That is, the wiring 8 is electrically connected to the heating element layer 4 through the contact portion 7.
  • the line width (width dimension) of the wiring 8 is constant.
  • the first end 8a of the wiring 81 is one end of the contact portion 7A (the upper end in FIG. 1A), and the first end 8a of the wiring 82 is the other end of the contact portion 7A (the lower end in FIG. 1A).
  • the first end 8a of the wiring 83 is at one end of the contact portion 7B (upper end in FIG. 1A), and the first end 8a of the wiring 84 is at the other end of the contact portion 7B (lower end in FIG. 1A). , Each connected.
  • the first electrode 9A is connected to wirings 81 and 82 corresponding to two corners 21 and 22 close to the first electrode 9A among the four corners 20, respectively.
  • the second electrode 9B is connected to the wirings 83 and 84 corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 20, respectively.
  • the wiring 8 corresponding to the corner 20 is defined as a wiring 8 passing over the corner 20 (wiring 8 overlapping the corner 20 in the thickness direction).
  • the energization section 11 composed of the wiring 8 and the electrode 9 passes over each corner of the diaphragm section 6D.
  • the other end portions (second end portions) 8b of the four wires 8 extend over the four corner portions 60 (61 to 64) of the diaphragm portion 6D. Passing through.
  • the infrared radiation element 1 of the present embodiment is disposed on the opposite side of the second insulating layer 5 from the substrate 2 (upper side in FIG. 1B) and is electrically connected to the heating element layer 4.
  • the unit 11 is provided.
  • the second end portion 8b of the wiring 8 serves as a reinforcing portion that overlaps the corner 20 of the opening 2a (that is, the corner portion 60 of the diaphragm portion 6D) in the thickness direction. That is, the four wirings 8 each include four corresponding reinforcing portions (second end portions 8b).
  • the energizing portion 11 has four reinforcing portions (second end portions 8b) respectively corresponding to the four corners 20 (21, 22, 23, 24).
  • Each wiring 8 and each electrode 9 are preferably made of the same material as each contact portion 7 and set to the same layer structure and the same thickness. Thereby, the infrared radiation element 1 can form each wiring 8 and each electrode 9 simultaneously with each contact part 7.
  • Each electrode 9 constitutes a pad. Therefore, the thickness of the electrode 9 is preferably set in the range of about 0.5 to 2 ⁇ m.
  • the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 are sequentially formed on the one surface 2 b side of the substrate 2, and then the second insulating layer 5 is formed.
  • the contact hole 5a is formed, then each contact portion 7, each wiring 8 and each electrode 9 are formed, and then the opening 2a is formed in the substrate 2.
  • a thin film forming technique such as a thermal oxidation method or a CVD (Chemical Vapor Deposition) method can be employed, and a thermal oxidation method is preferable.
  • a thin film forming technique such as a CVD method can be used, and an LPCVD (Low Pressure Chemical Vapor Deposition) method is preferable.
  • a method for forming the heating element layer 4 for example, a thin film forming technique such as a sputtering method, a vapor deposition method, or a CVD method, and a processing technique using a photolithography technique and an etching technique can be used.
  • a thin film forming technique such as a sputtering method, a vapor deposition method, or a CVD method
  • a processing technique using a photolithography technique and an etching technique can be used.
  • a method for forming the second insulating layer 5 for example, a thin film forming technique such as a CVD method and a processing technique using a photolithography technique and an etching technique can be used.
  • a CVD method for forming the second insulating layer 5 a plasma CVD method is preferable.
  • a photolithography technique and an etching technique may be used.
  • each contact portion 7, each wiring 8, and each electrode 9 for example, thin film formation technology such as sputtering, vapor deposition, and CVD, and processing technology using photolithography technology and etching technology are used. can do.
  • the substrate 2 is etched from the other surface 2c side using a laminated film (not shown) of a silicon oxide film and a silicon nitride film on the other surface 2c side of the substrate 2 as a mask layer. May be formed.
  • a silicon oxide film serving as a base of the mask layer is formed on the other surface 2c side of the substrate 2 simultaneously with the formation of the silicon oxide film of the first insulating layer 3, and the first insulating layer is formed.
  • the silicon nitride film is formed on the other surface 2c side of the substrate 2 simultaneously with the formation of the silicon nitride film 3.
  • the patterning of the laminated film of the silicon oxide film and the silicon nitride film that is the basis of the mask layer may be performed using a photolithography technique and an etching technique.
  • the manufacturing method of the infrared radiation element 1 of the present embodiment it is possible to increase the accuracy of the thickness of the first insulating layer 3 by using the first insulating layer 3 as an etching stopper layer when forming the opening 2a. In addition, it is possible to prevent a part of the substrate 2 and residues from remaining on the opening 2a side of the first insulating layer 3. In this manufacturing method, it is possible to suppress variations in mechanical strength of the first insulating layer 3 and variations in the heat capacity of the entire diaphragm portion 6D of the first insulating layer 3 for each infrared radiation element 1.
  • the infrared radiating element 1 can be manufactured by using a MEMS manufacturing technique.
  • the infrared radiation element 1 of the present embodiment includes the substrate 2, the thin film structure 6 having the heating element layer 4, and the opening 2 a penetrating in the thickness direction of the substrate 2 and having a rectangular opening shape.
  • a pair of electrodes 9 and 9 electrically connected to the heating element layer 4 and a wiring 8 electrically connecting each of the electrodes 9 and the heating element layer 4 are provided.
  • the thin film structure part 6 is provided with the rectangular-shaped diaphragm part 6D which faces the opening part 2a, and the frame-shaped support part 6S surrounding the diaphragm part 6D.
  • the diaphragm portion 6D has a laminated structure of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 in the central portion, and the peripheral portion of the diaphragm portion 6D and the support portion 6S.
  • the infrared radiation element 1 of the present embodiment has the following first feature.
  • the infrared radiation element 1 includes a substrate 2, an opening 2 a, a first insulating layer 3, a heating element layer 4, a second insulating layer 5, and a current-carrying unit 11.
  • the substrate 2 has one surface 2b orthogonal to the thickness direction (vertical direction in FIG. 1B).
  • the opening 2a penetrates the substrate 2 in the thickness direction (vertical direction in FIG. 1B).
  • the first insulating layer 3 is disposed on the one surface 2b of the substrate 2 so as to cover the opening 2a.
  • the heating element layer 4 is on the opposite side of the first insulating layer 3 from the substrate 2 (upper side in FIG.
  • the second insulating layer 5 is disposed so as to cover the heating element layer 4 on the opposite side of the first insulating layer 3 from the substrate 2.
  • the energizing portion 11 is disposed on the opposite side of the second insulating layer 5 from the substrate 2 and is electrically connected to the heating element layer 4.
  • the opening 2a has a shape having an angle (first angle) 20 in a reference plane parallel to the one surface 2b.
  • the energizing portion 11 has a reinforcing portion (in the present embodiment, the second end portion 8b of the wiring 8) that overlaps the corner 20 of the opening 2a in the thickness direction.
  • the infrared radiation element 1 of the present embodiment has the following second to tenth features.
  • the following second to tenth features are arbitrary features.
  • the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 have a tensile stress as a whole.
  • the energization unit 11 includes the electrode 9 and the wiring 8.
  • the electrode 9 is disposed on the substrate 2 so as to be positioned outside the opening 2a on the reference plane.
  • the wiring 8 electrically connects the electrode 9 to the heating element layer 4.
  • the opening 2a is rectangular or square having four corners 20 (21 to 24).
  • the energizing portion 11 has four reinforcing portions (second end portions 8b of the wirings 81 to 84 in this embodiment) corresponding to the four corners 21 to 24, respectively.
  • the energizing section 11 has four wires 8 (81 to 84).
  • the four wirings 81 to 84 each include four corresponding reinforcing portions (in the present embodiment, the second end portion 8b).
  • the electrode 9 includes a first electrode 9 (9A) and a second electrode 9 (9B).
  • the first electrode 9A and the second electrode 9B are arranged on both sides of the opening 2a in a predetermined direction along the one side of the opening 2a in the reference plane (the left-right direction in FIG. 1A).
  • the first electrode 9A is connected to wirings 81 and 82 corresponding to the two corners 21 and 22 close to the first electrode 9A among the four corners 20, respectively.
  • the second electrode 9B is connected to the wirings 83 and 84 corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 20, respectively.
  • the heating element layer 4 is rectangular or square having four corners (second corners) 40 (41 to 44) on the reference plane.
  • the heating element layer 4 has four sides parallel to the four sides of the opening 2a on the reference plane.
  • Each of the four wirings 8 (81 to 84) is formed in a straight line passing through the second corner 40 of the heating element layer 4 and the corner 20 of the opening 2a closest to the second corner 40 on the reference plane. .
  • the wiring 8 is formed of a high melting point material.
  • the heating element layer 4 is formed of a material having a melting point higher than that of the high melting point material.
  • the wiring 8 is made of tantalum.
  • the heating element layer 4 is formed of tantalum nitride.
  • the first insulating layer 3 and the second insulating layer 5 have thermal insulation and electrical insulation.
  • the heating element layer 4 is configured to emit infrared rays when energized.
  • the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 constitute a thin film structure portion 6.
  • the thin film structure portion 6 includes a diaphragm portion 6D disposed on the opening 2a and a support portion 6S disposed on the substrate 2 and connected to the diaphragm portion 6D.
  • the infrared radiation element 1 has the heat generating layer 4 formed on the first insulating layer 3, so that the thermal insulation can be enhanced and the output can be increased.
  • the diaphragm part 6D is reinforced by the current-carrying part, and the reliability can be improved. That is, in the infrared radiation element 1 of the present embodiment, it is possible to increase the output and to improve the reliability.
  • the infrared radiation element 1 can reinforce the diaphragm portion 6D with the energizing portion 11, it is not necessary to separately form a reinforcing film in order to reinforce the diaphragm portion 6D, and the cost can be reduced. It becomes.
  • the two wirings 8 that connect the electrode 7 and the pad 9 are respectively connected to both ends of the heating element layer 4 in a direction orthogonal to the direction in which the pair of pads 9 and 9 are arranged in plan view.
  • the diaphragm portion 6D is deformed as the heating element layer 4 expands and contracts, and mechanical stress is applied to each wiring 8 and the like.
  • the infrared radiation element 1 of the present embodiment includes two wirings 8 for connecting the heating element layer 4 and the electrode 9, it is used even if one of the two wirings 8 is disconnected. Therefore, it is possible to improve the reliability and extend the life.
  • the infrared radiation element 1 has the diaphragm portion 6D having a laminated structure of the first insulating layer 3, the heating element layer 4 and the second insulating layer 5, the heat capacity of the diaphragm portion 6D can be reduced, and the heating element.
  • the sheet resistance of the layer 4 as described above, it is possible to suppress a decrease in the emissivity of the heating element layer 4.
  • the infrared radiation element 1 of the present embodiment it is possible to reduce the power consumption and the response speed.
  • the infrared radiation element 1 speeds up the response of the temperature change of the heating element layer 4 to the voltage waveform applied between the pair of electrodes 9 by reducing the heat capacity of the laminated structure on the one surface side of the substrate 2. Therefore, the temperature of the heating element layer 4 is likely to rise, and it becomes possible to increase the output and the response speed.
  • the substrate 2 is formed from a single crystal silicon substrate, and the first insulating layer 3 is composed of a silicon oxide film and a silicon nitride film. Accordingly, the infrared radiation element 1 has a larger heat capacity and thermal conductivity of the substrate 2 than the first insulating layer 3, and the substrate 2 has a function as a heat sink. Therefore, the infrared radiation element 1 is reduced in size and has a high response speed to input power. And stability of infrared radiation characteristics can be improved.
  • the infrared radiation element 1 tantalum nitride having a melting point higher than that of silicon is adopted as a material of the heating element layer 4, and a member that is not the heating element layer 4 constituting the diaphragm body (in the first embodiment, the first insulating layer). 3, the second insulating layer 5, the contact portion 7, and the wiring 8) have a melting point higher than that of the heating element layer 4, the temperature of the heating element layer 4 is set to the maximum use temperature of silicon constituting the substrate 2 (silicon The temperature can be increased to a temperature slightly lower than the melting point), and the amount of infrared radiation can be greatly increased as compared with the infrared light emitting diode.
  • the infrared radiation element 1 has the temperature of the heating element layer 4 as the material of each contact portion 7 as long as at least a portion in contact with the heating element layer 4 is formed of a metal having a melting point higher than that of silicon. It is possible to raise without restriction.
  • the temperature of the heating element layer 4 can be raised to a temperature slightly lower than the melting point of the heating element layer 4.
  • the temperature of the heating element layer 4 refers to the temperature near the center (near the center of gravity) of the heating element layer 4.
  • the heating element layer 4 is formed of a high melting point material (for example, tantalum nitride), the material of the other members constituting the diaphragm body (first insulating layer 3, second insulating layer 5, contact portion 7, wiring 8) Similarly, it is preferably formed of a high melting point material.
  • a high melting point material for example, tantalum nitride
  • the high melting point material used for the first insulating layer 3 and the second insulating layer 5 is, for example, an insulator (silicon dioxide, silicon nitride) having a high melting point.
  • the high melting point material used for the contact portion 7 and the wiring 8 has, for example, a metal having a high melting point (tantalum, tungsten, molybdenum, etc.), a noble metal having a high melting point (platinum, ruthenium, iridium, etc.), and a high melting point. It is selected from conductive materials (single crystal silicon, polysilicon, single crystal germanium, conductive carbon).
  • the wiring 8 is preferably formed of tantalum.
  • the contact portion 7 is preferably formed of tantalum.
  • the high melting point material only needs to have a higher melting point than the material of the substrate 2.
  • the material of the substrate 2 is silicon
  • a material having a higher melting point than silicon is adopted as the high melting point material.
  • the temperature of the heating element layer 4 (the temperature near the center of the heating element layer 4). Can be raised to a temperature slightly lower than the melting point of the material having the smallest melting point among the members constituting the diaphragm body.
  • the heat radiation increases as the portion is closer to the periphery of the heating element layer 4. Further, the heating element layer 4 is more likely to dissipate heat as it is closer to the edge of the opening 2 a of the substrate 2. Therefore, the temperature of the peripheral portion of the heating element layer 4 is lower than the temperature at the center of the heating element layer 4.
  • the contact portion 7 and the wiring 8 that are in contact with the peripheral portion of the heating element layer 4 have substantially the same temperature as that of the peripheral portion of the heating element layer 4 at or near the portion in contact with the heating element layer 4.
  • the temperature of the peripheral portion of the heating element layer 4 is slightly lower than the temperature near the center of the heating element layer 4, the temperature near the center of the heating element layer 4 is changed to the material constituting the diaphragm body. Among them, if the temperature is set to be slightly lower than the melting point of the material having the lowest melting point, the infrared radiation element 1 can be used stably.
  • the infrared radiation element 1 is symmetrical with respect to the center line of the infrared radiation element 1 where the heating element layer 4, the contact portion 7, the wiring 8 and the electrode 9 are orthogonal to the direction in which the pair of electrodes 9 and 9 are arranged in plan view. It is preferable to arrange
  • the infrared radiation element 1 of this embodiment is demonstrated based on FIG.
  • the infrared radiation element 1 of the present embodiment is different from the infrared radiation element 1 of the first embodiment in the shapes of the wiring 8 and the electrode 9.
  • symbol is attached
  • the wiring 8 is formed in such a shape that the width of the other end portion 8b increases as the distance from the heating element layer 4 to the electrode 9 increases, and both side surfaces 10 become concave curved surfaces. That is, the width of the end portion (second end portion) 8 b of the wiring 8 increases as the distance from the electrode 9 increases. Further, the side surface 10 of the second end portion 8b of the wiring 8 is concave. In the present embodiment, both side surfaces 10 of the second end 8b are concave.
  • the other end 8 b of the wiring 8 passes over the corner 60 of the diaphragm 6. That is, the wiring 8 is arranged so that the other end 8b overlaps the corner 60 (the corner 20 of the opening 2a) of the diaphragm 6 in the thickness direction.
  • An end portion (second end portion) 8b of the wiring 8 constitutes a reinforcing portion.
  • each electrode 9 has a strip-shaped pad portion 9a whose longitudinal direction is a direction orthogonal to the direction in which both electrodes 9 are arranged in a plan view, and the parallel direction from both ends in the longitudinal direction of the pad portion 9a. And two extending portions 9b extending to the front.
  • one side surface of the other end portion is continuous with the pad portion 9a, and the other side surface is continuous with the extending portion 9b.
  • two wirings 8 are provided between the heating element layer 4 and each electrode 9 and are opposite to the one end portion 8a on the heating element layer 4 side.
  • the other end portion 8b on the electrode 9 side is formed in a shape in which the width dimension increases as the distance from the heating element layer 4 approaches the electrode 9 and both side surfaces 10 become concave curved surfaces. It passes over the corner 60.
  • the infrared radiation element 1 of the present embodiment has the following twelfth and thirteenth features in addition to the fourth feature.
  • the wiring 8 has an end (second end) 8 b connected to the electrode 9.
  • the width of the end (second end) 8 b increases as it approaches the electrode 9.
  • the end portion (second end portion) 8b is a reinforcing portion.
  • the side surface 10 of the end portion (second end portion) 8b is concave.
  • the thirteenth feature is an arbitrary feature.
  • the infrared radiation element 1 of the present embodiment may have at least one of the fifth to eleventh characteristics.
  • the width of the other end 8b of the wiring 8 increases as the distance from the heating element layer 4 and the approach to the electrode 9 increases, and both side surfaces 10 have concave curved shapes.
  • the other end portion passes over the corner portion 60 of the diaphragm portion 6D.
  • the infrared radiation element 1 can further improve the reliability.
  • the infrared radiation element 1 of the present embodiment is different from the infrared radiation element 1 of the first embodiment in the arrangement of the wiring 8 and the shape of the electrode 9.
  • symbol is attached
  • the heating element layer 4 and each electrode 9 are connected by one wiring 8 (85, 86). That is, the electrode 9A is electrically connected to the heating element layer 4 by the wiring 85.
  • the electrode 9 ⁇ / b> A is electrically connected to the heating element layer 4 by the wiring 85.
  • each wiring 8 (85, 86) is arranged along the parallel arrangement direction of the pair of electrodes 9A, 9B (the left-right direction in FIG. 3A).
  • each wiring 8 (85, 86) is arranged so that a straight line connecting the two wirings 85, 86 passes through the center of the heating element layer 4 in plan view.
  • the first electrode 9A and the second electrode 9B are disposed on both sides of the opening 2a in a predetermined direction along the one side of the opening 2a on the reference plane (the left-right direction in FIG. 3A).
  • Each electrode 9 has a strip-shaped pad portion 9a whose longitudinal direction (vertical direction in FIG. 3A) is a direction perpendicular to the juxtaposed direction of the electrodes 9 (the predetermined direction) in plan view; Two extending portions 9b extending in the juxtaposed direction from each of both end portions in the longitudinal direction of the pad portion 9a are provided.
  • each electrode 9 includes a triangular reinforcing portion 9c that continues to the pad portion 9a and the extending portion 9b and passes through the corner portion of the diaphragm portion 6D.
  • the first electrode 9A includes, in addition to the pad portion 9a and the two extending portions 9b, reinforcing portions 9c (9c1, 9c1, 9c1, 9c1 and 9c2) corresponding to the two corners 21 and 22 near the first electrode 9A among the four corners 20, respectively. 9c2).
  • the second electrode 9B includes reinforcing portions 9c (9c3) corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 20, respectively. 9c4).
  • the infrared radiation element 1 of the present embodiment described above has the following fourteenth feature.
  • the opening 2a is rectangular or square having four corners 20 (21 to 24).
  • the electrode 9 includes a first electrode 9A and a second electrode 9B.
  • the first electrode 9A and the second electrode 9B have an opening 2a in a predetermined direction (left and right direction in FIG. 3A) along one side of the opening 2a on a reference plane (a surface parallel to the one surface 2b of the substrate 2). Arranged on both sides.
  • the first electrode 9A includes reinforcing portions 9c1 and 9c2 respectively corresponding to two corners 21 and 22 close to the first electrode 9A among the four corners 20 (21 to 24).
  • the second electrode 9B includes reinforcing portions 9c3 and 9c4 corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 21 to 24, respectively.
  • the infrared radiation element 1 of the present embodiment may have at least one of the fourth to eleventh features.
  • the infrared radiation element 1 has the heat generating layer 4 formed on the first insulating layer 3, so that the thermal insulation can be enhanced and the output can be increased.
  • the energization section 11 passes over each corner 60 of the diaphragm section 6D, the diaphragm section 6D is reinforced by the energization section 11 and the reliability can be improved.
  • the infrared radiation element 1 can reinforce the diaphragm portion 6D with the energizing portion 11, it is not necessary to separately form a reinforcing film in order to reinforce the diaphragm portion 6D, and the cost can be reduced. It becomes.
  • the infrared radiation element 1 of each embodiment is not limited to an infrared light source for a gas sensor, but can be used for an infrared light source for infrared light communication, an infrared light source for spectral analysis, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Resistance Heating (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

An infrared radiation element relating to the present invention is provided with: a substrate having one surface in the thickness direction; an opening that penetrates the substrate in the thickness direction; a first insulating layer disposed on the one surface of the substrate to cover the opening; a heat generating material layer, which is disposed on the first insulating layer such that the heat generating material layer is positioned inside of the opening within a reference plane parallel to the one surface; a second insulating layer, which is disposed on the first insulating layer such that the heat generating material layer is covered with the second insulating layer; and a current-carrying section, which is disposed on the second insulating layer, and which is electrically connected to the heat generating material layer. The opening has a shape having corners within the reference plane parallel to the one surface. The current-carrying section has a reinforcing portion that overlaps the corners of the opening in the thickness direction.

Description

赤外線放射素子Infrared radiation element
 本発明は、赤外線放射素子に関するものである。 The present invention relates to an infrared radiation element.
 従来から、MEMS(micro electro mechanicalsystems)の製造技術などを利用して製造される赤外線放射素子が研究開発されている。この種の赤外線放射素子は、ガスセンサや光学分析装置などの赤外光源(赤外線源)として使用することができる。 Conventionally, an infrared radiation element manufactured using a manufacturing technology of MEMS (micro-electromechanical systems) has been researched and developed. This type of infrared radiation element can be used as an infrared light source (infrared light source) such as a gas sensor or an optical analyzer.
 この種の赤外線放射素子としては、例えば、図4および図5に示す構成の赤外線放射素子70が提案されている(文献1[日本国公開特許公報第平11-274553号])。 As this type of infrared radiating element, for example, an infrared radiating element 70 having the structure shown in FIGS. 4 and 5 has been proposed (Document 1 [Japanese Patent Publication No. 11-274553]).
 赤外線放射素子70は、n-型シリコンからなる素子基板21を備えている。この素子基板21は、一面21a側から反対面21b側に台形状に貫通する穴22が設けられている。赤外線放射素子70は、素子基板21の一面21a側にp型半導体からなる帯状の隔膜部23が穴22の一方の開口面を塞ぐように形成されている。赤外線放射素子70は、隔膜部23の表面に、n型半導体からなる発熱部74が形成され、発熱部74の表面の両端に、金属材からなる第1、第2の電極55、56が設けられている。 The infrared radiation element 70 includes an element substrate 21 made of n-type silicon. The element substrate 21 is provided with a hole 22 penetrating in a trapezoidal shape from the one surface 21a side to the opposite surface 21b side. The infrared radiation element 70 is formed on the one surface 21 a side of the element substrate 21 so that a band-shaped diaphragm portion 23 made of a p-type semiconductor closes one opening surface of the hole 22. In the infrared radiation element 70, a heat generating portion 74 made of an n-type semiconductor is formed on the surface of the diaphragm portion 23, and first and second electrodes 55 and 56 made of a metal material are provided at both ends of the surface of the heat generating portion 74. It has been.
 上述の赤外線放射素子70は、第1の電極55と第2の電極56との間に電圧が印加されると、発熱部74に電流が流れて発熱部74が発熱し、赤外線を放射する。 In the infrared radiation element 70 described above, when a voltage is applied between the first electrode 55 and the second electrode 56, a current flows through the heat generating portion 74, the heat generating portion 74 generates heat, and emits infrared light.
 赤外線放射素子70は、素子基板21の一面21a側および隔膜部23の表面が、表面保護の目的だけでなく、赤外線の放射を促進するためのシリコン酸化膜27によって覆われている。 In the infrared radiation element 70, the one surface 21a side of the element substrate 21 and the surface of the diaphragm part 23 are covered with a silicon oxide film 27 not only for the purpose of surface protection but also for promoting infrared radiation.
 上述の赤外線放射素子70では、発熱部74の中央部74aの幅を広くし、両端部74b、74cの幅を狭くしてある。これにより、赤外線放射素子70は、発熱部74において温度が相対的に高温となる高温部の領域が広くなり、赤外線の放射密度が増大する。 In the infrared radiation element 70 described above, the width of the central portion 74a of the heat generating portion 74 is widened, and the widths of both end portions 74b and 74c are narrowed. Thereby, in the infrared radiation element 70, the region of the high temperature portion where the temperature is relatively high in the heat generating portion 74 is widened, and the infrared radiation density is increased.
 ところで、赤外線放射素子を例えば分光式ガスセンサ用の赤外光源として用いる場合には、赤外線放射素子を間欠的に駆動することで赤外線を間欠的に放射させ、赤外線を検出する受光素子の出力をロックインアンプにより増幅することで、ガスセンサの出力のS/N比を向上できることが知られている。 By the way, when using an infrared radiation element as an infrared light source for a spectroscopic gas sensor, for example, the infrared radiation element is intermittently driven to emit infrared light intermittently, and the output of the light receiving element for detecting the infrared light is locked. It is known that the S / N ratio of the output of the gas sensor can be improved by amplifying with an in-amplifier.
 また、上述の赤外線放射素子70では、動作中に発生する熱応力に起因して、隔膜部23において穴22の上記一方の開口面に重なる矩形領域の角部に応力が集中しやすい。このため、赤外線放射素子70では、高出力化や、赤外線を間欠的に放射させるチョッピング速度の高速化を図った場合に、隔膜部23の上述の矩形領域の角部を起点として隔膜部23が破損してしまう懸念がある。 Further, in the above-described infrared radiation element 70, stress is likely to be concentrated on the corner portion of the rectangular region overlapping the one opening surface of the hole 22 in the diaphragm portion 23 due to the thermal stress generated during operation. For this reason, in the infrared radiating element 70, when the output is increased or the chopping speed for intermittently emitting infrared rays is increased, the diaphragm 23 starts from the corner of the rectangular region of the diaphragm 23 as a starting point. There is a concern that it will break.
 また、上述の赤外線放射素子70では、隔膜部23が、素子基板21の一面21a側にボロンをイオン注入してアニーリングを施すことにより形成されている。このため、赤外線放射素子70では、隔膜部23の熱伝導率が素子基板21の熱伝導率と同等であると推考され、隔膜部23の熱抵抗が小さく、より一層の高出力化が難しいものと推考される。 Further, in the above-described infrared radiation element 70, the diaphragm portion 23 is formed by ion-implanting boron into the one surface 21a side of the element substrate 21 for annealing. For this reason, in the infrared radiation element 70, it is assumed that the thermal conductivity of the diaphragm part 23 is equivalent to the thermal conductivity of the element substrate 21, the thermal resistance of the diaphragm part 23 is small, and it is difficult to further increase the output. It is inferred.
 本発明は上記事由に鑑みて為されたものであり、その目的は、高出力化を図ることが可能であり、且つ、信頼性の向上を図ることが可能な赤外線放射素子を提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared radiation element capable of increasing the output and improving the reliability. is there.
 本発明に係る第1の形態の赤外線放射素子は、基板と、開口部と、第1絶縁層と、発熱体層と、第2絶縁層と、通電部と、を備える。前記基板は、厚み方向に直交する一表面を有する。前記開口部は、前記基板を前記厚み方向に貫通する。前記第1絶縁層は、前記基板の前記一表面に前記開口部を覆うように配置される。前記発熱体層は、前記一表面に平行な基準面で前記開口部の内側に位置するように前記第1絶縁層における前記基板とは反対側に配置される。前記第2絶縁層は、前記第1絶縁層における前記基板とは反対側に前記発熱体層を覆うように配置される。前記通電部は、前記第2絶縁層における前記基板とは反対側に配置され前記発熱体層に電気的に接続される。前記開口部は、前記一表面に平行な基準面内において角を有する形状である。前記通電部は、前記厚み方向で前記開口部の前記角と重なる補強部を有する。 The infrared radiation element of the 1st form which concerns on this invention is equipped with a board | substrate, an opening part, a 1st insulating layer, a heat generating body layer, a 2nd insulating layer, and an electricity supply part. The substrate has one surface orthogonal to the thickness direction. The opening penetrates the substrate in the thickness direction. The first insulating layer is disposed on the one surface of the substrate so as to cover the opening. The heating element layer is disposed on the opposite side of the first insulating layer from the substrate so as to be positioned inside the opening with a reference plane parallel to the one surface. The second insulating layer is disposed on the opposite side of the first insulating layer from the substrate so as to cover the heating element layer. The energization portion is disposed on the opposite side of the second insulating layer from the substrate and is electrically connected to the heating element layer. The opening has a shape having an angle in a reference plane parallel to the one surface. The energizing part has a reinforcing part that overlaps the corner of the opening in the thickness direction.
 本発明に係る第2の形態の赤外線放射素子では、第1の形態において、前記第1絶縁層と前記第2絶縁層と前記発熱体層とは、全体として引張応力を有する。 In the infrared radiation element of the second form according to the present invention, in the first form, the first insulating layer, the second insulating layer, and the heating element layer have a tensile stress as a whole.
 本発明に係る第3の形態の赤外線放射素子では、第1または第2の形態において、前記通電部は、電極と、配線と、を備える。前記電極は、前記基準面において前記開口部の外側に位置するように前記基板上に配置される。前記配線は、前記電極を前記発熱体層に電気的に接続する。 In the infrared radiating element according to the third aspect of the present invention, in the first or second aspect, the energizing section includes an electrode and a wiring. The electrode is disposed on the substrate so as to be located outside the opening in the reference plane. The wiring electrically connects the electrode to the heating element layer.
 本発明に係る第4の形態の赤外線放射素子では、第3の形態において、前記開口部は、4つの前記角を有する矩形状または正方形状である。前記通電部は、前記4つの角にそれぞれ対応する4つの前記補強部を有する。 In the fourth aspect of the infrared radiation element according to the present invention, in the third aspect, the opening is rectangular or square having the four corners. The energization part has the four reinforcing parts respectively corresponding to the four corners.
 本発明に係る第5の形態の赤外線放射素子では、第4の形態において、前記通電部は、4つの前記配線を有する。前記4つの配線は、それぞれ対応する4つの前記補強部を含む。 In the infrared radiation element of the 5th form which concerns on this invention, in the 4th form, the said electricity supply part has four said wiring. Each of the four wirings includes four corresponding reinforcing portions.
 本発明に係る第6の形態の赤外線放射素子では、第5の形態において、前記電極は、第1電極と第2電極とを含む。前記第1電極および前記第2電極は、前記基準面内で前記開口部の一辺に沿った所定方向において前記開口部の両側に配置される。前記第1電極は、前記4つの角のうち前記第1電極に近い2つの角にそれぞれ対応する前記配線に接続される。前記第2電極は、前記4つの角のうち前記第2電極に近い2つの角にそれぞれ対応する前記配線に接続される。 In the sixth aspect of the infrared radiation element according to the present invention, in the fifth aspect, the electrode includes a first electrode and a second electrode. The first electrode and the second electrode are disposed on both sides of the opening in a predetermined direction along one side of the opening in the reference plane. The first electrode is connected to the wiring corresponding to two corners close to the first electrode among the four corners. The second electrode is connected to the wiring corresponding to two corners close to the second electrode among the four corners.
 本発明に係る第7の形態の赤外線放射素子では、第6の形態において、前記配線は、前記電極に接続される端部を有する。前記端部は、前記電極に近づくほど幅が大きくなる。前記端部が、前記補強部である。 In an infrared radiation element according to a seventh aspect of the present invention, in the sixth aspect, the wiring has an end connected to the electrode. The end portion becomes wider as it gets closer to the electrode. The end portion is the reinforcing portion.
 本発明に係る第8の形態の赤外線放射素子では、第7の形態において、前記端部は、その側面が凹面である。 In the infrared radiation element of the 8th form which concerns on this invention, in the 7th form, the said edge part has the concave surface.
 本発明に係る第9の形態の赤外線放射素子では、第5~第8の形態のいずれか1つにおいて、前記発熱体層は、前記基準面において4つの第2角を有する矩形状または正方形状である。前記発熱体層は、前記基準面において前記開口部の四辺とそれぞれ平行な四辺を有する。前記4つの配線の各々は、前記基準面において、前記発熱体層の前記第2角とこの第2角に最も近い前記開口部の前記角とを通る直線状に形成される。 In the infrared radiating element according to the ninth aspect of the present invention, in any one of the fifth to eighth aspects, the heating element layer has a rectangular or square shape having four second corners on the reference plane. It is. The heating element layer has four sides parallel to the four sides of the opening on the reference plane. Each of the four wirings is formed in a straight line passing through the second corner of the heating element layer and the corner of the opening closest to the second corner on the reference plane.
 本発明に係る第10の形態の赤外線放射素子では、第4の形態において、前記開口部は、4つの前記角を有する矩形状または正方形状である。前記電極は、第1電極と第2電極とを含む。前記第1電極および前記第2電極は、前記基準面において前記開口部の一辺に沿った所定方向における前記開口部の両側に配置される。前記第1電極は、前記4つの角のうち前記第1電極に近い2つの角にそれぞれ対応する前記補強部を含む。前記第2電極は、前記4つの角のうち前記第2電極に近い2つの角にそれぞれ対応する前記補強部を含む。 In the infrared emitter of the tenth aspect according to the present invention, in the fourth aspect, the opening is rectangular or square having four corners. The electrode includes a first electrode and a second electrode. The first electrode and the second electrode are disposed on both sides of the opening in a predetermined direction along one side of the opening on the reference plane. The first electrode includes the reinforcing portions respectively corresponding to two corners close to the first electrode among the four corners. The second electrode includes the reinforcing portions respectively corresponding to two corners close to the second electrode among the four corners.
 本発明に係る第11の形態の赤外線放射素子では、第3~第10の形態のいずれか1つにおいて、前記配線は、高融点材料により形成される。 In the eleventh aspect of the infrared radiation element according to the present invention, in any one of the third to tenth aspects, the wiring is formed of a high melting point material.
 本発明に係る第12の形態の赤外線放射素子では、第11の形態において、前記発熱体層は、前記高融点材料以上の融点を有する材料により形成される。 In the infrared radiation element of the twelfth aspect according to the present invention, in the eleventh aspect, the heating element layer is formed of a material having a melting point higher than that of the high melting point material.
 本発明に係る第13の形態の赤外線放射素子では、第12の形態において、前記配線は、タンタルにより形成される。前記発熱体層は、窒化タンタルにより形成される。 In the thirteenth aspect of the infrared radiation element according to the present invention, in the twelfth aspect, the wiring is made of tantalum. The heating element layer is formed of tantalum nitride.
 本発明に係る第14の形態の赤外線放射素子では、第1~第13の形態のいずれか1つにおいて、前記第1絶縁層および前記第2絶縁層は、熱絶縁性および電気絶縁性を有する。前記発熱体層は、通電により赤外線を放射するように構成される。前記第1絶縁層と前記発熱体層と前記第2絶縁層とは、薄膜構造部を構成する。前記薄膜構造部は、前記開口部上に配置されるダイヤフラム部と、前記基板上に配置され前記ダイヤフラム部に連結される支持部と、を有する。 In an infrared radiation element according to a fourteenth aspect of the present invention, in any one of the first to thirteenth aspects, the first insulating layer and the second insulating layer have thermal insulation and electrical insulation. . The heating element layer is configured to emit infrared rays when energized. The first insulating layer, the heating element layer, and the second insulating layer constitute a thin film structure. The thin film structure portion includes a diaphragm portion disposed on the opening, and a support portion disposed on the substrate and connected to the diaphragm portion.
(a)は実施形態1の赤外線放射素子の概略平面図、(b)は(a)のA-A線断面図である。(A) is a schematic plan view of the infrared radiation element of Embodiment 1, and (b) is a sectional view taken along line AA of (a). (a)は実施形態2の赤外線放射素子の概略平面図、(b)は(a)のB-B線断面図である。(A) is a schematic plan view of the infrared radiation element of Embodiment 2, (b) is a sectional view taken along line BB of (a). (a)は実施形態3の赤外線放射素子の概略平面図、(b)は(a)のC-C線断面図である。(A) is a schematic plan view of the infrared radiation element of Embodiment 3, (b) is a sectional view taken along the line CC of (a). 従来例の赤外線放射素子の平面図である。It is a top view of the infrared rays radiating element of a prior art example. 図4のG-G線断面図である。FIG. 5 is a cross-sectional view taken along the line GG in FIG. 4.
 (実施形態1)
 以下では、本実施形態の赤外線放射素子1について図1に基づいて説明する。
(Embodiment 1)
Below, the infrared radiation element 1 of this embodiment is demonstrated based on FIG.
 赤外線放射素子1は、基板2と、この基板2の一表面(図1(b)における上面)2b側に形成され第1絶縁層3と発熱体層4と第2絶縁層5との積層構造を有する薄膜構造部6とを備えている。 The infrared radiation element 1 is formed on a substrate 2 and one surface (upper surface in FIG. 1B) 2b side of the substrate 2, and a laminated structure of a first insulating layer 3, a heating element layer 4, and a second insulating layer 5. And a thin film structure portion 6 having
 薄膜構造部6は、基板2に近い側から、第1絶縁層3、発熱体層4、第2絶縁層5の順で積層されている。 The thin film structure 6 is laminated in the order of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 from the side close to the substrate 2.
 また、赤外線放射素子1は、基板2の厚み方向に貫通し開口形状が矩形状の開孔部(開口部)2aと、発熱体層4に電気的に接続される一対の電極9(9A),9(9B)と、各電極9の各々と発熱体層4を電気的に接続した配線8(81~84)とを備えている。 In addition, the infrared radiation element 1 includes a pair of electrodes 9 (9A) that are penetrated in the thickness direction of the substrate 2 and have a rectangular opening shape (opening portion) 2a and electrically connected to the heating element layer 4. , 9 (9B) and wirings 8 (81 to 84) for electrically connecting each of the electrodes 9 and the heating element layer 4 to each other.
 また、赤外線放射素子1は、薄膜構造部6が、開口部2aに臨む矩形状のダイヤフラム部6Dと、ダイヤフラム部6Dを囲む枠状の支持部6Sとを備える。 Further, in the infrared radiation element 1, the thin film structure portion 6 includes a rectangular diaphragm portion 6D facing the opening 2a and a frame-shaped support portion 6S surrounding the diaphragm portion 6D.
 ダイヤフラム部6Dが、中央部において第1絶縁層3と発熱体層4と第2絶縁層5との積層構造を有する。ダイヤフラム部6Dの周部と支持部6Sとが、第1絶縁層3と第2絶縁層5との積層構造を有している。 The diaphragm portion 6D has a laminated structure of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 in the central portion. The peripheral part of the diaphragm part 6 </ b> D and the support part 6 </ b> S have a laminated structure of the first insulating layer 3 and the second insulating layer 5.
 すなわち、第1絶縁層3と発熱体層4と第2絶縁層5とは、薄膜構造部6を構成する。薄膜構造部6は、開口部2a上に配置されるダイヤフラム部6Dと、基板2上に配置されダイヤフラム部6Dに連結される支持部6Sと、を有する。 That is, the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 constitute a thin film structure portion 6. The thin film structure portion 6 includes a diaphragm portion 6D disposed on the opening 2a and a support portion 6S disposed on the substrate 2 and connected to the diaphragm portion 6D.
 また、赤外線放射素子1は、各電極9が、支持部6Sに配置され、各配線8と各電極9とからなる通電部11が、ダイヤフラム部6Dの各角部60(61~64)上を通っている。 In addition, in the infrared radiation element 1, each electrode 9 is disposed on the support portion 6S, and an energization portion 11 including each wiring 8 and each electrode 9 is placed on each corner portion 60 (61 to 64) of the diaphragm portion 6D. Passing through.
 赤外線放射素子1は、発熱体層4への通電により発熱体層4から赤外線が放射される。 The infrared radiation element 1 emits infrared rays from the heating element layer 4 by energizing the heating element layer 4.
 以下、赤外線放射素子1の各構成要素について詳細に説明する。 Hereinafter, each component of the infrared radiation element 1 will be described in detail.
 基板2は、厚み方向(図1(b)における上下方向)に直交する両面である一表面(図1(b)における上面)2bおよび他表面(図1(b)における下面)2cを有する。例えば、一表面2bおよび他表面2cは平面である。基板2は、その一表面2bが(100)面の単結晶のシリコン基板により形成されているが、これに限らず、(110)面の単結晶のシリコン基板により形成してもよい。また、基板2は、単結晶のシリコン基板に限らず、多結晶のシリコン基板でもよいし、シリコン基板以外でもよい。基板2の材料は、第1絶縁層3の材料よりも熱伝導率が大きく且つ熱容量が大きな材料が好ましい。 The substrate 2 has one surface (upper surface in FIG. 1 (b)) 2b and another surface (lower surface in FIG. 1 (b)) 2c which are both surfaces orthogonal to the thickness direction (vertical direction in FIG. 1 (b)). For example, the one surface 2b and the other surface 2c are flat surfaces. The substrate 2 is formed of a single crystal silicon substrate having a (100) plane on one surface 2b, but is not limited thereto, and may be formed of a single crystal silicon substrate having a (110) plane. The substrate 2 is not limited to a single crystal silicon substrate, but may be a polycrystalline silicon substrate or other than a silicon substrate. The material of the substrate 2 is preferably a material having a higher thermal conductivity and a larger heat capacity than the material of the first insulating layer 3.
 基板2の外周形状は、矩形状である。基板2の外形サイズは、特に限定するものではないが、例えば、10mm□以下(10mm×10mm以下)に設定するのが好ましい。 The outer peripheral shape of the substrate 2 is rectangular. Although the external size of the board | substrate 2 is not specifically limited, For example, it is preferable to set to 10 mm □ or less (10 mm × 10 mm or less).
 開口部2aは、基板2を厚み方向に貫通するように形成される。開口部2aは、基板2の一表面2bに平行な基準面内において角20を有する形状である。例えば、開口部2aは、4つの角20(21~24)を有する矩形状または正方形状である。特に、本実施形態では、基板2は、開口部2aの開口形状を矩形状としてある。 The opening 2a is formed so as to penetrate the substrate 2 in the thickness direction. The opening 2 a has a shape having an angle 20 in a reference plane parallel to the one surface 2 b of the substrate 2. For example, the opening 2a is rectangular or square having four corners 20 (21 to 24). In particular, in the present embodiment, the substrate 2 has a rectangular opening 2a.
 薄膜構造部6は、開口部2aを覆うように基板2の一表面2bに形成されている。そのため、ダイヤフラム部6Dの4つの角部60(61~64)は、それぞれ、ダイヤフラム部6Dにおいて開口部2aの角20(21~24)と厚み方向(図1(b)における上下方向)で重なる部位である。 The thin film structure 6 is formed on the one surface 2b of the substrate 2 so as to cover the opening 2a. Therefore, the four corners 60 (61 to 64) of the diaphragm 6D overlap with the corners 20 (21 to 24) of the opening 2a in the diaphragm 6D in the thickness direction (vertical direction in FIG. 1B). It is a part.
 基板2の開口部2aは、一表面2b側に比べて他表面2c側(図1(b)における下側)での開口面積が大きくなる形状に形成されている。ここで、基板2の開口部2aは、薄膜構造部6の第1絶縁層3から離れるほど開口面積が徐々に大きくなる形状に形成されている。基板2の開口部2aは、基板2をエッチングすることにより形成されている。 The opening 2a of the substrate 2 is formed in such a shape that the opening area on the other surface 2c side (the lower side in FIG. 1B) is larger than the one surface 2b side. Here, the opening 2 a of the substrate 2 is formed in a shape in which the opening area gradually increases as the distance from the first insulating layer 3 of the thin film structure 6 increases. The opening 2 a of the substrate 2 is formed by etching the substrate 2.
 基板2として一表面2bが(100)面の単結晶のシリコン基板を採用している場合、基板2の開口部2aは、アルカリ系溶液をエッチング液として用いた異方性エッチングにより形成することができる。 When a single crystal silicon substrate having one surface 2b of (100) is used as the substrate 2, the opening 2a of the substrate 2 may be formed by anisotropic etching using an alkaline solution as an etchant. it can.
 また、赤外線放射素子1は、製造時において開口部2aを形成する際のマスク層が無機材料からなる場合、基板2の他表面2c側に、マスク層が残っていてもよい。なお、マスク層としては、例えば、シリコン酸化膜とシリコン窒化膜との積層膜などを採用することができる。 In addition, in the infrared radiation element 1, when the mask layer for forming the opening 2a is made of an inorganic material at the time of manufacture, the mask layer may remain on the other surface 2c side of the substrate 2. As the mask layer, for example, a laminated film of a silicon oxide film and a silicon nitride film can be employed.
 第1絶縁層3は、熱絶縁性および電気絶縁性を有する。第1絶縁層3は、基板2の一表面2bに開口部2aを覆うように配置される。第1絶縁層3は、例えば、基板2側のシリコン酸化膜と、このシリコン酸化膜における基板2側とは反対側に積層されたシリコン窒化膜とからなる。 The first insulating layer 3 has thermal insulation and electrical insulation. The first insulating layer 3 is disposed on the one surface 2b of the substrate 2 so as to cover the opening 2a. The first insulating layer 3 is made of, for example, a silicon oxide film on the substrate 2 side and a silicon nitride film laminated on the opposite side of the silicon oxide film from the substrate 2 side.
 また、第1絶縁層3は引張応力(残留引張応力)を有することが好ましい。換言すれば、第1絶縁層3は圧縮応力(残留圧縮応力)を有さないことが好ましい。したがって、第1絶縁層3は、引張応力を有するように形成される。なお、引張応力を有する絶縁層を形成する方法は周知であるから説明を省略する。 The first insulating layer 3 preferably has a tensile stress (residual tensile stress). In other words, the first insulating layer 3 preferably has no compressive stress (residual compressive stress). Therefore, the first insulating layer 3 is formed to have a tensile stress. Note that a method for forming an insulating layer having a tensile stress is well known, and thus description thereof is omitted.
 特に、第1絶縁層3と第2絶縁層5と発熱体層4とは、全体として引張応力(残留引張応力)を有することが好ましい。すなわち、第1絶縁層3と第2絶縁層5と発熱体層4で構成される部位は、引張応力を有することが好ましい。 In particular, the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 preferably have a tensile stress (residual tensile stress) as a whole. That is, it is preferable that the site | part comprised by the 1st insulating layer 3, the 2nd insulating layer 5, and the heat generating body layer 4 has a tensile stress.
 例えば、第1絶縁層3と第2絶縁層5と発熱体層4とはそれぞれ引張応力を有していてもよい。なお、第1絶縁層3と第2絶縁層5と発熱体層4との全てが引張応力を有している必要はない。すなわち、第1絶縁層3と第2絶縁層5と発熱体層4とが全体として引張応力を有していれば、第1絶縁層3と第2絶縁層5と発熱体層4とのいずれかが圧縮応力を有していてもよいし、圧縮応力や引張応力を有していなくてもよい。 For example, the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 may each have a tensile stress. Note that it is not necessary for all of the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 to have tensile stress. That is, any of the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 can be used as long as the first insulating layer 3, the second insulating layer 5, and the heating element layer 4 have tensile stress as a whole. May have compressive stress or may not have compressive stress or tensile stress.
 例えば、第1絶縁層3が引張応力を有し、第2絶縁層5が応力を有しておらず、発熱体層4が圧縮応力を有していても、第1絶縁層3と第2絶縁層5と発熱体層4とが全体として引張応力を有していればよい。 For example, even if the first insulating layer 3 has tensile stress, the second insulating layer 5 has no stress, and the heating element layer 4 has compressive stress, It is only necessary that the insulating layer 5 and the heating element layer 4 have a tensile stress as a whole.
 第1絶縁層3は、シリコン酸化膜とシリコン窒化膜との積層膜に限らず、例えば、シリコン酸化膜やシリコン窒化膜の単層構造でもよいし、その他の材料からなる単層構造や、2層以上の積層構造でもよい。 The first insulating layer 3 is not limited to a laminated film of a silicon oxide film and a silicon nitride film, and may be a single layer structure of a silicon oxide film or a silicon nitride film, a single layer structure made of other materials, 2 A laminated structure of more than one layer may be used.
 第1絶縁層3は、赤外線放射素子1の製造時において基板2の他表面2c側から基板2をエッチングして開口部2aを形成する際のエッチングストッパ層としての機能も有している。 The first insulating layer 3 also has a function as an etching stopper layer when the opening 2a is formed by etching the substrate 2 from the other surface 2c side of the substrate 2 when the infrared radiation element 1 is manufactured.
 発熱体層4は、通電により赤外線を放射するように構成される。発熱体層4は、基板2の一表面2bに平行な基準面で開口部2aの内側に位置するように第1絶縁層3における基板2とは反対側(図1(b)における上側)に配置される。例えば、発熱体層4は、基準面において、開口部2aの中央部分に配置される。 The heating element layer 4 is configured to emit infrared rays when energized. The heating element layer 4 is on the opposite side of the first insulating layer 3 from the substrate 2 (upper side in FIG. 1B) so as to be positioned inside the opening 2a with a reference plane parallel to the one surface 2b of the substrate 2. Be placed. For example, the heating element layer 4 is disposed in the central portion of the opening 2a on the reference plane.
 例えば、発熱体層4は、基準面において4つの角(第2角)40(41~44)を有する矩形状または正方形状である。発熱体層4は、基準面において開口部2aの四辺とそれぞれ平行な四辺を有する。本実施形態では、発熱体層4は、平面形状を矩形状としてある。 For example, the heating element layer 4 has a rectangular shape or a square shape having four corners (second corners) 40 (41 to 44) on the reference plane. The heating element layer 4 has four sides parallel to the four sides of the opening 2a on the reference plane. In the present embodiment, the heating element layer 4 has a rectangular planar shape.
 発熱体層4の平面サイズは、第1絶縁層3において開口部2aに臨む表面の平面サイズよりも小さく設定してある。つまり、発熱体層4の平面サイズは、ダイヤフラム部6Dの平面サイズよりも小さく設定してある。ここで、ダイヤフラム部6Dの平面サイズは、特に限定するものではないが、例えば、5mm□以下に設定するのが好ましい。 The planar size of the heating element layer 4 is set smaller than the planar size of the surface of the first insulating layer 3 facing the opening 2a. That is, the planar size of the heating element layer 4 is set smaller than the planar size of the diaphragm portion 6D. Here, the planar size of the diaphragm portion 6D is not particularly limited, but is preferably set to 5 mm □ or less, for example.
 発熱体層4の平面サイズは、配線8の端部(一端部)8aと発熱体層4との間に介在し両者を電気的に接続するコンタクト部7が重なるコンタクト領域4bを除いた放射領域4aの平面サイズが3mm□以下となるように設定するのが好ましい。 The planar size of the heating element layer 4 is a radiation area excluding the contact area 4b that is interposed between the end portion (one end) 8a of the wiring 8 and the heating element layer 4 and that overlaps the contact portion 7 that electrically connects them. The plane size of 4a is preferably set to be 3 mm □ or less.
 発熱体層4の材料は、窒化タンタルを採用している。つまり、発熱体層4は、窒化タンタル層からなる。発熱体層4の材料は、窒化タンタルに限らず、例えば、窒化チタン、ニッケルクロム、タングステン、チタン、トリウム、白金、ジルコニウム、クロム、バナジウム、ロジウム、ハフニウム、ルテニウム、ボロン、イリジウム、ニオブ、モリブデン、タンタル、オスミウム、レニウム、ニッケル、ホルミウム、コバルト、エルビウム、イットリウム、鉄、スカンジウム、ツリウム、パラジウム、ルテチウムなどを採用してもよい。 The material of the heating element layer 4 is tantalum nitride. That is, the heating element layer 4 is made of a tantalum nitride layer. The material of the heating element layer 4 is not limited to tantalum nitride, for example, titanium nitride, nickel chromium, tungsten, titanium, thorium, platinum, zirconium, chromium, vanadium, rhodium, hafnium, ruthenium, boron, iridium, niobium, molybdenum, Tantalum, osmium, rhenium, nickel, holmium, cobalt, erbium, yttrium, iron, scandium, thulium, palladium, lutetium, and the like may be employed.
 また、発熱体層4の材料としては、導電性ポリシリコンを採用してもよい。つまり、発熱体層4は、導電性ポリシリコン層により構成してもよい。発熱体層4について、高温で化学的に安定であり、且つ、シート抵抗の設計容易性という観点からは、窒化タンタル層もしくは導電性ポリシリコン層を採用することが好ましい。 Further, as the material of the heating element layer 4, conductive polysilicon may be adopted. That is, the heating element layer 4 may be composed of a conductive polysilicon layer. The heating element layer 4 is preferably a tantalum nitride layer or a conductive polysilicon layer from the viewpoint of chemical stability at high temperatures and ease of design of sheet resistance.
 窒化タンタル層は、その組成を変えることにより、シート抵抗を変えることが可能である。 The sheet resistance of the tantalum nitride layer can be changed by changing its composition.
 導電性ポリシリコン層は、不純物濃度などを変えることにより、シート抵抗を変えることが可能である。導電性ポリシリコン層は、n形不純物もしくはp形不純物が高濃度にドーピングされたn形ポリシリコン層もしくはp形ポリシリコン層により構成することができる。 The sheet resistance of the conductive polysilicon layer can be changed by changing the impurity concentration. The conductive polysilicon layer can be composed of an n-type polysilicon layer or a p-type polysilicon layer doped with an n-type impurity or a p-type impurity at a high concentration.
 導電性ポリシリコン層をn形ポリシリコン層とし、n形不純物として例えばリンを採用する場合には、不純物濃度を例えば、1×1018cm-3~5×1020cm-3程度の範囲で適宜設定すればよい。 When the conductive polysilicon layer is an n-type polysilicon layer and phosphorus is used as the n-type impurity, the impurity concentration is, for example, in the range of about 1 × 10 18 cm −3 to 5 × 10 20 cm −3. What is necessary is just to set suitably.
 また、導電性ポリシリコン層をp形ポリシリコン層とし、p形不純物として例えばボロンを採用する場合には、不純物濃度を1×1018cm-3~1×1020cm-3程度の範囲で適宜設定すればよい。 Also, when the conductive polysilicon layer is a p-type polysilicon layer and boron is used as the p-type impurity, the impurity concentration is in the range of about 1 × 10 18 cm −3 to 1 × 10 20 cm −3. What is necessary is just to set suitably.
 なお、発熱体層4の材料について、基板2と発熱体層4との線膨張係数差に伴う熱応力に起因して発熱体層4が破壊されるのを防止するという観点からは、基板2の材料との線膨張係数差が小さい材料が好ましい。 In addition, about the material of the heat generating body layer 4, from a viewpoint of preventing that the heat generating body layer 4 is destroyed by the thermal stress accompanying the linear expansion coefficient difference of the board | substrate 2 and the heat generating body layer 4, it is the board | substrate 2. A material having a small difference in linear expansion coefficient from the above material is preferable.
 赤外線放射素子1において発熱体層4から放射される赤外線のピーク波長λは、発熱体層4の温度に依存する。ここで、発熱体層4の絶対温度をT〔K〕、ピーク波長をλ〔μm〕とすれば、ピーク波長λは、λ=2898/Tとなり、発熱体層4の絶対温度Tと発熱体層4から放射される赤外線のピーク波長λとの関係がウィーンの変位則を満足している。要するに、赤外線放射素子1では、発熱体層4が黒体を構成している。これにより、赤外線放射素子1は、発熱体層4の単位面積が単位時間に放射する全エネルギEがT4に略比例するものと推測される(つまり、シュテファン-ボルツマンの法則を満足するものと推測される)。 The peak wavelength λ of infrared rays emitted from the heating element layer 4 in the infrared radiation element 1 depends on the temperature of the heating element layer 4. Here, if the absolute temperature of the heating element layer 4 is T [K] and the peak wavelength is λ [μm], the peak wavelength λ is λ = 2898 / T, and the absolute temperature T of the heating element layer 4 and the heating element The relationship with the peak wavelength λ of infrared rays emitted from the layer 4 satisfies the Vienna displacement law. In short, in the infrared radiation element 1, the heating element layer 4 forms a black body. As a result, the infrared radiation element 1 is estimated that the total energy E radiated per unit time of the unit area of the heating element layer 4 is approximately proportional to T4 (that is, it is assumed that the Stefan-Boltzmann law is satisfied). )
 赤外線放射素子1は、例えば、図示しない外部電源から一対の電極9,9間に与える入力電力を調整することにより、発熱体層4に発生するジュール熱を変化させることができ、発熱体層4の温度を変化させることができる。したがって、赤外線放射素子1は、発熱体層4への入力電力に応じて発熱体層4の温度を変化させることができ、また、発熱体層4の温度を変化させることで発熱体層4から放射される赤外線のピーク波長λを変化させることができる。 The infrared radiation element 1 can change Joule heat generated in the heating element layer 4 by adjusting input power applied between the pair of electrodes 9 and 9 from an external power source (not shown), for example. The temperature of can be changed. Therefore, the infrared radiation element 1 can change the temperature of the heating element layer 4 in accordance with the input power to the heating element layer 4, and can change the temperature of the heating element layer 4 from the heating element layer 4. The peak wavelength λ of the emitted infrared light can be changed.
 また、本実施形態の赤外線放射素子1では、発熱体層4の温度を高くするほど赤外線の放射量を増大させることが可能となる。このため、赤外線放射素子1は、広範囲の赤外線波長域において高出力の赤外線光源として用いることが可能となる。例えば、赤外線放射素子1をガスセンサの赤外光源として使用する場合には、赤外線を受光するディテクタの光学フィルタを波長が異なる複数の赤外線を透過させるように設計することにより、ガスセンサで複数種類のガスを検知できる。 Further, in the infrared radiation element 1 of the present embodiment, the amount of infrared radiation can be increased as the temperature of the heating element layer 4 is increased. For this reason, the infrared radiation element 1 can be used as a high-power infrared light source in a wide infrared wavelength range. For example, when the infrared radiation element 1 is used as an infrared light source of a gas sensor, a gas sensor is designed to transmit a plurality of infrared rays having different wavelengths by designing an optical filter of a detector that receives infrared rays so that a plurality of types of gases can be used. Can be detected.
 第2絶縁層5は、熱絶縁性および電気絶縁性を有する。第2絶縁層5は、第1絶縁層3における基板2とは反対側(図1(b)における上側)に発熱体層4を覆うように配置される。第2絶縁層5は、例えば、シリコン窒化膜により構成してある。第2絶縁層5は、これに限らず、例えば、シリコン酸化膜により構成してもよいし、シリコン酸化膜とシリコン窒化膜との積層構造を有していてもよい。第2絶縁層5は、発熱体層4への通電時に発熱体層4から放射される所望の波長ないし波長域の赤外線に対する透過率が高いほうが好ましいが、透過率が100%であることを必須とするものではない。 The second insulating layer 5 has thermal insulation and electrical insulation. The second insulating layer 5 is disposed so as to cover the heating element layer 4 on the opposite side of the first insulating layer 3 from the substrate 2 (upper side in FIG. 1B). The second insulating layer 5 is made of, for example, a silicon nitride film. The second insulating layer 5 is not limited to this. For example, the second insulating layer 5 may be formed of a silicon oxide film, or may have a stacked structure of a silicon oxide film and a silicon nitride film. The second insulating layer 5 preferably has a high transmittance with respect to infrared rays of a desired wavelength or wavelength range radiated from the heating element layer 4 when the heating element layer 4 is energized, but it is essential that the transmittance is 100%. It is not something to do.
 ところで、発熱体層4は、第2絶縁層5が接する気体(例えば、空気、窒素ガスなど)とのインピーダンス不整合による赤外線の放射率の低下を抑制するようにシート抵抗を設定してあることが好ましい。 Incidentally, the heating element layer 4 has a sheet resistance set so as to suppress a decrease in infrared emissivity due to impedance mismatch with a gas (for example, air, nitrogen gas, etc.) with which the second insulating layer 5 is in contact. Is preferred.
 例えば、発熱体層4の材料として窒化タンタルを採用する場合、発熱体層4のシート抵抗は、発熱体層4の基礎となる窒化タンタル層を反応性スパッタ法により成膜する際の窒素ガスの分圧によって制御することが可能である。要するに、赤外線放射素子1は、発熱体層4の材料として窒化タンタルを採用する場合、窒化タンタル層の組成を変えることにより、発熱体層4のシート抵抗を変えることが可能である。 For example, when tantalum nitride is employed as the material of the heating element layer 4, the sheet resistance of the heating element layer 4 is determined by the nitrogen gas used when the tantalum nitride layer that forms the basis of the heating element layer 4 is formed by reactive sputtering. It is possible to control by partial pressure. In short, when the infrared radiation element 1 employs tantalum nitride as the material of the heating element layer 4, the sheet resistance of the heating element layer 4 can be changed by changing the composition of the tantalum nitride layer.
 また、赤外線放射素子1は、発熱体層4の材料として導電性ポリシリコンを採用する場合、発熱体層4の基礎となる導電性ポリシリコン層の不純物濃度などを変えることにより、発熱体層4のシート抵抗を変えることが可能である。導電性ポリシリコン層の不純物濃度を制御する方法としては、ノンドープのポリシリコン層を形成した後で不純物をドーピングする方法、成膜時に不純物をドーピングする方法などがある。 In addition, when the infrared radiation element 1 employs conductive polysilicon as the material of the heating element layer 4, the heating element layer 4 can be changed by changing the impurity concentration of the conductive polysilicon layer that is the basis of the heating element layer 4. It is possible to change the sheet resistance. As a method of controlling the impurity concentration of the conductive polysilicon layer, there are a method of doping impurities after forming a non-doped polysilicon layer, a method of doping impurities during film formation, and the like.
 赤外線放射素子1は、第2絶縁層5が気体である空気と接する環境下では、シート抵抗を189Ω/□(189Ω/sq.)とすれば、空気とのインピーダンスマッチングにより、赤外線の放射率を最大(50%)とすることが可能となる。 In the environment where the second insulating layer 5 is in contact with air, which is a gas, the infrared radiation element 1 has an infrared emissivity by impedance matching with air if the sheet resistance is 189 Ω / □ (189 Ω / sq.). The maximum (50%) can be achieved.
 したがって、放射率の低下を抑制して例えば40%以上の放射率を確保するためには、発熱体層4のシート抵抗を73~493Ω/□の範囲で設定すればよい。なお、所望の使用温度において放射率が最大となるシート抵抗を規定シート抵抗と呼ぶことにすれば、所望の使用温度での発熱体層4のシート抵抗は、規定シート抵抗±10%の範囲で設定するのが、より好ましい。 Therefore, in order to suppress a decrease in emissivity and ensure emissivity of, for example, 40% or more, the sheet resistance of the heating element layer 4 may be set in the range of 73 to 493 Ω / □. If the sheet resistance at which the emissivity is maximized at a desired use temperature is referred to as a prescribed sheet resistance, the sheet resistance of the heating element layer 4 at the desired use temperature is within a range of the prescribed sheet resistance ± 10%. It is more preferable to set.
 また、赤外線放射素子1は、第1絶縁層3と発熱体層4と第2絶縁層5とで構成されるサンドイッチ構造の応力バランスを考慮して、第1絶縁層3および第2絶縁層5それぞれの材料や厚さなどを設定することが好ましい。これにより、赤外線放射素子1は、上述のサンドイッチ構造の応力バランスを向上させることが可能となり、このサンドイッチ構造の反りや破損を、より抑制することが可能となって機械的強度のより一層の向上を図ることが可能となる。 Further, the infrared radiation element 1 takes into account the stress balance of the sandwich structure composed of the first insulating layer 3, the heating element layer 4 and the second insulating layer 5, and the first insulating layer 3 and the second insulating layer 5. It is preferable to set each material and thickness. Thereby, the infrared radiation element 1 can improve the stress balance of the above-described sandwich structure, and can further suppress the warpage and breakage of the sandwich structure, thereby further improving the mechanical strength. Can be achieved.
 上述の発熱体層4の厚さは、発熱体層4の低熱容量化を図るという観点から0.2μm以下とするのが好ましい。 The thickness of the heating element layer 4 is preferably 0.2 μm or less from the viewpoint of reducing the heat capacity of the heating element layer 4.
 第1絶縁層3の厚さと発熱体層4の厚さと第2絶縁層5の厚さとの合計厚さは、第1絶縁層3と発熱体層4と第2絶縁層5との積層構造の低熱容量化を図るという観点から、例えば、0.1μm~1μm程度の範囲で設定することが好ましく、0.7μm以下とするのがより好ましい。 The total thickness of the thickness of the first insulating layer 3, the thickness of the heating element layer 4, and the thickness of the second insulating layer 5 is the laminated structure of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5. From the viewpoint of reducing the heat capacity, for example, it is preferably set in the range of about 0.1 μm to 1 μm, more preferably 0.7 μm or less.
 赤外線放射素子1は、発熱体層4における第1絶縁層3と反対側(図1(b)における上側)に形成されるコンタクト部7をさらに備える。特に、本実施形態では、一対のコンタクト部7が形成されている。一対のコンタクト部7(7A),7(7B)は、基板2の上記一表面2b側において、発熱体層4の周部(図1(a)における左右両端部)と接する形で形成されている。各コンタクト部7は、第2絶縁層5に形成されたコンタクトホール5aを通して発熱体層4上に形成され、発熱体層4と電気的に接続されている。ここで、各コンタクト部7は、発熱体層4とオーミック接触をなしている。つまり、コンタクト部7は、発熱体層4とオーミック接触するように形成される。 The infrared radiation element 1 further includes a contact portion 7 formed on the heating element layer 4 on the side opposite to the first insulating layer 3 (upper side in FIG. 1B). In particular, in the present embodiment, a pair of contact portions 7 is formed. The pair of contact portions 7 (7A) and 7 (7B) are formed on the one surface 2b side of the substrate 2 so as to be in contact with the peripheral portion of the heating element layer 4 (both left and right end portions in FIG. 1A). Yes. Each contact portion 7 is formed on the heating element layer 4 through a contact hole 5 a formed in the second insulating layer 5, and is electrically connected to the heating element layer 4. Here, each contact portion 7 is in ohmic contact with the heating element layer 4. That is, the contact portion 7 is formed so as to be in ohmic contact with the heating element layer 4.
 赤外線放射素子1は、発熱体層4の平面形状が矩形状であり、一対のコンタクト部7,7の平面形状を、発熱体層4の平行する2つの辺の各々に沿った帯状の形状としてある。更に説明すれば、赤外線放射素子1は、一対のコンタクト部7,7の平面形状を、一対の電極9,9の並設方向に直交する各辺に沿った帯状の形状としてある。 In the infrared radiation element 1, the planar shape of the heating element layer 4 is rectangular, and the planar shape of the pair of contact portions 7, 7 is a band-shaped shape along each of two parallel sides of the heating element layer 4. is there. More specifically, in the infrared radiation element 1, the planar shape of the pair of contact portions 7, 7 is a band shape along each side orthogonal to the direction in which the pair of electrodes 9, 9 are arranged.
 各コンタクト部7の材料としては、後述するように、高融点材料を用いることが好ましい。たとえば、コンタクト部7は、タンタルにより形成される。なお、コンタクト部7の材料は、必ずしも高融点材料である必要はなく、アルミニウムや、アルミニウム合金(たとえば、Al-Si、Al-Cu)であってもよい。各コンタクト部7の材料は、特に限定するものではなく、例えば、金、銅などを採用してもよい。また、各コンタクト部7は、少なくとも、発熱体層4と接する部分が発熱体層4とオーミック接触が可能な材料であればよく、単層構造に限らず、多層構造でもよい。例えば、各コンタクト部7は、その厚さ方向において、発熱体層4側から順に、第1層、第2層、第3層が積層された3層構造として、発熱体層4に接する第1層の材料を高融点金属(例えば、クロムなど)とし、第2層の材料をニッケルとし、第3層の材料を金としてもよい。 As the material of each contact portion 7, a high melting point material is preferably used as will be described later. For example, the contact portion 7 is made of tantalum. The material of the contact portion 7 does not necessarily need to be a high melting point material, and may be aluminum or an aluminum alloy (for example, Al—Si, Al—Cu). The material of each contact part 7 is not specifically limited, For example, gold | metal | money, copper, etc. may be employ | adopted. Moreover, each contact part 7 should just be a material in which at least the part which contact | connects the heat generating body layer 4 can make ohmic contact with the heat generating body layer 4, and not only a single layer structure but a multilayered structure may be sufficient as it. For example, each contact portion 7 has a first layer in contact with the heating element layer 4 in the thickness direction as a three-layer structure in which a first layer, a second layer, and a third layer are stacked in order from the heating element layer 4 side. The material of the layer may be a refractory metal (such as chromium), the material of the second layer may be nickel, and the material of the third layer may be gold.
 電極9は、第1電極9(9A)と第2電極9(9B)とを含む。各電極9(9A,9B)は、上述のように、支持部6Sに配置されている。すなわち、電極9は、基準面において開口部2aの外側に位置するように基板2上に配置される。すなわち、電極9は、基板2上において厚み方向で開口部2aと重ならない領域(支持部6Sと重なり、ダイヤフラム部6Dとは重ならない領域)に配置される。 The electrode 9 includes a first electrode 9 (9A) and a second electrode 9 (9B). Each electrode 9 (9A, 9B) is arranged on the support portion 6S as described above. That is, the electrode 9 is disposed on the substrate 2 so as to be located outside the opening 2a on the reference plane. That is, the electrode 9 is disposed on the substrate 2 in a region that does not overlap with the opening 2a in the thickness direction (a region that overlaps with the support 6S and does not overlap with the diaphragm 6D).
 第1電極9Aおよび第2電極9Bは、基準面内で開口部2aの一辺に沿った所定方向(図1(a)における左右方向)において開口部2aの両側に配置される。また、各電極9は、平面視において両電極9の並設方向に直交する方向を長手方向とする短冊状(長方形状)の形状に形成してある。また、各電極9は、ダイヤフラム部6Dの2つの対角線の延長線を横切るように長さ寸法を設定してある。 The first electrode 9A and the second electrode 9B are arranged on both sides of the opening 2a in a predetermined direction along the one side of the opening 2a in the reference plane (the left-right direction in FIG. 1A). Each electrode 9 is formed in a strip shape (rectangular shape) having a longitudinal direction in a direction orthogonal to the direction in which both electrodes 9 are arranged in plan view. Each electrode 9 has a length dimension so as to cross two diagonal extensions of the diaphragm portion 6D.
 配線8は、電極9を発熱体層4に電気的に接続するように形成される。配線8は、発熱体層4と各電極9との間に2つずつ設けられている。すなわち、通電部11は、4つの配線8(81~84)を備える。4つの配線8の各々は、基準面において、発熱体層4の第2角40とこの第2角40に最も近い開口部2aの角(第1角)20とを通る直線状に形成される。つまり、配線81,82,83,84は、それぞれ、発熱体層4の第2角41,42,43,44とこの第2角41,41,42,43に最も近い開口部2aの角21,22,23,24とを通る。本実施形態では、開口部2aおよび発熱体層4は相似形であり、中心の位置が互いに等しい。そのため、配線8は、ダイヤフラム部6Dの対角線に沿って配置されている。 The wiring 8 is formed so as to electrically connect the electrode 9 to the heating element layer 4. Two wirings 8 are provided between the heating element layer 4 and each electrode 9. That is, the energization unit 11 includes four wirings 8 (81 to 84). Each of the four wirings 8 is formed in a straight line passing through the second corner 40 of the heating element layer 4 and the corner (first corner) 20 of the opening 2a closest to the second corner 40 on the reference plane. . That is, the wirings 81, 82, 83, 84 are respectively connected to the second corners 41, 42, 43, 44 of the heating element layer 4 and the corner 21 of the opening 2 a closest to the second corners 41, 41, 42, 43. , 22, 23, 24. In the present embodiment, the opening 2a and the heating element layer 4 have a similar shape, and the center positions are equal to each other. Therefore, the wiring 8 is arrange | positioned along the diagonal of diaphragm part 6D.
 各配線8は、長手方向の一端部(第1端部)8aがコンタクト部7と接続され、他端部(第2端部)8bが電極9と接続されている。つまり、配線8は、コンタクト部7を介して発熱体層4に電気的に接続される。 Each wiring 8 has one end (first end) 8a in the longitudinal direction connected to the contact portion 7 and the other end (second end) 8b connected to the electrode 9. That is, the wiring 8 is electrically connected to the heating element layer 4 through the contact portion 7.
 配線8の線幅(幅寸法)は、一定としてある。例えば、配線81の第1端部8aはコンタクト部7Aの一端(図1(a)における上端)に、配線82の第1端部8aはコンタクト部7Aの他端(図1(a)における下端)に、それぞれ接続される。配線83の第1端部8aはコンタクト部7Bの一端(図1(a)における上端)に、配線84の第1端部8aはコンタクト部7Bの他端(図1(a)における下端)に、それぞれ接続される。 The line width (width dimension) of the wiring 8 is constant. For example, the first end 8a of the wiring 81 is one end of the contact portion 7A (the upper end in FIG. 1A), and the first end 8a of the wiring 82 is the other end of the contact portion 7A (the lower end in FIG. 1A). ), Respectively. The first end 8a of the wiring 83 is at one end of the contact portion 7B (upper end in FIG. 1A), and the first end 8a of the wiring 84 is at the other end of the contact portion 7B (lower end in FIG. 1A). , Each connected.
 図1(a)に示すように、第1電極9Aは、4つの角20のうち第1電極9Aに近い2つの角21,22にそれぞれ対応する配線81,82に接続される。第2電極9Bは、4つの角20のうち第2電極9Bに近い2つの角23,24にそれぞれ対応する配線83,84に接続される。なお、角20に対応する配線8とは、角20上を通る配線8(厚み方向において角20と重なる配線8)と定義される。 As shown in FIG. 1A, the first electrode 9A is connected to wirings 81 and 82 corresponding to two corners 21 and 22 close to the first electrode 9A among the four corners 20, respectively. The second electrode 9B is connected to the wirings 83 and 84 corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 20, respectively. The wiring 8 corresponding to the corner 20 is defined as a wiring 8 passing over the corner 20 (wiring 8 overlapping the corner 20 in the thickness direction).
 本実施形態の赤外線放射素子1は、配線8と電極9とからなる通電部11が、ダイヤフラム部6Dの各角部上を通っている。ここで、本実施形態の赤外線放射素子1では、4つの配線8(81~84)の他端部(第2端部)8bがダイヤフラム部6Dの4つの角部60(61~64)上を通っている。 In the infrared radiation element 1 of the present embodiment, the energization section 11 composed of the wiring 8 and the electrode 9 passes over each corner of the diaphragm section 6D. Here, in the infrared radiation element 1 of the present embodiment, the other end portions (second end portions) 8b of the four wires 8 (81 to 84) extend over the four corner portions 60 (61 to 64) of the diaphragm portion 6D. Passing through.
 このように、本実施形態の赤外線放射素子1は、第2絶縁層5における基板2とは反対側(図1(b)における上側)に配置され発熱体層4に電気的に接続される通電部11を備える。本実施形態では、配線8の第2端部8bが、厚み方向で開口部2aの角20(すなわち、ダイヤフラム部6Dの角部60)と重なる補強部となる。つまり、4つの配線8は、それぞれ対応する4つの補強部(第2端部8b)を含む。したがって、通電部11は、4つの角20(21,22,23,24)にそれぞれ対応する4つの補強部(第2端部8b)を有する。 As described above, the infrared radiation element 1 of the present embodiment is disposed on the opposite side of the second insulating layer 5 from the substrate 2 (upper side in FIG. 1B) and is electrically connected to the heating element layer 4. The unit 11 is provided. In the present embodiment, the second end portion 8b of the wiring 8 serves as a reinforcing portion that overlaps the corner 20 of the opening 2a (that is, the corner portion 60 of the diaphragm portion 6D) in the thickness direction. That is, the four wirings 8 each include four corresponding reinforcing portions (second end portions 8b). Accordingly, the energizing portion 11 has four reinforcing portions (second end portions 8b) respectively corresponding to the four corners 20 (21, 22, 23, 24).
 各配線8および各電極9は、各コンタクト部7と同じ材料により形成され、同じ層構造、同じ厚さに設定するのが好ましい。これにより、赤外線放射素子1は、各配線8および各電極9を各コンタクト部7と同時に形成することが可能となる。 Each wiring 8 and each electrode 9 are preferably made of the same material as each contact portion 7 and set to the same layer structure and the same thickness. Thereby, the infrared radiation element 1 can form each wiring 8 and each electrode 9 simultaneously with each contact part 7.
 各電極9は、パッドを構成するものである。このため、電極9の厚さは、0.5~2μm程度の範囲で設定することが好ましい。 Each electrode 9 constitutes a pad. Therefore, the thickness of the electrode 9 is preferably set in the range of about 0.5 to 2 μm.
 赤外線放射素子1の製造にあたっては、例えば、基板2の上記一表面2b側に、第1絶縁層3、発熱体層4、第2絶縁層5を順次形成してから、第2絶縁層5にコンタクトホール5aを形成し、その後、各コンタクト部7、各配線8および各電極9を形成し、続いて、基板2に開口部2aを形成すればよい。 In manufacturing the infrared radiation element 1, for example, the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 are sequentially formed on the one surface 2 b side of the substrate 2, and then the second insulating layer 5 is formed. The contact hole 5a is formed, then each contact portion 7, each wiring 8 and each electrode 9 are formed, and then the opening 2a is formed in the substrate 2.
 第1絶縁層3のシリコン酸化膜の形成方法は、例えば、熱酸化法やCVD(ChemicalVapor Deposition)法などの薄膜形成技術を採用することができ、熱酸化法が好ましい。また、第1絶縁層3のシリコン窒化膜の形成方法は、CVD法などの薄膜形成技術を利用することができ、LPCVD(Low Pressure Chemical Vapor Deposition)法が好ましい。 As a method for forming the silicon oxide film of the first insulating layer 3, for example, a thin film forming technique such as a thermal oxidation method or a CVD (Chemical Vapor Deposition) method can be employed, and a thermal oxidation method is preferable. Further, as a method for forming the silicon nitride film of the first insulating layer 3, a thin film forming technique such as a CVD method can be used, and an LPCVD (Low Pressure Chemical Vapor Deposition) method is preferable.
 発熱体層4の形成方法は、例えば、スパッタ法や蒸着法やCVD法などの薄膜形成技術と、フォトリソグラフィ技術およびエッチング技術を利用した加工技術とを利用することができる。 As a method for forming the heating element layer 4, for example, a thin film forming technique such as a sputtering method, a vapor deposition method, or a CVD method, and a processing technique using a photolithography technique and an etching technique can be used.
 第2絶縁層5の形成方法は、例えば、CVD法などの薄膜形成技術と、フォトリソグラフィ技術およびエッチング技術を利用した加工技術とを利用することができる。第2絶縁層5を形成する際のCVD法としては、プラズマCVD法が好ましい。 As a method for forming the second insulating layer 5, for example, a thin film forming technique such as a CVD method and a processing technique using a photolithography technique and an etching technique can be used. As a CVD method for forming the second insulating layer 5, a plasma CVD method is preferable.
 コンタクトホール5aの形成にあたっては、フォトリソグラフィ技術およびエッチング技術を利用すればよい。 In forming the contact hole 5a, a photolithography technique and an etching technique may be used.
 また、各コンタクト部7、各配線8および各電極9の形成にあたっては、例えば、スパッタ法、蒸着法およびCVD法などの薄膜形成技術と、フォトリソグラフィ技術およびエッチング技術を利用した加工技術とを利用することができる。 In forming each contact portion 7, each wiring 8, and each electrode 9, for example, thin film formation technology such as sputtering, vapor deposition, and CVD, and processing technology using photolithography technology and etching technology are used. can do.
 また、開口部2aの形成にあたっては、基板2の他表面2c側のシリコン酸化膜とシリコン窒化膜との積層膜(図示せず)をマスク層として、基板2を他表面2c側からエッチングすることにより形成すればよい。 In forming the opening 2a, the substrate 2 is etched from the other surface 2c side using a laminated film (not shown) of a silicon oxide film and a silicon nitride film on the other surface 2c side of the substrate 2 as a mask layer. May be formed.
 マスク層を形成するにあたっては、例えば、まず、第1絶縁層3のシリコン酸化膜の形成と同時に基板2の他表面2c側にマスク層の基礎となるシリコン酸化膜を形成し、第1絶縁層3のシリコン窒化膜の形成と同時に基板2の他表面2c側にシリコン窒化膜を形成する。マスク層の基礎となるシリコン酸化膜とシリコン窒化膜との積層膜のパターニングは、フォトリソグラフィ技術およびエッチング技術を利用すればよい。 In forming the mask layer, for example, first, a silicon oxide film serving as a base of the mask layer is formed on the other surface 2c side of the substrate 2 simultaneously with the formation of the silicon oxide film of the first insulating layer 3, and the first insulating layer is formed. The silicon nitride film is formed on the other surface 2c side of the substrate 2 simultaneously with the formation of the silicon nitride film 3. The patterning of the laminated film of the silicon oxide film and the silicon nitride film that is the basis of the mask layer may be performed using a photolithography technique and an etching technique.
 本実施形態の赤外線放射素子1の製造方法では、開口部2aの形成時に、第1絶縁層3をエッチングストッパ層として利用することにより、第1絶縁層3の厚さの精度を高めることが可能となるとともに、第1絶縁層3における開口部2a側に基板2の一部や残渣が残るのを防止することが可能となる。この製造方法では、赤外線放射素子1ごとの、第1絶縁層3の機械的強度のばらつきや、第1絶縁層3のダイヤフラム部6D全体の熱容量のばらつきを抑制することが可能となる。 In the manufacturing method of the infrared radiation element 1 of the present embodiment, it is possible to increase the accuracy of the thickness of the first insulating layer 3 by using the first insulating layer 3 as an etching stopper layer when forming the opening 2a. In addition, it is possible to prevent a part of the substrate 2 and residues from remaining on the opening 2a side of the first insulating layer 3. In this manufacturing method, it is possible to suppress variations in mechanical strength of the first insulating layer 3 and variations in the heat capacity of the entire diaphragm portion 6D of the first insulating layer 3 for each infrared radiation element 1.
 上述の赤外線放射素子1の製造にあたっては、開口部2aの形成が終了するまでのプロセスを、ウェハレベルで行い、開口部2aを形成した後、個々の赤外線放射素子1に分離すればよい。つまり、赤外線放射素子1の製造にあたっては、例えば、基板2の基礎となるシリコンウェハを準備して、このシリコンウェハに複数の赤外線検出素子1を上述の製造方法に従って形成し、その後、個々の赤外線検出素子1に分離すればよい。 In manufacturing the infrared radiation element 1 described above, the process until the formation of the opening 2a is completed at the wafer level, and after forming the opening 2a, the individual infrared radiation elements 1 may be separated. That is, in manufacturing the infrared radiation element 1, for example, a silicon wafer as a base of the substrate 2 is prepared, and a plurality of infrared detection elements 1 are formed on the silicon wafer according to the above-described manufacturing method. What is necessary is just to isolate | separate to the detection element 1. FIG.
 上述の赤外線放射素子1の製造方法から分かるように、赤外線放射素子1は、MEMSの製造技術を利用して製造することができる。 As can be seen from the method for manufacturing the infrared radiating element 1 described above, the infrared radiating element 1 can be manufactured by using a MEMS manufacturing technique.
 以上説明したように、本実施形態の赤外線放射素子1は、基板2と、発熱体層4を有する薄膜構造部6と、基板2の厚み方向に貫通し開口形状が矩形状の開口部2aと、発熱体層4に電気的に接続される一対の電極9,9と、各電極9の各々と発熱体層4を電気的に接続した配線8とを備える。そして、薄膜構造部6は、開口部2aに臨む矩形状のダイヤフラム部6Dと、ダイヤフラム部6Dを囲む枠状の支持部6Sとを備える。また、赤外線放射素子1は、ダイヤフラム部6Dが、中央部において第1絶縁層3と発熱体層4と第2絶縁層5との積層構造を有し、ダイヤフラム部6Dの周部と支持部6Sとが、第1絶縁層3と第2絶縁層5との積層構造を有し、各電極9が、支持部6Sに配置され、各配線8と各電極9とからなる通電部が、ダイヤフラム部6Dの各角部上を通っている。 As described above, the infrared radiation element 1 of the present embodiment includes the substrate 2, the thin film structure 6 having the heating element layer 4, and the opening 2 a penetrating in the thickness direction of the substrate 2 and having a rectangular opening shape. A pair of electrodes 9 and 9 electrically connected to the heating element layer 4 and a wiring 8 electrically connecting each of the electrodes 9 and the heating element layer 4 are provided. And the thin film structure part 6 is provided with the rectangular-shaped diaphragm part 6D which faces the opening part 2a, and the frame-shaped support part 6S surrounding the diaphragm part 6D. Further, in the infrared radiation element 1, the diaphragm portion 6D has a laminated structure of the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 in the central portion, and the peripheral portion of the diaphragm portion 6D and the support portion 6S. Has a laminated structure of the first insulating layer 3 and the second insulating layer 5, each electrode 9 is disposed on the support portion 6S, and the energizing portion composed of each wiring 8 and each electrode 9 is a diaphragm portion. It passes over each corner of 6D.
 換言すれば、本実施形態の赤外線放射素子1は、以下の第1の特徴を有する。第1の特徴では、赤外線放射素子1は、基板2と、開口部2aと、第1絶縁層3と、発熱体層4と、第2絶縁層5と、通電部11と、を備える。基板2は、厚み方向(図1(b)における上下方向)に直交する一表面2bを有する。開口部2aは、基板2を厚み方向(図1(b)における上下方向)に貫通する。第1絶縁層3は、基板2の一表面2bに開口部2aを覆うように配置される。発熱体層4は、基板2の一表面2bに平行な基準面で開口部2aの内側に位置するように第1絶縁層3における基板2とは反対側(図1(b)における上側)に配置される。第2絶縁層5は、第1絶縁層3における基板2とは反対側に発熱体層4を覆うように配置される。通電部11は、第2絶縁層5における基板2とは反対側に配置され発熱体層4に電気的に接続される。開口部2aは、一表面2bに平行な基準面内において角(第1角)20を有する形状である。通電部11は、厚み方向で開口部2aの角20と重なる補強部(本実施形態では、配線8の第2端部8b)を有する。 In other words, the infrared radiation element 1 of the present embodiment has the following first feature. In the first feature, the infrared radiation element 1 includes a substrate 2, an opening 2 a, a first insulating layer 3, a heating element layer 4, a second insulating layer 5, and a current-carrying unit 11. The substrate 2 has one surface 2b orthogonal to the thickness direction (vertical direction in FIG. 1B). The opening 2a penetrates the substrate 2 in the thickness direction (vertical direction in FIG. 1B). The first insulating layer 3 is disposed on the one surface 2b of the substrate 2 so as to cover the opening 2a. The heating element layer 4 is on the opposite side of the first insulating layer 3 from the substrate 2 (upper side in FIG. 1B) so as to be positioned inside the opening 2a with a reference plane parallel to the one surface 2b of the substrate 2. Be placed. The second insulating layer 5 is disposed so as to cover the heating element layer 4 on the opposite side of the first insulating layer 3 from the substrate 2. The energizing portion 11 is disposed on the opposite side of the second insulating layer 5 from the substrate 2 and is electrically connected to the heating element layer 4. The opening 2a has a shape having an angle (first angle) 20 in a reference plane parallel to the one surface 2b. The energizing portion 11 has a reinforcing portion (in the present embodiment, the second end portion 8b of the wiring 8) that overlaps the corner 20 of the opening 2a in the thickness direction.
 また、本実施形態の赤外線放射素子1は、第1の特徴に加えて、以下の第2~10の特徴を有する。なお、以下の第2~10の特徴は任意の特徴である。 In addition to the first feature, the infrared radiation element 1 of the present embodiment has the following second to tenth features. The following second to tenth features are arbitrary features.
 第2の特徴では、第1の特徴において、第1絶縁層3と発熱体層4と第2絶縁層5とは、全体として引張応力を有する。 In the second feature, in the first feature, the first insulating layer 3, the heating element layer 4, and the second insulating layer 5 have a tensile stress as a whole.
 第3の特徴では、第1または第2の特徴において、通電部11は、電極9と、配線8と、を備える。電極9は、基準面において開口部2aの外側に位置するように基板2上に配置される。配線8は、電極9を発熱体層4に電気的に接続する。 In the third feature, in the first feature or the second feature, the energization unit 11 includes the electrode 9 and the wiring 8. The electrode 9 is disposed on the substrate 2 so as to be positioned outside the opening 2a on the reference plane. The wiring 8 electrically connects the electrode 9 to the heating element layer 4.
 第4の特徴では、第3の特徴において、開口部2aは、4つの角20(21~24)を有する矩形状または正方形状である。通電部11は、4つの角21~24にそれぞれ対応する4つの補強部(本実施形態では、配線81~84の第2端部8b)を有する。 In the fourth feature, in the third feature, the opening 2a is rectangular or square having four corners 20 (21 to 24). The energizing portion 11 has four reinforcing portions (second end portions 8b of the wirings 81 to 84 in this embodiment) corresponding to the four corners 21 to 24, respectively.
 第5の特徴では、第4の特徴において、通電部11は、4つの配線8(81~84)を有する。4つの配線81~84は、それぞれ対応する4つの補強部(本実施形態では、第2端部8b)を含む。 In the fifth feature, in the fourth feature, the energizing section 11 has four wires 8 (81 to 84). The four wirings 81 to 84 each include four corresponding reinforcing portions (in the present embodiment, the second end portion 8b).
 第6の特徴では、第5の特徴において、電極9は、第1電極9(9A)と第2電極9(9B)とを含む。第1電極9Aおよび第2電極9Bは、基準面内で開口部2aの一辺に沿った所定方向(図1(a)における左右方向)において開口部2aの両側に配置される。第1電極9Aは、4つの角20のうち第1電極9Aに近い2つの角21,22にそれぞれ対応する配線81,82に接続される。第2電極9Bは、4つの角20のうち第2電極9Bに近い2つの角23,24にそれぞれ対応する配線83,84に接続される。 In the sixth feature, in the fifth feature, the electrode 9 includes a first electrode 9 (9A) and a second electrode 9 (9B). The first electrode 9A and the second electrode 9B are arranged on both sides of the opening 2a in a predetermined direction along the one side of the opening 2a in the reference plane (the left-right direction in FIG. 1A). The first electrode 9A is connected to wirings 81 and 82 corresponding to the two corners 21 and 22 close to the first electrode 9A among the four corners 20, respectively. The second electrode 9B is connected to the wirings 83 and 84 corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 20, respectively.
 第7の特徴では、第5または第6の特徴において、発熱体層4は、基準面において4つの角(第2角)40(41~44)を有する矩形状または正方形状である。発熱体層4は、基準面において開口部2aの四辺とそれぞれ平行な四辺を有する。4つの配線8(81~84)の各々は、基準面において、発熱体層4の第2角40とこの第2角40に最も近い開口部2aの角20とを通る直線状に形成される。 In the seventh feature, in the fifth or sixth feature, the heating element layer 4 is rectangular or square having four corners (second corners) 40 (41 to 44) on the reference plane. The heating element layer 4 has four sides parallel to the four sides of the opening 2a on the reference plane. Each of the four wirings 8 (81 to 84) is formed in a straight line passing through the second corner 40 of the heating element layer 4 and the corner 20 of the opening 2a closest to the second corner 40 on the reference plane. .
 第8の特徴では、第1~第7の特徴のいずれか1つにおいて、配線8は、高融点材料により形成される。 In the eighth feature, in any one of the first to seventh features, the wiring 8 is formed of a high melting point material.
 第9の特徴では、第8の特徴において、発熱体層4は、高融点材料以上の融点を有する材料により形成される。 In the ninth feature, in the eighth feature, the heating element layer 4 is formed of a material having a melting point higher than that of the high melting point material.
 第10の特徴では、第9の特徴において、配線8は、タンタルにより形成される。発熱体層4は、窒化タンタルにより形成される。 In the tenth feature, in the ninth feature, the wiring 8 is made of tantalum. The heating element layer 4 is formed of tantalum nitride.
 第11の特徴では、第1~第10の特徴のいずれか1つにおいて、第1絶縁層3および第2絶縁層5は、熱絶縁性および電気絶縁性を有する。発熱体層4は、通電により赤外線を放射するように構成される。第1絶縁層3と発熱体層4と第2絶縁層5とは、薄膜構造部6を構成する。薄膜構造部6は、開口部2a上に配置されるダイヤフラム部6Dと、基板2上に配置されダイヤフラム部6Dに連結される支持部6Sと、を有する。 In the eleventh feature, in any one of the first to tenth features, the first insulating layer 3 and the second insulating layer 5 have thermal insulation and electrical insulation. The heating element layer 4 is configured to emit infrared rays when energized. The first insulating layer 3, the heating element layer 4, and the second insulating layer 5 constitute a thin film structure portion 6. The thin film structure portion 6 includes a diaphragm portion 6D disposed on the opening 2a and a support portion 6S disposed on the substrate 2 and connected to the diaphragm portion 6D.
 しかして、本実施形態の赤外線放射素子1は、第1絶縁層3上に発熱体層4が形成されていることにより、熱絶縁性を高めることができて高出力化を図ることが可能であり、且つ、通電部がダイヤフラム部6Dの各角部上を通っていることにより、ダイヤフラム部6Dが通電部で補強され、信頼性の向上を図ることが可能となる。すなわち、本実施形態の赤外線放射素子1においては、高出力化を図ることが可能であり、且つ、信頼性の向上を図ることが可能となる。 Thus, the infrared radiation element 1 according to the present embodiment has the heat generating layer 4 formed on the first insulating layer 3, so that the thermal insulation can be enhanced and the output can be increased. In addition, since the current-carrying part passes over each corner of the diaphragm part 6D, the diaphragm part 6D is reinforced by the current-carrying part, and the reliability can be improved. That is, in the infrared radiation element 1 of the present embodiment, it is possible to increase the output and to improve the reliability.
 また、赤外線放射素子1は、ダイヤフラム部6Dを通電部11により補強することができるので、ダイヤフラム部6Dを補強するために別途に補強膜を形成する必要がなく、低コスト化を図ることが可能となる。 In addition, since the infrared radiation element 1 can reinforce the diaphragm portion 6D with the energizing portion 11, it is not necessary to separately form a reinforcing film in order to reinforce the diaphragm portion 6D, and the cost can be reduced. It becomes.
 また、電極7とパッド9とを接続する2つの配線8は、平面視において一対のパッド9,9の並設方向に直交する方向における発熱体層4の両端部それぞれに接続してある。これにより、本実施形態の赤外線放射素子1は、各電極9と発熱体層4と各電極9との間に配線8を2つずつ備えているので、配線8が1つずつの場合に比べて、発熱体層4に流れる電流の電流密度の均一化を図ることが可能となる。 Further, the two wirings 8 that connect the electrode 7 and the pad 9 are respectively connected to both ends of the heating element layer 4 in a direction orthogonal to the direction in which the pair of pads 9 and 9 are arranged in plan view. Thereby, since the infrared radiation element 1 of this embodiment is provided with two wirings 8 between each electrode 9, the heat generating body layer 4, and each electrode 9, compared with the case where the wiring 8 is one each. Thus, the current density of the current flowing through the heating element layer 4 can be made uniform.
 また、赤外線放射素子1は、発熱体層4の膨張、収縮に伴ってダイヤフラム部6Dが変形し、各配線8などに機械的なストレスがかかる。しかし、本実施形態の赤外線放射素子1では、発熱体層4と電極9とを接続する配線8を2つずつ備えているので、2つの配線8のうちの一方が断線しても、使用することが可能であり、信頼性の向上および長寿命化を図ることが可能となる。 Further, in the infrared radiation element 1, the diaphragm portion 6D is deformed as the heating element layer 4 expands and contracts, and mechanical stress is applied to each wiring 8 and the like. However, since the infrared radiation element 1 of the present embodiment includes two wirings 8 for connecting the heating element layer 4 and the electrode 9, it is used even if one of the two wirings 8 is disconnected. Therefore, it is possible to improve the reliability and extend the life.
 また、赤外線放射素子1は、ダイヤフラム部6Dが第1絶縁層3、発熱体層4および第2絶縁層5の積層構造なので、ダイヤフラム部6Dの熱容量を低減することが可能となり、且つ、発熱体層4のシート抵抗を上述のように設定することにより発熱体層4の放射率の低下を抑制することが可能となる。 Further, since the infrared radiation element 1 has the diaphragm portion 6D having a laminated structure of the first insulating layer 3, the heating element layer 4 and the second insulating layer 5, the heat capacity of the diaphragm portion 6D can be reduced, and the heating element. By setting the sheet resistance of the layer 4 as described above, it is possible to suppress a decrease in the emissivity of the heating element layer 4.
 よって、本実施形態の赤外線放射素子1では、低消費電力化および応答速度の高速化が可能となる。なお、赤外線放射素子1は、基板2の上記一表面側の積層構造の熱容量を低減することにより、一対の電極9,9間へ与える電圧波形に対する発熱体層4の温度変化の応答を速くすることが可能となって発熱体層4の温度が上昇しやすくなり、高出力化および応答速度の高速化を図ることが可能となる。 Therefore, in the infrared radiation element 1 of the present embodiment, it is possible to reduce the power consumption and the response speed. The infrared radiation element 1 speeds up the response of the temperature change of the heating element layer 4 to the voltage waveform applied between the pair of electrodes 9 by reducing the heat capacity of the laminated structure on the one surface side of the substrate 2. Therefore, the temperature of the heating element layer 4 is likely to rise, and it becomes possible to increase the output and the response speed.
 また、赤外線放射素子1は、基板2を単結晶のシリコン基板から形成し、第1絶縁層3をシリコン酸化膜とシリコン窒化膜とで構成してある。これにより、赤外線放射素子1は、第1絶縁層3に比べて基板2の熱容量および熱伝導率それぞれが大きく、基板2がヒートシンクとしての機能を有するので、小型化、入力電力に対する応答速度の高速化、赤外線の放射特性の安定性の向上を図ることが可能となる。 Further, in the infrared radiation element 1, the substrate 2 is formed from a single crystal silicon substrate, and the first insulating layer 3 is composed of a silicon oxide film and a silicon nitride film. Accordingly, the infrared radiation element 1 has a larger heat capacity and thermal conductivity of the substrate 2 than the first insulating layer 3, and the substrate 2 has a function as a heat sink. Therefore, the infrared radiation element 1 is reduced in size and has a high response speed to input power. And stability of infrared radiation characteristics can be improved.
 また、赤外線放射素子1では、発熱体層4の材料として、シリコンよりも高融点の窒化タンタルを採用し、ダイヤフラム体を構成する発熱体層4ではない部材(実施形態1では、第1絶縁層3、第2絶縁層5、コンタクト部7、配線8)が、発熱体層4よりも高融点であれば、発熱体層4の温度を、基板2を構成するシリコンの最高使用温度(シリコンの融点よりもやや低い温度)まで上昇させることが可能となり、赤外線発光ダイオードに比べて赤外線の放射量を大幅に増大させることが可能となる。 Further, in the infrared radiation element 1, tantalum nitride having a melting point higher than that of silicon is adopted as a material of the heating element layer 4, and a member that is not the heating element layer 4 constituting the diaphragm body (in the first embodiment, the first insulating layer). 3, the second insulating layer 5, the contact portion 7, and the wiring 8) have a melting point higher than that of the heating element layer 4, the temperature of the heating element layer 4 is set to the maximum use temperature of silicon constituting the substrate 2 (silicon The temperature can be increased to a temperature slightly lower than the melting point), and the amount of infrared radiation can be greatly increased as compared with the infrared light emitting diode.
 また、赤外線放射素子1は、各コンタクト部7において少なくとも発熱体層4に接する部位がシリコンよりも高融点の金属により形成されていれば、発熱体層4の温度を各コンタクト部7の材料に制約されることなく上昇させることが可能となる。 In addition, the infrared radiation element 1 has the temperature of the heating element layer 4 as the material of each contact portion 7 as long as at least a portion in contact with the heating element layer 4 is formed of a metal having a melting point higher than that of silicon. It is possible to raise without restriction.
 つまり、ダイヤフラム体(ダイヤフラム部6D、発熱体層4、第2絶縁層5、コンタクト部7、および配線8)を構成する発熱体層4ではない部材(ダイヤフラム部6D、第2絶縁層5、コンタクト部7、および配線8)の材料として、発熱体層4よりも融点の高い材料を用いれば、発熱体層4の温度を発熱体層4の融点よりやや低い温度にまで上昇させることができる。なお、ここでの発熱体層4の温度とは、発熱体層4の中心付近(重心付近)の温度をいう。 That is, a member (diaphragm portion 6D, second insulating layer 5, contact) that is not the heating element layer 4 constituting the diaphragm body (diaphragm portion 6D, heating element layer 4, second insulating layer 5, contact portion 7, and wiring 8). If a material having a melting point higher than that of the heating element layer 4 is used as the material of the part 7 and the wiring 8), the temperature of the heating element layer 4 can be raised to a temperature slightly lower than the melting point of the heating element layer 4. Here, the temperature of the heating element layer 4 refers to the temperature near the center (near the center of gravity) of the heating element layer 4.
 発熱体層4が高融点材料(たとえば窒化タンタル)で形成されている場合、ダイヤフラム体を構成する他の部材の材料(第1絶縁層3、第2絶縁層5、コンタクト部7、配線8)も同様に高融点材料で形成されることが好ましい。 When the heating element layer 4 is formed of a high melting point material (for example, tantalum nitride), the material of the other members constituting the diaphragm body (first insulating layer 3, second insulating layer 5, contact portion 7, wiring 8) Similarly, it is preferably formed of a high melting point material.
 第1絶縁層3および第2絶縁層5に用いられる高融点材料は、たとえば、高融点を有する絶縁物(二酸化ケイ素、窒化ケイ素)である。 The high melting point material used for the first insulating layer 3 and the second insulating layer 5 is, for example, an insulator (silicon dioxide, silicon nitride) having a high melting point.
 コンタクト部7および配線8に用いられる高融点材料は、たとえば、高融点を有する金属(タンタル、タングステン、モリブデンなど)、高融点を有する貴金属(白金、ルテニウム、イリジウムなど)、及び、高融点を有する導電性材料(単結晶シリコン、ポリシリコン、単結晶ゲルマニウム、導電性カーボン)から選択される。特に、配線8は、タンタルで形成されることが好ましい。また、コンタクト部7は、タンタルで形成されることが好ましい。なお、配線8が高融点を有する貴金属で形成されている場合、配線8の一部が露出している場合でも、発熱体層4の温度上昇時に配線8が酸化されて電気抵抗が変化することを抑制できる。 The high melting point material used for the contact portion 7 and the wiring 8 has, for example, a metal having a high melting point (tantalum, tungsten, molybdenum, etc.), a noble metal having a high melting point (platinum, ruthenium, iridium, etc.), and a high melting point. It is selected from conductive materials (single crystal silicon, polysilicon, single crystal germanium, conductive carbon). In particular, the wiring 8 is preferably formed of tantalum. The contact portion 7 is preferably formed of tantalum. When the wiring 8 is made of a noble metal having a high melting point, even when a part of the wiring 8 is exposed, the wiring 8 is oxidized when the temperature of the heating element layer 4 rises, and the electric resistance changes. Can be suppressed.
 なお、高融点材料は、基板2の材料より高い融点を有していればよい。たとえば、基板2の材料がシリコンである場合、高融点材料にはシリコンより融点が高い材料が採用される。 Note that the high melting point material only needs to have a higher melting point than the material of the substrate 2. For example, when the material of the substrate 2 is silicon, a material having a higher melting point than silicon is adopted as the high melting point material.
 また、ダイヤフラム体を構成する部材のうち発熱体層4ではない部材が、発熱体層4よりも低融点である場合には、発熱体層4の温度(発熱体層4の中心付近の温度)を、ダイヤフラム体を構成する部材のうち最も融点の小さい材料の融点より少し低い温度まで上昇させることができる。 When a member that is not the heating element layer 4 among the members constituting the diaphragm body has a lower melting point than the heating element layer 4, the temperature of the heating element layer 4 (the temperature near the center of the heating element layer 4). Can be raised to a temperature slightly lower than the melting point of the material having the smallest melting point among the members constituting the diaphragm body.
 ここで、発熱体層4では、発熱体層4の周部に近い部位ほど、放熱が大きくなる。また、発熱体層4は、基板2の開口部2aの縁部に近い部位ほど大きく放熱しやすい。そのため、発熱体層4の周部の温度は、発熱体層4の中心の温度に比べて低くなる。そして、発熱体層4の周部に接触するコンタクト部7および配線8は、発熱体層4に接触する部位やその近傍では、発熱体層4の周部と略同じ温度になる。 Here, in the heating element layer 4, the heat radiation increases as the portion is closer to the periphery of the heating element layer 4. Further, the heating element layer 4 is more likely to dissipate heat as it is closer to the edge of the opening 2 a of the substrate 2. Therefore, the temperature of the peripheral portion of the heating element layer 4 is lower than the temperature at the center of the heating element layer 4. The contact portion 7 and the wiring 8 that are in contact with the peripheral portion of the heating element layer 4 have substantially the same temperature as that of the peripheral portion of the heating element layer 4 at or near the portion in contact with the heating element layer 4.
 しかしながら、上述したように、発熱体層4の周部の温度は、発熱体層4の中心付近の温度よりやや低くなるため、発熱体層4の中心付近の温度を、ダイヤフラム体を構成する材料のうち、最も融点の小さい材料の融点より少し低い温度に設定すれば、赤外線放射素子1を安定して使用することができる。 However, as described above, since the temperature of the peripheral portion of the heating element layer 4 is slightly lower than the temperature near the center of the heating element layer 4, the temperature near the center of the heating element layer 4 is changed to the material constituting the diaphragm body. Among them, if the temperature is set to be slightly lower than the melting point of the material having the lowest melting point, the infrared radiation element 1 can be used stably.
 赤外線放射素子1は、発熱体層4、コンタクト部7、配線8および電極9が、平面視において一対の電極9,9の並ぶ方向に直交する赤外線放射素子1の中心線を対称軸として線対称に配置されていることが好ましい。これにより、赤外線放射素子1は、機械的強度のより一層の向上を図ることが可能となるとともに、発熱体層4の温度の面内ばらつきを抑制することが可能なる。 The infrared radiation element 1 is symmetrical with respect to the center line of the infrared radiation element 1 where the heating element layer 4, the contact portion 7, the wiring 8 and the electrode 9 are orthogonal to the direction in which the pair of electrodes 9 and 9 are arranged in plan view. It is preferable to arrange | position. Thereby, the infrared radiation element 1 can further improve the mechanical strength, and can suppress the in-plane variation of the temperature of the heating element layer 4.
 (実施形態2)
 以下では、本実施形態の赤外線放射素子1について図2に基づいて説明する。本実施形態の赤外線放射素子1は、配線8および電極9の形状が実施形態1の赤外線放射素子1と相違する。なお、実施形態1と同様の構成要素については、同様の符号を付して説明を省略する。
(Embodiment 2)
Below, the infrared radiation element 1 of this embodiment is demonstrated based on FIG. The infrared radiation element 1 of the present embodiment is different from the infrared radiation element 1 of the first embodiment in the shapes of the wiring 8 and the electrode 9. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 配線8は、他端部8bが、発熱体層4から離れて電極9に近づくほど幅寸法が大きくなり且つ両側面10が凹曲面状となる形状に形成されている。すなわち、配線8の端部(第2端部)8bは、電極9に近づくほど幅が大きくなる。また、配線8の第2端部8bは、その側面10が凹面である。本実施形態では、第2端部8bの両側面10が凹面である。 The wiring 8 is formed in such a shape that the width of the other end portion 8b increases as the distance from the heating element layer 4 to the electrode 9 increases, and both side surfaces 10 become concave curved surfaces. That is, the width of the end portion (second end portion) 8 b of the wiring 8 increases as the distance from the electrode 9 increases. Further, the side surface 10 of the second end portion 8b of the wiring 8 is concave. In the present embodiment, both side surfaces 10 of the second end 8b are concave.
 そして、配線8は、他端部8bが、ダイヤフラム部6の角部60上を通っている。すなわち、配線8は、厚み方向において他端部8bがダイヤフラム部6の角部60(開口部2aの角20)と重なるように、配置されている。配線8の端部(第2端部)8bは、補強部を構成する。 The other end 8 b of the wiring 8 passes over the corner 60 of the diaphragm 6. That is, the wiring 8 is arranged so that the other end 8b overlaps the corner 60 (the corner 20 of the opening 2a) of the diaphragm 6 in the thickness direction. An end portion (second end portion) 8b of the wiring 8 constitutes a reinforcing portion.
 また、各電極9は、平面視において両電極9の並設方向に直交する方向を長手方向とする短冊状のパッド部9aと、パッド部9aの長手方向の両端部の各々から上記並設方向へ延設された2つの延設部9bとを備えている。ここで、上述の配線8は、上記他端部の一方の側面がパッド部9aに連続し、他方の側面が延設部9bに連続している。 In addition, each electrode 9 has a strip-shaped pad portion 9a whose longitudinal direction is a direction orthogonal to the direction in which both electrodes 9 are arranged in a plan view, and the parallel direction from both ends in the longitudinal direction of the pad portion 9a. And two extending portions 9b extending to the front. Here, in the above-described wiring 8, one side surface of the other end portion is continuous with the pad portion 9a, and the other side surface is continuous with the extending portion 9b.
 以上述べた本実施形態の赤外線放射素子1では、配線8は、発熱体層4と各電極9との間に2つずつ設けられ、発熱体層4側の一端部8aとは反対側である電極9側の他端部8bが、発熱体層4から離れて電極9に近づくほど幅寸法が大きくなり且つ両側面10が凹曲面状となる形状に形成されてなり、他端部8bが、角部60上を通っている。 In the infrared radiation element 1 of the present embodiment described above, two wirings 8 are provided between the heating element layer 4 and each electrode 9 and are opposite to the one end portion 8a on the heating element layer 4 side. The other end portion 8b on the electrode 9 side is formed in a shape in which the width dimension increases as the distance from the heating element layer 4 approaches the electrode 9 and both side surfaces 10 become concave curved surfaces. It passes over the corner 60.
 すなわち、本実施形態の赤外線放射素子1は、第4の特徴に加えて、以下の第12および第13の特徴を有する。第12の特徴では、配線8は、電極9に接続される端部(第2端部)8bを有する。端部(第2端部)8bは、電極9に近づくほど幅が大きくなる。端部(第2端部)8bが、補強部である。第13の特徴では、第8の特徴において、端部(第2端部)8bは、その側面10が凹面である。なお、第13の特徴は任意の特徴である。また、本実施形態の赤外線放射素子1は、第5~第11の特徴を少なくとも1つ有していてもよい。 That is, the infrared radiation element 1 of the present embodiment has the following twelfth and thirteenth features in addition to the fourth feature. In the twelfth feature, the wiring 8 has an end (second end) 8 b connected to the electrode 9. The width of the end (second end) 8 b increases as it approaches the electrode 9. The end portion (second end portion) 8b is a reinforcing portion. In the thirteenth feature, in the eighth feature, the side surface 10 of the end portion (second end portion) 8b is concave. The thirteenth feature is an arbitrary feature. Further, the infrared radiation element 1 of the present embodiment may have at least one of the fifth to eleventh characteristics.
 このように本実施形態の赤外線放射素子1では、配線8の他端部8bが、発熱体層4から離れて電極9に近づくほど幅寸法が大きくなり且つ両側面10が凹曲面状となる形状に形成されており、上記他端部が、ダイヤフラム部6Dの角部60上を通っている。 As described above, in the infrared radiation element 1 of the present embodiment, the width of the other end 8b of the wiring 8 increases as the distance from the heating element layer 4 and the approach to the electrode 9 increases, and both side surfaces 10 have concave curved shapes. The other end portion passes over the corner portion 60 of the diaphragm portion 6D.
 そのため、配線8およびダイヤフラム部6Dの角部60それぞれにおける応力を分散させることが可能となり、配線8およびダイヤフラム部6Dそれぞれの機械的強度を向上させることが可能となる。よって、赤外線放射素子1は、信頼性のより一層の向上を図ることが可能となる。 Therefore, it is possible to disperse the stress in each of the corners 60 of the wiring 8 and the diaphragm portion 6D, and to improve the mechanical strength of each of the wiring 8 and the diaphragm portion 6D. Therefore, the infrared radiation element 1 can further improve the reliability.
 (実施形態3)
 以下では、本実施形態の赤外線放射素子1について図3に基づいて説明する。
(Embodiment 3)
Below, the infrared radiation element 1 of this embodiment is demonstrated based on FIG.
 本実施形態の赤外線放射素子1は、配線8の配置および電極9の形状が実施形態1の赤外線放射素子1と相違する。なお、実施形態1と同様の構成要素については、同様の符号を付して説明を省略する。 The infrared radiation element 1 of the present embodiment is different from the infrared radiation element 1 of the first embodiment in the arrangement of the wiring 8 and the shape of the electrode 9. In addition, about the component similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施形態の赤外線放射素子1は、発熱体層4と各電極9とを1つずつの配線8(85,86)により接続してある。すなわち、電極9Aは、配線85により発熱体層4に電気的に接続される。また、電極9Aは、配線85により発熱体層4に電気的に接続される。 In the infrared radiation element 1 of the present embodiment, the heating element layer 4 and each electrode 9 are connected by one wiring 8 (85, 86). That is, the electrode 9A is electrically connected to the heating element layer 4 by the wiring 85. The electrode 9 </ b> A is electrically connected to the heating element layer 4 by the wiring 85.
 ここで、各配線8(85,86)は、一対の電極9A,9Bの並設方向(図3(a)における左右方向)に沿って配置されている。また、赤外線放射素子1は、2つの配線85,86を結ぶ直線が平面視における発熱体層4の中心を通るように、各配線8(85,86)を配置してある。 Here, each wiring 8 (85, 86) is arranged along the parallel arrangement direction of the pair of electrodes 9A, 9B (the left-right direction in FIG. 3A). In addition, in the infrared radiation element 1, each wiring 8 (85, 86) is arranged so that a straight line connecting the two wirings 85, 86 passes through the center of the heating element layer 4 in plan view.
 第1電極9Aおよび第2電極9Bは、基準面において開口部2aの一辺に沿った所定方向(図3(a)における左右方向)における開口部2aの両側に配置される。また、各電極9は、平面視において両電極9の並設方向(上記の所定方向)に直交する方向を長手方向(図3(a)における上下方向)とする短冊状のパッド部9aと、パッド部9aの長手方向の両端部の各々から上記並設方向へ延設された2つの延設部9bとを備えている。 The first electrode 9A and the second electrode 9B are disposed on both sides of the opening 2a in a predetermined direction along the one side of the opening 2a on the reference plane (the left-right direction in FIG. 3A). Each electrode 9 has a strip-shaped pad portion 9a whose longitudinal direction (vertical direction in FIG. 3A) is a direction perpendicular to the juxtaposed direction of the electrodes 9 (the predetermined direction) in plan view; Two extending portions 9b extending in the juxtaposed direction from each of both end portions in the longitudinal direction of the pad portion 9a are provided.
 ここで、各電極9は、パッド部9aおよび延設部9bに連続しダイヤフラム部6Dの角部を通る三角形状の補強部9cを備えている。 Here, each electrode 9 includes a triangular reinforcing portion 9c that continues to the pad portion 9a and the extending portion 9b and passes through the corner portion of the diaphragm portion 6D.
 つまり、第1電極9Aは、パッド部9aおよび2つの延設部9bに加えて、4つの角20のうち第1電極9Aに近い2つの角21,22にそれぞれ対応する補強部9c(9c1,9c2)を含む。同様に、第2電極9Bは、パッド部9aおよび2つの延設部9bに加えて、4つの角20のうち第2電極9Bに近い2つの角23,24にそれぞれ対応する補強部9c(9c3,9c4)を含む。 That is, the first electrode 9A includes, in addition to the pad portion 9a and the two extending portions 9b, reinforcing portions 9c (9c1, 9c1, 9c1, 9c1 and 9c2) corresponding to the two corners 21 and 22 near the first electrode 9A among the four corners 20, respectively. 9c2). Similarly, in addition to the pad portion 9a and the two extending portions 9b, the second electrode 9B includes reinforcing portions 9c (9c3) corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 20, respectively. 9c4).
 以上述べた本実施形態の赤外線放射素子1は、第3の特徴に加えて、以下の第14の特徴を有する。第14の特徴では、開口部2aは、4つの角20(21~24)を有する矩形状または正方形状である。電極9は、第1電極9Aと第2電極9Bとを含む。第1電極9Aおよび第2電極9Bは、基準面(基板2の一表面2bに平行な面)において開口部2aの一辺に沿った所定方向(図3(a)における左右方向)における開口部2aの両側に配置される。第1電極9Aは、4つの角20(21~24)のうち第1電極9Aに近い2つの角21,22にそれぞれ対応する補強部9c1,9c2を含む。第2電極9Bは、4つの角21~24のうち第2電極9Bに近い2つの角23,24にそれぞれ対応する補強部9c3,9c4を含む。なお、本実施形態の赤外線放射素子1は、第4~11の特徴を少なくとも1つ有していてもよい。 In addition to the third feature, the infrared radiation element 1 of the present embodiment described above has the following fourteenth feature. In the fourteenth feature, the opening 2a is rectangular or square having four corners 20 (21 to 24). The electrode 9 includes a first electrode 9A and a second electrode 9B. The first electrode 9A and the second electrode 9B have an opening 2a in a predetermined direction (left and right direction in FIG. 3A) along one side of the opening 2a on a reference plane (a surface parallel to the one surface 2b of the substrate 2). Arranged on both sides. The first electrode 9A includes reinforcing portions 9c1 and 9c2 respectively corresponding to two corners 21 and 22 close to the first electrode 9A among the four corners 20 (21 to 24). The second electrode 9B includes reinforcing portions 9c3 and 9c4 corresponding to the two corners 23 and 24 close to the second electrode 9B among the four corners 21 to 24, respectively. Note that the infrared radiation element 1 of the present embodiment may have at least one of the fourth to eleventh features.
 しかして、本実施形態の赤外線放射素子1は、第1絶縁層3上に発熱体層4が形成されていることにより、熱絶縁性を高めることができて高出力化を図ることが可能であり、且つ、通電部11がダイヤフラム部6Dの各角部60上を通っていることにより、ダイヤフラム部6Dが通電部11で補強され、信頼性の向上を図ることが可能となる。 Thus, the infrared radiation element 1 according to the present embodiment has the heat generating layer 4 formed on the first insulating layer 3, so that the thermal insulation can be enhanced and the output can be increased. In addition, since the energization section 11 passes over each corner 60 of the diaphragm section 6D, the diaphragm section 6D is reinforced by the energization section 11 and the reliability can be improved.
 また、赤外線放射素子1は、ダイヤフラム部6Dを通電部11により補強することができるので、ダイヤフラム部6Dを補強するために別途に補強膜を形成する必要がなく、低コスト化を図ることが可能となる。 In addition, since the infrared radiation element 1 can reinforce the diaphragm portion 6D with the energizing portion 11, it is not necessary to separately form a reinforcing film in order to reinforce the diaphragm portion 6D, and the cost can be reduced. It becomes.
 各実施形態の赤外線放射素子1は、ガスセンサ用の赤外光源に限らず、例えば、赤外光通信用の赤外光源、分光分析用の赤外光源などに使用することが可能である。 The infrared radiation element 1 of each embodiment is not limited to an infrared light source for a gas sensor, but can be used for an infrared light source for infrared light communication, an infrared light source for spectral analysis, and the like.

Claims (14)

  1.  厚み方向に直交する一表面を有する基板と、
     前記基板を前記厚み方向に貫通する開口部と、
     前記基板の前記一表面に前記開口部を覆うように配置される第1絶縁層と、
     前記一表面に平行な基準面において前記開口部の内側に位置するように前記第1絶縁層における前記基板とは反対側に配置される発熱体層と、
     前記第1絶縁層における前記基板とは反対側に前記発熱体層を覆うように配置される第2絶縁層と、
     前記第2絶縁層における前記基板とは反対側に配置され前記発熱体層に電気的に接続される通電部と、
     を備え、
     前記開口部は、前記基準面内において角を有する形状であり、
     前記通電部は、前記厚み方向で前記開口部の前記角と重なる補強部を有する
     ことを特徴とする赤外線放射素子。
    A substrate having one surface orthogonal to the thickness direction;
    An opening that penetrates the substrate in the thickness direction;
    A first insulating layer disposed on the one surface of the substrate so as to cover the opening;
    A heating element layer disposed on a side opposite to the substrate in the first insulating layer so as to be located inside the opening in a reference plane parallel to the one surface;
    A second insulating layer arranged to cover the heating element layer on the opposite side of the first insulating layer from the substrate;
    A current-carrying part disposed on the opposite side of the second insulating layer from the substrate and electrically connected to the heating element layer;
    With
    The opening is a shape having a corner in the reference plane;
    The current-carrying part includes a reinforcing part that overlaps the corner of the opening in the thickness direction.
  2.  前記第1絶縁層と前記第2絶縁層と前記発熱体層とは、全体として引張応力を有する
     ことを特徴とする請求項1に記載の赤外線放射素子。
    The infrared radiation element according to claim 1, wherein the first insulating layer, the second insulating layer, and the heating element layer have tensile stress as a whole.
  3.  前記通電部は、
      前記基準面において前記開口部の外側に位置するように前記基板上に配置される電極と、
      前記電極を前記発熱体層に電気的に接続する配線と、
     を備える
     ことを特徴とする請求項1に記載の赤外線放射素子。
    The energization part is
    An electrode disposed on the substrate so as to be located outside the opening in the reference plane;
    Wiring for electrically connecting the electrode to the heating element layer;
    The infrared radiation element according to claim 1, comprising:
  4.  前記開口部は、4つの前記角を有する矩形状または正方形状であり、
     前記通電部は、前記4つの角にそれぞれ対応する4つの前記補強部を有する
     ことを特徴とする請求項3に記載の赤外線放射素子。
    The opening is rectangular or square having the four corners,
    The infrared radiation element according to claim 3, wherein the energization unit includes the four reinforcing portions respectively corresponding to the four corners.
  5.  前記通電部は、4つの前記配線を有し、
     前記4つの配線は、それぞれ対応する4つの前記補強部を含む
     ことを特徴とする請求項4に記載の赤外線放射素子。
    The energization unit has four wirings,
    The infrared radiation element according to claim 4, wherein each of the four wirings includes four corresponding reinforcing portions.
  6.  前記電極は、第1電極と第2電極とを含み、
     前記第1電極および前記第2電極は、前記基準面内で前記開口部の一辺に沿った所定方向において前記開口部の両側に配置され、
     前記第1電極は、前記4つの角のうち前記第1電極に近い2つの角にそれぞれ対応する前記配線に接続され、
     前記第2電極は、前記4つの角のうち前記第2電極に近い2つの角にそれぞれ対応する前記配線に接続される
     ことを特徴とする請求項5に記載の赤外線放射素子。
    The electrode includes a first electrode and a second electrode,
    The first electrode and the second electrode are disposed on both sides of the opening in a predetermined direction along one side of the opening in the reference plane,
    The first electrode is connected to the wiring corresponding to two corners close to the first electrode among the four corners,
    The infrared radiation element according to claim 5, wherein the second electrode is connected to the wiring corresponding to two of the four corners that are close to the second electrode.
  7.  前記配線は、前記電極に接続される端部を有し、
     前記端部は、前記電極に近づくほど幅が大きくなり、
     前記端部が、前記補強部である
     ことを特徴とする請求項6に記載の赤外線放射素子。
    The wiring has an end connected to the electrode,
    The end portion increases in width as it approaches the electrode,
    The infrared radiation element according to claim 6, wherein the end portion is the reinforcing portion.
  8.  前記端部は、その側面が凹面である
     ことを特徴とする請求項7に記載の赤外線放射素子。
    The infrared radiation element according to claim 7, wherein the end portion has a concave side surface.
  9.  前記発熱体層は、前記基準面において4つの第2角を有する矩形状または正方形状であり、
     前記発熱体層は、前記基準面において前記開口部の四辺とそれぞれ平行な四辺を有し、
     前記4つの配線の各々は、前記基準面において、前記発熱体層の前記第2角とこの第2角に最も近い前記開口部の前記角とを通る直線状に形成される
     ことを特徴とする請求項5に記載の赤外線放射素子。
    The heating element layer is rectangular or square having four second corners on the reference plane,
    The heating element layer has four sides parallel to the four sides of the opening in the reference plane,
    Each of the four wirings is formed in a straight line passing through the second corner of the heating element layer and the corner of the opening closest to the second corner on the reference plane. The infrared radiation element according to claim 5.
  10.  前記開口部は、4つの前記角を有する矩形状または正方形状であり、
     前記電極は、第1電極と第2電極とを含み、
     前記第1電極および前記第2電極は、前記基準面において前記開口部の一辺に沿った所定方向における前記開口部の両側に配置され、
     前記第1電極は、前記4つの角のうち前記第1電極に近い2つの角にそれぞれ対応する前記補強部を含み、
     前記第2電極は、前記4つの角のうち前記第2電極に近い2つの角にそれぞれ対応する前記補強部を含む
     ことを特徴とする請求項3に記載の赤外線放射素子。
    The opening is rectangular or square having the four corners,
    The electrode includes a first electrode and a second electrode,
    The first electrode and the second electrode are disposed on both sides of the opening in a predetermined direction along one side of the opening on the reference plane,
    The first electrode includes the reinforcing portions respectively corresponding to two corners close to the first electrode among the four corners,
    The infrared radiation element according to claim 3, wherein the second electrode includes the reinforcing portions respectively corresponding to two of the four corners close to the second electrode.
  11.  前記配線は、高融点材料により形成される。
     ことを特徴とする請求項3に記載の赤外線放射素子。
    The wiring is formed of a high melting point material.
    The infrared radiation element according to claim 3.
  12.  前記発熱体層は、前記高融点材料以上の融点を有する材料により形成される
     ことを特徴とする請求項11に記載の赤外線放射素子。
    The infrared radiation element according to claim 11, wherein the heating element layer is formed of a material having a melting point equal to or higher than the high melting point material.
  13.  前記配線は、タンタルにより形成され、
     前記発熱体層は、窒化タンタルにより形成される
     ことを特徴とする請求項12に記載の赤外線放射素子。
    The wiring is formed of tantalum,
    The infrared radiation element according to claim 12, wherein the heating element layer is made of tantalum nitride.
  14.  前記第1絶縁層および前記第2絶縁層は、熱絶縁性および電気絶縁性を有し、
     前記発熱体層は、通電により赤外線を放射するように構成され、
     前記第1絶縁層と前記発熱体層と前記第2絶縁層とは、薄膜構造部を構成し、
     前記薄膜構造部は、
      前記開口部上に配置されるダイヤフラム部と、
      前記基板上に配置され前記ダイヤフラム部に連結される支持部と、
     を有する
     ことを特徴とする請求項1に記載の赤外線放射素子。
    The first insulating layer and the second insulating layer have thermal insulation and electrical insulation,
    The heating element layer is configured to emit infrared rays when energized,
    The first insulating layer, the heating element layer, and the second insulating layer constitute a thin film structure,
    The thin film structure is
    A diaphragm portion disposed on the opening;
    A support portion disposed on the substrate and connected to the diaphragm portion;
    The infrared radiation element according to claim 1, wherein:
PCT/JP2013/001624 2012-06-04 2013-03-12 Infrared radiation element WO2013183203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014519804A JP5884053B2 (en) 2012-06-04 2013-03-12 Infrared radiation element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-127335 2012-06-04
JP2012127335 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183203A1 true WO2013183203A1 (en) 2013-12-12

Family

ID=49711614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001624 WO2013183203A1 (en) 2012-06-04 2013-03-12 Infrared radiation element

Country Status (3)

Country Link
JP (1) JP5884053B2 (en)
TW (1) TWI498038B (en)
WO (1) WO2013183203A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137861A (en) * 2014-01-20 2015-07-30 パナソニックIpマネジメント株式会社 infrared gas sensor
EP3595403A1 (en) * 2018-07-13 2020-01-15 Matthias Imboden High-temperature infrared radiator element and methods
WO2021144463A1 (en) 2020-01-15 2021-07-22 4K-Mems Sàrl Infrared radiator element and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114534A (en) * 2003-10-07 2005-04-28 Denso Corp Infrared light source
JP2005339908A (en) * 2004-05-25 2005-12-08 Matsushita Electric Works Ltd Infrared radiation element
JP2006013415A (en) * 2003-10-27 2006-01-12 Matsushita Electric Works Ltd Infrared radiating element and gas sensor using the same
JP2010230453A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Infrared radiation element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236110A (en) * 1999-02-15 2000-08-29 Anritsu Corp Infrared emitting element
JP2006071601A (en) * 2004-09-06 2006-03-16 Denso Corp Infrared sensor, infrared type gas detector, and infrared ray source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114534A (en) * 2003-10-07 2005-04-28 Denso Corp Infrared light source
JP2006013415A (en) * 2003-10-27 2006-01-12 Matsushita Electric Works Ltd Infrared radiating element and gas sensor using the same
JP2005339908A (en) * 2004-05-25 2005-12-08 Matsushita Electric Works Ltd Infrared radiation element
JP2010230453A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Infrared radiation element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137861A (en) * 2014-01-20 2015-07-30 パナソニックIpマネジメント株式会社 infrared gas sensor
EP3595403A1 (en) * 2018-07-13 2020-01-15 Matthias Imboden High-temperature infrared radiator element and methods
WO2020012042A1 (en) 2018-07-13 2020-01-16 Matthias Imboden High-temperature infrared radiator element and methods
WO2021144463A1 (en) 2020-01-15 2021-07-22 4K-Mems Sàrl Infrared radiator element and methods

Also Published As

Publication number Publication date
TWI498038B (en) 2015-08-21
TW201401917A (en) 2014-01-01
JP5884053B2 (en) 2016-03-15
JPWO2013183203A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5895205B2 (en) Infrared radiation element
KR102350757B1 (en) Fabry-perot interference filter
JP6211833B2 (en) Fabry-Perot interference filter
JP6467173B2 (en) Contact combustion type gas sensor
JP5884053B2 (en) Infrared radiation element
JP5609919B2 (en) Micro heater element
US20160219650A1 (en) Infrared radiation device and production method for same
JP2014035817A (en) Infrared light source
KR101447234B1 (en) Gas sensor and manufacturing method thereof
JP2013124979A (en) Infrared radiation element
WO2014020797A1 (en) Infrared radiation element
WO2013171941A1 (en) Infrared ray radiating element
TWI492417B (en) Infrared emission device and method of producing the same
WO2016132935A1 (en) Contact combustion-type gas sensor
WO2023243251A1 (en) Gas sensor
US20230137163A1 (en) Thermal radiation element, thermal radiation element module, and thermal radiation light source
JP2015173028A (en) infrared radiation element
JP2016109527A (en) Contact combustion type gas sensor
JP2023066366A (en) Heat radiation element, heat radiation element module, and heat radiation source
JP2010025585A (en) Infrared sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519804

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800317

Country of ref document: EP

Kind code of ref document: A1