WO2013183172A1 - Method for producing thermoplastic resin - Google Patents

Method for producing thermoplastic resin Download PDF

Info

Publication number
WO2013183172A1
WO2013183172A1 PCT/JP2012/073963 JP2012073963W WO2013183172A1 WO 2013183172 A1 WO2013183172 A1 WO 2013183172A1 JP 2012073963 W JP2012073963 W JP 2012073963W WO 2013183172 A1 WO2013183172 A1 WO 2013183172A1
Authority
WO
WIPO (PCT)
Prior art keywords
bpef
acid
resin
reaction
less
Prior art date
Application number
PCT/JP2012/073963
Other languages
French (fr)
Japanese (ja)
Inventor
輝幸 重松
学 松井
丹藤 和志
和徳 布目
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2013183172A1 publication Critical patent/WO2013183172A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols

Definitions

  • the present invention relates to a thermoplastic resin using 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (hereinafter sometimes abbreviated as BPEF) having a low content of impurities affecting physical properties as a raw material. It relates to a manufacturing method.
  • BPEF 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
  • BPEF is promising as a raw material for resins having heat resistance, transparency, high refractive index and molding fluidity such as epoxy resin, polyester resin, polycarbonate resin, and polyester carbonate resin. These resins are expected as optical materials such as automotive headlamp lenses, CD, CD-ROM pickup lenses, Fresnel lenses, f ⁇ lenses for laser printers, camera lenses, and projection lenses for rear projection televisions.
  • Impurities include substances that induce resin coloring, substances that affect physical properties such as resin molding fluidity, and substances that form gels and become foreign substances. It is necessary to have a small content of impurities that are pure and affect physical properties.
  • Patent Document 1 discloses a method for producing BPEF in which fluorenone and phenoxyethanol are subjected to dehydration condensation using sulfuric acid and thiols as catalysts. According to Patent Document 1, high-purity BPEF can be obtained. However, Patent Document 1 only describes means relating to removal of sulfuric acid as a catalyst, there is no knowledge about purification of other impurities, and when used as a raw material for resin, molding fluidity and hue deterioration are not known. There is no examination. Patent Document 2 describes the melting point and crystal structure of BPEF. According to Patent Document 2, it is described that the obtained BPEF is a polymer raw material having excellent volumetric efficiency and the like.
  • An object of the present invention is to provide a method for producing a thermoplastic resin having a good hue, excellent molding fluidity and less gel byproduct.
  • the present inventors produce a thermoplastic resin using BPEF as a raw material, the purity and the content of the multimer represented by the formulas (1) and (2) are within a predetermined range.
  • the present invention was completed by finding that a thermoplastic resin excellent in molding fluidity and less by-product of gel was obtained.
  • BPEF in the present invention when BPEF is produced by reacting fluorenone with phenoxyethanol, sulfuric acid is used as a catalyst, toluene is used as a solvent, and the molar ratio of phenoxyethanol to fluorenone is adjusted to 2 or more. Adopted.
  • the present invention is a method for producing a thermoplastic resin by reacting (i) a dihydroxy component and (ii) a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof, As the dihydroxy component, the purity is 98% or more, the content of the multimer (1) represented by the following formula (1) is less than 0.5% and 0.01% or more, and is represented by the following formula (2). The content of the multimer (2) is less than 0.5% and 0.01% or more, and the total content of the multimer (1) and the multimer (2) is less than 1.0%. It is a method for producing the thermoplastic resin, characterized by using 9,02-bis or more of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene.
  • the present invention includes an optical molded article formed using the thermoplastic resin produced by the production method.
  • FIG. 1 is an SEM photograph of BPEF synthesized in Synthesis Example 1.
  • FIG. 2 is an SEM photograph after image analysis of the BPEF synthesized in Synthesis Example 1.
  • FIG. 3 is an SEM photograph of BPEF synthesized in Comparative Synthesis Example 2.
  • FIG. 4 is a SEM photograph after image analysis of BPEF synthesized in Comparative Synthesis Example 2.
  • the present invention is a method for producing a thermoplastic resin by reacting (i) a dihydroxy component and (ii) a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof, and uses the following BPEF as the dihydroxy component.
  • BPEF purity
  • the purity of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (BPEF) can be measured by high performance liquid chromatography (HPLC), and is 98.0% or more. More preferably, it is 99.0% or more. When the purity is out of the above range, the hue of the resin is deteriorated.
  • the content of the multimer (1) represented by the following formula (1) in BPEF is less than 0.5% and 0.01% or more, and the multimer represented by the following formula (2) (2 ) Is less than 0.5% and 0.01% or more, and the total content of multimer (1) and multimer (2) is less than 1.0% and 0.02% or more.
  • the total content of the multimer (1) and the multimer (2) is 1.0% or more, or if either the multimer (1) or the multimer (2) is 0.5% or more, The molding fluidity of the resin decreases.
  • the multimer (1) and the multimer (2) serve as branch points to form a gel, which becomes a foreign substance when used in a molded product or a film.
  • the content of the multimer (1) is less than 0.3% and 0.01% or more, and the content of the multimer (2) is less than 0.3% and 0.01% or more.
  • the multimer (2) are preferably less than 0.6% and 0.02% or more.
  • (Repose angle) BPEF preferably has an angle of repose of 55 to 30 degrees. When the angle of repose is greater than 55 degrees, the fluidity is poor, and it is difficult to handle such as forming a rat hole with a hopper or a bunker.
  • BPEF powder maximum area BPEF has a maximum area of 1.0 ⁇ 10 4 ⁇ m 2 It is preferable to contain 1 to 95% or more of the above powdery body.
  • the maximum area in the powder is 1.0 ⁇ 10 4 ⁇ m 2
  • the angle of repose becomes larger than 55 degrees, and the powdery body becomes difficult to handle as described above. It also adversely affects resin production efficiency and hue. Similarly, the angle of repose deteriorates even in the case of 95% or more.
  • Maximum area is 1.0 ⁇ 10 4 ⁇ m 2
  • the above powdery body and the maximum area are 1.0 ⁇ 10 4 ⁇ m 2 When the following powdery substances coexist, BPEF that improves the production efficiency and hue of the resin can be obtained.
  • the water content of BPEF is preferably 1% by weight or less.
  • the angle of repose may be increased, and the fluidity and transportability of the powder will be unfavorable. Moreover, it becomes a member of the cause of coloring at the time of using for resin, and is not preferable. Furthermore, since the catalytic activity of a metal alkoxide type, which is a kind of resin catalyst, is reduced and adverse effects such as poor polymerization are caused, the catalyst to be used is limited and not preferable. Alternatively, an error in the charged weight increases and the copolymer composition is shifted, which adversely affects the reaction and is not preferable. Therefore, the amount of water contained in BPEF is more preferably 0.8% by weight or less, and still more preferably 0.5% by weight or less.
  • the toluene solvent content of BPEF is preferably 1.0% by weight or less.
  • the toluene solvent content of BPEF is preferably 1.0% by weight or less.
  • the sulfur content of BPEF is preferably 10 ppm or less. When it is 10 ppm or more, the resin is colored when used as a raw material for the resin. The sulfur content is more preferably 5 ppm or less, and even more preferably 3 ppm or less.
  • a sulfur compound such as sulfuric acid is not used as a reaction catalyst. However, a large amount of multimers (1) and multimers (2) are by-produced, and the molding fluidity of the resin is reduced. It is not preferable.
  • BPEF can be produced by reacting fluorenone with 2-phenoxyethanol in the presence of a sulfuric acid catalyst and then purifying the resulting reaction mixture.
  • the present inventors react fluorenone and phenoxyethanol to produce BPEF, by adopting specific reaction conditions and purification conditions, the purity of the multimer represented by the formulas (1) and (2) can be reduced. It has been found that BPEF having a content in a predetermined range can be obtained.
  • liquidity, and few by-products of a gel was obtained. That is.
  • reaction conditions for BPEF production conditions were used in which sulfuric acid was used as a catalyst, toluene was used as a solvent, and the feed molar ratio of phenoxyethanol to fluorenone was controlled to 2 or more.
  • purification conditions a step of removing the unreacted phenoxyethanol from the reaction solution by concentrating the reaction solution under reduced pressure and a decolorization step of adsorbing and purifying the reaction solution with activated carbon were adopted.
  • the charging amount (mol) of 2-phenoxyethanol is 2 to 10 times, preferably 2 to 8 times, more preferably 2 to 4 times the charging amount (mol) of fluorene. If it exceeds 10 times, there is a high possibility that 2-phenoxyethanol will remain in the crude crystal, which inhibits the formation of the crystal structure and makes it impossible to obtain the desired BPEF powder.
  • the charged amount (mol) of 2-phenoxyethanol is fluorene. It is preferably 2 to 10 times the charged amount (mol).
  • sulfuric acid is used as a catalyst.
  • the type of sulfuric acid is not particularly limited.
  • dilute sulfuric acid for example, about 30 to 90% by weight sulfuric acid
  • concentrated sulfuric acid for example, sulfuric acid having a concentration of 90% by weight or more
  • fuming sulfuric acid etc.
  • sulfuric acid sulfur trioxide as a precursor may be added to the reaction system as necessary.
  • Sulfuric acid (H 2 SO 4 The conversion amount is 0.001 to 10 times, preferably 0.001 to 5 times, and more preferably about 0.001 to 3 times with respect to fluorenone (1 mole) from the viewpoint of reactivity.
  • sulfuric acid H 2 SO 4
  • the conversion amount is 0.3 to 5 times, preferably 0.7 to 2.5 times, more preferably 0.8 to 2.3 times, particularly 1 to 2 times the amount of fluorenone (1 mole). It may be doubled.
  • Cocatalyst It is preferable to use thiols as a cocatalyst.
  • mercaptocarboxylic acid mercaptoacetic acid (thioglycolic acid), ⁇ -mercaptopropionic acid, ⁇ -mercaptopropionic acid, thiooxalic acid, mercaptosuccinic acid, mercaptobenzoic acid, etc.
  • thiocarboxylic acid thioacetic acid, thiopropionic acid
  • Thioglycol mercaptoethanol, etc.
  • alkyl mercaptan methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, 1-octyl mercaptan, t-dodecyl mercaptan, etc., particularly C1 -4 alkyl mercaptan
  • aralkyl mercaptan benzyl mercaptan, etc.
  • the salt examples include alkali metal salts (sodium salt and the like).
  • Thiols can be used alone or in combination of two or more. Among these thiols, mercapto C1-6 carboxylic acid, preferably mercapto C2-6 carboxylic acid, more preferably mercapto C2-4 carboxylic acid (for example, ⁇ -mercaptopropionic acid) is preferable.
  • the amount of thiols used with respect to fluorenone is, for example, 0.001 to 0.1 times, preferably 0.003 to 0.03 times thiols relative to fluorenone (1 mol) from the viewpoint of suppressing mixing into the product. Times, more preferably about 0.005 to 0.02 times.
  • the amount of sulfuric acid used with respect to thiols is, for example, about 1 to 1000 times, preferably 30 to 500 times, more preferably 50 to 400 times (particularly 100 to 300 times) sulfuric acid with respect to thiols.
  • reaction conditions fluorenone, 2-phenoxyethanol, a catalyst and a cocatalyst are charged into a reactor, and heated and stirred in the air or in an inert gas atmosphere such as nitrogen or helium and in the presence or absence of an inert solvent such as toluene or xylene. This can be done.
  • the dehydration method is not particularly limited, and examples thereof include dehydration by adding a dehydrating agent, dehydration by reduced pressure, dehydration by azeotropy with a solvent under normal pressure or reduced pressure, and the like. Although it does not specifically limit as a dehydrating agent used for reaction, A molecular sieve, sodium sulfate, magnesium sulfate, etc. are mentioned.
  • the amount of the dehydrating agent is not particularly limited, but from the viewpoint of dehydration effect and economy, it is usually 0.0001 times or more, preferably 0.001 to 100 times, more preferably fluorenone (1 mole). Preferably it is 0.01 to 50 times.
  • the reaction solvent is toluene.
  • the amount of toluene used is 0.1 times or more, preferably 0.5 to 100 times, more preferably 1 to 20 times, based on 1 part by weight of fluorenone.
  • reaction temperature The reaction temperature is preferably 50 to 300 ° C, more preferably 80 to 250 ° C, and still more preferably 120 to 180 ° C.
  • the reaction can be followed by analytical means such as high performance liquid chromatography.
  • the reaction mixture obtained by the reaction step contains by-products such as multimers, unreacted fluorenone, unreacted phenoxy alcohol, and catalyst. It is colored. Therefore, it is necessary to remove the by-product multimer, unreacted fluorenone, unreacted phenoxy alcohols, and catalyst by the following purification step.
  • a neutralization process is a process of removing the sulfuric acid which is a catalyst in a reaction liquid mixture. In the neutralization step, an alkaline aqueous solution is added to the reaction mixture.
  • sulfuric acid in the reaction mixture can be salted out as a sulfate, and can be efficiently extracted into the alkaline aqueous solution.
  • this method it is possible to prevent the sulfuric acid that causes impurities from being mixed in the crude crystals of the target compound, and to obtain a high-purity target compound in a high yield.
  • sulfuric acid is mixed in, the production of by-products is promoted in a later purification step, which causes a decrease in purity, hue deterioration and yield, and sufficient polymerization activity cannot be obtained when a resin such as polycarbonate is produced. There is a case.
  • alkali examples include various bases such as inorganic bases (alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, calcium hydroxide and water.
  • alkaline earth metal hydroxides such as magnesium oxide, alkaline earth metal carbonates such as calcium carbonate, ammonia, and the like, and organic bases (such as aliphatic, alicyclic, aromatic, and heterocyclic amines).
  • the alkali is preferably an alkali metal hydroxide (particularly sodium hydroxide).
  • the amount of the base used is usually a neutral pH, for example, about pH 6-8 (particularly pH 7-8), for example, 0.5-1.5 equivalents per 1 equivalent of sulfuric acid.
  • the amount is preferably about 0.7 to 1.3 equivalents.
  • the reaction solution is solidified when the alkali is charged in a solid state, the alkali is preferably charged as an aqueous solution.
  • the concentration of the alkaline aqueous solution is preferably 10 to 60% by weight, more preferably 30 to 60% by weight, further preferably 30 to 55% by weight, more preferably 40 to 55% by weight, and particularly preferably 40 to 50% by weight. is there.
  • the alkaline aqueous solution may be added dropwise to the acidic reaction mixture continuously or intermittently.
  • the temperature of the acidic reaction mixture may be preferably maintained at about 50 to 90 ° C., more preferably 60 to 90 ° C., and even more preferably about 70 to 90 ° C.
  • a solvent such as toluene may be added at the time of washing with an alkaline aqueous solution.
  • the additional amount is not particularly limited, but from the viewpoint of economy, it is usually 0.1 times or more, preferably 0.5 to 100 times, more preferably 1 to 20 times with respect to 1 part by weight of fluorenone. is there. Further, an organic solvent may be added.
  • the water washing step is a step of washing and removing sulfuric acid and unreacted 2-phenoxyethanol that could not be removed in the neutralization step in the reaction solution.
  • the water used in the water washing step can be industrial water, tap water, deionized water, distilled water, or the like. It is preferable to use deionized water or distilled water because the metal content in BPEF decreases.
  • the number of water washings is preferably performed until the water conductivity is 50 S / m or less. It is preferable to perform washing 3 to 5 times.
  • the electrical conductivity is high, there are a lot of inorganic salts and metals, which not only leads to a decrease in purity, but there is a possibility that an influence such as a reaction failure may occur when used as a resin raw material.
  • the concentration step is a step of heating the reaction solution, distilling unreacted 2-phenoxyethanol together with toluene as a reaction solvent, and concentrating the reaction solution.
  • 2-phenoxyethanol is added in excess to the fluorenone to improve reaction efficiency and suppress by-products, and remains in the reaction solution in large quantities. If a large amount of this 2-phenoxyethanol remains in the BPEF crude crystal, formation of the crystal structure may be hindered during crystallization, and the target BPEF powder may not be obtained. Moreover, when manufacturing resin, such as a polycarbonate, the reaction terminal is blocked and sufficient polymerization activity may not be obtained.
  • the reaction solution is heated, and unreacted 2-phenoxyethanol is distilled together with toluene as a reaction solvent.
  • the heating conditions are normal pressure or reduced pressure, preferably at a pressure of 0.1 kPa to 4.7 kPa, preferably 80 to 250 ° C., more preferably 100 to 170 ° C., and even more preferably 100 to 150 ° C. To do.
  • the heating temperature is high, the yield and purity decrease due to the decomposition reaction.
  • the decoloring step is a step of decolorizing the colored reaction solution with activated carbon.
  • the reaction solution contains impurities such as by-products such as multimers and colored unreacted fluorenone. Therefore, it is necessary to remove impurities and decolorize, and an effective method is a method of decolorizing with activated carbon.
  • Solvents used for decolorization treatment include aromatic hydrocarbon solvents such as toluene and xylene, halogenated aromatic hydrocarbon solvents such as chlorobenzene and dichlorobenzene, aliphatic hydrocarbon solvents such as pentane, hexane, and heptane, dichloromethane, 1, Halogenated aliphatic hydrocarbon solvents such as 2-dichloroethane, aliphatic and cyclic ether solvents such as diethyl ether, di-iso-propyl ether, methyl-t-butyl ether, diphenyl ether, tetrahydrofuran, dioxane, ethyl acetate, butyl acetate, etc.
  • Ester solvents such as acetonitrile, propionitrile, butyronitrile, benzonitrile, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidinone,
  • solvents used for the reaction alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, isobutanol and pentanol
  • ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone, diisobutyl ketone and cyclohexanone Etc.
  • the activated carbon used is preferably powdered charcoal. It is preferable that the particle size is 1 to 150 ⁇ m and the activated carbon pores are about 50 nm to 2 nm. Also. Decoloring conditions are usually performed at room temperature or below the boiling point of the solvent, and the decoloring time is about 10 minutes to 2 hours. You may repeat a decoloring process several times as needed. (Preliminary crystallization process)
  • the preliminary crystallization step is a step in which a solution obtained by adding a solvent to the neutralized, washed, concentrated, and decolored reaction mixture is cooled to less than 50 ° C. to precipitate BPEF crude crystals.
  • Toluene is used as the solvent.
  • the temperature at the end of cooling is not particularly limited as long as it is lower than 50 ° C., and is usually ⁇ 20 to 49 ° C., preferably 0 to 40 ° C., more preferably 10 to 30 ° C.
  • the cooling rate is not particularly limited, and is usually 0.01 to 2 ° C. per minute, preferably 0.1 to 0.5 ° C. per minute.
  • the precipitated BPEF crude crystals are recovered by filtration or the like. The obtained BPEF crude crystals may be washed with toluene used in the reaction or may be dried. Since 2-phenoxyethanol adversely affects the BPEF crystal growth, it is preferable to reduce the residual amount.
  • the BPEF crude crystal calculated by absorption at a wavelength of 254 nm in high performance liquid chromatography (HPLC) measurement. It is preferable that the purity of is not less than 95% and the residual amount of 2-phenoxyethanol is not more than 0.5%.
  • the residual amount of 2-phenoxyethanol in the BPEF crude crystal is controlled by controlling the feed ratio of 2-phenoxyethanol and fluorene as raw materials, and heating the reaction solution in the concentration step, and using unreacted 2-phenoxyethanol as the reaction solvent toluene. It can be reduced by distilling together.
  • the crystallization step is a step of cooling a solution in which BPEF crude crystals are dissolved in toluene to precipitate a BPEF powder.
  • a solvent for crystallization it is preferable to selectively use a solvent for crystallization.
  • the crystal growth rate and the generation of crystal nuclei differ and the crystal structure changes.
  • the properties of the powdery body change. Therefore, toluene is used as a solvent to obtain the BPEF powder of the present invention.
  • the amount of the toluene solvent used is 10 to 50 times, preferably 10 to 30 times, and more preferably 10 to 25 times with respect to 1 part by weight of BPEF crude crystals.
  • the amount of the toluene solvent is large, not only the economy and productivity are deteriorated, but also a substantial single crystal form may not be obtained.
  • the amount of toluene solvent is small, a sufficient purification effect cannot be obtained, the impurities increase, and a single BPEF may not be obtained.
  • the amount of the toluene solvent relative to the BPEF crude crystals is increased more than usual, and the concentration of BPEF as a solute in the solution is preferably 3 to 10% by weight, more preferably 4 to 10% by weight. And By suppressing the precipitation of crystals by relatively reducing the concentration of BPEF, which is a solute, large crystals can be precipitated, and a BPEF powder excellent in fluidity and transportability can be obtained.
  • the temperature at which the BPEF crude crystals are dissolved in toluene is preferably 55 ° C. or higher, more preferably 60 to 150 ° C., and still more preferably 70 to 110 ° C. If this temperature is low, a substantially single crystal form may not be obtained.
  • the deposition start temperature is preferably less than 50 ° C, more preferably 20 to 49 ° C, and even more preferably 30 to 49 ° C.
  • the deposition start temperature is controlled by the concentration of BPEF, which is a solute in the solution, and the deposition temperature can be adjusted to a preferred temperature by adjusting to the above concentration.
  • the temperature at the end of cooling is usually ⁇ 20 to 49 ° C., preferably 0 to 40 ° C., more preferably 10 to 30 ° C.
  • the cooling rate is preferably 0.01 to 3 ° C. per minute, more preferably 0.1 to 2 ° C. per minute.
  • BPEF crystals may be added as seed crystals in the solution.
  • the precipitated crystals are collected by filtration or the like. The obtained crystal may be washed with toluene or dried. If necessary, this crystallization may be repeatedly purified, and after crystallization, purification such as washing with water may be performed.
  • the separated BPEF powder is dried and removed, for example, by heating under normal pressure or reduced pressure in order to dry and remove residual solvent and residual moisture, if any. Since the obtained BPEF powder has a high purity of 99.0% or more, it can be used for applications other than those where mixing of solvents is not preferable. However, the BPEF powder is applied under normal pressure or reduced pressure. It is preferable to heat and dry. In order to improve the hue of the BPEF powder, the interior of the dryer system is preferably replaced with an inert gas such as nitrogen during drying.
  • the drying temperature (final temperature) and pressure are preferably in the range of 40 to 120 ° C., more preferably in the range of 50 to 100 ° C., and the pressure (absolute pressure) is preferably in the range of 0.1 to 101.3 kPa. More preferably, it is in the range of 0.1 to 80.0 kPa.
  • the drying time is preferably 0.5 to 12 hours. If the temperature is 120 ° C. or higher, or if the drying time is too long, the BPEF powder is colored, and if the drying temperature is 40 ° C. or lower or too short, moisture and solvent remain, which is not preferable.
  • the dryers used are paddle dryers, single dryers, continuous fluidized bed dryers, tornesh dryers, tower dryers, filter dryers, multi-fin processors, steam tube dryers, popper dryers, batch fluid dryers, and fluid fluid dryers. It is preferable to use a dryer, an instantaneous air dryer, a Nauta mixer type dryer, a container rotating and shaking type dryer, or the like. (Preservation method) A preferred method for preserving the dried BPEF powder will be described. Since BPEF powder absorbs moisture, when it is stored in a paper bag or flexible container bag, it is possible to prevent moisture absorption by using a bag of polyethylene or the like having a double structure or more and an aluminum moisture-proof bag. It is preferred to go and store.
  • thermoplastic resin when storing in a popper or silo, it is preferable to suppress moisture absorption by replacing the popper or silo with a dry inert gas such as nitrogen.
  • a dry inert gas such as nitrogen.
  • the present invention is a method for producing a thermoplastic resin by reacting BPEF described above as a dihydroxy component with a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof.
  • the thermoplastic resin include polycarbonate resin, polyester resin, and polyester carbonate resin. These manufacturing methods will be described.
  • the polycarbonate resin is a resin obtained by reacting a dihydroxy component and a carbonic acid diester component. In the present invention, the aforementioned BPEF is used as the dihydroxy component.
  • the dihydroxy component and the carbonic acid diester component may be a single component, or two or more kinds of compounds may be used for each. That is, a copolymer component may be included.
  • dihydroxy components that can be used with BPEF include 1,1′-biphenyl-4,4′-diol, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, Bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis ( 4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexan
  • aliphatic diols such as ethylene glycol and tricyclo [5.2.1.0 2,6 Decane dimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornane dimethanol, pentacyclopentadecane dimethanol, cyclopentane-1,3-dimethanol, spiroglycol, 1,4:
  • An alicyclic diol such as 3,6-dianhydro-D-sorbitol, 1,4: 3,6-dianhydro-D-mannitol, 1,4: 3,6-dianhydro-L-iditol may also be included. These may be used alone or in combination of two or more.
  • Examples of the carbonic acid diester include diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, and dinaphthyl carbonate. Among them, diphenyl carbonate is preferable. These aromatic carbonic acid diesters may be used alone or in combination of two or more.
  • an ester exchange reaction between a dihydroxy component and a carbonic acid diester is preferably employed.
  • a diol and bisaryl carbonate are mixed in the presence of an inert gas, and usually 120 to 350 ° C. under reduced pressure in the presence of a mixed catalyst comprising an alkali metal compound catalyst or an alkaline earth metal compound or both.
  • the reaction is preferably carried out at 150 to 300 ° C.
  • the degree of vacuum is changed stepwise, and finally the alcohol produced at 133 Pa or less is distilled out of the system.
  • the reaction time is usually about 1 to 4 hours.
  • an alkali metal compound or an alkaline earth metal compound may be used as a main component, and a nitrogen-containing basic compound may be used as a subsidiary component if necessary.
  • the alkali metal compound used as the catalyst is sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate.
  • Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like.
  • Nitrogen-containing basic compounds used as promoters include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine Etc. These catalysts may be used alone or in combination of two or more, and the amount of these polymerization catalysts used is 10 with respect to a total of 1 mol of the dihydroxy component. -9 ⁇ 10 -3 Used in molar ratios. Moreover, you may add antioxidant, a heat stabilizer, etc. for a hue improvement.
  • the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability.
  • a method of deactivating a catalyst by adding a known acidic substance is preferably carried out.
  • the acidic substance for deactivation include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, butyl p-toluenesulfonate, and hexyl p-toluenesulfonate.
  • Aromatic sulfonic acid esters such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-phosphite Phosphites such as propyl, di-n-butyl phosphite, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, Phosphate esters such as dibutyl phosphate, dioctyl phosphate, monooctyl phosphate, diphenylphosphonic acid, dioctylphosphonic acid, dibutylphosphone Phosphonates such as diethyl phosphonate, phosphonates
  • deactivators are used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times with respect to 1 mol of the catalyst.
  • the amount is less than 0.01 times the catalyst amount, the deactivation effect is insufficient, which is not preferable.
  • it is more than 50 times with respect to the amount of catalyst since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
  • a step of devolatilizing and removing the low boiling point compound in the resin at a pressure of 133 to 13.3 Pa and a temperature of 200 to 320 ° C. may be provided.
  • the polyester resin is a resin obtained by reacting a dihydroxy component with a dicarboxylic acid component containing dicarboxylic acid and / or a reactive derivative thereof.
  • the aforementioned BPEF is used as the dihydroxy component of the present invention.
  • Each of the dihydroxy component and the dicarboxylic acid component may be a single component, or the dihydroxy component and / or the dicarboxylic acid component may include two or more compounds, that is, may include a copolymer component.
  • alkylene glycols eg, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, tetramethylene glycol (1,4-butanediol), hexanediol, neo Linear or branched C such
  • Preferred examples of diols used in combination with BPEF are linear or branched C 2-10 And more preferably linear or branched C 2-6 An alkylene glycol, more preferably linear or branched C 2-4 An alkylene glycol (for example, ethylene glycol, propylene glycol, tetramethylene glycol (1,4-butanediol)).
  • Typical dicarboxylic acids include, for example, alkane dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, etc.), alkene dicarboxylic acids (maleic acid, fumaric acid, etc.) aliphatic dicarboxylic acids; cycloalkane dicarboxylic acids Alicyclic dicarboxylic acids such as acids (cyclohexanedicarboxylic acid etc.), di- or tricycloalkanedicarboxylic acids (decalin dicarboxylic acid, norbornane dicarboxylic acid, adamantane dicarboxylic acid etc.); arene dicarboxylic acids (terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, anthracene dicarboxylic acid and the like), and biphenyl dicar
  • these reactive derivatives (acid anhydrides such as hexahydrophthalic anhydride and tetrahydrophthalic anhydride, lower grades such as dimethyl ester and diethyl ester (C 1-4 )
  • Derivable esters such as alkyl esters and acid halides corresponding to dicarboxylic acids
  • dicarboxylic acids may be used alone or in combination of two or more.
  • cyclohexanedicarboxylic acid and terephthalic acid are preferable because they are inexpensive and easily available industrially.
  • a dicarboxylic acid component (dicarboxylic acid and / or ester-forming dicarboxylic acid derivative) and a dihydroxy component containing BPEF are subjected to a melt polymerization method such as a transesterification method or a direct polymerization method, a solution polymerization method, an interface
  • a melt polymerization method such as a transesterification method or a direct polymerization method, a solution polymerization method, an interface
  • the polyester resin can be obtained by reacting according to various methods such as a polymerization method. Among these, a melt polymerization method using no reaction solvent is preferable.
  • the transesterification method which is one of the melt polymerization methods, is a method in which a polyester is obtained by reacting a dicarboxylic acid ester with a diol compound in the presence of a catalyst and transesterifying while distilling off the generated alcohol. Used for the synthesis of polyester resins.
  • a catalyst for the transesterification reaction it is desirable to use at least one metal compound.
  • the metal element contained in the preferred metal compound include sodium, potassium, calcium, titanium, lithium, magnesium, manganese, zinc, tin, and cobalt. Among these, calcium and manganese compounds are preferable because of high reactivity and good color tone of the resulting resin.
  • the amount of transesterification catalyst used is 10 with respect to the polyester resin produced.
  • a polyester resin is obtained by performing a dehydration reaction between a dicarboxylic acid and a diol compound to form an ester compound, and then performing an ester exchange reaction while distilling off excess diol compound under reduced pressure. Is the method.
  • the direct polymerization method has the advantage that no distillate of alcohol is used unlike the transesterification method, and an inexpensive dicarboxylic acid can be used as a raw material.
  • As a catalyst for the polymerization reaction in carrying out these melt polymerization methods it is preferable to use at least one metal compound.
  • Preferred metal elements include titanium, germanium, antimony, aluminum and the like.
  • titanium and germanium compounds are particularly preferable for optical resins because of their high reactivity and excellent transparency and color tone of the resulting resin.
  • the amount of the polymerization catalyst used is 10 with respect to the produced polyester resin. -9 ⁇ 10 -3 Used in molar ratios.
  • Examples of phosphorus compounds include phosphoric acid, phosphorous acid, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trimethyl phosphite, triethyl phosphite, tributyl phosphite and the like. Among these, trimethyl phosphate is particularly preferable.
  • the amount of the phosphorus compound used is 10 with respect to the produced polyester resin. -9 ⁇ 10 -3 Used in molar ratios.
  • a dihydroxy component, a dicarboxylic acid component, and a copolymerization component used as needed are charged into a reaction vessel equipped with a heating device, a stirrer and a distillation pipe, and a reaction catalyst is added to normal pressure inert gas atmosphere.
  • the temperature is increased while stirring, and the reaction is allowed to proceed while distilling off by-products such as methanol produced by the reaction.
  • the reaction temperature is 150 ° C. to 270 ° C., preferably 160 ° C. to 260 ° C., and the reaction time is usually 3 to 7 hours.
  • the polymerization reaction is carried out, for example, using a product after completion of the transesterification reaction in a reaction vessel equipped with a heating device, a stirrer, a distilling tube, and a vacuum addition device. If these conditions are satisfied, the polymerization reaction can be continued in the same reaction vessel used in the transesterification reaction.
  • the polymerization reaction is performed, for example, after adding a catalyst to the reaction vessel containing the product after completion of the transesterification reaction, while gradually raising the temperature and reducing the pressure in the reaction vessel.
  • the pressure in the tank is finally reduced from atmospheric pressure to 0.4 kPa or less, preferably 0.2 kPa or less.
  • the temperature in the tank is raised from 220 to 230 ° C., and finally raised to 250 to 350 ° C., preferably 260 to 320 ° C.
  • the reaction product is extruded from the bottom of the tank. to recover.
  • the reaction product can be extruded into water as a strand, cooled and then cut to obtain a pellet-shaped polyester resin.
  • a step of devolatilizing and removing the low boiling point compound in the resin at a pressure of 133 to 13.3 Pa and a temperature of 200 to 320 ° C. may be provided.
  • the polyester carbonate resin is a resin obtained by reacting a dihydroxy component, a dicarboxylic acid, and a carbonic acid diester component.
  • the aforementioned BPEF is used as the dihydroxy component.
  • the dihydroxy component, dicarboxylic acid component and carbonic acid diester component may each be a single component, or each of the dihydroxy component, dicarboxylic acid component and carbonic acid diester component may contain two or more compounds.
  • Dihydroxy components that can be used in the present invention with BPEF include aliphatic diols such as ethylene glycol, tricyclo [5.2.1.0.
  • 1,4 Alicyclic diols such as 3,6-dianhydro-D-sorbitol, 1,4: 3,6-dianhydro-D-mannitol, 1,4: 3,6-dianhydro-L-iditol, 1,1′-biphenyl -4,4'-diol, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfoxide, bis ( 4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bi (4-hydroxyphenyl) ketone, 2,2-bis (4-hydroxyphen
  • the dicarboxylic acid component in the polyester carbonate resin includes terephthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, ethylmalonic acid and other aliphatic dicarboxylic acids, isophthalic acid, monocyclic aromatic dicarboxylic acid such as tert-butylisophthalic acid, polycyclic aromatic dicarboxylic acid such as naphthalenedicarboxylic acid, anthracene dicarboxylic acid and phenanthrene dicarboxylic acid, biphenyldicarboxylic acid such as 2,2′-biphenyldicarboxylic acid, Examples thereof include alicyclic dicarboxylic acids such as 1,4-cyclodicarboxylic acid and 2,6-decalin dicarboxylic acid.
  • polyester carbonate resin examples include diphenyl carbonate, bischloroformate of the above dihydric phenols, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, di- A naphthyl carbonate etc. are mentioned, Especially, a diphenyl carbonate is preferable.
  • a method for producing a polyester carbonate resin a method used for producing a normal polyester carbonate resin is arbitrarily employed.
  • Transesterification of a dihydroxy component with a dicarboxylic acid component and a carbonic acid diester component is preferably employed.
  • a diol and a dicarboxylic acid or a diester thereof and a bisaryl carbonate are mixed in the presence of an inert gas, and reacted at 120 to 350 ° C., preferably 150 to 300 ° C. under reduced pressure.
  • the degree of vacuum is changed stepwise, and finally the alcohols produced at 1 mmHg or less are distilled out of the system.
  • the reaction time is usually about 1 to 4 hours.
  • a polymerization catalyst can be used to promote the reaction.
  • an alkali metal compound, an alkaline earth metal compound or a heavy metal compound may be used as a main component, and a nitrogen-containing basic compound may be used as a subsidiary component if necessary.
  • the alkali metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, sodium stearate.
  • Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like.
  • nitrogen-containing basic compound examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine and the like.
  • transesterification catalysts include zinc, tin, zirconium, lead, titanium, germanium, antimony, osmium, and aluminum salts, such as zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin chloride (II ), Tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, acetic acid Lead (IV) titanium tetrabutoxide (IV) or the like is used.
  • These catalysts may be used alone or in combination of two or more.
  • the amount of these polymerization catalysts used is 10 with respect to a total of 1 mol of diol and dicarboxylic acid. -9 ⁇ 10 -3 Used in molar ratios. These may be used alone or in combination of two or more.
  • a diaryl carbonate having an electron-withdrawing substituent may be added at a later stage or after completion of the polycondensation reaction in order to reduce the hydroxy end group.
  • an antioxidant or a heat stabilizer may be added to improve the hue.
  • the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability.
  • a method of deactivating a catalyst by adding a known acidic substance is preferably carried out.
  • these substances include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, and aromatic sulfonic acids such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate.
  • Esters phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, phosphorous acid Phosphorous esters such as di-n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphorus Phosphate esters such as dioctyl acid and monooctyl phosphate, phosphones such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid , Phosphonic acid esters such as diethyl phenylphospho
  • deactivators are used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times with respect to 1 mol of the catalyst.
  • the amount is less than 0.01 times the catalyst amount, the deactivation effect is insufficient, which is not preferable.
  • it is more than 50 times mole with respect to the amount of catalyst since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
  • a step of devolatilizing and removing the low boiling point compound in the resin at a pressure of 133 to 13.3 Pa and a temperature of 200 to 320 ° C. may be provided.
  • the thermoplastic resin obtained by the present invention has a b value of -1.0 to 10.0, preferably -1.0 to 7.0, more preferably -1.0 to 5.0, after the polymerization. It is preferable that it is the range of these. If the pellet b value is outside the above range, an optical component with good hue cannot be obtained, which is not preferable.
  • the thermoplastic resin obtained by the present invention is preferably one having 0.7 g of the polymer dissolved in 100 ml of methylene chloride and having a specific viscosity in the range of 0.12 to 0.55 measured at 20 ° C. The thing of the range of 0.45 is more preferable.
  • the thermoplastic resin obtained by the present invention preferably has a melt viscosity of 30 to 300 Pa ⁇ s at 280 ° C. and a shear rate of 100 / sec, more preferably 30 to 200 Pa ⁇ s. When it is 300 Pa ⁇ s or more, handling is difficult in forming a molded product, which is not preferable.
  • the number of gels is preferably 10 or less per 50 g of resin. More preferably, it is 5 or less, and more preferably 0. When gel exists in resin, when resin is used as a molded article or a film, it becomes a foreign material and is not preferable.
  • Sulfur content (S amount) Quantitative determination was performed using a Yanaco SQ-1 type / HSU-35 type and a Dionex ICS-2000 type automatic combustion halogen / sulfur analysis system.
  • S amount Quantitative determination was performed using a Yanaco SQ-1 type / HSU-35 type and a Dionex ICS-2000 type automatic combustion halogen / sulfur analysis system.
  • Angle of repose measurement The angle of repose of BPEF was measured using a multifunctional physical property measuring instrument manufactured by Seishin Enterprise. The angle of repose was defined as the angle of repose of the powdery body formed in a state where the sample was naturally dropped on a ⁇ 80 mm table from a height of 70 mm using a funnel.
  • Powder SEM observation SEM observation was performed using S-3400N manufactured by HITACHI.
  • the BPEF powder is pretreated by spraying and adhering the BPEF powder on the double-sided tape that is bonded to the measurement substrate, removing the powder that is not bonded by wind pressure using a dropper, and then E-made by HITACHI.
  • a platinum sputtering process was performed for 100 to 20 seconds at a degree of vacuum of 10 to 15 Pa to prepare a measurement sample. Observation was performed at a measurement magnification of 100 times.
  • JTrim ver. 1.53C the powdery body and the background are color-coded by image processing, and LIA32 for Win32 ver.
  • the total area of the powder was calculated using 0.376 ⁇ 1.
  • a powdery body having an area of 1.0 ⁇ 10 4 ⁇ m 2 or more is identified by visual observation using a scale, and becomes 1.0 ⁇ 10 4 ⁇ m 2 or more from the area ratio with the total area of the powdery body.
  • the content of the powder was calculated in%.
  • BPEF fluidity Using a conical bunker having a diameter of 2 m, a height of 3.2 m, and an inclination angle of 50 degrees, the fluidity of the powder was evaluated. The evaluation was classified according to ⁇ which is not occluded, ⁇ which is not occluded but formation of a rat hole, and occlusion ⁇ .
  • BPEF transportability Using KSC-44 / 55NK manufactured by Kuma Engineering, a transportability test was performed at a transport distance of 3.5 m, a transport angle of 50 degrees, a screw rotation speed of 1500 rpm, and a transport speed of 4.0 m 3 / Hr. Evaluation is possible if it can be transported for 90 minutes or more, it can be transported ⁇ , it can be transported for 90 minutes, ⁇ if the powder is firmly fixed to the screw, ⁇ , the equipment stops when the powder is fixed The case where the operation could not be performed for 90 minutes was classified as “no conveyance”.
  • Resin pellet b value The resin pellet obtained after completion
  • Number of gels 50 g of the obtained thermoplastic resin was dissolved in methylene chloride, filtered through a 20 ⁇ m mesh silk screen, the residue on the silk screen was irradiated with light having a wavelength of 254 nm, and the emitted gel was counted using a color 3D laser microscope. And the number of gels.
  • Resin melt viscosity Using a nozzle with a diameter of 1 mm and a length of 10 mm, a melt viscosity at 280 ° C.
  • thermoplastic resin was vacuum-dried at 100 ° C. for 4 hours, then pelletized using a vented ⁇ 30 mm twin screw extruder, and heat-dried at 100 ° C. for 8 hours. Thereafter, a lens having a thickness of 0.6 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a ⁇ 5 mm using a SE30DU injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. at a molding temperature of Tg + 110 ° C.
  • Formability The lens filling failure after molding and each molding failure were confirmed visually. Evaluation is based on the number of defective moldings when 100 shots are molded, and the molding defect rate is less than 1% ( ⁇ ), 1-5% ( ⁇ ), and more than 5% ( ⁇ ). did.
  • BPEF crude crystals This BPEF crude crystal had a purity of 98.5% by HPLC, the residual PhE amount was 0.2%, and the residual multimer amount was 0.8%.
  • 25 g of the obtained BPEF crude crystals were weighed, 500 g of toluene was added, and the mixture was heated to 90 ° C. to obtain a uniform solution of 5 wt% solute. The solution was cooled to 30 ° C. at a rate of 2 ° C. per minute while stirring. The deposition start temperature was 45 ° C. The precipitated crystals were taken out by filtration and dried under reduced pressure at 1.0 KPa for 6 hours at 70 ° C.
  • Synthesis example 2 BPEF (2) was obtained in the same manner as in Synthesis Example 1, except that the amount charged was 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and PhE 803 g (5.84 mol).
  • Synthesis example 3 BPEF (3) was obtained in the same manner as in Synthesis Example 1 except that the amount charged was 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and 2140 g (15.56 mol) of PhE.
  • Synthesis example 4 The amount charged is 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and 1070 g (7.78 mol) of PhE, and 70 ° C., 0.5 hour, 1.0 KPa in a container rotary rocking dryer.
  • BPEF (4) was obtained in the same manner as in Synthesis Example 1 except that drying under reduced pressure was performed.
  • BPEF (6) was obtained in the same manner as in Synthesis Example 1 except that methanol was used as the solvent in the crystallization step.
  • Synthesis Examples 1 to 4 have a low content of multimers as impurities. Furthermore, the angle of repose is small, and the amount of water and the amount of residual solvent are small and good. Comparative Synthesis Examples 1 and 2 have many trimers and tetramers.
  • Comparative Synthesis Example 2 has a large angle of repose, inferior fluidity and transportability, reduces the amount charged into the reaction kettle when used as a resin raw material, and decreases production efficiency.
  • Example 1 Polycarbonate (PC) resin 21.0 kg of BPEF (1) obtained in Synthesis Example 1, 2,2-bis (4-hydroxyphenyl) propane (hereinafter sometimes abbreviated as “Bis-A”) 2 .81 kg, diphenyl carbonate (may be abbreviated as “DPC” hereinafter) 13.17 kg, sodium hydrogen carbonate 7.5 ⁇ 10 ⁇ 2 g are placed in a 60 L reaction kettle equipped with a stirrer and a distiller, and nitrogen substitution is performed. Then, the mixture was heated to 215 ° C.
  • PC Polycarbonate
  • Example 2 Polyester (Pest) Resin 17.97 kg of BPEF (1) in Synthesis Example 1, 11.70 kg of dimethyl terephthalate (hereinafter may be abbreviated as “DMT”), ethylene glycol (hereinafter abbreviated as “EG”) 2.39 kg, titanium tetrabutoxide 2.06 ⁇ 10 ⁇ 2 g was placed in a 60 L reaction kettle equipped with a stirrer and a distiller, and was purged with nitrogen three times, and then at 220 ° C. under a nitrogen atmosphere of 101 kPa. Heat and stir for 20 minutes. After complete dissolution, methanol removal was performed at 220 ° C.
  • DMT dimethyl terephthalate
  • EG ethylene glycol
  • titanium tetrabutoxide 2.06 ⁇ 10 ⁇ 2 g was placed in a 60 L reaction kettle equipped with a stirrer and a distiller, and was purged with nitrogen three times, and then at 220 ° C. under a nitrogen atmosphere of 101 k
  • Example 3 Polyester carbonate (PEC) resin 21.05 kg of BPEF (1) in Synthesis Example 1, 2.33 kg of DMT, 8.23 kg of DPC, 20.4 ⁇ 10 ⁇ 1 g of titanium tetrabutoxide were added to a reaction kettle equipped with a stirrer and a distillation apparatus. And heated to 180 ° C. under a nitrogen atmosphere and stirred for 20 minutes. Thereafter, the degree of vacuum was adjusted to 20 kPa over 20 minutes, the temperature was raised to 250 ° C. at a rate of 60 ° C./hr, and a transesterification reaction was performed.
  • PEC Polyester carbonate
  • Example 4 Polyester carbonate resin Polymerization was conducted in the same manner as in Example 3 except that BPEF (2) in Synthesis Example 2 was used. After completion of the reaction, nitrogen was blown into the reactor to increase the pressure, and the produced resin was extracted while pelletizing. The pellet was colorless and transparent.
  • Comparative Example 1 Polyester carbonate resin 21.05 kg of BPEF (5) obtained in Comparative Synthesis Example 1, 2.33 kg of DMT, 8.23 kg of DPC and 20.4 ⁇ 10 ⁇ 1 g of titanium tetrabutoxide were reacted with a stirrer and a distillation apparatus. After putting into a kettle and performing nitrogen substitution three times, the pressure reduction degree was adjusted to 20 kPa over 20 minutes, and then the temperature was raised to 250 ° C. at a rate of 60 ° C./hr to conduct a transesterification reaction. Thereafter, while maintaining the temperature at 250 ° C., the pressure was reduced to 130 Pa or less over 120 minutes, and the polymerization reaction was performed with stirring for 1 hour under the conditions of 250 ° C.
  • Comparative Example 2 Polyester carbonate resin BPEF (6) 11.05 kg, DMT 2.33 kg, DPC 8.23 kg in Comparative Synthesis Example 2 were placed in a reaction kettle equipped with a stirrer and a distillation apparatus, and heated to 180 ° C. under a nitrogen atmosphere. Stir for 20 minutes. After complete dissolution, polymerization was carried out in the same manner as in Comparative Example 1 except that 10.0 kg of BPEF (6) obtained in Comparative Synthesis Example 2 and 20.4 ⁇ 10 ⁇ 1 g of titanium tetrabutoxide were added to the reaction vessel.
  • the resins of Examples 1 to 4 have a low melt viscosity, excellent molding fluidity, a good hue, a small number of gels, and can be suitably used for optical molded products and films.
  • the content of trimers and tetramers in BPEF is large, the melt viscosity of the resin is high, and the molding fluidity is low.
  • the number of gels in the resin is large.
  • Comparative Example 2 is inferior in production efficiency because it is necessary to charge the raw material in two steps. Furthermore, the hue deteriorated due to the influence of oxygen at the time of preparation.
  • thermoplastic resin having a good hue, excellent molding fluidity and little by-product of gel can be obtained.
  • the thermoplastic resin obtained by the present invention can be used for various optical materials such as optical lenses, prisms, optical disks, optical fibers, and optical films.
  • thermoplastic resin obtained by the present invention has a good hue, excellent molding fluidity, and can suppress the by-product formation of gels. It is extremely useful as an optical member such as a substrate, an optical card, a liquid crystal panel, a headlamp lens, and an OPC binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The purpose of the present invention is to provide a method for producing a thermoplastic resin having good hue, excellent molding fluidity, and having few gel byproducts. This method involves producing the thermoplastic resin by reacting (i) a dihydroxy component with (ii) a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof. The method for producing the thermoplastic resin is characterized in that: 9,9-Bis(4-(2-hydroxyethoxy)phenyl)fluorene is used as the dihydroxy component, the purity of which is at least 98%; the content of a polymer (1) represented by formula (1) is less than 0.5% but not less than 0.01%; the content of a polymer (2) represented by formula (2) is less than 0.5% but not less than 0.01%; and the total content of polymer (1) and polymer (2) is less than 1.0% but not less than 0.02%.

Description

熱可塑性樹脂の製造方法Method for producing thermoplastic resin
 本発明は、物性に影響する不純物の含有量が少ない9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(以下、BPEFと略すことがある)を原料として用いた熱可塑性樹脂の製造方法に関する。 The present invention relates to a thermoplastic resin using 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (hereinafter sometimes abbreviated as BPEF) having a low content of impurities affecting physical properties as a raw material. It relates to a manufacturing method.
 BPEFは、エポキシ樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエステルカーボネート樹脂などの耐熱性、透明性、高屈折率、成形流動性を備えた樹脂の原料として有望である。これらの樹脂は、自動車用ヘッドランプレンズ、CD、CD−ROMピックアップレンズ、フレネルレンズ、レーザープリンター用fθ レンズ、カメラレンズ、リアプロジェクションテレビ用投影レンズなどの光学材料などとして期待されている。
 これらの用途において用いられる色相、成形流動性に優れた樹脂を得るためには、原料であるBPEFが高純度であることが必要である。不純物の中には、樹脂の着色を誘発する物質、樹脂の成形流動性といった物性に影響する物質、ゲルを形成し異物となる物質も含まれているため、樹脂原料に使用するBPEFは、高純度であり、かつ物性に影響する不純物の含有量が少ないことが必要となる。
 特許文献1には、硫酸とチオール類を触媒としてフルオレノンとフェノキシエタノールを脱水縮合させるBPEFの製造方法が開示されている。特許文献1によれば、高純度のBPEFを得ることができるとされている。しかし特許文献1には、触媒である硫酸の除去に関する手段が記載されているだけで、その他の不純物の精製に関する知見が無く、樹脂の原料に使用した際に成形流動性や色相の悪化についての検討はなされていない。
 また特許文献2には、BPEFの融点や結晶構造についての記載がある。特許文献2によれば、得られたBPEFは、容積効率等が優れたポリマーの原料であることが記載されている。しかし特許文献2においても、不純物の含有量についての検討はなされておらず、樹脂の成形流動性や色相には問題がある。また、金属触媒がモノマーに残存しやすく樹脂にした際に着色しやすいという欠点がある。
特開2010−24248号公報 特許第4140975号
BPEF is promising as a raw material for resins having heat resistance, transparency, high refractive index and molding fluidity such as epoxy resin, polyester resin, polycarbonate resin, and polyester carbonate resin. These resins are expected as optical materials such as automotive headlamp lenses, CD, CD-ROM pickup lenses, Fresnel lenses, fθ lenses for laser printers, camera lenses, and projection lenses for rear projection televisions.
In order to obtain a resin excellent in hue and molding fluidity used in these applications, it is necessary that BPEF as a raw material has high purity. Impurities include substances that induce resin coloring, substances that affect physical properties such as resin molding fluidity, and substances that form gels and become foreign substances. It is necessary to have a small content of impurities that are pure and affect physical properties.
Patent Document 1 discloses a method for producing BPEF in which fluorenone and phenoxyethanol are subjected to dehydration condensation using sulfuric acid and thiols as catalysts. According to Patent Document 1, high-purity BPEF can be obtained. However, Patent Document 1 only describes means relating to removal of sulfuric acid as a catalyst, there is no knowledge about purification of other impurities, and when used as a raw material for resin, molding fluidity and hue deterioration are not known. There is no examination.
Patent Document 2 describes the melting point and crystal structure of BPEF. According to Patent Document 2, it is described that the obtained BPEF is a polymer raw material having excellent volumetric efficiency and the like. However, even in Patent Document 2, no examination has been made on the content of impurities, and there is a problem in the molding fluidity and hue of the resin. In addition, the metal catalyst tends to remain in the monomer and has a drawback of being easily colored when made into a resin.
JP 2010-24248 A Japanese Patent No. 4140975
 本発明の目的は、色相が良好で成形流動性に優れ、さらにゲルの副生が少ない熱可塑性樹脂の製造方法を提供することにある。
 本発明者らは、BPEFを原料として熱可塑性樹脂を製造する際に、純度、式(1)および(2)で表される多量体の含有量が所定の範囲にあるBPEFを用いると、色相が良好で成形流動性に優れ、ゲルの副生が少ない熱可塑性樹脂が得られることを見出し、本発明を完成した。
 本発明におけるBPEFは、フルオレノンとフェノキシエタノールとを反応させBPEFを製造する際に、反応条件として、硫酸を触媒として用い、トルエンを溶媒として用い、フルオレノンに対するフェノキシエタノールの仕込みモル比を2以上にする条件を採用した。
 また精製条件として、反応溶液を減圧濃縮して反応溶液から未反応のフェノキシエタノールを除去する操作、反応溶液を活性炭により吸着精製する脱色工程を採用した。また得られたBPEF粗結晶を濃度10~3重量%になるようにトルエンに溶解させ晶析する操作を採用した。
 すなわち本発明は、(i)ジヒドロキシ成分と、(ii)炭酸ジエステル成分、ジカルボン酸成分またはこれらの混合物とを反応させ熱可塑性樹脂を製造する方法であって、
ジヒドロキシ成分として、純度が98%以上、下記式(1)で表される多量体(1)の含有量が0.5%未満、0.01%以上であり、下記式(2)で表される多量体(2)の含有量が0.5%未満、0.01%以上であり、さらに多量体(1)と多量体(2)の合計含有量が1.0%未満であり、0.02%以上である9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンを用いることを特徴とする、前記熱可塑性樹脂の製造方法である。
Figure JPOXMLDOC01-appb-I000002
 本発明は、前記製造方法により製造された熱可塑性樹脂を用いて形成された光学成形品を包含する。
An object of the present invention is to provide a method for producing a thermoplastic resin having a good hue, excellent molding fluidity and less gel byproduct.
When the present inventors produce a thermoplastic resin using BPEF as a raw material, the purity and the content of the multimer represented by the formulas (1) and (2) are within a predetermined range. The present invention was completed by finding that a thermoplastic resin excellent in molding fluidity and less by-product of gel was obtained.
In the BPEF in the present invention, when BPEF is produced by reacting fluorenone with phenoxyethanol, sulfuric acid is used as a catalyst, toluene is used as a solvent, and the molar ratio of phenoxyethanol to fluorenone is adjusted to 2 or more. Adopted.
As purification conditions, an operation of removing the unreacted phenoxyethanol from the reaction solution by concentrating the reaction solution under reduced pressure, and a decolorization step of adsorbing and purifying the reaction solution with activated carbon were adopted. Further, the operation of crystallization by dissolving the obtained BPEF crude crystals in toluene so as to have a concentration of 10 to 3% by weight was employed.
That is, the present invention is a method for producing a thermoplastic resin by reacting (i) a dihydroxy component and (ii) a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof,
As the dihydroxy component, the purity is 98% or more, the content of the multimer (1) represented by the following formula (1) is less than 0.5% and 0.01% or more, and is represented by the following formula (2). The content of the multimer (2) is less than 0.5% and 0.01% or more, and the total content of the multimer (1) and the multimer (2) is less than 1.0%. It is a method for producing the thermoplastic resin, characterized by using 9,02-bis or more of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene.
Figure JPOXMLDOC01-appb-I000002
The present invention includes an optical molded article formed using the thermoplastic resin produced by the production method.
 図1は、合成例1で合成したBPEFのSEM写真である。
 図2は、合成例1で合成したBPEFの画像解析後のSEM写真である。
 図3は、比較合成例2で合成したBPEFのSEM写真である。
 図4は、比較合成例2で合成したBPEFの画像解析後のSEM写真である。
FIG. 1 is an SEM photograph of BPEF synthesized in Synthesis Example 1.
FIG. 2 is an SEM photograph after image analysis of the BPEF synthesized in Synthesis Example 1.
FIG. 3 is an SEM photograph of BPEF synthesized in Comparative Synthesis Example 2.
FIG. 4 is a SEM photograph after image analysis of BPEF synthesized in Comparative Synthesis Example 2.
 本発明は、(i)ジヒドロキシ成分と、(ii)炭酸ジエステル成分、ジカルボン酸成分またはこれらの混合物とを反応させ熱可塑性樹脂を製造する方法であって、ジヒドロキシ成分として以下のBPEFを用いる。
[BPEF]
(純度)
 本発明において9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(BPEF)の純度は、高速液体クロマトグラフィー(HPLC)によって測定することができ、98.0%以上である。より好ましくは99.0%以上である。純度が上記範囲外であると樹脂の色相悪化を招く。
(多量体)
 本発明においてBPEF中の下記式(1)で表される多量体(1)の含有量は0.5%未満0.01%以上であり、下記式(2)で表される多量体(2)の含有量は0.5%未満0.01%以上であり、多量体(1)および多量体(2)の合計含有量が1.0%未満0.02%以上である。
 多量体(1)および多量体(2)の合計含有量が1.0%以上、もしくは、多量体(1)、多量体(2)のどちらか一方でも0.5%以上となる場合は、樹脂の成形流動性が低下する。また、多量体(1)、多量体(2)が分岐点となりゲルを形成して、成形品やフィルムに使用する際に異物となる。多量体(1)および多量体(2)の合計含有量を0.02%未満とするのは、精製を繰り返し行う必要があり、著しい収率の低下を招き、工業上好ましくない。さらに好ましくは、多量体(1)の含有量が0.3%未満0.01%以上であり、多量体(2)の含有量が0.3%未満0.01%以上、多量体(1)および多量体(2)の合計含有量が0.6%未満0.02%以上であることが好ましい。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
(安息角)
 BPEFは、安息角が55~30度であることが好ましい。安息角が、55度より大きい場合は、流動性に乏しいため、ホッパーやバンカー等でラットホールを形成するなど、取り扱いにくい。ラットホールを解消するためには、ホッパーやバンカーを設計する際にバイブレーターが必要となり、設備改善が必要である。さらには、搬送性も低くなるため、移送配管で閉塞を引き起こす可能性もあり、設備上の制約が多くなる。樹脂等の原料に使用する際は、反応釜に仕込める量が少なくなり、生産効率が低下する。生産効率を上げるためには原料の仕込みを二回に分ける等の方法があるが、再度、反応釜を開けるため酸素の影響を受けやすくなり、樹脂の色相が悪化する。BPEFの溶融槽を設置した場合においても、溶解させるBPEF量が少なくなり、酸素等の影響を受けやすく、樹脂が着色する可能性がある。もしくは、溶解槽が大型化する必要があり、設備に制約が生じる。また30度より小さい場合は、樹脂の原料に使用した際の反応釜への仕込み量向上は見込めるが、加熱溶融する際の時間が長くなる、もしくは、加熱溶融する温度を上げる必要があり、樹脂の色相等品質の悪化や生産効率低下を招く。安息角は、53~40度であると粉状体の流動性・搬送性や樹脂の生産効率・色相が良化し、より好ましい。
(BPEF粉状体最大面積)
 BPEFは、最大面積が1.0×10μm以上となる粉状体を1~95%以上含有することが好ましい。粉状体中に最大面積が1.0×10μm以上となる粉状体を1%以上含有しない場合、安息角が55度より大きくなり、上記に記載されていると同様に粉状体が取り扱いにくくなる。また樹脂の生産効率、色相にも悪影響する。また95%以上の場合でも同様に安息角が悪化する。最大面積が1.0×10μm以上となる粉状体と最大面積が1.0×10μm以下の粉状体が共存することで、樹脂の生産効率・色相を良化するBPEFを得ることが出来る。
(水含有量)
 BPEFの水含有量は1重量%以下であることが好ましい。1重量%より大きくなると、安息角が大きくなる可能性があり、粉状体の流動性・搬送性が低下するため、好ましくない。また、樹脂に使用する際の着色する原因の一員となり好ましくない。さらには、樹脂の触媒の一種である金属アルコキシド系の触媒活性を落とし、重合不良等の悪影響を与えるため、使用する触媒が限られ好ましくない。もしくは、仕込み重量の誤差が大きくなり、共重合組成がずれるなど反応に悪影響を与え好ましくない。そのため、より好ましくはBPEFに含まれる水分量が0.8重量%以下であり、さらにより好ましくは、0.5重量%以下である。水分量を抑える方法としては、BPEF製造時に加熱減圧乾燥を行うことと、BPEFの保管にアルミ防湿袋を用いることが有効である。
(トルエン含有量)
 BPEFのトルエン溶媒含有量は1.0重量%以下であることが好ましい。トルエンが残存している場合、水分量と同じく、安息角が大きくなるための流動性・搬送性が低下し好ましくない。さらに樹脂の色相悪化を招き、さらに樹脂の製造時に仕込み量の誤差が大きくなり、反応に支障が出る可能性があり好ましくない。そのため、より好ましくはトルエンの残存量が0.5重量%以下であることが好ましい。トルエン溶媒の残存量を低減するためには、BPEF製造時に減圧乾燥が有効である。
(硫黄含有量)
 BPEFの硫黄含有量は10ppm以下であることが好ましい。10ppm以上であると樹脂の原料にした際に樹脂が着色する。硫黄含有量は、より好ましくは5ppm以下であり、さらにより好ましくは3ppm以下である。硫黄を低減する方法としては、反応触媒に硫酸等の硫黄化合物を使用しない方法があるが、多量体(1)および多量体(2)が多く副生し、樹脂の成形流動性が低下するため好ましくない。また、精製工程において、硫黄化合物を中和洗浄する方法もあるが、中和のみでは不十分であり、中和工程後の水洗、粗結晶化が必要である。
[BPEFの製造]
 BPEFの製造方法について説明する。BPEFは、硫酸触媒の存在下、フルオレノンと2−フェノキシエタノールとを反応させた後、得られた反応混合液を精製することにより製造することができる。
 本発明者らは、フルオレノンとフェノキシエタノールとを反応させBPEFを製造する際に、特定の反応条件および精製条件を採用することにより、純度、式(1)および(2)で表される多量体の含有量が所定の範囲にあるBPEFが得られることを見出した。またそのBPEFを用いると、色相が良好で成形流動性に優れ、ゲルの副生が少ない熱可塑性樹脂が得られることを見出した。
 すなわち。BPEF製造の反応条件として、硫酸を触媒として用い、トルエンを溶媒として用い、フルオレノンに対するフェノキシエタノールの仕込みモル比を2以上に制御する条件を採用した。
 また精製条件として、反応溶液を減圧濃縮して反応溶液から未反応のフェノキシエタノールを除去する工程、反応溶液を活性炭により吸着精製する脱色工程を採用した。また得られたBPEF粗結晶を濃度10~3重量%になるようにトルエンに溶解させ晶析する操作を採用した。
<反応工程>
(仕込み比)
 2−フェノキシエタノールの仕込み量(モル)は、フルオレン仕込み量(モル)に対して、2~10倍、好ましくは2~8倍、より好ましくは2~4倍である。10倍を超えると、2−フェノキシエタノールが粗結晶中に残る可能性が高くなり、結晶構造形成を阻害し、目的とするBPEF粉状体を得ることができない。また、2−フェノキシエタノールの仕込み量が2倍未満であると、フルオレンと反応できる2−フェノキシエタノールが少なくなる為、副反応が生じやすく多量体が増加し、目的とするBPEFを得ることができない。2−フェキシエタノールや多量体は、水洗や晶析では、含有量を低減することが困難であり、反応において副生を低減する必要があり、2−フェノキシエタノールの仕込み量(モル)は、フルオレン仕込み量(モル)に対して2~10倍が好ましい。
(触媒)
 反応には、触媒として硫酸を用いる。硫酸の種類は特に制限されず、例えば、希硫酸(例えば、30~90重量%程度の硫酸)、濃硫酸(例えば、濃度90重量%以上の硫酸)、発煙硫酸などが使用でき、反応系で硫酸に添加可能であれば、必要により前駆体としての三酸化硫黄を反応系に添加してもよい。
 硫酸(HSO換算)の使用量は、反応性の点から、フルオレノン(1モル)対して、0.001~10倍、好ましくは0.001~5倍、さらに好ましくは0.001~3倍程度である。硫酸の混入を抑制しながら、共沈効率を高めるためには、硫酸(HSO換算)の使用量は、フルオレノン(1モル)に対して、0.3~5倍、好ましくは0.7~2.5倍、さらに好ましくは0.8~2.3倍、特に1~2倍であってもよい。
(助触媒)
 助触媒としてチオール類を用いることが好ましい。チオール類として、メルカプトカルボン酸(メルカプト酢酸(チオグリコール酸)、β−メルカプトプロピオン酸、α−メルカプトプロピオン酸、チオシュウ酸、メルカプトコハク酸、メルカプト安息香酸など)、チオカルボン酸(チオ酢酸、チオプロピオン酸など)、チオグリコール(メルカプトエタノールなど)、アルキルメルカプタン(メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、1−オクチルメルカプタン、t−ドデシルメルカプタンなどのC1−16アルキルメルカプタン(特にC1−4アルキルメルカプタン)など)、アラルキルメルカプタン(ベンジルメルカプタンなど)またはこれらの塩などが挙げられる。塩としては、例えば、アルカリ金属塩(ナトリウム塩など)が例示できる。チオール類は、単独でまたは二種以上組み合わせて使用できる。
 これらのチオール類の中でも、メルカプトC1−6カルボン酸、好ましくはメルカプトC2−6カルボン酸、さらに好ましくはメルカプトC2−4カルボン酸(例えば、β−メルカプトプロピオン酸)が好ましい。
 フルオレノンに対するチオール類の使用量は、製品への混入を抑制する点から、例えば、フルオレノン(1モル)に対して、チオール類0.001~0.1倍、好ましくは0.003~0.03倍、さらに好ましくは0.005~0.02倍程度である。チオール類に対する硫酸の使用量は、例えば、チオール類に対して硫酸1~1000倍、好ましくは30~500倍、さらに好ましくは50~400倍(特に100~300倍)程度である。
(反応条件)
 反応は、フルオレノン、2−フェノキシエタノール、触媒および助触媒を反応装置に仕込み、空気中または窒素、ヘリウムなどの不活性ガス雰囲気下、トルエン、キシレンなどの不活性溶媒存在下または非存在下で加熱攪拌することにより行うことができる。この際、触媒含有水や反応生成水など、反応系内の水分を除去する、脱水条件下で反応を行うことにより、脱水しない場合より反応が早く進行し、副生成物の生成が抑制され、より高収率で目的物を得ることができる。脱水方法としては、特に限定されるものではないが、例えば、脱水剤の添加による脱水、減圧による脱水、常圧または減圧下、溶媒との共沸による脱水などが挙げられる。
 反応に用いられる脱水剤としては、特に限定されるものではないが、モレキュラーシーブ、硫酸ナトリウム、硫酸マグネシウムなどが挙げられる。脱水剤の使用量は特に限定されるものではないが、脱水効果および経済性の点から、通常フルオレノン(1モル)に対して、0.0001倍以上、好ましくは0.001~100倍、更に好ましくは0.01~50倍である。
(溶媒)
 反応溶媒はトルエンである。トルエンの使用量は、フルオレノン1重量部に対して、0.1倍以上、好ましくは0.5~100倍、さらに好ましくは1~20倍である。
(反応温度)
 反応温度は、好ましくは50~300℃、より好ましくは80~250℃、さらに好ましくは120~180℃である。反応は高速液体クロマトグラフィーなどの分析手段で追跡することができる。
<精製工程>
 反応工程により得られる反応混合液には、反応生成物であるBPEF以外に、副生成物である多量体、未反応のフルオレノン、未反応のフェノキシアルコール、触媒が含まれており、反応混合液は着色している。そのため、以下の精製工程により、副生成物である多量体、未反応のフルオレノン、未反応のフェノキシアルコール類、触媒を除去する必要がある。
(中和工程)
 中和工程は、反応混合液中の触媒である硫酸を除去する工程である。中和工程では、反応混合液にアルカリ水溶液を添加する。アルカリ水溶液にて中和洗浄することで、反応混合液中の硫酸を硫酸塩として塩析させることができ、効率的にアルカリ水溶液中に抽出することができる。この方法により目的化合物の粗結晶中に不純物の原因となる硫酸が混入するのを抑制し、高純度の目的化合物を高収率で得ることができる。
 硫酸が混入すると後の精製工程で副生成物の生成が促進され、純度低下、色相悪化および収率低下の原因となり、また、ポリカーボネート等の樹脂を製造する際に十分な重合活性が得られない場合がある。
 アルカリとしては、種々の塩基、例えば、無機塩基(水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸塩、水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属水酸化物、炭酸カルシウムなどのアルカリ土類金属炭酸塩、アンモニアなど)、有機塩基(脂肪族、脂環族、芳香族または複素環式アミン類など)が例示できる。アルカリとしては、アルカリ金属の水酸化物(特に水酸化ナトリウム)が好ましい。塩基の使用量は、通常、中性域pH、例えば、pH6~8(特にpH7~8)程度となる量であり、例えば、硫酸1当量に対して、例えば、0.5~1.5当量、好ましくは0.7~1.3当量程度である。
 アルカリは固体のまま投入すると反応液が固化するため、アルカリは水溶液として投入することが好ましい。アルカリ水溶液の濃度は、好ましくは10~60重量%、より好ましくは30~60重量%、さらに好ましくは30~55重量%、より好ましくは40~55重量%、特に好ましくは40~50重量%である。
 アルカリ水溶液の添加は、連続的または間欠的に酸性反応混合液に滴下してもよい。アルカリ水溶液の滴下において、酸性反応混合液の温度は、好ましくは50~90℃、より好ましくは60~90℃、さらに好ましくは70~90℃程度に保持してもよい。反応液を加熱することで、硫酸塩がアルカリ水溶液に分配しやすくなり、より効率的となる。
 アルカリ水溶液による洗浄時にトルエン等の溶媒を追加しても良い。その追加量は特に限定されるものではないが経済性の点から、フルオレノン1重量部に対して、通常0.1倍以上、好ましくは0.5~100倍、さらに好ましくは1~20倍である。また、有機溶媒を追加しても良い。有機溶媒を追加することにより、アルカリ水溶液への硫酸塩の分配効率が向上し、より効率に洗浄することができる。さらに、アルカリ水溶液の添加後に、水を追加してよい。その水の追加量は特に限定されるものではない。水の添加により、硫酸塩の分配効率が向上するのみでなく、有機溶媒と水の分離性が良くなり、洗浄効率が向上し、より好適である。
(水洗工程)
 水洗工程は、反応溶液中の中和工程で除去できなかった硫酸や未反応2−フェノキシエタノールを水洗して除去する工程である。
 中和工程を行っても反応溶液中には、硫酸塩や、チオール系の硫黄化合物が残存し、さらに反応溶液にはアルカリ水溶液由来の無機塩基が含まれている。これらは、BPEFの純度低下を招くのみならず、樹脂の原料に使用する際に反応を阻害する場合がある。未反応2−フェノキシエタノールは、ポリカーボネート等の樹脂を製造する際には、反応末端を封鎖し、十分な重合活性が得られない場合がある。そのため、水洗により除去する必要がある。
 硫酸、硫黄化合物、未反応2−フェノキシエタノール、無機塩は水への分配性が高いため、水による洗浄が効果的である。水洗工程に用いる水は、工業用水、水道水、脱イオン水、蒸留水などを使用することができる。BPEF中の金属分含量が少なくなることから脱イオン水や蒸留水を用いることが好ましい。水洗の回数は、水の導電率が、50S/m以下となるまで行うことが好ましい。3~5回の洗浄を行うことが好ましい。導電率が高いと、無機塩や金属分が多く、純度低下を招くのみならず、樹脂の原料に使用する際に反応不良等の影響が出る可能性がある。
(濃縮工程)
 濃縮工程は、反応溶液を加熱し、未反応の2—フェノキシエタノールを反応溶媒であるトルエンと共に留出させ、反応溶液を濃縮する工程である。
 2−フェノキシエタノールは、反応効率の向上、副生成物の抑制のためフルオレノンに対し過剰量添加しており、反応溶液中に多く残存している。この2−フェノキシエタノールがBPEFの粗結晶中に多く残存すると、晶析させる際に結晶構造形成を阻害し、目的とするBPEF粉状体が得られない場合がある。また、ポリカーボネート等の樹脂を製造する際には、反応末端を封鎖し、十分な重合活性が得られない場合がある。そのため反応溶液を加熱し、未反応の2—フェノキシエタノールを反応溶媒であるトルエンと共に留出させる。
 加熱条件は、常圧下あるいは減圧下、好ましくは圧力0.1kPa~4.7kPaの減圧下、好ましくは80~250℃、より好ましくは100~170℃、さらに好ましくは100~150℃の温度で加熱する。加熱温度が高いと分解反応により、収率および純度が低下する。また、未反応の2−フェノキシエタノールは全量留去することが好ましい。
(脱色工程)
 脱色工程は、着色している反応溶液を活性炭により脱色する工程である。反応溶液は、多量体等の副生成物や着色している未反応フルオレノンといった不純物が含まれている。そのため、不純物を除去し、脱色する必要があり、効果的な方法が活性炭による脱色を行う方法である。
 脱色処理に使用する溶媒は、トルエン、キシレンなどの芳香族炭化水素溶媒、クロロベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素溶媒、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素溶媒、ジクロロメタン、1,2−ジクロロエタンなどのハロゲン化脂肪族炭化水素溶媒、ジエチルエーテル、ジ−iso−プロピルエーテル、メチル−t−ブチルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサンなどの脂肪族および環状エーテル溶媒、酢酸エチル、酢酸ブチルなどのエステル溶媒、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリルなどのニトリル溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリジノンなどのアミド溶媒、上記の反応に用いる溶媒として例示したものやメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブタノール、イソブタノールおよびペンタノール等のアルコール溶媒や、アセトン、メチルエチルケトン、イソブチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン溶媒等などが挙げられる。好ましくはアルコール系溶媒、ケトン溶媒であり、さらに好ましくはメタノール、アセトンである。
 使用する活性炭は、粉末炭が好ましい。粒子の大きさが1~150μmであり、活性炭細孔が50nm~2nm程度であるものが好ましい。また。脱色条件は通常常温下もしくは溶媒の沸点以下で行い、脱色時間は、10分~2時間程度である。脱色工程は、必要に応じて数回繰り返しても良い。
(予備晶析工程)
 予備晶析工程は、中和、水洗、濃縮、脱色した反応混合液に溶媒を加えた溶液を50℃未満に冷却し、BPEF粗結晶を析出させる工程である。
 溶媒としてトルエンを用いる。冷却終点の温度は、50℃未満であれば特に限定されず、通常−20~49℃、好ましくは0~40℃、より好ましくは10~30℃である。冷却速度も特に限定されず、通常、毎分0.01~2℃、好ましくは、毎分0.1~0.5℃である。
 析出したBPEF粗結晶は濾過等により回収される。得られたBPEF粗結晶は、反応に用いたトルエンで洗浄されてもよいし、乾燥してもよい。
 2−フェノキシエタノールは、BPEFの結晶成長に悪影響を与えるため、残存量を減らすことが好ましく、晶析工程を行う前に、高速液体グラフィー(HPLC)測定において波長254nmの吸収により算出されるBPEF粗結晶の純度は95%以上、かつ2−フェノキシエタノールの残存量を0.5%以下にしておくことが好ましい。
 BPEF粗結晶中の2−フェノキシエタノールの残存量は、原料である2−フェノキシエタノールとフルオレンの仕込み比を制御し、かつ濃縮工程で反応溶液を加熱し、未反応の2—フェノキシエタノールを反応溶媒であるトルエンと共に留出させることにより低減させることができる。
(晶析工程)
 晶析工程は、BPEF粗結晶をトルエンに溶解させた溶液を冷却してBPEF粉状体を析出させる工程である。
 本発明のBPEF粉状体を得るには、結晶化させる溶媒を選択的に使用することが好ましい。結晶化に用いる溶媒により、結晶の成長速度や結晶核の発生が異なり、結晶構造が変化する。それに伴い粉状体の特性が変化する。そのため、本発明のBPEF粉状体を得るには溶媒としてトルエンを用いる。
 トルエン溶媒の使用量は、BPEF粗結晶1重量部に対して10~50倍、好ましくは10~30倍、更に好ましくは10~25倍である。トルエン溶媒量が多いと経済性、生産性が悪くなるばかりでなく実質的な単一の結晶形を得ることができない場合がある。またトルエン溶媒量が少ないと充分な精製効果が得られず不純物が多くなるばかりでなく単一のBPEFを得ることができない場合がある。
 本発明では、BPEF粗結晶に対するトルエン溶媒の量を通常より多くし、溶液中の溶質であるBPEFの濃度を、好ましくは3~10重量%、さらに好ましくは4~10重量%で行うことを特徴とする。溶質であるBPEFの濃度を比較的少なくすることにより、結晶の析出を抑制することにより、大きな結晶を析出させ、流動性および搬送性に優れたBPEF粉状体を得ることができる。
 BPEF粗結晶をトルエンに溶解させる温度は、好ましくは55℃以上、より好ましくは60~150℃、さらに好ましくは70~110℃である。この温度が低いと実質的な単一の結晶形を得ることができない場合がある。
 溶液を冷却することによりBPEF粉状体が析出する。析出開始温度は、好ましくは50℃未満、より好ましくは20~49℃、さらに好ましくは30~49℃である。析出開始温度は、溶液中の溶質であるBPEFの濃度により制御され、上記濃度に調整することで、析出温度を好ましい温度に調整できる。
 冷却終点の温度は、通常−20~49℃、好ましくは0~40℃、さらに好ましくは10~30℃である。結晶の析出温度が低いと純度が低下する傾向にあり、結晶の析出温度が高いと溶媒へのロス量が多くなり経済性、生産性が悪くなる。
 冷却速度は、好ましくは毎分0.01~3℃、より好ましくは、毎分0.1~2℃である。冷却途中で、溶液物中にBPEFの結晶を種晶として添加しても良い。結晶種を添加する場合は、BPEFの結晶種を準安定域幅、例えば、BPEFの飽和溶解点の温度より1~10℃、好ましくは1~3℃低い温度で加えることが好ましい。
 析出した結晶は濾過等により回収される。得られた結晶は、トルエンを用いて洗浄してもよいし、乾燥されてもよい。必要に応じて、この晶析は繰り返して精製をしても良く、晶析後、水洗等の精製を行っても良い。
(乾燥工程)
 分離されたBPEF粉状体は、残留溶媒および残留水分がある場合はこれを乾燥除去するため、例えば、常圧または減圧下に加温して乾燥除去を行う。
 得られたBPEF粉状体は、純度99.0%以上の高純度なので、溶媒類の混入が好ましくない用途以外であれば用いることができるが、BPEF粉状体を常圧または減圧下に加温して乾燥することが好ましい。
 BPEF粉状体の色相を良くするためには、乾燥の際、乾燥機系内は窒素等の不活性ガスで置換されていることが好ましい。
 乾燥温度(最終温度)および圧力は、温度は好ましくは40~120℃の範囲、より好ましくは50~100℃の範囲であり、圧力(絶対圧)は好ましくは0.1~101.3kPaの範囲、より好ましくは0.1~80.0kPaの範囲である。乾燥時間は、0.5~12時間であることが好ましい。温度が120℃以上であるもしくは、乾燥時間が長すぎるとBPEF粉状体が着色し、乾燥温度が40℃以下、もしくは短すぎると水分や溶媒が残存し好ましくない。
 使用する乾燥機は、パドルドライヤー、シングルドライヤー、連続式流動層乾燥機、トルネッシュドライヤー、タワードライヤー、フィルタードライヤー、マルチフィンプロセサー、スチームチューブドライヤー、ポッパードライヤー、バッチ式流動乾燥機、媒体流動乾燥機、瞬間気流乾燥機、ナウタミキサ型乾燥機、容器回転揺動型乾燥機等を用いるのが好ましい。
(保存方法)
 乾燥されたBPEF粉状体の好ましい保存方法について説明する。BPEF粉状体は吸湿する性質を有するため、紙袋またはフレキシブルコンテナバッグにて保存する場合は、ポリエチレン等の袋が二重構造以上になっているものや、アルミ防湿袋を併用して吸湿防止を行って保存するのが好ましい。また、ポッパー、サイロにて保存する場合には、ポッパーやサイロ内は窒素等の乾燥不活性ガスで置換しておき、吸湿を抑えることが好ましい。
[熱可塑性樹脂の製造方法]
 本発明は、ジヒドロキシ成分として前述したBPEFと、炭酸ジエステル成分、ジカルボン酸成分またはこれらの混合物とを反応させ熱可塑性樹脂を製造する方法である。
 熱可塑性樹脂としてポリカーボネート樹脂、ポリエステル樹脂およびポリエステルカーボネート樹脂がある。これらの製造方法を説明する。
(ポリカーボネート樹脂)
 ポリカーボネート樹脂は、ジヒドロキシ成分と炭酸ジエステル成分とを反応させた樹脂である。本発明ではジヒドロキシ成分として前述のBPEFを用いる。ジヒドロキシ成分および炭酸ジエステル成分は、単一成分であっても良く、または各々2種類以上の化合物を用いていてもよい。即ち、共重合成分を含んでも良い。
 また、BPEFとともに使用可能なジヒドロキシ成分の例には、1,1’−ビフェニル−4,4’−ジオール、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルファイド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、α,ω−ビス[2−(p−ヒドロキシフェニル)エチル]ポリジメチルシロキサン、α,ω−ビス[3−(o−ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスフェノールなど芳香族ジオールが含まれる。また、エチレングリコール等の脂肪族ジオール、トリシクロ[5.2.1.02,6]デカンジメタノール、シクロヘキサン−1,4−ジメタノール、デカリン−2,6−ジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン−1,3−ジメタノール、スピログリコール、1,4:3,6−ジアンヒドロ−D−ソルビトール、1,4:3,6−ジアンヒドロ−D−マンニトール、1,4:3,6−ジアンヒドロ−L−イジトール等の脂環式ジオールを含んでもよい。これらは、1種を単独で使用しても、2種類以上を組み合わせて用いてもよい。
 炭酸ジエステルとしては、ジフェニルカーボネート、ジ−p−トリルカーボネート、フェニル−p−トリルカーボネート、ジナフチルカーボネート等が挙げられ、なかでもジフェニルカーボネートが好ましい。これらの芳香族炭酸ジエステルは単独で用いても、二種以上併用してもよい。
 ポリカーボネート樹脂を製造する方法としては、ジヒドロキシ成分と炭酸ジエステルとのエステル交換反応が好ましく採用される。
 エステル交換反応では、不活性ガス存在下にジオールとビスアリールカーボネートを混合し、アルカリ金属化合物触媒もしくはアルカリ土類金属化合物もしくはその双方からなる混合触媒の存在下にて、減圧下通常120~350℃、好ましくは150~300℃で反応させる。減圧度は段階的に変化させ、最終的には133Pa以下にして生成したアルコール類を系外に留去させる。反応時間は通常1~4時間程度である。
 重合触媒としてはアルカリ金属化合物またはアルカリ土類金属化合物を主成分として用い、必要に応じて含窒素塩基性化合物を従成分として用いても良い。
 触媒として使用するアルカリ金属化合物としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ビスフェノールAのナトリウム塩、カリウム塩、リチウム塩、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム等が挙げられる。アルカリ土類金属化合物としては水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられる。
 助触媒として使用する含窒素塩基性化合物としてはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン、ジメチルアミノピリジン等が挙げられる。
 これらの触媒は単独で用いても、二種以上併用してもよく、これらの重合触媒の使用量はジヒドロキシ成分の合計1モルに対して、10−9~10−3モルの比率で用いられる。また、色相改善のために酸化防止剤や熱安定剤等を加えてもよい。
 ポリカーボネート樹脂は、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよい。アルカリ金属化合物またはアルカリ土類金属化合物については、一般的に、公知の酸性物質の添加による触媒の失活を行う方法が好適に実施される。これらの失活を行う酸性物質としては、具体的には、安息香酸ブチル等のエステル類、p−トルエンスルホン酸等の芳香族スルホン酸類、p−トルエンスルホン酸ブチル、p−トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類、亜リン酸、リン酸、ホスホン酸等のリン酸類、亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn−プロピル、亜リン酸ジn−ブチル、亜リン酸ジn−ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類、リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類、ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類、フェニルホスホン酸ジエチル等のホスホン酸エステル類、トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類、ホウ酸、フェニルホウ酸等のホウ酸類、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類、ステアリン酸クロライド、塩化ベンゾイル、p−トルエンスルホン酸クロライド等の有機ハロゲン化物、ジメチル硫酸等のアルキル硫酸、塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。これらの失活剤は、触媒量1molに対して0.01~50倍、好ましくは0.3~20倍使用される。触媒量に対して0.01倍より少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍より多いと、耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
 触媒失活後、樹脂中の低沸点化合物を133~13.3Paの圧力、200~320℃の温度で脱揮除去する工程を設けても良い。
(ポリエステル樹脂)
 ポリエステル樹脂は、ジヒドロキシ成分と、ジカルボン酸および/またはこれらの反応性誘導体を含むジカルボン酸成分とを反応させた樹脂である。本発明ジヒドロキシ成分として前述のBPEFを用いる。ジヒドロキシ成分およびジカルボン酸成分は、それぞれ単一の成分であってもよく、またはジヒドロキシ成分および/またはジカルボン酸成分が2種以上の化合物を含む、即ち、共重合成分を含んでいてもよい。
 BPEFとともに使用可能な他のジヒドロキシ成分としては、アルキレングリコール(例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−ブタンジオール、テトラメチレングリコール(1,4−ブタンジオール)、ヘキサンジオール、ネオペンチルグリコール、オクタンジオール、デカンジオールなどの直鎖状または分岐鎖状のC2−12のアルキレングリコールなど);(ポリ)オキシアルキレングリコール(例えばジエチレングリコール、トリエチレングリコール、ジプロピレングリコール);などが挙げられる。これらのジオールは、1種を単独でまたは2種以上を組み合わせて使用できる。
 BPEFと組み合わせて用いるジオールの好ましい例は、直鎖状または分岐鎖状C2−10のアルキレングリコールであり、より好ましくは直鎖状または分岐鎖状C2−6のアルキレングリコール、さらに好ましくは直鎖状または分岐鎖状C2−4アルキレングリコール(例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコール(1,4−ブタンジオール)である。
 代表的なジカルボン酸としては、例えばアルカンジカルボン酸(シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸等)、アルケンジカルボン酸(マレイン酸、フマル酸等)の脂肪族ジカルボン酸;シクロアルカンジカルボン酸(シクロヘキサンジカルボン酸等)、ジまたはトリシクロアルカンジカルボン酸(デカリンジカルボン酸、ノルボルナンジカルボン酸、アダマンタンジカルボン酸等)等の脂環族ジカルボン酸;アレーンジカルボン酸(テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、アントラセンジカルボン酸等)、ビフェニルジカルボン酸(2,2’−ビフェニルジカルボン酸等)の芳香族ジカルボン酸等が挙げられる。さらにこれらの反応性誘導体(ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸などの酸無水物、ジメチルエステル、ジエチルエステルなどの低級(C1−4)アルキルエステル、ジカルボン酸に対応する酸ハライドなどのエステル形成可能な誘導体)を使用することができる。
 これらのジカルボン酸は、1種を単独で用いてもよく、または2種以上を組み合わせて用いてもよい。中でもシクロヘキサンジカルボン酸、およびテレフタル酸が安価で工業的に入手しやすいため好ましい。
 本実施の形態では、ジカルボン酸成分(ジカルボン酸および/またはエステル形成性ジカルボン酸誘導体)と、BPEFを含むジヒドロキシ成分とを、エステル交換法、直接重合法などの溶融重合法、溶液重合法、界面重合法等の種々の方法に従って反応させて、ポリエステル樹脂を得ることができる。中でも、反応溶媒を用いない溶融重合法が好ましい。
 溶融重合法の一つであるエステル交換法は、触媒存在下、ジカルボン酸エステルとジオール化合物とを反応させ、生成するアルコールを留去しながらエステル交換を行うことによりポリエステルを得る方法であり、一般にポリエステル樹脂の合成に用いられている。
 エステル交換反応の触媒としては、少なくとも一種類以上の金属化合物を使用することが望ましい。好ましい金属化合物中に含まれる金属元素としては、ナトリウム、カリウム、カルシウム、チタン、リチウム、マグネシウム、マンガン、亜鉛、スズ、コバルト等が挙げられる。これらの中でも、カルシウムおよびマンガン化合物は反応性が高く、得られる樹脂の色調が良好なことから好ましい。エステル交換触媒の使用量は、生成するポリエステル樹脂に対して、10−9~10−3モルの比率で用いられる。
 また、直接重合法は、ジカルボン酸とジオール化合物との脱水反応を行い、エステル化合物を形成したのち、減圧下にて過剰のジオール化合物を留去しながらエステル交換反応を行うことによりポリエステル樹脂を得る方法である。直接重合法はエステル交換法のようにアルコールの留出がなく、原料に安価なジカルボン酸を用いることができることが利点である。
 これら溶融重合法を実施する際の重合反応の触媒としては、少なくとも一種類以上の金属化合物を使用することが望ましい。好ましい金属元素としては、チタン、ゲルマニウム、アンチモン、アルミニウム等が挙げられる。これらの中でも、チタンおよびゲルマニウム化合物は反応性が高く、得られる樹脂の透明性および色調に優れていることから、光学用樹脂においては特に好ましい。重合触媒の使用量は、生成するポリエステル樹脂に対して、10−9~10−3モルの比率で用いられる。
 また、ポリエステル樹脂を製造する際、重合反応を円滑に進行するため、エステル交換反応が終了した後に、エステル交換触媒と等モル以上のリン化合物を使用することが望ましい。リン化合物の例としては、リン酸、亜リン酸、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリメチルホスファイト、トリエチルホスファイト、トリブチルホスファイト等が挙げられる。これらの中でも、トリメチルホスフェートが特に好ましい。リン化合物の使用量は、生成するポリエステル樹脂に対して、10−9~10−3モルの比率で用いられる。
 エステル交換反応は、ジヒドロキシ成分、ジカルボン酸成分、必要に応じて用いられる共重合成分を、加熱装置、攪拌機および留出管を備えた反応槽に仕込み、反応触媒を加えて常圧不活性ガス雰囲気下で攪拌しつつ昇温し、反応により生じたメタノール等の副生物を留去しつつ反応を進行させることによって行う。反応温度は150℃~270℃、好ましくは160℃~260℃であり、反応時間は、通常、3~7時間である。
 重合反応は、例えば、上記のエステル交換反応終了後の生成物を用いて、加熱装置、攪拌機、留出管および減圧付加装置を備えた反応槽により実施される。なお、これらの条件が満たされるならば、上記エステル交換反応において使用した同一の反応槽により、引き続き重合反応を実施することもできる。
 重合反応は、例えば、上記のエステル交換反応終了後の生成物を入れた反応槽内に、触媒を添加した後、反応槽内を徐々に昇温且つ減圧しながら行う。槽内の圧力は、常圧雰囲気下から最終的には0.4kPa以下、好ましくは0.2kPa以下まで減圧する。槽内の温度は、220~230℃から昇温、最終的には250~350℃、好ましくは260~320℃まで昇温、所定のトルクに到達した後、槽底部から反応生成物を押し出して回収する。通常の場合、反応生成物を水中にストランド状に押し出し、冷却した上でカッティングし、ペレット状のポリエステル樹脂を得ることができる。
 重合反応終了後、樹脂中の低沸点化合物を133~13.3Paの圧力、200~320℃の温度で脱揮除去する工程を設けても良い。
(ポリエステルカーボネート樹脂)
 ポリエステルカーボネート樹脂は、ジヒドロキシ成分、ジカルボン酸および炭酸ジエステル成分を反応させた樹脂である。本発明では、ジヒドロキシ成分として前述のBPEFを用いる。ジヒドロキシ成分、ジカルボン酸成分および炭酸ジエステル成分は、それぞれ単一成分であっても良く、またはジヒドロキシ成分、ジカルボン酸成分、炭酸ジエステル成分は各々2種類以上の化合物を含んでも良い。
 BPEFとともに本発明において使用可能なジヒドロキシ成分は、エチレングリコール等の脂肪族ジオール、トリシクロ[5.2.1.02,6]デカンジメタノール、シクロヘキサン−1,4−ジメタノール、デカリン−2,6−ジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン−1,3−ジメタノール、スピログリコール、1,4:3,6−ジアンヒドロ−D−ソルビトール、1,4:3,6−ジアンヒドロ−D−マンニトール、1,4:3,6−ジアンヒドロ−L−イジトール等の脂環式ジオール、1,1’−ビフェニル−4,4’−ジオール、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルファイド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、α,ω−ビス[2−(p−ヒドロキシフェニル)エチル]ポリジメチルシロキサン、α,ω−ビス[3−(o−ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)ヒドロキシフェニル)−1−フェニルエタン、ビスフェノールA等の芳香族ジオール等が挙げられる。これらは単独または二種以上組み合わせて用いてもよい。
 ポリエステルカーボネート樹脂におけるジカルボン酸成分は、テレフタル酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸、イソフタル酸、tert−ブチルイソフタル酸等の単環式芳香族ジカルボン酸、ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸等の多環式芳香族ジカルボン酸、2,2’−ビフェニルジカルボン酸等のビフェニルジカルボン酸、1,4−シクロジカルボン酸、2,6−デカリンジカルボン酸等の脂環族ジカルボン酸が挙げられる。これらは単独または二種以上組み合わせて用いてもよい。なかでも、テレフタル酸が好ましい。また、これらの誘導体としては酸クロライドやエステル類が用いられる。
 ポリエステルカーボネート樹脂の製造に用いる炭酸ジエステル成分としては、例えばジフェニルカーボネート、上記二価フェノール類のビスクロロホーメート、ジ−p−トリルカーボネート、フェニル−p−トリルカーボネート、ジ−p−クロロフェニルカーボネート、ジナフチルカーボネート等が挙げられ、なかでもジフェニルカーボネートが好ましい。
 ポリエステルカーボネート樹脂を製造する方法としては、通常のポリエステルカーボネート樹脂の製造に用いる方法が任意に採用される。ジヒドロキシ成分とジカルボン酸成分および炭酸ジエステル成分とのエステル交換反応が好ましく採用される。
 エステル交換反応では、不活性ガス存在下にジオールとジカルボン酸またはそのジエステルとビスアリールカーボネートを混合し、減圧下通常120~350℃、好ましくは150~300℃で反応させる。減圧度は段階的に変化させ、最終的には1mmHg以下にして生成したアルコール類を系外に留去させる。反応時間は通常1~4時間程度である。
 また、エステル交換反応では反応促進のために重合触媒を用いることができる。このような重合触媒としてはアルカリ金属化合物またはアルカリ土類金属化合物または重金属化合物を主成分として用い、必要に応じて含窒素塩基性化合物を従成分として用いても良い。
 アルカリ金属化合物としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ビスフェノールAのナトリウム塩、カリウム塩、リチウム塩、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム等が挙げられる。アルカリ土類金属化合物としては水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられる。
 含窒素塩基性化合物としてはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン、ジメチルアミノピリジン等が挙げられる。
 その他のエステル交換触媒としては亜鉛、スズ、ジルコニウム、鉛、チタン、ゲルマニウム、アンチモン、オスミウム、アルミニウムの塩が挙げられ、例えば、酢酸亜鉛、安息香酸亜鉛、2−エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)チタンテトラブトキシド(IV)等が用いられる。
 これらの触媒は単独で用いても、二種以上併用してもよく、これらの重合触媒の使用量はジオールとジカルボン酸の合計1モルに対して、10−9~10−3モルの比率で用いられる。これらは単独で用いても、二種以上併用してもよい。また、エステル交換反応ではヒドロキシ末端基を減少するために重縮合反応の後期または終了後に電子吸引性の置換基を持ったジアリールカーボネートを加えても良い。更に、色相改善のために酸化防止剤や熱安定剤等を加えてもよい。
 ポリエステルカーボネート樹脂は、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよい。アルカリ金属化合物またはアルカリ土類金属化合物については、一般的に、公知の酸性物質の添加による触媒の失活を行う方法が好適に実施される。これらの物質としては、具体的には、安息香酸ブチル等のエステル類、p−トルエンスルホン酸等の芳香族スルホン酸類、p−トルエンスルホン酸ブチル、p−トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類、亜リン酸、リン酸、ホスホン酸等のリン酸類、亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn−プロピル、亜リン酸ジn−ブチル、亜リン酸ジn−ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類、リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類、ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類、フェニルホスホン酸ジエチル等のホスホン酸エステル類、トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類、ホウ酸、フェニルホウ酸等のホウ酸類、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類、ステアリン酸クロライド、塩化ベンゾイル、p−トルエンスルホン酸クロライド等の有機ハロゲン化物、ジメチル硫酸等のアルキル硫酸、塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。これらの失活剤は、触媒量1molに対して0.01~50倍、好ましくは0.3~20倍使用される。触媒量に対して0.01倍より少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
 触媒失活後、樹脂中の低沸点化合物を133~13.3Paの圧力、200~320℃の温度で脱揮除去する工程を設けても良い。
(ペレットb値)
 本発明により得られる熱可塑性樹脂は、重合後に得られるペレットのb値が−1.0~10.0、好ましくは−1.0~7.0、より好ましくは−1.0~5.0の範囲であることが好ましい。ペレットb値が上記範囲外であると色相の良い光学部品が得られないので好ましくない。
(比粘度)
 本発明により得られる熱可塑性樹脂は、そのポリマー0.7gを100mlの塩化メチレンに溶解し、20℃で測定した比粘度が0.12~0.55の範囲のものが好ましく、0.15~0.45の範囲のものがより好ましい。比粘度が0.12未満では成形品が脆くなり、0.55より高くなると溶融粘度および溶液粘度が高くなり、取扱いが困難になるので好ましくない。
(溶融粘度)
 本発明により得られる熱可塑性樹脂は、280℃、せん断速度100/secにおける溶融粘度が30~300Pa・sであることが好ましく、30~200Pa・sであることがより好ましい。300Pa・s以上であると成形品を形成する上で、取り扱いが困難になるので、好ましくない。
(ゲル個数)
 本発明により得られる熱可塑性樹脂においてゲル個数は、樹脂50g中に10個以下が好ましく。より好ましくは5個以下であり、さらに好ましくは、0個である。樹脂中にゲルが存在する場合、樹脂を成形品やフィルムとして使用する場合、異物となり好ましくない。
The present invention is a method for producing a thermoplastic resin by reacting (i) a dihydroxy component and (ii) a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof, and uses the following BPEF as the dihydroxy component.
[BPEF]
(purity)
In the present invention, the purity of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (BPEF) can be measured by high performance liquid chromatography (HPLC), and is 98.0% or more. More preferably, it is 99.0% or more. When the purity is out of the above range, the hue of the resin is deteriorated.
(Multimers)
In the present invention, the content of the multimer (1) represented by the following formula (1) in BPEF is less than 0.5% and 0.01% or more, and the multimer represented by the following formula (2) (2 ) Is less than 0.5% and 0.01% or more, and the total content of multimer (1) and multimer (2) is less than 1.0% and 0.02% or more.
When the total content of the multimer (1) and the multimer (2) is 1.0% or more, or if either the multimer (1) or the multimer (2) is 0.5% or more, The molding fluidity of the resin decreases. Further, the multimer (1) and the multimer (2) serve as branch points to form a gel, which becomes a foreign substance when used in a molded product or a film. When the total content of the multimer (1) and the multimer (2) is less than 0.02%, it is necessary to repeatedly carry out purification, which causes a significant decrease in yield, which is not industrially preferable. More preferably, the content of the multimer (1) is less than 0.3% and 0.01% or more, and the content of the multimer (2) is less than 0.3% and 0.01% or more. ) And the multimer (2) are preferably less than 0.6% and 0.02% or more.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
(Repose angle)
BPEF preferably has an angle of repose of 55 to 30 degrees. When the angle of repose is greater than 55 degrees, the fluidity is poor, and it is difficult to handle such as forming a rat hole with a hopper or a bunker. In order to eliminate the rathole, a vibrator is required when designing a hopper and a bunker, and equipment improvements are required. Furthermore, since the transportability is also lowered, there is a possibility that the transfer pipe may be clogged, and there are many restrictions on facilities. When used as a raw material for resin, etc., the amount charged into the reaction kettle is reduced, and the production efficiency is lowered. In order to increase the production efficiency, there are methods such as dividing the raw material preparation into two steps, but since the reaction kettle is opened again, it becomes susceptible to oxygen and the hue of the resin deteriorates. Even when a BPEF melting tank is installed, the amount of BPEF to be dissolved is reduced, and the resin is likely to be affected by oxygen and the like, and the resin may be colored. Or it is necessary to enlarge a dissolution tank, and restrictions arise in an installation. If it is less than 30 degrees, the amount charged to the reaction kettle when used as a raw material for the resin can be expected, but it takes a long time to heat and melt, or it is necessary to increase the temperature at which the resin is melted. This causes deterioration of quality such as hue, and reduction of production efficiency. The angle of repose is more preferably 53 to 40 degrees because the fluidity and transportability of the powdery body and the production efficiency and hue of the resin are improved.
(BPEF powder maximum area)
BPEF has a maximum area of 1.0 × 10 4 μm 2 It is preferable to contain 1 to 95% or more of the above powdery body. The maximum area in the powder is 1.0 × 10 4 μm 2 When not containing 1% or more of the above powdery body, the angle of repose becomes larger than 55 degrees, and the powdery body becomes difficult to handle as described above. It also adversely affects resin production efficiency and hue. Similarly, the angle of repose deteriorates even in the case of 95% or more. Maximum area is 1.0 × 10 4 μm 2 The above powdery body and the maximum area are 1.0 × 10 4 μm 2 When the following powdery substances coexist, BPEF that improves the production efficiency and hue of the resin can be obtained.
(Water content)
The water content of BPEF is preferably 1% by weight or less. If it exceeds 1% by weight, the angle of repose may be increased, and the fluidity and transportability of the powder will be unfavorable. Moreover, it becomes a member of the cause of coloring at the time of using for resin, and is not preferable. Furthermore, since the catalytic activity of a metal alkoxide type, which is a kind of resin catalyst, is reduced and adverse effects such as poor polymerization are caused, the catalyst to be used is limited and not preferable. Alternatively, an error in the charged weight increases and the copolymer composition is shifted, which adversely affects the reaction and is not preferable. Therefore, the amount of water contained in BPEF is more preferably 0.8% by weight or less, and still more preferably 0.5% by weight or less. As a method for suppressing the amount of moisture, it is effective to perform drying under heat and pressure during the production of BPEF and to use an aluminum moisture-proof bag for storing BPEF.
(Toluene content)
The toluene solvent content of BPEF is preferably 1.0% by weight or less. When toluene remains, it is not preferable because the fluidity and the transportability for increasing the angle of repose are lowered as in the case of the moisture content. Further, the hue of the resin is deteriorated, and an error in the amount charged becomes large during the production of the resin, which may cause a problem in the reaction. Therefore, it is more preferable that the residual amount of toluene is 0.5% by weight or less. In order to reduce the residual amount of toluene solvent, vacuum drying is effective at the time of BPEF production.
(Sulfur content)
The sulfur content of BPEF is preferably 10 ppm or less. When it is 10 ppm or more, the resin is colored when used as a raw material for the resin. The sulfur content is more preferably 5 ppm or less, and even more preferably 3 ppm or less. As a method for reducing sulfur, there is a method in which a sulfur compound such as sulfuric acid is not used as a reaction catalyst. However, a large amount of multimers (1) and multimers (2) are by-produced, and the molding fluidity of the resin is reduced. It is not preferable. In addition, there is a method of neutralizing and washing the sulfur compound in the purification step, but neutralization alone is insufficient, and water washing and rough crystallization after the neutralization step are necessary.
[Manufacturing BPEF]
A method for producing BPEF will be described. BPEF can be produced by reacting fluorenone with 2-phenoxyethanol in the presence of a sulfuric acid catalyst and then purifying the resulting reaction mixture.
When the present inventors react fluorenone and phenoxyethanol to produce BPEF, by adopting specific reaction conditions and purification conditions, the purity of the multimer represented by the formulas (1) and (2) can be reduced. It has been found that BPEF having a content in a predetermined range can be obtained. Moreover, when the BPEF was used, it discovered that the thermoplastic resin with a favorable hue, excellent shaping | molding fluidity | liquidity, and few by-products of a gel was obtained.
That is. As reaction conditions for BPEF production, conditions were used in which sulfuric acid was used as a catalyst, toluene was used as a solvent, and the feed molar ratio of phenoxyethanol to fluorenone was controlled to 2 or more.
As purification conditions, a step of removing the unreacted phenoxyethanol from the reaction solution by concentrating the reaction solution under reduced pressure and a decolorization step of adsorbing and purifying the reaction solution with activated carbon were adopted. Further, the operation of crystallization by dissolving the obtained BPEF crude crystals in toluene so as to have a concentration of 10 to 3% by weight was employed.
<Reaction process>
(Feed ratio)
The charging amount (mol) of 2-phenoxyethanol is 2 to 10 times, preferably 2 to 8 times, more preferably 2 to 4 times the charging amount (mol) of fluorene. If it exceeds 10 times, there is a high possibility that 2-phenoxyethanol will remain in the crude crystal, which inhibits the formation of the crystal structure and makes it impossible to obtain the desired BPEF powder. On the other hand, if the amount of 2-phenoxyethanol charged is less than 2 times, the amount of 2-phenoxyethanol that can react with fluorene decreases, so that side reactions are likely to occur and the number of multimers increases, making it impossible to obtain the desired BPEF. 2-Fexyethanol and multimers are difficult to reduce in water washing and crystallization, and it is necessary to reduce by-products in the reaction. The charged amount (mol) of 2-phenoxyethanol is fluorene. It is preferably 2 to 10 times the charged amount (mol).
(catalyst)
In the reaction, sulfuric acid is used as a catalyst. The type of sulfuric acid is not particularly limited. For example, dilute sulfuric acid (for example, about 30 to 90% by weight sulfuric acid), concentrated sulfuric acid (for example, sulfuric acid having a concentration of 90% by weight or more), fuming sulfuric acid, etc. can be used. If it can be added to sulfuric acid, sulfur trioxide as a precursor may be added to the reaction system as necessary.
Sulfuric acid (H 2 SO 4 The conversion amount is 0.001 to 10 times, preferably 0.001 to 5 times, and more preferably about 0.001 to 3 times with respect to fluorenone (1 mole) from the viewpoint of reactivity. In order to increase the coprecipitation efficiency while suppressing the mixing of sulfuric acid, sulfuric acid (H 2 SO 4 The conversion amount is 0.3 to 5 times, preferably 0.7 to 2.5 times, more preferably 0.8 to 2.3 times, particularly 1 to 2 times the amount of fluorenone (1 mole). It may be doubled.
(Cocatalyst)
It is preferable to use thiols as a cocatalyst. As thiols, mercaptocarboxylic acid (mercaptoacetic acid (thioglycolic acid), β-mercaptopropionic acid, α-mercaptopropionic acid, thiooxalic acid, mercaptosuccinic acid, mercaptobenzoic acid, etc.), thiocarboxylic acid (thioacetic acid, thiopropionic acid) ), Thioglycol (mercaptoethanol, etc.), alkyl mercaptan (methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, 1-octyl mercaptan, t-dodecyl mercaptan, etc., particularly C1 -4 alkyl mercaptan)), aralkyl mercaptan (benzyl mercaptan, etc.) or a salt thereof. Examples of the salt include alkali metal salts (sodium salt and the like). Thiols can be used alone or in combination of two or more.
Among these thiols, mercapto C1-6 carboxylic acid, preferably mercapto C2-6 carboxylic acid, more preferably mercapto C2-4 carboxylic acid (for example, β-mercaptopropionic acid) is preferable.
The amount of thiols used with respect to fluorenone is, for example, 0.001 to 0.1 times, preferably 0.003 to 0.03 times thiols relative to fluorenone (1 mol) from the viewpoint of suppressing mixing into the product. Times, more preferably about 0.005 to 0.02 times. The amount of sulfuric acid used with respect to thiols is, for example, about 1 to 1000 times, preferably 30 to 500 times, more preferably 50 to 400 times (particularly 100 to 300 times) sulfuric acid with respect to thiols.
(Reaction conditions)
In the reaction, fluorenone, 2-phenoxyethanol, a catalyst and a cocatalyst are charged into a reactor, and heated and stirred in the air or in an inert gas atmosphere such as nitrogen or helium and in the presence or absence of an inert solvent such as toluene or xylene. This can be done. At this time, by removing the water in the reaction system, such as catalyst-containing water and reaction product water, by performing the reaction under dehydrating conditions, the reaction proceeds faster than when not dehydrating, and the production of by-products is suppressed, The target product can be obtained with higher yield. The dehydration method is not particularly limited, and examples thereof include dehydration by adding a dehydrating agent, dehydration by reduced pressure, dehydration by azeotropy with a solvent under normal pressure or reduced pressure, and the like.
Although it does not specifically limit as a dehydrating agent used for reaction, A molecular sieve, sodium sulfate, magnesium sulfate, etc. are mentioned. The amount of the dehydrating agent is not particularly limited, but from the viewpoint of dehydration effect and economy, it is usually 0.0001 times or more, preferably 0.001 to 100 times, more preferably fluorenone (1 mole). Preferably it is 0.01 to 50 times.
(solvent)
The reaction solvent is toluene. The amount of toluene used is 0.1 times or more, preferably 0.5 to 100 times, more preferably 1 to 20 times, based on 1 part by weight of fluorenone.
(Reaction temperature)
The reaction temperature is preferably 50 to 300 ° C, more preferably 80 to 250 ° C, and still more preferably 120 to 180 ° C. The reaction can be followed by analytical means such as high performance liquid chromatography.
<Purification process>
In addition to the reaction product BPEF, the reaction mixture obtained by the reaction step contains by-products such as multimers, unreacted fluorenone, unreacted phenoxy alcohol, and catalyst. It is colored. Therefore, it is necessary to remove the by-product multimer, unreacted fluorenone, unreacted phenoxy alcohols, and catalyst by the following purification step.
(Neutralization process)
A neutralization process is a process of removing the sulfuric acid which is a catalyst in a reaction liquid mixture. In the neutralization step, an alkaline aqueous solution is added to the reaction mixture. By neutralizing and washing with an alkaline aqueous solution, sulfuric acid in the reaction mixture can be salted out as a sulfate, and can be efficiently extracted into the alkaline aqueous solution. By this method, it is possible to prevent the sulfuric acid that causes impurities from being mixed in the crude crystals of the target compound, and to obtain a high-purity target compound in a high yield.
When sulfuric acid is mixed in, the production of by-products is promoted in a later purification step, which causes a decrease in purity, hue deterioration and yield, and sufficient polymerization activity cannot be obtained when a resin such as polycarbonate is produced. There is a case.
Examples of the alkali include various bases such as inorganic bases (alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, calcium hydroxide and water. Examples include alkaline earth metal hydroxides such as magnesium oxide, alkaline earth metal carbonates such as calcium carbonate, ammonia, and the like, and organic bases (such as aliphatic, alicyclic, aromatic, and heterocyclic amines). . The alkali is preferably an alkali metal hydroxide (particularly sodium hydroxide). The amount of the base used is usually a neutral pH, for example, about pH 6-8 (particularly pH 7-8), for example, 0.5-1.5 equivalents per 1 equivalent of sulfuric acid. The amount is preferably about 0.7 to 1.3 equivalents.
Since the reaction solution is solidified when the alkali is charged in a solid state, the alkali is preferably charged as an aqueous solution. The concentration of the alkaline aqueous solution is preferably 10 to 60% by weight, more preferably 30 to 60% by weight, further preferably 30 to 55% by weight, more preferably 40 to 55% by weight, and particularly preferably 40 to 50% by weight. is there.
The alkaline aqueous solution may be added dropwise to the acidic reaction mixture continuously or intermittently. In dropping the alkaline aqueous solution, the temperature of the acidic reaction mixture may be preferably maintained at about 50 to 90 ° C., more preferably 60 to 90 ° C., and even more preferably about 70 to 90 ° C. By heating the reaction solution, the sulfate is easily distributed to the alkaline aqueous solution, which is more efficient.
A solvent such as toluene may be added at the time of washing with an alkaline aqueous solution. The additional amount is not particularly limited, but from the viewpoint of economy, it is usually 0.1 times or more, preferably 0.5 to 100 times, more preferably 1 to 20 times with respect to 1 part by weight of fluorenone. is there. Further, an organic solvent may be added. By adding an organic solvent, the distribution efficiency of the sulfate to the alkaline aqueous solution is improved, and washing can be performed more efficiently. Furthermore, water may be added after the addition of the alkaline aqueous solution. The additional amount of water is not particularly limited. Addition of water not only improves the distribution efficiency of sulfate, but also improves the separation performance of the organic solvent and water, thereby improving the washing efficiency, which is more preferable.
(Washing process)
The water washing step is a step of washing and removing sulfuric acid and unreacted 2-phenoxyethanol that could not be removed in the neutralization step in the reaction solution.
Even when the neutralization step is performed, sulfate and thiol-based sulfur compounds remain in the reaction solution, and the reaction solution contains an inorganic base derived from an alkaline aqueous solution. These not only cause a decrease in the purity of BPEF, but also may inhibit the reaction when used as a raw material for the resin. When unreacted 2-phenoxyethanol is used to produce a resin such as polycarbonate, the reaction terminal is blocked, and sufficient polymerization activity may not be obtained. Therefore, it is necessary to remove by washing with water.
Since sulfuric acid, sulfur compounds, unreacted 2-phenoxyethanol, and inorganic salts are highly distributable to water, washing with water is effective. The water used in the water washing step can be industrial water, tap water, deionized water, distilled water, or the like. It is preferable to use deionized water or distilled water because the metal content in BPEF decreases. The number of water washings is preferably performed until the water conductivity is 50 S / m or less. It is preferable to perform washing 3 to 5 times. When the electrical conductivity is high, there are a lot of inorganic salts and metals, which not only leads to a decrease in purity, but there is a possibility that an influence such as a reaction failure may occur when used as a resin raw material.
(Concentration process)
The concentration step is a step of heating the reaction solution, distilling unreacted 2-phenoxyethanol together with toluene as a reaction solvent, and concentrating the reaction solution.
2-phenoxyethanol is added in excess to the fluorenone to improve reaction efficiency and suppress by-products, and remains in the reaction solution in large quantities. If a large amount of this 2-phenoxyethanol remains in the BPEF crude crystal, formation of the crystal structure may be hindered during crystallization, and the target BPEF powder may not be obtained. Moreover, when manufacturing resin, such as a polycarbonate, the reaction terminal is blocked and sufficient polymerization activity may not be obtained. Therefore, the reaction solution is heated, and unreacted 2-phenoxyethanol is distilled together with toluene as a reaction solvent.
The heating conditions are normal pressure or reduced pressure, preferably at a pressure of 0.1 kPa to 4.7 kPa, preferably 80 to 250 ° C., more preferably 100 to 170 ° C., and even more preferably 100 to 150 ° C. To do. When the heating temperature is high, the yield and purity decrease due to the decomposition reaction. Moreover, it is preferable to distill off the whole amount of unreacted 2-phenoxyethanol.
(Decolorization process)
The decoloring step is a step of decolorizing the colored reaction solution with activated carbon. The reaction solution contains impurities such as by-products such as multimers and colored unreacted fluorenone. Therefore, it is necessary to remove impurities and decolorize, and an effective method is a method of decolorizing with activated carbon.
Solvents used for decolorization treatment include aromatic hydrocarbon solvents such as toluene and xylene, halogenated aromatic hydrocarbon solvents such as chlorobenzene and dichlorobenzene, aliphatic hydrocarbon solvents such as pentane, hexane, and heptane, dichloromethane, 1, Halogenated aliphatic hydrocarbon solvents such as 2-dichloroethane, aliphatic and cyclic ether solvents such as diethyl ether, di-iso-propyl ether, methyl-t-butyl ether, diphenyl ether, tetrahydrofuran, dioxane, ethyl acetate, butyl acetate, etc. Ester solvents, nitrile solvents such as acetonitrile, propionitrile, butyronitrile, benzonitrile, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidinone, Examples of solvents used for the reaction, alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, isobutanol and pentanol, and ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone, diisobutyl ketone and cyclohexanone Etc. Preferred are alcohol solvents and ketone solvents, and more preferred are methanol and acetone.
The activated carbon used is preferably powdered charcoal. It is preferable that the particle size is 1 to 150 μm and the activated carbon pores are about 50 nm to 2 nm. Also. Decoloring conditions are usually performed at room temperature or below the boiling point of the solvent, and the decoloring time is about 10 minutes to 2 hours. You may repeat a decoloring process several times as needed.
(Preliminary crystallization process)
The preliminary crystallization step is a step in which a solution obtained by adding a solvent to the neutralized, washed, concentrated, and decolored reaction mixture is cooled to less than 50 ° C. to precipitate BPEF crude crystals.
Toluene is used as the solvent. The temperature at the end of cooling is not particularly limited as long as it is lower than 50 ° C., and is usually −20 to 49 ° C., preferably 0 to 40 ° C., more preferably 10 to 30 ° C. The cooling rate is not particularly limited, and is usually 0.01 to 2 ° C. per minute, preferably 0.1 to 0.5 ° C. per minute.
The precipitated BPEF crude crystals are recovered by filtration or the like. The obtained BPEF crude crystals may be washed with toluene used in the reaction or may be dried.
Since 2-phenoxyethanol adversely affects the BPEF crystal growth, it is preferable to reduce the residual amount. Before performing the crystallization step, the BPEF crude crystal calculated by absorption at a wavelength of 254 nm in high performance liquid chromatography (HPLC) measurement. It is preferable that the purity of is not less than 95% and the residual amount of 2-phenoxyethanol is not more than 0.5%.
The residual amount of 2-phenoxyethanol in the BPEF crude crystal is controlled by controlling the feed ratio of 2-phenoxyethanol and fluorene as raw materials, and heating the reaction solution in the concentration step, and using unreacted 2-phenoxyethanol as the reaction solvent toluene. It can be reduced by distilling together.
(Crystallization process)
The crystallization step is a step of cooling a solution in which BPEF crude crystals are dissolved in toluene to precipitate a BPEF powder.
In order to obtain the BPEF powder of the present invention, it is preferable to selectively use a solvent for crystallization. Depending on the solvent used for crystallization, the crystal growth rate and the generation of crystal nuclei differ and the crystal structure changes. Along with this, the properties of the powdery body change. Therefore, toluene is used as a solvent to obtain the BPEF powder of the present invention.
The amount of the toluene solvent used is 10 to 50 times, preferably 10 to 30 times, and more preferably 10 to 25 times with respect to 1 part by weight of BPEF crude crystals. When the amount of the toluene solvent is large, not only the economy and productivity are deteriorated, but also a substantial single crystal form may not be obtained. In addition, when the amount of toluene solvent is small, a sufficient purification effect cannot be obtained, the impurities increase, and a single BPEF may not be obtained.
In the present invention, the amount of the toluene solvent relative to the BPEF crude crystals is increased more than usual, and the concentration of BPEF as a solute in the solution is preferably 3 to 10% by weight, more preferably 4 to 10% by weight. And By suppressing the precipitation of crystals by relatively reducing the concentration of BPEF, which is a solute, large crystals can be precipitated, and a BPEF powder excellent in fluidity and transportability can be obtained.
The temperature at which the BPEF crude crystals are dissolved in toluene is preferably 55 ° C. or higher, more preferably 60 to 150 ° C., and still more preferably 70 to 110 ° C. If this temperature is low, a substantially single crystal form may not be obtained.
By cooling the solution, a BPEF powder is precipitated. The deposition start temperature is preferably less than 50 ° C, more preferably 20 to 49 ° C, and even more preferably 30 to 49 ° C. The deposition start temperature is controlled by the concentration of BPEF, which is a solute in the solution, and the deposition temperature can be adjusted to a preferred temperature by adjusting to the above concentration.
The temperature at the end of cooling is usually −20 to 49 ° C., preferably 0 to 40 ° C., more preferably 10 to 30 ° C. When the crystal precipitation temperature is low, the purity tends to decrease, and when the crystal precipitation temperature is high, the loss to the solvent increases, resulting in poor economic efficiency and productivity.
The cooling rate is preferably 0.01 to 3 ° C. per minute, more preferably 0.1 to 2 ° C. per minute. During cooling, BPEF crystals may be added as seed crystals in the solution. When adding a crystal seed, it is preferable to add the crystal seed of BPEF at a metastable region width, for example, 1 to 10 ° C., preferably 1 to 3 ° C. lower than the temperature of the saturation melting point of BPEF.
The precipitated crystals are collected by filtration or the like. The obtained crystal may be washed with toluene or dried. If necessary, this crystallization may be repeatedly purified, and after crystallization, purification such as washing with water may be performed.
(Drying process)
The separated BPEF powder is dried and removed, for example, by heating under normal pressure or reduced pressure in order to dry and remove residual solvent and residual moisture, if any.
Since the obtained BPEF powder has a high purity of 99.0% or more, it can be used for applications other than those where mixing of solvents is not preferable. However, the BPEF powder is applied under normal pressure or reduced pressure. It is preferable to heat and dry.
In order to improve the hue of the BPEF powder, the interior of the dryer system is preferably replaced with an inert gas such as nitrogen during drying.
The drying temperature (final temperature) and pressure are preferably in the range of 40 to 120 ° C., more preferably in the range of 50 to 100 ° C., and the pressure (absolute pressure) is preferably in the range of 0.1 to 101.3 kPa. More preferably, it is in the range of 0.1 to 80.0 kPa. The drying time is preferably 0.5 to 12 hours. If the temperature is 120 ° C. or higher, or if the drying time is too long, the BPEF powder is colored, and if the drying temperature is 40 ° C. or lower or too short, moisture and solvent remain, which is not preferable.
The dryers used are paddle dryers, single dryers, continuous fluidized bed dryers, tornesh dryers, tower dryers, filter dryers, multi-fin processors, steam tube dryers, popper dryers, batch fluid dryers, and fluid fluid dryers. It is preferable to use a dryer, an instantaneous air dryer, a Nauta mixer type dryer, a container rotating and shaking type dryer, or the like.
(Preservation method)
A preferred method for preserving the dried BPEF powder will be described. Since BPEF powder absorbs moisture, when it is stored in a paper bag or flexible container bag, it is possible to prevent moisture absorption by using a bag of polyethylene or the like having a double structure or more and an aluminum moisture-proof bag. It is preferred to go and store. Further, when storing in a popper or silo, it is preferable to suppress moisture absorption by replacing the popper or silo with a dry inert gas such as nitrogen.
[Method for producing thermoplastic resin]
The present invention is a method for producing a thermoplastic resin by reacting BPEF described above as a dihydroxy component with a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof.
Examples of the thermoplastic resin include polycarbonate resin, polyester resin, and polyester carbonate resin. These manufacturing methods will be described.
(Polycarbonate resin)
The polycarbonate resin is a resin obtained by reacting a dihydroxy component and a carbonic acid diester component. In the present invention, the aforementioned BPEF is used as the dihydroxy component. The dihydroxy component and the carbonic acid diester component may be a single component, or two or more kinds of compounds may be used for each. That is, a copolymer component may be included.
Examples of dihydroxy components that can be used with BPEF include 1,1′-biphenyl-4,4′-diol, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, Bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ketone, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis ( 4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane 2,2-bis (4-hydroxyphenyl) hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 9,9-bis (4-hydroxy) Phenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, α, ω-bis [2- (p-hydroxyphenyl) ethyl] polydimethylsiloxane, α, ω-bis [3- ( o-hydroxyphenyl) propyl] polydimethylsiloxane, aromatic diols such as 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisphenol. In addition, aliphatic diols such as ethylene glycol and tricyclo [5.2.1.0 2,6 Decane dimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornane dimethanol, pentacyclopentadecane dimethanol, cyclopentane-1,3-dimethanol, spiroglycol, 1,4: An alicyclic diol such as 3,6-dianhydro-D-sorbitol, 1,4: 3,6-dianhydro-D-mannitol, 1,4: 3,6-dianhydro-L-iditol may also be included. These may be used alone or in combination of two or more.
Examples of the carbonic acid diester include diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, and dinaphthyl carbonate. Among them, diphenyl carbonate is preferable. These aromatic carbonic acid diesters may be used alone or in combination of two or more.
As a method for producing a polycarbonate resin, an ester exchange reaction between a dihydroxy component and a carbonic acid diester is preferably employed.
In the transesterification reaction, a diol and bisaryl carbonate are mixed in the presence of an inert gas, and usually 120 to 350 ° C. under reduced pressure in the presence of a mixed catalyst comprising an alkali metal compound catalyst or an alkaline earth metal compound or both. The reaction is preferably carried out at 150 to 300 ° C. The degree of vacuum is changed stepwise, and finally the alcohol produced at 133 Pa or less is distilled out of the system. The reaction time is usually about 1 to 4 hours.
As a polymerization catalyst, an alkali metal compound or an alkaline earth metal compound may be used as a main component, and a nitrogen-containing basic compound may be used as a subsidiary component if necessary.
The alkali metal compound used as the catalyst is sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate. Sodium stearate, potassium stearate, lithium stearate, sodium salt, potassium salt, lithium salt of bisphenol A, sodium benzoate, potassium benzoate, lithium benzoate and the like. Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like.
Nitrogen-containing basic compounds used as promoters include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine Etc.
These catalysts may be used alone or in combination of two or more, and the amount of these polymerization catalysts used is 10 with respect to a total of 1 mol of the dihydroxy component. -9 ~ 10 -3 Used in molar ratios. Moreover, you may add antioxidant, a heat stabilizer, etc. for a hue improvement.
In the polycarbonate resin, the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability. For alkali metal compounds or alkaline earth metal compounds, generally, a method of deactivating a catalyst by adding a known acidic substance is preferably carried out. Specific examples of the acidic substance for deactivation include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, butyl p-toluenesulfonate, and hexyl p-toluenesulfonate. Aromatic sulfonic acid esters, phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-phosphite Phosphites such as propyl, di-n-butyl phosphite, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, Phosphate esters such as dibutyl phosphate, dioctyl phosphate, monooctyl phosphate, diphenylphosphonic acid, dioctylphosphonic acid, dibutylphosphone Phosphonates such as diethyl phosphonate, phosphonates such as diethyl phenylphosphonate, phosphines such as triphenylphosphine and bis (diphenylphosphino) ethane, boric acids such as boric acid and phenylboric acid, tetrabutylphosphonium dodecylbenzenesulfonate Aromatic sulfonic acid salts such as stearic acid chloride, benzoyl chloride, p-toluenesulfonic acid chloride and the like, alkyl sulfuric acid such as dimethyl sulfate, and organic halides such as benzyl chloride are preferably used. These deactivators are used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times with respect to 1 mol of the catalyst. When the amount is less than 0.01 times the catalyst amount, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times with respect to the amount of catalyst, since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
After deactivation of the catalyst, a step of devolatilizing and removing the low boiling point compound in the resin at a pressure of 133 to 13.3 Pa and a temperature of 200 to 320 ° C. may be provided.
(Polyester resin)
The polyester resin is a resin obtained by reacting a dihydroxy component with a dicarboxylic acid component containing dicarboxylic acid and / or a reactive derivative thereof. The aforementioned BPEF is used as the dihydroxy component of the present invention. Each of the dihydroxy component and the dicarboxylic acid component may be a single component, or the dihydroxy component and / or the dicarboxylic acid component may include two or more compounds, that is, may include a copolymer component.
Other dihydroxy components that can be used with BPEF include alkylene glycols (eg, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, tetramethylene glycol (1,4-butanediol), hexanediol, neo Linear or branched C such as pentyl glycol, octanediol, decanediol 2-12 (Poly) oxyalkylene glycol (for example, diethylene glycol, triethylene glycol, dipropylene glycol); and the like. These diols can be used alone or in combination of two or more.
Preferred examples of diols used in combination with BPEF are linear or branched C 2-10 And more preferably linear or branched C 2-6 An alkylene glycol, more preferably linear or branched C 2-4 An alkylene glycol (for example, ethylene glycol, propylene glycol, tetramethylene glycol (1,4-butanediol)).
Typical dicarboxylic acids include, for example, alkane dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, etc.), alkene dicarboxylic acids (maleic acid, fumaric acid, etc.) aliphatic dicarboxylic acids; cycloalkane dicarboxylic acids Alicyclic dicarboxylic acids such as acids (cyclohexanedicarboxylic acid etc.), di- or tricycloalkanedicarboxylic acids (decalin dicarboxylic acid, norbornane dicarboxylic acid, adamantane dicarboxylic acid etc.); arene dicarboxylic acids (terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, anthracene dicarboxylic acid and the like), and biphenyl dicarboxylic acid (such as 2,2′-biphenyldicarboxylic acid) and the like. In addition, these reactive derivatives (acid anhydrides such as hexahydrophthalic anhydride and tetrahydrophthalic anhydride, lower grades such as dimethyl ester and diethyl ester (C 1-4 ) Derivable esters such as alkyl esters and acid halides corresponding to dicarboxylic acids) can be used.
These dicarboxylic acids may be used alone or in combination of two or more. Of these, cyclohexanedicarboxylic acid and terephthalic acid are preferable because they are inexpensive and easily available industrially.
In the present embodiment, a dicarboxylic acid component (dicarboxylic acid and / or ester-forming dicarboxylic acid derivative) and a dihydroxy component containing BPEF are subjected to a melt polymerization method such as a transesterification method or a direct polymerization method, a solution polymerization method, an interface The polyester resin can be obtained by reacting according to various methods such as a polymerization method. Among these, a melt polymerization method using no reaction solvent is preferable.
The transesterification method, which is one of the melt polymerization methods, is a method in which a polyester is obtained by reacting a dicarboxylic acid ester with a diol compound in the presence of a catalyst and transesterifying while distilling off the generated alcohol. Used for the synthesis of polyester resins.
As a catalyst for the transesterification reaction, it is desirable to use at least one metal compound. Examples of the metal element contained in the preferred metal compound include sodium, potassium, calcium, titanium, lithium, magnesium, manganese, zinc, tin, and cobalt. Among these, calcium and manganese compounds are preferable because of high reactivity and good color tone of the resulting resin. The amount of transesterification catalyst used is 10 with respect to the polyester resin produced. -9 ~ 10 -3 Used in molar ratios.
In the direct polymerization method, a polyester resin is obtained by performing a dehydration reaction between a dicarboxylic acid and a diol compound to form an ester compound, and then performing an ester exchange reaction while distilling off excess diol compound under reduced pressure. Is the method. The direct polymerization method has the advantage that no distillate of alcohol is used unlike the transesterification method, and an inexpensive dicarboxylic acid can be used as a raw material.
As a catalyst for the polymerization reaction in carrying out these melt polymerization methods, it is preferable to use at least one metal compound. Preferred metal elements include titanium, germanium, antimony, aluminum and the like. Among these, titanium and germanium compounds are particularly preferable for optical resins because of their high reactivity and excellent transparency and color tone of the resulting resin. The amount of the polymerization catalyst used is 10 with respect to the produced polyester resin. -9 ~ 10 -3 Used in molar ratios.
Moreover, when manufacturing a polyester resin, in order to advance a polymerization reaction smoothly, after a transesterification reaction is complete | finished, it is desirable to use a phosphorus compound equimolar or more with a transesterification catalyst. Examples of phosphorus compounds include phosphoric acid, phosphorous acid, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trimethyl phosphite, triethyl phosphite, tributyl phosphite and the like. Among these, trimethyl phosphate is particularly preferable. The amount of the phosphorus compound used is 10 with respect to the produced polyester resin. -9 ~ 10 -3 Used in molar ratios.
In the transesterification reaction, a dihydroxy component, a dicarboxylic acid component, and a copolymerization component used as needed are charged into a reaction vessel equipped with a heating device, a stirrer and a distillation pipe, and a reaction catalyst is added to normal pressure inert gas atmosphere. The temperature is increased while stirring, and the reaction is allowed to proceed while distilling off by-products such as methanol produced by the reaction. The reaction temperature is 150 ° C. to 270 ° C., preferably 160 ° C. to 260 ° C., and the reaction time is usually 3 to 7 hours.
The polymerization reaction is carried out, for example, using a product after completion of the transesterification reaction in a reaction vessel equipped with a heating device, a stirrer, a distilling tube, and a vacuum addition device. If these conditions are satisfied, the polymerization reaction can be continued in the same reaction vessel used in the transesterification reaction.
The polymerization reaction is performed, for example, after adding a catalyst to the reaction vessel containing the product after completion of the transesterification reaction, while gradually raising the temperature and reducing the pressure in the reaction vessel. The pressure in the tank is finally reduced from atmospheric pressure to 0.4 kPa or less, preferably 0.2 kPa or less. The temperature in the tank is raised from 220 to 230 ° C., and finally raised to 250 to 350 ° C., preferably 260 to 320 ° C. After reaching a predetermined torque, the reaction product is extruded from the bottom of the tank. to recover. In the usual case, the reaction product can be extruded into water as a strand, cooled and then cut to obtain a pellet-shaped polyester resin.
After the completion of the polymerization reaction, a step of devolatilizing and removing the low boiling point compound in the resin at a pressure of 133 to 13.3 Pa and a temperature of 200 to 320 ° C. may be provided.
(Polyester carbonate resin)
The polyester carbonate resin is a resin obtained by reacting a dihydroxy component, a dicarboxylic acid, and a carbonic acid diester component. In the present invention, the aforementioned BPEF is used as the dihydroxy component. The dihydroxy component, dicarboxylic acid component and carbonic acid diester component may each be a single component, or each of the dihydroxy component, dicarboxylic acid component and carbonic acid diester component may contain two or more compounds.
Dihydroxy components that can be used in the present invention with BPEF include aliphatic diols such as ethylene glycol, tricyclo [5.2.1.0. 2,6 Decane dimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornane dimethanol, pentacyclopentadecane dimethanol, cyclopentane-1,3-dimethanol, spiroglycol, 1,4: Alicyclic diols such as 3,6-dianhydro-D-sorbitol, 1,4: 3,6-dianhydro-D-mannitol, 1,4: 3,6-dianhydro-L-iditol, 1,1′-biphenyl -4,4'-diol, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfoxide, bis ( 4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bi (4-hydroxyphenyl) ketone, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-) 3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3- Methylphenyl) fluorene, α, ω-bis [2- (p-hydroxyphenyl) ethyl] polydimethylsiloxane , Α, ω-bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane, 4,4 ′-[1,3-phenylenebis (1-methylethylidene) hydroxyphenyl) -1-phenylethane, bisphenol Aromatic diols such as A can be mentioned. You may use these individually or in combination of 2 or more types.
The dicarboxylic acid component in the polyester carbonate resin includes terephthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, ethylmalonic acid and other aliphatic dicarboxylic acids, isophthalic acid, monocyclic aromatic dicarboxylic acid such as tert-butylisophthalic acid, polycyclic aromatic dicarboxylic acid such as naphthalenedicarboxylic acid, anthracene dicarboxylic acid and phenanthrene dicarboxylic acid, biphenyldicarboxylic acid such as 2,2′-biphenyldicarboxylic acid, Examples thereof include alicyclic dicarboxylic acids such as 1,4-cyclodicarboxylic acid and 2,6-decalin dicarboxylic acid. You may use these individually or in combination of 2 or more types. Of these, terephthalic acid is preferred. In addition, acid chlorides and esters are used as these derivatives.
Examples of the carbonic diester component used in the production of the polyester carbonate resin include diphenyl carbonate, bischloroformate of the above dihydric phenols, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, di- A naphthyl carbonate etc. are mentioned, Especially, a diphenyl carbonate is preferable.
As a method for producing a polyester carbonate resin, a method used for producing a normal polyester carbonate resin is arbitrarily employed. Transesterification of a dihydroxy component with a dicarboxylic acid component and a carbonic acid diester component is preferably employed.
In the transesterification reaction, a diol and a dicarboxylic acid or a diester thereof and a bisaryl carbonate are mixed in the presence of an inert gas, and reacted at 120 to 350 ° C., preferably 150 to 300 ° C. under reduced pressure. The degree of vacuum is changed stepwise, and finally the alcohols produced at 1 mmHg or less are distilled out of the system. The reaction time is usually about 1 to 4 hours.
In the transesterification reaction, a polymerization catalyst can be used to promote the reaction. As such a polymerization catalyst, an alkali metal compound, an alkaline earth metal compound or a heavy metal compound may be used as a main component, and a nitrogen-containing basic compound may be used as a subsidiary component if necessary.
Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, sodium stearate. , Potassium stearate, lithium stearate, sodium salt of bisphenol A, potassium salt, lithium salt, sodium benzoate, potassium benzoate, lithium benzoate and the like. Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like.
Examples of the nitrogen-containing basic compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine and the like.
Other transesterification catalysts include zinc, tin, zirconium, lead, titanium, germanium, antimony, osmium, and aluminum salts, such as zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin chloride (II ), Tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, acetic acid Lead (IV) titanium tetrabutoxide (IV) or the like is used.
These catalysts may be used alone or in combination of two or more. The amount of these polymerization catalysts used is 10 with respect to a total of 1 mol of diol and dicarboxylic acid. -9 ~ 10 -3 Used in molar ratios. These may be used alone or in combination of two or more. In the transesterification reaction, a diaryl carbonate having an electron-withdrawing substituent may be added at a later stage or after completion of the polycondensation reaction in order to reduce the hydroxy end group. Furthermore, an antioxidant or a heat stabilizer may be added to improve the hue.
In the polyester carbonate resin, the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability. For alkali metal compounds or alkaline earth metal compounds, generally, a method of deactivating a catalyst by adding a known acidic substance is preferably carried out. Specific examples of these substances include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, and aromatic sulfonic acids such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate. Esters, phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, phosphorous acid Phosphorous esters such as di-n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphorus Phosphate esters such as dioctyl acid and monooctyl phosphate, phosphones such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid , Phosphonic acid esters such as diethyl phenylphosphonate, phosphines such as triphenylphosphine and bis (diphenylphosphino) ethane, boric acids such as boric acid and phenylboric acid, and aromatics such as tetrabutylphosphonium dodecylbenzenesulfonate Organic halides such as aromatic sulfonates, stearic acid chloride, benzoyl chloride, p-toluenesulfonic acid chloride, alkyl sulfuric acids such as dimethyl sulfate, and organic halides such as benzyl chloride are preferably used. These deactivators are used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times with respect to 1 mol of the catalyst. When the amount is less than 0.01 times the catalyst amount, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times mole with respect to the amount of catalyst, since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
After deactivation of the catalyst, a step of devolatilizing and removing the low boiling point compound in the resin at a pressure of 133 to 13.3 Pa and a temperature of 200 to 320 ° C. may be provided.
(Pellet b value)
The thermoplastic resin obtained by the present invention has a b value of -1.0 to 10.0, preferably -1.0 to 7.0, more preferably -1.0 to 5.0, after the polymerization. It is preferable that it is the range of these. If the pellet b value is outside the above range, an optical component with good hue cannot be obtained, which is not preferable.
(Specific viscosity)
The thermoplastic resin obtained by the present invention is preferably one having 0.7 g of the polymer dissolved in 100 ml of methylene chloride and having a specific viscosity in the range of 0.12 to 0.55 measured at 20 ° C. The thing of the range of 0.45 is more preferable. If the specific viscosity is less than 0.12, the molded product becomes brittle, and if it is higher than 0.55, the melt viscosity and the solution viscosity become high and handling becomes difficult.
(Melt viscosity)
The thermoplastic resin obtained by the present invention preferably has a melt viscosity of 30 to 300 Pa · s at 280 ° C. and a shear rate of 100 / sec, more preferably 30 to 200 Pa · s. When it is 300 Pa · s or more, handling is difficult in forming a molded product, which is not preferable.
(Number of gels)
In the thermoplastic resin obtained by the present invention, the number of gels is preferably 10 or less per 50 g of resin. More preferably, it is 5 or less, and more preferably 0. When gel exists in resin, when resin is used as a molded article or a film, it becomes a foreign material and is not preferable.
 以下に実施例によって本発明の具体例を説明するが、本発明はその要旨を逸脱しない限り以下の実施例によって限定されるものではない。
 実施例等に用いた、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(BPEF)の純度、フェニキシエタノールの含有量、多量体の含有量、残存硫黄化合物量、各種粉状体の特定は、下記の方法で測定した。また、樹脂の比粘度、樹脂ペレットb値、樹脂溶融粘度も、下記の方法で測定した。
(1)BPEFの純度、フェノキシエタノール含有量、多量体含有量:
 chemco製KROMASIL 5C18のカラムにて溶離液メタノール/水の混合液を用いて、カラム温度40℃、検出器254nmで0min:メタノール60%、0→20min:メタノール60→95%、20→40min:メタノール100%、40→47min:メタノール100→60%のグラジエントプログラムにてHPLC分析した。測定は、モノマー10mgをメタノール/水(3:2)10mlに溶解させた後、孔径0.2μmのPTFEフィルターでろ過し、測定を行った。フェノキシエタノール、多量体の含有量は、検出されるピーク面積を含有率とした。
(2)多量体(三量体、四量体)の同定:
 chemco製KROMASIL 5C18のカラムにて1mMヨウ化ナトリウム水溶液/1mMヨウ化ナトリウムメタノール溶液の混合溶液を用いて、カラム温度40℃、検出器254nmで0min:メタノール60%、0→20min:メタノール60→95%、20→40min:メタノール100%、40→47min:メタノール100→60%のグラジエントプログラムにてLCにて各成分を分離した後、ブルカー・ダルトニクス製 microTOF foucus型マススペクトルにて多量体の同定を行った。なお、LC(液体クロマトグラフィ)測定は、試料濃度を0.7wt%に調整し、孔径0.2μmのPTFEフィルターでろ過し、測定を行った。
(3)水含有量:
 三菱化学製 自動水分気化装置VA124S、電量滴定式水分測定装置CA200を用いて定量した。
(4)トルエン含有量:
 BPEF1gを200℃加熱のHS−GC/MSにて、2時間測定した。標準物質を用い、ピーク面積割合と含有量についての検量線を作成し、含有量を算出した。
(5)イオウ含有量(S量):ヤナコ製SQ−1型/HSU−35型とダイオネクス製ICS−2000型自動燃焼ハロゲン・硫黄分析システムを用いて定量を行った。
(6)安息角測定:セイシン企業製多機能粉体物性測定器を用いて、BPEFの安息角の測定を行った。測定条件は、Φ80mmのテーブルに試料を70mmの高さより漏斗を用いて自然落下させた状態で形成される粉状体の山の角度を安息角とした。
(7)粉状体SEM観察:
 HITACHI製S−3400Nを用い、SEM観察を行った。BPEFの粉状体の前処理は、BPEF粉状体を測定基盤に接着した両面テープ上に噴霧・接着させ、スポイトを用い風圧で接着していない粉状体を取り除き、その後、HITACHI製E−1030を用い、真空度10~15Pa、100~20秒間白金スパッタ処理を行い、測定試料を作成した。測定倍率100倍で観察した。その後、JTrim ver.1.53Cを用い、粉状体と背景を画像処理にて色分けし、LIA32 for Win32 ver.0.376β1を用いて粉状体の総面積を算出した。さらにスケールを用いて目視により面積が1.0×10μm以上となる粉状体を特定し、粉状体の総面積との面積比より、1.0×10μm以上となる粉状体の含有量を%で算出した。
(8)BPEFの流動性:
 直径2m、高さ3.2m、傾斜角度50度の円錐状バンカーを用い、粉状体の流動性を評価した。評価は、閉塞しない◎、閉塞しないがラットホールの形成が見られる○、閉塞×で分類した。
(9)BPEFの搬送性:
 クマエンジニアリング製KSC−44/55NKを用い、搬送距離3.5m、搬送角度50度、スクリュー回転数1500rpm、4.0m/Hrの搬送速度で、搬送性テストを行った。評価は、90分以上搬送可能な場合、搬送可能◎、90分間搬送可能であるが、スクリューに粉状体の固着が確認された場合を○、粉状体が固着することで機器が停止し、90分間運転できなかった場合を搬送不可×として分類した。
(10)樹脂ペレットb値:
 重合終了後に得られた樹脂ペレットをガラスセルに入れ、日本電色工業製色差計SE−2000を用いてペレットb値を測定した。
(11)ゲル個数:
 得られた熱可塑性樹脂50gを塩化メチレンに溶解させ、20μmメッシュのシルクスクリーンでろ過し、シルクスクリーン上の残渣を254nmの波長の光線を照射し、発光するゲルをカラー3Dレーザ顕微鏡を用いてカウントし、ゲル個数とした。
(12)樹脂溶融粘度:
 東洋精機製作所製CAPIROGRAH1Dにより直径1mm、長さ10mmのノズルを用い、280℃、せん断速度100/secにおける溶融粘度を測定した。
(13)射出成形方法:
 得られた熱可塑性樹脂を100℃で4時間真空乾燥した後、ベント付きφ30mm二軸押出機を用いてペレット化し、100℃にて8時間加熱乾燥した。その後、成形温度Tg+110℃、金型温度Tg−10℃にて、住友重機械(株)製SE30DU射出成形機を用いて厚さ0.6mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズおよび、幅2.5cm、長さ5cm、厚みがそれぞれ1mmの成形片を射出成形した。
(14)成形性:
 成形後のレンズの充填不良、各成形不良を目視にて確認した。評価は、100ショット成形した際に欠陥品となる個数より成形不良率を算出し、成形不良率が1%未満(◎)、1~5%(○)、5%より多い(×)で分類した。
合成例1
(反応工程)
 攪拌機、冷却管およびビュレットを備えたガラス製反応器にトルエン1080g、純度99.5%のフルオレノン350g(1.94モル)とフェノキシエタノール(以下“PhE”と省略することがある)1070g(7.78モル)を仕込み(PhE/フルオレノン=4)、β−メルカプトプロピオン酸2.3gを加えて撹拌した混合液に、反応温度を50℃に保持しつつ、98重量%の硫酸570gを60分かけて滴下した。滴下終了後、トルエン還流下、反応により生成する水を系外に除去しながら5時間攪拌共沸脱水した。
(中和工程)
 合成反応終了後、温度80℃を保持しつつ、反応混合液に48重量%水酸化ナトリウム水溶液920gを滴下した。
(水洗工程)
 滴下後にトルエン3.5kg、水1.0kgを加え85℃にて洗浄した。水相を除去したのち、有機相をさらに85℃の水で5回洗浄した。
(濃縮工程)
 得られた有機層を減圧濃縮することにより、トルエンおよび過剰の2−フェノキシエタノールを除去し、BPEFを結晶化させた。
(脱色工程)
 結晶化したBPEFをメタノールに完全溶解し、活性炭(NoritSX Plus)100gを加え1時間攪拌し活性炭で脱色処理した。その後、メタノールを除去し、BPEFを固化させた。
(予備晶析工程)
 脱色工程後に得られたBPEFを25g秤量し、トルエン500gを加え、90℃に加熱することで、溶質5重量%の均一溶液とした。この液を攪拌しながら、毎分2℃の速度で30℃まで冷却し、BPEF粗結晶を得た。
 このBPEF粗結晶は、HPLCにて純度98.5%であり、残存PhE量は、0.2%、残存多量体量は0.8%であった。
(晶析工程)
 得られたBPEF粗結晶を25g秤量し、トルエン500gを加え、90℃に加熱することで、溶質5重量%の均一溶液とした。この液を攪拌しながら、毎分2℃の速度で30℃まで冷却した。析出開始温度は45℃であった。
 析出した結晶を濾過により取り出し、容器回転揺動型乾燥機にて70℃、6時間、1.0KPaで減圧乾燥させることにより、BPEF(1)を得た。その後、アルミ防湿袋に収袋して保管した。
合成例2
 仕込み量をトルエン1080g、純度99.5%のフルオレノン350g(1.94モル)とPhE803g(5.84モル)とする以外は、合成例1と同様にしてBPEF(2)を得た。
合成例3
 仕込み量をトルエン1080g、純度99.5%のフルオレノン350g(1.94モル)とPhE2140g(15.56モル)とする以外は、合成例1と同様にしてBPEF(3)を得た。
合成例4
 仕込み量をトルエン1080g、純度99.5%のフルオレノン350g(1.94モル)とPhE1070g(7.78モル)とし、容器回転揺動型乾燥機にて70℃、0.5時間、1.0KPaで減圧乾燥させること以外は、合成例1と同様にしてBPEF(4)を得た。
比較合成例1
 攪拌機、冷却管およびビュレットを備えたガラス製反応器にトルエン1080g、純度99.5%のフルオレノン350g(1.94モル)とフェノキシエタノール(PhE)653g(3.8モル)を仕込み(PhE/フルオレノン=1.96)とする以外は、合成例1と同様にしてBPEF(5)を得た。
比較合成例2
 仕込み量をトルエン1080g、純度99.5%のフルオレノン350g(1.94モル)とPhE1070g(7.78モル)(PhE/フルオレノン=4)とし、精製工程での濃縮工程、脱色工程を行わず、晶析工程において溶媒にメタノールを使用する以下は、合成例1と同様にしてBPEF(6)を得た。
 合成例1~4は、不純物である多量体の含有量が少ない。さらに安息角も小さく、水分量、残存溶媒量も少なく良好である。
 比較合成例1、2は、三量体、四量体が多い。さらに比較合成例2は、安息角が大きく、流動性・搬送性に劣り、樹脂の原料に使用する際に反応釜に仕込める量が少なくなり、生産効率が低下する。
Figure JPOXMLDOC01-appb-T000005
実施例1 ポリカーボネート(PC)樹脂
 合成例1で得られたBPEF(1)21.0kg、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下“Bis−A”と省略することがある)2.81kg、ジフェニルカーボネート(以下“DPC”と省略することがある)13.17kg、炭酸水素ナトリウム7.5×10−2gを攪拌機および留出装置付きの60L反応釜に入れ、窒素置換を3度行った後、窒素雰囲気101kPaの下、215℃に加熱し、20分間撹拌した。完全溶解後、15分かけて20kPaに調整し、215℃、20kPaの条件下で20分保持し、エステル交換反応を行った。さらに37.5℃/hrの速度で240℃まで昇温、240℃、16kPaで10分保持した。その後、10分かけて13kPaに調整し、240℃、13kPaで70分保持した。その後、10分かけて1.3kPaに調整し、240℃、1.3kPaで10分保持した。さらに40分かけて130Pa以下とし、240℃、130Pa以下の条件下で1時間攪拌下重合反応を行った。反応終了後、反応器内に窒素を吹き込み加圧にし、生成した樹脂をペレタイズしながら抜き出した。該ペレットは無色透明であった。
実施例2 ポリエステル(Pest)樹脂
 合成例1におけるBPEF(1)17.97kg、テレフタル酸ジメチル(以下“DMT”と省略することがある)11.70kg、エチレングリコール(以下“EG”と省略することがある)2.39kg、チタンテトラブトキシド2.06×10−2gを攪拌機および留出装置付きの60L反応釜に入れ、窒素置換を3度行った後、窒素雰囲気101kPaの下、220℃に加熱し、20分間撹拌した。完全溶解後、220℃で脱メタノールを行った。ほとんど留出が終了した後、リン酸トリメチル17.1mlおよび、0.5%酸化ゲルマニウム水溶液1.85mlを加え、280℃まで、60分かけて昇温と同時に、150分かけて真空度を上げて13.3Pa以下の条件下で3時間攪拌下重合反応を行った。反応終了後、反応器内に窒素を吹き込み加圧にし、生成した樹脂をペレタイズしながら抜き出した。該ペレットは無色透明であった。
実施例3 ポリエステルカーボネート(PEC)樹脂
 合成例1におけるBPEF(1)21.05kg、DMT2.33kg、DPC8.23kg、チタンテトラブトキシド20.4×10−1gを攪拌機および留出装置付きの反応釜に入れ、窒素雰囲気の下、180℃に加熱し、20分間撹拌した。その後、20分かけて減圧度を20kPaに調整し、60℃/hrの速度で250℃まで昇温、エステル交換反応を行った。その後、250℃に保持したまま、120分かけて130Pa以下まで減圧し、250℃、130Pa以下の条件下で1時間攪拌下重合反応を行った。その後、生成した樹脂をペレタイズしながら抜き出した。該ペレットは無色透明であった。
実施例4 ポリエステルカーボネート樹脂
 合成例2におけるBPEF(2)を用いる以外は、実施例3と同様に重合した。反応終了後、反応器内に窒素を吹き込み加圧にし、生成した樹脂をペレタイズしながら抜き出した。該ペレットは無色透明であった。
比較例1 ポリエステルカーボネート樹脂
 比較合成例1で得られたBPEF(5)21.05kg、DMT2.33kg、DPC8.23kg、チタンテトラブトキシド20.4×10−1gを攪拌機および留出装置付きの反応釜に入れ、窒素置換を3度行った後、その後、20分かけて減圧度を20kPaに調整し、60℃/hrの速度で250℃まで昇温、エステル交換反応を行った。その後、250℃に保持したまま、120分かけて130Pa以下まで減圧し、250℃、130Pa以下の条件下で1時間攪拌下重合反応を行った。その後、生成した樹脂をペレタイズしながら抜き出した。該ペレットは黄色に着色した。
比較例2 ポリエステルカーボネート樹脂
 比較合成例2におけるBPEF(6)11.05kg、DMT2.33kg、DPC8.23kgを攪拌機および留出装置付きの反応釜に入れ、窒素雰囲気の下、180℃に加熱し、20分間撹拌した。完全溶解後、比較合成例2で得られたBPEF(6)10.0kg、チタンテトラブトキシド20.4×10−1gを反応容器に追加した以外は、比較例1と同様に重合した。反応終了後、反応器内に窒素を吹き込み加圧にし、生成した樹脂をペレタイズしながら抜き出した。該ペレットは黄色に着色した。
 実施例1~4の樹脂は、溶融粘度が低く成形流動性に優れ、色相も良好であり、さらにゲル数の少なく、光学成形品やフィルムに好適に使用できる。
 比較例1、2は、BPEF中の三量体、四量体の含有量が多く、樹脂の溶融粘度が高くなり、成形流動性が低い。また、樹脂中のゲル個数も多い。さらに比較例2は、原料投入を二回に分けて仕込む必要があり生産効率に劣る。さらに、仕込み時の酸素の影響で色相が悪化した。
Figure JPOXMLDOC01-appb-T000006
EXAMPLES Specific examples of the present invention will be described below with reference to examples, but the present invention is not limited to the following examples without departing from the gist thereof.
Purity of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (BPEF), phenoxyethanol content, multimer content, residual sulfur compound content, various powders used in Examples and the like The identification of the shape was measured by the following method. The specific viscosity of the resin, the resin pellet b value, and the resin melt viscosity were also measured by the following methods.
(1) BPEF purity, phenoxyethanol content, multimer content:
Using a mixture of eluent methanol / water in a column of chemco KROMASIL 5C18, column temperature 40 ° C., detector 254 nm, 0 min: methanol 60%, 0 → 20 min: methanol 60 → 95%, 20 → 40 min: methanol 100%, 40 → 47 min: HPLC analysis was performed with a gradient program of methanol 100 → 60%. The measurement was performed by dissolving 10 mg of the monomer in 10 ml of methanol / water (3: 2) and then filtering with a PTFE filter having a pore size of 0.2 μm. For the content of phenoxyethanol and multimers, the detected peak area was defined as the content rate.
(2) Identification of multimers (trimers, tetramers):
Using a mixed solution of 1 mM sodium iodide aqueous solution / 1 mM sodium iodide methanol solution in a column of chemco KROMASIL 5C18, 0 min: 60% of methanol, 0 → 20 min: methanol 60 → 95 at a column temperature of 40 ° C. and a detector at 254 nm. %, 20 → 40 min: methanol 100%, 40 → 47 min: methanol 100 → 60% after separation of each component by LC, identification of multimers by Bruker Daltonics microTOF focus type mass spectrum went. LC (liquid chromatography) measurement was performed by adjusting the sample concentration to 0.7 wt% and filtering with a PTFE filter having a pore size of 0.2 μm.
(3) Water content:
It quantified using Mitsubishi Chemical's automatic moisture vaporizer VA124S and coulometric titration moisture analyzer CA200.
(4) Toluene content:
1 g of BPEF was measured for 2 hours by HS-GC / MS heated at 200 ° C. Using a standard substance, a calibration curve for the peak area ratio and content was prepared, and the content was calculated.
(5) Sulfur content (S amount): Quantitative determination was performed using a Yanaco SQ-1 type / HSU-35 type and a Dionex ICS-2000 type automatic combustion halogen / sulfur analysis system.
(6) Angle of repose measurement: The angle of repose of BPEF was measured using a multifunctional physical property measuring instrument manufactured by Seishin Enterprise. The angle of repose was defined as the angle of repose of the powdery body formed in a state where the sample was naturally dropped on a Φ80 mm table from a height of 70 mm using a funnel.
(7) Powder SEM observation:
SEM observation was performed using S-3400N manufactured by HITACHI. The BPEF powder is pretreated by spraying and adhering the BPEF powder on the double-sided tape that is bonded to the measurement substrate, removing the powder that is not bonded by wind pressure using a dropper, and then E-made by HITACHI. Using 1030, a platinum sputtering process was performed for 100 to 20 seconds at a degree of vacuum of 10 to 15 Pa to prepare a measurement sample. Observation was performed at a measurement magnification of 100 times. Then, JTrim ver. 1.53C, the powdery body and the background are color-coded by image processing, and LIA32 for Win32 ver. The total area of the powder was calculated using 0.376β1. Furthermore, a powdery body having an area of 1.0 × 10 4 μm 2 or more is identified by visual observation using a scale, and becomes 1.0 × 10 4 μm 2 or more from the area ratio with the total area of the powdery body. The content of the powder was calculated in%.
(8) BPEF fluidity:
Using a conical bunker having a diameter of 2 m, a height of 3.2 m, and an inclination angle of 50 degrees, the fluidity of the powder was evaluated. The evaluation was classified according to ◎ which is not occluded, ○ which is not occluded but formation of a rat hole, and occlusion ×.
(9) BPEF transportability:
Using KSC-44 / 55NK manufactured by Kuma Engineering, a transportability test was performed at a transport distance of 3.5 m, a transport angle of 50 degrees, a screw rotation speed of 1500 rpm, and a transport speed of 4.0 m 3 / Hr. Evaluation is possible if it can be transported for 90 minutes or more, it can be transported ◎, it can be transported for 90 minutes, ○ if the powder is firmly fixed to the screw, ○, the equipment stops when the powder is fixed The case where the operation could not be performed for 90 minutes was classified as “no conveyance”.
(10) Resin pellet b value:
The resin pellet obtained after completion | finish of superposition | polymerization was put into the glass cell, and the pellet b value was measured using Nippon Denshoku Industries color difference meter SE-2000.
(11) Number of gels:
50 g of the obtained thermoplastic resin was dissolved in methylene chloride, filtered through a 20 μm mesh silk screen, the residue on the silk screen was irradiated with light having a wavelength of 254 nm, and the emitted gel was counted using a color 3D laser microscope. And the number of gels.
(12) Resin melt viscosity:
Using a nozzle with a diameter of 1 mm and a length of 10 mm, a melt viscosity at 280 ° C. and a shear rate of 100 / sec was measured with a Capirograh 1D manufactured by Toyo Seiki Seisakusho.
(13) Injection molding method:
The obtained thermoplastic resin was vacuum-dried at 100 ° C. for 4 hours, then pelletized using a vented φ30 mm twin screw extruder, and heat-dried at 100 ° C. for 8 hours. Thereafter, a lens having a thickness of 0.6 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm using a SE30DU injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. at a molding temperature of Tg + 110 ° C. and a mold temperature of Tg-10 ° C. And a molded piece having a width of 2.5 cm, a length of 5 cm, and a thickness of 1 mm was injection molded.
(14) Formability:
The lens filling failure after molding and each molding failure were confirmed visually. Evaluation is based on the number of defective moldings when 100 shots are molded, and the molding defect rate is less than 1% (◎), 1-5% (○), and more than 5% (×). did.
Synthesis example 1
(Reaction process)
In a glass reactor equipped with a stirrer, a condenser tube and a burette, 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and 1070 g (7.78) may be abbreviated as “PhE”. Mol) was added (PhE / fluorenone = 4), and 2.3 g of β-mercaptopropionic acid was added and stirred. While maintaining the reaction temperature at 50 ° C., 570 g of 98% by weight sulfuric acid was added over 60 minutes. It was dripped. After completion of the dropwise addition, the mixture was stirred and azeotropically dehydrated for 5 hours under toluene reflux while removing water produced by the reaction.
(Neutralization process)
After the completion of the synthesis reaction, 920 g of a 48 wt% aqueous sodium hydroxide solution was added dropwise to the reaction mixture while maintaining the temperature at 80 ° C.
(Washing process)
After the dropwise addition, 3.5 kg of toluene and 1.0 kg of water were added and washed at 85 ° C. After removing the aqueous phase, the organic phase was further washed 5 times with 85 ° C. water.
(Concentration process)
By concentrating the obtained organic layer under reduced pressure, toluene and excess 2-phenoxyethanol were removed, and BPEF was crystallized.
(Decolorization process)
Crystallized BPEF was completely dissolved in methanol, 100 g of activated carbon (NoritSX Plus) was added, stirred for 1 hour, and decolorized with activated carbon. Then, methanol was removed and BPEF was solidified.
(Preliminary crystallization process)
25 g of BPEF obtained after the decolorization step was weighed, 500 g of toluene was added, and the mixture was heated to 90 ° C. to obtain a uniform solution of 5 wt% solute. While stirring this solution, it was cooled to 30 ° C. at a rate of 2 ° C. per minute to obtain BPEF crude crystals.
This BPEF crude crystal had a purity of 98.5% by HPLC, the residual PhE amount was 0.2%, and the residual multimer amount was 0.8%.
(Crystallization process)
25 g of the obtained BPEF crude crystals were weighed, 500 g of toluene was added, and the mixture was heated to 90 ° C. to obtain a uniform solution of 5 wt% solute. The solution was cooled to 30 ° C. at a rate of 2 ° C. per minute while stirring. The deposition start temperature was 45 ° C.
The precipitated crystals were taken out by filtration and dried under reduced pressure at 1.0 KPa for 6 hours at 70 ° C. in a container rotary swing dryer to obtain BPEF (1). Thereafter, the bag was stored in an aluminum moisture-proof bag.
Synthesis example 2
BPEF (2) was obtained in the same manner as in Synthesis Example 1, except that the amount charged was 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and PhE 803 g (5.84 mol).
Synthesis example 3
BPEF (3) was obtained in the same manner as in Synthesis Example 1 except that the amount charged was 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and 2140 g (15.56 mol) of PhE.
Synthesis example 4
The amount charged is 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and 1070 g (7.78 mol) of PhE, and 70 ° C., 0.5 hour, 1.0 KPa in a container rotary rocking dryer. BPEF (4) was obtained in the same manner as in Synthesis Example 1 except that drying under reduced pressure was performed.
Comparative Synthesis Example 1
A glass reactor equipped with a stirrer, a condenser tube and a burette was charged with 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and 653 g (3.8 mol) of phenoxyethanol (PhE) (PhE / fluorenone = BPEF (5) was obtained in the same manner as in Synthesis Example 1 except that 1.96).
Comparative Synthesis Example 2
The amount charged was 1080 g of toluene, 350 g (1.94 mol) of fluorenone having a purity of 99.5% and PhE1070 g (7.78 mol) (PhE / fluorenone = 4), and the concentration step and the decolorization step were not performed in the purification step. BPEF (6) was obtained in the same manner as in Synthesis Example 1 except that methanol was used as the solvent in the crystallization step.
Synthesis Examples 1 to 4 have a low content of multimers as impurities. Furthermore, the angle of repose is small, and the amount of water and the amount of residual solvent are small and good.
Comparative Synthesis Examples 1 and 2 have many trimers and tetramers. Further, Comparative Synthesis Example 2 has a large angle of repose, inferior fluidity and transportability, reduces the amount charged into the reaction kettle when used as a resin raw material, and decreases production efficiency.
Figure JPOXMLDOC01-appb-T000005
Example 1 Polycarbonate (PC) resin 21.0 kg of BPEF (1) obtained in Synthesis Example 1, 2,2-bis (4-hydroxyphenyl) propane (hereinafter sometimes abbreviated as “Bis-A”) 2 .81 kg, diphenyl carbonate (may be abbreviated as “DPC” hereinafter) 13.17 kg, sodium hydrogen carbonate 7.5 × 10 −2 g are placed in a 60 L reaction kettle equipped with a stirrer and a distiller, and nitrogen substitution is performed. Then, the mixture was heated to 215 ° C. under a nitrogen atmosphere of 101 kPa and stirred for 20 minutes. After complete dissolution, it was adjusted to 20 kPa over 15 minutes and held at 215 ° C. and 20 kPa for 20 minutes to conduct a transesterification reaction. Further, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr, and held at 240 ° C. and 16 kPa for 10 minutes. Then, it adjusted to 13 kPa over 10 minutes, and hold | maintained at 240 degreeC and 13 kPa for 70 minutes. Then, it adjusted to 1.3 kPa over 10 minutes, and hold | maintained at 240 degreeC and 1.3 kPa for 10 minutes. Furthermore, it was made 130 Pa or less over 40 minutes, and the polymerization reaction was performed with stirring for 1 hour under the conditions of 240 ° C. and 130 Pa or less. After completion of the reaction, nitrogen was blown into the reactor to increase the pressure, and the produced resin was extracted while pelletizing. The pellet was colorless and transparent.
Example 2 Polyester (Pest) Resin 17.97 kg of BPEF (1) in Synthesis Example 1, 11.70 kg of dimethyl terephthalate (hereinafter may be abbreviated as “DMT”), ethylene glycol (hereinafter abbreviated as “EG”) 2.39 kg, titanium tetrabutoxide 2.06 × 10 −2 g was placed in a 60 L reaction kettle equipped with a stirrer and a distiller, and was purged with nitrogen three times, and then at 220 ° C. under a nitrogen atmosphere of 101 kPa. Heat and stir for 20 minutes. After complete dissolution, methanol removal was performed at 220 ° C. After almost distilling, 17.1 ml of trimethyl phosphate and 1.85 ml of 0.5% aqueous solution of germanium oxide were added and the temperature was raised to 280 ° C. over 60 minutes and the vacuum was raised over 150 minutes. The polymerization reaction was carried out with stirring for 3 hours under the condition of 13.3 Pa or less. After completion of the reaction, nitrogen was blown into the reactor to increase the pressure, and the produced resin was extracted while pelletizing. The pellet was colorless and transparent.
Example 3 Polyester carbonate (PEC) resin 21.05 kg of BPEF (1) in Synthesis Example 1, 2.33 kg of DMT, 8.23 kg of DPC, 20.4 × 10 −1 g of titanium tetrabutoxide were added to a reaction kettle equipped with a stirrer and a distillation apparatus. And heated to 180 ° C. under a nitrogen atmosphere and stirred for 20 minutes. Thereafter, the degree of vacuum was adjusted to 20 kPa over 20 minutes, the temperature was raised to 250 ° C. at a rate of 60 ° C./hr, and a transesterification reaction was performed. Thereafter, while maintaining the temperature at 250 ° C., the pressure was reduced to 130 Pa or less over 120 minutes, and the polymerization reaction was performed with stirring for 1 hour under the conditions of 250 ° C. and 130 Pa or less. Thereafter, the produced resin was extracted while pelletizing. The pellet was colorless and transparent.
Example 4 Polyester carbonate resin Polymerization was conducted in the same manner as in Example 3 except that BPEF (2) in Synthesis Example 2 was used. After completion of the reaction, nitrogen was blown into the reactor to increase the pressure, and the produced resin was extracted while pelletizing. The pellet was colorless and transparent.
Comparative Example 1 Polyester carbonate resin 21.05 kg of BPEF (5) obtained in Comparative Synthesis Example 1, 2.33 kg of DMT, 8.23 kg of DPC and 20.4 × 10 −1 g of titanium tetrabutoxide were reacted with a stirrer and a distillation apparatus. After putting into a kettle and performing nitrogen substitution three times, the pressure reduction degree was adjusted to 20 kPa over 20 minutes, and then the temperature was raised to 250 ° C. at a rate of 60 ° C./hr to conduct a transesterification reaction. Thereafter, while maintaining the temperature at 250 ° C., the pressure was reduced to 130 Pa or less over 120 minutes, and the polymerization reaction was performed with stirring for 1 hour under the conditions of 250 ° C. and 130 Pa or less. Thereafter, the produced resin was extracted while pelletizing. The pellets were colored yellow.
Comparative Example 2 Polyester carbonate resin BPEF (6) 11.05 kg, DMT 2.33 kg, DPC 8.23 kg in Comparative Synthesis Example 2 were placed in a reaction kettle equipped with a stirrer and a distillation apparatus, and heated to 180 ° C. under a nitrogen atmosphere. Stir for 20 minutes. After complete dissolution, polymerization was carried out in the same manner as in Comparative Example 1 except that 10.0 kg of BPEF (6) obtained in Comparative Synthesis Example 2 and 20.4 × 10 −1 g of titanium tetrabutoxide were added to the reaction vessel. After completion of the reaction, nitrogen was blown into the reactor to increase the pressure, and the produced resin was extracted while pelletizing. The pellets were colored yellow.
The resins of Examples 1 to 4 have a low melt viscosity, excellent molding fluidity, a good hue, a small number of gels, and can be suitably used for optical molded products and films.
In Comparative Examples 1 and 2, the content of trimers and tetramers in BPEF is large, the melt viscosity of the resin is high, and the molding fluidity is low. In addition, the number of gels in the resin is large. Furthermore, Comparative Example 2 is inferior in production efficiency because it is necessary to charge the raw material in two steps. Furthermore, the hue deteriorated due to the influence of oxygen at the time of preparation.
Figure JPOXMLDOC01-appb-T000006
発明の効果The invention's effect
 本発明の製造方法によれば、色相が良好で成形流動性に優れ、ゲルの副生が少ない熱可塑性樹脂が得られる。本発明により得られる熱可塑性樹脂は、光学レンズやプリズム、光ディスク、光ファイバー、光学フィルム等の各種光学材料に用いることができる。 According to the production method of the present invention, a thermoplastic resin having a good hue, excellent molding fluidity and little by-product of gel can be obtained. The thermoplastic resin obtained by the present invention can be used for various optical materials such as optical lenses, prisms, optical disks, optical fibers, and optical films.
 本発明により得られる熱可塑性樹脂は、色相が良好で成形流動性に優れ、さらにゲルの副生を抑制できるため、カメラレンズ、プロジェクターレンズ、ピックアップレンズ等の各種光学レンズや光ディスク、光学フィルム、プラセル基板、光カード、液晶パネル、ヘッドランプレンズ、OPCバインダー等の光学部材として極めて有用である。 The thermoplastic resin obtained by the present invention has a good hue, excellent molding fluidity, and can suppress the by-product formation of gels. It is extremely useful as an optical member such as a substrate, an optical card, a liquid crystal panel, a headlamp lens, and an OPC binder.

Claims (6)

  1.  (i)ジヒドロキシ成分と、(ii)炭酸ジエステル成分、ジカルボン酸成分またはこれらの混合物とを反応させ熱可塑性樹脂を製造する方法であって、ジヒドロキシ成分として、純度が98%以上、下記式(1)で表される多量体(1)の含有量が0.5%未満、0.01%以上であり、下記式(2)で表される多量体(2)の含有量が0.5%未満、0.01%以上であり、さらに多量体(1)と多量体(2)の合計含有量が1.0%未満であり、0.02%以上である9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンを用いることを特徴とする、前記熱可塑性樹脂の製造方法。
    Figure JPOXMLDOC01-appb-I000001
    A method of producing a thermoplastic resin by reacting (i) a dihydroxy component and (ii) a carbonic acid diester component, a dicarboxylic acid component or a mixture thereof, wherein the dihydroxy component has a purity of 98% or more and the following formula (1 The content of the multimer (1) represented by) is less than 0.5% and 0.01% or more, and the content of the multimer (2) represented by the following formula (2) is 0.5%. Less than, 0.01% or more, and 9,9-bis (4-) wherein the total content of the multimer (1) and the multimer (2) is less than 1.0% and more than 0.02%. (2-Hydroxyethoxy) phenyl) fluorene is used, The manufacturing method of the said thermoplastic resin characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-I000001
  2.  熱可塑性樹脂が、ポリカーボネート樹脂、ポリエステル樹脂またはポリエステルカーボネート樹脂である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the thermoplastic resin is a polycarbonate resin, a polyester resin, or a polyester carbonate resin.
  3.  9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの水含有量が1.0重量%以下であり、トルエン含有量が1.0重量%以下である請求項1または2に記載の製造方法。 The water content of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is 1.0% by weight or less, and the toluene content is 1.0% by weight or less. Manufacturing method.
  4.  熱可塑性樹脂のペレットのb値が−1.0~10.0である請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the thermoplastic resin pellet has a b value of -1.0 to 10.0.
  5.  熱可塑性樹脂の、280℃、せん断速度100/secにおける溶融粘度が300Pa・s以下である請求項1~4のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 4, wherein the thermoplastic resin has a melt viscosity of 300 Pa · s or less at 280 ° C and a shear rate of 100 / sec.
  6.  請求項1~5のいずれか一項に記載の製造方法により得られた熱可塑性樹脂を用いて形成された光学成形品。 An optical molded product formed using the thermoplastic resin obtained by the production method according to any one of claims 1 to 5.
PCT/JP2012/073963 2012-06-05 2012-09-12 Method for producing thermoplastic resin WO2013183172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-128009 2012-06-05
JP2012128009 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013183172A1 true WO2013183172A1 (en) 2013-12-12

Family

ID=49711587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073963 WO2013183172A1 (en) 2012-06-05 2012-09-12 Method for producing thermoplastic resin

Country Status (1)

Country Link
WO (1) WO2013183172A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187661A (en) * 2003-12-25 2005-07-14 Osaka Gas Co Ltd Fluorene-based resin composition and its shaped article
JP2012041561A (en) * 2003-04-22 2012-03-01 Osaka Gas Co Ltd Fluorene-based composition and molded product of the same
JP2012077266A (en) * 2010-10-06 2012-04-19 Teijin Chem Ltd Thermoplastic resin comprising fluorene derivative, and melt polymerization method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041561A (en) * 2003-04-22 2012-03-01 Osaka Gas Co Ltd Fluorene-based composition and molded product of the same
JP2005187661A (en) * 2003-12-25 2005-07-14 Osaka Gas Co Ltd Fluorene-based resin composition and its shaped article
JP2012077266A (en) * 2010-10-06 2012-04-19 Teijin Chem Ltd Thermoplastic resin comprising fluorene derivative, and melt polymerization method thereof

Similar Documents

Publication Publication Date Title
TWI787317B (en) Thermoplastic resin and optical member
JP7238952B2 (en) Method for producing thermoplastic resin
JP6087490B2 (en) Thermoplastic resin comprising fluorene derivative and melt polymerization method thereof
JP2006009022A (en) Thermally stabilized polycarbonate composition
JP7204735B2 (en) Polyester resin or polyester carbonate resin, and optical member using said resin
US8058384B2 (en) Method for producing thermoplastic resin, polyester resin and polycarbonate resin, and their applications
JP2018177887A (en) Thermoplastic resin
JP2019131824A (en) Method for producing thermoplastic resin
CN113518934A (en) Thermoplastic resin, method for producing same, and optical lens
JP5412583B2 (en) Method for producing thermoplastic resin comprising fluorene derivative
CN110945075B (en) Polyester resin composition and method for producing same
JP7117932B2 (en) Thermoplastic resin and optical components
KR101898308B1 (en) Method for producing polycarbonate resin
JP2013164501A (en) Optical film
WO2013183173A1 (en) 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene powder material
WO2013183172A1 (en) Method for producing thermoplastic resin
JPWO2020137927A1 (en) Thermoplastic resin, its manufacturing method, and an optical lens containing the thermoplastic resin.
JP6415519B2 (en) Thermoplastic resin comprising a fluorene derivative
WO2023195505A1 (en) Thermoplastic resin and optical lens including same
JP6907883B2 (en) 1,1-bis (4-hydroxyphenyl) dodecane and its production method
JP2001261321A (en) Method of producing phosgene and polycarbonate resin
JP2022154123A (en) Polyester resin or polyester carbonate resin, and optical member using the resin
JP2018083803A (en) Crystal of 1,1-bis(4-hydroxyphenyl)dodecane and production method thereof
JP2019043897A (en) Bisphenols having fluorene skeleton and polyarylate resin derived from bisphenols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878582

Country of ref document: EP

Kind code of ref document: A1