WO2013183135A1 - Method for controlling in-mold molten steel surface level - Google Patents

Method for controlling in-mold molten steel surface level Download PDF

Info

Publication number
WO2013183135A1
WO2013183135A1 PCT/JP2012/064620 JP2012064620W WO2013183135A1 WO 2013183135 A1 WO2013183135 A1 WO 2013183135A1 JP 2012064620 W JP2012064620 W JP 2012064620W WO 2013183135 A1 WO2013183135 A1 WO 2013183135A1
Authority
WO
WIPO (PCT)
Prior art keywords
standing wave
level
model
primary
output
Prior art date
Application number
PCT/JP2012/064620
Other languages
French (fr)
Japanese (ja)
Inventor
浅野 一哉
島本 拓幸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to IN10256DEN2014 priority Critical patent/IN2014DN10256A/en
Priority to CN201280073731.8A priority patent/CN104334298B/en
Priority to PCT/JP2012/064620 priority patent/WO2013183135A1/en
Priority to KR1020147034098A priority patent/KR101664171B1/en
Publication of WO2013183135A1 publication Critical patent/WO2013183135A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/02Details
    • G05D13/04Details providing for emergency tripping of an engine in case of exceeding maximum speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Definitions

  • the present invention relates to a molten steel surface level control method in a mold of a continuous casting machine.
  • controlling the molten metal level in molten metal (molten steel) to keep the molten metal level constant and controlling the molten metal level to be constant is not only stable, but also the quality of the slab. It is extremely important for management.
  • the molten steel level in the mold is controlled by measuring the molten steel level in the mold using a molten metal level meter, and adjusting the opening of the sliding nozzle as a molten steel flow control device based on the measured value. And the method of balancing the mass balance of the molten steel drawn out from a mold and the molten steel poured from a tundish is taken.
  • Fig. 8 shows a typical example of the mold peripheral part and the surface level control system of a slab continuous casting machine.
  • a tundish 2 is disposed at a predetermined position above the mold 1 of the slab continuous casting machine, and a sliding nozzle 3 and an immersion nozzle 4 are disposed at the bottom of the tundish 2.
  • the sliding nozzle 3 is composed of a fixed plate and a sliding plate.
  • a molten metal level meter for example, eddy current sensor
  • the molten metal level meter 7 is a device for measuring the level (height position) of the molten steel surface in the mold 1, and the measurement signal (melt level signal) of the molten metal level meter 7 is input to the molten metal level control device 8. ing.
  • the molten steel 5 injected into the tundish 2 from the ladle (not shown) is injected into the mold 1 through the immersion nozzle 4 according to the opening degree of the sliding nozzle 3.
  • the injected molten steel 5 is cooled by the mold 1 and solidifies at the contact surface with the mold 1 to form a solidified shell, and the slab having the liquid phase portion inside is supported by the guide roll and the pinch roll 9 while being pinched.
  • the roll 9 is pulled out below the mold 1.
  • the hot water level control device 8 performs an operation such as PI control or PID control on a deviation between the hot water level signal obtained from the hot water level meter 7 and a preset hot water level setting value.
  • the amount of operation of the sliding nozzle opening is obtained and output to the actuator 6 to adjust the flow rate of the molten steel flowing into the mold 1 from the tundish 2 by operating the sliding nozzle opening.
  • a feedback loop relating to the molten metal level of the molten steel 5 in the mold 1 is formed, so even if the flow rate of the molten steel 5 flowing into the mold 1 or the flow rate of the molten steel 5 flowing out of the mold 1 varies due to some factor.
  • the molten steel surface level of the molten steel 5 in the mold 1 can be controlled to be a constant value (set value).
  • a standing wave in which the molten metal surface fluctuates at a natural frequency corresponding to the mold width becomes a problem.
  • a primary standing wave having one vibration node as shown in FIG. 9 (a), the node being at the mold width center (mold width 1/2 position), As shown in FIG. 9B, there are two vibration nodes, and the node is a secondary standing wave in the middle of the mold width center and the mold width end (mold width 1/4 position).
  • the vibration frequency decreases (when the width is 2 m, the frequency of the primary mode is approximately 0.6 Hz), which approaches the bulging frequency (0.1 to 0.2 Hz).
  • the feedback control system it is necessary to suppress the influence of the disturbance by increasing the gain at the frequency of the disturbance to be removed and not to react to the measurement noise by decreasing the gain at the frequency of the measurement noise. That is, it is necessary to design the frequency characteristics of the feedback control system in consideration of disturbance and measurement noise.
  • the control parameters (PI control gain, etc.) of the molten metal level control device 8 Adjustment becomes difficult.
  • the hot water level control device 8 picks up measurement noise and outputs an unnecessary sliding nozzle opening manipulated variable, whereby the hot water surface level fluctuates, and the level meter 7 measures it. Therefore, a loop of outputting to the hot water surface level control device 8 occurs. As a result, the fluctuation of the molten metal surface level may be increased or, in an extreme case, the control system may diverge without being stabilized. On the other hand, when the gain of the molten metal level control device 8 is lowered, the control performance with respect to the bulging molten metal surface fluctuation is deteriorated, and the cyclic molten metal surface fluctuation cannot be reduced.
  • Patent Document 1 frequency analysis is performed on the level signal from the level gauge, and when the frequency of the bulging is detected, only the vicinity of the frequency is detected. The method of performing the hot water surface level control based on the differential value of the component is described. However, in this method, since the above-described standing wave is not considered to be processed as measurement noise, the influence of the standing wave cannot be removed.
  • the standing wave frequency corresponding to the standing wave fluctuation of the molten metal surface level fluctuation is calculated from the mold width, and the standing wave is described by a sin function and a cos function of the frequency.
  • a method for detecting a standing wave fluctuation in a mold in which a standing wave fluctuation is obtained by estimating these coefficients online is disclosed.
  • molten_metal surface level from which the primary standing wave component was removed is measured by installing the hot_water
  • a corrected molten metal level signal from which the frequency component of the standing wave has been removed is obtained, and the opening of the sliding nozzle is adjusted so that the obtained corrected molten metal level signal is constant.
  • a molten steel level control method is disclosed.
  • Patent Document 4 in a molten metal continuous casting facility, two hot water level meters are installed so as to measure symmetrical positions in the mold width direction around an immersion nozzle disposed in the center of the mold, and measurement thereof is performed. There is disclosed a hot water level detecting device that removes a standing wave component by obtaining an average value of values.
  • Patent Documents 5 and 6 the structure of the control system based on the parametrization concept of the stabilization controller (a molten metal level deviation correction value calculation unit, an opening command correction value calculation unit, an opening change correction value calculation) Level of the continuous casting machine that is not affected by standing wave components by frequency shaping the sensitivity function into a notch filter by designing it based on robust control theory. A control method is disclosed.
  • variation contained in the molten metal surface level signal is detected, and the opening degree change of the inlet to a mold is changed based on the signal which attenuate
  • a level control that calculates the amount and generates a signal of the same frequency as the detected frequency that has a phase and amplitude that cancels periodic level fluctuations, and corrects the signal by adding it to the amount of change in opening.
  • the primary standing wave component is removed by installing a hot water level meter at the center of the mold, but mold powder is put near the opening on the upper surface of the mold. Since there is a device and it may be difficult to install a level meter in the center, it is desirable to remove the primary standing wave by signal processing.
  • the structure of the control system is defined based on the concept of parametrization of the stabilization controller, and the characteristics of the entire control system including the casting process (sensitivity function) using the robust control theory. ) Is shaped like a notch filter, and it is difficult to adjust the parameters of the control system because the structure is complex and the surface level signal from which standing waves have been removed cannot be observed. .
  • the periodic fluctuation in the molten metal level signal that is the object of the method of Patent Document 7 is a bulging molten metal fluctuation, and is not a standing wave. Therefore, the molten metal level signal obtained by attenuating a specific frequency component is used for molten metal level control, and a signal that cancels the frequency component is generated and used for molten metal level control. That is, if the fluctuation level signal used for the molten metal surface level control includes periodic fluctuation, the calculation such as PID control becomes unstable, and the molten metal surface level fluctuation is amplified instead. The level signal is used for hot water level control.
  • the periodicity level is generated by generating a signal of the frequency component, adjusting the phase and amplitude, and adding it to the output of the molten metal level control.
  • the fluctuation component is offset.
  • the molten steel flow rate to the mold must not be controlled by control, but when this method is applied, the molten steel flow rate to the mold is controlled at that frequency. This excites the rocking of the molten steel in the mold, strengthens the standing wave, and has an adverse effect on control.
  • the present invention has been made in view of the above.
  • An object of the present invention is to provide an in-mold molten steel surface level control method that realizes highly accurate molten metal surface level control by extracting only surface fluctuation and using it for molten metal surface level control.
  • the molten steel level control method in the mold according to the present invention is a unique method corresponding to the mold width in controlling the molten steel level in the mold of the continuous casting machine.
  • a model of the molten metal level fluctuation due to a standing wave that oscillates with a period is represented by a secondary vibration system, and at least one of the deviation between the level measured value measured by the molten metal level meter and the output of the model and its differential value.
  • the model is excited by feeding back to the input of the model, and the level change value measured by the level meter is estimated using the obtained output of the model to estimate the level fluctuation component due to the standing wave.
  • the level signal from which the standing wave component is removed with the deviation between the model output and the flow rate of the molten steel flowing into the mold by feedback control using the level signal Characterized by operating the actuator to adjust.
  • the molten metal level control method in the mold according to the present invention is such that the molten metal level meter is arranged at a position of the mold width 1/4 that is between the mold width center and the mold width end. It is characterized by being.
  • the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine.
  • the first-order standing wave model and second-order standing wave model of fluctuation are each represented by a second-order vibration system, and the difference between the level measurement value measured by the molten metal level meter and the output of the first standing wave model and its derivative.
  • the primary standing wave model is excited by feeding back at least one of the values to the input of the primary standing wave model, and the primary standing wave is obtained by the obtained output of the primary standing wave model.
  • the primary standing wave component The secondary standing wave model is excited by feeding back at least one of the deviation between the level signal thus removed and the output of the secondary standing wave model and the differential value thereof to the input of the secondary standing wave model.
  • the molten metal surface level fluctuation component due to the secondary standing wave is estimated from the output of the obtained secondary standing wave model, and the level signal from which the primary standing wave component has been removed and the secondary standing wave Operates an actuator that adjusts the flow rate of molten steel flowing into the mold by feedback control using the level signal, with the deviation from the model output as a level signal from which the primary standing wave component and the secondary standing wave component have been removed. It is characterized by doing.
  • the molten metal level control method in the mold according to the present invention is characterized in that the molten metal level meter has a mold width larger than a position of the mold width 1/4 that is intermediate between the mold width center and the mold width end. It is arranged at a position near the edge where a standing wave component can be taken.
  • the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine.
  • the first-order standing wave model, second-order standing wave model, and third-order standing wave model of fluctuation are each represented by a secondary vibration system, and the level measurement value measured by the molten metal level meter and the first-order standing wave model
  • the primary standing wave model is excited by feeding back at least one of the deviation from the output and the differential value thereof to the input of the primary standing wave model.
  • the molten metal level fluctuation component due to the primary standing wave is estimated based on the output, and the primary standing wave component is determined by the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model.
  • the third-order standing wave model obtained by exciting the model The level fluctuation component due to the third-order standing wave is estimated from the output, and the level signal from which the first-order standing wave component and the second
  • the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine.
  • the model of fluctuation is expressed by a secondary vibration system, and the model is excited by feeding back the deviation between the level measurement value measured by the molten metal level meter and the output of the model to the state variable of the model.
  • a level signal obtained by estimating the level fluctuation component due to the standing wave from the output of the model and removing the standing wave component with a deviation between the level measurement value measured by the level gauge and the output of the model. And operating an actuator for adjusting the flow rate of the molten steel flowing into the mold by feedback control using the level signal.
  • the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine.
  • the primary standing wave model and the secondary standing wave model of fluctuation are each expressed by a secondary vibration system, and the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model is described as 1 above.
  • the primary standing wave model is excited by feeding back to the state variable of the secondary standing wave model, and the surface level fluctuation component due to the primary standing wave is estimated from the obtained output of the primary standing wave model.
  • a level signal obtained by removing the primary standing wave component with a deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model The removed level signal and the secondary determination
  • the deviation from the output of the wave model is fed back to the state variable of the second-order standing wave model to excite the second-order standing wave model, and the second-order standing wave model is obtained according to the obtained output of the second-order standing wave model.
  • the molten metal level fluctuation component due to standing waves is estimated, and the primary standing wave component and the secondary wave are determined with a deviation between the level signal from which the primary standing wave component is removed and the output of the secondary standing wave model.
  • a level signal from which the standing wave component is removed is used, and an actuator for adjusting the flow rate of the molten steel flowing into the mold is controlled by feedback control using the level signal.
  • the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine.
  • the first-order standing wave model, second-order standing wave model, and third-order standing wave model of fluctuation are each represented by a secondary vibration system, and the level measurement value measured by the molten metal level meter and the first-order standing wave model
  • the primary standing wave model is excited by feeding back the deviation from the output to the state variable of the primary standing wave model, and the primary standing wave is generated by the obtained output of the primary standing wave model.
  • the secondary standing wave model is excited by feeding back the deviation between the signal and the output of the secondary standing wave model to the state variable of the secondary standing wave model.
  • the level fluctuation component due to the secondary standing wave is estimated based on the output of the model, and the primary constant is determined by the deviation between the level signal from which the primary standing wave component has been removed and the output of the secondary standing wave model.
  • a level signal from which the standing wave component and the secondary standing wave component have been removed is used, and the level signal from which the primary standing wave component and the secondary standing wave component have been removed and the output of the tertiary standing wave model
  • the third-order standing wave model is excited by feeding back the deviation to the state variable of the third-order standing wave model, and the surface level of the third-order standing wave is obtained by the output of the obtained third-order standing wave model.
  • the molten steel surface level control method in the mold according to the present invention represents the first, second, and third-order standing wave models as secondary vibration systems having respective frequencies as natural frequencies, their outputs,
  • the output of the actual process to be compared to the level signal in the first-order standing wave model, the level signal obtained by removing the first-order standing wave component from the level measurement value in the second-order standing wave model, and the third-order standing wave model
  • a proportional differential operation is applied to the deviation from the level measurement value to the level signal from which the primary standing wave component and the secondary standing wave component have been removed, and the model is input to each model to excite the model.
  • Standing wave component is estimated.
  • the deviation between the model and the actual process becomes a level signal from which the corresponding standing wave component is removed.
  • the standing wave component is extracted and the level signal from which the standing wave component is removed is performed in parallel.
  • the adjustment parameter corresponds to a selection characteristic (band width in a bandpass filter) in standing wave extraction, but since the relationship between each parameter and the characteristic is clear, the adjustment can be easily performed. Also have.
  • the order of the standing wave to be extracted and removed may be selected according to the actual standing wave component included in the molten metal surface level measurement value.
  • the standing wave component can be easily confirmed by frequency analysis of the measurement value of the molten metal level.
  • the standing wave component removal of the present invention can be added to any hot water level control system, so there is no need to change the existing control system.
  • the hot water surface level control system is PI control
  • the hot water surface level signal used for PI control only needs to be the hot water surface level signal from which the standing wave component is removed according to the present invention.
  • FIG. 1 is an explanatory diagram showing a configuration example of an embodiment in which the present invention is applied to an in-mold molten steel surface level control system of a continuous casting machine.
  • FIG. 2 is a block diagram showing the configuration of the standing wave component removal apparatus of the present embodiment.
  • FIG. 3 is a diagram showing an example in which standing waves are extracted and removed according to the present embodiment.
  • FIG. 4 is a diagram showing an example of the molten metal level fluctuation when the molten metal level control according to the present embodiment is performed.
  • FIG. 5 is an explanatory view showing a configuration example of an embodiment in which the present invention is applied to a molten steel surface level control system in a mold of a continuous casting machine.
  • FIG. 1 is an explanatory diagram showing a configuration example of an embodiment in which the present invention is applied to an in-mold molten steel surface level control system of a continuous casting machine.
  • FIG. 2 is a block diagram showing the configuration of the standing wave component removal apparatus of the present embodiment.
  • FIG. 6 is a block diagram showing a transfer function of the first-order standing wave model.
  • FIG. 7 is a block diagram illustrating a configuration example when primary standing wave removal is performed using the expression of FIG.
  • FIG. 8 is an explanatory view showing a configuration of an example of a molten steel surface level control system in a mold of a conventional continuous casting machine.
  • FIG. 9 is an explanatory diagram showing a standing wave.
  • FIG. 10 is a diagram showing an example of the fluctuation of the molten metal level when the conventional molten metal level control is performed.
  • a first-order and second-order standing wave model is represented by a secondary vibration system having respective frequencies as natural frequencies, and a standing wave that changes every moment according to the output is estimated.
  • the gain is multiplied by at least one of the level measurement value obtained by the level meter, the deviation of the output of the primary standing wave model and the differential value thereof, and used as the input of the primary standing wave model. provide feedback.
  • the output of the primary standing wave model is an estimated value of the primary standing wave component every moment, so the deviation is obtained by removing the primary standing wave component from the level measurement value.
  • a gain multiplied by at least one of the deviation and its differential value it is possible to set how much the frequency in the vicinity of the standing wave is to be estimated.
  • the deviation between the level measurement value by the level meter and the output of the primary standing wave model that is, the level measurement value from which the primary standing wave component has been removed and the secondary standing wave model
  • At least one of the deviation and its differential value is multiplied by a gain and fed back to the input of the second-order standing wave model.
  • the output of the secondary standing wave model is an estimated value of the secondary standing wave component every moment, so that the deviation is the secondary standing wave from the level measurement value from which the primary standing wave component has been removed.
  • the wave component is removed. That is, it is possible to obtain a level signal obtained by removing the primary and secondary standing wave components from the measured value of the level meter.
  • by adjusting a gain multiplied by at least one of the deviation and its differential value it is possible to set how much the frequency in the vicinity of the standing wave is to be estimated.
  • the control system When the molten metal level control is performed using the level signal obtained by removing the primary and secondary standing wave components obtained above, the control system does not react to the standing wave, so that the gain can be increased. It becomes possible to suppress bulging level fluctuations. Further, since only one level meter is required, installation and maintenance costs can be suppressed.
  • FIG. 1 shows a configuration example when the present invention is applied to molten steel level control in a mold of a continuous casting machine.
  • the standing wave component removing device 11 calculates a level signal from which the primary and secondary standing wave components have been removed from the surface level measurement value measured by the level meter 7, and sends it to the surface level control device 8. Output.
  • the difference from the prior art of FIG. 8 is that, in this embodiment, the surface level measurement value measured by the surface level control device 8 with the level meter 7 is not used as it is, but is determined by the standing wave component removal device 11. The level signal from which the standing wave component is removed is used.
  • the position of the node of the secondary standing wave (the position of the mold width 1/4 that is between the mold width center and the mold width end).
  • the position where the standing wave component can be taken closer to the mold width end (for example, the position of the mold width 1/8) ).
  • the standing wave component removal apparatus 11 is configured as shown in FIG. That is, the standing wave component removal apparatus 11 includes a primary standing wave model 12, a PD calculator 13, a secondary standing wave model 14, a PD calculator 15, and adders 16 and 17.
  • the first-order standing wave model 12 is a model of a first-order mode expressed by a second-order vibration system with respect to a molten metal surface level fluctuation caused by a standing wave oscillating at a specific period corresponding to the mold width. Frequency f 1 of the first-order standing wave is expressed by equation (1).
  • the transfer function G 1 of the first-order standing wave model 12, a first-order standing wave frequency f 1 is a secondary vibration system whose natural frequency is represented by the equation (2).
  • G 1 ⁇ 1 2 / (s 2 + 2 ⁇ 1 ⁇ 1 s + ⁇ 1 2 ) (2)
  • ⁇ 1 2 ⁇ f 1 and ⁇ 1 is an attenuation coefficient.
  • the PD calculator 13 subjects the deviation calculated by the adder 16 from the output of the primary standing wave model 12 and the measured value of the level meter 7 to input to the primary standing wave model 12. Thereby, the primary standing wave model 12 is excited and outputs an estimated value of the primary standing wave component. At this time, the deviation (output of the adder 16) between the primary standing wave model 12 and the measured value of the level meter 7 becomes a level signal from which the primary standing wave component has been removed.
  • the secondary standing wave model 14 represents a model of a secondary mode with respect to a molten metal surface level fluctuation caused by a standing wave that oscillates at a specific period corresponding to the mold width, as a secondary vibration system.
  • Frequency f 2 of the second-order standing wave is expressed by equation (3).
  • the transfer function G 2 of a secondary standing wave model 14, the second-order standing wave frequency f 2 a secondary vibration system with its natural frequency, is expressed by the equation (4).
  • G 2 ⁇ 2 2 / (s 2 + 2 ⁇ 2 ⁇ 2 s + ⁇ 2 2 ) (4)
  • ⁇ 2 2 ⁇ f 2 and ⁇ 2 is an attenuation coefficient.
  • the PD calculator 15 calculates the deviation (output of the adder 16) calculated by the adder 16 from the output of the primary standing wave model 12 and the measurement value of the level meter 7, and the output of the secondary standing wave model 14. Are subjected to proportional differentiation on the deviation calculated by the adder 17 and input to the secondary standing wave model 14. As a result, the secondary standing wave model 14 is excited and outputs a secondary standing wave component estimation value. At this time, the deviation between the output of the primary standing wave model 12 and the measured value of the level meter 7 (the output of the adder 16) and the deviation of the output of the secondary standing wave model 14 (the output of the adder 17) are: The level signal is obtained by removing the primary and secondary standing wave components.
  • the standing wave component is extracted and the level signal from which the standing wave component is removed is performed in parallel.
  • the attenuation constants ⁇ 1 and ⁇ 2 and the PD calculator 13 in the primary and secondary standing wave models 12 and 14 which are the adjustment parameters in the present embodiment are confirmed while visually confirming the standing wave component extraction status. , 15 can be adjusted, so that standing wave extraction can be performed appropriately.
  • the adjustment parameter corresponds to the selection characteristic (bandwidth in the bandpass filter) in the standing wave extraction, but the relationship between each parameter and the characteristic is clear, so that the adjustment can be easily performed.
  • FIG. 3 shows an example in which the primary and secondary standing wave components are extracted and removed from the surface level including the standing wave component according to the present embodiment.
  • the standing wave component is removed from the molten metal level measurement value including the measurement noise caused by the standing wave, and the fluctuation of the molten metal surface level caused by bulging is clearly extracted.
  • FIG. 10 shows a case where control is performed using the control system shown in FIG. 8, and PI control is used for the hot water level control device 8.
  • the opening of the sliding nozzle (S / N) 3 includes many fluctuation components due to standing waves included in the measured value of the molten metal level meter 7. Both the standing wave component and the bulging level level fluctuation appear in the surface level. To suppress bulging level level fluctuation, it is necessary to increase the gain of PI control. Then, the standing wave component appears more and more in the opening of the sliding nozzle (S / N) 3, which is the level level fluctuation. The gain cannot be increased.
  • FIG. 4 shows a case where the present embodiment shown in FIG. 2 is applied, and a level signal from which a standing wave component is removed is used. Therefore, the opening of the sliding nozzle (S / N) 3 is Since it does not appear greatly, the gain of the PI controller can be increased.
  • the proportional gain is 2.5 times that in the case of FIG. Therefore, the opening of the sliding nozzle (S / N) 3 can be appropriately operated in response to fluctuations in the level of the bulging hot water surface, and the water surface level fluctuation should be reduced to about 1/3 of the case of FIG. Was made.
  • the processing is performed in the order of the first order and the second order.
  • the unit 14 and the adder 17 may be interchanged, and processing may be performed in the order of secondary and primary.
  • the standing wave normally has strong primary and secondary components, and the surface level control is performed using the level signal from which the primary and secondary standing wave components are removed as in this embodiment.
  • the surface level control is performed using the level signal from which the primary and secondary standing wave components are removed as in this embodiment.
  • estimation and removal can be performed with the same configuration as that for the first-order and second-order components.
  • FIG. 5 shows the first-order, second-order, and third-order standing wave components. This mode model is expressed by a secondary vibration system.
  • the frequency f 3 of the third-order standing wave is expressed by equation (5).
  • f 3 ⁇ (3G / 4 ⁇ L) (5)
  • the transfer function G 3 of a third-order standing wave model 18, the frequency f 3 of the third-order standing wave is secondary vibration system whose natural frequency is represented by the equation (6).
  • G 3 ⁇ 3 2 / (s 2 + 2 ⁇ 3 ⁇ 3 s + ⁇ 3 2 ) (6)
  • ⁇ 3 2 ⁇ f 3 and ⁇ 3 is an attenuation coefficient.
  • the PD calculator 19 is proportional to the deviation calculated by the adder 20 from the level signal from which the primary and secondary standing wave components output from the adder 17 are removed and the output of the tertiary standing wave model 18.
  • the differential operation is performed and input to the third-order standing wave model 18.
  • the third-order standing wave model 18 is excited and outputs a third-order standing wave component estimated value.
  • the deviation between the output of the adder 17 and the output of the third-order standing wave model 18 (output of the adder 20) is a level signal from which the first-order, second-order, and third-order standing wave components have been removed.
  • the order of the standing wave to be extracted and removed may be selected in advance according to the actual standing wave component included in the molten metal level measurement value.
  • the standing wave component can be easily confirmed by frequency analysis of the measurement value of the molten metal level.
  • the standing wave component up to the higher order is removed in this way, even if the standing wave component of a certain order decreases due to fluctuations in operating conditions, the standing wave component removed correspondingly Therefore, it is not necessary to change the configuration.
  • the differential calculation in the PD calculator may emphasize high-frequency components in the input signal and increase calculation errors.
  • the deviation of the surface level signal and the standing wave model is fed back to the state variable of the standing wave model (gain is set). It is effective to use a configuration of multiplying and adding.
  • FIG. 6 shows a block diagram representation of the transfer function of the first-order standing wave model of equation (2).
  • the first-order standing wave model 12 is represented by a block diagram including two integrators 21 and 22, two state feedback gains 23 and 24, and two adders 25 and 26.
  • the outputs of the units 25 and 26 are the state variables of the model.
  • FIG. 7 shows a configuration when primary standing wave removal is performed using the expression of FIG.
  • the function of the PD calculator 13 is realized by two gains 27 and 28. That is, a product obtained by multiplying the deviation calculated by the adder 16 from the output of the primary standing wave model 12 and the measured value of the level meter 7 by the gain 27 is fed back to the input of the integrator 21 via the adder 25.
  • the product obtained by multiplying the deviation by the gain 28 is fed back to the input of the integrator 22 via the adders 29 and 26, so that a calculation process equivalent to the proportional differential calculation can be performed.
  • the gains 27 and 28 correspond to a proportional term and a differential term, respectively, and their values a and b correspond to a proportional gain and a differential gain.
  • the secondary and tertiary standing wave estimation in FIGS. 2 and 5 may be configured in the same manner as the primary standing wave estimation in FIG.

Abstract

The objective of the present invention is to achieve high-precision control of the level of molten steel surface, by using one level gauge to extract and remove a primary, a secondary, and a tertiary standing wave component, and thus to extract only the variation in the bulging molten steel surface, which variation is to be controlled, and to use this in controlling the level of the molten steel surface. In this method, models (12, 14) are expressed with secondary vibration systems, with these models being models of the variation in the molten steel surface level due to standing waves that oscillate with a specific cycle corresponding to the mold width. In addition, the deviation between a measured level value measured with a surface level gauge and the output from the models (12, 14), and/or the differential value thereof, is fed back as an input to the models (12, 14), thereby exciting the models (12, 14), and the surface level variation component due to the standing waves is estimated by means of the obtained output from the models (12, 14), and the standing wave component is removed using the deviation between the measured level value measured with the surface level gauge and the output from the models (12, 14), thereby producing a level signal. In addition, an actuator that adjusts the flow volume of the molten steel flowing into the mold is operated by means of feedback control using this level signal.

Description

モールド内溶鋼湯面レベル制御方法Molten steel surface level control method in mold
 本発明は、連続鋳造機のモールド内溶鋼湯面レベル制御方法に関する。 The present invention relates to a molten steel surface level control method in a mold of a continuous casting machine.
 連続鋳造機において、モールド内の溶融金属(溶鋼)の湯面レベルの変動を抑止して、湯面レベルが一定になるように制御することは、操業の安定上のみならず、鋳片の品質管理上からも極めて重要である。 In a continuous casting machine, controlling the molten metal level in molten metal (molten steel) to keep the molten metal level constant and controlling the molten metal level to be constant is not only stable, but also the quality of the slab. It is extremely important for management.
 通常、このモールド内溶鋼湯面レベル制御方法としては、モールド内の溶鋼の湯面レベルを湯面レベル計によって計測し、この測定値に基づいて溶鋼流量調整装置としてのスライディングノズルの開度を調節して、モールドから引き抜かれていく溶鋼とタンディッシュから注入される溶鋼のマスバランスを釣り合わせるという方法がとられている。 Normally, the molten steel level in the mold is controlled by measuring the molten steel level in the mold using a molten metal level meter, and adjusting the opening of the sliding nozzle as a molten steel flow control device based on the measured value. And the method of balancing the mass balance of the molten steel drawn out from a mold and the molten steel poured from a tundish is taken.
 図8に、スラブ連続鋳造機のモールド周辺部及び湯面レベル制御系の代表例を示す。スラブ連続鋳造機のモールド1の上方所定位置にはタンディッシュ2が配置され、このタンディッシュ2の底部には、スライディングノズル3及び浸漬ノズル4が配置されている。これにより、タンディッシュ2に一旦滞留した溶鋼5は、スライディングノズル3及び浸漬ノズル4を介してモールド1へ注入されるようになっている。スライディングノズル3は固定板と摺動板からなり、摺動板の位置を油圧サーボ系などのアクチュエータ6で操作することで、スライディングノズル3の開度が増減し、タンディッシュ2からモールド1に流入する溶鋼5の流量が制御されるようになっている。一方、モールド1内の溶鋼湯面の上方には、湯面レベル計(例えば、渦流センサ)7が配置されている。湯面レベル計7はモールド1における溶鋼湯面のレベル(高さ位置)を計測する装置であり、湯面レベル計7の計測信号(湯面レベル信号)は湯面レベル制御装置8に入力されている。 Fig. 8 shows a typical example of the mold peripheral part and the surface level control system of a slab continuous casting machine. A tundish 2 is disposed at a predetermined position above the mold 1 of the slab continuous casting machine, and a sliding nozzle 3 and an immersion nozzle 4 are disposed at the bottom of the tundish 2. Thereby, the molten steel 5 once retained in the tundish 2 is injected into the mold 1 through the sliding nozzle 3 and the immersion nozzle 4. The sliding nozzle 3 is composed of a fixed plate and a sliding plate. By operating the position of the sliding plate with an actuator 6 such as a hydraulic servo system, the opening degree of the sliding nozzle 3 increases or decreases, and flows into the mold 1 from the tundish 2. The flow rate of the molten steel 5 is controlled. On the other hand, a molten metal level meter (for example, eddy current sensor) 7 is disposed above the molten steel surface in the mold 1. The molten metal level meter 7 is a device for measuring the level (height position) of the molten steel surface in the mold 1, and the measurement signal (melt level signal) of the molten metal level meter 7 is input to the molten metal level control device 8. ing.
 取鍋(図示せず)からタンディッシュ2に注入された溶鋼5は、スライディングノズル3の開度に応じて、浸漬ノズル4を経てモールド1へ注入される。注入された溶鋼5はモールド1により冷却されてモールド1との接触面で凝固して凝固シェルを形成し、内部に液相部を有する鋳片はガイドロール及びピンチロール9に支持されながら、ピンチロール9によってモールド1の下方へ引き抜かれる。その際に、湯面レベル制御装置8は、湯面レベル計7から得られる湯面レベル信号と、予め設定されている湯面レベル設定値との偏差にPI制御やPID制御などの演算を施してスライディングノズル開度操作量を求め、アクチュエータ6に出力することによってスライディングノズル開度を操作することによりタンディッシュ2からモールド1に流入する溶鋼流量を調整する。 The molten steel 5 injected into the tundish 2 from the ladle (not shown) is injected into the mold 1 through the immersion nozzle 4 according to the opening degree of the sliding nozzle 3. The injected molten steel 5 is cooled by the mold 1 and solidifies at the contact surface with the mold 1 to form a solidified shell, and the slab having the liquid phase portion inside is supported by the guide roll and the pinch roll 9 while being pinched. The roll 9 is pulled out below the mold 1. At that time, the hot water level control device 8 performs an operation such as PI control or PID control on a deviation between the hot water level signal obtained from the hot water level meter 7 and a preset hot water level setting value. The amount of operation of the sliding nozzle opening is obtained and output to the actuator 6 to adjust the flow rate of the molten steel flowing into the mold 1 from the tundish 2 by operating the sliding nozzle opening.
 これにより、モールド1内の溶鋼5の湯面レベルに関するフィードバックループが構成されるので、モールド1に流入する溶鋼5の流量、あるいはモールド1から流出する溶鋼5の流量が何らかの要因によって変動しても、モールド1内の溶鋼5の湯面レベルが一定値(設定値)となるように制御することができる。 As a result, a feedback loop relating to the molten metal level of the molten steel 5 in the mold 1 is formed, so even if the flow rate of the molten steel 5 flowing into the mold 1 or the flow rate of the molten steel 5 flowing out of the mold 1 varies due to some factor. The molten steel surface level of the molten steel 5 in the mold 1 can be controlled to be a constant value (set value).
 従来からモールド内の溶鋼湯面レベル制御の大きな課題となっていたものとして、ガイドロールやピンチロールなどの鋳片支持ロールの間で生じる鋳片の厚み方向への膨らみ(バルジング)によってモールドから流出する溶鋼流量が周期的に変動することによる湯面レベル変動(バルジング性湯面レベル変動)がある。 As a major issue in controlling the level of molten steel in the mold, it has flowed out of the mold due to bulging in the thickness direction of the slab that occurs between slab support rolls such as guide rolls and pinch rolls. There is a molten metal level fluctuation (bulging level level fluctuation) due to a periodic fluctuation of the molten steel flow rate.
 モールド内溶鋼湯面レベル制御で抑制すべきものは、上述したようなバルジングなど、実質的なマスフロー変動をもたらす外乱による湯面レベルの変動であり、湯面の波立ちのような局所的な湯面の変動は湯面レベル制御においては測定ノイズとして作用するものであり、それに反応してスライディングノズル開度操作を行ってはならない。 What should be suppressed by the molten steel surface level control in the mold is the fluctuation of the molten metal surface level due to disturbance that causes substantial mass flow fluctuations such as bulging as described above. The fluctuation acts as measurement noise in the molten metal level control, and the sliding nozzle opening operation should not be performed in response to the fluctuation.
 特にモールド幅が大きくなると、モールド幅に応じた固有振動数で湯面が揺動する定在波が問題になる。特に問題となるのが、図9(a)に示すような、振動の節が1個であって、その節がモールド幅中央(モールド幅1/2位置)にある1次定在波と、図9(b)に示すような、振動の節が2個であって、その節がモールド幅中央とモールド幅端の中間(モールド幅1/4位置)にある2次定在波である。特に、モールド幅が広くなるとその振動周波数は低くなり(2m幅の場合、1次モードの振動数が約0.6Hz)、バルジング周波数(0.1~0.2Hz)と近接してくる。 Especially when the mold width is increased, a standing wave in which the molten metal surface fluctuates at a natural frequency corresponding to the mold width becomes a problem. Of particular concern is a primary standing wave having one vibration node as shown in FIG. 9 (a), the node being at the mold width center (mold width 1/2 position), As shown in FIG. 9B, there are two vibration nodes, and the node is a secondary standing wave in the middle of the mold width center and the mold width end (mold width 1/4 position). In particular, as the mold width increases, the vibration frequency decreases (when the width is 2 m, the frequency of the primary mode is approximately 0.6 Hz), which approaches the bulging frequency (0.1 to 0.2 Hz).
 一般に、フィードバック制御系では、除去すべき外乱の周波数ではゲインを上げることによって外乱の影響を抑圧し、測定ノイズの周波数ではゲインを下げることによって測定ノイズに反応しないようにする必要がある。すなわち、フィードバック制御系の周波数特性を外乱と測定ノイズを考慮して設計する必要がある。しかしながら、本ケースでは、本来除去すべき外乱による湯面レベル変動と、測定ノイズによる湯面変動の周波数が近接しているので、湯面レベル制御装置8における制御パラメータ(PI制御のゲインなど)の調整は難しくなる。すなわち、ゲインを上げると湯面レベル制御装置8は測定ノイズを拾って不要なスライディングノズル開度操作量を出力することになり、それによって湯面レベルが変動し、それをレベル計7が測定して湯面レベル制御装置8に出力するというループが生じてしまう。これによってかえって湯面レベル変動を拡大してしまったり、極端な場合には制御系が安定せずに発散してしまうことがある。反対に、湯面レベル制御装置8のゲインを下げると、バルジング性湯面変動に対する制御性能が劣化し、周期的な湯面変動を低減できない。 Generally, in the feedback control system, it is necessary to suppress the influence of the disturbance by increasing the gain at the frequency of the disturbance to be removed and not to react to the measurement noise by decreasing the gain at the frequency of the measurement noise. That is, it is necessary to design the frequency characteristics of the feedback control system in consideration of disturbance and measurement noise. However, in this case, since the fluctuation level of the molten metal level due to the disturbance to be originally removed is close to the frequency of the molten metal level fluctuation caused by the measurement noise, the control parameters (PI control gain, etc.) of the molten metal level control device 8 Adjustment becomes difficult. That is, when the gain is increased, the hot water level control device 8 picks up measurement noise and outputs an unnecessary sliding nozzle opening manipulated variable, whereby the hot water surface level fluctuates, and the level meter 7 measures it. Therefore, a loop of outputting to the hot water surface level control device 8 occurs. As a result, the fluctuation of the molten metal surface level may be increased or, in an extreme case, the control system may diverge without being stabilized. On the other hand, when the gain of the molten metal level control device 8 is lowered, the control performance with respect to the bulging molten metal surface fluctuation is deteriorated, and the cyclic molten metal surface fluctuation cannot be reduced.
 そこで、バルジング性湯面変動に対する制御性能を向上させる方法として、特許文献1には、湯面レベル計からの湯面レベル信号を周波数解析し、バルジングの周波数が検出された場合、その周波数近傍だけの成分の微分値に基づいて湯面レベル制御を行う方法が記載されている。しかしながら、この方法においては、上記のような定在波を測定ノイズとして処理することは考慮されていないので、定在波の影響を除去することはできない。 Therefore, as a method for improving the control performance against fluctuations in the bulging level, in Patent Document 1, frequency analysis is performed on the level signal from the level gauge, and when the frequency of the bulging is detected, only the vicinity of the frequency is detected. The method of performing the hot water surface level control based on the differential value of the component is described. However, in this method, since the above-described standing wave is not considered to be processed as measurement noise, the influence of the standing wave cannot be removed.
 このような課題に対し、特許文献2では、湯面レベル変動の定在波変動分の定在波周波数を鋳型幅から算出し、定在波をその周波数のsin関数とcos関数で記述して、それらの係数をオンライン推定することにより、定在波変動分を求めるようにした鋳型内の湯面定在波変動検出方法が開示されている。 In order to deal with such a problem, in Patent Document 2, the standing wave frequency corresponding to the standing wave fluctuation of the molten metal surface level fluctuation is calculated from the mold width, and the standing wave is described by a sin function and a cos function of the frequency. In addition, a method for detecting a standing wave fluctuation in a mold in which a standing wave fluctuation is obtained by estimating these coefficients online is disclosed.
 また、特許文献3では、湯面レベル計をモールドの中心位置に設置することにより1次定在波成分を除去した湯面レベルを計測し、その湯面レベル信号から、周波数フィルターを用いて2次定在波の周波数成分を除去した補正湯面レベル信号を求め、その求めた補正湯面レベル信号が一定になるように、スライディングノズルの開度を調節するようにした連続鋳造機のモールド内溶鋼湯面レベル制御方法が開示されている。 Moreover, in patent document 3, the hot_water | molten_metal surface level from which the primary standing wave component was removed is measured by installing the hot_water | molten_metal surface level meter in the center position of a mold, and it uses frequency filter and 2 In the mold of a continuous casting machine, a corrected molten metal level signal from which the frequency component of the standing wave has been removed is obtained, and the opening of the sliding nozzle is adjusted so that the obtained corrected molten metal level signal is constant. A molten steel level control method is disclosed.
 また、特許文献4では、溶融金属の連続鋳造設備において、鋳型中心部に配した浸漬ノズルを中心として2つの湯面レベル計を鋳型幅方向の対称位置を測定するように設置し、それらの測定値の加算平均値を求めることによって定在波の成分を除去する湯面レベル検出装置が開示されている。 Further, in Patent Document 4, in a molten metal continuous casting facility, two hot water level meters are installed so as to measure symmetrical positions in the mold width direction around an immersion nozzle disposed in the center of the mold, and measurement thereof is performed. There is disclosed a hot water level detecting device that removes a standing wave component by obtaining an average value of values.
 また、特許文献5及び6では、安定化制御器のパラメトリゼーションの考え方に基づいた制御系の構造(湯面レベル偏差補正値演算部、開度指令補正値演算部、開度変更補正値演算部)を規定し、それをロバスト制御理論に基づいて設計することにより、感度関数をノッチフィルタ状に周波数整形することによって定在波成分の影響を受けないようにした連続鋳造機の湯面レベル制御方法が開示されている。 Further, in Patent Documents 5 and 6, the structure of the control system based on the parametrization concept of the stabilization controller (a molten metal level deviation correction value calculation unit, an opening command correction value calculation unit, an opening change correction value calculation) Level of the continuous casting machine that is not affected by standing wave components by frequency shaping the sensitivity function into a notch filter by designing it based on robust control theory. A control method is disclosed.
 また、特許文献7では、湯面レベル信号に含まれる周期性レベル変動の周波数を検知し、検知した周波数の成分を減衰させた信号と目標レベルの偏差に基づいてモールドへの入口の開度変更量を演算するとともに、周期性レベル変動を相殺するような位相と振幅を有する、検知した周波数と同じ周波数の信号を生成し、その信号を開度変更量に加算して補正する湯面レベル制御方法が開示されている。 Moreover, in patent document 7, the frequency of the periodicity level fluctuation | variation contained in the molten metal surface level signal is detected, and the opening degree change of the inlet to a mold is changed based on the signal which attenuate | damped the component of the detected frequency, and the deviation of a target level A level control that calculates the amount and generates a signal of the same frequency as the detected frequency that has a phase and amplitude that cancels periodic level fluctuations, and corrects the signal by adding it to the amount of change in opening. A method is disclosed.
特開2007-260693号公報JP 2007-260693 A 特開2009-241150号公報JP 2009-241150 A 特開2010-69513号公報JP 2010-69513 A 特開2005-28381号公報JP 2005-28381 A 特開2001-129647号公報JP 2001-129647 A 特開2002-248555号公報JP 2002-248555 A 特開2002-59249号公報JP 2002-59249 A
 モールド湯面に現れる定在波の振幅は時々刻々変化する。これに対し、特許文献2の方法では、推定する定在波に関しては、所定時間の間は振幅が一定であるとの仮定を設けている。これは最小二乗法を適用しているためであるが、そのために推定の応答が遅れ、定在波の振幅変化に追従できないという問題がある。 The amplitude of the standing wave that appears on the mold surface changes from moment to moment. On the other hand, in the method of Patent Document 2, it is assumed that the amplitude of the standing wave to be estimated is constant for a predetermined time. This is because the method of least squares is applied, but there is a problem that the response of the estimation is delayed, and the amplitude change of the standing wave cannot be followed.
 また、特許文献3の方法では、湯面レベル計をモールドの中心位置に設置することにより1次定在波成分の除去を図ったものであるが、モールド上面の開口部付近にはモールドパウダー投入装置があり、中心部にレベル計を設置することが困難な場合があるため、1次定在波についても信号処理によって除去するのが望ましい。 In addition, in the method of Patent Document 3, the primary standing wave component is removed by installing a hot water level meter at the center of the mold, but mold powder is put near the opening on the upper surface of the mold. Since there is a device and it may be difficult to install a level meter in the center, it is desirable to remove the primary standing wave by signal processing.
 また、特許文献4の方法では、2つのレベル計を設置しなければならないため、1つのレベル計を設置するのに比べて設置コスト、保守費用が2倍となる。また、高温で厳しい環境で使用するため、2つのレベル計に機差が生じ、本来同一レベルのものが異なる値で出る問題があり、性能維持のためのキャリブレーションの精度が今まで以上に要求される。 Also, in the method of Patent Document 4, since two level meters must be installed, the installation cost and the maintenance cost are doubled compared to installing one level meter. In addition, because it is used in a severe environment at high temperatures, there is a difference between the two level meters, and there is a problem that the same level of the same level is different, and the accuracy of calibration for maintaining performance is required more than ever. Is done.
 また、特許文献5及び6の方法では、安定化制御器のパラメトリゼーションの考え方に基づいた制御系の構造を規定し、ロバスト制御理論を用いて鋳造プロセスを含む制御系全体の特性(感度関数)をノッチフィルタ状に整形するものであるため、構造が複雑、定在波が除去された湯面レベル信号を観測することができない、という理由により、制御系のパラメータ調整が難しいという問題がある。 In the methods of Patent Documents 5 and 6, the structure of the control system is defined based on the concept of parametrization of the stabilization controller, and the characteristics of the entire control system including the casting process (sensitivity function) using the robust control theory. ) Is shaped like a notch filter, and it is difficult to adjust the parameters of the control system because the structure is complex and the surface level signal from which standing waves have been removed cannot be observed. .
 また、特許文献7の方法の対象となっている湯面レベル信号中の周期性変動はバルジング性湯面変動であり、定在波が対象ではない。そのため、特定の周波数成分を減衰させた湯面レベル信号を湯面レベル制御に用いることと、その周波数成分を相殺するような信号を生成して湯面レベル制御に用いることが同時に行われる。すなわち、湯面レベル制御に用いる湯面レベル信号に周期性変動が含まれるとPID制御などの演算が不安定となり、湯面レベル変動がかえって増幅されるので、その周波数成分を減衰させた湯面レベル信号を湯面レベル制御に用いるようにしている。そうすると、湯面レベル制御では周期性変動の抑制が行えなくなってしまうので、その周波数成分の信号を発生させ、位相と振幅を調整して湯面レベル制御の出力に加算することにより、周期性レベル変動の成分を相殺するようにしている。定在波のようなマスフロー変動ではない周期性レベル変動に対しては、モールドへの溶鋼流量を制御によって操作してはならないが、本手法を適用すると、その周波数でモールドへの溶鋼流量が操作され、モールド内の溶鋼の揺動を励起し、定在波を強めてしまい、制御的には逆効果となってしまう。 Further, the periodic fluctuation in the molten metal level signal that is the object of the method of Patent Document 7 is a bulging molten metal fluctuation, and is not a standing wave. Therefore, the molten metal level signal obtained by attenuating a specific frequency component is used for molten metal level control, and a signal that cancels the frequency component is generated and used for molten metal level control. That is, if the fluctuation level signal used for the molten metal surface level control includes periodic fluctuation, the calculation such as PID control becomes unstable, and the molten metal surface level fluctuation is amplified instead. The level signal is used for hot water level control. Then, since the fluctuation level control cannot be performed in the molten metal level control, the periodicity level is generated by generating a signal of the frequency component, adjusting the phase and amplitude, and adding it to the output of the molten metal level control. The fluctuation component is offset. For periodic level fluctuations that are not mass flow fluctuations such as standing waves, the molten steel flow rate to the mold must not be controlled by control, but when this method is applied, the molten steel flow rate to the mold is controlled at that frequency. This excites the rocking of the molten steel in the mold, strengthens the standing wave, and has an adverse effect on control.
 本発明は、上記に鑑みてなされたものであって、1つのレベル計を用い、それから1次、2次及び3次の定在波成分を抽出、除去することによって本来制御すべきバルジング性湯面変動だけを抽出し、それを湯面レベル制御に用いることによって高精度の湯面レベル制御を実現するモールド内溶鋼湯面レベル制御方法を提供することを目的とする。 The present invention has been made in view of the above. A bulging hot water to be originally controlled by using a single level meter and extracting and removing primary, secondary and tertiary standing wave components therefrom. An object of the present invention is to provide an in-mold molten steel surface level control method that realizes highly accurate molten metal surface level control by extracting only surface fluctuation and using it for molten metal surface level control.
 上述した課題を解決し、目的を達成するために、本発明にかかるモールド内溶鋼湯面レベル制御方法は、連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動のモデルを2次振動系で表し、湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記モデルの入力に帰還することによって該モデルを励振し、得られた該モデルの出力によって前記定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差をもって前記定在波成分を除去したレベル信号とし、該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とする。 In order to solve the above-described problems and achieve the object, the molten steel level control method in the mold according to the present invention is a unique method corresponding to the mold width in controlling the molten steel level in the mold of the continuous casting machine. A model of the molten metal level fluctuation due to a standing wave that oscillates with a period is represented by a secondary vibration system, and at least one of the deviation between the level measured value measured by the molten metal level meter and the output of the model and its differential value. The model is excited by feeding back to the input of the model, and the level change value measured by the level meter is estimated using the obtained output of the model to estimate the level fluctuation component due to the standing wave. The level signal from which the standing wave component is removed with the deviation between the model output and the flow rate of the molten steel flowing into the mold by feedback control using the level signal Characterized by operating the actuator to adjust.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、上記発明において、前記湯面レベル計は、モールド幅中央とモールド幅端との中間となるモールド幅1/4の位置に配置されていることを特徴とする。 Further, in the above-described invention, the molten metal level control method in the mold according to the present invention is such that the molten metal level meter is arranged at a position of the mold width 1/4 that is between the mold width center and the mold width end. It is characterized by being.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル及び2次定在波モデルをそれぞれ2次振動系で表し、湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記1次定在波モデルの入力に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記2次定在波モデルの入力に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とする。 In addition, the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine. The first-order standing wave model and second-order standing wave model of fluctuation are each represented by a second-order vibration system, and the difference between the level measurement value measured by the molten metal level meter and the output of the first standing wave model and its derivative. The primary standing wave model is excited by feeding back at least one of the values to the input of the primary standing wave model, and the primary standing wave is obtained by the obtained output of the primary standing wave model. A level signal obtained by removing the primary standing wave component with a deviation between the level measurement value measured by the level meter and the output of the primary standing wave model, The primary standing wave component The secondary standing wave model is excited by feeding back at least one of the deviation between the level signal thus removed and the output of the secondary standing wave model and the differential value thereof to the input of the secondary standing wave model. Then, the molten metal surface level fluctuation component due to the secondary standing wave is estimated from the output of the obtained secondary standing wave model, and the level signal from which the primary standing wave component has been removed and the secondary standing wave Operates an actuator that adjusts the flow rate of molten steel flowing into the mold by feedback control using the level signal, with the deviation from the model output as a level signal from which the primary standing wave component and the secondary standing wave component have been removed. It is characterized by doing.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、上記発明において、前記湯面レベル計は、モールド幅中央とモールド幅端との中間となるモールド幅1/4の位置よりもモールド幅端寄りで定在波成分がとれる位置に配置されていることを特徴とする。 Further, in the above-mentioned invention, the molten metal level control method in the mold according to the present invention is characterized in that the molten metal level meter has a mold width larger than a position of the mold width 1/4 that is intermediate between the mold width center and the mold width end. It is arranged at a position near the edge where a standing wave component can be taken.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル、2次定在波モデル及び3次定在波モデルをそれぞれ2次振動系で表し、湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記1次定在波モデルの入力に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記2次定在波モデルの入力に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記3次定在波モデルの入力に帰還することによって該3次定在波モデルを励振し、得られた該3次定在波モデルの出力によって3次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差をもって前記1次定在波成分、前記2次定在波成分及び前記3次定在波成分を除去したレベル信号とし、該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とする。 In addition, the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine. The first-order standing wave model, second-order standing wave model, and third-order standing wave model of fluctuation are each represented by a secondary vibration system, and the level measurement value measured by the molten metal level meter and the first-order standing wave model The primary standing wave model is excited by feeding back at least one of the deviation from the output and the differential value thereof to the input of the primary standing wave model. The molten metal level fluctuation component due to the primary standing wave is estimated based on the output, and the primary standing wave component is determined by the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model. Is a level signal from which By feeding back at least one of the difference between the level signal from which the first-order standing wave component is removed and the output of the second-order standing wave model and the differential value thereof to the input of the second-order standing wave model, A level obtained by exciting a secondary standing wave model, estimating a level fluctuation component due to the secondary standing wave based on the output of the obtained secondary standing wave model, and removing the primary standing wave component A level signal obtained by removing the primary standing wave component and the secondary standing wave component with a deviation between the signal and the output of the secondary standing wave model, and the primary standing wave component and the secondary standing wave By feeding back at least one of the deviation between the level signal from which the wave component is removed and the output of the third-order standing wave model and its differential value to the input of the third-order standing wave model, the third-order standing wave The third-order standing wave model obtained by exciting the model The level fluctuation component due to the third-order standing wave is estimated from the output, and the level signal from which the first-order standing wave component and the second-order standing wave component are removed and the output of the third-order standing wave model A level signal from which the primary standing wave component, the secondary standing wave component, and the tertiary standing wave component have been removed is used as a deviation, and the flow rate of molten steel flowing into the mold is adjusted by feedback control using the level signal. It is characterized by operating an actuator.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動のモデルを2次振動系で表し、湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差を前記モデルの状態変数に帰還することによって該モデルを励振し、得られた該モデルの出力によって前記定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差をもって前記定在波成分を除去したレベル信号とし、該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とする。 In addition, the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine. The model of fluctuation is expressed by a secondary vibration system, and the model is excited by feeding back the deviation between the level measurement value measured by the molten metal level meter and the output of the model to the state variable of the model. A level signal obtained by estimating the level fluctuation component due to the standing wave from the output of the model and removing the standing wave component with a deviation between the level measurement value measured by the level gauge and the output of the model. And operating an actuator for adjusting the flow rate of the molten steel flowing into the mold by feedback control using the level signal.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル及び2次定在波モデルをそれぞれ2次振動系で表し、湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差を前記1次定在波モデルの状態変数に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差を前記2次定在波モデルの状態変数に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とする。 In addition, the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine. The primary standing wave model and the secondary standing wave model of fluctuation are each expressed by a secondary vibration system, and the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model is described as 1 above. The primary standing wave model is excited by feeding back to the state variable of the secondary standing wave model, and the surface level fluctuation component due to the primary standing wave is estimated from the obtained output of the primary standing wave model. And a level signal obtained by removing the primary standing wave component with a deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model, The removed level signal and the secondary determination The deviation from the output of the wave model is fed back to the state variable of the second-order standing wave model to excite the second-order standing wave model, and the second-order standing wave model is obtained according to the obtained output of the second-order standing wave model. The molten metal level fluctuation component due to standing waves is estimated, and the primary standing wave component and the secondary wave are determined with a deviation between the level signal from which the primary standing wave component is removed and the output of the secondary standing wave model. A level signal from which the standing wave component is removed is used, and an actuator for adjusting the flow rate of the molten steel flowing into the mold is controlled by feedback control using the level signal.
 また、本発明にかかるモールド内溶鋼湯面レベル制御方法は、連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル、2次定在波モデル及び3次定在波モデルをそれぞれ2次振動系で表し、湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差を前記1次定在波モデルの状態変数に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差を前記2次定在波モデルの状態変数に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差を前記3次定在波モデルの状態変数に帰還することによって該3次定在波モデルを励振し、得られた該3次定在波モデルの出力によって3次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差をもって前記1次定在波成分、前記2次定在波成分及び前記3次定在波成分を除去したレベル信号とし、該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とする。 In addition, the molten steel level control method in the mold according to the present invention is a method for controlling the molten steel level in the mold of a continuous casting machine. The first-order standing wave model, second-order standing wave model, and third-order standing wave model of fluctuation are each represented by a secondary vibration system, and the level measurement value measured by the molten metal level meter and the first-order standing wave model The primary standing wave model is excited by feeding back the deviation from the output to the state variable of the primary standing wave model, and the primary standing wave is generated by the obtained output of the primary standing wave model. A level signal obtained by removing the primary standing wave component with a deviation between a level measurement value measured by the hot water level meter and an output of the primary standing wave model while estimating the molten metal level fluctuation component, Level with the primary standing wave component removed The secondary standing wave model is excited by feeding back the deviation between the signal and the output of the secondary standing wave model to the state variable of the secondary standing wave model. The level fluctuation component due to the secondary standing wave is estimated based on the output of the model, and the primary constant is determined by the deviation between the level signal from which the primary standing wave component has been removed and the output of the secondary standing wave model. A level signal from which the standing wave component and the secondary standing wave component have been removed is used, and the level signal from which the primary standing wave component and the secondary standing wave component have been removed and the output of the tertiary standing wave model The third-order standing wave model is excited by feeding back the deviation to the state variable of the third-order standing wave model, and the surface level of the third-order standing wave is obtained by the output of the obtained third-order standing wave model. While estimating the fluctuation component, the primary standing wave component and the 2 A level obtained by removing the primary standing wave component, the secondary standing wave component, and the tertiary standing wave component with a deviation between the level signal from which the standing wave component has been removed and the output of the tertiary standing wave model. It is characterized by operating an actuator that adjusts the flow rate of molten steel flowing into the mold by feedback control using the level signal.
 本発明にかかるモールド内溶鋼湯面レベル制御方法は、1次、2次及び3次の定在波のモデルをそれぞれの周波数を固有周波数とする2次振動系で表し、それらの出力と、それぞれに対比すべき実プロセスの出力(1次定在波モデルではレベル測定値、2次定在波モデルではレベル測定値から1次定在波成分を除去したレベル信号、3次定在波モデルではレベル測定値から1次定在波成分及び2次定在波成分を除去したレベル信号)との偏差に比例微分演算を施してそれぞれのモデルに入力してモデルを励振することによりモデルの出力から定在波成分を推定している。このとき、前記のモデルと実プロセスとの偏差は、該当する定在波成分が除去されたレベル信号になる。このように、本発明では、定在波成分を抽出することと、それを除去したレベル信号を得ることが並行して行われる。これにより、定在波成分の抽出状況を目視で確認しながら本発明における調整パラメータである2次振動系の減衰定数と前記偏差に施す比例微分演算のゲインを調整することができるので、定在波抽出を適正に行うことができる。また、前記調整パラメータは、定在波抽出における選択特性(帯域通過フィルタにおけるバンド幅)に相当するものであるが、各パラメータと特性との関係が明確であるため、調整が容易に行えるという利点も有する。 The molten steel surface level control method in the mold according to the present invention represents the first, second, and third-order standing wave models as secondary vibration systems having respective frequencies as natural frequencies, their outputs, The output of the actual process to be compared to the level signal (in the first-order standing wave model, the level signal obtained by removing the first-order standing wave component from the level measurement value in the second-order standing wave model, and the third-order standing wave model) From the output of the model, a proportional differential operation is applied to the deviation from the level measurement value to the level signal from which the primary standing wave component and the secondary standing wave component have been removed, and the model is input to each model to excite the model. Standing wave component is estimated. At this time, the deviation between the model and the actual process becomes a level signal from which the corresponding standing wave component is removed. As described above, in the present invention, the standing wave component is extracted and the level signal from which the standing wave component is removed is performed in parallel. As a result, it is possible to adjust the damping constant of the secondary vibration system, which is the adjustment parameter in the present invention, and the gain of the proportional differential operation applied to the deviation while visually confirming the extraction status of the standing wave component. Wave extraction can be performed properly. The adjustment parameter corresponds to a selection characteristic (band width in a bandpass filter) in standing wave extraction, but since the relationship between each parameter and the characteristic is clear, the adjustment can be easily performed. Also have.
 また、抽出、除去する定在波の次数は、湯面レベル測定値に含まれている実際の定在波成分によって選択すればよい。定在波成分の確認は、湯面レベル測定値を周波数解析することによって容易に行うことができる。 Further, the order of the standing wave to be extracted and removed may be selected according to the actual standing wave component included in the molten metal surface level measurement value. The standing wave component can be easily confirmed by frequency analysis of the measurement value of the molten metal level.
 また、本発明の定在波成分除去は、特許文献5,6とは異なり、どのような湯面レベル制御系に対しても付加することができるので、既設の制御系を変更する必要はない。例えば、湯面レベル制御系がPI制御であれば、PI制御に用いる湯面レベル信号を本発明によって定在波成分を除去した湯面レベル信号とするだけでよい。また、PI制御に限らず、公知のさまざまな湯面レベル制御系に付加することが可能である。 Further, unlike the Patent Documents 5 and 6, the standing wave component removal of the present invention can be added to any hot water level control system, so there is no need to change the existing control system. . For example, if the hot water surface level control system is PI control, the hot water surface level signal used for PI control only needs to be the hot water surface level signal from which the standing wave component is removed according to the present invention. Moreover, it is possible to add not only to PI control but also to various known hot water level control systems.
図1は、本発明を連続鋳造機のモールド内溶鋼湯面レベル制御系に適用した実施の形態の構成例を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration example of an embodiment in which the present invention is applied to an in-mold molten steel surface level control system of a continuous casting machine. 図2は、本実施の形態の定在波成分除去装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the standing wave component removal apparatus of the present embodiment. 図3は、本実施の形態によって定在波の抽出と除去を行った例を示す線図である。FIG. 3 is a diagram showing an example in which standing waves are extracted and removed according to the present embodiment. 図4は、本実施の形態による湯面レベル制御を行ったときの湯面レベル変動の例を示す線図である。FIG. 4 is a diagram showing an example of the molten metal level fluctuation when the molten metal level control according to the present embodiment is performed. 図5は、本発明を連続鋳造機のモールド内溶鋼湯面レベル制御系に適用した実施の形態の構成例を示す説明図である。FIG. 5 is an explanatory view showing a configuration example of an embodiment in which the present invention is applied to a molten steel surface level control system in a mold of a continuous casting machine. 図6は、1次定在波モデルの伝達関数を示すブロック図である。FIG. 6 is a block diagram showing a transfer function of the first-order standing wave model. 図7は、図6の表現を用いて1次定在波除去を行う場合の構成例を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration example when primary standing wave removal is performed using the expression of FIG. 図8は、従来の連続鋳造機のモールド内溶鋼湯面レベル制御系の例の構成を示す説明図である。FIG. 8 is an explanatory view showing a configuration of an example of a molten steel surface level control system in a mold of a conventional continuous casting machine. 図9は、定在波を示す説明図である。FIG. 9 is an explanatory diagram showing a standing wave. 図10は、従来の湯面レベル制御を行ったときの湯面レベル変動の例を示す線図である。FIG. 10 is a diagram showing an example of the fluctuation of the molten metal level when the conventional molten metal level control is performed.
 以下に、本発明にかかるモールド内溶鋼湯面レベル制御方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a molten steel surface level control method in a mold according to the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
 まず、本発明の概要について説明する。本発明では、1次、2次の定在波モデルをそれぞれの周波数を固有周波数とする2次振動系で表し、その出力によって時々刻々変化する定在波を推定する。まず、1次定在波については、レベル計によるレベル測定値と1次定在波モデルの出力の偏差及びその微分値のうちの少なくとも一方にゲインを乗じて1次定在波モデルの入力にフィードバックする。これにより、1次定在波モデルの出力は、1次定在波成分の時々刻々の推定値となるので、前記偏差は、レベル測定値から1次定在波成分を除去したものとなる。このとき、前記偏差及びその微分値のうちの少なくとも一方に乗じるゲインを調整することにより、定在波近傍の周波数をどれだけ含めて推定するかを設定することができる。 First, the outline of the present invention will be described. In the present invention, a first-order and second-order standing wave model is represented by a secondary vibration system having respective frequencies as natural frequencies, and a standing wave that changes every moment according to the output is estimated. First, for the primary standing wave, the gain is multiplied by at least one of the level measurement value obtained by the level meter, the deviation of the output of the primary standing wave model and the differential value thereof, and used as the input of the primary standing wave model. provide feedback. As a result, the output of the primary standing wave model is an estimated value of the primary standing wave component every moment, so the deviation is obtained by removing the primary standing wave component from the level measurement value. At this time, by adjusting a gain multiplied by at least one of the deviation and its differential value, it is possible to set how much the frequency in the vicinity of the standing wave is to be estimated.
 次に、2次定在波については、レベル計によるレベル測定値と1次定在波モデルの出力の偏差、すなわち1次定在波成分を除去したレベル測定値と2次定在波モデルの偏差及びその微分値のうちの少なくとも一方にゲインを乗じて2次定在波モデルの入力にフィードバックする。これにより、2次定在波モデルの出力は、2次定在波成分の時々刻々の推定値となるので、前記偏差は、1次定在波成分を除去したレベル測定値から2次定在波成分を除去したものとなる。すなわち、レベル計の測定値から1次、2次の定在波成分を除去したレベル信号を得ることができる。このとき、前記偏差及びその微分値のうちの少なくとも一方に乗じるゲインを調整することにより、定在波近傍の周波数をどれだけ含めて推定するかを設定することができる。 Next, for the secondary standing wave, the deviation between the level measurement value by the level meter and the output of the primary standing wave model, that is, the level measurement value from which the primary standing wave component has been removed and the secondary standing wave model At least one of the deviation and its differential value is multiplied by a gain and fed back to the input of the second-order standing wave model. As a result, the output of the secondary standing wave model is an estimated value of the secondary standing wave component every moment, so that the deviation is the secondary standing wave from the level measurement value from which the primary standing wave component has been removed. The wave component is removed. That is, it is possible to obtain a level signal obtained by removing the primary and secondary standing wave components from the measured value of the level meter. At this time, by adjusting a gain multiplied by at least one of the deviation and its differential value, it is possible to set how much the frequency in the vicinity of the standing wave is to be estimated.
 上記で得られた1次、2次の定在波成分を除去したレベル信号を用いて湯面レベル制御を行うと、制御系が定在波に反応することがなくなるので、ゲインを上げることができるようになり、バルジング性湯面変動を抑圧することができる。また、レベル計は1つだけでよいので、設置や保守のコストを抑えることができる。 When the molten metal level control is performed using the level signal obtained by removing the primary and secondary standing wave components obtained above, the control system does not react to the standing wave, so that the gain can be increased. It becomes possible to suppress bulging level fluctuations. Further, since only one level meter is required, installation and maintenance costs can be suppressed.
 次に、本発明を連続鋳造機のモールド内溶鋼湯面レベル制御に適用した場合の構成例を図1に示す。図8に示した部分と同一部分は同一符号を用いて示し、説明も省略する。図1において、定在波成分除去装置11は、レベル計7で測定した湯面レベル測定値から1次及び2次定在波成分を除去したレベル信号を算出し、湯面レベル制御装置8に出力する。図8の従来技術との違いは、本実施の形態では、湯面レベル制御装置8がレベル計7で測定した湯面レベル測定値をそのまま使うのではなく、定在波成分除去装置11によって定在波成分が除去されたレベル信号を使うことである。また、レベル計7は、1次定在波のみを対象とする場合であれば、2次定在波の節の位置(モールド幅中央とモールド幅端の中間となるモールド幅1/4の位置)に配置すればよいが、1次及び2次定在波を対象とする場合であれば、これよりもモールド幅端寄りで定在波成分がとれる位置(例えば、モールド幅1/8の位置)に配置するのがよい。 Next, FIG. 1 shows a configuration example when the present invention is applied to molten steel level control in a mold of a continuous casting machine. The same parts as those shown in FIG. 8 are denoted by the same reference numerals, and description thereof is also omitted. In FIG. 1, the standing wave component removing device 11 calculates a level signal from which the primary and secondary standing wave components have been removed from the surface level measurement value measured by the level meter 7, and sends it to the surface level control device 8. Output. The difference from the prior art of FIG. 8 is that, in this embodiment, the surface level measurement value measured by the surface level control device 8 with the level meter 7 is not used as it is, but is determined by the standing wave component removal device 11. The level signal from which the standing wave component is removed is used. Further, if the level meter 7 is intended only for the primary standing wave, the position of the node of the secondary standing wave (the position of the mold width 1/4 that is between the mold width center and the mold width end). However, if the primary and secondary standing waves are targeted, the position where the standing wave component can be taken closer to the mold width end (for example, the position of the mold width 1/8) ).
 定在波成分除去装置11は、図2のように構成されている。すなわち、定在波成分除去装置11は、1次定在波モデル12とPD演算器13と2次定在波モデル14とPD演算器15と加算器16、17とを備える。1次定在波モデル12は、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動について1次のモードのモデルを2次振動系で表したものである。1次定在波の周波数fは、(1)式で表される。 The standing wave component removal apparatus 11 is configured as shown in FIG. That is, the standing wave component removal apparatus 11 includes a primary standing wave model 12, a PD calculator 13, a secondary standing wave model 14, a PD calculator 15, and adders 16 and 17. The first-order standing wave model 12 is a model of a first-order mode expressed by a second-order vibration system with respect to a molten metal surface level fluctuation caused by a standing wave oscillating at a specific period corresponding to the mold width. Frequency f 1 of the first-order standing wave is expressed by equation (1).
 f=√(G/4πL)  ・・・・・・・・・・・・(1)
 ここで、Gは重力加速度、Lはモールド幅である。
f 1 = √ (G / 4πL) (1)
Here, G is the gravitational acceleration, and L is the mold width.
 1次定在波モデル12の伝達関数Gは、1次定在波の周波数fを固有周波数とする2次振動系であり、(2)式のように表される。 The transfer function G 1 of the first-order standing wave model 12, a first-order standing wave frequency f 1 is a secondary vibration system whose natural frequency is represented by the equation (2).
 G=ω /(s+2ζωs+ω )・・・・・・(2)
 ここで、ω=2πfであり、ζは減衰係数である。
G 1 = ω 1 2 / (s 2 + 2ζ 1 ω 1 s + ω 1 2 ) (2)
Here, ω 1 = 2πf 1 and ζ 1 is an attenuation coefficient.
 PD演算器13は、1次定在波モデル12の出力とレベル計7の測定値とから加算器16により演算された偏差に比例微分演算を施して1次定在波モデル12に入力する。これにより、1次定在波モデル12は励振され、1次定在波成分推定値を出力する。このとき、1次定在波モデル12とレベル計7の測定値との偏差(加算器16の出力)は、1次定在波成分が除去されたレベル信号になる。 The PD calculator 13 subjects the deviation calculated by the adder 16 from the output of the primary standing wave model 12 and the measured value of the level meter 7 to input to the primary standing wave model 12. Thereby, the primary standing wave model 12 is excited and outputs an estimated value of the primary standing wave component. At this time, the deviation (output of the adder 16) between the primary standing wave model 12 and the measured value of the level meter 7 becomes a level signal from which the primary standing wave component has been removed.
 また、2次定在波モデル14は、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動について2次のモードのモデルを2次振動系で表したものである。2次定在波の周波数fは、(3)式で表される。 The secondary standing wave model 14 represents a model of a secondary mode with respect to a molten metal surface level fluctuation caused by a standing wave that oscillates at a specific period corresponding to the mold width, as a secondary vibration system. Frequency f 2 of the second-order standing wave is expressed by equation (3).
 f= √(G/2πL) ・・・・・・・・・・・・(3) f 2 = √ (G / 2πL) (3)
 2次定在波モデル14の伝達関数Gは、2次定在波の周波数fを固有周波数とする2次振動系であり、(4)式のように表される。 The transfer function G 2 of a secondary standing wave model 14, the second-order standing wave frequency f 2 a secondary vibration system with its natural frequency, is expressed by the equation (4).
 G=ω /(s+2ζωs+ω )・・・・・・(4)
 ここで、ω=2πfであり、ζは減衰係数である。
G 2 = ω 2 2 / (s 2 + 2ζ 2 ω 2 s + ω 2 2 ) (4)
Here, ω 2 = 2πf 2 and ζ 2 is an attenuation coefficient.
 PD演算器15は、1次定在波モデル12の出力とレベル計7の測定値とから加算器16により演算された偏差(加算器16の出力)と2次定在波モデル14の出力とから加算器17により演算された偏差に比例微分演算を施して2次定在波モデル14に入力する。これにより、2次定在波モデル14は励振され、2次定在波成分推定値を出力する。このとき、1次定在波モデル12の出力とレベル計7の測定値との偏差(加算器16の出力)と2次定在波モデル14の出力の偏差(加算器17の出力)は、1次及び2次定在波成分が除去されたレベル信号になる。 The PD calculator 15 calculates the deviation (output of the adder 16) calculated by the adder 16 from the output of the primary standing wave model 12 and the measurement value of the level meter 7, and the output of the secondary standing wave model 14. Are subjected to proportional differentiation on the deviation calculated by the adder 17 and input to the secondary standing wave model 14. As a result, the secondary standing wave model 14 is excited and outputs a secondary standing wave component estimation value. At this time, the deviation between the output of the primary standing wave model 12 and the measured value of the level meter 7 (the output of the adder 16) and the deviation of the output of the secondary standing wave model 14 (the output of the adder 17) are: The level signal is obtained by removing the primary and secondary standing wave components.
 このように、本実施の形態では、定在波成分を抽出することと、それを除去したレベル信号を得ることが並行して行われる。これにより、定在波成分の抽出状況を目視で確認しながら本実施の形態における調整パラメータである1次及び2次定在波モデル12、14における減衰定数ζ、ζとPD演算器13、15における比例微分演算のゲインを調整することができるので、定在波抽出を適正に行うことができる。また、前記の調整パラメータは、定在波抽出における選択特性(帯域通過フィルタにおけるバンド幅)に相当するものであるが、各パラメータと特性との関係が明確であるため、調整が容易に行える。 Thus, in the present embodiment, the standing wave component is extracted and the level signal from which the standing wave component is removed is performed in parallel. As a result, the attenuation constants ζ 1 and ζ 2 and the PD calculator 13 in the primary and secondary standing wave models 12 and 14 which are the adjustment parameters in the present embodiment are confirmed while visually confirming the standing wave component extraction status. , 15 can be adjusted, so that standing wave extraction can be performed appropriately. The adjustment parameter corresponds to the selection characteristic (bandwidth in the bandpass filter) in the standing wave extraction, but the relationship between each parameter and the characteristic is clear, so that the adjustment can be easily performed.
 図3に本実施の形態によって定在波成分を含む湯面レベルから、1次及び2次定在波成分を抽出、除去した例を示す。定在波による測定ノイズを含む湯面レベル測定値から定在波成分が除去され、バルジングに起因する湯面レベル変動が明瞭に抽出されている。 FIG. 3 shows an example in which the primary and secondary standing wave components are extracted and removed from the surface level including the standing wave component according to the present embodiment. The standing wave component is removed from the molten metal level measurement value including the measurement noise caused by the standing wave, and the fluctuation of the molten metal surface level caused by bulging is clearly extracted.
 次に、本発明による湯面レベル制御方法を従来技術と比較した例を図4及び図10に示す。まず、図10は、図8に示す制御系を用いて制御を行った場合であり、湯面レベル制御装置8にはPI制御を用いた。図10に示されているように、スライディングノズル(S/N)3の開度には、湯面レベル計7の測定値に含まれる定在波に起因する変動成分が多く含まれており、湯面レベルにはその定在波成分とバルジング性湯面レベル変動がともに現れている。バルジング性湯面レベル変動を抑制するにはPI制御のゲインを上げる必要があるが、そうするとスライディングノズル(S/N)3の開度に益々定在波成分が大きく現れ、それが湯面レベル変動を助長してしまうため、ゲインを上げることはできない。 Next, an example in which the hot water level control method according to the present invention is compared with the prior art is shown in FIGS. First, FIG. 10 shows a case where control is performed using the control system shown in FIG. 8, and PI control is used for the hot water level control device 8. As shown in FIG. 10, the opening of the sliding nozzle (S / N) 3 includes many fluctuation components due to standing waves included in the measured value of the molten metal level meter 7. Both the standing wave component and the bulging level level fluctuation appear in the surface level. To suppress bulging level level fluctuation, it is necessary to increase the gain of PI control. Then, the standing wave component appears more and more in the opening of the sliding nozzle (S / N) 3, which is the level level fluctuation. The gain cannot be increased.
 一方、図4は、図2に示した本実施の形態を適用した場合であり、定在波成分を除去したレベル信号を用いているため、スライディングノズル(S/N)3の開度にはそれが大きく現れることがないので、PI制御器のゲインを上げることができる。ここでは、比例ゲインを図10の場合の2.5倍としている。そのため、バルジング性湯面レベル変動に対応してスライディングノズル(S/N)3の開度を適切に操作できるようになり、湯面レベル変動は図10の場合の約1/3に低減させることができたものである。 On the other hand, FIG. 4 shows a case where the present embodiment shown in FIG. 2 is applied, and a level signal from which a standing wave component is removed is used. Therefore, the opening of the sliding nozzle (S / N) 3 is Since it does not appear greatly, the gain of the PI controller can be increased. Here, the proportional gain is 2.5 times that in the case of FIG. Therefore, the opening of the sliding nozzle (S / N) 3 can be appropriately operated in response to fluctuations in the level of the bulging hot water surface, and the water surface level fluctuation should be reduced to about 1/3 of the case of FIG. Was made.
 なお、本実施の形態では、1次、2次の順に処理するようにしたが、1次定在波モデル12、PD演算器13、加算器16と、2次定在波モデル14、PD演算器14、加算器17とを前後入れ替えて、2次、1次の順に処理するようにしてもよい。 In this embodiment, the processing is performed in the order of the first order and the second order. However, the first standing wave model 12, the PD calculator 13, the adder 16, the second standing wave model 14, and the PD calculation. The unit 14 and the adder 17 may be interchanged, and processing may be performed in the order of secondary and primary.
 また、定在波は、通常1次、2次の成分が強く、本実施の形態のように1次、2次の定在波成分を除去したレベル信号を用いて湯面レベル制御を行うことで十分な制御効果が得られるが、3次の定在波成分が含まれている場合には、1次、2次の成分に対する場合と同様の構成で推定と除去を行うことができる。 In addition, the standing wave normally has strong primary and secondary components, and the surface level control is performed using the level signal from which the primary and secondary standing wave components are removed as in this embodiment. However, if a third-order standing wave component is included, estimation and removal can be performed with the same configuration as that for the first-order and second-order components.
 図5は、1次、2次、3次の定在波成分を3次定在波モデル18は、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動について3次のモードのモデルを2次振動系で表したものである。3次定在波の周波数fは、(5)式で表される。
 f= √(3G/4πL)・・・・・・・・・・・・(5)
FIG. 5 shows the first-order, second-order, and third-order standing wave components. This mode model is expressed by a secondary vibration system. The frequency f 3 of the third-order standing wave is expressed by equation (5).
f 3 = √ (3G / 4πL) (5)
 3次定在波モデル18の伝達関数Gは、3次定在波の周波数fを固有周波数とする2次振動系であり、(6)式のように表される。
 G=ω /(s+2ζωs+ω )・・・・・・(6)
 ここで、ω=2πfであり、ζは減衰係数である。
The transfer function G 3 of a third-order standing wave model 18, the frequency f 3 of the third-order standing wave is secondary vibration system whose natural frequency is represented by the equation (6).
G 3 = ω 3 2 / (s 2 + 2ζ 3 ω 3 s + ω 3 2 ) (6)
Here, ω 3 = 2πf 3 and ζ 3 is an attenuation coefficient.
 PD演算器19は、加算器17から出力される1次及び2次定在波成分が除去されたレベル信号と3次定在波モデル18の出力とから加算器20により演算された偏差に比例微分演算を施して3次定在波モデル18に入力する。これにより、3次定在波モデル18は励振され、3次定在波成分推定値を出力する。このとき、加算器17の出力と3次定在波モデル18の出力の偏差(加算器20の出力)は、1次、2次及び3次定在波成分が除去されたレベル信号になる。 The PD calculator 19 is proportional to the deviation calculated by the adder 20 from the level signal from which the primary and secondary standing wave components output from the adder 17 are removed and the output of the tertiary standing wave model 18. The differential operation is performed and input to the third-order standing wave model 18. As a result, the third-order standing wave model 18 is excited and outputs a third-order standing wave component estimated value. At this time, the deviation between the output of the adder 17 and the output of the third-order standing wave model 18 (output of the adder 20) is a level signal from which the first-order, second-order, and third-order standing wave components have been removed.
 抽出、除去する定在波の次数は、湯面レベル測定値に含まれている実際の定在波成分によって事前に選択すればよい。定在波成分の確認は、湯面レベル測定値を周波数解析することによって容易に行うことができる。また、このように高次までの定在波を除去する構成とした場合に、操業条件変動などによってある次数の定在波成分が減少したとしても、それに対応して除去される定在波成分が減少するだけのことであり、そのために構成を変更する必要はない。 The order of the standing wave to be extracted and removed may be selected in advance according to the actual standing wave component included in the molten metal level measurement value. The standing wave component can be easily confirmed by frequency analysis of the measurement value of the molten metal level. In addition, when the standing wave component up to the higher order is removed in this way, even if the standing wave component of a certain order decreases due to fluctuations in operating conditions, the standing wave component removed correspondingly Therefore, it is not necessary to change the configuration.
 また、本発明を実施するにあたり、PD演算器における微分演算は、入力される信号中の高周波成分を強調し、演算誤差増大を招く可能性がある。これを防止するには、請求項5~8に記述したように、PD演算器を用いず、定在波モデルの状態変数に湯面レベル信号と定在波モデルの偏差を帰還する(ゲインを乗じて加算する)構成を用いることが有効である。 In carrying out the present invention, the differential calculation in the PD calculator may emphasize high-frequency components in the input signal and increase calculation errors. In order to prevent this, as described in claims 5 to 8, without using a PD calculator, the deviation of the surface level signal and the standing wave model is fed back to the state variable of the standing wave model (gain is set). It is effective to use a configuration of multiplying and adding.
 図6に、(2)式の1次定在波モデルの伝達関数のブロック図による表現を示す。1次定在波モデル12は、2つの積分器21、22、2つの状態フィードバックゲイン23、24、2つの加算器25、26からなるブロック図で表され、積分器21、22の入力(加算器25、26の出力)がモデルの状態変数となる。図7に、図6の表現を用いて1次定在波除去を行う場合の構成を示す。PD演算器13の機能は、2つのゲイン27、28によって実現される。すなわち、1次定在波モデル12の出力とレベル計7の測定値とから加算器16により演算された偏差にゲイン27を乗じたものを加算器25を経由して積分器21の入力にフィードバックする一方、前記偏差にゲイン28を乗じたものを加算器29、26を経由して積分器22の入力にフィードバックすることにより、比例微分演算と等価な演算処理が行える。ゲイン27、28がそれぞれ比例項、微分項に相当し、それらの値a、bが比例ゲイン、微分ゲインに相当する。これにより、1次定在波モデル12は励振され、1次定在波成分推定値を出力する。このとき、1次定在波モデル12とレベル計7の測定値との偏差(加算器16の出力)は、1次定在波成分が除去されたレベル信号になる。 FIG. 6 shows a block diagram representation of the transfer function of the first-order standing wave model of equation (2). The first-order standing wave model 12 is represented by a block diagram including two integrators 21 and 22, two state feedback gains 23 and 24, and two adders 25 and 26. The outputs of the units 25 and 26 are the state variables of the model. FIG. 7 shows a configuration when primary standing wave removal is performed using the expression of FIG. The function of the PD calculator 13 is realized by two gains 27 and 28. That is, a product obtained by multiplying the deviation calculated by the adder 16 from the output of the primary standing wave model 12 and the measured value of the level meter 7 by the gain 27 is fed back to the input of the integrator 21 via the adder 25. On the other hand, the product obtained by multiplying the deviation by the gain 28 is fed back to the input of the integrator 22 via the adders 29 and 26, so that a calculation process equivalent to the proportional differential calculation can be performed. The gains 27 and 28 correspond to a proportional term and a differential term, respectively, and their values a and b correspond to a proportional gain and a differential gain. Thereby, the primary standing wave model 12 is excited and outputs an estimated value of the primary standing wave component. At this time, the deviation (output of the adder 16) between the primary standing wave model 12 and the measured value of the level meter 7 becomes a level signal from which the primary standing wave component has been removed.
 2次、3次定在波除去についても同様に、図2、図5における2次、3次定在波推定を図7の1次定在波の推定と同様に構成すればよい。 Similarly, for secondary and tertiary standing wave removal, the secondary and tertiary standing wave estimation in FIGS. 2 and 5 may be configured in the same manner as the primary standing wave estimation in FIG.
 1 モールド
 5 溶鋼
 6 アクチュエータ
 7 レベル計
 12 1次定在波モデル
 14 2次定在波モデル
 18 3次定在波モデル
1 Mold 5 Molten Steel 6 Actuator 7 Level Meter 12 Primary Standing Wave Model 14 Secondary Standing Wave Model 18 Tertiary Standing Wave Model

Claims (8)

  1.  連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動のモデルを2次振動系で表し、
     湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記モデルの入力に帰還することによって該モデルを励振し、得られた該モデルの出力によって前記定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差をもって前記定在波成分を除去したレベル信号とし、
     該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とするモールド内溶鋼湯面レベル制御方法。
    When controlling the molten steel surface level in the mold of a continuous casting machine, a model of the molten metal surface level fluctuation due to the standing wave that oscillates with a specific period corresponding to the mold width is represented by a secondary vibration system.
    The model is excited by feeding back at least one of a deviation between the level measurement value measured by the molten metal level meter and the output of the model and a differential value thereof to the input of the model, and the obtained output of the model By estimating the surface level fluctuation component due to the standing wave by the level signal obtained by removing the standing wave component with a deviation between the level measurement value measured by the level meter and the output of the model,
    An in-mold molten steel surface level control method comprising operating an actuator for adjusting a flow rate of molten steel flowing into a mold by feedback control using the level signal.
  2.  前記湯面レベル計は、モールド幅中央とモールド幅端との中間となるモールド幅1/4の位置に配置されていることを特徴とする請求項1に記載のモールド内溶鋼湯面レベル制御方法。 2. The molten steel level level control method in a mold according to claim 1, wherein the molten metal level meter is arranged at a position of a mold width ¼ that is intermediate between a mold width center and a mold width end. .
  3.  連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル及び2次定在波モデルをそれぞれ2次振動系で表し、
     湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記1次定在波モデルの入力に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、
     前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記2次定在波モデルの入力に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、
     該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とするモールド内溶鋼湯面レベル制御方法。
    When controlling the molten steel surface level in the mold of a continuous casting machine, the primary standing wave model and the secondary standing wave model of the molten metal surface level fluctuation due to the standing wave oscillating at a specific period corresponding to the mold width are used. Each is represented by a secondary vibration system,
    By feeding back at least one of the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model and the differential value thereof to the input of the primary standing wave model, The standing wave model is excited, and the level fluctuation component due to the primary standing wave is estimated from the obtained output of the primary standing wave model. A level signal obtained by removing the primary standing wave component with a deviation from the output of the primary standing wave model,
    By feeding back at least one of a deviation between the level signal from which the primary standing wave component has been removed and the output of the secondary standing wave model and its differential value to the input of the secondary standing wave model, A level obtained by exciting a secondary standing wave model, estimating a level fluctuation component due to the secondary standing wave based on the output of the obtained secondary standing wave model, and removing the primary standing wave component A level signal obtained by removing the primary standing wave component and the secondary standing wave component with a deviation between the signal and the output of the secondary standing wave model;
    An in-mold molten steel surface level control method comprising operating an actuator for adjusting a flow rate of molten steel flowing into a mold by feedback control using the level signal.
  4.  前記湯面レベル計は、モールド幅中央とモールド幅端との中間となるモールド幅1/4の位置よりもモールド幅端寄りで定在波成分がとれる位置に配置されていることを特徴とする請求項3に記載のモールド内溶鋼湯面レベル制御方法。 The hot water surface level meter is arranged at a position where a standing wave component can be taken closer to the mold width end than the position of the mold width ¼, which is intermediate between the mold width center and the mold width end. The in-mold molten steel surface level control method according to claim 3.
  5.  連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル、2次定在波モデル及び3次定在波モデルをそれぞれ2次振動系で表し、
     湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記1次定在波モデルの入力に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、
     前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記2次定在波モデルの入力に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、
     前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差及びその微分値のうちの少なくとも一方を前記3次定在波モデルの入力に帰還することによって該3次定在波モデルを励振し、得られた該3次定在波モデルの出力によって3次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差をもって前記1次定在波成分、前記2次定在波成分及び前記3次定在波成分を除去したレベル信号とし、
     該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とするモールド内溶鋼湯面レベル制御方法。
    When controlling the molten steel surface level in the mold of a continuous casting machine, the primary standing wave model, the secondary standing wave model of the molten metal surface level fluctuation due to the standing wave oscillating at a specific period corresponding to the mold width, and Each 3rd-order standing wave model is represented by a secondary vibration system,
    By feeding back at least one of the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model and the differential value thereof to the input of the primary standing wave model, The standing wave model is excited, and the level fluctuation component due to the primary standing wave is estimated from the obtained output of the primary standing wave model. A level signal obtained by removing the primary standing wave component with a deviation from the output of the primary standing wave model,
    By feeding back at least one of a difference between the level signal from which the primary standing wave component has been removed and the output of the secondary standing wave model and its differential value to the input of the secondary standing wave model, A level obtained by exciting a secondary standing wave model, estimating a level fluctuation component due to the secondary standing wave based on the output of the obtained secondary standing wave model, and removing the primary standing wave component A level signal obtained by removing the primary standing wave component and the secondary standing wave component with a deviation between the signal and the output of the secondary standing wave model;
    At least one of a deviation between a level signal from which the primary standing wave component and the secondary standing wave component have been removed and an output of the tertiary standing wave model and a differential value thereof is used as the tertiary standing wave model. The third-order standing wave model is excited by returning to the input of the first-order wave, and the molten metal level fluctuation component due to the third-order standing wave is estimated from the output of the obtained third-order standing wave model. The primary standing wave component, the secondary standing wave component, and the tertiary are determined with a deviation between the level signal from which the standing wave component and the secondary standing wave component have been removed and the output of the tertiary standing wave model. A level signal from which standing wave components have been removed
    An in-mold molten steel surface level control method comprising operating an actuator for adjusting a flow rate of molten steel flowing into a mold by feedback control using the level signal.
  6.  連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動のモデルを2次振動系で表し、
     湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差を前記モデルの状態変数に帰還することによって該モデルを励振し、得られた該モデルの出力によって前記定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記モデルの出力との偏差をもって前記定在波成分を除去したレベル信号とし、
     該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とするモールド内溶鋼湯面レベル制御方法。
    When controlling the molten steel surface level in the mold of a continuous casting machine, a model of the molten metal surface level fluctuation due to the standing wave that oscillates with a specific period corresponding to the mold width is represented by a secondary vibration system.
    The model is excited by feeding back the deviation between the level measurement value measured by the molten metal level meter and the output of the model to the state variable of the model, and the molten metal surface by the standing wave is obtained by the output of the model obtained. Estimating the level fluctuation component, and a level signal obtained by removing the standing wave component with a deviation between the level measurement value measured by the molten metal level meter and the output of the model,
    An in-mold molten steel surface level control method comprising operating an actuator for adjusting a flow rate of molten steel flowing into a mold by feedback control using the level signal.
  7.  連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル及び2次定在波モデルをそれぞれ2次振動系で表し、
     湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差を前記1次定在波モデルの状態変数に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、
     前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差を前記2次定在波モデルの状態変数に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、
     該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とするモールド内溶鋼湯面レベル制御方法。
    When controlling the molten steel surface level in the mold of a continuous casting machine, the primary standing wave model and the secondary standing wave model of the molten metal surface level fluctuation due to the standing wave oscillating at a specific period corresponding to the mold width are used. Each is represented by a secondary vibration system,
    Exciting the primary standing wave model by feeding back the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model to the state variable of the primary standing wave model; The molten metal level fluctuation component due to the primary standing wave is estimated from the output of the obtained primary standing wave model, and the level measurement value measured by the molten metal level meter and the output of the primary standing wave model And a level signal from which the first-order standing wave component has been removed,
    The secondary standing wave model is excited by feeding back the deviation between the level signal from which the primary standing wave component has been removed and the output of the secondary standing wave model to the state variable of the secondary standing wave model. Then, the molten metal surface level fluctuation component due to the secondary standing wave is estimated from the output of the obtained secondary standing wave model, and the level signal from which the primary standing wave component has been removed and the secondary standing wave A level signal obtained by removing the primary standing wave component and the secondary standing wave component with a deviation from the output of the model,
    An in-mold molten steel surface level control method comprising operating an actuator for adjusting a flow rate of molten steel flowing into a mold by feedback control using the level signal.
  8.  連続鋳造機のモールド内溶鋼湯面レベルを制御するに際し、モールド幅に対応した固有の周期で揺動する定在波による湯面レベル変動の1次定在波モデル、2次定在波モデル及び3次定在波モデルをそれぞれ2次振動系で表し、
     湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差を前記1次定在波モデルの状態変数に帰還することによって該1次定在波モデルを励振し、得られた該1次定在波モデルの出力によって1次定在波による湯面レベル変動成分を推定するとともに、前記湯面レベル計で測定したレベル測定値と前記1次定在波モデルの出力との偏差をもって前記1次定在波成分を除去したレベル信号とし、
     前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差を前記2次定在波モデルの状態変数に帰還することによって該2次定在波モデルを励振し、得られた該2次定在波モデルの出力によって2次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分を除去したレベル信号と前記2次定在波モデルの出力との偏差をもって前記1次定在波成分及び前記2次定在波成分を除去したレベル信号とし、
     前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差を前記3次定在波モデルの状態変数に帰還することによって該3次定在波モデルを励振し、得られた該3次定在波モデルの出力によって3次定在波による湯面レベル変動成分を推定するとともに、前記1次定在波成分及び前記2次定在波成分を除去したレベル信号と前記3次定在波モデルの出力との偏差をもって前記1次定在波成分、前記2次定在波成分及び前記3次定在波成分を除去したレベル信号とし、
     該レベル信号を用いたフィードバック制御によってモールドに流入する溶鋼流量を調節するアクチュエータを操作することを特徴とするモールド内溶鋼湯面レベル制御方法。
    When controlling the molten steel surface level in the mold of a continuous casting machine, the primary standing wave model, the secondary standing wave model of the molten metal surface level fluctuation due to the standing wave oscillating at a specific period corresponding to the mold width, and Each 3rd-order standing wave model is represented by a secondary vibration system,
    Exciting the primary standing wave model by feeding back the deviation between the level measurement value measured by the molten metal level meter and the output of the primary standing wave model to the state variable of the primary standing wave model; Based on the obtained output of the primary standing wave model, the molten metal level fluctuation component due to the primary standing wave is estimated, and the level measurement value measured by the molten metal level meter and the output of the primary standing wave model And a level signal from which the first-order standing wave component has been removed,
    The secondary standing wave model is excited by feeding back the deviation between the level signal from which the primary standing wave component has been removed and the output of the secondary standing wave model to the state variable of the secondary standing wave model. Then, the molten metal surface level fluctuation component due to the secondary standing wave is estimated from the output of the obtained secondary standing wave model, and the level signal from which the primary standing wave component has been removed and the secondary standing wave A level signal obtained by removing the primary standing wave component and the secondary standing wave component with a deviation from the output of the model,
    By feeding back a deviation between the level signal from which the primary standing wave component and the secondary standing wave component are removed and the output of the tertiary standing wave model to the state variable of the tertiary standing wave model, A third-order standing wave model is excited, and a level fluctuation component due to the third-order standing wave is estimated from the output of the obtained third-order standing wave model, and the first-order standing wave component and the second-order wave are estimated. A level obtained by removing the primary standing wave component, the secondary standing wave component, and the tertiary standing wave component with a deviation between the level signal from which the standing wave component has been removed and the output of the tertiary standing wave model. Signal and
    An in-mold molten steel surface level control method comprising operating an actuator for adjusting a flow rate of molten steel flowing into a mold by feedback control using the level signal.
PCT/JP2012/064620 2012-06-07 2012-06-07 Method for controlling in-mold molten steel surface level WO2013183135A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN10256DEN2014 IN2014DN10256A (en) 2012-06-07 2012-06-07
CN201280073731.8A CN104334298B (en) 2012-06-07 2012-06-07 Molten steel liquid level control method in casting mold
PCT/JP2012/064620 WO2013183135A1 (en) 2012-06-07 2012-06-07 Method for controlling in-mold molten steel surface level
KR1020147034098A KR101664171B1 (en) 2012-06-07 2012-06-07 Method for controlling in-mold molten steel surface level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064620 WO2013183135A1 (en) 2012-06-07 2012-06-07 Method for controlling in-mold molten steel surface level

Publications (1)

Publication Number Publication Date
WO2013183135A1 true WO2013183135A1 (en) 2013-12-12

Family

ID=49711552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064620 WO2013183135A1 (en) 2012-06-07 2012-06-07 Method for controlling in-mold molten steel surface level

Country Status (4)

Country Link
KR (1) KR101664171B1 (en)
CN (1) CN104334298B (en)
IN (1) IN2014DN10256A (en)
WO (1) WO2013183135A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461428B (en) * 2021-07-19 2022-05-13 山东明代装饰材料有限公司 Production process of crystal steel rock pressing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322106A (en) * 1999-05-13 2000-11-24 Nkk Corp Control of molten metal level in mold of continuous casting machine
JP2009241150A (en) * 2008-03-10 2009-10-22 Jfe Steel Corp Method for detecting standing wave variation of molten metal surface in casting mold, method for controlling standing wave of molten metal surface, method for controlling molten metal surface level and continuous casting method
JP2010069513A (en) * 2008-09-19 2010-04-02 Jfe Steel Corp Method for controlling level of molten metal surface in mold of continuous casting machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773778B2 (en) * 1989-09-04 1995-08-09 川崎製鉄株式会社 Method and apparatus for controlling molten metal level in continuous casting
FR2703277B1 (en) * 1993-03-30 1995-05-24 Lorraine Laminage Method and device for regulating the level of liquid metal in a mold for continuous casting of metals.
JP3591422B2 (en) 1999-08-25 2004-11-17 住友金属工業株式会社 Level control method and level control device for continuous casting machine
JP3494135B2 (en) 2000-08-09 2004-02-03 住友金属工業株式会社 Level control method and level control device for continuous casting machine
JP4517518B2 (en) 2001-02-21 2010-08-04 住友金属工業株式会社 Molten metal level control method and apparatus for continuous casting machine
JP2005028381A (en) 2003-07-09 2005-02-03 Nippon Steel Corp Instrument for detecting molten metal surface level in mold
JP2007260693A (en) 2006-03-27 2007-10-11 Jfe Steel Kk Method for controlling in-mold molten metal surface level in continuous casting machine
CN102328044B (en) * 2011-08-04 2013-06-12 石家庄钢铁有限责任公司 Automatic liquid level control method for crystallizer of large square bland continuous-casting machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322106A (en) * 1999-05-13 2000-11-24 Nkk Corp Control of molten metal level in mold of continuous casting machine
JP2009241150A (en) * 2008-03-10 2009-10-22 Jfe Steel Corp Method for detecting standing wave variation of molten metal surface in casting mold, method for controlling standing wave of molten metal surface, method for controlling molten metal surface level and continuous casting method
JP2010069513A (en) * 2008-09-19 2010-04-02 Jfe Steel Corp Method for controlling level of molten metal surface in mold of continuous casting machine

Also Published As

Publication number Publication date
KR20150013241A (en) 2015-02-04
KR101664171B1 (en) 2016-10-24
IN2014DN10256A (en) 2015-08-07
CN104334298B (en) 2016-05-18
CN104334298A (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP3318742B2 (en) Mold level control device for continuous casting equipment
JP5637007B2 (en) Molten steel surface level control method in mold
US8788084B2 (en) Control method for the meniscus of a continuous casting mold
JP2012170984A (en) Apparatus and method for controlling molten metal surface level within continuous casting machine mold
CN112423911B (en) Control device and method for continuous casting, and recording medium
WO2013183135A1 (en) Method for controlling in-mold molten steel surface level
JP3271242B2 (en) Continuous casting machine Mold level control device in mold
JP2009241150A (en) Method for detecting standing wave variation of molten metal surface in casting mold, method for controlling standing wave of molten metal surface, method for controlling molten metal surface level and continuous casting method
JP6065865B2 (en) Control device and control method for continuous casting machine
JP5347402B2 (en) Method for level control in mold of continuous casting machine
JP2007253170A (en) Method and device for controlling molten metal surface level in mold for continuous casting machine
KR102242430B1 (en) Vortex type mold level measuring instrument and method
JP5751144B2 (en) Control device and control method for continuous casting machine
JP2013099770A (en) Device and method for controlling molten metal surface level within continuous casting machine mold
Furtmueller et al. Control issues in continuous casting of steel
JP2000322106A (en) Control of molten metal level in mold of continuous casting machine
JP2006263812A (en) Mold level control method for continuous caster and manufacturing method of cast piece by continuous caster
JP7196029B2 (en) Parameter design method and feedback control method
JP6256149B2 (en) Continuous casting machine level control device, continuous casting machine level control method, and computer program
JP7415171B2 (en) Continuous casting machine hot water level control device, method, and program
JP2002059249A (en) Method and system for controlling molten metal surface level in continuous caster
JP4277725B2 (en) Continuous casting machine mold level control method and apparatus
JP2000052010A (en) Molten metal face level controlling method of continuous casting machine
JPH05189009A (en) Controller
JPH0740022A (en) Controller for molten metal surface level

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034098

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP