WO2013182059A1 - 多协议标签交换流量工程隧道建立方法及设备 - Google Patents
多协议标签交换流量工程隧道建立方法及设备 Download PDFInfo
- Publication number
- WO2013182059A1 WO2013182059A1 PCT/CN2013/076820 CN2013076820W WO2013182059A1 WO 2013182059 A1 WO2013182059 A1 WO 2013182059A1 CN 2013076820 W CN2013076820 W CN 2013076820W WO 2013182059 A1 WO2013182059 A1 WO 2013182059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tunnel
- routing device
- vpn instance
- mpls
- identifier
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 112
- 230000002441 reversible effect Effects 0.000 claims abstract description 16
- 230000002457 bidirectional effect Effects 0.000 abstract description 7
- 230000008569 process Effects 0.000 description 42
- 230000002776 aggregation Effects 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/50—Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4633—Interconnection of networks using encapsulation techniques, e.g. tunneling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4641—Virtual LANs, VLANs, e.g. virtual private networks [VPN]
- H04L12/4645—Details on frame tagging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/36—Backward learning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/825—Involving tunnels, e.g. MPLS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/828—Allocation of resources per group of connections, e.g. per group of users
Definitions
- Multi-protocol label switching traffic engineering tunnel establishing method and device The present application claims to be submitted to the China Patent Office on June 6, 2012, the application number is CN 201210184022.9, and the invention name is "multi-protocol label switching traffic engineering tunnel establishment method and equipment" Priority of the patent application, the entire contents of which is incorporated herein by reference.
- TECHNICAL FIELD The present invention relates to communications technologies, and in particular, to a multi-tag switching traffic engineering tunnel establishing method and device.
- the generalized RAN includes an air interface between the terminal and the base station (English Air Interface), that is, a Uu interface, and an Iub interface between the base station and the base station controller.
- RAN generally refers to an aggregation network between a base station and a base station controller.
- IP RAN based on IP/Multi-Protocol Label Switching (Multi-Protocol Label Switching in English) packet data technology has higher bandwidth, supports statistical multiplexing of data services, and can better support future broadband.
- the mobile service which adopts the same technology as the IP backbone network, has better consistency and integration with the backbone network, and thus is widely used.
- the IP RAN mainly includes: One consisting of ATN or other types of devices An access ring on the base station side and an aggregation ring composed of cx or other types of devices. Generally, each device on the aggregation ring can access 10 to 20 access rings. Each access ring has 10 or so ATNs.
- the aggregation ring generally places two high-end CXs or other types of devices as gateways to connect to the core network.
- the ATN or other device on the access ring is called a cell site gateway (English name is Cell Site Gateway, abbreviated as CSG) or a multi-service transport gateway (English full name is Multi-Service Transport Gateway, English abbreviation is MSTG).
- the CX or other types of devices on the aggregation ring are called the wireless controller site gateway (English full name RNC Site Gateway, abbreviated as RSG in English) or multi-service aggregation gateway (English full name is Multi-Service Aggregation Gateway, English abbreviation is MSAG) ).
- the device that is on the access ring and the aggregation ring is the core router (English Provider Router) in the MPLS virtual private network (English name is Virtual Private Network, English abbreviated as VPN), that is, the P device;
- the device on the ring or aggregation ring is the carrier edge device in the MPLS VPN (English name is Provider Edge, the English abbreviation is PE).
- an end-to-end pseudowire can be deployed between the PE (that is, the CSG) on the access ring and the PE on the aggregation ring (that is, the RSG) according to the type of service (English name is Pseudo Wire, The English abbreviation is PW), or it is a three-layer VPN (abbreviated as L3VPN).
- L3VPN and PW generally use MPLS traffic engineering (English full name Traffic Engineering, English abbreviation TE) tunnel to traverse the network.
- MPLS traffic engineering English full name Traffic Engineering, English abbreviation TE
- the MPLS TE label switching path is required to ensure the high reliability of the network.
- the MPLS TE label switching path is used for the bidirectional forwarding detection (Broadcasting).
- the English name is called Label Swi tch Path, which is abbreviated as LSP.
- the LSPs are unidirectional, and the BFD forward detection packets are sent through the MPLS TE LSP, but the reverse detection packets are sent through other paths, such as IP paths.
- the return path is blocked, the BFD status is faulty.
- the status of the MPLS TE LSP is normal. Therefore, the high reliability of the service cannot be achieved.
- the present invention provides a method and a device for establishing a multi-protocol label switching traffic engineering tunnel, which are used to solve It is a problem that the anti-two-way MPLS TE tunnel does not have a common path.
- An embodiment of the present invention provides a method for establishing a multi-protocol label switching traffic engineering tunnel, including:
- the second routing device receives the first identifier sent by the first routing device, where the first identifier is an identifier of the first MPLS TE tunnel, and the first MPLS TE tunnel is the first from the first routing device An MPLS TE tunnel of the virtual VPN VPN instance to the second VPN instance on the second routing device;
- the second routing device obtains the first path information according to the first identifier, where the first path information is path information of the first MPLS TE tunnel;
- the second routing device reverses the first path information, obtains the second path information, and establishes a second MPLS TE tunnel according to the second path information, where the second MPLS TE tunnel is from the second VPN Instance to the MPLS TE tunnel of the first VPN instance.
- the service between the first VPN instance and the second VPN instance is a Layer 3 virtual private network L3VPN service
- Receiving, by the second routing device, the first identifier sent by the first routing device includes:
- the second routing device receives the first border gateway protocol BGP update message sent by the first routing device, where the first BGP update message includes a first VPN instance identifier and a first routing target RT, where the first The VPN instance identifier is used to identify the first VPN instance, and the first RT is an RT of the first VPN instance;
- the second routing device After determining that the first RT and the second RT are equal, the second routing device sends a second BGP update message to the first routing device, where the second BGP update message includes a second VPN instance identifier and the a second RT, where the second RT is an RT of the second VPN instance, and the second VPN instance identifier is used to identify the second VPN instance;
- the second routing device receives the third BGP update message sent by the first routing device, where the third BGP update message includes the first identifier, where the third BGP update message is the first
- the routing device sends after receiving the second BGP update message.
- the third BGP update message further includes: the first VPN instance identifier, the first RT, and the second VPN instance identifier.
- the receiving, by the second routing device, the first BGP update message sent by the first routing device includes:
- the second routing device receives, by the second routing device, the first BGP update message, for the first BGP update Parsing the information, obtaining the first RT from the attribute information of the first BGP update message, and acquiring the first VPN instance identifier from the network side reachability information NLRI object in the first BGP update message, Or the second routing device receives the first BGP update message, parses the first BGP update message, and obtains the first NLRI object from the network side reachability information in the first BGP update message. a VPN instance identifier and the first RT;
- the sending, by the second routing device, the second BGP update message to the first routing device includes: the second routing device encapsulating the second RT in the attribute information in the second BGP update message, The second VPN instance identifier is encapsulated in an NLRI object in the second BGP update message, and then the second BGP update message encapsulating the second RT and the second VPN instance identifier is sent to the a first routing device, or the second routing device encapsulates the second RT and the second VPN instance identifier in an NLRI object in the second BGP update message, and then encapsulates the second The RT and the second BGP update message that is identified by the second VPN instance are sent to the first routing device.
- the first VPN instance identifier includes a first routing identifier RD and a first Internet Protocol IP address
- the first RD is an RD of the first VPN instance
- the first IP address is the The IP address of the first routing device
- the second VPN instance identifier includes a second RD and a second IP address, the second RD is an RD of the second VPN instance, and the second IP address is an IP address of the second routing device.
- the service between the first VPN instance and the second VPN instance is a Layer 2 virtual private network L2VPN service
- Receiving, by the second routing device, the first identifier sent by the first routing device includes:
- the second routing device receives a label distribution protocol LDP label distribution message or a fourth border gateway protocol BGP update message sent by the first routing device, where the LDP label distribution message or the fourth BGP update message includes the first An identifier.
- the acquiring, by the second routing device, the first path information according to the first identifier includes:
- the second routing device Determining, by the second routing device, the first MPLS TE tunnel that is identified by the first identifier according to the first identifier and the first correspondence, where the first correspondence is the first identifier Corresponding relationship with the first MPLS TE tunnel;
- the second routing device queries the second corresponding relationship according to the identifier of the first MPLS TE tunnel, and obtains the first path information, where the second corresponding relationship is the first MPLS TE tunnel. Corresponding relationship between the identifier and the first path information;
- the relationship is obtained by acquiring the first path information, where the correspondence between the first identifier and the first path information is obtained by the second routing device from the received path message for establishing the first MPLS TE tunnel.
- the establishing, by the second routing device, the second MPLS TE tunnel according to the second path information specifically includes:
- the second routing device directly uses the second path information to establish the second MPLS TE tunnel
- the second path information is used to establish the second MPLS TE tunnel.
- the first tunnel attribute information is attribute information required for the first routing device to establish the first MPLS TE tunnel, or the first tunnel attribute information is pre-configured by the second routing device. Establishing the attribute information required by the second MPLS TE tunnel, or the first tunnel attribute information is the default attribute information required by the second routing device to establish the second MPLS TE tunnel.
- the method further includes:
- the second routing device determines that the link and/or the node on the second path information does not satisfy the constraint of the first tunnel attribute information, calculate the third path information according to the first tunnel attribute information. ;
- the second routing device uses the third path information to establish a third MPLS TE tunnel from the second VPN instance to the first VPN instance.
- the method before the establishing, by the second routing device, the second MPLS TE tunnel according to the second path information, the method further includes:
- the second routing device receives the tunnel establishment policy indication information sent by the first routing device, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the
- the second path information is used to establish the second MPLS TE tunnel, or is used to indicate that the second routing device uses the link and/or the node on the second path information to satisfy the constraint of the first tunnel attribute information.
- the second path information is used to establish the second MPLS TE tunnel, or the tunnel policy indication information is used to indicate that the link and/or node of the second routing device on the second path information is not satisfied.
- the third MPLS TE tunnel is established by using the third path information calculated according to the first tunnel attribute information.
- the first MPLS TE tunnel includes a primary label switching path LSP and a backup LSP.
- the second routing device acquiring the first path information according to the first identifier includes: The role information of the LSP in the first MPLS TE tunnel is obtained, and the first primary path information corresponding to the primary LSP in the first MPLS TE tunnel and the first backup corresponding to the backup LSP in the first MPLS TE tunnel are respectively obtained. Path information
- the second routing device reverses the first path information, obtains the second path information, and establishes a second MPLS TE tunnel according to the second path information, including:
- the second routing device inverts the first primary path information and the first alternate path information, and obtains the second primary path information and the corresponding primary LSP in the first MPLS TE tunnel.
- the second alternate path information corresponding to the backup LSP in the first MPLS TE tunnel;
- the second routing device establishes a primary LSP and a backup LSP in the second MPLS TE tunnel according to the second primary path information and the second alternate path information.
- pre-configuring the attribute information required for establishing the second MPLS TE tunnel for the second routing device includes:
- the method further includes:
- the second routing device sends a fifth BGP update message to the first routing device, where the fifth BGP update message includes the first VPN instance identifier, the second VPN instance identifier, and the second RT And a second identifier, where the second identifier is an identifier of the second MPLS TE tunnel.
- the first VPN instance is a service active party of the service between the first VPN instance and the second VPN instance
- the second VPN instance is the first VPN instance is the first A business passive party of a service between a VPN instance and the second VPN instance.
- An embodiment of the present invention provides a second routing device, including:
- a first identifier receiving unit configured to receive a first identifier sent by the first routing device, where the first identifier is an identifier of the first multi-protocol label switching traffic engineering MPLS TE tunnel, the first MPLS TE tunnel An MPLS TE tunnel from the first virtual private network VPN instance on the first routing device to the second VPN instance on the routing device;
- a first path information acquiring unit configured to acquire first path information according to the first identifier, where the first path information is path information of the first MPLS TE tunnel;
- a first tunnel establishing unit configured to invert the first path information, obtain second path information, and establish a second MPLS TE tunnel according to the second path information, where the second MPLS TE tunnel is from the first The MPLS TE tunnel of the VPN instance to the first VPN instance.
- the service between the first VPN instance and the second VPN instance is a Layer 3 virtual private network L3VPN service
- the second routing device further includes:
- a first message receiving unit configured to receive a first border gateway protocol BGP update message sent by the first routing device, where the first BGP update message includes a first VPN instance identifier and a first route target RT, where The first VPN instance identifier is used to identify the first VPN instance, and the first RT is an RT of the first VPN instance;
- the second VPN instance identifier is used to identify the second VPN instance, where the second VPN instance is the RT of the second VPN instance, and the second VPN instance identifier is used to identify the second VPN instance.
- the first identifier receiving unit (71) is specifically configured to receive a third BGP update message sent by the first routing device, where the third BGP update message includes the first identifier, where the third The BGP update message is sent by the first routing device after receiving the second BGP update message.
- the third BGP update message further includes: the first VPN instance identifier, the first RT, and the second VPN instance identifier.
- the first message receiving unit (74) is specifically configured to receive the first BGP update message, parse the first BGP update message, and obtain the attribute information of the first BGP update message.
- the first RT, the first VPN instance identifier is obtained from the network side reachability information NLRI object in the first BGP update message, or is specifically used to receive the first BGP update.
- the message, the first BGP update message is parsed, and the first VPN instance identifier and the first RT are obtained from the NLRI object in the first BGP update message;
- the first message sending unit (76) is specifically configured to encapsulate the second RT in attribute information in the second BGP update message, and encapsulate the second VPN instance identifier in the second BGP update. Sending, by the NLRI object in the message, the second BGP update message that encapsulates the second RT and the second VPN instance identifier to the first routing device, or specifically for the second The RT and the second VPN instance identifier are encapsulated in an NLRI object in the second BGP update message, and then the second BGP update message encapsulating the second RT and the second VPN instance identifier is sent Giving the first routing device.
- the first VPN instance identifier includes a first routing identifier RD and a first Internet Protocol IP address
- the first RD is an RD of the first VPN instance
- the first IP address is the The IP address of the first routing device
- the second VPN instance identifier includes a second RD and a second IP address, the second RD is an RD of the second VPN instance, and the second IP address is an IP address of the second routing device.
- the service between the first VPN instance and the second VPN instance is a Layer 2 virtual private network L2VPN service
- the first identifier receiving unit (71) is specifically configured to receive a label distribution protocol LDP label distribution message or a fourth border gateway protocol BGP update message sent by the first routing device, where the LDP label distribution message or the The four BGP update message includes the first identifier.
- the first path information acquiring unit (72) is specifically configured to determine, according to the first identifier and the first correspondence, the first MPLS TE tunnel identified by the first identifier, according to The identifier of the first MPLS TE tunnel is queried for the second correspondence, and the first path information is obtained, where the first correspondence is a correspondence between the first identifier and the first MPLS TE tunnel.
- the second correspondence is a correspondence between the identifier of the first MPLS TE tunnel and the first path information;
- the first path information acquiring unit (72) is specifically configured to: query the corresponding relationship between the first identifier and the first path information according to the first identifier, and obtain the first path information, where the first identifier is The correspondence between the symbol and the first path information is obtained by the second routing device from the received path message for establishing the first MPLS TE tunnel.
- the first tunnel establishing unit (73) specifically establishes directly using the second path information.
- the second MPLS TE tunnel or specifically, is used to determine whether a link and/or a node on the second path information meets a constraint of the first tunnel attribute information, and determines a chain on the second path information. After the path and/or the node meets the constraint of the first tunnel attribute information, the second MPLS TE tunnel is established by using the second path information, where the first tunnel attribute information is established by the first routing device.
- the attribute information required by the first MPLS TE tunnel, or the first tunnel attribute information is attribute information required to establish the second MPLS TE tunnel, which is pre-configured by the second routing device, or The first tunnel attribute information is default attribute information required for the second routing device to establish the second MPLS TE tunnel.
- the first tunnel establishing unit (73) is further configured to: after determining that the link and/or the node on the second path information does not satisfy the constraint of the first tunnel attribute information, Calculating the third path information by using the first tunnel attribute information, and establishing the second path information by using the third path information
- the VPN instance is connected to the third MPLS TE tunnel of the first VPN instance.
- the second router further includes:
- a second message receiving unit configured to receive the tunnel establishment policy indication information sent by the first routing device, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the second path information Establishing the second MPLS TE tunnel, or indicating that the second routing device uses the first link when the link and/or the node on the second path information meets the constraint of the first tunnel attribute information
- the second path information is used to establish the second MPLS TE tunnel, or the tunnel policy indication information is used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the first tunnel.
- the third MPLS TE tunnel is established by using the third path information calculated according to the first tunnel attribute information.
- the first MPLS TE tunnel includes a primary label switching path LSP and a backup LSP.
- the first path information acquiring unit (72) is specifically configured to: according to the role information of the LSP in the first MPLS TE tunnel, respectively Obtaining first primary path information corresponding to the primary LSP in the first MPLS TE tunnel and first standby path information corresponding to the backup LSP in the first MPLS TE tunnel;
- the first tunnel establishing unit (73) is specifically configured to invert the first primary path information and the first standby path information, respectively, to obtain a corresponding number of the primary LSP in the first MPLS TE tunnel. And generating, by the second active path information, the second alternate path information corresponding to the backup LSP in the first MPLS TE tunnel, and then establishing the second according to the second primary path information and the second alternate path information, respectively.
- the second router further includes:
- the configuration unit (75) is configured to configure the attribute information required for establishing the second MPLS TE tunnel by using a pre-configured tunnel template for establishing the second MPLS TE tunnel.
- the second router further includes:
- a first identifier sending unit configured to send a fifth BGP update message to the first routing device, where the fifth BGP update message includes the first VPN instance identifier, the second VPN instance identifier, The second RT and the second identifier, the second identifier is an identifier of the second MPLS TE tunnel.
- the first VPN instance is a service active party of the service between the first VPN instance and the second VPN instance
- the second VPN instance is the first VPN instance is the first A business passive party of a service between a VPN instance and the second VPN instance.
- An embodiment of the present invention provides a method for establishing an MPLS TE tunnel, including: the first routing device sends a first identifier to the second routing device, so that the second routing device obtains the first identifier according to the first identifier.
- the first path information where the first identifier is an identifier of the first multi-protocol label switching traffic engineering MPLS TE tunnel, and the first path information is path information of the first MPLS TE tunnel, where the An MPLS TE tunnel is an MPLS TE tunnel from a first virtual private network VPN instance on the first routing device to a second VPN instance on the second routing device;
- the first routing device receives a path message sent by the second routing device to establish a second MPLS TE tunnel, where the second MPLS TE tunnel is an MPLS TE from the second VPN instance to the first VPN instance.
- the path information of the second MPLS TE tunnel is obtained by inverting the first path information;
- the first routing device sends a reservation message corresponding to the path message to the second routing device.
- the service between the first VPN instance and the second VPN instance is a Layer 3 virtual private network L3VPN service
- the sending, by the first routing device, the first identifier to the second routing device includes:
- the first routing device sends a first BGP update message to the second routing device, where the first BGP update message includes a first VPN instance identifier and a first route target RT, where the first VPN instance identifier is used by Identifying the first VPN instance, the first RT is an RT of the first VPN instance;
- the first routing device receives the second BGP update message sent by the second routing device, where the second BGP update message includes a second VPN instance identifier and a second RT, where the second VPN instance identifier is used by Identifying the second VPN instance, the second RT is an RT of the second VPN instance, and the second BGP update message is that the second routing device determines the first RT and the second RT Sent after equal;
- the first routing device After determining that the first RT and the second RT are equal, the first routing device determines the first identifier according to the first VPN instance identifier and the second VPN instance identifier;
- the first routing device sends a third BGP update message to the second routing device, where the third BGP update message includes the first identifier.
- the third BGP update message further includes: the first VPN instance identifier, the first RT, and the second VPN instance identifier.
- the sending, by the first routing device, the first BGP update message to the second routing device includes:
- the first routing device encapsulates the first RT in the attribute information in the first BGP update message, and encapsulates the first VPN instance identifier in the network side of the first BGP update message. And the first BGP update message that is encapsulated with the first RT and the first VPN instance identifier is sent to the second routing device, or the first routing device.
- the first RT and the first VPN instance identifier are encapsulated in an NLRI object in the first BGP update message, and then the first BGP update that encapsulates the first RT and the first VPN instance identifier is encapsulated Sending a message to the second routing device;
- the receiving, by the first routing device, the second BGP update message sent by the second routing device includes:
- the first routing device receives, by the first routing device, the second BGP update message, parsing the second BGP update message, and acquiring the second RT from the attribute information in the second BGP update message, from the Acquiring the second VPN instance identifier in the NLRI object in the BGP update message, or the first routing device receives the second BGP update message, parsing the second BGP update message, from the Obtaining the second VPN instance identifier and the second RT in the NLRI object in the second BGP update message.
- the first VPN instance identifier includes a first routing identifier RD and a first Internet Protocol IP address, the first RD is an RD of the first VPN instance, and the first IP address is the The IP address of the first routing device;
- the second VPN instance identifier includes a second RD and a second IP address, the second RD is an RD of the second VPN instance, and the second IP address is an IP address of the second routing device.
- the service between the first VPN instance and the second VPN instance is a Layer 2 virtual private network L2VPN service
- the sending, by the first routing device, the first identifier to the second routing device includes:
- the first routing device sends a label distribution protocol LDP label distribution message or a fourth border gateway protocol BGP update message to the second routing device, where the LDP label distribution message or the fourth BGP update message includes the first Identifier.
- the method further includes:
- the first routing device sends the tunnel establishment policy indication information, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the second path information to establish the second MPLS TE tunnel, or The tunnel establishment policy indication information is used to indicate that the second routing device establishes the using the second path information when the link and/or the node on the second path information meets the constraint of the first tunnel attribute information.
- a second MPLS TE tunnel or the tunnel policy indication information is used to indicate that the link and/or the node on the second path information does not satisfy the constraint of the first tunnel attribute information And establishing, by using the third path information that is calculated according to the first tunnel attribute information, the third MPLS TE tunnel.
- the first VPN instance is a service active party of the service between the first VPN instance and the second VPN instance
- the second VPN instance is the first VPN instance is the first A business passive party of a service between a VPN instance and the second VPN instance.
- the method further includes:
- the first routing device sends a path message for establishing the first MPLS TE tunnel to the second routing device, where the path message carries a correspondence between the first identifier and the first path information. .
- a first routing device including:
- a second identifier sending unit (90), configured to send the first identifier to the second routing device, so that the second routing device acquires the first path information according to the first identifier, where the first The identifier is an identifier of the first multi-protocol label switching traffic engineering MPLS TE tunnel, the first path information is path information of the first MPLS TE tunnel, and the first MPLS TE tunnel is from the first route a first virtual private network VPN instance on the device to the second routing device a path message receiving unit (91), configured to receive a path message sent by the second routing device to establish a second MPLS TE tunnel, where the second MPLS TE tunnel is from the second VPN instance to the first VPN The MPLS TE tunnel of the example, where path information of the second MPLS TE tunnel is obtained by inverting the first path information;
- the reservation message sending unit (92) is configured to send a reservation message corresponding to the path message to the second routing device.
- the service between the first VPN instance and the second VPN instance is a Layer 3 virtual private network L3VPN service
- the first routing device further includes:
- a second message sending unit configured to send a first border gateway protocol BGP update message to the second routing device, where the first BGP update message includes a first VPN instance identifier and a first routing target RT, where The first VPN instance identifier is used to identify the first VPN instance, and the first RT is an RT of the first VPN instance;
- a third message receiving unit configured to receive a second BGP update message sent by the second routing device, where the second BGP update message includes a second VPN instance identifier and a second RT, where the second The VPN instance identifier is used to identify the second VPN instance, the second RT is the RT of the second VPN instance, and the second BGP update message is that the second routing device determines the first RT and The second RT is sent after being equal;
- a first tunnel information determining unit (96), configured to determine, according to the first VPN instance identifier and the second VPN instance identifier, after determining that the first RT and the second RT are equal Identifier
- the second identifier sending unit (90) is specifically configured to send a third BGP update message to the second routing device, where the third BGP update message includes the first identifier.
- the third BGP update message further includes: the first VPN instance identifier, the first RT, and the second VPN instance identifier.
- the second message sending unit (93) is specifically configured to encapsulate the first RT in the attribute information in the first BGP update message, and encapsulate the first VPN instance identifier in the And sending, by the network-side reachable information NLRI object in the first BGP update message, the first BGP update message that is encapsulated with the first RT and the first VPN instance identifier, to the second routing device, Or specifically for encapsulating the first RT and the first VPN instance identifier in an NLRI object in the first BGP update message, and then encapsulating the first RT and the The first BGP update message of the first VPN instance is sent to the second routing device; the third message receiving unit (94) is specifically configured to receive the second BGP update message, for the second BGP The update message is parsed, the second RT is obtained from the attribute information in the second BGP update message, and the second VPN instance identifier is obtained from the NLRI object in the second BGP update message, or Receiving the second BGP update message, parsing the second
- the first VPN instance identifier includes a first routing identifier RD and a first Internet Protocol IP address
- the first RD is an RD of the first VPN instance
- the first IP address is the The IP address of the first routing device
- the second VPN instance identifier includes a second RD and a second IP address, the second RD is an RD of the second VPN instance, and the second IP address is an IP address of the second routing device.
- the service between the first VPN instance and the second VPN instance is a Layer 2 virtual private network L2VPN service
- the second identifier sending unit (90) is specifically configured to send a label distribution protocol LDP label distribution message or a fourth border gateway protocol BGP update message to the second routing device, where the LDP label distribution message or the fourth The BGP update message includes the first identifier.
- the first VPN instance is a service active party of the service between the first VPN instance and the second VPN instance
- the second VPN instance is the first VPN instance is the first A business passive party of a service between a VPN instance and the second VPN instance.
- the first routing device further includes:
- a third message sending unit configured to send a tunnel establishment policy indication information, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the second path information to establish the second MPLS TE tunnel Or the tunnel establishment policy indication information is used to indicate that the second routing device uses the second when the link and/or the node on the second path information meets the constraint of the first tunnel attribute information.
- the path information is used to establish the second MPLS TE tunnel, or the tunnel policy indication information is used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the first tunnel.
- the third MPLS TE tunnel is established by using the third path information calculated according to the first tunnel attribute information.
- the first routing device notifies the second routing device of the identifier of the first MPLS TE tunnel from the first VPN instance on the first routing device to the second VPN instance on the second routing device. And obtaining, by the second routing device, path information of the first MPLS TE tunnel from the first VPN instance to the second VPN instance according to the identifier, and then establishing, according to the path information, the path information after the path information is reversed, if the network condition permits From the second VPN instance to the second MPLS TE tunnel of the first VPN instance, the second VPN instance may be the first MPLS TE tunnel of the first VPN instance and the second MPLS TE tunnel of the first VPN instance to the second VPN instance.
- Common and reverse thus solving or reducing various problems caused by non-common paths when performing BFD.
- FIG. 1 is a flowchart of a method for establishing an MPLS TE tunnel according to an embodiment of the present invention
- FIG. 2 is a flowchart of a method for establishing an MPLS TE tunnel according to an embodiment of the present invention
- FIG. 3A is an MPLS TE according to an embodiment of the present invention
- FIG. 3B is a schematic structural diagram of a BGP notification message carrying multiple identifiers according to an embodiment of the present invention
- FIG. 4 is a flowchart of a method for establishing an MPLS TE tunnel according to an embodiment of the present invention
- FIG. 5 is a flowchart of a first routing device sending a first identifier to a second routing device according to an embodiment of the present invention
- FIG. 6 is a schematic structural diagram of a routing device according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a routing device according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a routing device according to an embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of a routing device according to an embodiment of the present invention.
- FIG. 1 is a flowchart of a method for establishing an MPLS TE tunnel according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment includes:
- Step 101 The second routing device receives the first identifier sent by the first routing device, where the first identifier is an identifier of the first MPLS TE tunnel, and the first MPLS TE tunnel is from the first routing device.
- the MPLS TE tunnel of the first VPN instance to the second VPN instance on the second routing device.
- the first VPN instance and the second VPN instance may be classified into a service active party and a service passive party. Which end is the active party of the service, which one is the passive party of the service can be configured, or can be determined through agreement negotiation. If the configuration is performed, the service role is configured for the first VPN instance and the second VPN instance. The configured service role is either the service passive party or the service active party.
- the first VPN instance on the first routing device is the service active party of the service between the first VPN instance and the second VPN instance; the second VPN instance on the second routing device is the first VPN instance. The business passive side of the business between the second VPN instance.
- the first identifier may be notified by signaling. Give the second routing device.
- the different MPLS TE tunnels have different identifiers. Therefore, the second routing device can identify the first MPLS TE tunnel corresponding to the first identifier from the multiple MPLS TE tunnels according to the first identifier.
- the second routing device may further obtain path information of the first MPLS TE tunnel according to the first identifier.
- the path information of the first MPLS TE tunnel is the first path information.
- the first routing device may initiate an MPLS-TE tunnel from the first VPN instance to the second VPN instance on the second routing device, that is, the establishment of the first MPLS-TE tunnel.
- the first routing device can establish a first MPLS TE tunnel by using the attribute information required for establishing an MPLS TE tunnel.
- the first routing device can also establish a first MPLS TE tunnel by establishing a tunnel policy of the MPLS TE tunnel according to the pre-configured attribute information required for establishing the MPLS TE tunnel and the attribute information required for establishing the MPLS TE tunnel.
- the tunnel policy is a policy for establishing an MPLS TE tunnel by using a pre-configured attribute information for establishing an MPLS TE tunnel, and the policy may be a shared mode or an exclusive mode. Sharing mode means using pre-configured Attribute information required for establishing an MPLS TE tunnel.
- the exclusive mode indicates that the MPLS TE tunnel existing between the first VPN instance and the second VPN instance is not considered when the first MPLS TE tunnel is established by using the attribute information of the pre-configured MPLS TE tunnel.
- the MPLS TE tunnel is used for service between the first VPN instance and the second VPN instance.
- the process of determining, by the first routing device, the first identifier used and sending the first identifier to the second routing device is independent of the process of establishing the first MPLS TE tunnel by the first routing device, The order is not limited.
- the second routing device reversely establishes an MPLS TE tunnel from the second VPN instance on the second routing device to the first VPN instance on the first routing device.
- the MPLS TE tunnel from the second VPN instance on the second routing device to the first VPN instance on the first routing device is a second MPLS TE tunnel, and the second MPLS TE tunnel is shared with the first MPLS TE tunnel. And reverse.
- the service between the first VPN instance and the second VPN instance may be a Layer 3 VPN (English name is Layer 3 VPN, abbreviated as L3VPN).
- the first routing device can perform service negotiation with the second routing device by using the multiprotocol-border gateway protocol (MP-BGP), and use the RSVP-TE protocol. Establish a first MPLS TE tunnel. Based on this, the first routing device can extend the MP-BGP protocol, and advertise the first identifier to the second routing device by using the extended MP-BGP protocol.
- MP-BGP multiprotocol-border gateway protocol
- RSVP-TE RSVP-TE protocol
- the VPN private network route and the VPN private network label are advertised.
- a VPN instance has multiple IP routes.
- the VPN private network route refers to the IP route in each VPN instance. It is meaningless to carry the tunnel identifier for a specific VPN private network route, because the identifier of the MPLS TE tunnel is associated with the service, and the service corresponds to the VPN instance instead of the VPN private network route.
- the process of extending the advertisement tunnel identifier to the MP-BGP includes the process of identifying the VPN instance at both ends of the service instead of the VPN private network route, and the process of identifying the tunnel identifier after identifying the VPN instance at both ends of the service.
- the process of the first routing device sending the first identifier to the second routing device includes the process of identifying the first VPN instance on the first routing device and the second VPN instance on the second routing device. The process of sending the first identifier after the VPN instance.
- the method for the second routing device to receive the first identifier sent by the first routing device includes: the second routing device receives the first border gateway protocol sent by the first routing device (English name is called Border Gateway Protocol,
- the BGP update message is a BGP update message
- the first BGP update message includes a first VPN instance identifier and a first route target (English name is called Route Target, which is abbreviated as RT); wherein the first VPN instance identifier is used to identify the first The first VPN instance on the routing device, the first RT is the RT of the first VPN instance.
- the first VPN instance identified by the first VPN instance identifier is actually a VPN instance that carries the L3VPN service on the first routing device.
- the RT of the VPN instance for example, the RT of the first VPN instance
- the RT of the two VPN instances can be used to determine whether there is a service peer relationship between the two VPN instances. If the import RT of one VPN instance is equal to the export RT of another VPN instance, the two VPN instances have a service peer relationship.
- the RT of the first VPN instance is considered to be introduced into the RT, and the RT of the VPN instance on the second routing device is regarded as the derived RT.
- a VPN instance on the second routing device that has a service peer relationship with the first VPN instance is a second VPN instance.
- the first RT and the second RT may be compared. If the first RT and the second RT are equal, it may be determined that the first VPN instance and the second VPN instance have service peering. relationship.
- the second RT is the RT of the second VPN instance, and the second VPN instance is identified by the second VPN instance identifier.
- the second routing device After the second routing device determines that the first RT and the second RT are equal, the second routing device sends a second BGP update message to the first routing device, where the second BGP update message includes the second VPN instance identifier and the second RT.
- the second VPN instance identifier is used to identify a second VPN instance on the second routing device.
- the first routing device may be configured to establish a first MPLS TE tunnel, and then determine the first identifier used.
- the first routing device and the second routing device send the BGP update message carrying the VPN instance identifier to each other, so that the first VPN instance and the second VPN instance can learn from each other, and implement the first VPN instance and the second VPN instance. ID of the VPN instance.
- the second routing device receives the third BGP update message sent by the first routing device, where the third BGP update message includes: a first identifier.
- the third BGP update message is sent by the first routing device after receiving the second BGP update message.
- the second routing device obtains the first identifier from the third BGP update message sent by the first routing device.
- the third BGP update message may include information such as the first VPN instance identifier, the first RT, and the second VPN instance identifier, in addition to the first identifier.
- the first routing device determines, according to the first VPN instance identifier and the second VPN instance identifier, that the first MPLS TE tunnel needs to be established between the first VPN instance and the second VPN instance, and may be based on the IP address of the second routing device.
- the process of establishing the first MPLS TE tunnel is triggered by the attribute information required to establish the first MPLS TE tunnel.
- the first routing device uses the pre-configured attribute information required to establish the first MPLS TE tunnel, calculates the first path information, and then uses the resource reservation protocol based on the traffic engineering extension (English full name is Resource ReSerVation Protocol-Traffic Engineering, abbreviated as RSVP-TE, establishes the first MPLS TE tunnel according to the first path information.
- the process of the first routing device sending the first identifier to the second routing device by using the third BGP update message is independent of the process of establishing the first MPLS TE tunnel by the first routing device, and the sequence of the embodiment is not Make a limit.
- the first routing device and the second routing device may carry the RT and VPN instance identifiers of the VPN instance by using the attribute information and the network layer reachability information (English name is NLRI).
- the NLRI carries the VPN instance ID and the RT of the VPN instance.
- the process of receiving the first BGP update message sent by the first routing device may be: the second routing device receives the first BGP update message sent by the first routing device, and parses the first BGP update message, The first RT is obtained from the attribute information in the first BGP update message, and the first VPN instance identifier is obtained from the NLRI object in the first BGP update message.
- the process of the first routing device receiving the first BGP update message sent by the first routing device may be: the second routing device receives the first BGP update message sent by the first routing device, and parses the first BGP update message, The first VPN instance identifier and the first RT are obtained from the NLRI object in the first BGP update message.
- the process of the second routing device sending the second BGP update message to the first routing device may be: the second routing device encapsulates the second RT in the attribute information in the second BGP update message, and identifies the second VPN instance identifier. Encapsulated in the NLRI object in the second BGP update message, The second BGP update message encapsulated with the second RT and the second VPN instance identifier is then sent to the first routing device.
- the process of the second routing device sending the second BGP update message to the first routing device may be: the second routing device encapsulates the second RT and the second VPN instance identifier in the NLRI object in the second BGP update message, and then Sending a second BGP update message encapsulated with the second RT and the second VPN instance identifier to the first routing device.
- the VPN instance identifier in this embodiment may include a route specifier (English full name is Router Distinguishes, abbreviated as RD) and an IP address.
- the RD is used to distinguish different VPN instances on the same device.
- the first VPN instance identifier includes a first RD and a first IP address.
- the first RD is the RD of the first VPN instance, and the first IP address is the IP address of the first routing device, and the first IP address identifies the IP routing in the VPN instance on the first routing device instead of the first routing device.
- the second VPN instance identifier includes a second RD and a second IP address.
- the second RD is the RD of the second VPN instance, the second IP address is the IP address of the second routing device, and the second IP address identifies the IP routing in the VPN instance on the second routing device instead of the second routing device.
- the NRLI may also include next hop information.
- the next hop information refers to the next hop information of the first IP address or the second IP address.
- the first routing device and the second routing device may compare The first VPN instance identifier and the size of the second VPN instance identifier are determined, and the role of the first VPN instance and the role of the second VPN instance are determined according to the comparison result and the role determination rule.
- the role determination rule may be configured to: when the first VPN instance identifier is greater than the second VPN instance identifier, determine that the first VPN instance is the service active party, The second VPN instance is the passive party of the service; the role determination rule may be set to: when the first VPN instance identifier is smaller than the second VPN instance identifier, determining that the first VPN instance is the The active party of the service, the second VPN instance is the passive party of the service.
- the first routing device and the second routing device may further receive the role information or the first route respectively received from the management device in advance. And pre-configured role information in the device and the second routing device to determine roles of the first VPN instance and the second VPN instance in the service between the first VPN instance and the second VPN instance, respectively.
- the MPLS TE tunnel can include multiple label switching paths (English name is Label). Switched Path, abbreviated as LSP).
- the identifier of each LSP can include an Ingress (in English) router identifier (abbreviated as ID) (which can be called a local LSP ID) and an MPLS TE tunnel (in English) ID (that is, an identifier of an MPLS TE tunnel).
- ID Ingress
- MPLS TE tunnel in English
- the tunnel IDs in the identifiers are the same, but the local LSP IDs are different.
- the first MPLS TE tunnel in this embodiment may include a primary LSP and a backup LSP.
- the first routing device when establishing the primary LSP and the backup LSP, carries the role information of each LSP, where the role information is used to indicate that the LSP corresponding to the role information is the information of the primary LSP or the backup LSP.
- the service between the first VPN instance and the second VPN instance may be a Layer 2 VPN (L2VPN) service.
- the first routing device may use a dynamic protocol, such as a label distribution protocol (hereinafter referred to as Label Distributed Protocol in English, LDP for short) or BGP to establish a L2VPN PW with the second routing device, and use RSVP- The TE establishes the first MPLS TE tunnel.
- the second routing device may obtain the first identifier from the LDP label distribution message or the fourth BGP update message by receiving the LDP label distribution message or the fourth BGP update message sent by the first routing device.
- the first identifier may be carried in the LDP label or the fourth BGP update message.
- the method for extending the LDP or BGP to carry the first identifier may be: adding a new field in the LDP label distribution message or the fourth BGP update message, and carrying the first identifier by using the new field.
- the method for extending the LDP or BGP to carry the first identifier may be: redefining one or some existing fields in the LDP label distribution message or the fourth BGP update message, and using the redefined field to carry First identifier.
- Step 102 The second routing device obtains the first path information according to the first identifier, where the first path information is path information of the first MPLS TE tunnel.
- the path information of the first MPLS TE tunnel is referred to as the first path information, and the first path information includes information such as a node and a link through which the first MPLS TE tunnel passes.
- the RRO object received by the second routing device for establishing the path message of the first MPLS TE tunnel carries the path information of the first MPLS TE tunnel, that is, the first A path information
- the session object of the path message carries an identifier of the first MPLS TE tunnel, that is, a first identifier.
- the second routing device acquires the correspondence between the first path information and the first identifier. After the second routing device obtains the first identifier, the second routing device may further obtain the first information obtained from the path message according to the first identifier and the second routing device or after obtaining the first identifier.
- Corresponding relationship between the path information and the first identifier determines the first path information.
- the first identifier and/or the first path information may be carried in an extended field of the path message by means of protocol extension.
- the process of obtaining the first path information by the second routing device according to the first identifier may be: the second routing device determines, according to the first identifier and the first correspondence, the first MPLS TE tunnel identified by the first identifier.
- the first correspondence is a correspondence between the first identifier and the first MPLS TE tunnel.
- the second routing device queries the second correspondence according to the identifier of the first MPLS TE tunnel to obtain the first path information.
- the second correspondence is actually the correspondence between the identifier of the first MPLS TE tunnel and the first path information.
- the first routing device may also send the attribute information required for establishing the first MPLS TE tunnel to the second routing device. That is to say, the second routing device can know the attribute information required by the first routing device to establish the first MPLS TE tunnel.
- the process of the second routing device acquiring the first path information according to the first identifier includes: the second routing device according to the first MPLS TE
- the role information of the LSP in the tunnel is obtained by acquiring the first primary path information corresponding to the primary LSP and the first alternate path information corresponding to the backup LSP.
- Step 103 The second routing device reverses the first path information, obtains the second path information, and establishes a second MPLS TE tunnel according to the second path information, where the second MPLS TE tunnel is from the second VPN instance to the first VPN. Instance MPLS TE tunnel.
- the second routing device After acquiring the first path information, the second routing device inverts the first path information to obtain the second path information.
- the first path information and the second path information include the same node and link, except that the path direction is opposite. For example, if the first path information is: Node A ⁇ Node B ⁇ Node C, the second path information is: Node C ⁇ Node B ⁇ Node A.
- the second routing device establishes a second MPLS TE tunnel according to the second path information, that is, establishes an MPLS TE tunnel from the second VPN instance to the first VPN instance.
- the second routing device directly uses the second path information to establish the second MPLS TE tunnel. That is, the second routing device does not determine whether the link and/or the node on the second path information meets the constraint of the first tunnel attribute information, and directly establishes the second MPLS TE tunnel. This method is available where network conditions permit.
- the second routing device may determine whether the link and/or the node on the second path information meet the constraint of the first tunnel attribute information. After determining that the link and/or the node on the second path information meets the constraint of the first tunnel attribute information, the second path information is used to establish a second MPLS TE tunnel.
- the third path information may be calculated according to the first tunnel attribute information, and then used.
- the third path information establishes a third MPLS TE tunnel from the second VPN instance to the first VPN instance.
- the part of the third path information is the same as the part of the second path information, that is, the third MPLS TE tunnel and the first MPLS TE tunnel are opposite in direction and partially shared.
- the second routing device may directly establish the second MPLS TE tunnel by using the second path information, if the link and/or the node on the second path information does not satisfy the constraint of the first tunnel attribute information.
- the direct establishment method can also successfully establish a second MPLS TE tunnel.
- the first tunnel attribute information may be the attribute information required for the first routing device to establish the first MPLS TE tunnel, or the attribute information required for establishing the second MPLS TE tunnel, or the second routing device, which is pre-configured by the second routing device. Default attribute information required for establishing a second MPLS TE tunnel.
- the second routing device in this embodiment can establish a second MPLS TE tunnel according to the first path information and the attribute information required by the first routing device to establish the first MPLS TE tunnel, and the second routing device can be configured locally.
- a large number of attribute information used to establish the second MPLS TE tunnel is beneficial to reducing the configuration workload of the attribute information.
- the establishment of the second MPLS TE tunnel here has two possibilities: success and failure.
- the concept of the success is that the node and the link on the second path information obtained by the inversion of the first path information meet the requirements of the attribute information required by the first routing device to establish the first MPLS TE tunnel.
- the second routing device may return a tunnel establishment failure message to the first routing device, indicating that the forward-reverse bidirectional shared tunnel cannot be established, or the second routing device may also establish the first MPLS according to the first routing device.
- the third path information is calculated based on the attribute information required by the TE tunnel, and the third MPLS TE tunnel is established based on the third path information.
- a part of the content of the third path information is the same as a part of the content of the second path information.
- the second routing device in this embodiment may further establish a second MPLS TE tunnel according to the first path information and the local pre-configured attribute information required for establishing the second MPLS TE tunnel.
- the second routing device uses the attribute information of the local configuration to ensure the flexibility of the configuration of the second MPLS TE tunnel.
- the concept of success refers to the requirement that the nodes and links on the second path information obtained by inverting the first path information satisfy the attribute information used by the second routing device, otherwise it is a failure.
- the second routing device may return a tunnel establishment failure message to the first routing device, indicating that the forward/reverse bidirectional shared tunnel cannot be established, or the second routing device may also use the local configuration used by the second routing device.
- part of the content of the third path information is the same as part of the content of the second path information.
- the second routing device in this embodiment may further establish the second MPLS TE tunnel according to the first path information and the default attribute information required for establishing the second MPLS TE tunnel.
- the default attribute information does not need to be configured, which helps reduce the workload of configuring attribute information.
- success and failure There are two possibilities for success and failure in establishing the second MPLS TE tunnel.
- the concept of success refers to the requirement that the nodes and links on the second path information obtained by inverting the first path information satisfy the default attribute information, otherwise it is a failure.
- the second routing device may return a tunnel establishment failure message to the first routing device, indicating that the tunnel of the forward and reverse bidirectional common paths cannot be established, or the second routing device may also establish a second MPLS TE tunnel according to the used
- the third path information is calculated by using the required default attribute information, and the third MPLS TE tunnel is established based on the third path information.
- part of the content of the third path information is the same as part of the content of the second path information.
- An implementation manner of calculating the third path information by using the required default attribute information may be: the second routing device uses the first routing device to establish the attribute information required by the first MPLS TE tunnel or the second routing device locally configured.
- the attribute information required for establishing the second MPLS TE tunnel or the default attribute information required by the second routing device to establish the second MPLS TE tunnel is used to calculate multiple possible path information, and then the calculated path information is respectively associated with the first path.
- the information or the second path information is compared, and the content is the same as the content in the first path information or the second path information.
- the path information is used as the third path information.
- the MPLS TE tunnel from the second VPN instance to the first VPN instance and the MPLS TE tunnel from the first VPN instance to the second VPN instance are as common as possible.
- the embodiment before the second routing device establishes the second MPLS TE tunnel according to the second path information, the embodiment further includes:
- the second routing device receives the tunnel establishment policy indication information sent by the first routing device, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the second path information to establish the second An MPLS TE tunnel, or used to indicate that the second routing device uses the second path information to establish a link when the link and/or the node on the second path information meets the constraint of the first tunnel attribute information
- the second MPLS TE tunnel is used, or the tunnel policy indication information is used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the constraint of the first tunnel attribute information.
- the third MPLS TE tunnel is used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the constraint of the first tunnel attribute information.
- the establishing the second MPLS TE tunnel by using the second path information directly refers to a situation in which it is determined whether the link and/or the node on the second path information meets the constraint of the first tunnel attribute information. And the second MPLS TE tunnel is established by using the second path information.
- the second routing device may also establish the second MPLS TE tunnel in the manner of establishing the second MPLS TE tunnel, if the tunnel establishment policy indication information is not received by the first routing device. . That is, the second routing device can directly establish the second MPLS TE tunnel, whether or not the tunnel establishment policy indication information is sent by the first routing device, or determine whether the link and/or the node on the second path information is After the constraint of the first tunnel attribute information is met, after determining that the link and/or the node on the second path information meets the constraint of the first tunnel attribute information, the second path information is used to establish the second MPLS TE tunnel, and the second MPLS TE tunnel is determined.
- the third path information is calculated according to the first tunnel attribute information, and then the third MPLS TE tunnel is established by using the third path information.
- the first tunnel attribute information is attribute information required for the first routing device to establish the first MPLS TE tunnel, or the first tunnel attribute information is pre-configured by the second routing device.
- the attribute information required by the second MPLS TE tunnel, or the first tunnel attribute information is default attribute information required for the second routing device to establish the second MPLS TE tunnel.
- the MPLS TE tunnel is configured for the first routing device or the second routing device, and the MPLS TE tunnel is configured for the first routing device or the second routing device.
- the tunnel template used by the tunnel uses the tunnel template to configure the attribute information used by the MPLS TE tunnel for the first routing device and/or the second routing device.
- a tunnel template can be regarded as a collection of attribute information used to establish an MPLS TE tunnel.
- the first routing device uses the tunnel template when establishing the first MPLS TE tunnel, and does not need to be configured separately for each tunnel.
- the second routing device can also directly use the tunnel template when establishing the second MPLS TE tunnel. Each tunnel is configured separately. In this way, the configuration of the MPLS TE tunnel can be minimized.
- the first MPLS TE tunnel includes a primary LSP and a backup LSP
- the first path information obtained by the second routing device includes the first primary path information corresponding to the primary LSP and the first alternate path information corresponding to the backup LSP.
- the second routing device inverts the first primary path information and the first standby path information, and obtains the second primary path information corresponding to the primary LSP and the second alternate path information corresponding to the backup LSP;
- the primary LSP and the backup LSP are set up from the second VPN instance to the first VPN instance, that is, the primary LSP and the backup LSP in the second MPLS TE tunnel are established.
- the second routing device may further send a fifth BGP update message to the first routing device, where the fifth BGP update message includes: the first VPN instance identifier and the second VPN instance identifier. And a second identifier and a second identifier; the second identifier is an identifier of the second MPLS TE tunnel. This will ensure the integrity of the agreement.
- the first routing device notifies the second routing device of the identifier of the first MPLS TE tunnel from the first VPN instance on the first routing device to the second VPN instance on the second routing device, and the second The routing device obtains the path information of the first MPLS TE tunnel from the first VPN instance to the second VPN instance according to the identifier, and then establishes the path information from the second VPN according to the path information reversed by the path information if the network condition permits
- the second MPLS TE tunnel of the first VPN instance to the first MPLS TE tunnel of the first VPN instance and the second MPLS TE tunnel of the first VPN instance to the second MPLS TE tunnel of the second VPN instance are opposite to each other.
- the second routing device may also establish a direction with the first MPLS TE tunnel and part The third MPLS TE tunnel of the common path, in order to reduce to some extent, various problems caused by non-common paths when performing BFD.
- FIG. 2 is a flowchart of a method for establishing an MPLS TE tunnel according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment includes:
- Step 201 When the first VPN instance on the first PE and the second VPN instance on the second PE perform the L2VPN service, the first VPN instance is configured as the active party and the second VPN instance is the passive party.
- the service active party and the service passive party can also be determined by means of protocol negotiation.
- the L2VPN service is performed by using the first VPN instance and the second VPN instance as an example.
- Step 202 The first PE sends an LDP label distribution message to the second PE, where the LDP label distribution message includes an identifier of the MPLS TE tunnel from the first VPN instance to the second VPN instance.
- the MPLS TE tunnel from the first VPN instance to the second VPN instance is the first MPLS TE tunnel
- the identifier of the MPLS TE tunnel from the first VPN instance to the second VPN instance is the first identifier.
- the first PE uses the LDP protocol to negotiate with the second PE as an example, but is not limited thereto.
- the first PE and the second PE may also use the BGP protocol for service negotiation.
- the first PE extends the LDP protocol, and the LDP protocol advertises the first MPLS TE tunnel to the second PE through the LDP protocol. Identifier.
- the identifier of the MPLS TE tunnel used by the L2VPN service depends on the type of the tunnel. Different types of tunnels use different identifiers. Commonly used tunnel types include MPLS TE tunnels, LDP tunnels, and Generic Routing Encapsulation (GRE) tunnels.
- the MPLS TE tunnel is the focus of the present invention.
- the LDP tunnel and the GRE tunnel are generally selected by using the next hop as the destination address.
- the first PE when the identifier of the first MPLS TE tunnel is advertised to the second PE, may also include the tunnel establishment policy indication information in the LDP label distribution message, to notify the second PE to establish the second VPN instance.
- the MPLS TE tunnel of the first VPN instance can improve the flexibility of the second PE to establish an MPLS TE tunnel from the second VPN instance to the first VPN instance.
- the MPLS TE tunnel from the second VPN instance to the first VPN instance is the second MPLS TE tunnel.
- the tunnel establishment policy provided by the first PE to the second PE may require that the second MPLS TE tunnel established by the second PE must be co-located with the first MPLS TE tunnel, and if the tunnel is not shared, the service selection tunnel fails.
- the tunnel establishment policy provided by the first PE to the second PE may be: if the second MPLS TE tunnel that is common to the first MPLS TE tunnel cannot be established, requesting the second PE according to the second path information A part of the established second MPLS TE tunnel is co-located with a part of the first MPLS TE tunnel.
- the first MPLS TE tunnel and the second MPLS TE tunnel are not completely shared, a part of the common path is implemented, and the first MPLS TE tunnel and the second MPLS TE tunnel are completely different. The problem caused by the total lack of a common road.
- the multiple MPLS TE tunnels are selected from the common MPLS TE tunnels.
- the longest MPLS TE tunnel in the common path is used as the second MPLS TE tunnel to minimize the problems caused by not being shared.
- the second PE receives the LDP label distribution message sent by the first PE, and obtains the identifier of the first MPLS TE tunnel from the LDP label distribution message. Further, if the LDP label distribution message further includes the tunnel establishment policy indication information, the second PE may further obtain the tunnel establishment policy indication information from the LDP label distribution message.
- Step 203 The first PE specifies a tunnel template for the L2VPN service, and obtains the attribute information used by the MPLS TE tunnel through the tunnel template, and drives the establishment of the first MPLS TE tunnel based on the attribute information.
- the first PE uses the tunnel template to configure the MPLS TE tunnel Attributes for the L2VPN service. It is not required to be configured separately for each MPLS TE tunnel. This reduces the configuration workload of the MPLS TE tunnel and improves the configuration efficiency.
- the first PE uses the obtained attribute information to calculate path information of the first MPLS TE tunnel, that is, the first path information, where the first path information includes information such as a node and a link through which the first MPLS TE tunnel passes. Then, the first PE establishes the first MPLS TE tunnel by using the RSVP-TE protocol according to the first path information.
- steps 202 and 203 are not limited to this.
- Step 204 The second PE acquires path information of the first MPLS TE tunnel, that is, the first path information, according to the identifier of the first MPLS TE tunnel, that is, the first identifier, obtained from the LDP label distribution message.
- Step 205 The second PE determines whether the node and/or the link on the second path information obtained by the first path information inversion meets the constraint of the first tunnel attribute information. If the determination result is satisfied, step 206 is performed; If the result is not satisfied, step 207 is performed.
- the second PE After acquiring the first path information, the second PE inverts the second path information to obtain the second path information.
- the first path information or the second path information includes information of nodes and links on the path corresponding thereto, and actually includes a series of ordered IP addresses, and the second path information includes a series of ordered IP addresses. The order is opposite to the order in which the first path information includes a series of ordered IP addresses.
- the second PE obtains the attribute information used by the second MPLS TE tunnel, and the attribute information used by the second MPLS TE tunnel is the first tunnel attribute information.
- the first tunnel attribute information may be the attribute information used by the second PE to be configured for the second MPLS TE tunnel, and may be the default attribute information, or may be the attribute information used by the first PE to establish the first MPLS TE tunnel. .
- These attribute information includes information such as bandwidth information, explicit paths, affinity attributes, fast reroute, and so on.
- the second PE compares the information of each node and link in the second path information with the first tunnel attribute information, and can determine whether the second path information satisfies the constraint of the first attribute information.
- Step 206 The second PE establishes a second MPLS TE tunnel by using the second path information.
- the second PE establishes a second MPLS TE tunnel according to the second path information, so that the common path between the first MPLS TE tunnel and the second MPLS TE tunnel can be implemented.
- the common path means that the first MPLS TE tunnel and the second MPLS TE tunnel pass through the same node and link, but the directions of the two tunnels are opposite.
- the second PE may send the identifier of the second MPLS TE tunnel, that is, the second identifier, to the first PE, and the first PE receives the second identifier sent by the second PE. This will ensure the integrity of the agreement.
- Step 207 The second PE calculates the path information according to the first tunnel attribute information and the second path information, and then uses the calculated path information to establish a third MPLS TE tunnel, where the third MPLS TE tunnel and the first MPLS TE tunnel Partially shared.
- the third MPLS TE tunnel in step 207 and the second MPLS TE tunnel in step 206 are both MPLS TE tunnels from the second VPN instance to the first VPN instance, but the two MPLS TE tunnels are not the same.
- the second PE establishes a second MPLS TE tunnel based on the second path information obtained by inverting the first path information, so that tunnel common or partial common paths in two directions can be ensured. If the path of the first MPLS TE tunnel changes, the path of the second MPLS TE tunnel can be adjusted accordingly.
- the first MPLS TE tunnel and the second MPLS TE tunnel are shared or partially shared by the static configuration, and the configuration workload is small and the scalability is strong.
- the forward and reverse bidirectional MPLS TE tunnels that are directly bound to the two unidirectional MPLS TE tunnels are not commonly used. When the path of one of the MPLS TE tunnels changes, only less processing is required. The path of another MPLS TE tunnel can also change. There is no direct change to the path of one tunnel when two unidirectional MPLS TE tunnels are directly connected to each other. Two-way non-common situation.
- the first PE and the second PE advertise the identifier of the MPLS TE tunnel used by the first PE to the second PE in the L2VPN service negotiation process, and the second PE obtains the identifier based on the first PE advertisement.
- the first path information is used to establish a second MPLS TE tunnel by using the second path information obtained by inverting the first path information, and the first MPLS TE tunnel and the second MPLS TE tunnel are implemented together when network conditions permit. Or part of the common road, which solves or reduces various problems caused by non-common paths when performing BFD. If the first MPLS TE tunnel and the second MPLS TE tunnel are not shared, at least the BFD problem will be brought.
- the non-co-location when the reverse IP path is blocked and the path status of the forward MPLS TE tunnel is normal, the non-co-location will cause the BFD state to be down.
- the non-co-channel may cause unnecessary switching of the MPLS TE tunnel. Even if the handover is unsuccessful, it needs to wait for hard convergence, causing a large amount of packet loss. The problem of high reliability cannot be guaranteed.
- FIG. 3 is a flowchart of a method for establishing an MPLS TE tunnel according to an embodiment of the present invention. As shown in FIG. 3A, the method of this embodiment includes the following.
- Step 301 When the first VPN instance on the first PE and the second VPN instance on the second PE perform the L3VPN service, the first PE and the second PE determine the first VPN on the first PE through the MP-BGP protocol negotiation.
- the instance is the active party of the service, and the second VPN instance on the second PE is the passive party of the service.
- the service active party and the service passive party can also be determined through configuration.
- the L3VPN service is performed by using the first VPN instance and the second VPN instance as an example.
- Step 302 The first PE sends a first BGP update message to the second PE, where the first BGP update message includes the first VPN instance identifier and the first RT.
- Step 303 The first PE receives a second BGP update message sent by the second PE, where the second The BGP update message includes a second VPN instance identifier and a second RT.
- the VPN instance identifier of the first PE is used to identify the first VPN instance.
- the second VPN instance identifier is used to identify the second VPN instance.
- the first RT and the second RT are used to determine whether the first PE and/or the second PE have a service peer relationship between the first VPN instance and the second VPN instance. In this embodiment, after determining that the first RT and the second RT are equal, the first PE and the second PE determine that there is a service peer relationship between the first VPN instance and the second VPN instance.
- the first PE by extending the MP-BGP protocol, sends the first message through the first BGP update message, in addition to sending some information in the prior art to the second PE through the first BGP update message.
- the VPN instance ID is sent to the second PE.
- the second PE receives the first BGP update message sent by the first PE, and learns the first VPN instance identifier from the first PE.
- the second PE sends a second BGP update message to the first PE, and carries the second VPN instance identifier in the second BGP update message.
- the first PE receives the second BGP update message sent by the second PE, and learns the second VPN instance identifier.
- the identifiers of the VPN instances on the first PE and the second PE are implemented in the foregoing manner, and the mutual learning of the VPN instances is implemented.
- the first PE may carry the first VPN instance identifier in the NRLI object in the first BGP update message; the second PE may carry the second VPN instance identifier in the NRLI object in the second BGP notification message.
- the first RT or the second RT may also be carried in the NRLI.
- Step 304 The first PE sends a third BGP update message to the second PE, where the third BGP update message includes a first VPN instance identifier, a first RT, a second VPN instance identifier, and a first identifier.
- the first identifier is an identifier of the first MPLS TE tunnel.
- the second PE receives the third BGP update message sent by the first PE, and obtains the first identifier from the third BGP update message. If the first VPN instance performs the L3VPN service with multiple VPN instances at the same time, the same third BGP update message can carry the identifiers of the multiple MPLS TE tunnels of the first VPN to multiple VPN instances at the same time. 3B is shown. In the third BGP update message shown in FIG.
- the identifiers of the N VPN instances and the N MPLS TE tunnels are respectively included, and the second VPN instance identifiers 1 - (N+1) VPN instance identifiers N and The identifier of the tunnel corresponding to the VPN instance of the second VPN instance is 1 to the identifier of the tunnel corresponding to the (N+1) VPN instance, and the identifier of the first VPN instance is the first VPN instance identifier 1 - the first VPN instance identifier M.
- the RT of the first VPN instance is not shown in Figure 3B.
- Step 305 The first PE specifies a tunnel template for the L3VPN service, and obtains the tunnel template.
- the attribute information used by the first MPLS TE tunnel is used to drive the establishment of the first MPLS TE tunnel based on the attribute information.
- the first PE uses the tunnel template to configure the attribute information of the MPLS TE tunnel for the L3VPN service. It is not required to be configured separately for each MPLS TE tunnel. This reduces the configuration workload of the MPLS TE tunnel and improves the configuration efficiency.
- the first PE uses the obtained attribute information to calculate the path information of the first MPLS TE tunnel, that is, the first path information, where the first path information includes information such as a node and a link that passes through the first MPLS TE tunnel. . Then, the first PE establishes the first MPLS TE tunnel by using the RSVP-TE protocol according to the first path information.
- Step 306 The second PE obtains path information of the first MPLS TE tunnel, that is, the first path information, according to the identifier of the first MPLS TE tunnel obtained from the third BGP update message, that is, the first identifier.
- Step 307 The second PE determines whether the node and/or the link on the second path information obtained by the first path information inversion meets the constraint of the first attribute attribute information. If the determination result is satisfied, step 308 is performed; If the result is not satisfied, step 309 is performed.
- Step 308 The second PE uses the second path information to establish an MPLS TE tunnel, that is, a second MPLS TE tunnel, from the second VPN instance to the first VPN instance.
- Step 309 The second PE calculates the path information according to the first tunnel attribute information and the second path information, and then uses the calculated path information to establish a third MPLS TE tunnel, the third MPLS TE tunnel and the first MPLS TE tunnel part. A total of roads.
- the third MPLS TE tunnel in the step 309 and the second MPLS TE tunnel in the step 308 are both tunnels from the second VPN instance to the first VPN instance, but the two MPLS TE tunnels are different. .
- step 306-step 309 refer to the description of step 204-step 207, and details are not described herein.
- the first PE and the second PE in the L3VPN service negotiation process the first PE advertises the first identifier to the second PE, and the second PE determines the first path information based on the first identifier.
- the second PE further establishes a second MPLS TE tunnel according to the second path information acquired based on the first path information, and implements a common or partial common path of the forward and reverse bidirectional MPLS TE tunnels.
- This can be solved or reduced because two MPLS TE tunnels with opposite directions between two VPN instances are not connected together. The problem. For example, when the reverse IP path is blocked and the path status of the forward MPLS TE tunnel is normal, the non-co-location will cause the BFD state to be down.
- the non-co-channel may cause unnecessary switching of the MPLS TE tunnel. Even if the handover is unsuccessful, it needs to wait for hard convergence. Package, the high reliability of the business cannot be guaranteed.
- an embodiment of the present invention provides a method for establishing an MPLS TE tunnel, where the method includes the following content.
- Step 401 The first routing device sends the first identifier to the second routing device, so that the second routing device obtains the first path information according to the first identifier, where the first identifier is the first MPLS TE tunnel.
- the first path information is the path information of the first MPLS TE tunnel
- the first MPLS TE tunnel is the MPLS TE of the first VPN instance on the first routing device to the second VPN instance on the second routing device.
- Step 402 The first routing device receives a path message that is sent by the second routing device to establish a second MPLS TE tunnel, where the second MPLS TE tunnel is from the second VPN instance to the first VPN instance.
- Step 403 The first routing device sends a reservation message corresponding to the path message to the second routing device.
- the second MPLS TE tunnel is co-routed and reversed with the first MPLS TE tunnel.
- the path message and the reservation message are both messages in the RSVP TE.
- the second MPLS TE tunnel can be established under the network conditions, thereby solving or reducing various problems caused by non-common paths when performing BFD.
- the first VPN instance on the first routing device is the service active party of the service between the first VPN instance and the second VPN instance; the second VPN instance on the second routing device is the first VPN instance.
- the first routing device may notify the second routing device by using the first identifier.
- the second routing device queries the correspondence between the first identifier and the path information of the first MPLS TE tunnel according to the first identifier, and obtains path information of the first MPLS TE tunnel, that is, the first path information. Further, the second routing device may invert the first path information to obtain the second path information, and then establish a second MPLS TE tunnel based on the second path information.
- the second MPLS TE tunnel is from the second VPN. Instance to the MPLS TE tunnel of the first VPN instance.
- the corresponding relationship between the first identifier and the path information of the first MPLS TE tunnel is that the first routing device sends the path message to the second routing device in the process of establishing the first MPLS TE tunnel.
- the RRO object of the path message carries the path information of the first MPLS TE tunnel, that is, the first path information
- the session object of the path message carries the identifier of the first MPLS TE tunnel.
- the first identifier and/or the first path information may be carried in an extended field of the path message by means of protocol extension.
- the process and step 401 of the first routing device to establish the first MPLS TE tunnel are independent of each other and may not be limited by the order of time.
- the service between the first VPN instance and the second VPN instance may be an L3VPN service
- the first routing device may use MP-BGP to perform service negotiation with the second routing device.
- the first routing device can extend the MP-BGP protocol, and advertise the first identifier to the second routing device by using the extended MP-BGP protocol.
- the first routing device and the second routing device advertise each other with a VPN private network route and a VPN private network label.
- a VPN instance has multiple IP routes.
- the VPN private network route refers to the IP route in each VPN instance. It is meaningless to carry the tunnel identifier for a specific VPN private network route because the identifier of the MPLS TE tunnel is associated with the service, and the service corresponds to the VPN instance rather than the VPN private network route.
- the process of extending the first identifier to the MP-BGP includes the process of identifying the first VPN instance on the first routing device and the second VPN instance on the second routing device, and advertising after identifying the VPN instance. The process of the first identifier.
- an implementation manner in which the first routing device in FIG. 4 sends the first identifier to the second routing device includes the following content. .
- Step 4011 The first routing device sends a first BGP update message to the second routing device, where the first BGP update message includes a first VPN instance identifier and a first RT, where the first VPN instance identifier is used to identify the first route.
- Step 4012 The first routing device receives a second BGP update message sent by the second routing device, where the second BGP update message includes a second VPN instance identifier and a second RT, where the second VPN instance identifier is used to identify the second A second VPN instance on the routing device, where the second RT is an RT of the second VPN instance.
- the second BGP update message is sent by the second routing device after determining that the first RT and the second RT are equal.
- step 101 is a process in which the first routing device and the second routing device learn from each other and identify the VPN instance. For details, refer to step 101.
- Step 4013 After determining that the first RT and the second RT are equal, the first routing device determines the first identifier according to the first VPN instance identifier and the second VPN instance identifier.
- the first MPLS TE tunnel may be determined according to the first VPN instance identifier and the second VPN instance identifier, and accordingly, the first identifier may be determined.
- the specific method for determining the first identifier includes: acquiring the first identifier when the first MPLS TE tunnel has been assigned the first identifier; and assigning the first identifier to the first MPLS tunnel The first identifier and the first identifier are obtained.
- Step 4014 The first routing device sends a third BGP update message to the second routing device, where the third BGP update message includes the first identifier.
- the third BGP update message may include information such as the first VPN instance identifier, the second VPN instance identifier, and the first RT, in addition to the first identifier.
- the first routing device achieves the purpose of advertising the first identifier to the second routing device by extending the BGP update message.
- the specific process refer to the description in step 101.
- first routing device and the second routing device may carry the RT and VPN instance identifiers of the VPN instance through the attribute information and the NRLI, or carry the VPN instance identifier and the RT of the VPN instance through the NLRI.
- the process of the first routing device sending the first BGP update message to the second routing device may be: the first routing device encapsulates the first RT in the attribute information in the first BGP update message, and identifies the first VPN instance identifier. Encapsulating the NLRI object in the first BGP update message, and then sending the first BGP update message encapsulated with the first RT and the first VPN instance identifier to the second routing device.
- the process of the first routing device sending the first BGP update message to the second routing device may be: the first routing device encapsulates the first RT and the first VPN instance identifier in the NLRI object in the first BGP update message, The first BGP update message encapsulated with the first RT and the first VPN instance identifier is then sent to the second routing device.
- the process that the first routing device receives the second BGP update message sent by the second routing device may be: the first routing device receives the second BGP update message sent by the second routing device, and parses the second BGP update message, The second RT is obtained from the attribute information in the second BGP update message, and the second VPN instance identifier is obtained from the NLRI object in the second BGP update message.
- the first routing device receives the second BGP sent by the second routing device.
- the process of updating the message may also be: the first routing device receives the second BGP update message sent by the second routing device, parses the second BGP update message, and obtains the second VPN instance from the NLRI object in the second BGP update message. Identification and second RT.
- the VPN instance identifier of this embodiment may include RD information and an IP address.
- the first VPN instance identifier includes the first RD and the first IP address; the first RD is the RD of the first VPN instance, and the first IP address is the IP address of the first routing device.
- the second VPN instance identifier includes the second RD and the second IP address; the second RD is the RD of the second VPN instance, and the second IP address is the IP address of the second routing device.
- the VPN instance identity refer to the description of step 101.
- the first routing device and the second device may compare the first VPN.
- the role of the first VPN instance and the role of the second VPN instance are determined according to the comparison result and the role determination rule.
- the role determination rule may be set to: when the first VPN instance identifier is greater than the second VPN instance identifier, determining that the first VPN instance is the service active party, The second VPN instance is the passive party of the service; the role determination rule may be set to: when the first VPN instance identifier is smaller than the second VPN instance identifier, determining that the first VPN instance is the The active party of the service, the second VPN instance is the passive party of the service.
- the first routing device and the second routing device may further receive role information according to pre-received information from the management device. Pre-configured role information in a routing device and a second routing device to determine roles of the first VPN instance and the second VPN instance, respectively.
- the first routing device determines, according to the first VPN instance identifier and the second VPN instance identifier, that the first MPLS TE tunnel needs to be established between the first VPN instance and the second VPN instance, and may be based on the IP address of the second routing device.
- the process of establishing the first MPLS TE tunnel is triggered by the attribute information required to establish the first MPLS TE tunnel.
- the first routing device may establish a first MPLS TE tunnel according to the pre-configured attribute information required for establishing an MPLS TE tunnel. More specifically, the first routing device may use the pre-configured attribute information required to establish the first MPLS TE tunnel, calculate the first path information, and then use the RSVP-TE to establish the first MPLS TE tunnel according to the first path information.
- the first routing device can also establish a tunnel policy of the MPLS TE tunnel according to the pre-configured attribute information required for establishing the MPLS TE tunnel and the attribute information required for establishing the MPLS TE tunnel, and establish the first MPLS TE tunnel.
- the process of the first routing device sending the first identifier to the second routing device by using the third BGP update message is independent of the process of establishing the first MPLS TE tunnel by the first routing device, and the sequence of the present invention is not limited. .
- the attribute information used to establish the MPLS TE tunnel is pre-configured.
- the tunnel template used by the MPLS TE tunnel is configured in advance. Then, the tunnel template is used to set the attribute information used by the first MPLS TE tunnel.
- the tunnel template can be regarded as a collection of attribute information used by the MPLS TE tunnel. In this way, the first routing device can allocate configuration attribute information to each MPLS TE tunnel, which can reduce the configuration workload of the MPLS TE tunnel.
- the first routing device may further receive the fifth BGP update message sent by the second routing device, and obtain the second identifier from the fifth BGP update message, where the second identifier is the second MPLS TE tunnel. Identifier. Specifically, after determining that the second MPLS TE tunnel is established, the second routing device may send a fifth BGP update message to the first routing device, where the fifth BGP update message includes the first VPN instance identifier, the second VPN instance identifier, and the second RT and second identifier. This will ensure the integrity of the agreement.
- the first routing device may further send the tunnel establishment policy indication information to the second routing device, where the tunnel establishment policy indication information is used to indicate that the second routing device directly establishes the second MPLS TE tunnel according to the second path information, or And using the second path information to establish the second MPLS TE when the link and/or the node of the second routing device on the second path information meets the constraint of the first tunnel attribute information.
- a tunnel or, according to the first tunnel attribute information, used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the constraint of the first tunnel attribute information
- the calculated third path information establishes the third MPLS TE tunnel.
- the establishing the second MPLS TE tunnel by using the second path information directly refers to a situation in which the link and/or the node on the second path information is not detected to satisfy the constraint of the first tunnel attribute information.
- the second MPLS TE tunnel is established by using the second path information.
- the third MPLS TE tunnel is opposite to the first MPLS TE tunnel and partially shared.
- the service between the first routing device and the second routing device may be an L2VPN service.
- the first routing device can perform service negotiation with the second routing device using a dynamic protocol, such as LDP or BGP. Based on this, the first routing device may extend the LDP or BGP protocol, and advertise the first identifier to the second routing device by using the extended LDP or BGP protocol. For example, the first routing device may send an LDP label distribution message or a fourth BGP update message to the second routing device.
- the LDP label distribution message or the fourth BGP update message includes a first identifier.
- the first routing device provides an identifier of the MPLS TE tunnel from the first VPN instance on the first routing device to the second VPN instance on the second routing device to the second routing device, so that the second The routing device can obtain the path information of the MPLS TE tunnel from the first VPN instance to the second VPN instance, that is, the first path information, and then the path information that is reversed by the second routing device based on the acquired path information, that is, Second path information.
- the first routing device receives the path message for establishing the second MPLS TE tunnel, and sends a reservation message to establish a reverse with the first routing device according to the RSVP-TE and the second routing device.
- the second MPLS TE tunnel of the common path can reduce or solve various problems caused by the non-co-directional of the forward and reverse tunnels when performing BFD.
- the first routing device notifies the second routing device that the third MPLS TE tunnel is established when the second MPLS TE tunnel cannot be established, and the third MPLS TE tunnel is The first MPLS TE tunnel is reversed and partially shared, so as to reduce to some extent, various problems caused by non-common paths when performing BFD.
- FIG. 6 is a schematic structural diagram of a second routing device according to an embodiment of the present invention.
- the second routing device of this embodiment includes: a first identifier receiving unit 71, a first path information acquiring unit 72, and a first tunnel establishing unit 73.
- the first identifier receiving unit 71 is configured to receive a first identifier sent by the first routing device, where the first identifier is an identifier of the first MPLS TE tunnel.
- the first MPLS TE tunnel is an MPLS TE tunnel from the first VPN instance on the first routing device to the second VPN instance on the second routing device.
- the first path information acquiring unit 72 is configured to obtain the first path information according to the first identifier received by the first identifier receiving unit 71, where the first path information is path information of the first MPLS TE tunnel.
- the first path information acquiring unit 72 is connected to the first identifier receiving unit 71.
- the first tunnel establishing unit 73 is configured to invert the first path information acquired by the first path information acquiring unit 72, obtain the second path information, and establish a second MPLS TE tunnel according to the second path information.
- the second MPLS TE tunnel is an MPLS TE tunnel from the second VPN instance to the first VPN instance.
- the second MPLS TE tunnel is opposite to and common to the first MPLS TE tunnel.
- the first tunnel establishing unit 73 is connected to the first path information acquiring unit 72.
- the first identifier receiving unit 71 is a physical interface
- the first path information acquiring unit 72 is a first processor
- the first tunnel establishing unit 73 is a second processor.
- the first processor and the second processor may be the same processor or different processors.
- the second MPLS TE tunnel is co-routed and reversed with the first MPLS TE tunnel.
- the functional units of the second routing device in this embodiment may be used to perform the process of the MPLS TE tunnel establishment method shown in FIG. 1.
- the specific working principle is not described here. For details, refer to the description of the method embodiments.
- the second routing device of this embodiment may be a PE, but is not limited thereto.
- the second routing device of the embodiment may cooperate with the first routing device to receive the first identifier sent by the first routing device, obtain the first path information according to the first identifier, and then reverse the obtained first path information. Transducing the second path information, and establishing a second MPLS TE tunnel based on the reversed second path information, if the network condition allows, so that the established second MPLS TE tunnel is shared with the first MPLS TE tunnel, thereby Solved or reduced a variety of problems caused by non-common paths when performing BFD.
- FIG. 7 is a schematic structural diagram of a second routing device according to an embodiment of the present invention. This embodiment can be implemented based on the embodiment shown in FIG. As shown in FIG. 7, the second routing device of this embodiment also includes a first identifier receiving unit 71, a first path information acquiring unit 72, and a first tunnel establishing unit 73.
- the first path information acquiring unit 72 of the present embodiment may obtain the path information of the first MPLS TE tunnel, that is, the first path, by querying the correspondence between the first identifier and the path information of the first MPLS TE tunnel according to the first identifier. information.
- Corresponding relationship between the first identifier and the path information of the first MPLS TE tunnel is sent by the first routing device to the second route by using a path (English path) message during the process of establishing the first MPLS TE tunnel.
- the path message of the device refers to a path message in the RSVP-TE.
- the RRO object of the path message carries the path information of the first MPLS TE tunnel, and the session object of the path message carries the identifier of the first MPLS TE tunnel.
- the first identifier and/or the first path information may be carried in an extension field of the path message by means of protocol extension.
- the process and step 401 of the first routing device to establish the first MPLS TE tunnel are independent of each other and may not be limited by the order of time.
- the first path information acquiring unit 72 is further configured to determine, according to the first identifier obtained by the first identifier acquiring unit 71 and the first correspondence, the first MPLS TE tunnel identified by the first identifier, where The second corresponding relationship is obtained according to the identifier of the first MPLS TE tunnel, and the first path information is obtained.
- the first correspondence is a correspondence between the first identifier and the first MPLS TE tunnel; the second correspondence is a correspondence between the identifier of the first MPLS TE tunnel and the first path information.
- the first tunnel establishing unit 73 of the embodiment may be specifically configured to directly establish the second MPLS TE tunnel by using the second path information. That is, the second routing device is not sure of the second Whether the link and/or the node on the path information meet the constraint of the first tunnel attribute information directly establishes the second MPLS TE tunnel. This method is available where network conditions permit.
- the first tunnel establishing unit 73 may be specifically configured to determine whether the link and/or the node on the second path information meet the constraint of the first tunnel attribute information, and determine the link and the second path information. After the node meets the constraint of the first tunnel attribute information, the second path information is used to establish a second MPLS TE tunnel.
- the first tunnel establishing unit 73 of the embodiment may be further configured to calculate, according to the first tunnel attribute information, after determining that the link and/or the node on the second path information does not satisfy the constraint of the first tunnel attribute information.
- the third path information is used to establish a third MPLS TE tunnel using the third path information.
- the first tunnel attribute information is attribute information required for the first routing device to establish the first MPLS TE tunnel, or the attribute information required for establishing the second MPLS TE tunnel, which is pre-configured by the second routing device in this embodiment, or
- the second routing device of the embodiment establishes default attribute information required for the second MPLS TE tunnel.
- the third MPLS TE tunnel is opposite to the first MPLS TE tunnel and partially shared.
- the routing device in this embodiment may further include: a second message receiving unit 78.
- the second message receiving unit 78 is configured to receive the tunnel establishment policy indication information that is sent by the first routing device, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the second path information to establish the a second MPLS TE tunnel, or configured to use the second path information to indicate that the link and/or the node of the second routing device on the second path information meets the constraint of the first tunnel attribute information
- the second MPLS TE tunnel, or the tunnel policy indication information is used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the first tunnel attribute information.
- the third MPLS TE tunnel is established by using the third path information calculated according to the first tunnel attribute information.
- the establishing the second MPLS TE tunnel by using the second path information directly refers to a situation in which it is determined whether the link and/or the node on the second path information meets the constraint of the first tunnel attribute information.
- the second MPLS TE tunnel is established by using the second path information.
- the second message receiving unit 78 is connected to the first tunnel establishing unit 73.
- the first MPLS TE tunnel includes a primary LSP and a backup LSP.
- the first path information acquiring unit 72 is further configured to obtain, according to the role information of the LSP in the first MPLS TE tunnel, the first primary path information corresponding to the primary LSP and the first standby path information corresponding to the backup LSP.
- the first tunnel establishing unit 73 may also be specifically configured to respectively use the first primary path. The information and the first alternate path information are reversed, and the second primary path information corresponding to the primary LSP and the second alternate path information corresponding to the backup LSP are obtained, and then established according to the second primary path information and the second alternate path information, respectively.
- the primary LSP and the backup LSP in the second MPLS TE tunnel are further configured to obtain, according to the role information of the LSP in the first MPLS TE tunnel, the first primary path information corresponding to the primary LSP and the first standby path information corresponding to the backup LSP.
- the first tunnel establishing unit 73 may also be specifically configured to respectively use the first
- the routing device in this embodiment further includes: a configuration unit 75.
- the configuration unit 75 is configured to use the pre-configured tunnel template used to establish the second MPLS TE tunnel, and configure the attribute information required for establishing the second MPLS TE tunnel.
- the routing device in this embodiment may further include: a first identifier sending unit 79.
- the first identifier sending unit 79 is configured to send a fifth BGP update message to the first routing device, where the fifth BGP update message includes a second VPN instance identifier, a second RT, a first VPN instance identifier, and a second identifier.
- the second identifier is an identifier of the second MPLS TE tunnel.
- the first identifier transmitting unit 79 is connected to the first identifier receiving unit 71.
- the first VPN instance is a service active party of the service between the first VPN instance and the second VPN instance
- the second VPN instance is the first VPN instance being between the first VPN instance and the second VPN instance.
- Business passive party for business is a service active party of the service between the first VPN instance and the second VPN instance
- the service between the first VPN instance and the second VPN instance may be an L3VPN service.
- the routing device in this embodiment may further include: a first message receiving unit 74 unit and a first message sending unit 76.
- the first message receiving unit 74 is configured to receive a first BGP update message sent by the first routing device, where the first BGP update message includes a first VPN instance identifier and a first RT, where the first VPN instance identifier is used to identify the first The first VPN instance on the routing device, the first RT is the RT of the first VPN instance.
- the first message sending unit 76 is configured to send a second BGP update message to the first routing device after determining that the first RT and the second RT are equal, where the second BGP update message includes the second VPN instance identifier and the second RT, where The second RT is the RT of the second VPN instance, and the second VPN instance identifier is used to identify the second VPN instance.
- the first message receiving unit 74 is connected to the first message sending unit 76.
- the first identifier receiving unit 71 is configured to receive a third BGP update message sent by the first routing device, where the third BGP update message includes a first identifier, and the third BGP update message is a first route.
- the device sends after receiving the second BGP update message.
- the first identifier receiving unit 71 is configured to: after the first message sending unit 76 sends the second BGP update message to the first routing device, receive the third BGP update message sent by the first routing device.
- the third BGP update message may further include: a first VPN instance identifier, a first RT, and a second VPN instance identifier.
- the first message receiving unit 74 of the embodiment is configured to receive the first BGP update message sent by the first routing device, parse the first BGP update message, and obtain the first information from the attribute information of the first BGP update message.
- the first VPN instance identifier is obtained from the NLRI object in the first BGP update message.
- the first message receiving unit 74 is configured to receive the first BGP update message sent by the first routing device, parse the first BGP update message, and obtain the first VPN instance identifier from the NLRI object in the first BGP update message. And the first RT.
- the first message sending unit 76 of the embodiment is specifically configured to encapsulate the second RT in the attribute information in the second BGP update message, and encapsulate the second VPN instance identifier in the NLRI object in the second BGP update message. And then sending the second BGP update message encapsulated with the second RT and the second VPN instance identifier to the first routing device.
- the first message sending unit 76 is specifically configured to encapsulate the second RT and the second VPN instance identifier in the NLRI object in the second BGP update message, and then encapsulate the second RT and the second VPN instance identifier.
- the BGP update message is sent to the first routing device.
- the second routing device in this embodiment may further include: a first identity determining unit 77.
- the first identity determining unit 77 is configured to determine, according to the first VPN instance identifier and the second VPN instance identifier received by the first message receiving unit 74, that the second VPN instance is a service passive party.
- the determining rule may be configured to: when the value of the first VPN instance identifier is greater than the value of the second VPN instance identifier, determine that the second VPN instance is a service passive party.
- the determining rule may be set to: when the value of the first VPN instance identifier is smaller than the value of the second VPN instance identifier, determine that the second VPN instance is a service passive party.
- the first identity determining unit 77 is connected to the first message receiving unit 74.
- the first VPN instance identifier includes a first RD and a first IP address; the first RD is an RD of the first VPN instance, and the first IP address is an IP address of the first routing device.
- the second VPN instance identifier includes the second RD and the second IP address; the second RD is the RD of the second VPN instance, and the second IP address is the IP address of the routing device in this embodiment.
- the service between the first VPN instance and the second VPN instance may be an L2VPN service.
- the first identifier receiving unit 71 of the embodiment is specifically configured to receive an LDP label distribution message or a fourth BGP update message sent by the first routing device.
- the LDP label distribution message or the fourth BGP update message includes the first Identifier.
- the second routing device of the present embodiment cooperates with the first routing device to receive the identifier of the MPLS TE tunnel from the first VPN instance to the second VPN instance sent by the first routing device, and obtains the first VPN instance according to the identifier.
- the path information of the MPLS TE tunnel of the second VPN instance that is, the first path information, and then the obtained first path information is reversed to obtain the second path information, and the second path information is established based on the reversed second path information.
- the MPLS TE tunnel is configured to the MPLS TE tunnel of the first VPN instance, so that the established MPLS TE tunnel and the MPLS TE tunnel of the first VPN instance to the second VPN instance can be implemented in a common mode and reversed, thereby solving or It reduces various problems caused by non-common paths when performing BFD.
- the second routing device may also establish a direction with the first MPLS TE tunnel and part The third MPLS TE tunnel of the common road, in order to reduce to some extent, various problems caused by the non-common path when performing BFD.
- FIG. 8 is a schematic structural diagram of a first routing device according to an embodiment of the present invention.
- the first routing device of this embodiment includes: a second identifier sending unit 90, a path message receiving unit 91, and a reservation message sending unit 92.
- the second identifier sending unit 90 is configured to send the first identifier to the second routing device, so that the second routing device acquires the first path information according to the first identifier, and then obtains the reversed information according to the first path information.
- the second path information is used to establish a second MPLS TE tunnel, where the first identifier is an identifier of the first MPLS TE tunnel, and the first path information is path information of the first MPLS TE tunnel.
- the first MPLS TE tunnel is an MPLS TE tunnel from the first VPN instance on the routing device of the embodiment to the second VPN instance on the second routing device; the second MPLS TE tunnel is from the second VPN instance to the first VPN. Instance MPLS TE tunnel.
- the path message receiving unit 91 is configured to receive a path message that is sent by the second routing device to establish a second MPLS TE tunnel, where the second MPLS TE tunnel is from the second VPN instance to the first VPN instance.
- the path information of the second MPLS TE tunnel is obtained by inverting the first path information.
- the reservation message sending unit 92 is configured to send a reservation message corresponding to the path message to the second routing device.
- the path message and the reservation message are both messages in the RSVP-TE.
- the second MPLS TE tunnel is opposite to and common to the first MPLS TE tunnel.
- the path message receiving unit 91 is connected to the reservation message sending unit 92.
- the first routing device may establish, with the second routing device, the second MPLS TE tunnel that is opposite and common to the first MPLS TE tunnel, if the network conditions permit, thereby solving or reducing the ongoing BFD has many problems caused by not sharing the road.
- the second identifier sending unit 90 is configured to help the second routing device acquire the second path information, where the path message receiving unit 91 and the reservation message sending unit 92 are used to establish the second MPLS TE tunnel. .
- the routing device of this embodiment may be a PE, but is not limited thereto.
- FIG. 9 is a schematic structural diagram of a routing device according to an embodiment of the present invention. This embodiment can be implemented based on the embodiment shown in FIG. As shown in FIG. 9, the apparatus of this embodiment also includes: a second identifier transmitting unit 90 and a path message receiving unit 91 and a reservation message transmitting unit 92. Optionally, the first routing device in this embodiment may further include: a third message sending unit 98.
- the third message sending unit 98 is configured to send the tunnel establishment policy indication information, where the tunnel establishment policy indication information is used to indicate that the second routing device directly uses the second path information to establish the second MPLS TE tunnel, or The tunnel establishment policy indication information is used to indicate that the second routing device uses the second path information when the link and/or the node on the second path information meets the constraint of the first tunnel attribute information. Establishing the second MPLS TE tunnel, or the tunnel policy indication information is used to indicate that the link and/or the node of the second routing device on the second path information does not satisfy the first tunnel attribute information. And establishing the third MPLS TE tunnel by using the third path information calculated according to the first tunnel attribute information.
- the first tunnel attribute information is the attribute information required for the first MPLS TE tunnel to be established by the routing device of the embodiment, or the attribute information required for establishing the second MPLS TE tunnel, or the second route, which is pre-configured by the second routing device. Default attribute information required for the device to establish a second MPLS TE tunnel.
- the service between the first VPN instance and the second VPN instance may be an L3VPN service.
- the first routing device in this embodiment further includes: a second message sending unit 93, a third message receiving unit 94, and a first tunnel information determining unit 96. .
- the second message sending unit 93 is configured to send a first BGP update message to the second routing device, where the first BGP update message includes the first VPN instance identifier and the first RT, where the first VPN instance identifier is used to identify the implementation.
- the first RT is the RT of the first VPN instance.
- the third message receiving unit 94 is configured to receive a second BGP update sent by the second routing device.
- the second BGP update message includes a second VPN instance identifier and a second RT, where the second VPN instance identifier is used to identify the second VPN instance on the second routing device, and the second RT is the second VPN instance.
- RT the second BGP update message is sent by the second routing device after determining that the first RT and the second RT are equal.
- the third message receiving unit 94 and the second identifier transmitting unit 90 are connected.
- the first tunnel information determining unit 96 is configured to determine, according to the first VPN instance identifier and the second VPN instance identifier, the first identifier, after the unit determines that the first RT and the second RT are equal, the first identifier is Tunnel ID of the first MPLS TE tunnel from the VPN instance to the second VPN instance.
- the first tunnel information determining unit 96 is connected to the second identifier sending unit 90.
- the first tunnel information determining unit 96 is connected to the third message receiving unit 94.
- the second identifier sending unit 90 is specifically configured to send a third BGP update message to the second routing device, where the third BGP update message includes the first identifier.
- the second identifier sending unit 90 is configured to send a third BGP update message to the second routing device after determining that the first RT and the second RT are equal.
- the third BGP update message may further include: a first VPN instance identifier, a first RT, and a second VPN instance identifier.
- the second message sending unit 93 is specifically configured to encapsulate the first RT in the attribute information in the first BGP update message, and encapsulate the first VPN instance identifier in the network side reachability information NLRI in the first BGP update message. And the first BGP update message encapsulated with the first RT and the first VPN instance identifier is sent to the second routing device.
- the second message sending unit 93 may be configured to encapsulate the first RT and the first VPN instance identifier in the NLRI object in the first BGP update message, and then encapsulate the first RT and the first VPN instance identifier.
- a BGP update message is sent to the second routing device.
- the third message receiving unit 94 is specifically configured to receive the second BGP update message, parse the second BGP update message, obtain the second RT from the attribute information in the second BGP update message, and update from the second BGP.
- the second VPN instance identifier is obtained from the NLRI object in the message.
- the third message receiving unit 94 may be configured to receive the second BGP update message, parse the second BGP update message, and obtain the second VPN instance identifier and the second RT from the NLRI object in the second BGP update message.
- the routing device in this embodiment may further include: a second identity determining unit 97.
- the second identity determining unit 97 is configured to determine that the first VPN instance is a service active party according to the size of the second VPN instance identifier received by the first VPN instance identifier and the third message receiving unit 94.
- the second identity determining unit 97 and the third message receiving unit 94 are connected.
- the first VPN instance identifier in this embodiment may include the first RD and the first IP address; the first RD is the RD of the first VPN instance, and the first IP address is the IP of the routing device in this embodiment. address.
- the second VPN instance identifier may include a second RD and a second IP address; the second RD is an RD of the second VPN instance, and the second IP address is an IP address of the second routing device.
- the routing device may further include: a second identifier receiving unit 99.
- the second identifier receiving unit 99 is configured to receive a fifth BGP update message sent by the second routing device, where the fifth BGP update message includes a first VPN instance identifier, a second VPN instance identifier, a second RT, and a second identifier.
- the second identifier is an identifier of the second MPLS TE tunnel.
- the service between the first VPN instance and the second VPN instance may be an L2VPN service.
- the second identifier sending unit 90 may be configured to send an LDP label distribution message or a fourth BGP update message to the second routing device, where the LDP label is used.
- the distribution message or the fourth BGP update message includes a first identifier.
- the foregoing functional units in this embodiment may be used to perform the corresponding processes in the foregoing MPLS TE tunnel establishment method.
- the specific working principles are not described here. For details, refer to the description of the method embodiments.
- the first routing device provides an identifier of the MPLS TE tunnel from the first VPN instance on the first routing device to the second VPN instance on the second routing device to the second routing device, so that the second The routing device can obtain the path information of the MPLS TE tunnel from the first VPN instance to the second VPN instance, that is, the first path information, and then the path information that is reversed by the second routing device based on the acquired path information, that is, Second path information.
- the first routing device receives the path message for establishing the second MPLS TE tunnel, and sends a reservation message to establish a reverse with the first routing device according to the RSVP-TE and the second routing device.
- the second MPLS TE tunnel of the common path can reduce or solve various problems caused by the non-co-directional of the forward and reverse tunnels when performing BFD.
- the first routing device notifies the second routing device that the third MPLS TE tunnel is established when the second MPLS TE tunnel cannot be established, and the third MPLS TE tunnel is The first MPLS TE tunnel is reversed and partially shared, so as to reduce to some extent, various problems caused by non-common paths when performing BFD.
- the aforementioned program can be stored in a computer readable storage medium.
- the program when executed, performs the steps including the various method embodiments described above;
- the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明实施例提供一种多协议标签交换流量工程隧道建立方法及设备。其中,一种隧道建立方法包括:第二路由设备接收第一路由设备发送的第一VPN实例到第二VPN实例的MPLS TE隧道的标识符;第二路由设备根据该标识符获取第一VPN实例到第二VPN实例的MPLS TE隧道的路径信息,基于获取的路径信息建立第二VPN实例到第一VPN实例的MPLS TE隧道,使得正反双向隧道共路或部分共路,从而解决了在进行BFD时由于不共路造成的问题。
Description
多协议标签交换流量工程隧道建立方法及设备 本申请要求于 2012 年 6 月 6 日提交中国专利局、 申请号为 CN 201210184022.9、 发明名称为 "多协议标签交换流量工程隧道建立方法 及设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术, 尤其涉及一种多标签交换流量工程隧道建立方法 及设备。 皆景技术 第三代合作伙伴计戈1 J (英文全称为 The 3rd Generation Partnership Project, 英文缩写为 3GPP )在宽带码分多址 (英文全称为 Wideband Code Division Multiple Access, 英文缩写为 WCDMA ) R4标准中定义的 3G网络架构主要包 括: 无线接入网 (英文全称为 Radio Access Network, 英文缩写为 RAN )、 核 心网 (英文为 Core Network )和承载网 (英文为 Backbone )。 广义的 RAN包 括终端与基站间的空口 (英文为 Air Interface ), 即 Uu接口, 以及基站与基站 控制器间的 Iub接口。 对于传输和承载来说, RAN—般是指基站与基站控制 器之间的汇聚网络。
伴随着移动网从 2G 向 3G 再到长期演进 (英文全称为 Long Term Evolution, 英文缩写为 LTE )技术的发展, 移动通信网络将沿着宽带化、 分 组化、 扁平化的方向演进, 移动全(英文全称为 ALL IP ) 网际协议(英文全 称为 Internet Protocol, 英文缩写为 IP ) 网络成为不可逆转的趋势。 RAN同样 面临着从传统时分复用 (英文全称为 Time Division Multiplex, 英文缩写为 TDM ) /异步传输模式(英文全称为 Asynchronous Transfer Mode, 英文缩写为 ATM ) RAN向 IP RAN转型的趋势。 基于 IP/多协议标签交换(英文全称为 Multi-Protocol Label Switching, 英文缩写为 MPLS )分组数据技术的 IP RAN 具有更高的带宽, 支持数据业务的统计复用, 能更好地支持未来的宽带移动 业务, 并且采用了与 IP骨干网相同的技术, 与骨干网具有更好的一致性和融 合性, 因此得到广泛应用。 IP RAN主要包括: 由 ATN或其他类型设备组成一
个基站侧的接入环和由 cx或其他类型的设备组成的汇聚环。通常,汇聚环上 的每台设备可以接入 10 ~ 20个接入环。 每个接入环有 10台左右的 ATN等构 成。 汇聚环一般放置两台高端 CX或其他类型设备作为网关, 与核心网连接。 接入环上的 ATN 或其他设备被称为小区站点网关 (英文全称为 Cell Site Gateway, 英文缩写为 CSG )或多服务传输网关 (英文全称为 Multi-Service Transport Gateway, 英文缩写为 MSTG )。 汇聚环上的 CX或其他类型的设备 被称为无线控制器站点网关(英文全称为 RNC Site Gateway,英文缩写为 RSG ) 或多服务汇聚网关(英文全称为 Multi-Service Aggregation Gateway,英文缩写 为 MSAG )。 其中, 同时处于接入环和汇聚环上的设备即为 MPLS虚拟专用网 (英文全称为 Virtual Private Network,英文缩写为 VPN )中的核心路由器(英 文为 Provider Router ), 即 P设备; 其他处于接入环或汇聚环上的设备即为 MPLS VPN中的运营商边缘设备(英文全称为 Provider Edge,英文缩写为 PE )。
在 IP RAN解决方案中,根据业务类型的不同,可以在接入环上的 PE (即 CSG )和汇聚环上的 PE(即 RSG )之间部署端到端的伪线(英文全称为 Pseudo Wire, 英文缩写为 PW ), 或者是三层 VPN (英文缩写为 L3VPN ) 来承载。
L3VPN和 PW—般使用 MPLS流量工程(英文全称为 Traffic Engineering, 英 文缩写为 TE ) 隧道来穿越网络。
在 IP RAN网络中, 当业务使用 MPLS TE隧道时, 为了保证网络的高可靠性, 需要使用双向转发检测 (英文全称为 Bidirect iona l Forwarding Detect ion, 英文缩写为 BFD )进行 MPLS TE标签交换路径(英文全称为 Label Swi tch Path, 英文缩写为 LSP ) 的检测。 当 BFD检测到网络链路或节点发生故障时, 可以在 头节点触发业务路径的切换, 从而达到保护业务的目的。 但是, 由于 MPLS TE
LSP都是单向的, 使得 BFD的正向检测报文通过 MPLS TE LSP发送, 但是反向检 测报文通过其他路径, 例如 IP路径发送。 这样当返程路径阻塞时, BFD状态会 置故障 (英文为 down ), 而实际上正向 MPLS TE LSP路径状态是正常的, 从而 无法实现保证业务高可靠性的目的。
发明内容 本发明提供一种多协议标签交换流量工程隧道建立方法及设备, 用以解
决正反双向 MPLS TE隧道不共路的问题。
本发明实施例一方面提供一种多协议标签交换流量工程隧道建立方法, 包括:
第二路由设备接收第一路由设备发送的第一标识符, 所述第一标识符为 第一 MPLS TE隧道的标识符, 所述第一 MPLS TE隧道为从所述第一路由设 备上的第一虚拟专用网 VPN实例到所述第二路由设备上的第二 VPN实例的 MPLS TE隧道;
所述第二路由设备根据所述第一标识符, 获取第一路径信息, 所述第一 路径信息为所述第一 MPLS TE隧道的路径信息;
所述第二路由设备将所述第一路径信息反转, 获取第二路径信息, 根据 所述第二路径信息建立第二 MPLS TE隧道, 所述第二 MPLS TE隧道为从所 述第二 VPN实例到所述第一 VPN实例的 MPLS TE隧道。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为三层虚 拟专用网络 L3VPN业务;
所述第二路由设备接收第一路由设备发送的第一标识符包括:
所述第二路由设备接收所述第一路由设备发送的第一边界网关协议 BGP 更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一路由目标 RT, 其中, 所述第一 VPN实例标识用于标识所述第一 VPN实例, 所述第一 RT为所述第一 VPN实例的 RT;
所述第二路由设备在确定所述第一 RT和第二 RT相等后, 向所述第一路 由设备发送第二 BGP更新消息, 所述第二 BGP更新消息包括第二 VPN实例 标识和所述第二 RT , 其中, 所述第二 RT为所述第二 VPN实例的 RT , 所述 第二 VPN实例标识用于标识所述第二 VPN实例;
所述第二路由设备接收所述第一路由设备发送的第三 BGP更新消息, 所 述第三 BGP更新消息包括所述第一标识符,其中,所述第三 BGP更新消息是 所述第一路由设备在收到所述第二 BGP更新消息后发送的。
可选地, 所述第三 BGP更新消息还包括: 所述第一 VPN实例标识、 所 述第一 RT和所述第二 VPN实例标识。
可选地, 所述第二路由设备接收所述第一路由设备发送的第一 BGP更新 消息包括:
所述第二路由设备接收所述第一 BGP更新消息,对所述第一 BGP更新消
息进行解析, 从所述第一 BGP更新消息的属性信息中获取所述第一 RT, 从 所述第一 BGP更新消息中的网络侧可达信息 NLRI对象中获取所述第一 VPN 实例标识, 或者, 所述第二路由设备接收所述第一 BGP更新消息, 对所述第 一 BGP更新消息进行解析, 从所述第一 BGP更新消息中的网络侧可达信息 NLRI对象中获取所述第一 VPN实例标识和所述第一 RT;
所述第二路由设备向所述第一路由设备发送第二 BGP更新消息包括: 所述第二路由设备将所述第二 RT封装在所述第二 BGP更新消息中的属 性信息中 ,将所述第二 VPN实例标识封装在所述第二 BGP更新消息中的 NLRI 对象中 ,然后将封装有所述第二 RT和所述第二 VPN实例标识的所述第二 BGP 更新消息发送给所述第一路由设备, 或者, 所述第二路由设备将所述第二 RT 和所述第二 VPN实例标识封装在所述第二 BGP更新消息中的 NLRI对象中, 然后将封装有所述第二 RT和所述第二 VPN实例标识的所述第二 BGP更新消 息发送给所述第一路由设备。
可选地, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网 协议 IP地址,所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为 所述第一路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为二层虚 拟专用网络 L2VPN业务;
所述第二路由设备接收第一路由设备发送的第一标识符包括:
所述第二路由设备接收所述第一路由设备发送的标签分发协议 LDP标签 分发消息或第四边界网关协议 BGP更新消息,所述 LDP标签分发消息或所述 第四 BGP更新消息包括所述第一标识符。
可选地, 所述第二路由设备根据所述第一标识符, 获取所述第一路径信 息包括:
所述第二路由设备根据所述第一标识符和第一对应关系确定出所述第一 标识符所标识的所述第一 MPLS TE隧道 , 所述第一对应关系为所述第一标识 符和所述第一 MPLS TE隧道之间的对应关系;
所述第二路由设备根据所述第一 MPLS TE 隧道的标识查询第二对应关 系, 获取所述第一路径信息, 所述第二对应关系为所述第一 MPLS TE隧道的
标识和所述第一路径信息的对应关系;
或者,
所述第二路由设备根据所述第一标识符, 获取所述第一路径信息包括: 所述第二路由设备根据所述第一标识符查询所述第一标识符和第一路径 信息的对应关系, 获取所述第一路径信息, 所述第一标识符和第一路径信息 的对应关系为所述第二路由设备从接收到的用于建立第一 MPLS TE隧道的路 径消息中获取的。
可选地, 所述第二路由设备根据所述第二路径信息建立第二 MPLS TE隧 道具体包括:
所述第二路由设备直接使用所述第二路径信息建立所述第二 MPLS TE隧 道;
或者,
所述第二路由设备确定所述第二路径信息上的链路和 /或节点是否满足第 一隧道属性信息的约束;
如果所述第二路由设备确定出所述第二路径信息上的链路和 /或节点满足 所述第一隧道属性信息的约束,则使用所述第二路径信息建立所述第二 MPLS TE 隧道, 其中, 所述第一隧道属性信息为所述第一路由设备建立所述第一 MPLS TE隧道所需的属性信息, 或者, 所述第一隧道属性信息为所述第二路 由设备预先配置的建立所述第二 MPLS TE隧道所需的属性信息, 或者, 所述 第一隧道属性信息为所述第二路由设备建立所述第二 MPLS TE隧道所需的默 认属性信息。
可选地, 所述方法还包括:
如果所述第二路由设备确定出所述第二路径信息上的链路和 /或节点不满 足所述第一隧道属性信息的约束, 则根据所述第一隧道属性信息计算出第三 路径信息;
所述第二路由设备使用所述第三路径信息建立从所述第二 VPN实例到所 述第一 VPN实例的第三 MPLS TE隧道。
可选地, 所述第二路由设备根据所述第二路径信息建立第二 MPLS TE隧 道之前还包括:
所述第二路由设备接收所述第一路由设备发送的隧道建立策略指示信 息, 所述隧道建立策略指示信息用于指示所述第二路由设备直接使用所述第
二路径信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路由设备 在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的约束时 使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道策略指 示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节点不 满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息计算 出的所述第三路径信息建立所述第三 MPLS TE隧道。
可选地, 所述第一 MPLS TE隧道包括主标签交换路径 LSP和备份 LSP; 所述第二路由设备根据所述第一标识符, 获取第一路径信息包括: 所述第二路由设备根据所述第一 MPLS TE隧道中 LSP的角色信息,分别 获取所述第一 MPLS TE隧道中的主 LSP对应的第一主用路径信息和所述第一 MPLS TE隧道中的备份 LSP对应的第一备用路径信息;
所述第二路由设备将所述第一路径信息反转, 获取第二路径信息, 根据 所述第二路径信息建立第二 MPLS TE隧道包括:
所述第二路由设备分别将所述第一主用路径信息和所述第一备用路径信 息进行反转,获取所述第一 MPLS TE隧道中的主 LSP对应的第二主用路径信 息和所述第一 MPLS TE隧道中的备份 LSP对应的第二备用路径信息;
所述第二路由设备分别根据所述第二主用路径信息和所述第二备用路径 信息, 建立所述第二 MPLS TE隧道中的主 LSP和备份 LSP。
可选地, 为所述第二路由设备预先配置建立所述第二 MPLS TE隧道所需 的属性信息包括:
为所述第二路由设备预先配置建立所述第二 MPLS TE隧道使用的隧道模 板,使用所述隧道模板为所述第二路由设备配置建立所述第二 MPLS TE隧道 所需的属性信息。
可选地, 所述方法还包括:
所述第二路由设备向所述第一路由设备发送第五 BGP更新消息, 所述第 五 BGP更新消息包括所述第一 VPN实例标识、 所述第二 VPN实例标识、 所 述第二 RT和第二标识符, 所述第二标识符为所述第二 MPLS TE隧道的标识 付。
可选地, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例 之间的业务的业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述 第一 VPN实例和所述第二 VPN实例之间的业务的业务被动方。
本发明实施例一方面提供一种第二路由设备, 包括:
第一标识符接收单元, 用于接收第一路由设备发送的第一标识符, 所述 第一标识符为第一多协议标签交换流量工程 MPLS TE隧道的标识符, 所述第 一 MPLS TE隧道为从所述第一路由设备上的第一虚拟专用网 VPN实例到所 述路由设备上的第二 VPN实例的 MPLS TE隧道;
第一路径信息获取单元, 用于根据所述第一标识符, 获取第一路径信息, 所述第一路径信息为所述第一 MPLS TE隧道的路径信息;
第一隧道建立单元, 用于将所述第一路径信息反转, 获取第二路径信息, 根据所述第二路径信息建立第二 MPLS TE隧道, 所述第二 MPLS TE隧道为 从所述第二 VPN实例到所述第一 VPN实例的 MPLS TE隧道。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为三层虚 拟专用网络 L3VPN业务;
所述第二路由设备还包括:
第一消息接收单元 (74),用于接收所述第一路由设备发送的第一边界网关 协议 BGP更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一 路由目标 RT, 其中, 所述第一 VPN实例标识用于标识所述第一 VPN实例, 所述第一 RT为所述第一 VPN实例的 RT;
第一消息发送单元 (76) ,用于在确定所述第一 RT和所述第二 RT相等后, 向所述第一路由设备发送第二 BGP更新消息,所述第二 BGP更新消息包括第 二 VPN实例标识和所述第二 RT , 其中, 所述第二 RT为所述第二 VPN实例 的 RT, 所述第二 VPN实例标识用于标识所述第二 VPN实例;
所述第一标识符接收单元 (71)具体用于接收所述第一路由设备发送的第 三 BGP更新消息, 所述第三 BGP更新消息包括所述第一标识符, 其中, 所述 第三 BGP更新消息是所述第一路由设备在收到所述第二 BGP更新消息后发送 的。
可选地, 所述第三 BGP更新消息还包括: 所述第一 VPN实例标识、 所 述第一 RT和所述第二 VPN实例标识。
可选地, 所述第一消息接收单元 (74)具体用于接收所述第一 BGP更新消 息,对所述第一 BGP更新消息进行解析,从所述第一 BGP更新消息的属性信 息中获取所述第一 RT , 从所述第一 BGP更新消息中的网络侧可达信息 NLRI 对象中获取所述第一 VPN实例标识, 或者具体用于接收所述第一 BGP更新
消息, 对所述第一 BGP更新消息进行解析, 从所述第一 BGP更新消息中的 NLRI对象中获取所述第一 VPN实例标识和所述第一 RT;
所述第一消息发送单元 (76)具体用于将所述第二 RT封装在所述第二 BGP 更新消息中的属性信息中, 将所述第二 VPN 实例标识封装在所述第二 BGP 更新消息中的 NLRI对象中, 然后将封装有所述第二 RT和所述第二 VPN实 例标识的所述第二 BGP更新消息发送给所述第一路由设备, 或者具体用于将 所述第二 RT和所述第二 VPN实例标识封装在所述第二 BGP更新消息中的 NLRI对象中,然后将封装有所述第二 RT和所述第二 VPN实例标识的所述第 二 BGP更新消息发送给所述第一路由设备。
可选地, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网 协议 IP地址,所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为 所述第一路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为二层虚 拟专用网络 L2VPN业务;
所述第一标识符接收单元 (71)具体用于接收所述第一路由设备发送的标 签分发协议 LDP标签分发消息或第四边界网关协议 BGP更新消息,所述 LDP 标签分发消息或所述第四 BGP更新消息包括所述第一标识符。
可选地,所述第一路径信息获取单元 (72)具体用于根据所述第一标识符和 第一对应关系确定出所述第一标识符所标识的所述第一 MPLS TE隧道, 根据 所述第一 MPLS TE隧道的标识查询第二对应关系, 获取所述第一路径信息, 所述第一对应关系为所述第一标识符和所述第一 MPLS TE隧道之间的对应关 系, 所述第二对应关系为所述第一 MPLS TE隧道的标识和所述第一路径信息 的对应关系;
或者,
所述第一路径信息获取单元 (72)具体用于根据所述第一标识符查询所述 第一标识符和第一路径信息的对应关系, 获取所述第一路径信息, 所述第一 标识符和第一路径信息的对应关系为所述为所述第二路由设备从接收到的用 于建立第一 MPLS TE隧道的路径消息中获取的。
可选地,所述第一隧道建立单元 (73)具体直接使用所述第二路径信息建立
所述第二 MPLS TE隧道, 或者, 具体用于确定所述第二路径信息上的链路和 /或节点是否满足第一隧道属性信息的约束, 在确定出所述第二路径信息上的 链路和 /或节点满足所述第一隧道属性信息的约束后, 使用所述第二路径信息 建立所述第二 MPLS TE隧道, 其中, 所述第一隧道属性信息为所述第一路由 设备建立所述第一 MPLS TE隧道所需的属性信息, 或者, 所述第一隧道属性 信息为所述第二路由设备预先配置的建立所述第二 MPLS TE隧道所需的属性 信息,或者,所述第一隧道属性信息为所述第二路由设备建立所述第二 MPLS TE隧道所需的默认属性信息。
可选地, 所述第一隧道建立单元 (73)还具体用于在确定出所述第二路径信 息上的链路和 /或节点不满足所述第一隧道属性信息的约束后, 根据所述第一 隧道属性信息计算出第三路径信息, 使用所述第三路径信息建立从所述第二
VPN实例到所述第一 VPN实例的第三 MPLS TE隧道。
可选地, 所述第二路由器还包括:
第二消息接收单元 (78),用于接收所述第一路由设备发送的隧道建立策略 指示信息, 所述隧道建立策略指示信息用于指示所述第二路由设备直接使用 所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路 由设备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的 约束时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者所述隧道策 略指示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节 点不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息 计算出的所述第三路径信息建立所述第三 MPLS TE隧道。
可选地, 所述第一 MPLS TE隧道包括主标签交换路径 LSP和备份 LSP; 所述第一路径信息获取单元 (72)具体用于根据所述第一 MPLS TE隧道中 LSP的角色信息,分别获取所述第一 MPLS TE隧道中的主 LSP对应的第一主 用路径信息和所述第一 MPLS TE隧道中的备份 LSP对应的第一备用路径信 息;
所述第一隧道建立单元 (73)具体用于分别将所述第一主用路径信息和所 述第一备用路径信息进行反转,获取所述第一 MPLS TE隧道中的主 LSP对应 的第二主用路径信息和所述第一 MPLS TE隧道中的备份 LSP对应的第二备用 路径信息, 然后分别根据所述第二主用路径信息和所述第二备用路径信息, 建立所述第二 MPLS TE隧道中的主 LSP和备份 LSP。
可选地, 所述第二路由器还包括:
配置单元 (75), 用于使用预先配置的建立所述第二 MPLS TE隧道使用的 隧道模板, 配置建立所述第二 MPLS TE隧道所需的属性信息。
可选地, 所述第二路由器还包括:
第一标识符发送单元 (79), 用于向所述第一路由设备发送第五 BGP更新 消息, 所述第五 BGP更新消息包括所述第一 VPN实例标识、 所述第二 VPN 实例标识、所述第二 RT和第二标识符,所述第二标识符为所述第二 MPLS TE 隧道的标识符。
可选地, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例 之间的业务的业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述 第一 VPN实例和所述第二 VPN实例之间的业务的业务被动方。
本发明实施例另一方面提供一种建立 MPLS TE隧道的方法, 包括: 第一路由设备向第二路由设备发送第一标识符, 以使所述第二路由设备 根据所述第一标识符获取第一路径信息, 其中, 所述第一标识符为第一多协 议标签交换流量工程 MPLS TE隧道的标识符, 所述第一路径信息为所述第一 MPLS TE隧道的路径信息, 所述第一 MPLS TE隧道为从所述第一路由设备 上的第一虚拟专用网 VPN 实例到所述第二路由设备上的第二 VPN 实例的 MPLS TE隧道;
所述第一路由设备接收第二路由设备发送的用于建立第二 MPLS TE隧道 的路径消息,所述第二 MPLS TE隧道为从所述第二 VPN实例到所述第一 VPN 实例的 MPLS TE隧道, 所述第二 MPLS TE隧道的路径信息是对所述第一路 径信息进行反转得到的;
所述第一路由设备向所述第二路由设备发送与所述路径消息对应的预留 消息。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为三层虚 拟专用网络 L3VPN业务;
所述第一路由设备向第二路由设备发送第一标识符包括:
所述第一路由设备向所述第二路由设备发送第一 BGP更新消息, 所述第 一 BGP更新消息包括第一 VPN实例标识和第一路由目标 RT , 其中, 所述第 一 VPN实例标识用于标识所述第一 VPN实例,所述第一 RT为所述第一 VPN 实例的 RT;
所述第一路由设备接收所述第二路由设备发送的第二 BGP更新消息, 所 述第二 BGP更新消息包括第二 VPN 实例标识和第二 RT, 其中, 所述第二 VPN实例标识用于标识所述第二 VPN实例, 所述第二 RT为所述第二 VPN 实例的 RT, 所述第二 BGP更新消息是所述第二路由设备在确定所述第一 RT 和所述第二 RT相等后发送的;
所述第一路由设备在确定所述第一 RT和所述第二 RT相等后, 根据所述 第一 VPN实例标识和所述第二 VPN实例标识, 确定所述第一标识符;
所述第一路由设备向所述第二路由设备发送第三 BGP更新消息, 所述第 三 BGP更新消息包括所述第一标识符。
可选地, 所述第三 BGP更新消息还包括: 所述第一 VPN实例标识、 所 述第一 RT和所述第二 VPN实例标识。
可选地, 所述第一路由设备向所述第二路由设备发送第一 BGP更新消息 包括:
所述第一路由设备将所述第一 RT封装在所述第一 BGP更新消息中的属 性信息中, 将所述第一 VPN实例标识封装在所述第一 BGP更新消息中的网 络侧可达信息 NLRI对象中, 然后将封装有所述第一 RT和所述第一 VPN实 例标识的所述第一 BGP更新消息发送给所述第二路由设备, 或者, 所述第一 路由设备将所述第一 RT和所述第一 VPN实例标识封装在所述第一 BGP更新 消息中的 NLRI对象中, 然后将封装有所述第一 RT和所述第一 VPN实例标 识的所述第一 BGP更新消息发送给所述第二路由设备;
所述第一路由设备接收所述第二路由设备发送的第二 BGP 更新消息包 括:
所述第一路由设备接收所述第二 BGP更新消息,对所述第二 BGP更新消 息进行解析, 从所述第二 BGP更新消息中的属性信息中获取所述第二 RT, 从所述第二 BGP更新消息中的 NLRI对象中获取所述第二 VPN实例标识,或 者,所述第一路由设备接收所述第二 BGP更新消息,对所述第二 BGP更新消 息进行解析, 从所述第二 BGP更新消息中的 NLRI对象中获取所述第二 VPN 实例标识和所述第二 RT。
可选地, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网 协议 IP地址,所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为 所述第一路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为二层虚 拟专用网络 L2VPN业务;
所述第一路由设备向第二路由设备发送第一标识符包括:
所述第一路由设备向所述第二路由设备发送标签分发协议 LDP标签分发 消息或第四边界网关协议 BGP更新消息,所述 LDP标签分发消息或所述第四 BGP更新消息包括所述第一标识符。
可选地, 所述方法还包括:
所述第一路由设备发送隧道建立策略指示信息, 所述隧道建立策略指示 信息用于指示所述第二路由设备直接使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道建立策略指示信息用于指示所述第二路由设 备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的约束 时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道策略 指示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节点 不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息计 算出的所述第三路径信息建立所述第三 MPLS TE隧道。
可选地, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例 之间的业务的业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述 第一 VPN实例和所述第二 VPN实例之间的业务的业务被动方。
可选地, 所述方法还包括:
所述第一路由设备向所述第二路由设备发送用于建立所述第一 MPLS TE 隧道的路径消息, 所述路径消息中携带所述第一标识符和所述第一路径信息 的对应关系。
本发明实施例另一方面提供一种第一路由设备, 包括:
第二标识符发送单元(90 ) , 用于向第二路由设备发送第一标识符, 以 使所述第二路由设备根据所述第一标识符获取第一路径信息, 其中, 所述第 一标识符为第一多协议标签交换流量工程 MPLS TE隧道的标识符, 所述第一 路径信息为所述第一 MPLS TE隧道的路径信息, 所述第一 MPLS TE隧道为 从所述第一路由设备上的第一虚拟专用网 VPN实例到所述第二路由设备上的
路径消息接收单元(91 ) , 用于接收第二路由设备发送的用于建立第二 MPLS TE隧道的路径消息, 所述第二 MPLS TE隧道为从所述第二 VPN实例 到所述第一 VPN实例的 MPLS TE隧道,所述第二 MPLS TE隧道的路径信息 是对所述第一路径信息进行反转得到的;
预留消息发送单元(92 ) , 用于向所述第二路由设备发送与所述路径消 息对应的预留消息。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为三层虚 拟专用网络 L3VPN业务;
所述第一路由设备还包括:
第二消息发送单元(93 ) , 用于向所述第二路由设备发送第一边界网关 协议 BGP更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一 路由目标 RT, 其中, 所述第一 VPN实例标识用于标识所述第一 VPN实例, 所述第一 RT为所述第一 VPN实例的 RT;
第三消息接收单元(94 ) , 用于接收所述第二路由设备发送的第二 BGP 更新消息,所述第二 BGP更新消息包括第二 VPN实例标识和第二 RT,其中, 所述第二 VPN实例标识用于标识所述第二 VPN实例,所述第二 RT为所述第 二 VPN实例的 RT, 所述第二 BGP更新消息是所述第二路由设备在确定所述 第一 RT和所述第二 RT相等后发送的;
第一隧道信息确定单元(96 ) , 用于在确定所述第一 RT和所述第二 RT 相等后, 根据所述第一 VPN实例标识和所述第二 VPN实例标识, 确定所述 第一标识符;
所述第二标识符发送单元(90 )具体用于向所述第二路由设备发送第三 BGP更新消息, 所述第三 BGP更新消息包括所述第一标识符。
可选地, 所述第三 BGP更新消息还包括: 所述第一 VPN实例标识、 所 述第一 RT和所述第二 VPN实例标识。
可选地, 所述第二消息发送单元( 93 )具体用于将所述第一 RT封装在所 述第一 BGP更新消息中的属性信息中, 将所述第一 VPN实例标识封装在所 述第一 BGP更新消息中的网络侧可达信息 NLRI对象中, 然后将封装有所述 第一 RT和所述第一 VPN实例标识的所述第一 BGP更新消息发送给所述第二 路由设备, 或者具体用于将所述第一 RT和所述第一 VPN实例标识封装在所 述第一 BGP更新消息中的 NLRI对象中, 然后将封装有所述第一 RT和所述
第一 VPN实例标识的所述第一 BGP更新消息发送给所述第二路由设备; 所述第三消息接收单元( 94 )具体用于接收所述第二 BGP更新消息, 对 所述第二 BGP更新消息进行解析,从所述第二 BGP更新消息中的属性信息中 获取所述第二 RT,从所述第二 BGP更新消息中的 NLRI对象中获取所述第二 VPN实例标识,或者具体用于接收所述第二 BGP更新消息,对所述第二 BGP 更新消息进行解析, 从所述第二 BGP更新消息中的 NLRI对象中获取所述第 二 VPN实例标识和所述第二 RT。
可选地, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网 协议 IP地址,所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为 所述第一路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
可选地, 所述第一 VPN实例和所述第二 VPN实例之间的业务为二层虚 拟专用网络 L2VPN业务;
所述第二标识符发送单元(90 )具体用于向所述第二路由设备发送标签 分发协议 LDP标签分发消息或第四边界网关协议 BGP更新消息, 所述 LDP 标签分发消息或所述第四 BGP更新消息包括所述第一标识符。
可选地, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例 之间的业务的业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述 第一 VPN实例和所述第二 VPN实例之间的业务的业务被动方。
可选地, 所述第一路由设备还包括:
第三消息发送单元(98 ) , 用于发送隧道建立策略指示信息, 所述隧道 建立策略指示信息用于指示所述第二路由设备直接使用所述第二路径信息建 立所述第二 MPLS TE隧道, 或者, 所述隧道建立策略指示信息用于指示所述 第二路由设备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性 信息的约束时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所 述隧道策略指示信息用于指示所述第二路由设备在所述第二路径信息上的链 路和 /或节点不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道 属性信息计算出的所述第三路径信息建立所述第三 MPLS TE隧道。
在本实施例中, 第一路由设备向第二路由设备通告从第一路由设备上的 第一 VPN实例到第二路由设备上的第二 VPN实例的第一 MPLS TE隧道的标识
符, 第二路由设备根据该标识符获取从第一 VPN实例到第二 VPN实例的第一 MPLS TE隧道的路径信息, 然后在网络状况允许的情况下根据该路径信息反转 后的路径信息建立从第二 VPN实例到第一 VPN实例的第二 MPLS TE隧道, 可 以使得第二 VPN实例到第一 VPN实例的第一 MPLS TE隧道与第一 VPN实例到 第二 VPN实例的第二 MPLS TE隧道共路且反向, 从而解决或减少了在进行 BFD 时由于不共路造成的多种问题。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的 MPLS TE隧道建立方法的流程图; 图 2为本发明一实施例提供的 MPLS TE隧道建立方法的流程图; 图 3A为本发明一实施例提供的 MPLS TE隧道建立方法的流程图; 图 3B为本发明一实施例提供的 BGP通知消息携带多标识符的结构示意 图;
图 4为本发明一实施例提供的建立 MPLS TE隧道的方法的流程图; 图 5 为本发明一实施例提供的第一路由设备向第二路由设备发送第一标 识符的流程图;
图 6为本发明一实施例提供的路由设备的结构示意图;
图 7为本发明一实施例提供的路由设备的结构示意图;
图 8为本发明一实施例提供的路由设备的结构示意图;
图 9为本发明一实施例提供的路由设备的结构示意图。
具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于
本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明一实施例提供的 MPLS TE隧道建立方法的流程图。 如图 1 所示, 本实施例的方法包括:
步骤 101、 第二路由设备接收第一路由设备发送的第一标识符, 所述第一 标识符为第一 MPLS TE隧道的标识符, 所述第一 MPLS TE隧道为从第一路 由设备上的第一 VPN实例到第二路由设备上的第二 VPN实例的 MPLS TE隧 道。
对于第一路由设备上的第一 VPN实例和第二路由设备上的第二 VPN实 例之间的业务来说, 第一 VPN实例和第二 VPN实例可以分为业务主动方和 业务被动方。 哪一端是业务主动方, 哪一端是业务被动方可以通过配置, 也 可以通过协议协商确定。 如果通过配置的方式, 在步骤 101之前需要预先为 第一 VPN实例和第二 VPN实例分别配置业务角色, 所配置的业务角色是业 务被动方或业务主动方。 在本实施例中, 第一路由设备上的第一 VPN实例为 第一 VPN实例和第二 VPN实例之间的业务的业务主动方; 第二路由设备上 的第二 VPN实例为第一 VPN实例和第二 VPN实例之间的业务的业务被动方。
在本实施例中,第一路由设备在确定使用的从第一 VPN实例到第二 VPN 实例的 MPLS TE隧道的标识符, 即第一标识符, 之后, 可以通过信令将第一 标识符通知给第二路由设备。 由于不同 MPLS TE隧道具有不同的标识符, 因 此, 第二路由设备根据第一标识符可以从多条 MPLS TE隧道中识别出与第一 标识符对应的第一 MPLS TE隧道。 可选的, 第二路由设备还可以根据第一标 识符获取第一 MPLS TE隧道的路径信息。 所述第一 MPLS TE隧道的路径信 息为第一路径信息。
另外, 第一路由设备可以发起从第一 VPN实例到第二路由设备上的第二 VPN实例的 MPLS-TE隧道, 即第一 MPLS-TE隧道的建立。 具体的, 第一路 由设备可以通过预先配置的建立 MPLS TE 隧道所需的属性信息建立第一 MPLS TE隧道。进一步,第一路由设备还可以同时根据预先配置的建立 MPLS TE隧道所需的属性信息和使用预先配置的建立 MPLS TE隧道所需的属性信 息建立 MPLS TE隧道的隧道策略建立第一 MPLS TE隧道。 所述隧道策略是 指使用预先配置的建立 MPLS TE隧道所需的属性信息建立 MPLS TE隧道的 策略, 该策略可以是共享方式或独占方式。 共享方式表示在使用预先配置的
建立 MPLS TE隧道所需的属性信息建立第一 MPLS TE隧道时发现从第一 VPN实例和第二 VPN实例之间已经有对应的 MPLS TE隧道存在, 则无需再 建立第一 MPLS TE隧道, 直接使用已有的 MPLS TE隧道。 独占方式表示在 使用预先配置的建立 MPLS TE隧道所需的属性信息建立第一 MPLS TE隧道 时不考虑第一 VPN实例和第二 VPN实例之间已经存在的 MPLS TE隧道, 需 要建立独立的第一 MPLS TE隧道供第一 VPN实例和第二 VPN实例之间的业 务使用。
在本实施例中, 第一路由设备确定使用的第一标识符以及将第一标识符 发送给第二路由设备的过程与第一路由设备建立第一 MPLS TE隧道的过程是 独立的, 对其先后顺序不做限定。
进一步, 在第一 MPLS TE隧道建立之后, 第二路由设备会反向建立从第 二路由设备上的第二 VPN实例到第一路由设备上的第一 VPN实例的 MPLS TE隧道。 所述从第二路由设备上的第二 VPN实例到第一路由设备上的第一 VPN实例的 MPLS TE隧道为第二 MPLS TE隧道, 所述第二 MPLS TE隧道 与第一 MPLS TE隧道共路且反向。
可选的,第一 VPN实例和第二 VPN实例之间的业务可以为三层 VPN(英 文全称为 Layer 3 VPN, 英文缩写为 L3VPN )业务。 在这种情况下, 第一路 由设备可以使用多协议边界网关协议 (英文全称为 multiprotocol-border gateway protocol, 英文缩写为 MP-BGP, )与第二路由设备进行业务协商, 并 使用 RSVP-TE协议建立第一 MPLS TE隧道。 基于此, 第一路由设备可以对 MP-BGP协议进行扩展, 通过扩展后的 MP-BGP协议将第一标识符通告给第 二路由设备。
在现有 L3 VPN机制中,第一路由设备和第二路由设备之间相互通告的是 VPN私网路由和 VPN私网标签。一个 VPN实例中存在多个 IP路由, VPN私 网路由是指每个 VPN实例中的 IP路由。 针对特定的 VPN私网路由携带隧道 标识符是没有意义的, 因为 MPLS TE隧道的标识符是关联业务的, 而业务对 应于 VPN实例而不是 VPN私网路由。 基于此, 对 MP-BGP进行扩展通告隧 道标识符的过程包括对业务两端的 VPN实例而不是 VPN私网路由进行标识 的过程和标识业务两端的 VPN实例之后通告隧道标识符的过程。 在本实施例 中, 第一路由设备向第二路由设备发送第一标识符的过程包括标识第一路由 设备上的第一 VPN实例和第二路由设备上的第二 VPN实例的过程和在标识
VPN实例后发送第一标识符的过程。
可选的, 第二路由设备接收第一路由设备发送的第一标识符的一种实施 方式包括: 第二路由设备接收第一路由设备发送的第一边界网关协议(英文 全称为 Border Gateway Protocol, 英文缩写为 BGP )更新消息, 所述第一 BGP 更新消息包括第一 VPN实例标识和第一路由目标(英文全称为 Route Target, 英文缩写为 RT ) ; 其中, 第一 VPN实例标识用于标识第一路由设备上的第 一 VPN实例, 第一 RT为第一 VPN实例的 RT。所述第一 VPN实例标识所标 识的第一 VPN实例实际上是第一路由设备上承载上述 L3VPN业务的 VPN实 例。
在本实施例中, VPN实例的 RT, 例如第一 VPN实例的 RT, 主要用于供 第一路由设备和第二路由设备确定相互之间的 VPN实例是否具有业务对等关 系。也就是说, 可以通过两个 VPN实例的 RT判断这两个 VPN实例之间是否 具有业务对等关系。 如果一个 VPN实例的引入 ( Import ) RT和另一个 VPN 实例的导出(Export ) RT相等,说明这两个 VPN实例之间具有业务对等关系。 在本实施例中, 第一 VPN实例的 RT被视为引入 RT, 而第二路由设备上的 VPN实例的 RT被视为导出 RT。 在本实施例中, 第二路由设备上的、 与所述 第一 VPN实例具有业务对等关系的一个 VPN实例为第二 VPN实例。 第二路 由设备获知第一 RT后, 可以将第一 RT和第二 RT进行比较, 如果第一 RT 和第二 RT相等,则可以确定第一 VPN实例和第二 VPN实例之间具有业务对 等关系。第二 RT是第二 VPN实例的 RT, 第二 VPN实例通过第二 VPN实例 标识来标识。
基于上述, 第二路由设备在确定第一 RT和第二 RT相等后, 向第一路由 设备发送第二 BGP更新消息, 所述第二 BGP更新消息包括第二 VPN实例标 识和第二 RT, 所述第二 VPN实例标识用于标识第二路由设备上的第二 VPN 实例。 相应的, 第一路由设备也可以在确定第一 RT和第二 RT相等后, , 获 知需要建立第一 MPLS TE隧道, 进而确定出使用的第一标识。
在上述过程中, 第一路由设备和第二路由设备通过相互发送携带 VPN实 例标识的 BGP更新消息,使得第一 VPN实例和第二 VPN实例能够相互学习, 实现了对第一 VPN实例和第二 VPN实例的标识。
在标识第一 VPN实例和第二 VPN实例之后, 第二路由设备接收第一路 由设备发送的第三 BGP更新消息,所述第三 BGP更新消息包括:第一标识符。
第三 BGP更新消息是第一路由设备在接收到第二 BGP更新消息后发送的。相 应的, 第二路由设备会从第一路由设备发送的第三 BGP更新消息中获取第一 标识符。
可选的, 第三 BGP更新消息除了包括第一标识符之外, 还可以包括第一 VPN实例标识、 第一 RT和第二 VPN实例标识等信息。
另外, 第一路由设备根据第一 VPN实例标识和第二 VPN实例标识确定 出需要在第一 VPN实例和第二 VPN实例之间建立第一 MPLS TE隧道之后, 可以根据第二路由设备的 IP地址以及建立第一 MPLS TE隧道所需的属性信 息触发建立第一 MPLS TE隧道的过程。 具体的, 第一路由设备使用预先配置 的建立第一 MPLS TE隧道所需的属性信息, 计算出第一路径信息, 然后使用 基于流量工程扩展的资源预留协议 (英文全称为 Resource ReSerVation Protocol-Traffic Engineering, 英文缩写为 RSVP-TE )按照第一路径信息建立 第一 MPLS TE隧道。 其中, 第一路由设备通过第三 BGP更新消息向第二路 由设备发送第一标识符的过程与第一路由设备建立第一 MPLS TE隧道的过程 是独立的, 本发明实施例对其先后顺序不做限定。
在此说明, 本发明各实施例中的第一标识符的具体内容可参见标准文稿 RFC 3209中的定义, 也可以采用其他的格式。
可选的, 第一路由设备和第二路由设备可以通过属性信息和网络层可达 信息(英文全称为 Network Layer Reachability Information, 英文缩写为 NLRI ) 来携带 VPN实例的 RT和 VPN实例标识, 或者通过 NLRI来携带 VPN实例 标识和 VPN实例的 RT。
基于上述, 第二路由设备接收第一路由设备发送的第一 BGP更新消息的 过程可以是: 第二路由设备接收第一路由设备发送的第一 BGP更新消息, 对 第一 BGP更新消息进行解析,从第一 BGP更新消息中的属性信息中获取第一 RT , 从第一 BGP更新消息中的 NLRI对象中获取第一 VPN实例标识。 或者, 第二路由设备接收第一路由设备发送的第一 BGP更新消息的过程可以是: 第 二路由设备接收第一路由设备发送的第一 BGP更新消息,对第一 BGP更新消 息进行解析,从第一 BGP更新消息中的 NLRI对象中获取第一 VPN实例标识 和第一 RT。 相应的, 第二路由设备向第一路由设备发送第二 BGP更新消息 的过程可以是: 第二路由设备将第二 RT封装在第二 BGP更新消息中的属性 信息中, 将第二 VPN实例标识封装在第二 BGP更新消息中的 NLRI对象中,
然后将封装有第二 RT和第二 VPN实例标识的第二 BGP更新消息发送给第一 路由设备。 或者, 第二路由设备向第一路由设备发送第二 BGP更新消息的过 程可以是:第二路由设备将第二 RT和第二 VPN实例标识封装在第二 BGP更 新消息中的 NLRI对象中, 然后将封装有第二 RT和第二 VPN实例标识的第 二 BGP更新消息发送给第一路由设备。
进一步,本实施例的 VPN实例标识可包括路由区分符(英文全称为 Router Distinguishes 英文缩写为 RD )和 IP地址。 其中, RD用于区分同一设备上 不同的 VPN实例。 则第一 VPN实例标识包括第一 RD和第一 IP地址。 第一 RD为第一 VPN实例的 RD, 第一 IP地址为第一路由设备的 IP地址, 第一 IP 地址标识的是第一路由设备而不是第一路由设备上的 VPN实例中的 IP路由。 相应的, 第二 VPN实例标识包括第二 RD和第二 IP地址。 第二 RD为第二 VPN实例的 RD, 第二 IP地址为第二路由设备的 IP地址, 第二 IP地址标识 的是第二路由设备而不是第二路由设备上的 VPN实例中的 IP路由。
进一步, NRLI还可以包括下一跳信息。 下一跳信息是指第一 IP地址或 第二 IP地址的下一跳信息。
可选地, 在确定出第一 VPN实例和第二 VPN实例分别在第一 VPN实例 和第二 VPN实例之间的业务中所担任的角色之前, 第一路由设备和第二路由 设备可以比较所述第一 VPN实例标识和所述第二 VPN实例标识的大小, 根 据比较结果和角色确定规则来确定所述第一 VPN实例的角色和第二 VPN实 例的角色。在本实施例中,可以将所述角色确定规则设置为:在所述第一 VPN 实例标识大于所述第二 VPN实例标识时, 确定所述第一 VPN实例为所述业 务主动方, 所述第二 VPN实例为所述业务被动方; 也可以将所述角色确定规 则设置为: 在所述第一 VPN实例标识小于所述第二 VPN实例标识时, 确定 所述第一 VPN实例为所述业务主动方, 所述第二 VPN实例为所述业务被动 方。
可选地, 除了上述确定所述业务主动方和所述业务被动方的方法外, 所 述第一路由设备和第二路由设备还可以根据预先从管理设备分别接收到的角 色信息或者第一路由设备和第二路由设备中预先配置的角色信息来分别确定 第一 VPN实例和第二 VPN实例在第一 VPN实例和第二 VPN实例之间的业 务中的角色。
可选的, MPLS TE隧道可以包括多条标签交换路径(英文全称为 Label
Switched Path,英文缩写为 LSP )。每条 LSP的标识可以包括入(英文为 Ingress ) 路由器标识(英文缩写为 ID ) (可称为本地 LSP ID )和 MPLS TE隧道(英 文为 Tunnel ) ID (即 MPLS TE隧道的标识符 ) 。 对于同一 MPLS TE隧道中 的不同 LSP来说, 其标识中的 Tunnel ID是相同的, 但本地的 LSP ID不同。
可选的, 本实施例中第一 MPLS TE隧道可以包括主 LSP和备份 LSP。其 中, 第一路由设备在建立主 LSP和备份 LSP的时候, 会携带各 LSP的角色信 息, 所述角色信息用于表示与所述角色信息对应的 LSP是主 LSP或备份 LSP 的信息。
可选的, 第一 VPN 实例和第二 VPN 实例之间的业务可以为二层 VPN ( Layer 2 VPN, L2VPN )业务。 在这种情况下, 第一路由设备可以使用动态 协议, 例如标签分发协议(英文全称为 Label Distributed Protocol, 英文缩写 为 LDP )或 BGP 与第二路由设备进行业务协商建立 L2VPN PW, 并使用 RSVP-TE建立第一 MPLS TE隧道。基于此,第二路由设备可以通过接收第一 路由设备发送的 LDP标签分发消息或第四 BGP更新消息, 从 LDP标签分发 消息或第四 BGP更新消息中获取第一标识符。 所述第一标识符可以携带于所 述 LDP标签或第四 BGP更新消息中。
举例说明, 对 LDP或 BGP进行扩展携带第一标识符的方式可以是: 在 LDP标签分发消息或第四 BGP更新消息中增加新的字段, 用该新的字段携带 第一标识符。 或者, 对 LDP或 BGP进行扩展携带第一标识符的方式可以是: 对 LDP标签分发消息或第四 BGP更新消息中的某个或某些现有字段进行重定 义, 使用重定义后的字段携带第一标识符。
步骤 102、 第二路由设备根据第一标识符, 获取第一路径信息, 所述第一 路径信息为第一 MPLS TE隧道的路径信息。
在一条 MPLS TE隧道建立过程中, 所述 MPLS TE隧道沿途所有经过的 节点和链路都会被记录, 这样当所述 MPLS TE 隧道建立完毕后就有了该 MPLS TE隧道经过的完整路径信息。 可选的, 一条 MPLS TE隧道沿途经过 的节点和链路可以记录在该 MPLS TE隧道的尾端节点接收到的路径(英文为 path ) 消息中的路径记录对象(英文全称为 Record Route Object, 英文缩写为 RRO )中。 另夕卜, 在 path消息的会话 ( session )对象中会携带该 MPLS TE隧 道的标识符。 其中, 第一 MPLS TE隧道的路径信息称为第一路径信息, 第一 路径信息包括第一 MPLS TE隧道所经过的节点、 链路等信息。
在第一路由设备建立第一 MPLS TE隧道的过程中, 第二路由设备接收到 的用于建立第一 MPLS TE隧道的 path消息的 RRO对象中携带有第一 MPLS TE隧道的路径信息, 即第一路径信息, 所述 path消息的 session对象中携带 有第一 MPLS TE隧道的标识符, 即第一标识符。 这样, 在建立第一 MPLS TE 隧道的过程中, 第二路由设备便获取了第一路径信息和第一标识符的对应关 系。 当第二路由设备获取到第一标识符后, 第二路由设备可以进一步地根据 第一标识符和第二路由设备上已有的或者在获取到第一标识符后从 path消息 中获取的第一路径信息和第一标识符的对应关系, 确定第一路径信息。 可选 地, 通过协议扩展的方式, 所述第一标识符和 /或所述第一路径信息可以携带 与 path消息的扩展字段中。 第二路由设备根据第一标识符, 获取第一路径信 息的过程还可以是: 第二路由设备根据第一标识符和第一对应关系确定出第 一标识符所标识的第一 MPLS TE隧道。 其中, 第一对应关系为第一标识符和 第一 MPLS TE隧道之间的对应关系。然后,第二路由设备根据第一 MPLS TE 隧道的标识查询第二对应关系, 获取第一路径信息。 第二对应关系实际上为 第一 MPLS TE隧道的标识和第一路径信息的对应关系。
另外, 第一路由设备还可以将其建立第一 MPLS TE隧道所需的属性信息 发送给第二路由设备。 也就是说, 第二路由设备是可以知道第一路由设备建 立第一 MPLS TE隧道所需的属性信息的。
可选的, 如果本实施例中第一 MPLS TE隧道包括主 LSP和备份 LSP, 则 第二路由设备根据第一标识符, 获取第一路径信息的过程包括: 第二路由设 备根据第一 MPLS TE隧道中 LSP的角色信息, 分别获取主 LSP对应的第一 主用路径信息和备份 LSP对应的第一备用路径信息。
步骤 103、 第二路由设备将第一路径信息反转, 获取第二路径信息, 根据 第二路径信息建立第二 MPLS TE隧道,所述第二 MPLS TE隧道为从第二 VPN 实例到第一 VPN实例的 MPLS TE隧道。
第二路由设备获取第一路径信息后, 将第一路径信息反转, 获取第二路 径信息。 其中, 第一路径信息和第二路径信息包括的节点和链路完全相同, 区别在于路径方向相反。 举例说明, 假设第一路径信息为: 节点 A→节点 B →节点 C, 则第二路径信息为: 节点 C→节点 B→节点 A。
然后, 第二路由设备根据第二路径信息建立第二 MPLS TE隧道, 即建立 从第二 VPN实例到第一 VPN实例的 MPLS TE隧道。
可选地, 第二路由设备直接使用所述第二路径信息建立所述第二 MPLS TE隧道。也就是说, 第二路由设备不确定第二路径信息上的链路和 /或节点是 否满足第一隧道属性信息的约束, 直接建立所述第二 MPLS TE隧道。 在网络 条件允许的情况下, 这种方式是可用的。
可选的, 第二路由设备在建立第二 MPLSTE隧道之前, 可以先确定第二 路径信息上的链路和 /或节点是否满足第一隧道属性信息的约束。 在确定出第 二路径信息上的链路和 /或节点满足第一隧道属性信息的约束后, 使用第二路 径信息建立第二 MPLS TE隧道。
可选地, 如果第二路由设备确定出第二路径信息上的链路和 /或节点不满 足第一隧道属性信息的约束后, 可以根据第一隧道属性信息计算出第三路径 信息, 然后使用第三路径信息建立从第二 VPN实例到第一 VPN实例的第三 MPLS TE隧道。 所述第三路径信息中的部分内容与所述第二路径信息的部分 内容相同, 也就是说所述第三 MPLS TE隧道和第一 MPLS TE隧道方向相反 且部分共路。
可选地, 第二路由设备也可以在不确定第二路径信息上的链路和 /或节点 是否满足第一隧道属性信息的约束的情况下直接使用第二路径信息建立第二 MPLS TE隧道。 在网络条件允许的情况下, 这种直接建立的方式也可以成功 建立第二 MPLS TE隧道。
第一隧道属性信息可以是第一路由设备建立第一 MPLS TE隧道所需的属 性信息, 或者是第二路由设备预先配置的建立第二 MPLS TE隧道所需的属性 信息, 或者是第二路由设备建立第二 MPLS TE隧道所需的默认属性信息。
结合上述可知, 本实施例的第二路由设备可以根据第一路径信息和第一 路由设备建立第一 MPLS TE隧道所需的属性信息建立第二 MPLS TE隧道, 而第二路由设备本地可以不用配置大量的用于建立第二 MPLS TE隧道的属性 信息, 有利于降低属性信息的配置工作量。 这里建立第二 MPLS TE隧道有成 功和失败两种可能。 其中, 成功的概念是指由第一路径信息反转得到的第二 路径信息上的节点和链路均满足第一路由设备建立第一 MPLS TE隧道所需的 属性信息的要求。 而在失败的情况下, 第二路由设备可以向第一路由设备返 回隧道建立失败消息, 表明无法建立正反双向共路的隧道, 或者第二路由设 备还可以根据第一路由设备建立第一 MPLS TE隧道所需的属性信息计算出所 述第三路径信息, 并基于所述第三路径信息建立所述第三 MPLS TE隧道。 优
选地, 所述第三路径信息中的部分内容与所述第二路径信息的部分内容相同。 另外, 本实施例的第二路由设备还可以根据第一路径信息和本地预先配 置的建立第二 MPLS TE隧道所需的属性信息, 建立第二 MPLS TE隧道。 其 中,第二路由设备使用所述本地配置的属性信息,可以保证所述第二 MPLS TE 隧道配置的灵活性。 这里建立第二 MPLS TE隧道也有成功和失败两种可能。 其中, 成功的概念是指由第一路径信息反转得到的第二路径信息上的节点和 链路均满足第二路由设备使用的属性信息的要求, 否则即为失败。 而在失败 的情况下, 第二路由设备可以向第一路由设备返回隧道建立失败消息, 表明 无法建立正反双向共路的隧道, 或者第二路由设备还可以根据第二路由设备 使用的本地配置的建立第二 MPLS TE隧道所需的属性信息计算出所述第三路 径信息, 并基于所述第三路径信息建立所述第三 MPLS TE隧道。 优选地, 所 述第三路径信息中的部分内容与所述第二路径信息的部分内容相同。
再者, 本实施例的第二路由设备还可以根据第一路径信息和建立第二 MPLS TE隧道所需的默认属性信息, 建立所述第二 MPLS TE隧道。 其中, 默认属性信息不需要配置, 有利于降低配置属性信息的工作量。 这里建立所 述第二 MPLS TE隧道也有成功和失败两种可能。 其中, 成功的概念是指由第 一路径信息反转得到的第二路径信息上的节点和链路均满足默认属性信息的 要求, 否则即为失败。 而在失败的情况下, 第二路由设备可以向第一路由设 备返回隧道建立失败消息, 表明无法建立正反双向共路的隧道, 或者第二路 由设备还可以根据使用的建立第二 MPLS TE隧道所需的默认属性信息计算出 所述第三路径信息, 并基于所述第三路径信息建立所述第三 MPLS TE隧道。 优选地, 所述第三路径信息中的部分内容与所述第二路径信息的部分内容相 同。
可选的, 使用第一路由设备建立第一 MPLS TE隧道所需的属性信息或第 二路由设备本地配置的建立第二 MPLS TE隧道所需的属性信息或第二路由设 备建立第二 MPLS TE隧道所需的默认属性信息计算出所述第三路径信息的一 种实施方式可以是: 第二路由设备使用第一路由设备建立第一 MPLS TE隧道 所需的属性信息或第二路由设备本地配置的建立第二 MPLS TE隧道所需的属 性信息或第二路由设备建立第二 MPLS TE隧道所需的默认属性信息计算出多 种可能的路径信息, 然后将计算出的各路径信息分别与第一路径信息或第二 路径信息进行比较, 获取与第一路径信息或第二路径信息中的内容相同最多
的路径信息作为所述第三路径信息。 采用上述实施方式可以使从第二 VPN实 例到第一 VPN实例的 MPLS TE隧道与从第一 VPN实例到第二 VPN实例的 MPLS TE隧道尽可能共路。
可选的, 在所述第二路由设备根据所述第二路径信息建立第二 MPLS TE 隧道之前, 本实施例还包括:
所述第二路由设备接收所述第一路由设备发送的隧道建立策略指示信 息, 所述隧道建立策略指示信息用于指示所述第二路由设备直接使用所述第 二路径信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路由设备 在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的约束时 使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道策略指 示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节点不 满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息计算 出的所述第三路径信息建立所述第三 MPLS TE隧道。 所述直接使用所述第 二路径信息建立所述第二 MPLS TE隧道是指在不确定所述第二路径信息上的 链路和 /或节点是否满足所述第一隧道属性信息的约束的情况下, 使用所述第 二路径信息建立所述第二 MPLS TE隧道。
在此说明, 第二路由设备在未接收到第一路由设备发送的所述隧道建立 策略指示信息的情况下, 也可以主动按照上述建立第二 MPLS TE隧道的方式 建立所述第二 MPLS TE隧道。 也就是说, 第二路由设备无论是否收到第一路 由设备发送的隧道建立策略指示信息, 都可以直接建立第二 MPLS TE隧道; 或者, 确定第二路径信息上的链路和 /或节点是否满足第一隧道属性信息的约 束, 在确定出第二路径信息上的链路和 /或节点满足第一隧道属性信息的约束 后, 使用第二路径信息建立第二 MPLS TE隧道, 在确定出第二路径信息上的 链路和 /或节点不满足第一隧道属性信息的约束后, 根据第一隧道属性信息计 算出第三路径信息, 然后使用第三路径信息建立第三 MPLS TE隧道。 其中, 所述第一隧道属性信息为所述第一路由设备建立所述第一 MPLS TE隧道所需 的属性信息, 或者, 所述第一隧道属性信息为所述第二路由设备预先配置的 建立所述第二 MPLS TE隧道所需的属性信息, 或者, 所述第一隧道属性信息 为所述第二路由设备建立所述第二 MPLS TE隧道所需的默认属性信息。
可选的, 为第一路由设备或第二路由设备预先配置建立 MPLS TE隧道使 用的属性信息可以是先为第一路由设备或第二路由设备配置建立 MPLS TE隧
道使用的隧道模板, 然后使用隧道模板为第一路由设备和 /或第二路由设备配 置建立 MPLS TE隧道使用的属性信息。 隧道模板可以看做是建立 MPLS TE 隧道使用的属性信息的集合。 这样第一路由设备在建立第一 MPLS TE隧道的 时候使用隧道模板, 而不需要为每一条隧道单独配置, 而第二路由设备建立 第二 MPLS TE隧道时也可以直接使用隧道模板而不需要为每一条隧道单独配 置, 通过这样的方式可以最大程度地降低了 MPLS TE隧道的配置。
可选的, 第一 MPLS TE隧道包括主 LSP和备份 LSP, 则第二路由设备获 取的第一路径信息包括主 LSP对应的第一主用路径信息和备份 LSP对应的第 一备用路径信息。 进一步, 第二路由设备分别将第一主用路径信息和第一备 用路径信息进行反转, 获取主 LSP对应的第二主用路径信息和备份 LSP对应 的第二备用路径信息; 然后分别根据第二主用路径信息和第二备用路径信息, 建立从第二 VPN实例到第一 VPN 实例的主 LSP和备份 LSP, 即建立第二 MPLS TE隧道中的主 LSP和备份 LSP。
可选的, 第二路由设备在确定建立第二 MPLS TE隧道之后, 还可以向第 一路由设备发送第五 BGP更新消息, 第五 BGP更新消息包括: 第一 VPN实 例标识、 第二 VPN实例标识、 第二 RT和第二标识符; 所述第二标识符为第 二 MPLS TE隧道的标识符。 这样可以保证协议的完整性。
在本实施例中, 第一路由设备向第二路由设备通告从第一路由设备上的 第一 VPN实例到第二路由设备上的第二 VPN实例的第一 MPLS TE隧道的标 识符, 第二路由设备根据该标识符获取从第一 VPN实例到第二 VPN实例的 第一 MPLS TE隧道的路径信息, 然后在网络状况允许的情况下根据该路径信 息反转后的路径信息建立从第二 VPN实例到第一 VPN实例的第二 MPLS TE 隧道,可以使得第二 VPN实例到第一 VPN实例的第一 MPLS TE隧道与第一 VPN实例到第二 VPN实例的第二 MPLS TE隧道共路且反向, 从而解决或减 少了在进行 BFD时由于不共路造成的多种问题。
在本实施例的一种可选方式中, 当无法建立与第一 MPLS TE隧道共路且 反向的第二 MPLS TE隧道时, 第二路由设备还可以建立与第一 MPLS TE隧 道方向且部分共路的第三 MPLS TE隧道,以便在一定程度上减少在进行 BFD 时由于不共路造成的多种问题。
下面图 2和图 3所示实施例分别以 L2VPN业务和 L3VPN业务为例给出 了建立 MPLS TE隧道的可选实施流程。
图 2为本发明一实施例提供的 MPLS TE隧道建立方法的流程图。 如图 2 所示, 本实施例的方法包括:
步骤 201、 当第一 PE上的第一 VPN实例和第二 PE上的第二 VPN实例 开展 L2VPN业务时, 预先配置第一 VPN实例为业务主动方, 第二 VPN实例 为业务被动方。
除了步骤 201提供的配置业务主动方和业务被动方之外, 还可以通过协 议协商的方式确定业务主动方和业务被动方。
本实施例以第一 VPN实例和第二 VPN实例开展 L2VPN业务为例进行说 明。
步骤 202、 第一 PE向第二 PE发送 LDP标签分发消息, LDP标签分发消 息中包括第一 VPN实例到第二 VPN实例的 MPLS TE隧道的标识符。
所述第一 VPN实例到第二 VPN实例的 MPLS TE隧道为第一 MPLS TE 隧道, 所述第一 VPN实例到第二 VPN实例的 MPLS TE隧道的标识符为第一 标识符。
在本实施例中,以第一 PE使用 LDP协议与第二 PE进行业务协商为例进 行说明, 但不限于此。 例如, 第一 PE和第二 PE还可以使用 BGP协议进行业 务协商。
在本实施例中, 第一 PE对 LDP协议进行了扩展, 除了通过 LDP协议与 第二 PE协商现有技术中的多种信息之外,还通过 LDP协议向第二 PE通告第 一 MPLS TE隧道的标识符。
其中, L2VPN业务使用的 MPLS TE隧道的标识符根据隧道的类型有关, 不同类型的隧道使用不同的标识符。 其中, 常用的隧道类型包括 MPLS TE隧 道、 LDP隧道和通用路由封装(英文全称为 Generic Routing Encapsulation, 英文缩写为 GRE )隧道。其中, MPLS TE隧道是本发明实施例所关注的, LDP 隧道和 GRE隧道一般都是使用下一跳作为目的地址选取出的隧道, 在此说明 是为了完整性考虑。
可选的, 第一 PE在向第二 PE通告第一 MPLS TE隧道的标识符时, 还 可以在 LDP标签分发消息中携带隧道建立策略指示信息, 以通知第二 PE建 立从第二 VPN实例到第一 VPN实例的 MPLS TE隧道的方式, 这样可以提高 第二 PE建立从第二 VPN实例到第一 VPN实例的 MPLS TE隧道的灵活性。 从第二 VPN实例到第一 VPN实例的 MPLS TE隧道为第二 MPLS TE隧道。
其中, 第一 PE提供给第二 PE的隧道建立策略可以要求第二 PE建立的 第二 MPLS TE隧道必须与第一 MPLS TE隧道共路, 如果不共路则认为业务 选取隧道失败。
可选地, 第一 PE提供给第二 PE的隧道建立策略还可以是: 在无法建立 与第一 MPLS TE隧道共路的第二 MPLS TE隧道的情况下,要求第二 PE根据 第二路径信息建立的第二 MPLS TE隧道中的一部分与第一 MPLS TE隧道中 的一部分共路。 这样虽然没有实现第一 MPLS TE隧道和第二 MPLS TE隧道 完全共路, 但是实现了部分共路, 相比第一 MPLS TE隧道和第二 MPLS TE 隧道完全不共路的情况, 能够较少一些由于完全不共路而引起的问题。
优选地, 当从所述第二 VPN实例到所述第一 VPN实例存在多条与第一 MPLS TE隧道部分共路的 MPLS TE隧道时,则从这多条部分共路的 MPLS TE 隧道中选择共路部分最长的 MPLS TE隧道作为第二 MPLS TE隧道, 以便尽 可能地减少因为不共路而引起的问题。
相应的, 第二 PE接收第一 PE发送的 LDP标签分发消息, 从 LDP标签 分发消息中获取第一 MPLS TE隧道的标识符。 进一步, 如果 LDP标签分发 消息还包括隧道建立策略指示信息, 则第二 PE还可以从 LDP标签分发消息 中获取隧道建立策略指示信息。
步骤 203、第一 PE给 L2VPN业务指定隧道模板,通过隧道模板获取 MPLS TE隧道建立使用的属性信息, 基于该属性信息驱动第一 MPLS TE隧道的建 立。
第一 PE通过使用隧道模板为 L2VPN业务配置建立 MPLS TE隧道使用的 属性信息, 不用为每条 MPLS TE隧道单独配置, 这样可以降低 MPLS TE隧 道的配置工作量, 提高配置效率。
具体的, 第一 PE使用获取的属性信息计算出第一 MPLS TE隧道的路径 信息, 即第一路径信息, 其中, 该第一路径信息包括第一 MPLSTE隧道所经 过的节点和链路等信息。 然后, 第一 PE按照第一路径信息使用 RSVP-TE协 议建立第一 MPLS TE隧道。
在此说明, 步骤 202和步骤 203的先后顺序并不限于此。
步骤 204、 第二 PE根据从 LDP标签分发消息中获取的第一 MPLS TE隧 道的标识符, 即第一标识符, 获取第一 MPLS TE隧道的路径信息, 即第一路 径信息。
步骤 205、 第二 PE判断由第一路径信息反转得到的第二路径信息上的节 点和 /或链路是否满足第一隧道属性信息的约束; 如果判断结果为满足, 执行 步骤 206; 如果判断结果为不满足, 执行步骤 207。
第二 PE获取第一路径信息后, 将其反转得到第二路径信息。 第一路径信 息或第二路径信息包括了与其对应的路径上的节点和链路的信息, 实际上包 括了一系列有序的 IP地址,第二路径信息包括的一系列有序的 IP地址的顺序 与第一路径信息包括一系列有序的 IP地址的顺序相反。
可选地, 第二 PE获取建立第二 MPLS TE隧道使用的属性信息, 所述建 立第二 MPLS TE隧道使用的属性信息为第一隧道属性信息。 第一隧道属性信 息可以是第二 PE预先为 L2VPN业务配置的建立第二 MPLS TE隧道使用的属 性信息, 也可以是默认属性信息, 还可以是第一 PE建立第一 MPLS TE隧道 使用的属性信息。 这些属性信息包括带宽信息、 显式路径、 亲和属性、 快速 重路由等信息。基于此, 第二 PE将第二路径信息中各节点和链路的信息与第 一隧道属性信息进行比较, 可以确定第二路径信息是否满足第一属性信息的 约束。
步骤 206、 第二 PE使用第二路径信息建立第二 MPLS TE隧道。
第二 PE根据第二路径信息建立第二 MPLS TE隧道, 这样可以实现第一 MPLS TE隧道和第二 MPLS TE隧道的共路。
在步骤 206中, 所述共路是指第一 MPLS TE隧道和第二 MPLS TE隧道 经过相同的节点和链路, 但是这两条隧道的方向相反。
可选的, 第二 PE可以将第二 MPLS TE隧道的标识符, 即第二标识符, 发送给第一 PE , 而第一 PE接收第二 PE发送的第二标识符。 这样可以保证协 议的完整性。
步骤 207、 第二 PE根据第一隧道属性信息和第二路径信息计算出路径信 息,然后使用计算出的路径信息建立第三 MPLS TE隧道,其中所述第三 MPLS TE隧道与第一 MPLS TE隧道部分共路。
需要指出的是, 步骤 207中的第三 MPLS TE隧道和步骤 206中的第二 MPLS TE隧道都是从第二 VPN实例到第一 VPN实例的 MPLS TE隧道, 但 这两条 MPLS TE隧道并不相同。
在本实施例中,第二 PE基于通过对第一路径信息反转得到的第二路径信 息建立第二 MPLS TE隧道, 这样可以保证两个方向的隧道共路或部分共路。
如果第一 MPLS TE隧道的路径发生变化, 那么第二 MPLS TE隧道的路径也 可以较容易地随之调整。 本实施例并不是通过静态配置的方式使第一 MPLS TE隧道和第二 MPLS TE隧道共路或部分共路, 配置工作量较小, 可扩展性 较强。 另夕卜, 本实施例也不是将两个单向 MPLS TE隧道直接绑定实现的正反 双向 MPLS TE隧道共路的, 当其中一条 MPLS TE隧道的路径发生变化时, 仅需要较少的处理, 另一条 MPLS TE隧道的路径也可以随之变化, 不会出现 直接绑定两条单向 MPLS TE隧道实现共路时一条隧道的路径变化而另一条隧 道的路径无法随之变化而出现正反双向不共路的情况。
在本实施例中, 第一 PE和第二 PE在 L2VPN业务协商过程中, 第一 PE 将使用的 MPLS TE隧道的标识符通告给第二 PE, 第二 PE基于第一 PE通告 的标识符得到第一路径信息, 使用对第一路径信息进行反转而得到的第二路 径信息建立第二 MPLS TE隧道, 在网络条件允许的情况下实现了第一 MPLS TE隧道和第二 MPLS TE隧道共路或部分共路,从而解决或减少了在进行 BFD 时由于不共路造成的多种问题。 如果第一 MPLS TE隧道和第二 MPLS TE隧 道不共路, 则至少会带来关于 BFD方面的问题。 例如, 当反向 IP路径阻塞, 而实际上正向的 MPLS TE隧道的路径状态是正常的时, 不共路会引发 BFD 状态会置 down的问题。 又例如, 在部署有 MPLS TE热旁路( Hot-standby ) 保护时, 不共路还可能引发 MPLS TE隧道发生不必要的切换, 甚至切换不成 功, 需要等待硬收敛, 造成大量丟包, 业务的高可靠性无法保证的问题。
图 3A为本发明一实施例提供的 MPLS TE隧道建立方法的流程图。 如图 3A所示, 本实施例的方法包括以下内容。
步骤 301、 当第一 PE上的第一 VPN实例和第二 PE上的第二 VPN实例 开展 L3VPN业务时, 第一 PE和第二 PE通过 MP-BGP协议协商确定第一 PE 上的第一 VPN实例为业务主动方,第二 PE上的第二 VPN实例为业务被动方。
除了步骤 301提供的通过协议协商方式确定业务主动方和业务被动方之 外, 还可以通过配置的方式确定业务主动方和业务被动方。
本实施例以第一 VPN实例和第二 VPN实例开展 L3VPN业务为例进行说 明。
步骤 302、 第一 PE向第二 PE发送第一 BGP更新消息, 所述第一 BGP 更新消息包括第一 VPN实例标识和第一 RT。
步骤 303、 第一 PE接收第二 PE发送的第二 BGP更新消息, 所述第二
BGP更新消息包括第二 VPN实例标识和第二 RT。
第一 PE的 VPN实例标识用于标识第一 VPN实例。 第二 VPN实例标识 用于标识第二 VPN实例。 第一 RT和第二 RT主要用于供第一 PE和 /或第二 PE判断第一 VPN实例和第二 VPN实例之间是否具有业务对等关系。 在本实 施例中,第一 PE和第二 PE可以在确定第一 RT和第二 RT相等后,确定第一 VPN实例和第二 VPN实例之间具有业务对等关系。
在本实施例中, 第一 PE通过对 MP-BGP协议进行扩展, 除了通过第一 BGP更新消息向第二 PE发送现有技术中的一些信息之外, 还通过第一 BGP 更新消息携带第一 VPN实例标识发送给第二 PE。 相应的, 第二 PE接收第一 PE发送的第一 BGP更新消息, 从中获知第一 VPN实例标识。
第二 PE向第一 PE发送第二 BGP更新消息, 并在第二 BGP更新消息中 携带第二 VPN实例标识。 第一 PE接收第二 PE发送的第二 BGP更新消息, 从中获知第二 VPN实例标识。 通过以上方式实现对第一 PE和第二 PE上的 VPN实例的标识, 实现了 VPN实例的相互学习。
具体的, 第一 PE可以在第一 BGP更新消息中的 NRLI对象中携带第一 VPN实例标识; 第二 PE可以在第二 BGP通知消息中的 NRLI对象中携带第 二 VPN实例标识。 可选的, 第一 RT或第二 RT也可以携带在 NRLI中。
步骤 304、 第一 PE向第二 PE发送第三 BGP更新消息, 所述第三 BGP 更新消息包括第一 VPN实例标识、 第一 RT、 第二 VPN实例标识和第一标识 付。
所述第一标识符为第一 MPLS TE隧道的标识符。
相应的, 第二 PE接收第一 PE发送的第三 BGP更新消息, 从第三 BGP 更新消息中获取第一标识符。 如果第一 VPN实例同时与多个 VPN实例开展 了 L3VPN业务, 则在同一个第三 BGP更新消息可以同时携带第一 VPN到多 个 VPN实例的多条 MPLS TE隧道的标识符, 其结构如图 3B所示。 在图 3B 所示的第三 BGP更新消息中, 一共包括 N个 VPN实例和 N个 MPLS TE隧 道的标识符, 分别为第二 VPN实例标识 1-第( N+1 ) VPN实例标识 N和第二 VPN实例对应的隧道的标识符 1-第(N+1 ) VPN实例对应的隧道的标识符 N, 第一 VPN实例标识分别为第一 VPN实例标识 1-第一 VPN实例标识 M。为便 于图示, 在图 3B中未示出第一 VPN实例的 RT。
步骤 305、 第一 PE给 L3VPN业务指定隧道模板, 通过隧道模板获取建
立第一 MPLS TE隧道使用的属性信息, 基于该属性信息驱动第一 MPLS TE 隧道的建立。
第一 PE通过使用隧道模板为 L3VPN业务配置建立 MPLS TE隧道使用的 属性信息, 不用为每条 MPLS TE隧道单独配置, 这样可以降低 MPLS TE隧 道的配置工作量, 提高配置效率。
具体的, 第一 PE使用获取的属性信息计算出第一 MPLS TE隧道的路径 信息, 即第一路径信息, 其中, 该第一路径信息包括从第一 MPLS TE隧道经 过的节点和链路等信息。 然后, 第一 PE按照第一路径信息使用 RSVP-TE协 议建立第一 MPLS TE隧道。
在此说明, 步骤 305和前述步骤 302-步骤 304的先后顺序并不限于此。 步骤 306、 第二 PE根据从第三 BGP更新消息中获取的第一 MPLS TE隧 道的标识符, 即第一标识符, 获取第一 MPLS TE隧道的路径信息, 即第一路 径信息。
步骤 307、 第二 PE判断由第一路径信息反转得到的第二路径信息上的节 点和 /或链路是否满足第一属性属性信息的约束; 如果判断结果为满足, 执行 步骤 308; 如果判断结果为不满足, 执行步骤 309。
步骤 308、 第二 PE使用第二路径信息建立从第二 VPN实例到第一 VPN 实例的 MPLS TE隧道, 即第二 MPLS TE隧道。
步骤 309、 第二 PE根据第一隧道属性信息和第二路径信息计算出路径信 息,然后使用计算出的路径信息建立第三 MPLS TE隧道,所述第三 MPLS TE 隧道与第一 MPLS TE隧道部分共路。
在此说明, 所述步骤 309中的第三 MPLS TE隧道和步骤 308中的第二 MPLS TE隧道都是从第二 VPN实例到第一 VPN实例的隧道,但这两条 MPLS TE隧道并不相同。
其中, 上述步骤 306-步骤 309可参见步骤 204-步骤 207的描述, 在此不 再赘述。
在本实施例中, 第一 PE和第二 PE在 L3VPN业务协商过程中, 第一 PE 将第一标识符通告给第二 PE , 第二 PE基于第一标识符确定第一路径信息。 第二 PE进一步地根据基于第一路径信息获取的第二路径信息建立第二 MPLS TE隧道, 实现了正反双向 MPLS TE隧道共路或部分共路。 这样可以解决或 减少由于两个 VPN实例之间的两条方向相反的 MPLS TE隧道不共路而引发
的问题。 例如, 当反向 IP路径阻塞, 而实际上正向的 MPLS TE隧道的路径 状态是正常的时, 不共路会引发 BFD状态会置 down的问题。 又例如, 在部 署有 MPLS TE热旁路(英文缩写为 Hot-standby )保护时, 不共路还可能引发 MPLS TE隧道发生不必要的切换, 甚至切换不成功, 需要等待硬收敛, 造成 大量丟包, 业务的高可靠性无法保证的问题。
如图 4所示, 本发明一实施例提供一种建立 MPLS TE隧道的方法, 该方 法包括以下内容。
步骤 401、 第一路由设备向第二路由设备发送第一标识符, 以使第二路由 设备根据第一标识符识获取第一路径信息, 其中, 所述第一标识符为第一 MPLS TE隧道的标识符, 第一路径信息为第一 MPLS TE隧道的路径信息, 所述第一 MPLS TE隧道为第一路由设备上的第一 VPN实例到第二路由设备 上的第二 VPN实例的 MPLS TE隧道;
步骤 402、 所述第一路由设备接收第二路由设备发送的用于建立第二 MPLS TE隧道的路径消息, 所述第二 MPLS TE隧道为从所述第二 VPN实例 到所述第一 VPN实例的 MPLS TE隧道,所述第二 MPLS TE隧道的路径信息 是对所述第一路径信息进行反转得到的;
步骤 403、所述第一路由设备向所述第二路由设备发送与所述路径消息对 应的预留消息。
所述第二 MPLS TE隧道与第一 MPLS TE隧道共路且反向。
所述路径消息和预留消息都是 RSVP TE中的消息。
经过以上步骤, 就可以在网络条件允许的情况下建立所述第二 MPLS TE 隧道, 从而解决或减少了在进行 BFD时由于不共路造成的多种问题。
在本实施例中, 第一路由设备上的第一 VPN实例为第一 VPN实例和第 二 VPN实例之间的业务的业务主动方; 第二路由设备上的第二 VPN实例为 第一 VPN实例和第二 VPN实例之间的业务的业务被动方。
在本实施例中, 第一路由设备在确定第一 MPLS TE隧道的标识符, 即第 一标识符, 之后, 可以通过信令将第一标识符, 通知给第二路由设备。 第二 路由设备根据第一标识符查询第一标识符和第一 MPLS TE隧道的路径信息的 对应关系, 获取第一 MPLS TE隧道的路径信息, 即第一路径信息。 进一步, 第二路由设备可以将第一路径信息进行反转得到第二路径信息, 之后基于第 二路径信息建立第二 MPLS TE隧道。其中,第二 MPLS TE隧道为从第二 VPN
实例到第一 VPN实例的 MPLS TE隧道。
所述第一标识符和第一 MPLS TE隧道的路径信息的对应关系是所述第一 路由设备在建立第一 MPLS TE隧道的过程中通过路径消息发送给所述第二路 由设备的。 路径消息的 RRO对象中携带有第一 MPLS TE隧道的路径信息, 即第一路径信息,路径消息的会话对象中携带有第一 MPLS TE隧道的标识符。 可选地, 通过协议扩展的方式, 所述第一标识符和 /或所述第一路径信息可以 携带与 path消息的扩展字段中。第一路由设备建立第一 MPLS TE隧道的过程 和步骤 401 是相互独立的, 可以不受时间上的先后顺序的限制。 可选的, 第 一 VPN实例和所述第二 VPN实例之间的业务可以为 L3VPN业务, 则第一路 由设备可以使用 MP-BGP与第二路由设备进行业务协商。 基于此, 第一路由 设备可以对 MP-BGP协议进行扩展, 通过扩展后的 MP-BGP协议将第一标识 符通告给第二路由设备。
在现有 L3 VPN机制中,第一路由设备和第二路由设备之间相互通告的是 VPN私网路由和 VPN私网标签。一个 VPN实例中存在多个 IP路由, VPN私 网路由是指每个 VPN实例中的 IP路由。 针对特定的 VPN私网路由携带隧道 标识符是没有意义的, 因为 MPLS TE隧道的标识符是关联业务的, 而业务对 应于 VPN实例而不是 VPN私网路由。 基于此, 对 MP-BGP进行扩展通告第 一标识符的过程包括对第一路由设备上的第一 VPN实例和第二路由设备上的 第二 VPN实例进行标识的过程和在标识 VPN实例之后通告第一标识符的过 程。
如图 5所示,当第一 VPN实例和第二 VPN实例之间也业务为 L3VPN时, 图 4 中的第一路由设备向第二路由设备发送第一标识符的一种实施方式包括 以下内容。
步骤 4011、 第一路由设备向第二路由设备发送第一 BGP更新消息, 所述 第一 BGP更新消息包括第一 VPN实例标识和第一 RT, 所述第一 VPN实例 标识用于标识第一路由设备上的第一 VPN实例,所述第一 RT为第一 VPN实 例的 RT。
步骤 4012、 第一路由设备接收第二路由设备发送的第二 BGP更新消息, 所述第二 BGP更新消息包括第二 VPN实例标识和第二 RT , 所述第二 VPN 实例标识用于标识第二路由设备上的第二 VPN实例,所述第二 RT为第二 VPN 实例的 RT。
第二 BGP更新消息是第二路由设备在确定第一 RT和第二 RT相等后发 送的。
上述为第一路由设备和第二路由设备相互学习并标识 VPN实例的过程, 具体描述可参见步骤 101。
步骤 4013、 第一路由设备在确定第一 RT和第二 RT相等后, 根据第一 VPN实例标识和第二 VPN实例标识, 确定第一标识符。 根据所述第一 VPN 实例标识和第二 VPN实例标识可以确定第一 MPLS TE隧道, 相应地, 也就 可以确定第一标识符。 确定第一标识符的具体方法包括: 当第一 MPLS TE隧 道已经被分配了第一标识符,则获取所述第一标识符; 当还没有为第一 MPLS 隧道分配第一标识符, 则分配所述第一标识符并获取所述第一标识符。
步骤 4014、 第一路由设备向第二路由设备发送第三 BGP更新消息, 所述 第三 BGP更新消息包括第一标识符。
可选的, 第三 BGP更新消息除了包括第一标识符之外, 还可以包括第一 VPN实例标识、 第二 VPN实例标识和第一 RT等信息。
第一路由设备通过对 BGP更新消息进行扩展, 实现向第二路由设备通告 第一标识符的目的, 其具体过程可参见步骤 101中的描述。
进一步,第一路由设备和第二路由设备可以通过属性信息和 NRLI来携带 VPN实例的 RT和 VPN实例标识, 或者通过 NLRI来携带 VPN实例标识和 VPN实例的 RT。
基于上述, 第一路由设备向第二路由设备发送第一 BGP更新消息的过程 可以为:第一路由设备将第一 RT封装在第一 BGP更新消息中的属性信息中, 将第一 VPN实例标识封装在第一 BGP更新消息中的 NLRI对象中,然后将封 装有第一 RT和第一 VPN实例标识的第一 BGP更新消息发送给第二路由设 备。 或者, 第一路由设备向第二路由设备发送第一 BGP更新消息的过程还可 以为:第一路由设备将第一 RT和第一 VPN实例标识封装在第一 BGP更新消 息中的 NLRI对象中,然后将封装有第一 RT和第一 VPN实例标识的第一 BGP 更新消息发送给第二路由设备。 相应的, 第一路由设备接收第二路由设备发 送的第二 BGP更新消息的过程可以为: 第一路由设备接收第二路由设备发送 的第二 BGP更新消息, 对第二 BGP更新消息进行解析, 从第二 BGP更新消 息中的属性信息中获取第二 RT ,从第二 BGP更新消息中的 NLRI对象中获取 第二 VPN实例标识。 或者, 第一路由设备接收第二路由设备发送的第二 BGP
更新消息的过程还可以为: 第一路由设备接收第二路由设备发送的第二 BGP 更新消息, 对第二 BGP更新消息进行解析, 从第二 BGP更新消息中的 NLRI 对象中获取第二 VPN实例标识和第二 RT。
进一步, 本实施例的 VPN实例标识可包括 RD信息和 IP地址。 例如, 第 一 VPN实例标识包括第一 RD和第一 IP地址; 第一 RD为第一 VPN实例的 RD, 第一 IP地址为第一路由设备的 IP地址。 第二 VPN实例标识包括第二 RD和第二 IP地址; 第二 RD为第二 VPN实例的 RD, 第二 IP地址为第二路 由设备的 IP地址。 关于 VPN实例标识的详细描述可参见步骤 101的描述。
可选的, 在确定第一 VPN实例和第二 VPN实例分别在第一 VPN实例和 第二 VPN实例之间的业务中的角色之前, 第一路由设备和第二设备可以比较 所述第一 VPN实例标识和所述第二 VPN实例标识的大小, 根据比较结果和 角色确定规则来确定所述第一 VPN实例的角色和第二 VPN实例的角色。 在 本实施例中, 可以将所述角色确定规则设置为: 在所述第一 VPN实例标识大 于所述第二 VPN实例标识时, 确定所述第一 VPN实例为所述业务主动方, 所述第二 VPN实例为所述业务被动方; 也可以将所述角色确定规则设置为: 在所述第一 VPN实例标识小于所述第二 VPN实例标识时,确定所述第一 VPN 实例为所述业务主动方, 所述第二 VPN实例为所述业务被动方。
可选地, 除了上述确定所述第一 VPN实例和所述第二 VPN实例的方法 外, 所述第一路由设备和第二路由设备还可以根据预先从管理设备分别接收 到的角色信息或者第一路由设备和第二路由设备中预先配置的角色信息来分 别确定第一 VPN实例和第二 VPN实例的角色。
另外, 第一路由设备根据第一 VPN实例标识和第二 VPN实例标识确定 出需要在第一 VPN实例和第二 VPN实例之间建立第一 MPLS TE隧道之后, 可以根据第二路由设备的 IP地址以及建立第一 MPLS TE隧道所需的属性信 息触发建立第一 MPLS TE隧道的过程。 具体的, 第一路由设备可以根据预先 配置的建立 MPLS TE隧道所需的属性信息建立第一 MPLS TE隧道。 更为具 体的, 第一路由设备可以使用预先配置的建立第一 MPLS TE隧道所需的属性 信息, 计算出第一路径信息, 然后使用 RSVP-TE按照第一路径信息建立第一 MPLS TE隧道。进一步,第一路由设备还可以同时根据预先配置的建立 MPLS TE隧道所需的属性信息和使用预先配置的建立 MPLS TE隧道所需的属性信 息建立 MPLS TE隧道的隧道策略, 建立第一 MPLS TE隧道。
第一路由设备通过第三 BGP更新消息向第二路由设备发送第一标识符的 过程与第一路由设备建立第一 MPLS TE隧道的过程是独立的, 本发明实施例 对其先后顺序不做限定。
可选的,预先配置建立 MPLS TE隧道使用的属性信息可以是预先配置建 立 MPLS TE隧道使用的隧道模板,然后使用隧道模板配置建立第一 MPLS TE 隧道使用的属性信息。 其中, 隧道模板可以看做是建立 MPLS TE隧道使用的 属性信息的集合。 这样第一路由设备可以不用为每个 MPLS TE隧道分配配置 属性信息, 可以降低对 MPLS TE隧道的配置工作量。
可选的, 第一路由设备还可以接收第二路由设备发送的第五 BGP更新消 息,并从第五 BGP更新消息中获取第二标识符,所述第二标识符为第二 MPLS TE隧道的标识符。 具体的, 第二路由设备在确定建立第二 MPLS TE隧道后, 可以向第一路由设备发送第五 BGP更新消息, 第五 BGP更新消息包括第一 VPN实例标识、 第二 VPN实例标识、 第二 RT和第二标识符。 这样可以保证 协议的完整性。
可选的, 第一路由设备还可以向第二路由设备发送隧道建立策略指示信 息, 所述隧道建立策略指示信息用于指示第二路由设备直接根据第二路径信 息建立第二 MPLS TE隧道, 或者, 用于指示所述第二路由设备在所述第二路 径信息上的链路和 /或节点满足所述第一隧道属性信息的约束时使用所述第二 路径信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路由设备在 所述第二路径信息上的链路和 /或节点不满足所述第一隧道属性信息的约束 时, 使用根据所述第一隧道属性信息计算出的所述第三路径信息建立所述第 三 MPLS TE隧道。 所述直接使用所述第二路径信息建立所述第二 MPLS TE 隧道是指在不检测所述第二路径信息上的链路和 /或节点是否满足所述第一隧 道属性信息的约束的情况下, 使用所述第二路径信息建立所述第二 MPLS TE 隧道。 所述第三 MPLS TE隧道与所述第一 MPLS TE隧道方向相反且部分共 路。
可选的, 第一路由设备和第二路由设备之间的业务可以为 L2VPN业务。 在这种情况下, 第一路由设备可以使用动态协议,例如 LDP或 BGP与第二路 由设备进行业务协商。基于此, 第一路由设备可以对 LDP或 BGP协议进行扩 展,通过扩展后的 LDP或 BGP协议将第一标识符通告给第二路由设备。例如, 第一路由设备可以向第二路由设备发送 LDP标签分发消息或第四 BGP更新消
息, 所述 LDP标签分发消息或第四 BGP更新消息包括第一标识符。
在本实施例中, 第一路由设备将从第一路由设备上的第一 VPN实例到第 二路由设备上的第二 VPN实例的 MPLS TE隧道的标识符提供给第二路由设 备, 使得第二路由设备可以根据该标识符获取第一 VPN实例到第二 VPN实 例的 MPLS TE隧道的路径信息, 即第一路径信息, 进而使得第二路由设备基 于获取的路径信息反转得到的路径信息, 即第二路径信息。 第一路由设备接 收到用于建立第二 MPLS TE隧道的路径消息, 并发送预留消息, 在网络条件 允许的情况下, 依照 RSVP-TE与第二路由设备建立与第一 MPLS TE隧道反 向且共路的第二 MPLS TE隧道, 可以减少或解决在进行 BFD时由于正反隧 道不共路引发的多种问题。 在本实施例的一个可选方式中, 第一路由设备通 知第二路由设备在无法建立第二 MPLS TE隧道时, 建立所述第三 MPLS TE 隧道, 并且所述第三 MPLS TE隧道与所述第一 MPLS TE隧道反向且部分共 路, 以便在一定程度上减少在进行 BFD时由于不共路造成的多种问题。
图 6为本发明一实施例提供的第二路由设备的结构示意图。 如图 6所示, 本实施例的第二路由设备包括: 第一标识符接收单元 71、 第一路径信息获取 单元 72和第一隧道建立单元 73。
第一标识符接收单元 71 , 用于接收第一路由设备发送的第一标识符, 所 述第一标识符为第一 MPLS TE隧道的标识符。 其中, 第一 MPLS TE隧道为 从第一路由设备上的第一 VPN 实例到第二路由设备上的第二 VPN 实例的 MPLS TE隧道。
第一路径信息获取单元 72,用于根据第一标识符接收单元 71接收到的第 一标识符, 获取第一路径信息, 所述第一路径信息为第一 MPLS TE隧道的路 径信息。 可选的, 第一路径信息获取单元 72与第一标识符接收单元 71连接。
第一隧道建立单元 73 ,用于将第一路径信息获取单元 72获取的第一路径 信息反转, 获取第二路径信息, 根据第二路径信息建立第二 MPLS TE隧道。 第二 MPLS TE隧道为从所述第二 VPN实例到所述第一 VPN实例的 MPLS TE 隧道。 所述第二 MPLS TE隧道与所述第一 MPLS TE隧道反向且共路。 可选 的, 第一隧道建立单元 73与第一路径信息获取单元 72连接。
可选地, 第一标识符接收单元 71为一个物理接口, 第一路径信息获取单 元 72为第一处理器, 第一隧道建立单元 73为第二处理器。 所述第一处理器 和第二处理器可以是同一个处理器, 也可以是不同的处理器。
所述第二 MPLS TE隧道与第一 MPLS TE隧道共路且反向。
本实施例的第二路由设备的各功能单元可用于执行图 1所示 MPLS TE隧 道建立方法的流程, 其具体工作原理不再赘述, 详见方法实施例的描述。
本实施例的第二路由设备可以是 PE , 但不限于此。
本实施例的第二路由设备可以与第一路由设备相互配合, 接收第一路由 设备发送的第一标识符, 根据该第一标识符获取第一路径信息, 然后将获取 的第一路径信息反转得到第二路径信息, 并在网络条件允许的情况下基于反 转后的第二路径信息建立第二 MPLS TE隧道, 使得所建立的第二 MPLS TE 隧道与第一 MPLS TE隧道共路, 从而解决或减少了在进行 BFD时由于不共 路造成的多种问题。
图 7 为本发明一实施例提供的第二路由设备的结构示意图。 本实施例可 基于图 6所示实施例实现。 如图 7所示, 本实施例的第二路由设备也包括有 第一标识符接收单元 71、 第一路径信息获取单元 72和第一隧道建立单元 73。
本实施例的第一路径信息获取单元 72可具体根据第一标识符查询第一标 识符和第一 MPLS TE隧道的路径信息的对应关系, 获取第一 MPLS TE隧道 的路径信息, 即第一路径信息。 所述第一标识符和第一 MPLS TE隧道的路径 信息的对应关系是所述第一路由设备在建立第一 MPLS TE隧道的过程中通过 路径 (英文为 path ) 消息发送给所述第二路由设备的, 所述路径消息是指 RSVP-TE中的路径消息。 路径消息的 RRO对象中携带有第一 MPLS TE隧道 的路径信息, 路径消息的会话对象中携带有第一 MPLS TE隧道的标识符。 可 选地, 通过协议扩展的方式, 所述第一标识符和 /或所述第一路径信息可以携 带与 path消息的扩展字段中。第一路由设备建立第一 MPLS TE隧道的过程和 步骤 401是相互独立的, 可以不受时间上的先后顺序的限制。
可选地, 第一路径信息获取单元 72也可以具体用于根据第一标识符获取 单元 71 获取的第一标识符和第一对应关系确定出第一标识符所标识的第一 MPLS TE隧道, 根据第一 MPLS TE隧道的标识查询第二对应关系, 获取第 一路径信息。 其中, 第一对应关系为第一标识符和第一 MPLS TE隧道之间的 对应关系; 第二对应关系为第一 MPLS TE隧道的标识和第一路径信息的对应 关系。
进一步, 本实施例的第一隧道建立单元 73可具体用于直接使用所述第二 路径信息建立所述第二 MPLS TE隧道。 也就是说, 第二路由设备不确定第二
路径信息上的链路和 /或节点是否满足第一隧道属性信息的约束, 直接建立所 述第二 MPLS TE隧道。 在网络条件允许的情况下, 这种方式是可用的。
可选地, 第一隧道建立单元 73也可具体用于确定第二路径信息上的链路 和 /或节点是否满足第一隧道属性信息的约束, 在确定出第二路径信息上的链 路和 /或节点满足第一隧道属性信息的约束后, 使用第二路径信息建立第二 MPLS TE隧道。
进一步, 本实施例的第一隧道建立单元 73还可用于在确定出第二路径信 息上的链路和 /或节点不满足第一隧道属性信息的约束后, 根据第一隧道属性 信息计算出第三路径信息, 然后使用第三路径信息建立第三 MPLS TE隧道。 第一隧道属性信息为第一路由设备建立第一 MPLS TE隧道所需的属性信息, 或者为本实施例的第二路由设备预先配置的建立第二 MPLS TE隧道所需的属 性信息, 或者为本实施例的第二路由设备建立第二 MPLS TE隧道所需的默认 属性信息。 所述第三 MPLS TE隧道与所述第一 MPLS TE隧道反向且部分共 路。
可选地, 本实施例的路由设备还可以包括: 第二消息接收单元 78。 第二 消息接收单元 78, 用于接收第一路由设备发送的隧道建立策略指示信息, 所 述隧道建立策略指示信息用于指示所述第二路由设备直接使用所述第二路径 信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路由设备在所述 第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的约束时使用所 述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道策略指示信息 用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节点不满足所 述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息计算出的所 述第三路径信息建立所述第三 MPLS TE隧道。 所述直接使用所述第二路径 信息建立所述第二 MPLS TE隧道是指在不确定所述第二路径信息上的链路和 /或节点是否满足所述第一隧道属性信息的约束的情况下, 使用所述第二路径 信息建立所述第二 MPLS TE隧道。 可选的, 第二消息接收单元 78与第一隧 道建立单元 73连接。
可选的, 第一 MPLS TE隧道包括主标 LSP和备份 LSP。 基于此, 第一路 径信息获取单元 72还可以具体用于根据第一 MPLS TE隧道中 LSP的角色信 息, 分别获取主 LSP对应的第一主用路径信息和备份 LSP对应的第一备用路 径信息。 相应地, 第一隧道建立单元 73还可以具体用于分别将第一主用路径
信息和第一备用路径信息进行反转, 获取主 LSP对应的第二主用路径信息和 备份 LSP对应的第二备用路径信息, 然后分别根据第二主用路径信息和第二 备用路径信息, 建立第二 MPLS TE隧道中的主 LSP和备份 LSP。
可选的, 本实施例的路由设备还包括: 配置单元 75。 配置单元 75用于使 用预先配置的建立第二 MPLS TE隧道使用的隧道模板, 配置建立第二 MPLS TE隧道所需的属性信息。
可选的, 本实施例的路由设备还可以包括: 第一标识符发送单元 79。 第一标识符发送单元 79 , 用于向第一路由设备发送第五 BGP更新消息, 第五 BGP更新消息包括第二 VPN实例标识、 第二 RT、 第一 VPN实例标识 和第二标识符; 所述第二标识符为第二 MPLS TE隧道的标识符。 可选的, 第 一标识符发送单元 79与第一标识符接收单元 71连接。
在本实施例中, 第一 VPN实例为第一 VPN实例和第二 VPN实例之间的 业务的业务主动方, 第二 VPN实例为第一 VPN实例为第一 VPN实例和第二 VPN实例之间的业务的业务被动方。
可选的,第一 VPN实例和第二 VPN实例之间的业务可以为 L3VPN业务。 当第一 VPN实例和第二 VPN实例之间的业务为 L3VPN业务时, 本实施 例的路由设备还可以包括:第一消息接收单元 74单元和第一消息发送单元 76。
第一消息接收单元 74用于接收第一路由设备发送的第一 BGP更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一 RT , 其中, 第一 VPN 实例标识用于标识第一路由设备上的第一 VPN实例,第一 RT为第一 VPN实 例的 RT。
第一消息发送单元 76用于在确定第一 RT和第二 RT相等后, 向第一路 由设备发送第二 BGP更新消息, 第二 BGP更新消息包括包括第二 VPN实例 标识和第二 RT, 其中, 第二 RT为第二 VPN实例的 RT, 第二 VPN实例标识 用于标识第二 VPN实例。 可选的, 第一消息接收单元 74与第一消息发送单 元 76连接。
基于上述, 第一标识符接收单元 71具体用于接收第一路由设备发送的第 三 BGP更新消息, 所述第三 BGP更新消息包括第一标识符, 所述第三 BGP 更新消息是第一路由设备在接收到第二 BGP更新消息后发送的。 可选的, 第 一标识符接收单元 71具体用于在第一消息发送单元 76向第一路由设备发送 第二 BGP更新消息之后, 接收第一路由设备发送的第三 BGP更新消息。
可选的, 第三 BGP更新消息还可以包括: 第一 VPN实例标识、 第一 RT 和第二 VPN实例标识。
进一步, 本实施例的第一消息接收单元 74具体用于接收第一路由设备发 送的第一 BGP更新消息, 对第一 BGP更新消息进行解析, 从第一 BGP更新 消息的属性信息中获取第一 RT ,从第一 BGP更新消息中的 NLRI对象中获取 第一 VPN实例标识。 或者, 第一消息接收单元 74具体用于接收第一路由设 备发送的第一 BGP更新消息, 对第一 BGP更新消息进行解析, 从第一 BGP 更新消息中的 NLRI对象中获取第一 VPN实例标识和第一 RT。
相应地, 本实施例的第一消息发送单元 76具体用于将第二 RT封装在第 二 BGP更新消息中的属性信息中, 将第二 VPN实例标识封装在第二 BGP更 新消息中的 NLRI对象中, 然后将封装有第二 RT和第二 VPN实例标识的第 二 BGP更新消息发送给第一路由设备。 或者, 第一消息发送单元 76具体用 于将第二 RT和第二 VPN实例标识封装在第二 BGP更新消息中的 NLRI对象 中,然后将封装有第二 RT和第二 VPN实例标识的第二 BGP更新消息发送给 第一路由设备。
进一步, 本实施例的第二路由设备还可以包括: 第一身份确定单元 77。 第一身份确定单元 77,用于根据第一消息接收单元 74接收到的第一 VPN 实例标识和第二 VPN实例标识, 确定第二 VPN实例为业务被动方。 例如, 可以把确定规则设置为: 当第一 VPN实例标识的值大于第二 VPN实例标识 的值时,确定第二 VPN实例为业务被动方。 当然,也可以把确定规则设置为: 在第一 VPN实例标识的值小于第二 VPN实例标识的值时, 确定第二 VPN实 例为业务被动方。 可选的, 第一身份确定单元 77与第一消息接收单元 74连 接。
可选的, 第一 VPN实例标识包括第一 RD和第一 IP地址; 所述第一 RD 为第一 VPN实例的 RD , 第一 IP地址为第一路由设备的 IP地址。
第二 VPN实例标识包括第二 RD和第二 IP地址; 所述第二 RD为第二 VPN实例的 RD , 第二 IP地址为本实施例的路由设备的 IP地址。
可选的,第一 VPN实例和第二 VPN实例之间的业务可以为 L2VPN业务。 第一 VPN实例和第二 VPN实例之间的业务为 L2VPN业务时,本实施例的第 一标识符接收单元 71具体用于接收第一路由设备发送的 LDP标签分发消息或 第四 BGP更新消息, 所述 LDP标签分发消息或第四 BGP更新消息包括第一
标识符。
本实施例上述各功能单元可用于上述 MPLS TE隧道建立方法实施例中的 相应流程, 其具体工作原理不再赘述, 详见如图 1所示的方法实施例的描述。
本实施例的第二路由设备与第一路由设备相互配合, 接收第一路由设备 发送的第一 VPN实例到第二 VPN实例的 MPLS TE隧道的标识符,根据该标 识符获取第一 VPN实例到第二 VPN实例的 MPLS TE隧道的路径信息, 即第 一路径信息, 然后将获取的第一路径信息反转, 得到第二路径信息, 并基于 反转后的第二路径信息建立从第二 VPN实例到第一 VPN实例的 MPLS TE隧 道, 使得所建立的 MPLS TE隧道与第一 VPN实例到第二 VPN实例的 MPLS TE隧道在网络条件允许的情况下能够实现共路且反向, 从而解决或减少了在 进行 BFD时由于不共路造成的多种问题。 在本实施例的一种可选方式中, 当 无法建立与第一 MPLS TE隧道共路且反向的第二 MPLS TE隧道时, 第二路 由设备还可以建立与第一 MPLS TE隧道方向且部分共路的第三 MPLS TE隧 道, 以便在一定程度上减少在进行 BFD时由于不共路造成的多种问题。
图 8为本发明一实施例提供的第一路由设备的结构示意图。 如图 8所示, 本实施例的第一路由设备包括: 第二标识符发送单元 90、 路径消息接收单元 91和预留消息发送单元 92。
所述第二标识符发送单元 90用于向第二路由设备发送第一标识符, 以使 第二路由设备根据第一标识符获取第一路径信息, 然后根据由第一路径信息 反转得到的第二路径信息建立第二 MPLS TE 隧道, 所述第一标识符为第一 MPLS TE隧道的标识符, 所述第一路径信息为第一 MPLS TE隧道的路径信 息。 第一 MPLS TE隧道为从本实施例的路由设备上的第一 VPN实例到第二 路由设备上的第二 VPN实例的 MPLS TE隧道;第二 MPLS TE隧道为从第二 VPN实例到第一 VPN实例的 MPLS TE隧道。
所述路径消息接收单元 91 用于接收第二路由设备发送的用于建立第二 MPLS TE隧道的路径消息, 所述第二 MPLS TE隧道为从所述第二 VPN实例 到所述第一 VPN实例的 MPLS TE隧道,所述第二 MPLS TE隧道的路径信息 是对所述第一路径信息进行反转得到的。
所述预留消息发送单元 92用于向所述第二路由设备发送与所述路径消息 对应的预留消息。 所述路径消息和预留消息均为 RSVP -TE中的消息。
所述第二 MPLS TE隧道与所述第一 MPLS TE隧道反向且共路。
可选地, 路径消息接收单元 91与预留消息发送单元 92相连接。
所述第一路由设备可以与第二路由设备在可以在网络条件允许的情况下 建立与所述第一 MPLSTE隧道反向且共路的所述第二 MPLS TE隧道, 从而 解决或减少了在进行 BFD时由于不共路造成的多种问题。 所述第二标识符发 送单元 90是用于帮助第二路由设备获取第二路径信息的, 所述路径消息接收 单元 91和所述预留消息发送单元 92是用于 建立第二 MPLS TE隧道的。
本实施例的路由设备可以是 PE, 但不限于此。
图 9为本发明一实施例提供的路由设备的结构示意图。 本实施例可基于 图 8所示实施例实现。 如图 9所示, 本实施例的设备也包括: 第二标识符发 送单元 90和路径消息接收单元 91和预留消息发送单元 92。 可选的, 本实施 例的第一路由设备还可以还包括: 第三消息发送单元 98。
第三消息发送单元 98, 用于发送隧道建立策略指示信息, 所述隧道建立 策略指示信息用于指示所述第二路由设备直接使用所述第二路径信息建立所 述第二 MPLS TE隧道, 或者, 所述隧道建立策略指示信息用于指示所述第二 路由设备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息 的约束时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧 道策略指示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 / 或节点不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性 信息计算出的所述第三路径信息建立所述第三 MPLS TE隧道。 第一隧道属性 信息为本实施例的路由设备建立第一 MPLS TE隧道所需的属性信息, 或者为 第二路由设备预先配置的建立第二 MPLS TE隧道所需的属性信息, 或者为第 二路由设备建立第二 MPLS TE隧道所需的默认属性信息。
可选的,第一 VPN实例和第二 VPN实例之间的业务可以为 L3VPN业务。 当第一 VPN实例和第二 VPN实例之间的业务为 L3VPN业务,本实施例 的第一路由设备还包括: 第二消息发送单元 93、 第三消息接收单元 94和第一 隧道信息确定单元 96。
所述第二消息发送单元 93用于向第二路由设备发送第一 BGP更新消息, 第一 BGP更新消息包括第一 VPN实例标识和第一 RT, 其中, 第一 VPN实 例标识用于标识本实施例的路由设备上的第一 VPN实例,第一 RT为第一 VPN 实例的 RT。
所述第三消息接收单元 94用于接收第二路由设备发送的第二 BGP更新
消息, 所述第二 BGP更新消息包括第二 VPN实例标识和第二 RT, 其中, 第 二 VPN实例标识用于标识第二路由设备上的第二 VPN实例,第二 RT为第二 VPN实例的 RT, 第二 BGP更新消息是第二路由设备在确定第一 RT和第二 RT相等后发送的。 可选地, 第三消息接收单元 94和第二标识符发送单元 90 相连接。 所述第一隧道信息确定单元 96用于在单元确定第一 RT和第二 RT 相等后, 根据第一 VPN实例标识和第二 VPN实例标识, 确定第一标识符, 第一标识符为从第一 VPN实例到第二 VPN实例的第一 MPLS TE隧道的隧道 标识。 可选的, 第一隧道信息确定单元 96与第二标识符发送单元 90单元连 接。 可选地, 第一隧道信息确定单元 96与第三消息接收单元 94相连接。
基于上述, 第二标识符发送单元 90 具体用于向第二路由设备发送第三 BGP更新消息, 第三 BGP更新消息包括第一标识符。 可选的, 第二标识符发 送单元 90用于在确定第一 RT和第二 RT相等后, , 向第二路由设备发送第 三 BGP更新消息。
可选的, 第三 BGP更新消息还可以包括: 第一 VPN实例标识、 第一 RT 和第二 VPN实例标识。
进一步, 第二消息发送单元 93具体可以用于将第一 RT封装在第一 BGP 更新消息中的属性信息中, 将第一 VPN实例标识封装在第一 BGP更新消息 中的网络侧可达信息 NLRI对象中, 然后将封装有第一 RT和第一 VPN实例 标识的第一 BGP更新消息发送给第二路由设备。 或者, 第二消息发送单元 93 具体可以用于将第一 RT和第一 VPN实例标识封装在第一 BGP更新消息中的 NLRI对象中, 然后将封装有第一 RT和第一 VPN实例标识的第一 BGP更新 消息发送给第二路由设备。
相应地, 第三消息接收单元 94具体可以用于接收第二 BGP更新消息, 对第二 BGP更新消息进行解析,从第二 BGP更新消息中的属性信息中获取第 二 RT , 从第二 BGP更新消息中的 NLRI对象中获取第二 VPN实例标识。 或 者,第三消息接收单元 94具体可以用于接收第二 BGP更新消息,对第二 BGP 更新消息进行解析,从第二 BGP更新消息中的 NLRI对象中获取第二 VPN实 例标识和第二 RT。
可选的, 本实施例的路由设备还可以包括: 第二身份确定单元 97。
第二身份确定单元 97 ,用于根据第一 VPN实例标识和第三消息接收单元 94接收到的第二的 VPN实例标识的大小,确定第一 VPN实例为业务主动方。
可选的, 第二身份确定单元 97和第三消息接收单元 94连接。
可选的,本实施例的第一 VPN实例标识可以包括第一 RD和第一 IP地址; 所述第一 RD为第一 VPN实例的 RD , 第一 IP地址为本实施例的路由设备的 IP地址。
相应地, 第二 VPN实例标识可以包括第二 RD和第二 IP地址; 所述第二 RD为第二 VPN实例的 RD, 第二 IP地址为第二路由设备的 IP地址。
可选的, 路由设备还可以包括: 第二标识符接收单元 99。
第二标识符接收单元 99,用于接收第二路由设备发送的第五 BGP更新消 息, 第五 BGP更新消息包括第一 VPN实例标识、 第二 VPN实例标识、 第二 RT和第二标识符, 所述第二标识符为第二 MPLS TE隧道的标识符。
可选的,第一 VPN实例和第二 VPN实例之间的业务可以为 L2VPN业务。 当第一 VPN实例和第二 VPN实例之间的业务为 L2VPN业务, 第二标识符发 送单元 90具体可以用于向第二路由设备发送 LDP标签分发消息或第四 BGP 更新消息, 所述 LDP标签分发消息或第四 BGP更新消息包括第一标识符。
本实施例上述各功能单元可用于执行上述 MPLS TE隧道建立方法实施例 中的相应流程, 其具体工作原理不再赘述, 详见方法实施例的描述。
在本实施例中, 第一路由设备将从第一路由设备上的第一 VPN实例到第 二路由设备上的第二 VPN实例的 MPLS TE隧道的标识符提供给第二路由设 备, 使得第二路由设备可以根据该标识符获取第一 VPN实例到第二 VPN实 例的 MPLS TE隧道的路径信息, 即第一路径信息, 进而使得第二路由设备基 于获取的路径信息反转得到的路径信息, 即第二路径信息。 第一路由设备接 收到用于建立第二 MPLS TE隧道的路径消息, 并发送预留消息, 在网络条件 允许的情况下, 依照 RSVP-TE与第二路由设备建立与第一 MPLS TE隧道反 向且共路的第二 MPLS TE隧道, 可以减少或解决在进行 BFD时由于正反隧 道不共路引发的多种问题。 在本实施例的一个可选方式中, 第一路由设备通 知第二路由设备在无法建立第二 MPLS TE隧道时, 建立所述第三 MPLS TE 隧道, 并且所述第三 MPLS TE隧道与所述第一 MPLS TE隧道反向且部分共 路, 以便在一定程度上减少在进行 BFD时由于不共路造成的多种问题。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步骤; 而
前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码 的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims
1、 一种多协议标签交换流量工程 MPLS TE隧道建立方法, 其特征在于, 包括:
第二路由设备接收第一路由设备发送的第一标识符, 所述第一标识符为 第一 MPLS TE隧道的标识符, 所述第一 MPLS TE隧道为从所述第一路由设 备上的第一虚拟专用网 VPN实例到所述第二路由设备上的第二 VPN实例的 MPLS TE隧道;
所述第二路由设备根据所述第一标识符, 获取第一路径信息, 所述第一 路径信息为所述第一 MPLS TE隧道的路径信息;
所述第二路由设备将所述第一路径信息反转, 获取第二路径信息, 根据 所述第二路径信息建立第二 MPLS TE隧道, 所述第二 MPLS TE隧道为从所 述第二 VPN实例到所述第一 VPN实例的 MPLS TE隧道。
2、 根据权利要求 1所述的 MPLS TE隧道建立方法, 其特征在于, 所述 第一 VPN实例和所述第二 VPN实例之间的业务为三层虚拟专用网络 L3VPN 业务;
所述第二路由设备接收第一路由设备发送的第一标识符包括:
所述第二路由设备接收所述第一路由设备发送的第一边界网关协议 BGP 更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一路由目标 RT, 其中, 所述第一 VPN实例标识用于标识所述第一 VPN实例, 所述第一 RT为所述第一 VPN实例的 RT;
所述第二路由设备在确定所述第一 RT和第二 RT相等后, 向所述第一路 由设备发送第二 BGP更新消息, 所述第二 BGP更新消息包括第二 VPN实例 标识和所述第二 RT , 其中, 所述第二 RT为所述第二 VPN实例的 RT , 所述 第二 VPN实例标识用于标识所述第二 VPN实例;
所述第二路由设备接收所述第一路由设备发送的第三 BGP更新消息, 所 述第三 BGP更新消息包括所述第一标识符,其中,所述第三 BGP更新消息是 所述第一路由设备在收到所述第二 BGP更新消息后发送的。
3、 根据权利要求 2所述的 MPLS TE隧道建立方法, 其特征在于, 所述 第三 BGP更新消息还包括: 所述第一 VPN实例标识、 所述第一 RT和所述第 二 VPN实例标识。
4、 根据权利要求 2或 3所述的 MPLS TE隧道建立方法, 其特征在于, 所述第二路由设备接收所述第一路由设备发送的第一 BGP更新消息包括: 所述第二路由设备接收所述第一 BGP更新消息,对所述第一 BGP更新消 息进行解析, 从所述第一 BGP更新消息的属性信息中获取所述第一 RT, 从 所述第一 BGP更新消息中的网络侧可达信息 NLRI对象中获取所述第一 VPN 实例标识, 或者, 所述第二路由设备接收所述第一 BGP更新消息, 对所述第 一 BGP更新消息进行解析, 从所述第一 BGP更新消息中的网络侧可达信息 NLRI对象中获取所述第一 VPN实例标识和所述第一 RT;
所述第二路由设备向所述第一路由设备发送第二 BGP更新消息包括: 所述第二路由设备将所述第二 RT封装在所述第二 BGP更新消息中的属 性信息中 ,将所述第二 VPN实例标识封装在所述第二 BGP更新消息中的 NLRI 对象中 ,然后将封装有所述第二 RT和所述第二 VPN实例标识的所述第二 BGP 更新消息发送给所述第一路由设备, 或者, 所述第二路由设备将所述第二 RT 和所述第二 VPN实例标识封装在所述第二 BGP更新消息中的 NLRI对象中, 然后将封装有所述第二 RT和所述第二 VPN实例标识的所述第二 BGP更新消 息发送给所述第一路由设备。
5、根据权利要求 2、 3或 4所述的 MPLS TE隧道建立方法,其特征在于, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网协议 IP地 址, 所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为所述第一 路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
6、 根据权利要求 1所述的 MPLS TE隧道建立方法, 其特征在于, 所述 第一 VPN实例和所述第二 VPN实例之间的业务为二层虚拟专用网络 L2VPN 业务;
所述第二路由设备接收第一路由设备发送的第一标识符包括:
所述第二路由设备接收所述第一路由设备发送的标签分发协议 LDP标签 分发消息或第四边界网关协议 BGP更新消息,所述 LDP标签分发消息或所述 第四 BGP更新消息包括所述第一标识符。
7、 根据权利要求 1至 6中任一项所述的 MPLS TE隧道建立方法, 其特 征在于, 所述第二路由设备根据所述第一标识符, 获取所述第一路径信息包
括:
所述第二路由设备根据所述第一标识符和第一对应关系确定出所述第一 标识符所标识的所述第一 MPLS TE隧道 , 所述第一对应关系为所述第一标识 符和所述第一 MPLS TE隧道之间的对应关系;
所述第二路由设备根据所述第一 MPLS TE 隧道的标识查询第二对应关 系, 获取所述第一路径信息, 所述第二对应关系为所述第一 MPLS TE隧道的 标识和所述第一路径信息的对应关系;
或者,
所述第二路由设备根据所述第一标识符, 获取所述第一路径信息包括: 所述第二路由设备根据所述第一标识符查询所述第一标识符和第一路径 信息的对应关系, 获取所述第一路径信息, 所述第一标识符和第一路径信息 的对应关系为所述第二路由设备从接收到的用于建立第一 MPLS TE隧道的路 径消息中获取的。
8、 根据权利要求 1至 7中任一项所述的 MPLS TE隧道建立方法, 其特 征在于, 所述第二路由设备根据所述第二路径信息建立第二 MPLS TE隧道具 体包括:
所述第二路由设备直接使用所述第二路径信息建立所述第二 MPLS TE隧 道;
或者,
所述第二路由设备确定所述第二路径信息上的链路和 /或节点是否满足第 一隧道属性信息的约束, 如果所述第二路由设备确定出所述第二路径信息上 的链路和 /或节点满足所述第一隧道属性信息的约束, 则使用所述第二路径信 息建立所述第二 MPLS TE隧道, 其中, 所述第一隧道属性信息为所述第一路 由设备建立所述第一 MPLS TE隧道所需的属性信息, 或者, 所述第一隧道属 性信息为所述第二路由设备预先配置的建立所述第二 MPLS TE隧道所需的属 性信息, 或者, 所述第一隧道属性信息为所述第二路由设备建立所述第二 MPLS TE隧道所需的默认属性信息。
9、 根据权利要求 8所述的的 MPLS TE隧道建立方法, 其特征在于, 还包 括:
如果所述第二路由设备确定出所述第二路径信息上的链路和 /或节点不满 足所述第一隧道属性信息的约束, 则根据所述第一隧道属性信息计算出第三
路径信息;
所述第二路由设备使用所述第三路径信息建立从所述第二 VPN实例到所 述第一 VPN实例的第三 MPLS TE隧道。
10、 根据权利要求 8或 9所述的 MPLS TE隧道建立方法, 其特征在于, 所述第二路由设备根据所述第二路径信息建立第二 MPLS TE 隧道之前还包 括:
所述第二路由设备接收所述第一路由设备发送的隧道建立策略指示信 息, 所述隧道建立策略指示信息用于指示所述第二路由设备直接使用所述第 二路径信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路由设备 在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的约束时 使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道策略指 示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节点不 满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息计算 出的所述第三路径信息建立所述第三 MPLS TE隧道。
11、 根据权利要求 1至 10中任一项所述的 MPLS TE隧道建立方法, 其 特征在于, 所述第一 MPLS TE隧道包括主标签交换路径 LSP和备份 LSP; 所述第二路由设备根据所述第一标识符, 获取第一路径信息包括: 所述第二路由设备根据所述第一 MPLS TE隧道中 LSP的角色信息,分别 获取所述第一 MPLS TE隧道中的主 LSP对应的第一主用路径信息和所述第一 MPLS TE隧道中的备份 LSP对应的第一备用路径信息;
所述第二路由设备将所述第一路径信息反转, 获取第二路径信息, 根据 所述第二路径信息建立第二 MPLS TE隧道包括:
所述第二路由设备分别将所述第一主用路径信息和所述第一备用路径信 息进行反转,获取所述第一 MPLS TE隧道中的主 LSP对应的第二主用路径信 息和所述第一 MPLS TE隧道中的备份 LSP对应的第二备用路径信息;
所述第二路由设备分别根据所述第二主用路径信息和所述第二备用路径 信息, 建立所述第二 MPLS TE隧道中的主 LSP和备份 LSP。
12、 根据权利要求 8至 11中任一项所述的 MPLS TE隧道建立方法, 其 特征在于, 为所述第二路由设备预先配置建立所述第二 MPLS TE隧道所需的 属性信息包括:
为所述第二路由设备预先配置建立所述第二 MPLS TE隧道使用的隧道模
板,使用所述隧道模板为所述第二路由设备配置建立所述第二 MPLS TE隧道 所需的属性信息。
13、 根据权利要求 3至 5以及 7至 12中任一项所述的 MPLS TE隧道建 立方法, 其特征在于, 还包括:
所述第二路由设备向所述第一路由设备发送第五 BGP更新消息, 所述第 五 BGP更新消息包括所述第一 VPN实例标识、 所述第二 VPN实例标识、 所 述第二 RT和第二标识符, 所述第二标识符为所述第二 MPLS TE隧道的标识 付。
14、 根据权利要求 1至 13任一项所述的 MPLS TE隧道建立方法, 其特 征在于, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例之间 的业务的业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例之间的业务的业务被动方。
15、 一种建立多协议标签交换流量工程 MPLS TE隧道的方法, 其特征在 于, 包括:
第一路由设备向第二路由设备发送第一标识符, 以使所述第二路由设备 根据所述第一标识符获取第一路径信息, 其中, 所述第一标识符为第一多协 议标签交换流量工程 MPLS TE隧道的标识符, 所述第一路径信息为所述第一 MPLS TE隧道的路径信息, 所述第一 MPLS TE隧道为从所述第一路由设备 上的第一虚拟专用网 VPN 实例到所述第二路由设备上的第二 VPN 实例的 MPLS TE隧道;
所述第一路由设备接收第二路由设备发送的用于建立第二 MPLS TE隧道 的路径消息,所述第二 MPLS TE隧道为从所述第二 VPN实例到所述第一 VPN 实例的 MPLS TE隧道, 所述第二 MPLS TE隧道的路径信息是对所述第一路 径信息进行反转得到的;
所述第一路由设备向所述第二路由设备发送与所述路径消息对应的预留 消息。
16、 根据权利要求 15所述的方法, 其特征在于, 所述第一 VPN实例和 所述第二 VPN实例之间的业务为三层虚拟专用网络 L3VPN业务;
所述第一路由设备向第二路由设备发送第一标识符包括:
所述第一路由设备向所述第二路由设备发送第一 BGP更新消息, 所述第 一 BGP更新消息包括第一 VPN实例标识和第一路由目标 RT , 其中, 所述第
一 VPN实例标识用于标识所述第一 VPN实例,所述第一 RT为所述第一 VPN 实例的 RT;
所述第一路由设备接收所述第二路由设备发送的第二 BGP更新消息, 所 述第二 BGP更新消息包括第二 VPN 实例标识和第二 RT, 其中, 所述第二 VPN实例标识用于标识所述第二 VPN实例, 所述第二 RT为所述第二 VPN 实例的 RT, 所述第二 BGP更新消息是所述第二路由设备在确定所述第一 RT 和所述第二 RT相等后发送的;
所述第一路由设备在确定所述第一 RT和所述第二 RT相等后, 根据所述 第一 VPN实例标识和所述第二 VPN实例标识, 确定所述第一标识符;
所述第一路由设备向所述第二路由设备发送第三 BGP更新消息, 所述第 三 BGP更新消息包括所述第一标识符。
17、 根据权利要求 16所述的方法, 其特征在于, 所述第三 BGP更新消 息还包括:所述第一 VPN实例标识、所述第一 RT和所述第二 VPN实例标识。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 所述第一路由设 备向所述第二路由设备发送第一 BGP更新消息包括:
所述第一路由设备将所述第一 RT封装在所述第一 BGP更新消息中的属 性信息中, 将所述第一 VPN实例标识封装在所述第一 BGP更新消息中的网 络侧可达信息 NLRI对象中, 然后将封装有所述第一 RT和所述第一 VPN实 例标识的所述第一 BGP更新消息发送给所述第二路由设备, 或者, 所述第一 路由设备将所述第一 RT和所述第一 VPN实例标识封装在所述第一 BGP更新 消息中的 NLRI对象中, 然后将封装有所述第一 RT和所述第一 VPN实例标 识的所述第一 BGP更新消息发送给所述第二路由设备;
所述第一路由设备接收所述第二路由设备发送的第二 BGP 更新消息包 括:
所述第一路由设备接收所述第二 BGP更新消息,对所述第二 BGP更新消 息进行解析, 从所述第二 BGP更新消息中的属性信息中获取所述第二 RT, 从所述第二 BGP更新消息中的 NLRI对象中获取所述第二 VPN实例标识,或 者,所述第一路由设备接收所述第二 BGP更新消息,对所述第二 BGP更新消 息进行解析, 从所述第二 BGP更新消息中的 NLRI对象中获取所述第二 VPN 实例标识和所述第二 RT。
19、 根据权利要求 16、 17或 18所述的方法, 其特征在于,
所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网协议 IP地 址, 所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为所述第一 路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
20、 根据权利要求 15所述的方法, 其特征在于, 所述第一 VPN实例和 所述第二 VPN实例之间的业务为二层虚拟专用网络 L2VPN业务;
所述第一路由设备向第二路由设备发送第一标识符包括:
所述第一路由设备向所述第二路由设备发送标签分发协议 LDP标签分发 消息或第四边界网关协议 BGP更新消息,所述 LDP标签分发消息或所述第四
BGP更新消息包括所述第一标识符。
21、 根据权利要求 15至 20任一项所述的方法, 其特征在于, 所述方法 还包括:
所述第一路由设备发送隧道建立策略指示信息, 所述隧道建立策略指示 信息用于指示所述第二路由设备直接使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道建立策略指示信息用于指示所述第二路由设 备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的约束 时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所述隧道策略 指示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节点 不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息计 算出的所述第三路径信息建立所述第三 MPLS TE隧道。
22、 根据权利要求 15至 21任一项所述的方法, 其特征在于, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例之间的业务的业务主动 方, 所述第二 VPN实例为所述第一 VPN实例为所述第一 VPN实例和所述第 二 VPN实例之间的业务的业务被动方。
23、 根据权利要求 15至 22任一项所述的方法, 其特征在于, 所述方法 还包括:
所述第一路由设备向所述第二路由设备发送用于建立所述第一 MPLS TE 隧道的路径消息, 所述路径消息中携带所述第一标识符和所述第一路径信息 的对应关系。
24、 一种第二路由设备, 其特征在于, 包括:
第一标识符接收单元 (71), 用于接收第一路由设备发送的第一标识符, 所 述第一标识符为第一多协议标签交换流量工程 MPLS TE隧道的标识符, 所述 第一 MPLS TE隧道为从所述第一路由设备上的第一虚拟专用网 VPN实例到 所述第二路由设备上的第二 VPN实例的 MPLS TE隧道;
第一路径信息获取单元 (72), 用于根据所述第一标识符, 获取第一路径信 息, 所述第一路径信息为所述第一 MPLS TE隧道的路径信息;
第一隧道建立单元 (73), 用于将所述第一路径信息反转, 获取第二路径信 息, 根据所述第二路径信息建立第二 MPLS TE隧道, 所述第二 MPLS TE隧 道为从所述第二 VPN实例到所述第一 VPN实例的 MPLS TE隧道。
25、 根据权利要求 24所述的第二路由设备, 其特征在于, 所述第一 VPN 实例和所述第二 VPN实例之间的业务为三层虚拟专用网络 L3VPN业务; 所述第二路由设备还包括:
第一消息接收单元 (74),用于接收所述第一路由设备发送的第一边界网关 协议 BGP更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一 路由目标 RT, 其中, 所述第一 VPN实例标识用于标识所述第一 VPN实例, 所述第一 RT为所述第一 VPN实例的 RT;
第一消息发送单元 (76) ,用于在确定所述第一 RT和所述第二 RT相等后, 向所述第一路由设备发送第二 BGP更新消息,所述第二 BGP更新消息包括第 二 VPN实例标识和所述第二 RT , 其中, 所述第二 RT为所述第二 VPN实例 的 RT, 所述第二 VPN实例标识用于标识所述第二 VPN实例;
所述第一标识符接收单元 (71)具体用于接收所述第一路由设备发送的第 三 BGP更新消息, 所述第三 BGP更新消息包括所述第一标识符, 其中, 所述 第三 BGP更新消息是所述第一路由设备在收到所述第二 BGP更新消息后发送 的。
26、 根据权利要求 25所述的第二路由设备, 其特征在于, 所述第三 BGP 更新消息还包括: 所述第一 VPN实例标识、所述第一 RT和所述第二 VPN实 例标识。
27、 根据权利要求 25或 26所述的第二路由设备, 其特征在于, 所述第 一消息接收单元 (74)具体用于接收所述第一 BGP更新消息, 对所述第一 BGP 更新消息进行解析, 从所述第一 BGP 更新消息的属性信息中获取所述第一 RT , 从所述第一 BGP更新消息中的网络侧可达信息 NLRI对象中获取所述第
一 VPN实例标识, 或者具体用于接收所述第一 BGP更新消息, 对所述第一 BGP更新消息进行解析, 从所述第一 BGP更新消息中的 NLRI对象中获取所 述第一 VPN实例标识和所述第一 RT;
所述第一消息发送单元 (76)具体用于将所述第二 RT封装在所述第二 BGP 更新消息中的属性信息中, 将所述第二 VPN 实例标识封装在所述第二 BGP 更新消息中的 NLRI对象中, 然后将封装有所述第二 RT和所述第二 VPN实 例标识的所述第二 BGP更新消息发送给所述第一路由设备, 或者, 具体用于 将所述第二 RT和所述第二 VPN实例标识封装在所述第二 BGP更新消息中的 NLRI对象中,然后将封装有所述第二 RT和所述第二 VPN实例标识的所述第 二 BGP更新消息发送给所述第一路由设备。
28、 根据权利要求 25、 26或 27所述的第二路由设备, 其特征在于, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网协议 IP地 址, 所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为所述第一 路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
29、 根据权利要求 24所述的第二路由设备, 其特征在于, 所述第一 VPN 实例和所述第二 VPN实例之间的业务为二层虚拟专用网络 L2VPN业务; 所述第一标识符接收单元 (71)具体用于接收所述第一路由设备发送的标 签分发协议 LDP标签分发消息或第四边界网关协议 BGP更新消息,所述 LDP 标签分发消息或所述第四 BGP更新消息包括所述第一标识符。
30、 根据权利要求 24至 29中任一项所述的第二路由设备, 其特征在于, 所述第一路径信息获取单元 (72)具体用于根据所述第一标识符和第一对应关 系确定出所述第一标识符所标识的所述第一 MPLS TE 隧道, 根据所述第一 MPLS TE隧道的标识查询第二对应关系, 获取所述第一路径信息, 所述第一 对应关系为所述第一标识符和所述第一 MPLS TE隧道之间的对应关系, 所述 第二对应关系为所述第一 MPLS TE隧道的标识和所述第一路径信息的对应关 系;
或者,
所述第一路径信息获取单元 (72)具体用于根据所述第一标识符查询所述 第一标识符和第一路径信息的对应关系, 获取所述第一路径信息, 所述第一
标识符和第一路径信息的对应关系为所述为所述第二路由设备从接收到的用 于建立第一 MPLS TE隧道的路径消息中获取的。
31、 根据权利要求 24至 30中任一项所述的第二路由设备, 其特征在于, 所述第一隧道建立单元 (73)具体直接使用所述第二路径信息建立所述第 二 MPLS TE隧道,或者,具体用于确定所述第二路径信息上的链路和 /或节点 是否满足第一隧道属性信息的约束, 在确定出所述第二路径信息上的链路和 / 或节点满足所述第一隧道属性信息的约束后, 使用所述第二路径信息建立所 述第二 MPLS TE隧道, 其中, 所述第一隧道属性信息为所述第一路由设备建 立所述第一 MPLS TE隧道所需的属性信息, 或者, 所述第一隧道属性信息为 所述第二路由设备预先配置的建立所述第二 MPLS TE隧道所需的属性信息, 或者, 所述第一隧道属性信息为所述第二路由设备建立所述第二 MPLS TE隧 道所需的默认属性信息。
32、 根据权利要求 31所述的第二路由设备, 其特征在于, 所述第一隧道 建立单元 (73)还具体用于在确定出所述第二路径信息上的链路和 /或节点不满 足所述第一隧道属性信息的约束后, 根据所述第一隧道属性信息计算出第三 路径信息,使用所述第三路径信息建立从所述第二 VPN实例到所述第一 VPN 实例的第三 MPLS TE隧道。
33、 根据权利要求 31或 32所述的第二路由设备, 其特征在于, 还包括: 第二消息接收单元 (78),用于接收所述第一路由设备发送的隧道建立策略 指示信息, 所述隧道建立策略指示信息用于指示所述第二路由设备直接使用 所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 用于指示所述第二路 由设备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性信息的 约束时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者所述隧道策 略指示信息用于指示所述第二路由设备在所述第二路径信息上的链路和 /或节 点不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道属性信息 计算出的所述第三路径信息建立所述第三 MPLS TE隧道。
34、 根据权利要求 24至 33中任一项所述的第二路由设备, 其特征在于, 所述第一 MPLS TE隧道包括主标签交换路径 LSP和备份 LSP;
所述第一路径信息获取单元 (72)具体用于根据所述第一 MPLS TE隧道中 LSP的角色信息,分别获取所述第一 MPLS TE隧道中的主 LSP对应的第一主 用路径信息和所述第一 MPLS TE隧道中的备份 LSP对应的第一备用路径信
息;
所述第一隧道建立单元 (73)具体用于分别将所述第一主用路径信息和所 述第一备用路径信息进行反转,获取所述第一 MPLS TE隧道中的主 LSP对应 的第二主用路径信息和所述第一 MPLS TE隧道中的备份 LSP对应的第二备用 路径信息, 然后分别根据所述第二主用路径信息和所述第二备用路径信息, 建立所述第二 MPLS TE隧道中的主 LSP和备份 LSP。
35、 根据权利要求 31至 34中任一项所述的第二路由设备, 其特征在于, 还包括:
配置单元 (75), 用于使用预先配置的建立所述第二 MPLS TE隧道使用的 隧道模板, 配置建立所述第二 MPLS TE隧道所需的属性信息。
36、 根据权利要求 26至 28以及 30至 35中任一项所述的第二路由设备, 其特征在于, 还包括:
第一标识符发送单元 (79), 用于向所述第一路由设备发送第五 BGP更新 消息, 所述第五 BGP更新消息包括所述第一 VPN实例标识、 所述第二 VPN 实例标识、所述第二 RT和第二标识符,所述第二标识符为所述第二 MPLS TE 隧道的标识符。
37、 根据权利要求 24至 36中任一项所述的第二路由设备, 其特征在于, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例之间的业务的 业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述第一 VPN实例 和所述第二 VPN实例之间的业务的业务被动方。
38、 一种第一路由设备, 其特征在于, 包括:
第二标识符发送单元(90 ) , 用于向第二路由设备发送第一标识符, 以 使所述第二路由设备根据所述第一标识符获取第一路径信息, 其中, 所述第 一标识符为第一多协议标签交换流量工程 MPLS TE隧道的标识符, 所述第一 路径信息为所述第一 MPLS TE隧道的路径信息, 所述第一 MPLS TE隧道为 从所述第一路由设备上的第一虚拟专用网 VPN实例到所述第二路由设备上的 第二 VPN实例的 MPLS TE隧道;
路径消息接收单元(91 ) , 用于接收第二路由设备发送的用于建立第二 MPLS TE隧道的路径消息, 所述第二 MPLS TE隧道为从所述第二 VPN实例 到所述第一 VPN实例的 MPLS TE隧道,所述第二 MPLS TE隧道的路径信息 是对所述第一路径信息进行反转得到的;
预留消息发送单元(92 ) , 用于向所述第二路由设备发送与所述路径消 息对应的预留消息。
39、 根据权利要求 38所述的第一路由设备, 其特征在于, 所述第一 VPN 实例和所述第二 VPN实例之间的业务为三层虚拟专用网络 L3VPN业务; 所述第一路由设备还包括:
第二消息发送单元(93 ) , 用于向所述第二路由设备发送第一边界网关 协议 BGP更新消息, 所述第一 BGP更新消息包括第一 VPN实例标识和第一 路由目标 RT, 其中, 所述第一 VPN实例标识用于标识所述第一 VPN实例, 所述第一 RT为所述第一 VPN实例的 RT;
第三消息接收单元(94 ) , 用于接收所述第二路由设备发送的第二 BGP 更新消息,所述第二 BGP更新消息包括第二 VPN实例标识和第二 RT,其中, 所述第二 VPN实例标识用于标识所述第二 VPN实例,所述第二 RT为所述第 二 VPN实例的 RT, 所述第二 BGP更新消息是所述第二路由设备在确定所述 第一 RT和所述第二 RT相等后发送的;
第一隧道信息确定单元(96 ) , 用于在确定所述第一 RT和所述第二 RT 相等后, 根据所述第一 VPN实例标识和所述第二 VPN实例标识, 确定所述 第一标识符;
所述第二标识符发送单元(90 )具体用于向所述第二路由设备发送第三 BGP更新消息, 所述第三 BGP更新消息包括所述第一标识符。
40、 根据权利要求 39所述的第一路由设备, 其特征在于, 所述第三 BGP 更新消息还包括: 所述第一 VPN实例标识、所述第一 RT和所述第二 VPN实 例标识。
41、 根据权利要求 39或 40所述的第一路由设备, 其特征在于, 所述第二消息发送单元(93 )具体用于将所述第一 RT封装在所述第一 BGP 更新消息中的属性信息中, 将所述第一 VPN 实例标识封装在所述第一 BGP更新消息中的网络侧可达信息 NLRI对象中, 然后将封装有所述第一 RT 和所述第一 VPN实例标识的所述第一 BGP更新消息发送给所述第二路由设 备, 或者具体用于将所述第一 RT和所述第一 VPN实例标识封装在所述第一 BGP更新消息中的 NLRI对象中,然后将封装有所述第一 RT和所述第一 VPN 实例标识的所述第一 BGP更新消息发送给所述第二路由设备;
所述第三消息接收单元( 94 )具体用于接收所述第二 BGP更新消息, 对
所述第二 BGP更新消息进行解析,从所述第二 BGP更新消息中的属性信息中 获取所述第二 RT,从所述第二 BGP更新消息中的 NLRI对象中获取所述第二 VPN实例标识,或者具体用于接收所述第二 BGP更新消息,对所述第二 BGP 更新消息进行解析, 从所述第二 BGP更新消息中的 NLRI对象中获取所述第 二 VPN实例标识和所述第二 RT。
42、 根据权利要求 39、 40或 41所述的第一路由设备, 其特征在于, 所述第一 VPN实例标识包括第一路由区分符 RD和第一互联网协议 IP地 址, 所述第一 RD为所述第一 VPN实例的 RD , 所述第一 IP地址为所述第一 路由设备的 IP地址;
所述第二 VPN实例标识包括第二 RD和第二 IP地址,所述第二 RD为所 述第二 VPN实例的 RD, 所述第二 IP地址为所述第二路由设备的 IP地址。
43、 根据权利要求 38所述的第一路由设备, 其特征在于, 所述第一 VPN 实例和所述第二 VPN实例之间的业务为二层虚拟专用网络 L2VPN业务; 所述第二标识符发送单元(90 )具体用于向所述第二路由设备发送标签 分发协议 LDP标签分发消息或第四边界网关协议 BGP更新消息, 所述 LDP 标签分发消息或所述第四 BGP更新消息包括所述第一标识符。
44、 根据权利要求 38至 43任一项所述的第一路由设备, 其特征在于, 所述第一 VPN实例为所述第一 VPN实例和所述第二 VPN实例之间的业务的 业务主动方, 所述第二 VPN实例为所述第一 VPN实例为所述第一 VPN实例 和所述第二 VPN实例之间的业务的业务被动方。
45、 根据权利要求 38至 44任一项所述的第一路由设备, 其特征在于, 所述第一路由设备还包括:
第三消息发送单元(98 ) , 用于发送隧道建立策略指示信息, 所述隧道 建立策略指示信息用于指示所述第二路由设备直接使用所述第二路径信息建 立所述第二 MPLS TE隧道, 或者, 所述隧道建立策略指示信息用于指示所述 第二路由设备在所述第二路径信息上的链路和 /或节点满足所述第一隧道属性 信息的约束时使用所述第二路径信息建立所述第二 MPLS TE隧道, 或者, 所 述隧道策略指示信息用于指示所述第二路由设备在所述第二路径信息上的链 路和 /或节点不满足所述第一隧道属性信息的约束时, 使用根据所述第一隧道 属性信息计算出的所述第三路径信息建立所述第三 MPLS TE隧道。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13800003.9A EP2852104B1 (en) | 2012-06-06 | 2013-06-05 | Method and device for establishing multi-protocol label switching traffic engineering tunnel |
US14/561,350 US9769067B2 (en) | 2012-06-06 | 2014-12-05 | Multiprotocol label switching traffic engineering tunnel establishing method and device |
US15/698,197 US10432514B2 (en) | 2012-06-06 | 2017-09-07 | Multiprotocol label switching traffic engineering tunnel establishing method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210184022.9A CN102724117B (zh) | 2012-06-06 | 2012-06-06 | 多协议标签交换流量工程隧道建立方法及设备 |
CN201210184022.9 | 2012-06-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/561,350 Continuation US9769067B2 (en) | 2012-06-06 | 2014-12-05 | Multiprotocol label switching traffic engineering tunnel establishing method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013182059A1 true WO2013182059A1 (zh) | 2013-12-12 |
Family
ID=46949782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/076820 WO2013182059A1 (zh) | 2012-06-06 | 2013-06-05 | 多协议标签交换流量工程隧道建立方法及设备 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9769067B2 (zh) |
EP (1) | EP2852104B1 (zh) |
CN (2) | CN102724117B (zh) |
WO (1) | WO2013182059A1 (zh) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102724118B (zh) | 2012-06-06 | 2014-12-31 | 华为技术有限公司 | 标签分发方法及设备 |
CN102724117B (zh) | 2012-06-06 | 2015-09-30 | 华为技术有限公司 | 多协议标签交换流量工程隧道建立方法及设备 |
CN103401754B (zh) * | 2013-07-30 | 2017-03-08 | 杭州华三通信技术有限公司 | 一种堆叠链路建立方法、设备及系统 |
CN104426691B (zh) * | 2013-08-26 | 2018-02-13 | 华为技术有限公司 | 故障处理方法、汇聚网关和无线侧网关 |
CN103475557B (zh) * | 2013-09-05 | 2017-02-08 | 华为技术有限公司 | 隧道建立的方法及路由器 |
CN104135423B (zh) * | 2014-08-21 | 2018-03-23 | 新华三技术有限公司 | 一种双向隧道建立方法和装置 |
US10142126B2 (en) * | 2015-06-18 | 2018-11-27 | Cisco Technology, Inc. | Scalable dynamic overlay tunnel management |
US9942145B2 (en) | 2015-07-20 | 2018-04-10 | Cisco Technology, Inc. | Attribute SET_ID in border gateway protocol |
US9843498B2 (en) * | 2015-07-20 | 2017-12-12 | Cisco Technology, Inc. | Attribute set—ID in border gateway protocol |
US10965494B2 (en) * | 2015-10-01 | 2021-03-30 | International Business Machines Corporation | Intelligent multi-channel VPN orchestration |
CN106936714B (zh) * | 2015-12-31 | 2020-12-08 | 华为技术有限公司 | 一种vpn的处理方法和pe设备以及系统 |
US10644902B1 (en) * | 2016-02-25 | 2020-05-05 | Juniper Networks, Inc | Method, system, and apparatus for classifying uplink and downlink traffic in networks |
CN107306222B (zh) * | 2016-04-25 | 2020-09-25 | 华为技术有限公司 | 标签交换路径上的流量工程隧道建立的方法和设备 |
CN106357541B (zh) * | 2016-09-09 | 2019-12-17 | 新华三技术有限公司 | 一种信息传递方法和装置 |
US10516550B2 (en) * | 2017-02-27 | 2019-12-24 | Futurewei Technologies, Inc. | Traffic engineering service mapping |
US10547467B2 (en) * | 2017-06-19 | 2020-01-28 | Cisco Technology | Selective traffic leaking in enterprise fabric with extranet |
CN107547284B (zh) * | 2017-09-22 | 2020-11-06 | 新华三技术有限公司 | 一种流量统计方法及装置 |
CN113891496A (zh) * | 2017-10-30 | 2022-01-04 | 华为技术有限公司 | 提升业务可靠性的方法、设备及系统 |
CN110324159B (zh) | 2018-03-28 | 2020-11-03 | 华为技术有限公司 | 链路配置方法、控制器和存储介质 |
US10587937B2 (en) * | 2018-04-09 | 2020-03-10 | Futurewei Technologies, Inc. | Packet and optical integration |
CN110875882B (zh) | 2018-08-30 | 2021-07-20 | 华为技术有限公司 | 通信方法和通信设备 |
CN109525493B (zh) * | 2018-10-29 | 2022-01-28 | 中国联合网络通信集团有限公司 | 一种网络路径建立方法及装置 |
CN110838965B (zh) * | 2019-09-25 | 2022-02-11 | 北京华为数字技术有限公司 | 一种隧道建立方法以及接收节点 |
CN110572326A (zh) * | 2019-09-27 | 2019-12-13 | 新华三信息安全技术有限公司 | 转发路径的建立方法、装置、网络设备及系统 |
CN112751763A (zh) * | 2019-10-30 | 2021-05-04 | 北京华为数字技术有限公司 | 一种报文转发方法、设备、存储介质及系统 |
CN112929261B (zh) * | 2019-12-05 | 2024-03-12 | 中兴通讯股份有限公司 | 分段路由隧道的防断纤方法、装置,入口节点及存储介质 |
US12052168B2 (en) * | 2020-07-27 | 2024-07-30 | Juniper Networks, Inc. | Route target constraint to filter routes advertised to a node in a seamless MPLS or seamless SR network |
CN114124753B (zh) * | 2020-08-25 | 2024-05-03 | 华为技术有限公司 | 一种报文发送方法及设备 |
CN114650241A (zh) * | 2020-12-21 | 2022-06-21 | 中国移动通信有限公司研究院 | 一种隧道路径故障检测方法、控制方法、装置及通信节点 |
US20230413156A1 (en) * | 2022-05-20 | 2023-12-21 | Cisco Technology, Inc. | Observing virtual connectivity reactivity upon mobility events |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6665273B1 (en) * | 2000-01-11 | 2003-12-16 | Cisco Technology, Inc. | Dynamically adjusting multiprotocol label switching (MPLS) traffic engineering tunnel bandwidth |
CN101388823A (zh) * | 2008-11-05 | 2009-03-18 | 杭州华三通信技术有限公司 | 建立双向流量工程隧道的方法和设备 |
CN102377630A (zh) * | 2011-10-13 | 2012-03-14 | 华为技术有限公司 | 基于流量工程隧道的虚拟专用网络实现方法及系统 |
CN102724117A (zh) * | 2012-06-06 | 2012-10-10 | 华为技术有限公司 | 多协议标签交换流量工程隧道建立方法及设备 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020136223A1 (en) * | 2000-12-19 | 2002-09-26 | Ho Ka K. | Method and apparatus for interworking PNNI with the signalling and routing protocols used in MPLS networks |
US7619966B2 (en) | 2003-02-21 | 2009-11-17 | Alcatel Lucent | Hybrid virtual private LAN extensions |
KR100693059B1 (ko) * | 2005-01-24 | 2007-03-12 | 삼성전자주식회사 | Mpls 기반의 vpn 제공 장치 및 방법 |
US7508829B2 (en) | 2005-11-30 | 2009-03-24 | Cisco Technology, Inc. | Method and apparatus providing prioritized recursion resolution of border gateway protocol forwarding information bases |
CN100563211C (zh) | 2006-09-29 | 2009-11-25 | 华为技术有限公司 | 一种虚拟网关、虚拟子网的实现方法以及系统 |
US20080101385A1 (en) | 2006-10-30 | 2008-05-01 | At&T Knowledge Ventures, L.P. | System and method for filtering routing updates |
CN103840998A (zh) * | 2007-01-17 | 2014-06-04 | 北方电讯网络有限公司 | 用于使用了基于802.1ah的隧道的第2层和第3层虚拟专用网络的边界网关协议扩展团体属性 |
CA2670766A1 (en) | 2007-01-17 | 2008-07-24 | Nortel Networks Limited | Method and apparatus for interworking ethernet and mpls networks |
EP2227883B1 (en) | 2008-01-09 | 2012-05-02 | Telefonaktiebolaget L M Ericsson (publ) | Setting up a virtual private network |
CN101237376A (zh) | 2008-01-24 | 2008-08-06 | 华为技术有限公司 | 一种虚拟专用网的标签获取方法和自主系统边界路由设备 |
CN101277245B (zh) * | 2008-05-06 | 2012-05-23 | 华为技术有限公司 | 一种l2vpn跨域的实现方法、系统和装置 |
CN101577657B (zh) | 2008-05-08 | 2012-05-23 | 华为技术有限公司 | 一种建立隧道的方法以及实现隧道建立的系统 |
US8565248B2 (en) * | 2008-06-26 | 2013-10-22 | Cisco Technology, Inc. | Pure control-plane approach for on-path connection admission control operations in multiprotocol label switching virtual private networks |
CN101631072B (zh) | 2008-07-17 | 2012-04-04 | 华为技术有限公司 | 一种伪线建立方法、装置和系统 |
US8514864B2 (en) | 2009-03-31 | 2013-08-20 | Verizon Patent And Licensing Inc. | System and method for providing network mobility |
CN101883044A (zh) * | 2009-05-08 | 2010-11-10 | 华为技术有限公司 | 一种双向点到多点标签交换路径的建立方法、装置及系统 |
CN101599901B (zh) | 2009-07-15 | 2011-06-08 | 杭州华三通信技术有限公司 | 远程接入mpls vpn的方法、系统和网关 |
CN102025586B (zh) | 2009-09-09 | 2014-07-09 | 华为技术有限公司 | 多协议标签交换网络和以太网的互通方法、装置和系统 |
CN102148738A (zh) | 2010-02-05 | 2011-08-10 | 华为技术有限公司 | 无缝多协议标签交换网络中标签分配方法、装置和系统 |
CN102281533B (zh) | 2011-08-03 | 2014-01-08 | 华为技术有限公司 | 基于rt建立lsp的方法、系统和路由器 |
US8750099B2 (en) | 2011-12-16 | 2014-06-10 | Cisco Technology, Inc. | Method for providing border gateway protocol fast convergence on autonomous system border routers |
CN102724118B (zh) | 2012-06-06 | 2014-12-31 | 华为技术有限公司 | 标签分发方法及设备 |
-
2012
- 2012-06-06 CN CN201210184022.9A patent/CN102724117B/zh active Active
- 2012-06-06 CN CN201510694795.5A patent/CN105245452B/zh active Active
-
2013
- 2013-06-05 EP EP13800003.9A patent/EP2852104B1/en active Active
- 2013-06-05 WO PCT/CN2013/076820 patent/WO2013182059A1/zh active Application Filing
-
2014
- 2014-12-05 US US14/561,350 patent/US9769067B2/en active Active
-
2017
- 2017-09-07 US US15/698,197 patent/US10432514B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6665273B1 (en) * | 2000-01-11 | 2003-12-16 | Cisco Technology, Inc. | Dynamically adjusting multiprotocol label switching (MPLS) traffic engineering tunnel bandwidth |
CN101388823A (zh) * | 2008-11-05 | 2009-03-18 | 杭州华三通信技术有限公司 | 建立双向流量工程隧道的方法和设备 |
CN102377630A (zh) * | 2011-10-13 | 2012-03-14 | 华为技术有限公司 | 基于流量工程隧道的虚拟专用网络实现方法及系统 |
CN102724117A (zh) * | 2012-06-06 | 2012-10-10 | 华为技术有限公司 | 多协议标签交换流量工程隧道建立方法及设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2852104A4 * |
Also Published As
Publication number | Publication date |
---|---|
US9769067B2 (en) | 2017-09-19 |
EP2852104A1 (en) | 2015-03-25 |
CN102724117B (zh) | 2015-09-30 |
US20150085638A1 (en) | 2015-03-26 |
CN105245452A (zh) | 2016-01-13 |
CN105245452B (zh) | 2018-11-16 |
CN102724117A (zh) | 2012-10-10 |
US20170373968A1 (en) | 2017-12-28 |
US10432514B2 (en) | 2019-10-01 |
EP2852104B1 (en) | 2019-08-07 |
EP2852104A4 (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102724117B (zh) | 多协议标签交换流量工程隧道建立方法及设备 | |
WO2021170092A1 (zh) | 报文处理方法、装置、网络设备及存储介质 | |
US10554542B2 (en) | Label distribution method and device | |
US10003531B2 (en) | Method for establishing tunnel, method for allocating label, device and network system | |
EP2498454B1 (en) | Method, device and system for processing service traffic based on pseudo wires | |
WO2010069175A1 (zh) | 一种建立双向转发检测的方法、系统及设备 | |
WO2009135399A1 (zh) | 一种建立隧道的方法以及实现隧道建立的系统 | |
WO2011029352A1 (zh) | 多协议标签交换网络和以太网的互通方法、装置和系统 | |
WO2014019348A1 (zh) | 操作、管理和维护oam配置的方法、设备及系统 | |
CN101800691A (zh) | 一种建立网络中数据转发路径的方法、设备和系统 | |
WO2014044151A1 (zh) | Vpn实现方法和pe设备 | |
KR20150033681A (ko) | 연결 실패 시에 홈 네트워크에 대한 재라우팅을 인에이블시키는 방법 및 시스템 | |
WO2012142753A1 (zh) | Ip承载网性能监控的方法及设备 | |
CN100450088C (zh) | 实现双向流量工程隧道的方法 | |
WO2009076848A1 (zh) | 一种pbb网络中自动拓扑发现及资源管理的方法和装置 | |
US8817648B2 (en) | Pseudowire extended group messaging in a packet switched network | |
US9473399B2 (en) | System and method for aggregating pseudowires | |
JP6371399B2 (ja) | インターフェースパラメーター同期方法及び装置 | |
US20130259057A1 (en) | Pseudowire groups in a packet switched network | |
WO2012013060A1 (zh) | 通过伪线传输业务的方法及装置 | |
Liu et al. | Internet Engineering Task Force H. Chen Internet-Draft Huawei Technologies Intended status: Standards Track N. So Expires: August 14, 2014 Tata Communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13800003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013800003 Country of ref document: EP |