WO2013181877A1 - 基于电致折射率改变的3d显示设备和显示方法 - Google Patents

基于电致折射率改变的3d显示设备和显示方法 Download PDF

Info

Publication number
WO2013181877A1
WO2013181877A1 PCT/CN2012/078860 CN2012078860W WO2013181877A1 WO 2013181877 A1 WO2013181877 A1 WO 2013181877A1 CN 2012078860 W CN2012078860 W CN 2012078860W WO 2013181877 A1 WO2013181877 A1 WO 2013181877A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
optic
crystal
display screen
optic crystal
Prior art date
Application number
PCT/CN2012/078860
Other languages
English (en)
French (fr)
Inventor
冯林
Original Assignee
Feng Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feng Lin filed Critical Feng Lin
Publication of WO2013181877A1 publication Critical patent/WO2013181877A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/40Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images giving the observer of a single two-dimensional [2D] image a perception of depth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0322Arrangements comprising two or more independently controlled crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Definitions

  • the present invention belongs to the field of three-dimensional stereoscopic display technology, and relates to a 3D display device and display method based on electro-refractive index change. ⁇ Background technique ⁇
  • 3D also known as 3D or 3D
  • 3D imaging technology is different from 2D planar imaging technology. Compressing 3D image information into a 2D plane will inevitably distort the image.
  • the position of the real space, the three-dimensional image displayed by the two-dimensional plane is expressed by the brightness of the color, the size of the object, etc.
  • People are subjectively by psychological suggestion and then combined with the color of the two-dimensional plane, the size of the object and other information. Determine the distance of each pixel in the two-dimensional plane from the human eye, rather than the actual physical depth of field.
  • the difference between two-dimensional display and two-dimensional display is to use various methods to give the viewer a visual depth perception, which makes it natural or unnatural to obtain the third dimension information in the picture.
  • This sensing method is true three-dimensional and human eyes.
  • the three-dimensional display technology that needs to wear glasses is realized by the principle of binocular parallax. It is not obvious when wearing glasses to view static stereo images in a short time, but when watching stereoscopic TV, since the human eye is in the long time This kind of state that is not very natural and tense will make you feel extremely uncomfortable and very tired. On the other hand, because it is necessary to wear glasses to watch, it is only suitable for special occasions such as watching movies. It is impossible for advertising display, and the glasses worn have a filtering effect on the light, so the light is dark when viewing the graphic, to the eyes. very bad.
  • the three-dimensional display technology of the eye is mainly Barrier, Lenticular Lens, and pointing light.
  • Directional Backlight, MLD three-dimensional display technology, holographic three-dimensional technology and three-dimensional display technology is mainly Barrier, Lenticular Lens, and pointing light.
  • MLD three-dimensional display technology is mainly Barrier, Lenticular Lens, and pointing light.
  • MLD three-dimensional display technology is mainly Barrier, Lenticular Lens, and pointing light.
  • MLD three-dimensional display technology Three-dimensional display technology
  • holographic three-dimensional technology three-dimensional display technology.
  • the light barrier type three-dimensional display technology utilizes a parallax barrier disposed between the backlight module and the LCD panel.
  • the opaque stripes may block the right eye;
  • the opaque stripes will block the left eye, and the viewer can see the 3D image by separating the visible images of the left and right eyes.
  • the advantages of the light barrier type three-dimensional display technology are that it is compatible with the existing LCD liquid crystal process, so it is advantageous in terms of mass production and cost, but the disadvantage is that the image resolution and brightness of the product using this technology are reduced, and visible. There are also limits on the angle.
  • the principle of the lenticular lens three-dimensional display technology is to add a columnar lens in front of the liquid crystal display so that the image plane of the liquid crystal screen is located on the focal plane of the lens, so that the pixels of the image under each cylindrical lens are divided into several sub-pixels. , so that the lens can project each sub-pixel in different directions. Then the eyes look at the display from different angles and see different sub-pixels.
  • the lenticular lens 3D display technology does not reduce the brightness of the image compared to the parallax barrier 3D display technology, the resolution will still decrease, and the related manufacturing is not compatible with the existing LCD liquid crystal process, and it is necessary to invest in new equipment and production lines. , higher cost.
  • Directional Backlight 3D technology implementation is achieved by pairing two groups
  • LEDs combined with fast-responding LCD panels and driving methods, allow 3D content to enter the viewer's left and right eyes in a sorted manner, resulting in parallax due to interchangeable images, which in turn makes people feel 3D three-dimensional effects.
  • This technology has great advantages, and can be guaranteed in the brightness and resolution of 3D display, but since it still uses people's left and right eyesight parallax principle to make images in the human brain to form three-dimensional images, People are prone to fatigue, dizziness, etc. after a long period of viewing.
  • MLD multi-layer display multi-layer display
  • MLD multi-layer display multi-layer display
  • the effect of 3D images when viewing text and pictures Since the technology has only two liquid crystal panels, the depth of the image displayed is limited, and the three-dimensional display effect is poor, and more liquid crystal panels reduce the brightness of the displayed image.
  • Holographic 3D technology uses the principle of specular mirroring to produce very realistic stereoscopic effects, but requires very high spatial light modulators and ultra-high-speed data processing systems for dynamic display. These two technologies limit the development of this technology. So that it is not yet well applied to real life.
  • Volume 3D display technology is a 3D technology that truly enables dynamic effects. It allows you to see 3D perspective images that are generally "floating" in midair in sci-fi movies.
  • the three-dimensional display technology can be roughly divided into two types: Swept-Volume Display and Solid-Volume Display.
  • Holographic three-dimensional technology and volumetric three-dimensional display technology are different from Barret, Lenticular Lens, and Directional Backlight three-dimensional display technology.
  • the image of each pixel or pixel is not in the same plane.
  • users will not have side effects such as dizziness, headache and eye strain, and the resolution and brightness of the screen will not decrease, and there is no limit to the viewing angle and angle of viewing 3D images.
  • the stereoscopic three-dimensional display device is much more complicated in structure than the ordinary 2D display device, and because of the structural factor, it is bulky, costly, and it is not compatible with the existing LCD panel, so development Production costs are higher.
  • An object of the present invention is to solve the problems of the prior art and to propose a 3D display device and a display method for changing the refractive index.
  • each pixel is on the same plane, so the displayed picture is a two-dimensional picture, but if there is a display device where the pixels are not on the same plane, each pixel is separated.
  • the distance of the human eye corresponds to the depth of field of the actually displayed three-dimensional picture, and since the distances from the human eye are different when each pixel point displays a different picture, the distance of each pixel point from the human eye is changed, since the pixel point is very Small, so it is almost impossible to move the pixel points mechanically, but we can take the virtual image of each pixel (because the pixel and its image are on the same side of the human eye, so it must be a virtual image).
  • the pixel corresponding to the virtual image of the farthest pixel is displayed at the farthest depth of the screen.
  • the refractive index of the square columnar body is larger, and the object on the surface of the square columnar body opposite to the human eye is imaged closer to the human eye in the human eye. Therefore, according to this principle, as long as we change The refractive index of the square columnar body can change the distance of the object from the human eye in the human eye.
  • the virtual image distance called each pixel point in the human eye can be realized. The distances of the human eyes are different, thus forming a true physical depth of field.
  • the present invention provides a 3D display device based on electro-refractive index change, the device comprising a two-dimensional flat display screen, a flat transparent electro-optic crystal array disposed at the front end of the display screen, and the electro-optical crystal array is composed of pixels with the display screen
  • the same number of square column-shaped electro-optical crystals are arranged, and the cross section parallel to the display screen of each electro-optic crystal is the same as the pixel of the display screen, and each electro-optic crystal is opposite to the pixel of the display screen
  • the 3D display device further includes A transparent electrode for applying a voltage to each electro-optic crystal and a control module electrically connected to the electrode, wherein the control module is configured to control the electrode to apply a voltage corresponding to the depth of field of the pixel opposite the electro-optic crystal to the electro-optic crystal.
  • Each electro-optic crystal is a primary electro-optic effect crystal.
  • Each of the electro-optic crystals is a lateral electro-optic effect crystal, and the electrodes are opposite to the two sides of the electro-optic crystal.
  • the electrodes disposed on both sides of the electro-optic crystal are perpendicular to the electro-optical crystal array, and the two electrodes disposed on both sides of the electro-optical crystal are parallel to each other.
  • An electrode is shared between the laterally adjacent electro-optical crystals, and a transparent wire connecting the electrode and the control module is disposed between the longitudinally adjacent electro-optical crystals, and the wire is perpendicular to the electrode.
  • the electro-optic crystal is lithium niobate or potassium niobate.
  • the transparent electro-optical crystal array has a thickness of 1 mm to 1 m.
  • the two-dimensional display screen is a liquid crystal display.
  • the present invention also provides a 3D display method based on electro-refractive index change, the method comprising: providing a flat transparent electro-optical crystal array at the front end of the two-dimensional display screen, the electro-optic crystal array being the same as the pixel of the two-dimensional display screen
  • the number of square column-shaped electro-optic crystals, the cross section of each electro-optic crystal parallel to the display screen is the same as the size of the pixel of the two-dimensional display screen, and each electro-optic crystal is opposite to the pixel of the two-dimensional display screen, and passes through a control module. Applying a pixel to the electro-optic crystal opposite to the electro-optic crystal The depth corresponding to the depth of field.
  • Each of the electro-optic crystals is a lateral electro-optic effect crystal
  • the control module is electrically connected to an electrode for applying a voltage to the electro-optic crystal
  • the electrodes are oppositely disposed on opposite sides of the electro-optic crystal
  • the electrodes and the electro-optical crystal array are disposed on both sides of the electro-optic crystal.
  • the two electrodes disposed on both sides of the electro-optic crystal are parallel to each other.
  • An electrode is shared between the laterally adjacent electro-optical crystals, and a transparent wire connecting the electrode and the control module is disposed between the longitudinally adjacent electro-optical crystals, and the wire is perpendicular to the electrode.
  • the depth of field of the pixel opposite the electro-optic crystal is inversely proportional to the primary of the voltage applied to each electro-optic crystal.
  • the electro-optic crystal is lithium niobate or potassium niobate.
  • the transparent electro-optical crystal array has a thickness of 1 mm to 1 m.
  • the two-dimensional display screen is a liquid crystal display.
  • the invention utilizes the principle of chopsticks imaging in water, and the electro-optical crystal array is placed in front of the two-dimensional display screen to realize the real physical depth of field, the structure is simple, the cost is low, and the volume is small.
  • the image displayed by the 3D display device of the present invention can be seen by the eye, and since the image formed by each pixel in the electro-optic crystal is an equal-sized virtual image, the resolution and brightness of the three-dimensional image displayed by the display device are both Without change, since there is a real physical depth of field, there is no problem of fatigue when viewing the three-dimensional image displayed by the 3D display device of the present invention.
  • the present invention can be improved on the existing two-dimensional display device, it can be directly processed and improved in the existing liquid crystal display panel, and the upgrade cost is low.
  • the 3D display device of the present invention can realize the conversion of two-dimensional and three-dimensional displays, and can satisfy various viewing needs of people.
  • the invention sets the electrodes between the electro-optic crystals on both sides of the electro-optic crystal and is perpendicular to the two-dimensional display screen, and the electrodes are shared between the laterally adjacent electro-optic crystals, so that the interval between the two electro-optic crystals is very small. Without affecting the resolution of the display device, on the other hand, by sharing the electrodes, material costs are saved.
  • Figure 1 is a schematic diagram of the principle of the present invention
  • FIG. 2 is a schematic side view showing the structure of a display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a front structure of a display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a front structure of a single electro-optical crystal enlarged in a display device according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a display method of a display device according to an embodiment of the present invention.
  • the transparent square columnar crystal 10 below the transparent square columnar crystal 10 is an object 20 in which the transparent square columnar crystal is formed. Above the 10 is the human eye 30. According to the principle of refraction, the image 40a of the object 20 seen by the human eye 30 through the transparent square columnar crystal 10 is actually closer to the human eye than the actual object.
  • the refractive index of the transparent square columnar crystal 10 is increased, and the shape and size of the transparent square columnar crystal 10 are unchanged, and the relative position of the square columnar crystal 10 and the object 20 is also unchanged, as shown in FIG.
  • the human eye sees the image 40b of the object 30 through the crystal 10 closer to the human eye than the previous image 40a, that is, the object 20 passes through the crystal 10 in the person
  • the distance between the virtual image in the eye and the human eye has changed, and the size of the virtual image has not changed. Therefore, according to the adjustment of the refractive index, the distance of the virtual image called by each pixel of the display screen in the human eye can be adjusted, thereby differently adjusting different pixel points to form the depth of field of the entire screen.
  • the present invention provides a 3D display device and display method based on electrorefractive index change.
  • the embodiment provides a 3D display device 50 based on an electro-refractive index change.
  • the device 50 includes a two-dimensional liquid crystal flat panel display 51, and is disposed at the front end of the display screen 51.
  • the display screen 51 displays a flat transparent electro-optic crystal array 52 in front of the surface, and the electro-optic crystal array 52 is composed of a plurality of electro-optic crystals 521 of the same shape and size, and each electro-optic crystal 521
  • the shape of the column is a rectangular parallelepiped shape, and the bottom surface of the columnar body is square.
  • the bottom surface 5211 of the columnar body is opposite to the display screen 51.
  • the liquid crystal flat panel display 51 includes a plurality of square pixel dots 511 of the same size, and the ground surface 5211 of the columnar body.
  • the electro-optical crystals 521 are opposite to the respective pixel points 511.
  • the opposite side faces 5212 of the electro-optic crystals 521 are respectively provided with two flat-shaped electrodes 5213 made of a transparent conductive material, and the two electrodes 5213 are provided.
  • the size of the two sides 5212 is the same as the size of the two sides 5212 (the two electrodes 5213 can also be smaller than the two sides 5212), and the two electrodes 5213 are perpendicular to the display screen, and the wires 5214 connecting the electrodes are distributed on the boundary line between the two electro-optical crystals 521, Wire 5214 is also made of a transparent material.
  • Each of the electro-optic crystals 521 is a lateral electro-optic effect crystal, and an electrode 5213 is shared between the laterally adjacent electro-optic crystals, and the transparent wires 5214 connecting the electrodes 5213 are distributed between the longitudinally adjacent electro-optic crystals, and the wires 5214 and electrodes 5213 connecting the electrodes are connected. vertical.
  • Each of the electro-optical crystals is coated with a transparent insulating film (not shown) to prevent the influence of the electrical conductivity of the electro-optic crystal on the electrodes.
  • the display device further includes a control module 53.
  • the wire 5214 is connected to the electrode and the control module 53.
  • the control module 53 controls to apply a voltage corresponding to the depth of field of the pixel opposite to the electro-optical crystal 521 to the electro-optic crystal 521.
  • the depth of field of the pixel opposite to the electro-optic crystal is inversely proportional to the primary of the voltage applied by each electro-optic crystal. Since the electrodes 5213 are used between the laterally adjacent electro-optical crystals, the control module 53 controls the respective locations. The amount of charge of the electrodes between the electro-optical crystals, thereby controlling the voltage applied to each electro-optic crystal.
  • the electro-optic crystal is lithium strontium silicate or potassium strontium silicate
  • the thickness of the electro-optic crystal array is 2 cm (minimum thickness is 1 mm, thickness is up to 1 mm)
  • the electrode and the wire material are Zn ⁇ .
  • the embodiment further provides a 3D display method using the above-described 3D display device based on electro-refining index change, the method comprising:
  • S2 calculating a voltage that is inversely proportional to a depth of field applied to the electro-optical crystal to a pixel point that is opposite to the electro-optical crystal;

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种基于电致折射率改变的3D显示设备和显示方法。该3D显示设备(50)包括二维平面显示屏(51)和设置于显示屏(51)前端的平板状的透明电光晶体阵列(52)。电光晶体阵列(52)由与显示屏(51)像素点(511)相同数量的方柱状的电光晶体(521)组成,每个电光晶体(521)的与显示屏(51)平行的截面与显示屏(51)像素点(511)的大小相同,且各电光晶体(521)与显示屏(51)像素点(511)相正对。该3D显示设备还包括向各电光晶体(521)施加电压的透明电极(5213)以及与电极(5213)电性连接的控制模块(53),控制模块(53)用于控制电极(5213)向电光晶体(521)施加与该电光晶体(521)相正对像素点(511)的景深相对应的电压。

Description

基于电致折射率改变的 3D显示设备和显示方法
【技术领域】
本发明属于三维立体显示技术领域,本发明涉及一种基于电致折射率改变 的 3D显示设备和显示方法。 【背景技术】
3D, 也可称之为三维立体或三维, 3D 成像技术不同于二维平面成像技 术, 将三维图像信息压缩到一个二维平面中, 势必会使图像失真, 不能准备的 反应图像中各个像素点真实空间位置,二维平面所展示的三维图像是通过色彩 的明暗、 物体的大小等信息来表达的, 人们通过心理暗示作用再结合二维平面 中的色彩的明暗、物体的大小等信息来主观判断二维平面中的各个像素点离人 眼的距离, 而不是真实的物理景深。
三维显示区别于二维就是要用各种方法给观看者带来视觉的深度感知, 使之自然或不自然获得画面中第三维度的信息,这种感知方法对人眼来说就是 真三维和假三维的区别。 所以, 对于三维立体成像技术而言, 还原三维立体空 间中的真实物理景深非常重要,是也是使人眼能够感知到三维立体图像的最关 键的因素。
目前普遍存在的需要佩戴眼镜的三维显示技术是利用双眼视差的原理来 实现的, 佩戴眼镜在短时间内观看静态的立体图像时并不明显, 但当观看立体 电视时, 由于人眼长时间处于这种不十分自然且紧张的观看状态, 便会感到极 不舒适及非常疲劳。 另一方面由于需要佩戴眼镜观看, 所以只适合于观看电影 等特殊场合, 对于广告展示来说是不可能的, 而且佩戴的眼镜对光线具有过滤 作用, 所以导致观看图形时光线较暗, 对眼睛非常不好。
所以目前越来越多的人热衷于研究棵眼三维显示技术, 目前的棵眼三维 显示技术主要有光屏障式(Barrier ), 柱状透镜 (Lenticular Lens)技术、 指向光 源( Directional Backlight ), MLD三维显示技术、 全息三维技术以及体三维显 示技术六种。棵眼式 3D技术最大的优势便是摆脱了眼镜的束缚,但是分辨率、 可视角度和可视距离等方面还存在很多不足。
光屏障式三维显示技术利用了安置在背光模块及 LCD 面板间的视差障 壁, 在立体显示模式下, 应该由左眼看到的图像显示在液晶屏上时, 不透明的 条紋会遮挡右眼; 同理, 应该由右眼看到的图像显示在液晶屏上时, 不透明的 条紋会遮挡左眼, 通过将左眼和右眼的可视画面分开, 使观者看到 3D影像。 光屏障式三维显示技术的优点是与既有的 LCD液晶工艺兼容, 因此在量产性 和成本上较具优势, 但是缺点是采用此种技术的产品影像分辨率和亮度会下 降, 而且可视角度也有限制。
柱状透镜三维显示技术的原理是在液晶显示屏的前面加上一层柱状透 镜, 使液晶屏的像平面位于透镜的焦平面上, 这样在每个柱透镜下面的图像的 像素被分成几个子像素, 这样透镜就能以不同的方向投影每个子像素。 于是双 眼从不同的角度观看显示屏, 就看到不同的子像素。 柱状透镜三维显示技术的 虽然相比视差屏障三维显示技术而言, 图像的亮度不会降低, 但是分辨率依然 会下降, 而且相关制造与现有 LCD液晶工艺不兼容, 需要投资新的设备和生 产线, 成本较高。
指向光源 (Directional Backlight ) 3D 技术实现的方法是通过搭配两组
LED,配合快速反应的 LCD面板和驱动方法,让 3D内容以排序方式进入观看 者的左右眼, 由于互换影像产生视差, 进而让人眼感受到 3D三维效果。 这种 技术具有很大的优势, 在 3D显示的亮度和分辨率上都能够得到保障, 但是由 于其还是利用了人们的左右目艮视差原理来使图像在人的大脑中加工形成三维 图像, 所以人在观看的时间较长之后还是容易出现疲劳, 头晕等现象。
2009年 4月, 美国 PureDepth公司宣布研发出改进后的棵眼 3D技术 —— MLD ( multi-layer display多层显示), 这种技术能够通过一定间隔重叠的 两块液晶面板, 实现在不使用专用眼镜的情况下, 观看文字及图画时所呈现 3D影像的效果。 本技术由于只有两块液晶面板, 所以呈现的影像的景深有限, 三维显示效果较差, 而较多的液晶面板又会降低显示影像的亮度。 全息三维技术利用镜面反射镜像的原理能够产生非常逼真的立体效果,但 在动态显示方面需要非常高的空间光调制器以及超高速的数据处理系统,这两 个技术限制了这种技术的发展, 使之目前还不能很好的运用到现实生活中。
体三维显示技术则与其他立体显示技术不同的是,它是真正能够实现动态 效果的 3D技术, 它可以让你看到科幻电影中一般"悬浮"在半空中的三维透视 图像。 体三维显示技术目前大体可分为扫描体显示 (Swept- Volume Display), 和固态体显示 (Solid-Volume Display)两种。
全息三维技术以及体三维显示技术相比光屏障式 (Barrier ), 柱状透镜 (Lenticular Lens)技术、 指向光源( Directional Backlight )三维显示技术而言, 各像素点或者各像素点的像不在同一个平面上, 具有真实的景深, 所以观看 3D影像时, 用户不会产生眩晕、 头痛及眼睛疲劳等副作用, 而且屏幕的分辨 率和亮度不会降低, 对观看 3D影像的视觉及角度没有太大的限制, 但是由于 体视三维显示设备相比普通的 2D显示设备而言结构要复杂很多, 而且由于结 构的因素, 所以体积较大, 成本较高, 而且其不与现有的 LCD面板兼容, 所 以开发生产成本更高。
【发明内容】
本发明的目的就是为了解决现有技术存在的问题,提出了一种电致折射率 改变的 3D显示设备和显示方法。
本发明的构思如下:
对于二维显示屏(例如液晶显示屏)而言, 各像素点在同一平面上, 所以 显示的画面为二维画面, 但是如果有一种显示设备的各像素点不在同一平面 上, 各像素点离人眼的距离与实际所显示的三维画面的景深相对应, 而由于各 像素点显示不同的画面时离人眼的距离不同,所以各像素点离人眼的距离是变 化的, 由于像素点非常小, 所以采用机械的方式移动像素点几乎是不可能的, 但是我们可以将各像素点的虚像(由于像素点与其像均在人眼的同侧, 所以其 必定为虚像)离人眼的距离与实际所显示的三维画面的景深相对应, 即离人眼 距离最远的像素点的虚像所对应的像素点显示的画面的景深最远。 而根据筷子在水中成像的原理可知, 方形柱状体的折射率越大, 在方形柱 状体与人眼相对的面的物体在人眼中成像离人眼越近, 所以, 根据这个原理, 只要我们改变方形柱状体的折射率, 即可改变该物体在人眼中成像离人眼距离 的远近, 将每一个方形柱状体与各像素点相对应, 即可实现各像素点在人眼中 所称的虚像距离人眼的距离不同, 从而形成真实的物理景深。
本发明的具体技术方案如下:
本发明提供一种基于电致折射率改变的 3D显示设备, 该设备包括二维平 面显示屏、 一设置于显示屏前端的平板状的透明电光晶体阵列, 所述电光晶体 阵列由与显示屏像素点相同数量的方柱状的电光晶体组成,每个电光晶体的与 显示屏平行的截面与显示屏像素点的大小相同,且各电光晶体与显示屏像素点 相正对, 该 3D显示设备还包括向各电光晶体施加电压的透明电极以及与电极 电性连接的控制模块,所述控制模块用于控制电极向电光晶体施加与该电光晶 体相正对像素点的景深相对应的电压。
各电光晶体为一次电光效应晶体。
所述各电光晶体为横向电光效应晶体, 所述电极相对设置电光晶体的两 侧, 设置在电光晶体两侧的电极与电光晶体阵列垂直, 且设置在电光晶体两侧 的两电极相互平行。
横向相邻的电光晶体之间共用一电极,纵向相邻的电光晶体之间分布有连 接电极和控制模块的透明导线, 导线与电极垂直。
所述电光晶体为钽铌酸锂或钽铌酸钾。
所述透明电光晶体阵列的厚度为 1 mm~1 m。
所述二维显示屏为液晶显示屏。
本发明还提供一种基于电致折射率改变的 3D显示方法, 该方法包括: 在二维显示屏前端设置平板状的透明电光晶体阵列,所述电光晶体阵列由 与二维显示屏像素点相同数量的方柱状的电光晶体组成,每个电光晶体的与显 示屏平行的截面与二维显示屏像素点的大小相同,且各电光晶体与二维显示屏 像素点相正对,通过一控制模块向电光晶体施加与该电光晶体相正对像素点的 景深相对应的电压。
所述各电光晶体为横向电光效应晶体,所述控制模块与向电光晶体施加电 压的电极电性连接, 所述电极相对设置电光晶体的两侧, 设置在电光晶体两侧 的电极与电光晶体阵列垂直, 且设置在电光晶体两侧的两电极相互平行。
横向相邻的电光晶体之间共用一电极,纵向相邻的电光晶体之间分布有连 接电极和控制模块的透明导线, 导线与电极垂直。
与该电光晶体相正对的像素点的景深与各电光晶体施加的电压的一次方 成反比。
所述电光晶体为钽铌酸锂或钽铌酸钾。
所述透明电光晶体阵列的厚度为 1 mm~1 m。
所述二维显示屏为液晶显示屏。
本发明有益的技术效果在于:
相较于现有技术, 本发明利用筷子在水中成像的原理, 将电光晶体阵列设 置于二维显示屏的前面即可实现真实的物理景深, 结构筒单, 成本低廉, 体积 较小。 而且本发明的 3D显示设备所显示的影像可以棵眼光看, 而且由于各像 素点在电光晶体中所成的像为等大的虚像,所以其该显示设备显示的三维影像 的分辨率、 亮度均没有改变, 由于具有真实的物理景深, 所以在观看本发明的 3D显示设备所显示的三维影像时不会出现疲劳的问题。
由于本发明可以在现有的二维显示设备上改进,所以可以直接在现有的液 晶显示面板加工和改进即可实现, 升级成本低廉。
而且本发明的 3D显示设备可以实现二维和三维显示的转换, 能够满足人 们的多种观看需要。
本发明将各电光晶体之间的电极设置在电光晶体的两侧,且与二维显示屏 垂直, 同时横向相邻的电光晶体之间共用电极, 能够使得两电光晶体之间的间 隔非常小, 从而不影响显示设备的分辨率, 另一方面, 通过共用电极, 节省了 材料成本。
【附图说明】 图 1为本发明的原理示意图;
图 2为本发明实施例显示设备侧面结构示意图;
图 3为本发明实施例显示设备正面结构示意图;
图 4为本发明实施例显示设备中放大的单个电光晶体正面结构示意图; 图 5为本发明实施例显示设备的显示方法流程图。
【具体实施方式】
为了使发明的目的、技术方案及优点更加清楚明白, 以下结合附图及实施 例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的实施例仅用以解 释本发明, 并不用来限定本发明。
在介绍本发明的实施例之前, 先介绍下本发明的原理, 如图 1 中的 (a ) 图所示, 在透明的方形柱状晶体 10的下方为一物体 20, 在该透明的方形柱状 晶体 10的上方为人眼 30, 根据折射原理, 人眼 30透过该透明的方形柱状晶 体 10所看到的物体 20的像 40a, 实际上要比实际的物体离人眼的距离要近, 当将该透明的方形柱状晶体 10 的折射率调高, 而该透明的方形柱状晶体 10 的形状和大小不变, 同时该方形柱状晶体 10与物体 20的相对位置也不变,如 图 1 中的(b )图所示,则会发现,人眼透过该晶体 10观看到物体 30的像 40b 要比之前的像 40a距离人眼的距离要更近一点, 即物体 20透过该晶体 10在 人眼中的成虚像离人眼的距离发生了改变, 而虚像的大小没有发生改变。 所以 可以根据折射率的调整来调整显示屏的各像素点所显示的画面在人眼中所称 虚像的距离, 从而对不同的像素点进行区别调整, 从而形成整个画面的景深。
根据上述的原理, 本发明提供了一种基于电致折射率改变的 3D显示设备 和显示方法。
实施例 1
如图 2-4所示, 本实施例提供了一种基于电致折射率改变的 3D显示设备 50, 该设备 50包括一个二维液晶平板显示屏 51、 一设置于该显示屏 51前端 (即该显示屏 51显示面的前方)的平板状的透明电光晶体阵列 52, 所述电光 晶体阵列 52由多个相同形状和大小的电光晶体 521组成, 每个电光晶体 521 的形状为长方体形的柱状, 且柱状体的底面为正方形, 柱状体的底面 5211 与 显示屏 51相对,所述液晶平板显示屏 51包括多个相同大小的方形像素点 511 , 柱状体的地面 5211与像素点 511的大小相同,各电光晶体 521与各像素点 511 相正对, 在各电光晶体 521的相对的两侧面 5212分别设置有两透明导电材料 制成的平板形电极 5213, 两电极 5213的大小与两侧面 5212的大小相同 (两 电极 5213也可比两侧面 5212小), 且两电极 5213与显示屏垂直, 在两各电 光晶体 521 的分界线上分布有连接电极的导线 5214, 所述导线 5214也是采 用透明材料制成。所述各电光晶体 521为横向电光效应晶体,横向相邻的电光 晶体之间共用一电极 5213,纵向相邻的电光晶体之间分布连接电极 5213的透 明导线 5214, 连接电极的导线 5214与电极 5213垂直。
各电光晶体外包覆有一层透明的绝缘薄膜(图中未示出), 以防止电光晶 体的导电性能对电极的影响。
该显示设备还包括一控制模块 53, 所述导线 5214连接电极和控制模块 53,控制模块 53控制向电光晶体 521施加与该电光晶体 521相正对像素点的 景深相对应的电压, 具体的, 本实施例中, 与该电光晶体相正对的像素点的景 深与各电光晶体施加的电压的一次方成反比, 由于横向相邻的电光晶体之间用 电极 5213, 所以控制模块 53控制位于各电光晶体之间的电极的电量的大小, 从而控制向各电光晶体施加的电压。
在本实施例中所述电光晶体为钽铣酸锂或钽铣酸钾,所述电光晶体阵列的 厚度为 2cm (厚度最小为 1 mm , 厚度最大为 1 mm ), 所述电极和导线材料为 Zn〇。
如图 5所示, 本实施例还提供一种采用上述基于电致折射率改变的 3D显 示设备从而实现 3D显示方法, 该方法包括:
S1: 获取所显示 3D图像各像素点的景深数据;
S2:计算向电光晶体施加的与该电光晶体相正对的像素点的景深成反比的 电压;
S3: 计算位于两电光晶体之间的电极的电量大小;
S4: 通过控制模块向两电光晶体之间的电极施加相应的电量。 通过上述的 3D显示设备以及显示方法, 可以通过控制模块控制向各晶体 施加的电压, 从而达到控制各晶体的折射率的目的, 当人眼通过各晶体看到的 各像素点所成的虚像离人眼的距离与实际上要显示的三维景物各像素点的物 理景深成正比时,则人眼可以通过该显示设备看到真实的具有物理景深的三维 影像, 可以实现棵眼光看的目的。 总之, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较佳 实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本 发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 其均应涵盖在本发明的权利要求范围当中。

Claims

1 .一种基于电致折射率改变的 3D显示设备,该设备包括二维平面显示屏、 一设置于显示屏前端的平板状的透明电光晶体阵列,所述电光晶体阵列由与显 示屏像素点相同数量的方柱状的电光晶体组成,每个电光晶体的与显示屏平行 的截面与显示屏像素点的大小相同, 且各电光晶体与显示屏像素点相正对, 该 3D显示设备还包括向各电光晶体施加电压的透明电极以及与电极电性连接的 控制模块,所述控制模块用于控制电极向电光晶体施加与该电光晶体相正对像 素点的景深相对应的电压。
2.根据权利要求 1所述的基于电致折射率改变的 3D显示设备, 其特征在 于, 各电光晶体为一次电光效应晶体。
3.根据权利要求 2所述的基于电致折射率改变的 3D显示设备, 其特征在 于,所述各电光晶体为横向电光效应晶体,所述电极相对设置电光晶体的两侧, 设置在电光晶体两侧的电极与电光晶体阵列垂直,且设置在电光晶体两侧的两 电极相互平行。
4.根据权利要求 3所述的基于电致折射率改变的 3D显示设备, 其特征在 于, 横向相邻的电光晶体之间共用一电极, 纵向相邻的电光晶体之间分布有连 接电极和控制模块的透明导线, 导线与电极垂直。
5.根据权利要求 3或 4所述的基于电致折射率改变的 3D显示设备, 其特 征在于, 所述电光晶体为钽铌酸锂或钽铌酸钾。
6.根据权利要求 5所述的基于电致折射率改变的 3D显示设备, 其特征在 于, 所述透明电光晶体阵列的厚度为 1 mm~1 m。
7.—种基于电致折射率改变的 3D显示方法, 该方法包括:
在二维显示屏前端设置平板状的透明电光晶体阵列,所述电光晶体阵列由 与二维显示屏像素点相同数量的方柱状的电光晶体组成,每个电光晶体的与显 示屏平行的截面与二维显示屏像素点的大小相同,且各电光晶体与二维显示屏 像素点相正对,通过一控制模块向电光晶体施加与该电光晶体相正对像素点的 景深相对应的电压。
8. 根据权利要求 7所述的基于电致折射率改变的 3D显示方法,其特征在 于, 所述各电光晶体为横向电光效应晶体, 所述控制模块与向电光晶体施加电 压的电极电性连接, 所述电极相对设置电光晶体的两侧, 设置在电光晶体两侧 的电极与电光晶体阵列垂直, 且设置在电光晶体两侧的两电极相互平行。
9. 根据权利要求 8所述的基于电致折射率改变的 3D显示方法,其特征在 于, 横向相邻的电光晶体之间共用一电极, 纵向相邻的电光晶体之间分布有连 接电极和控制模块的透明导线, 导线与电极垂直。
10.根据权利要求 8或 9所述的基于电致折射率改变的 3D显示方法, 其 特征在于,与该电光晶体相正对的像素点的景深与各电光晶体施加的电压的一 次方成反比。
PCT/CN2012/078860 2012-06-07 2012-07-19 基于电致折射率改变的3d显示设备和显示方法 WO2013181877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210201522.9A CN103389587B (zh) 2012-06-07 2012-06-07 基于电致折射率改变的3d显示设备
CN201210201522.9 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013181877A1 true WO2013181877A1 (zh) 2013-12-12

Family

ID=49533899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078860 WO2013181877A1 (zh) 2012-06-07 2012-07-19 基于电致折射率改变的3d显示设备和显示方法

Country Status (2)

Country Link
CN (2) CN103389587B (zh)
WO (1) WO2013181877A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360533B (zh) * 2014-12-03 2017-08-29 京东方科技集团股份有限公司 一种 3d 显示装置及其显示驱动方法
TWI603135B (zh) 2016-10-13 2017-10-21 財團法人工業技術研究院 三維顯示模組
CN107884940A (zh) * 2017-11-28 2018-04-06 腾讯科技(深圳)有限公司 显示模组、头戴式显示设备及图像立体显示方法
CN110007474A (zh) * 2019-03-25 2019-07-12 苏州科技大学 一种电控式立体3d光栅膜
CN109765695B (zh) * 2019-03-29 2021-09-24 京东方科技集团股份有限公司 一种显示系统和显示装置
CN110221440A (zh) * 2019-07-29 2019-09-10 京东方科技集团股份有限公司 一种增强现实显示设备及其驱动方法、增强现实眼镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030063186A1 (en) * 2001-09-11 2003-04-03 Samsung Electronics Co. Ltd. 2D/3D convertible display
CN101588510A (zh) * 2008-05-22 2009-11-25 聚晶光电股份有限公司 3d立体影像撷取、播放系统及其方法
CN102055991A (zh) * 2009-10-27 2011-05-11 深圳Tcl新技术有限公司 二维图像转换为三维图像的转换方法及转换装置
CN102196276A (zh) * 2010-03-09 2011-09-21 朱国樑 一种完全立体电视图像显示方案
CN102223564A (zh) * 2011-07-13 2011-10-19 黑龙江省四维影像数码科技有限公司 2d/3d可切换、景深可调显示模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9623682D0 (en) * 1996-11-14 1997-01-08 Philips Electronics Nv Autostereoscopic display apparatus
CN1200296C (zh) * 2002-12-20 2005-05-04 中国科学院上海光学精密机械研究所 铌酸锂晶体体全息光栅的光分插复用器
JP4929636B2 (ja) * 2005-07-15 2012-05-09 カシオ計算機株式会社 液晶表示装置
CN101341762B (zh) * 2005-12-20 2012-06-20 皇家飞利浦电子股份有限公司 自动立体显示装置
CN100483184C (zh) * 2007-05-29 2009-04-29 东南大学 可变焦透镜三维显示器
KR101529981B1 (ko) * 2008-11-27 2015-06-18 삼성디스플레이 주식회사 표시장치 및 이의 제조방법
CN101840071A (zh) * 2010-05-13 2010-09-22 上海交通大学 基于液晶透镜的三维立体显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030063186A1 (en) * 2001-09-11 2003-04-03 Samsung Electronics Co. Ltd. 2D/3D convertible display
CN101588510A (zh) * 2008-05-22 2009-11-25 聚晶光电股份有限公司 3d立体影像撷取、播放系统及其方法
CN102055991A (zh) * 2009-10-27 2011-05-11 深圳Tcl新技术有限公司 二维图像转换为三维图像的转换方法及转换装置
CN102196276A (zh) * 2010-03-09 2011-09-21 朱国樑 一种完全立体电视图像显示方案
CN102223564A (zh) * 2011-07-13 2011-10-19 黑龙江省四维影像数码科技有限公司 2d/3d可切换、景深可调显示模组

Also Published As

Publication number Publication date
CN103389587A (zh) 2013-11-13
CN105242405A (zh) 2016-01-13
CN103389587B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN102073142B (zh) 立体显示单元
KR100440956B1 (ko) 2d/3d 겸용 디스플레이
CN102141714B (zh) 显示装置
US8471968B2 (en) Liquid crystal panel having a light refracting device, and display device having liquid crystal panel
CN101162311B (zh) 立体液晶显示器及其制作方法
CN102402096A (zh) 液晶透镜、液晶显示面板及液晶显示装置
WO2013181877A1 (zh) 基于电致折射率改变的3d显示设备和显示方法
CN101576662B (zh) 显示装置及显示三维立体影像的方法
CN101840073A (zh) 二维和三维可切换的多个全尺寸图像的图像显示系统
CN102253563A (zh) 一种视角优化的电驱动液晶透镜及其立体显示装置
CN101840071A (zh) 基于液晶透镜的三维立体显示器
KR100952137B1 (ko) 입체 영상 디스플레이 장치 및 그 제조방법
WO2013060273A1 (zh) 裸眼三维图像显示方法及装置
CN102053406A (zh) 立体显示器
CN102736353B (zh) 液晶透镜及裸眼立体显示装置
CN101852923A (zh) 基于单像素液晶透镜的三维立体显示屏
TW201541172A (zh) 電泳顯示裝置
CN203299500U (zh) 一种双层结构液晶透镜及三维显示装置
WO2013123801A1 (zh) 裸眼3d显示方法和裸眼3d显示装置
CN104656337A (zh) 一种液晶透镜及显示装置
US9429763B2 (en) Liquid crystal lens and liquid crystal display device
CN102162958B (zh) 立体显示系统
KR20090106062A (ko) 영상분리표시장치
CN202149995U (zh) 一种裸眼3d屏装置
CN202948239U (zh) 一种液晶透镜及3d显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12878507

Country of ref document: EP

Kind code of ref document: A1