WO2013180283A1 - Warming up device for engine - Google Patents
Warming up device for engine Download PDFInfo
- Publication number
- WO2013180283A1 WO2013180283A1 PCT/JP2013/065225 JP2013065225W WO2013180283A1 WO 2013180283 A1 WO2013180283 A1 WO 2013180283A1 JP 2013065225 W JP2013065225 W JP 2013065225W WO 2013180283 A1 WO2013180283 A1 WO 2013180283A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling water
- flow path
- exhaust
- heat exchange
- exhaust passage
- Prior art date
Links
- 238000010792 warming Methods 0.000 title abstract description 9
- 239000000498 cooling water Substances 0.000 claims abstract description 136
- 238000011144 upstream manufacturing Methods 0.000 claims description 27
- 239000003054 catalyst Substances 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 2
- 239000002918 waste heat Substances 0.000 abstract description 25
- 238000011084 recovery Methods 0.000 abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 239000000446 fuel Substances 0.000 abstract description 8
- 239000002826 coolant Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 101001020548 Homo sapiens LIM/homeobox protein Lhx1 Proteins 0.000 description 5
- 101000976913 Homo sapiens Lens fiber major intrinsic protein Proteins 0.000 description 5
- 102100023487 Lens fiber major intrinsic protein Human genes 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- WTHDKMILWLGDKL-UHFFFAOYSA-N urea;hydrate Chemical compound O.NC(N)=O WTHDKMILWLGDKL-UHFFFAOYSA-N 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N19/00—Starting aids for combustion engines, not otherwise provided for
- F02N19/02—Aiding engine start by thermal means, e.g. using lighted wicks
- F02N19/04—Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
- F02N19/10—Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/02—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
- F01N2410/03—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of low temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2037/00—Controlling
- F01P2037/02—Controlling starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/16—Outlet manifold
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an engine warm-up device, and more particularly to an engine warm-up device that recovers waste heat and heats cooling water.
- JP 2004-301061 A Japanese Patent Laid-Open No. 11-13471
- the present invention has been made in view of these points, and an object of the present invention is to provide an engine warm-up device that can effectively improve fuel efficiency while promoting warm-up.
- a warming-up device for an engine of the present invention is provided in an exhaust passage of the engine, and a heat exchange passage for exchanging heat between exhaust flowing through the exhaust passage and circulating coolant.
- a first cooling water passage formed in the cylinder block of the engine and for flowing cooling water through the cylinder block, a cooling water outlet portion of the heat exchange passage, and a cooling water inlet portion of the first cooling water passage
- a second cooling water channel connecting the first cooling water channel, a third cooling water channel connecting the cooling water outlet of the first cooling water channel and the cooling water inlet of the heat exchange channel, and the second And a pump for pumping the cooling water provided in the cooling water passage or the third cooling water passage.
- a flow for switching an exhaust flow path provided at a branch exhaust passage formed by branching from an exhaust passage upstream of the heat exchange flow path and the exhaust passage and the branched exhaust passage.
- a flow path switching valve, and the flow path switching valve opens the exhaust flow path when the temperature of the cooling water heated in the heat exchange flow path is equal to or lower than a predetermined upper limit threshold value that prevents boiling of the cooling water.
- the exhaust passage provided with the heat exchange flow path is switched to the branch exhaust passage when the temperature of the cooling water heated in the heat exchange flow path becomes higher than the upper limit threshold. It may be.
- an exhaust purification catalyst for purifying exhaust gas may be provided in the exhaust passage, and the heat exchange flow path may be provided in an exhaust passage downstream of the exhaust purification catalyst.
- the engine warm-up device of the present invention it is possible to effectively improve fuel efficiency while promoting warm-up.
- FIG. 1 It is a typical whole lineblock diagram showing the warming-up device of the engine concerning one embodiment of the present invention.
- (a) is a diagram illustrating an exhaust flow path when the exhaust flow path switching valve is turned on, and (b) is an exhaust flow when the exhaust flow path switching valve is turned off. It is a figure explaining a path.
- (a) is a diagram illustrating a cooling water circuit at the start of warming up
- (b) is a diagram illustrating a cooling water circuit at the time of continuing warming up
- (c) is when warming up is completed. It is a figure explaining the cooling water circuit.
- It is a flowchart which shows the control content which concerns on one Embodiment of this invention.
- It is a typical whole block diagram which shows the warming-up apparatus of the engine which concerns on other embodiment of this invention.
- an oxidation catalyst Diesel ⁇ ⁇ ⁇ ⁇ Oxidation Catalyst: hereinafter referred to as DOC) 12, diesel particulates, A filter (Diesel Particulate Filter, hereinafter referred to as DPF) 13 and a selective reduction catalyst (hereinafter referred to as SCR) 14 are provided.
- DOC oxidation catalyst
- DPF Diesel Particulate Filter
- SCR selective reduction catalyst
- DOC12 generates the NO 2 to oxidize NO in the exhaust, to NO in the exhaust to increase the proportion of NO 2, functions to raise the denitration efficiency by SCR 14.
- the DPF 13 collects particulate matter (hereinafter referred to as PM) in the exhaust gas, and when the collected amount of PM exceeds a predetermined amount, regeneration is performed by removing the accumulated PM by incineration.
- the regeneration of the DPF 13 is performed by supplying unburned fuel to the DOC 12 on the upstream side of the exhaust by post-injection and increasing the exhaust temperature by heat due to oxidation.
- the SCR 14 adsorbs ammonia generated from urea water sprayed in the exhaust passage 11 by a urea water injector (not shown) and reduces and purifies NOx from the exhaust gas passing through the adsorbed ammonia.
- the warm-up device 20 includes a heat exchange exhaust passage 11a, a branch exhaust passage 11b, an exhaust passage switching valve 21, a waste heat recovery heat exchange passage 22, an upstream cooling water passage 23, and a cylinder block.
- a flow path 24, a water pump 32, a downstream cooling water flow path 25, a radiator flow path 26, a bypass flow path 27, a cooling water temperature sensor 35, and an electronic control unit (hereinafter referred to as ECU) 40 are provided. ing.
- the cylinder block flow path 24 is the first cooling water flow path of the present invention
- the upstream cooling water flow path 23 is the second cooling water flow path of the present invention
- the downstream cooling water flow path 25 is the present invention. This corresponds to the third cooling water flow path.
- the heat exchange exhaust passage 11a is formed in the exhaust passage 11 on the exhaust downstream side of the SCR 14 and a silencer (not shown). In the heat exchange exhaust passage 11a, a waste heat recovery heat exchange passage 22 described later in detail is interposed.
- the branch exhaust passage 11b is branched from the exhaust passage 11 located between the SCR 14 and the waste heat recovery heat exchange passage 22.
- the branch exhaust passage 11b and the heat exchange exhaust passage 11a also function as a tail pipe that discharges the exhaust to the outside.
- the exhaust passage switching valve 21 is, for example, a known butterfly valve, and is provided at a branch portion between the heat exchange exhaust passage 11a and the branch exhaust passage 11b.
- the exhaust flow path switching valve 21 When the exhaust flow path switching valve 21 is turned on in response to an instruction signal input from the ECU 40, the upstream end of the branch exhaust passage 11b is closed. That is, the exhaust gas from the SCR 14 flows into the heat exchange exhaust passage 11a and is released to the outside air (see FIG. 2A).
- the exhaust flow path switching valve 21 is turned OFF in response to an instruction signal input from the ECU 40, the upstream end of the heat exchange exhaust passage 11a is closed. That is, the exhaust gas from the SCR 14 flows into the branch exhaust passage 11b and is released to the outside air (see FIG. 2B).
- the waste heat recovery heat exchange flow path 22 performs heat exchange between the cooling water flowing through the flow path and the exhaust gas flowing through the heat exchange exhaust passage 11a, and is disposed in the heat exchange exhaust passage 11a. It is formed to meander.
- the waste heat recovery heat exchange flow path 22 is provided on the exhaust downstream side of the SCR 14, so that the SCR 14 becomes lower than the catalyst activation temperature due to a decrease in exhaust temperature due to waste heat recovery. Can be prevented.
- the upstream cooling water flow path 23 supplies the cooling water whose temperature has been raised by heat exchange with the exhaust gas in the waste heat recovery heat exchange flow path 22 to the in-cylinder block flow path 24. Therefore, the upstream side cooling water flow path 23 is connected at its upstream end to the cooling water outlet of the heat exchange flow path 22 for waste heat recovery, and the downstream end is connected to the cooling water inlet of the flow path 24 in the cylinder block. Connected to the department.
- the in-cylinder block flow path 24 circulates cooling water flowing from the upstream cooling water flow path 23 through a water jacket (not shown), and is formed in the cylinder block of the engine 10.
- the water pump 32 pumps and supplies cooling water, and is provided adjacent to the cooling water inlet of the in-cylinder block flow path 24.
- the water pump 32 is driven by power transmitted from a crankshaft (not shown) of the engine 10.
- the downstream cooling water flow path 25 allows the cooling water that has flowed through the cylinder block flow path 24 to flow into the heat exchange flow path 22 for waste heat recovery. Therefore, the downstream side cooling water passage 25 is connected at its upstream end to the cooling water outlet portion of the in-cylinder block passage 24 and at the downstream end thereof to the cooling water inlet of the heat exchange passage 22 for waste heat recovery. Connected to the department.
- the radiator flow path 26 allows cooling water to flow into the radiator 31 that performs heat exchange between the cooling water and the outside air, and connects the upstream side of the downstream cooling water path 25 and the downstream side of the upstream cooling water path 23.
- a known thermostat 33 is provided at a branch portion between the radiator flow path 26 and the downstream-side cooling water flow path 25. The thermostat 33 opens when the cooling water temperature reaches 65 ° C. or higher, and switches the cooling water flow path from the downstream cooling water flow path 25 to the radiator flow path 26.
- the bypass flow path 27 bypasses the cooling water flow path from the radiator 31 and communicates the upstream side and the downstream side of the radiator flow path 26 with respect to the radiator 31.
- a known thermostat 34 is provided at a branch portion between the bypass flow path 27 and the radiator flow path 26. The thermostat 34 opens when the cooling water temperature reaches 87 ° C. or higher, and switches the cooling water flow path from the bypass flow path 27 to the radiator flow path 26.
- the cooling water when the cooling water temperature is less than 65 ° C., the cooling water is the waste heat recovery heat exchange flow path 22 to the upstream cooling water flow path 23 to the cylinder block internal flow path 24 to the downstream cooling water flow path 25. It circulates through the cooling water circuit at the time of the warming-up start comprised by (refer Fig.3 (a)).
- the cooling water flows to the radiator block upstream from the downstream cooling water passage 25 to the thermostat 34 upstream from the in-cylinder block passage 24 to the thermostat 33. It is composed of a radiator flow path 26 on the downstream side of the junction with the passage 26 to the bypass flow path 27 to the bypass flow path 27 to an upstream side cooling water flow path 23 on the downstream side of the junction with the radiator flow path 26. Circulates through the cooling water circuit when the warm-up continues (see FIG. 3B).
- the cooling water merges with the cylinder block internal flow path 24 to the downstream cooling water flow path 25 upstream of the thermostat 33 to the radiator flow path 26 to the radiator flow path 26. It circulates in the cooling water circuit at the time of completion of warm-up constituted by the upstream side cooling water flow path 23 on the downstream side of the section (see FIG. 3C).
- the cooling water temperature sensor 35 detects the temperature of the cooling water heated by the heat exchange with the exhaust gas, and is provided in the upstream cooling water passage 23 adjacent to the cooling water outlet portion of the heat exchange passage 22 for waste heat recovery. Is provided. Coolant temperature T CO detected by the coolant temperature sensor 35 is inputted to the electrically connected ECU 40.
- the ECU 40 performs various controls such as fuel injection of the engine 10, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, output signals of various sensors are input to the ECU 40.
- ECU 40 depending on the coolant temperature T CO detected by the coolant temperature sensor 35, and controls the exhaust flow switching valve 21. More specifically, the ECU 40 stores a temperature (for example, 80 ° C.) that prevents boiling of the cooling water as the cooling water temperature upper limit threshold T LIM1 . ECU40, the cooling water temperature T CO input from coolant temperature sensor 35 when the cooling water temperature upper threshold T LIM1 following inputs an instruction signal to the ON exhaust flow switching valve 21. That is, the upstream end of the branch exhaust passage 11b is closed, and the exhaust flows into the heat exchange exhaust passage 11a (see FIG. 2A).
- a temperature for example, 80 ° C.
- cooling water temperature T CO input from coolant temperature sensor 35 is more than the cooling water temperature upper threshold T LIM1
- ECU 40 inputs an instruction signal to the OFF exhaust flow switching valve 21. That is, the upstream end of the heat exchange exhaust passage 11a is closed, and the exhaust flows into the branch exhaust passage 11b (see FIG. 2B).
- step (hereinafter, step is simply referred to as S) 100 the water pump 32 is driven by starting the engine 10, and an instruction signal for turning on the exhaust flow path switching valve 21 is input from the ECU 40. That is, the temperature of the cooling water is raised by heat exchange with the exhaust gas in the waste heat recovery heat exchange flow path 22, and the raised cooling water is transferred to the cylinder block flow path 24 via the upstream side cooling water flow path 23. Then, the engine 10 is warmed up by waste heat recovery. At this time, the cooling water circulates through a cooling water circuit (see FIG. 3A) at the start of warm-up that bypasses the radiator flow path 26 and the bypass flow path 27.
- a cooling water circuit see FIG. 3A
- the thermostat 33 is opened in S110. That is, the cooling water circulates through the cooling water circuit (see FIG. 3B) during the warming-up that bypasses the radiator 30 and the waste heat recovery heat exchange passage 22.
- the thermostat 34 opens in S140. That is, the cooling water circulates through the cooling water circuit (see FIG. 3C) at the time of completion of warming that bypasses the bypass flow path 31 and flows through the radiator 30, and this control is returned.
- cooling water is bypassed from the radiator and the engine speed is set high to promote warm-up.
- the cooling water is effectively heated by heat exchange with the exhaust gas in the waste heat recovery heat exchange passage 22 without increasing the engine speed during the warm-up operation. To promote warm-up.
- the warming-up device 20 of the present embodiment it is possible to efficiently heat the cooling water by waste heat recovery and complete warming up early without increasing the engine speed, and during warming-up operation.
- the fuel consumption can be effectively improved.
- the waste heat recovery heat exchange passage 22 for performing heat exchange between the cooling water and the exhaust is provided on the exhaust downstream side of the SCR 14.
- the exhaust gas (NOx emission) is effectively prevented from deteriorating by avoiding the SCR 14 from lowering than the catalyst activation temperature due to a decrease in exhaust temperature due to waste heat recovery. can do.
- the exhaust passage is switched from the heat exchange exhaust passage 11a to the branch exhaust passage 11b, and the heat of the exhaust and the cooling water is changed. The exchange is stopped.
- the warm-up device 20 of the present embodiment it is possible to reliably avoid the cooling water from being heated more than necessary due to waste heat recovery and boiling.
- heat exchange exhaust passage 11a and the branch exhaust passage 11b have been described as being formed in the exhaust passage 11 on the exhaust downstream side of the silencer, they may be formed immediately downstream of the SCR 14, and the catalyst heater If provided, it may be formed on the exhaust upstream side of the SCR 14.
- an electric pump 38 may be provided in the downstream cooling water passage 25 and an electromagnetic clutch 39 capable of connecting / disconnecting the power transmitted from the engine 10 to the water pump 32 may be provided.
- the electromagnetic clutch 39 is disengaged during the warm-up operation to stop the driving of the water pump 32, and if the cooling water is pumped only by the electric pump 38, the engine load is reduced and the fuel efficiency during the warm-up operation is reduced. This can be further improved.
- the engine 10 is not limited to a diesel engine, and may be a gasoline engine or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
A warming up device for an engine, that promotes warming up and effectively improves fuel efficiency. The warming up device for an engine is provided in the exhaust passage (11) of the engine (10) and comprises: a heat exchange flow path for waste heat recovery (22) that exchanges heat between exhaust air and cooling water; a cylinder block internal flow path (24) formed in the cylinder block of the engine (10) and which causes cooling water to flow inside the cylinder block; an upstream-side cooling water flow path (23) that connects a cooling water outlet section of the heat exchange flow path for waste heat recovery (22) and a cooling water inlet section of the cylinder block internal flow path (24); a downstream-side cooling water flow path (25) that connects a cooling water outlet section of the cylinder block internal flow path (24) and a cooling water inlet section of the heat exchange flow path for waste heat recovery (22); and a water pump (32) provided in the upstream-side cooling water flow path (23) and which pressure-feeds the cooling water.
Description
本発明は、エンジンの暖機装置に関し、特に、廃熱を回収して冷却水を加熱するエンジンの暖機装置に関する。
The present invention relates to an engine warm-up device, and more particularly to an engine warm-up device that recovers waste heat and heats cooling water.
一般的に、エンジンの暖機運転時は、エンジンで加熱される冷却水をラジエータから迂回させることで、冷却水温を早期に上昇させている。このようなエンジンの暖機装置は、例えば特許文献1に記載されている。
Generally, at the time of engine warm-up operation, the coolant temperature is quickly raised by bypassing the coolant heated by the engine from the radiator. Such an engine warm-up device is described in Patent Document 1, for example.
また、冷却水を圧送するポンプとして、エンジンから伝達される動力を断接可能にする電磁クラッチ付きのウォータポンプを備え、暖機運転時は電磁クラッチを切断してウォータポンプを停止させることで、冷却水温を早期に上昇させるものも知られている。このようなエンジンの暖機装置は、例えば特許文献2に記載されている。
In addition, as a pump that pumps cooling water, it has a water pump with an electromagnetic clutch that enables connection and disconnection of power transmitted from the engine, and during warm-up operation, the electromagnetic clutch is disconnected and the water pump is stopped, There is also known one that raises the cooling water temperature early. Such an engine warm-up device is described in Patent Document 2, for example.
これらエンジンの暖機装置においては、一般的に暖機運転時はエンジン回転数を高く設定して、エンジンの発熱により冷却水を効率よく加熱することで、暖機の促進を図っている。
In these engine warm-up devices, in general, during warm-up operation, the engine speed is set high, and the cooling water is efficiently heated by the heat generated by the engine to promote warm-up.
しかしながら、エンジンの暖機を促進させるためにエンジン回転数を高く設定すると、暖機運転時におけるエンジン負荷の増大により燃費を悪化させる懸念がある。
However, if the engine speed is set high in order to promote warm-up of the engine, there is a concern that fuel consumption may be deteriorated due to an increase in engine load during warm-up operation.
本発明はこのような点に鑑みてなされたもので、その目的は、暖機を促進させつつ、燃費を効果的に向上することができるエンジンの暖機装置を提供することにある。
The present invention has been made in view of these points, and an object of the present invention is to provide an engine warm-up device that can effectively improve fuel efficiency while promoting warm-up.
上記目的を達成するため、本発明のエンジンの暖機装置は、エンジンの排気通路に設けられ、該排気通路を流れる排気と流通させる冷却水との間で熱交換を行う熱交換流路と、前記エンジンのシリンダブロックに形成され、該シリンダブロック内に冷却水を流通させる第1の冷却水流路と、前記熱交換流路の冷却水出口部と前記第1の冷却水流路の冷却水入口部とを接続する第2の冷却水流路と、前記第1の冷却水流路の冷却水出口部と前記熱交換流路の冷却水入口部とを接続する第3の冷却水流路と、前記第2の冷却水流路もしくは前記第3の冷却水流路に設けられて冷却水を圧送するポンプとを備えることを特徴とする。
In order to achieve the above object, a warming-up device for an engine of the present invention is provided in an exhaust passage of the engine, and a heat exchange passage for exchanging heat between exhaust flowing through the exhaust passage and circulating coolant. A first cooling water passage formed in the cylinder block of the engine and for flowing cooling water through the cylinder block, a cooling water outlet portion of the heat exchange passage, and a cooling water inlet portion of the first cooling water passage A second cooling water channel connecting the first cooling water channel, a third cooling water channel connecting the cooling water outlet of the first cooling water channel and the cooling water inlet of the heat exchange channel, and the second And a pump for pumping the cooling water provided in the cooling water passage or the third cooling water passage.
また、前記熱交換流路よりも排気上流側の排気通路から分岐して形成された分岐排気通路と、前記排気通路と前記分岐排気通路との分岐部に設けられて排気の流路を切り替える流路切替バルブとをさらに備え、前記流路切替バルブは、前記熱交換流路で昇温された冷却水の温度が冷却水の沸騰を防ぐ所定の上限閾値以下の時は、排気の流路を前記熱交換流路が設けられた排気通路にする一方、前記熱交換流路で昇温された冷却水の温度が前記上限閾値よりも高くなると、排気の流路を前記分岐排気通路に切り替えるものであってもよい。
Further, a flow for switching an exhaust flow path provided at a branch exhaust passage formed by branching from an exhaust passage upstream of the heat exchange flow path and the exhaust passage and the branched exhaust passage. A flow path switching valve, and the flow path switching valve opens the exhaust flow path when the temperature of the cooling water heated in the heat exchange flow path is equal to or lower than a predetermined upper limit threshold value that prevents boiling of the cooling water. The exhaust passage provided with the heat exchange flow path is switched to the branch exhaust passage when the temperature of the cooling water heated in the heat exchange flow path becomes higher than the upper limit threshold. It may be.
また、前記排気通路に排気を浄化する排気浄化触媒が設けられ、前記熱交換流路は該排気浄化触媒よりも排気下流側の排気通路に設けられてもよい。
Further, an exhaust purification catalyst for purifying exhaust gas may be provided in the exhaust passage, and the heat exchange flow path may be provided in an exhaust passage downstream of the exhaust purification catalyst.
本発明のエンジンの暖機装置によれば、暖機を促進させつつ、燃費を効果的に向上することができる。
According to the engine warm-up device of the present invention, it is possible to effectively improve fuel efficiency while promoting warm-up.
以下、図1~4に基づいて、本発明の一実施形態に係るエンジンの暖機装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
Hereinafter, an engine warm-up device according to an embodiment of the present invention will be described with reference to FIGS. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
まず、図1に基づいて、本実施形態のエンジンの暖機装置20が搭載される車両の排気系から説明する。
First, the exhaust system of a vehicle on which the engine warm-up device 20 according to this embodiment is mounted will be described with reference to FIG.
本実施形態の排気系において、ディーゼルエンジン(以下、単にエンジンという)10の排気通路11には排気上流側から順に、酸化触媒(Diesel Oxidation Catalyst:以下、DOCという)12、ディーゼル・パティキュレイト・フィルタ(Diesel Particulate Filter、以下、DPFという)13、選択的還元触媒(Selective Catalytic Reduction:以下、SCRという)14が設けられている。
In the exhaust system according to the present embodiment, an oxidation catalyst (Diesel エ ン ジ ン Oxidation Catalyst: hereinafter referred to as DOC) 12, diesel particulates, A filter (Diesel Particulate Filter, hereinafter referred to as DPF) 13 and a selective reduction catalyst (hereinafter referred to as SCR) 14 are provided.
DOC12は、排気中のNOを酸化してNO2を生成して、排気中のNOに対するNO2の比率を増加させることで、SCR14による脱硝効率を高めるように機能する。
DOC12 generates the NO 2 to oxidize NO in the exhaust, to NO in the exhaust to increase the proportion of NO 2, functions to raise the denitration efficiency by SCR 14.
DPF13は、排気中の粒子状物質(以下、PMという)を捕集すると共に、PMの捕集量が所定量を超えると、蓄積したPMを焼却除去する再生が行われる。このDPF13の再生は、排気上流側のDOC12にポスト噴射により未燃燃料を供給し、酸化による熱で排気温度を上昇することで行われる。
The DPF 13 collects particulate matter (hereinafter referred to as PM) in the exhaust gas, and when the collected amount of PM exceeds a predetermined amount, regeneration is performed by removing the accumulated PM by incineration. The regeneration of the DPF 13 is performed by supplying unburned fuel to the DOC 12 on the upstream side of the exhaust by post-injection and increasing the exhaust temperature by heat due to oxidation.
SCR14は、図示しない尿素水インジェクタにより排気通路11内に噴霧された尿素水から生成されるアンモニアを吸着するとともに、吸着したアンモニアで通過する排気中からNOxを還元浄化する。
The SCR 14 adsorbs ammonia generated from urea water sprayed in the exhaust passage 11 by a urea water injector (not shown) and reduces and purifies NOx from the exhaust gas passing through the adsorbed ammonia.
次に、本実施形態に係るエンジンの暖機装置20の詳細構成について説明する。暖機装置20は、熱交換用排気通路11aと、分岐排気通路11bと、排気流路切替バルブ21と、廃熱回収用熱交換流路22と、上流側冷却水流路23と、シリンダブロック内流路24と、ウォータポンプ32と、下流側冷却水流路25と、ラジエータ用流路26と、バイパス流路27と、冷却水温センサ35と、電子制御ユニット(以下、ECUという)40とを備えている。
Next, a detailed configuration of the engine warm-up device 20 according to the present embodiment will be described. The warm-up device 20 includes a heat exchange exhaust passage 11a, a branch exhaust passage 11b, an exhaust passage switching valve 21, a waste heat recovery heat exchange passage 22, an upstream cooling water passage 23, and a cylinder block. A flow path 24, a water pump 32, a downstream cooling water flow path 25, a radiator flow path 26, a bypass flow path 27, a cooling water temperature sensor 35, and an electronic control unit (hereinafter referred to as ECU) 40 are provided. ing.
なお、本実施形態において、シリンダブロック内流路24は本発明の第1の冷却水流路、上流側冷却水流路23は本発明の第2の冷却水流路、下流側冷却水流路25は本発明の第3の冷却水流路に相当する。
In this embodiment, the cylinder block flow path 24 is the first cooling water flow path of the present invention, the upstream cooling water flow path 23 is the second cooling water flow path of the present invention, and the downstream cooling water flow path 25 is the present invention. This corresponds to the third cooling water flow path.
熱交換用排気通路11aは、SCR14や図示しない消音器よりも排気下流側の排気通路11に形成されている。この熱交換用排気通路11a内には、詳細を後述する廃熱回収用熱交換流路22が介装されている。
The heat exchange exhaust passage 11a is formed in the exhaust passage 11 on the exhaust downstream side of the SCR 14 and a silencer (not shown). In the heat exchange exhaust passage 11a, a waste heat recovery heat exchange passage 22 described later in detail is interposed.
分岐排気通路11bは、SCR14と廃熱回収用熱交換流路22との間に位置する排気通路11から分岐して形成されている。本実施形態において、この分岐排気通路11bと熱交換用排気通路11aとは、排気を外部に放出するテールパイプとしても機能する。
The branch exhaust passage 11b is branched from the exhaust passage 11 located between the SCR 14 and the waste heat recovery heat exchange passage 22. In the present embodiment, the branch exhaust passage 11b and the heat exchange exhaust passage 11a also function as a tail pipe that discharges the exhaust to the outside.
排気流路切替バルブ21は、例えば公知のバタフライバルブであって、熱交換用排気通路11aと分岐排気通路11bとの分岐部に設けられている。この排気流路切替バルブ21は、ECU40から入力される指示信号に応じてONにされると、分岐排気通路11bの上流端を閉鎖する。すなわち、SCR14からの排気は熱交換用排気通路11aに流入して外気に放出される(図2(a)参照)。一方、排気流路切替バルブ21は、ECU40から入力される指示信号に応じてOFFにされると、熱交換用排気通路11aの上流端を閉鎖する。すなわち、SCR14からの排気は分岐排気通路11bに流入して外気に放出される(図2(b)参照)。
The exhaust passage switching valve 21 is, for example, a known butterfly valve, and is provided at a branch portion between the heat exchange exhaust passage 11a and the branch exhaust passage 11b. When the exhaust flow path switching valve 21 is turned on in response to an instruction signal input from the ECU 40, the upstream end of the branch exhaust passage 11b is closed. That is, the exhaust gas from the SCR 14 flows into the heat exchange exhaust passage 11a and is released to the outside air (see FIG. 2A). On the other hand, when the exhaust flow path switching valve 21 is turned OFF in response to an instruction signal input from the ECU 40, the upstream end of the heat exchange exhaust passage 11a is closed. That is, the exhaust gas from the SCR 14 flows into the branch exhaust passage 11b and is released to the outside air (see FIG. 2B).
廃熱回収用熱交換流路22は、その流路内を流通させる冷却水と熱交換用排気通路11a内を流れる排気との間で熱交換を行うもので、熱交換用排気通路11a内に蛇行して形成されている。本実施形態において、この廃熱回収用熱交換流路22は、SCR14よりも排気下流側に設けられているので、廃熱回収による排気温度の低下によりSCR14が触媒活性温度よりも低くなることを防止することができる。
The waste heat recovery heat exchange flow path 22 performs heat exchange between the cooling water flowing through the flow path and the exhaust gas flowing through the heat exchange exhaust passage 11a, and is disposed in the heat exchange exhaust passage 11a. It is formed to meander. In the present embodiment, the waste heat recovery heat exchange flow path 22 is provided on the exhaust downstream side of the SCR 14, so that the SCR 14 becomes lower than the catalyst activation temperature due to a decrease in exhaust temperature due to waste heat recovery. Can be prevented.
上流側冷却水流路23は、廃熱回収用熱交換流路22で排気との熱交換により昇温された冷却水をシリンダブロック内流路24に供給する。このため、上流側冷却水流路23は、その上流端部を廃熱回収用熱交換流路22の冷却水出口部に接続されると共に、下流端部をシリンダブロック内流路24の冷却水入口部に接続されている。
The upstream cooling water flow path 23 supplies the cooling water whose temperature has been raised by heat exchange with the exhaust gas in the waste heat recovery heat exchange flow path 22 to the in-cylinder block flow path 24. Therefore, the upstream side cooling water flow path 23 is connected at its upstream end to the cooling water outlet of the heat exchange flow path 22 for waste heat recovery, and the downstream end is connected to the cooling water inlet of the flow path 24 in the cylinder block. Connected to the department.
シリンダブロック内流路24は、上流側冷却水流路23から流入する冷却水を図示しないウォータジャケットに流通させるもので、エンジン10のシリンダブロック内に形成されている。
The in-cylinder block flow path 24 circulates cooling water flowing from the upstream cooling water flow path 23 through a water jacket (not shown), and is formed in the cylinder block of the engine 10.
ウォータポンプ32は、冷却水を圧送供給するもので、シリンダブロック内流路24の冷却水入口部に隣接して設けられている。このウォータポンプ32は、エンジン10の図示しないクランクシャフトから伝達される動力で駆動される。
The water pump 32 pumps and supplies cooling water, and is provided adjacent to the cooling water inlet of the in-cylinder block flow path 24. The water pump 32 is driven by power transmitted from a crankshaft (not shown) of the engine 10.
下流側冷却水流路25は、シリンダブロック内流路24を流通した冷却水を廃熱回収用熱交換流路22に流入させる。このため、下流側冷却水流路25は、その上流端部をシリンダブロック内流路24の冷却水出口部に接続されると共に、下流端部を廃熱回収用熱交換流路22の冷却水入口部に接続されている。
The downstream cooling water flow path 25 allows the cooling water that has flowed through the cylinder block flow path 24 to flow into the heat exchange flow path 22 for waste heat recovery. Therefore, the downstream side cooling water passage 25 is connected at its upstream end to the cooling water outlet portion of the in-cylinder block passage 24 and at the downstream end thereof to the cooling water inlet of the heat exchange passage 22 for waste heat recovery. Connected to the department.
ラジエータ用流路26は、冷却水と外気との熱交換を行うラジエータ31に冷却水を流入させるもので、下流側冷却水流路25の上流側と上流側冷却水流路23の下流側とを接続する。また、ラジエータ用流路26と下流側冷却水流路25との分岐部には、公知のサーモスタット33が設けられている。このサーモスタット33は、冷却水温が65℃以上になると開弁して、冷却水の流路を下流側冷却水流路25からラジエータ用流路26に切り替える。
The radiator flow path 26 allows cooling water to flow into the radiator 31 that performs heat exchange between the cooling water and the outside air, and connects the upstream side of the downstream cooling water path 25 and the downstream side of the upstream cooling water path 23. To do. A known thermostat 33 is provided at a branch portion between the radiator flow path 26 and the downstream-side cooling water flow path 25. The thermostat 33 opens when the cooling water temperature reaches 65 ° C. or higher, and switches the cooling water flow path from the downstream cooling water flow path 25 to the radiator flow path 26.
バイパス流路27は、冷却水の流路をラジエータ31から迂回させるもので、ラジエータ用流路26のラジエータ31よりも上流側と下流側とを連通する。また、バイパス流路27とラジエータ用流路26との分岐部には、公知のサーモスタット34が設けられている。このサーモスタット34は、冷却水温が87℃以上になると開弁して、冷却水の流路をバイパス流路27からラジエータ用流路26に切り替える。
The bypass flow path 27 bypasses the cooling water flow path from the radiator 31 and communicates the upstream side and the downstream side of the radiator flow path 26 with respect to the radiator 31. A known thermostat 34 is provided at a branch portion between the bypass flow path 27 and the radiator flow path 26. The thermostat 34 opens when the cooling water temperature reaches 87 ° C. or higher, and switches the cooling water flow path from the bypass flow path 27 to the radiator flow path 26.
すなわち、本実施形態において、冷却水温が65℃未満の時は、冷却水は廃熱回収用熱交換流路22~上流側冷却水流路23~シリンダブロック内流路24~下流側冷却水流路25で構成される暖機開始時の冷却水回路を循環する(図3(a)参照)。
That is, in the present embodiment, when the cooling water temperature is less than 65 ° C., the cooling water is the waste heat recovery heat exchange flow path 22 to the upstream cooling water flow path 23 to the cylinder block internal flow path 24 to the downstream cooling water flow path 25. It circulates through the cooling water circuit at the time of the warming-up start comprised by (refer Fig.3 (a)).
一方、冷却水温が65℃以上で87℃未満の時は、冷却水はシリンダブロック内流路24~サーモスタット33よりも上流側の下流側冷却水流路25~サーモスタット34よりも上流側のラジエータ用流路26~バイパス流路27~バイパス流路27との合流部よりも下流側のラジエータ用流路26~ラジエータ用流路26との合流部よりも下流側の上流側冷却水流路23で構成される暖機継続時の冷却水回路を循環する(図3(b)参照)。
On the other hand, when the cooling water temperature is 65 ° C. or more and less than 87 ° C., the cooling water flows to the radiator block upstream from the downstream cooling water passage 25 to the thermostat 34 upstream from the in-cylinder block passage 24 to the thermostat 33. It is composed of a radiator flow path 26 on the downstream side of the junction with the passage 26 to the bypass flow path 27 to the bypass flow path 27 to an upstream side cooling water flow path 23 on the downstream side of the junction with the radiator flow path 26. Circulates through the cooling water circuit when the warm-up continues (see FIG. 3B).
さらに、冷却水温が87℃以上の時は、冷却水はシリンダブロック内流路24~サーモスタット33よりも上流側の下流側冷却水流路25~ラジエータ用流路26~ラジエータ用流路26との合流部よりも下流側の上流側冷却水流路23で構成される暖機完了時の冷却水回路を循環する(図3(c)参照)。
Further, when the cooling water temperature is 87 ° C. or more, the cooling water merges with the cylinder block internal flow path 24 to the downstream cooling water flow path 25 upstream of the thermostat 33 to the radiator flow path 26 to the radiator flow path 26. It circulates in the cooling water circuit at the time of completion of warm-up constituted by the upstream side cooling water flow path 23 on the downstream side of the section (see FIG. 3C).
冷却水温センサ35は、排気との熱交換により昇温された冷却水の温度を検出するもので、廃熱回収用熱交換流路22の冷却水出口部と隣接する上流側冷却水流路23に設けられている。この冷却水温センサ35で検出される冷却水温度TCOは、電気的に接続されたECU40に入力される。
The cooling water temperature sensor 35 detects the temperature of the cooling water heated by the heat exchange with the exhaust gas, and is provided in the upstream cooling water passage 23 adjacent to the cooling water outlet portion of the heat exchange passage 22 for waste heat recovery. Is provided. Coolant temperature T CO detected by the coolant temperature sensor 35 is inputted to the electrically connected ECU 40.
ECU40は、エンジン10の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。この各種制御を行うため、ECU40には各種センサ類の出力信号が入力される。
The ECU 40 performs various controls such as fuel injection of the engine 10, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, output signals of various sensors are input to the ECU 40.
また、ECU40は、冷却水温センサ35で検出される冷却水温度TCOに応じて、排気流路切替バルブ21を制御する。より詳しくは、ECU40には、冷却水の沸騰を防ぐ温度(例えば、80℃)が冷却水温度上限閾値TLIM1として記憶されている。ECU40は、冷却水温センサ35から入力される冷却水温度TCOがこの冷却水温度上限閾値TLIM1以下の時は、排気流路切替バルブ21をONにする指示信号を入力する。すなわち、分岐排気通路11bの上流端が閉鎖されて、排気は熱交換用排気通路11aに流入する(図2(a)参照)。
Further, ECU 40, depending on the coolant temperature T CO detected by the coolant temperature sensor 35, and controls the exhaust flow switching valve 21. More specifically, the ECU 40 stores a temperature (for example, 80 ° C.) that prevents boiling of the cooling water as the cooling water temperature upper limit threshold T LIM1 . ECU40, the cooling water temperature T CO input from coolant temperature sensor 35 when the cooling water temperature upper threshold T LIM1 following inputs an instruction signal to the ON exhaust flow switching valve 21. That is, the upstream end of the branch exhaust passage 11b is closed, and the exhaust flows into the heat exchange exhaust passage 11a (see FIG. 2A).
一方、冷却水温センサ35から入力される冷却水温度TCOが冷却水温度上限閾値TLIM1を超えると、ECU40は排気流路切替バルブ21をOFFにする指示信号を入力する。すなわち、熱交換用排気通路11aの上流端が閉鎖されて、排気は分岐排気通路11bに流入する(図2(b)参照)。
On the other hand, the cooling water temperature T CO input from coolant temperature sensor 35 is more than the cooling water temperature upper threshold T LIM1, ECU 40 inputs an instruction signal to the OFF exhaust flow switching valve 21. That is, the upstream end of the heat exchange exhaust passage 11a is closed, and the exhaust flows into the branch exhaust passage 11b (see FIG. 2B).
次に、図4に基づいて、本実施形態の暖機装置20による制御フローを説明する。なお、本制御はエンジン10の始動(イグニッションスイッチのキースイッチON)と同時にスタートする。
Next, based on FIG. 4, the control flow by the warming-up apparatus 20 of this embodiment is demonstrated. This control starts simultaneously with the start of the engine 10 (key switch ON of the ignition switch).
ステップ(以下、ステップを単にSと記載する)100では、エンジン10の始動によりウォータポンプ32が駆動すると共に、ECU40から排気流路切替バルブ21をONにする指示信号が入力される。すなわち、冷却水が廃熱回収用熱交換流路22で排気との熱交換により昇温されると共に、昇温された冷却水が上流側冷却水流路23を介してシリンダブロック内流路24に流入して、廃熱回収によるエンジン10の暖機が開始される。この時、冷却水はラジエータ用流路26とバイパス流路27とを迂回する暖機開始時の冷却水回路(図3(a)参照)を循環する。
In step (hereinafter, step is simply referred to as S) 100, the water pump 32 is driven by starting the engine 10, and an instruction signal for turning on the exhaust flow path switching valve 21 is input from the ECU 40. That is, the temperature of the cooling water is raised by heat exchange with the exhaust gas in the waste heat recovery heat exchange flow path 22, and the raised cooling water is transferred to the cylinder block flow path 24 via the upstream side cooling water flow path 23. Then, the engine 10 is warmed up by waste heat recovery. At this time, the cooling water circulates through a cooling water circuit (see FIG. 3A) at the start of warm-up that bypasses the radiator flow path 26 and the bypass flow path 27.
その後、冷却水温が上昇して65℃以上になると、S110ではサーモスタット33が開弁する。すなわち、冷却水はラジエータ30と廃熱回収用熱交換流路22とを迂回する暖機継続時の冷却水回路(図3(b)参照)を循環する。
After that, when the cooling water temperature rises to 65 ° C. or higher, the thermostat 33 is opened in S110. That is, the cooling water circulates through the cooling water circuit (see FIG. 3B) during the warming-up that bypasses the radiator 30 and the waste heat recovery heat exchange passage 22.
S120では、冷却水温センサ35から入力される冷却水温度TCOが冷却水温度上限閾値TLIM1(例えば80℃)に達したか否かが判定される。冷却水温度TCOが冷却水温度上限閾値TLIM1を超えた場合は、冷却水の沸騰を回避すべく、S130でECU40から排気流路切替バルブ21をOFFにする指示信号が入力される。
In S120, whether or not the cooling water temperature T CO input from coolant temperature sensor 35 reaches the coolant temperature upper threshold T LIM1 (e.g. 80 ° C.) is determined. When the cooling water temperature T CO exceeds the cooling water temperature upper threshold T LIM1, in order to avoid boiling of the coolant, an instruction signal to OFF exhaust path switching valve 21 from the ECU40 in S130 is input.
さらに、冷却水温が上昇して87℃以上になると、S140ではサーモスタット34が開弁する。すなわち、冷却水はバイパス流路31を迂回してラジエータ30を流通する暖機完了時の冷却水回路(図3(c)参照)を循環して本制御はリターンされる。
Furthermore, when the cooling water temperature rises to 87 ° C. or higher, the thermostat 34 opens in S140. That is, the cooling water circulates through the cooling water circuit (see FIG. 3C) at the time of completion of warming that bypasses the bypass flow path 31 and flows through the radiator 30, and this control is returned.
次に、本実施形態に係るエンジンの暖機装置20による作用効果を説明する。
Next, the function and effect of the engine warm-up device 20 according to this embodiment will be described.
一般的なエンジンの暖機装置においては、暖機運転時は冷却水をラジエータから迂回させると共に、エンジン回転数を高く設定することで、暖機の促進を図っている。これに対し、本実施形態の暖機装置20では、暖機運転時にエンジン回転数を高めることなく、廃熱回収用熱交換流路22で冷却水を排気との熱交換により効果的に加熱して暖機を促進させている。
In general engine warm-up devices, during warm-up operation, cooling water is bypassed from the radiator and the engine speed is set high to promote warm-up. On the other hand, in the warm-up device 20 of the present embodiment, the cooling water is effectively heated by heat exchange with the exhaust gas in the waste heat recovery heat exchange passage 22 without increasing the engine speed during the warm-up operation. To promote warm-up.
したがって、本実施形態の暖機装置20によれば、エンジン回転数を高めることなく、廃熱回収により冷却水を効率よく加熱して暖機を早期に完了することが可能となり、暖機運転時の燃費を効果的に向上することができる。
Therefore, according to the warming-up device 20 of the present embodiment, it is possible to efficiently heat the cooling water by waste heat recovery and complete warming up early without increasing the engine speed, and during warming-up operation. The fuel consumption can be effectively improved.
また、本実施形態の暖機装置20では、冷却水と排気との熱交換を行う廃熱回収用熱交換流路22は、SCR14よりも排気下流側に位置して設けられている。
Further, in the warm-up device 20 of the present embodiment, the waste heat recovery heat exchange passage 22 for performing heat exchange between the cooling water and the exhaust is provided on the exhaust downstream side of the SCR 14.
したがって、本実施形態の暖機装置20によれば、廃熱回収による排気温度の低下でSCR14が触媒活性温度よりも低下することを回避して、排ガス(NOx排出)の悪化を効果的に防止することができる。
Therefore, according to the warming-up device 20 of the present embodiment, the exhaust gas (NOx emission) is effectively prevented from deteriorating by avoiding the SCR 14 from lowering than the catalyst activation temperature due to a decrease in exhaust temperature due to waste heat recovery. can do.
また、本実施形態の暖機装置20では、冷却水温が沸騰温度に達する前に、排気の流路は熱交換用排気通路11aから分岐排気通路11bに切り替えられて、排気と冷却水との熱交換は停止される。
Further, in the warm-up device 20 of the present embodiment, before the cooling water temperature reaches the boiling temperature, the exhaust passage is switched from the heat exchange exhaust passage 11a to the branch exhaust passage 11b, and the heat of the exhaust and the cooling water is changed. The exchange is stopped.
したがって、本実施形態の暖機装置20によれば、廃熱回収により必要以上に冷却水が昇温されて沸騰することを確実に回避することができる。
Therefore, according to the warm-up device 20 of the present embodiment, it is possible to reliably avoid the cooling water from being heated more than necessary due to waste heat recovery and boiling.
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present invention.
例えば、熱交換用排気通路11aや分岐排気通路11bは、消音器よりも排気下流側の排気通路11に形成されるものとして説明したが、SCR14の直下流に形成されてもよく、触媒ヒータを備えていればSCR14よりも排気上流側に形成されてもよい。
For example, although the heat exchange exhaust passage 11a and the branch exhaust passage 11b have been described as being formed in the exhaust passage 11 on the exhaust downstream side of the silencer, they may be formed immediately downstream of the SCR 14, and the catalyst heater If provided, it may be formed on the exhaust upstream side of the SCR 14.
また、図5に示すように、下流側冷却水流路25に電動ポンプ38を設けると共に、ウォータポンプ32にエンジン10から伝達される動力を断接可能な電磁クラッチ39を備える構成としてもよい。この場合、暖機運転時は電磁クラッチ39を切断してウォータポンプ32の駆動を停止させると共に、電動ポンプ38のみで冷却水を圧送すれば、エンジン負荷が低減されて暖機運転時の燃費をさらに向上することができる。
Further, as shown in FIG. 5, an electric pump 38 may be provided in the downstream cooling water passage 25 and an electromagnetic clutch 39 capable of connecting / disconnecting the power transmitted from the engine 10 to the water pump 32 may be provided. In this case, the electromagnetic clutch 39 is disengaged during the warm-up operation to stop the driving of the water pump 32, and if the cooling water is pumped only by the electric pump 38, the engine load is reduced and the fuel efficiency during the warm-up operation is reduced. This can be further improved.
また、エンジン10は、ディーゼルエンジンに限定されず、ガソリンエンジン等であってもよい。
Further, the engine 10 is not limited to a diesel engine, and may be a gasoline engine or the like.
10 エンジン
11 排気通路
11a 熱交換用排気通路
11b 分岐排気通路
21 排気流路切替バルブ
22 廃熱回収用熱交換流路(熱交換流路)
23 上流側冷却水流路(第2の冷却水流路)
24 シリンダブロック内流路(第1の冷却水流路)
25 下流側冷却水流路(第3の冷却水流路)
32 ウォータポンプ
40 ECU DESCRIPTION OFSYMBOLS 10 Engine 11 Exhaust passage 11a Heat exchange exhaust passage 11b Branch exhaust passage 21 Exhaust flow path switching valve 22 Waste heat recovery heat exchange flow path (heat exchange flow path)
23 Upstream cooling water flow path (second cooling water flow path)
24 Cylinder block flow path (first cooling water flow path)
25 Downstream cooling water flow path (third cooling water flow path)
32Water pump 40 ECU
11 排気通路
11a 熱交換用排気通路
11b 分岐排気通路
21 排気流路切替バルブ
22 廃熱回収用熱交換流路(熱交換流路)
23 上流側冷却水流路(第2の冷却水流路)
24 シリンダブロック内流路(第1の冷却水流路)
25 下流側冷却水流路(第3の冷却水流路)
32 ウォータポンプ
40 ECU DESCRIPTION OF
23 Upstream cooling water flow path (second cooling water flow path)
24 Cylinder block flow path (first cooling water flow path)
25 Downstream cooling water flow path (third cooling water flow path)
32
Claims (3)
- エンジンの排気通路に設けられ、該排気通路を流れる排気と流通させる冷却水との間で熱交換を行う熱交換流路と、
前記エンジンのシリンダブロックに形成され、該シリンダブロック内に冷却水を流通させる第1の冷却水流路と、
前記熱交換流路の冷却水出口部と前記第1の冷却水流路の冷却水入口部とを接続する第2の冷却水流路と、
前記第1の冷却水流路の冷却水出口部と前記熱交換流路の冷却水入口部とを接続する第3の冷却水流路と、
前記第2の冷却水流路もしくは前記第3の冷却水流路に設けられて冷却水を圧送するポンプと、を備えることを特徴とするエンジンの暖機装置。 A heat exchange flow path that is provided in the exhaust passage of the engine and exchanges heat between the exhaust flowing through the exhaust passage and the circulating cooling water.
A first cooling water flow path formed in a cylinder block of the engine for circulating cooling water in the cylinder block;
A second cooling water channel connecting the cooling water outlet of the heat exchange channel and the cooling water inlet of the first cooling channel;
A third cooling water channel connecting the cooling water outlet of the first cooling channel and the cooling water inlet of the heat exchange channel;
An engine warm-up device comprising: a pump provided in the second cooling water flow path or the third cooling water flow path to pump the cooling water. - 前記熱交換流路よりも排気上流側の排気通路から分岐して形成された分岐排気通路と、
前記排気通路と前記分岐排気通路との分岐部に設けられて排気の流路を切り替える流路切替バルブと、をさらに備え、
前記流路切替バルブは、前記熱交換流路で昇温された冷却水の温度が冷却水の沸騰を防ぐ所定の上限閾値以下の時は、排気の流路を前記熱交換流路が設けられた排気通路にする一方、前記熱交換流路で昇温された冷却水の温度が前記上限閾値よりも高くなると、排気の流路を前記分岐排気通路に切り替える請求項1に記載のエンジンの暖機装置。 A branched exhaust passage formed by branching from an exhaust passage upstream of the heat exchange passage;
A flow path switching valve provided at a branch portion between the exhaust passage and the branch exhaust passage to switch an exhaust flow path,
The flow path switching valve is provided with an exhaust flow path when the temperature of the cooling water heated in the heat exchange flow path is equal to or lower than a predetermined upper limit threshold value that prevents boiling of the cooling water. The engine warm-up according to claim 1, wherein when the temperature of the cooling water heated in the heat exchange flow path becomes higher than the upper limit threshold, the exhaust flow path is switched to the branch exhaust passage. Machine equipment. - 前記排気通路に排気を浄化する排気浄化触媒が設けられ、前記熱交換流路は該排気浄化触媒よりも排気下流側の排気通路に設けられる請求項1又は2に記載のエンジンの暖機装置。 The engine warm-up device according to claim 1 or 2, wherein an exhaust purification catalyst for purifying exhaust gas is provided in the exhaust passage, and the heat exchange flow path is provided in an exhaust passage downstream of the exhaust purification catalyst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012126042A JP6056201B2 (en) | 2012-06-01 | 2012-06-01 | Engine warm-up device |
JP2012-126042 | 2012-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013180283A1 true WO2013180283A1 (en) | 2013-12-05 |
Family
ID=49673466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065225 WO2013180283A1 (en) | 2012-06-01 | 2013-05-31 | Warming up device for engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6056201B2 (en) |
WO (1) | WO2013180283A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104763502A (en) * | 2015-03-08 | 2015-07-08 | 北京工业大学 | Intake air temperature control system of automotive adsorber |
CN106968863A (en) * | 2017-02-16 | 2017-07-21 | 浙江吉利汽车研究院有限公司 | A kind of engine coolant heating system |
CN109611183A (en) * | 2019-02-20 | 2019-04-12 | 兰州工业学院 | A kind of vehicle exhaust recycle device |
CN111765029A (en) * | 2020-05-25 | 2020-10-13 | 中国第一汽车股份有限公司 | Cooling liquid preheating and waste heat recovery device and vehicle |
EP3770397A4 (en) * | 2018-03-19 | 2021-01-27 | Nissan Motor Co., Ltd. | Method for controlling internal combustion engine and device for controlling internal combustion engine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175125A (en) * | 2007-01-18 | 2008-07-31 | Toyota Motor Corp | Exhaust gas heat recovery device of internal combustion engine |
JP2008231942A (en) * | 2007-03-16 | 2008-10-02 | Toyota Motor Corp | Cooling system of internal combustion engine |
JP2009270522A (en) * | 2008-05-09 | 2009-11-19 | Calsonic Kansei Corp | Exhaust heat recovering device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006104974A (en) * | 2004-10-01 | 2006-04-20 | Denso Corp | Heat accumulating tank |
-
2012
- 2012-06-01 JP JP2012126042A patent/JP6056201B2/en not_active Expired - Fee Related
-
2013
- 2013-05-31 WO PCT/JP2013/065225 patent/WO2013180283A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175125A (en) * | 2007-01-18 | 2008-07-31 | Toyota Motor Corp | Exhaust gas heat recovery device of internal combustion engine |
JP2008231942A (en) * | 2007-03-16 | 2008-10-02 | Toyota Motor Corp | Cooling system of internal combustion engine |
JP2009270522A (en) * | 2008-05-09 | 2009-11-19 | Calsonic Kansei Corp | Exhaust heat recovering device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104763502A (en) * | 2015-03-08 | 2015-07-08 | 北京工业大学 | Intake air temperature control system of automotive adsorber |
CN106968863A (en) * | 2017-02-16 | 2017-07-21 | 浙江吉利汽车研究院有限公司 | A kind of engine coolant heating system |
EP3770397A4 (en) * | 2018-03-19 | 2021-01-27 | Nissan Motor Co., Ltd. | Method for controlling internal combustion engine and device for controlling internal combustion engine |
US11092058B1 (en) | 2018-03-19 | 2021-08-17 | Nissan Motor Co., Ltd. | Internal combustion engine control method and internal combustion engine control device |
CN109611183A (en) * | 2019-02-20 | 2019-04-12 | 兰州工业学院 | A kind of vehicle exhaust recycle device |
CN109611183B (en) * | 2019-02-20 | 2024-03-12 | 兰州工业学院 | Automobile exhaust recycling device |
CN111765029A (en) * | 2020-05-25 | 2020-10-13 | 中国第一汽车股份有限公司 | Cooling liquid preheating and waste heat recovery device and vehicle |
CN111765029B (en) * | 2020-05-25 | 2022-02-15 | 中国第一汽车股份有限公司 | Cooling liquid preheating and waste heat recovery device and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2013249794A (en) | 2013-12-12 |
JP6056201B2 (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6019754B2 (en) | Urea water thawing device | |
JP6056201B2 (en) | Engine warm-up device | |
EP2860366A1 (en) | Engine system | |
JP5383615B2 (en) | Warming up the aftertreatment burner system | |
WO2014132839A1 (en) | Exhaust purification device for internal combustion engine | |
JP6028397B2 (en) | Vehicle heating system | |
JP6024217B2 (en) | Gearbox warm-up device | |
JP2013170534A (en) | Exhaust emission control device of internal combustion engine | |
JP5867150B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2019199850A (en) | Coolant circulation system and control method for coolant circulation system | |
JP6015198B2 (en) | Reducing agent addition system | |
KR101664687B1 (en) | Device and method for controlling cooling fan of exhaust gas aftertreatment system | |
JP2013092106A (en) | Exhaust gas cleaning device for internal combustion engine | |
JP6077114B2 (en) | Reducing agent supply device and exhaust purification system | |
JP4640145B2 (en) | Exhaust gas purification system for internal combustion engine | |
JP5761517B2 (en) | Engine exhaust heat recovery device | |
KR101734254B1 (en) | Bypass control method of exhaust gas | |
JP2008128066A (en) | Exhaust emission control device | |
JP2018025108A (en) | Heat exchange system | |
JP6805948B2 (en) | Exhaust purification device | |
JP6593015B2 (en) | Exhaust gas purification system for internal combustion engine and internal combustion engine | |
JP2020101103A (en) | Exhaust heat recovery device of internal combustion engine | |
JP2015068266A (en) | Exhaust emission control system and exhaust emission control method | |
JP6183170B2 (en) | Engine heat removal control system | |
JP2019074002A (en) | Exhaust system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13798106 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13798106 Country of ref document: EP Kind code of ref document: A1 |