WO2013180214A1 - 筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス - Google Patents

筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス Download PDF

Info

Publication number
WO2013180214A1
WO2013180214A1 PCT/JP2013/065029 JP2013065029W WO2013180214A1 WO 2013180214 A1 WO2013180214 A1 WO 2013180214A1 JP 2013065029 W JP2013065029 W JP 2013065029W WO 2013180214 A1 WO2013180214 A1 WO 2013180214A1
Authority
WO
WIPO (PCT)
Prior art keywords
tdp
gene
mutant
vertebrate
seq
Prior art date
Application number
PCT/JP2013/065029
Other languages
English (en)
French (fr)
Inventor
岡野 栄之
ジェイムス 洋尚 岡野
央子 宮内
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to EP13796611.5A priority Critical patent/EP2856869A4/en
Priority to US14/404,570 priority patent/US20150173330A1/en
Priority to JP2014518720A priority patent/JP6366188B2/ja
Publication of WO2013180214A1 publication Critical patent/WO2013180214A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0318Animal model for neurodegenerative disease, e.g. non- Alzheimer's

Definitions

  • the present invention relates to a model mouse of amyotrophic lateral sclerosis and / or frontotemporal lobar degeneration.
  • TDP-43 is a heterogeneous nuclear ribonucleoprotein (hnRNP) that binds to mRNA and other hnRNPs, stabilizes mRNA, and selectively selects hnRNA. Involved in splicing and transcriptional regulation. Recently, it was revealed that TDP-43 is a component of ubiquitin-positive inclusions that appear in degenerative sites of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) (M Neumann et al. 2006 vol.314 p.130-133). Later, a number of TDP-43 mutations were identified as a pathogenic gene for familial ALS (J. Sreedharan et al. 2008 vol.319 p.1668-1672; E.Lee wt al. 2012 vol.13 p. 38-50).
  • FTLD frontotemporal lobar degeneration
  • ALS amyotrophic lateral sclerosis
  • a mutant TDP-43 transgenic mouse, a mutant TDP-43 (Q343R) knock-in mouse, and the like were created as model mice for ALS using TDP-43, imitating the mutations identified in humans.
  • Scientific Research Fund 2009 Research Results Report “Amyotrophic Lateral Sclerosis and TDP-43: Elucidation of the Pathology and Molecular Pathology” (Research Project No. 20240037, Representative: Hitoshi Takahashi)).
  • neurological symptoms similar to those of FTLD and ALS did not appear, and abnormal intracellular inclusion bodies that cause neuronal cell death were not detected.
  • Rhizosclerosis and TDP-43 Elucidation of the pathological picture and molecular pathogenesis "(Research Project No. 20240037, Representative: Hitoshi Takahashi)).
  • the present invention was made for the purpose of producing a model mouse having symptoms similar to those of human amyotrophic lateral sclerosis and / or human frontotemporal lobar degeneration.
  • One embodiment of the present invention is a mutant protein (SEQ ID NO: 2) in which at least one allele of the endogenous TDP-43 gene is substituted with tyrosine at the amino acid corresponding to position 382 of SEQ ID NO: 1, or SEQ ID NO: 1 is a vertebrate (except for humans) in which the expression of a mutant protein (SEQ ID NO: 3) in which the amino acid glycine corresponding to position 348 is replaced with cysteine is controlled by the endogenous TDP-43 gene promoter .
  • the vertebrate has a mutation in which at least one allele of the endogenous TDP-43 gene is substituted by tyrosine with an alanine of amino acid corresponding to position 382 of SEQ ID NO: 1 by exogenous DNA, or position 348 of SEQ ID NO: 1. It may have a mutation in which the corresponding amino acid glycine is replaced with cysteine.
  • the vertebrate may be an amyotrophic lateral sclerosis model animal, a frontotemporal lobar degeneration model animal, or a human TDP-43 gene knock-in mouse.
  • a further embodiment of the present invention is a method for producing a frontotemporal lobar degeneration model animal or amyotrophic lateral sclerosis model animal, wherein the endogenous TDP-43 of a vertebrate (but excluding humans) is used.
  • Mutant protein in which the alanine of the amino acid corresponding to position 382 of SEQ ID NO: 1 is substituted with tyrosine or the glycine of the amino acid corresponding to position 348 of SEQ ID NO: 1 is replaced with cysteine in at least one allele of the gene Mutating the vertebrate such that expression of is controlled by the endogenous TDP-43 gene promoter.
  • the vertebrate may be mutated by substituting cysteine for the amino acid corresponding to position 348 of 1 with cysteine.
  • the endogenous TDP-43 gene of the vertebrate or a part thereof may be replaced with an exogenous human TDP-43 gene or a part thereof.
  • Example by this invention it is various observation images of the abnormal inclusion body which arises when mutant type TDP-43 (G348C) is transiently expressed in HeLa cells.
  • images of apoptosis observed when mutant TDP-43 (G348C) is transiently expressed in HeLa cells are shown in time series.
  • the fluorescent signal from Venus is shining white.
  • an abnormal inclusion body is observed in the cytoplasm of the nerve cell in the center.
  • the construction of the mutant TDP-43 knock-in vector (Targeting vector), the construction of the endogenous TDP-43 gene before knock-in (Tardbp genome), and the construction of the endogenous TDP-43 gene after knock-in Indicates.
  • the data shows the expression of wild type or mutant TDP-43 in the central nerve of wild type mice and mutant type TDP-43 knock-in mice.
  • ⁇ G> represents a mutant TDP-43 (G348C) knock-in mouse
  • ⁇ A> represents a mutant TDP-43 (A382T) knock-in mouse.
  • the weights of wild-type mice and mutant TDP-43 knock-in mice were measured up to 14 months of age, and the graph shows the transition of the average weight.
  • it is the figure which showed the behavioral abnormality by the disorder
  • a behavioral abnormality (limb reflex and tremor) of a mutant TDP-43 knock-in mouse was evaluated in five stages, and a wild type mouse was evaluated along with a time course for each individual. is there.
  • ⁇ G> represents a mutant TDP-43 (G348C) knock-in mouse
  • ⁇ A> represents a mutant TDP-43 (A382T) knock-in mouse.
  • behavioral abnormalities tremor, grip strength and limb reflex
  • FIG. ⁇ G> represents a mutant TDP-43 (G348C) knock-in mouse
  • ⁇ A> represents a mutant TDP-43 (A382T) knock-in mouse.
  • x indicates that it could not be measured because it died.
  • an electromyogram in which a time extension of MUP (Moter unit potential) was observed as a result of measuring an electromyogram of a mutant TDP-43 (G348C) knock-in mouse at 4 months of age (A ), An abnormal electromyogram (B), and an electromyogram (C) in which MUP is completed within a normal time.
  • MUP Mobile unit potential
  • Example by this invention it is a figure which shows transition of the action amount to the horizontal direction of a knock-in mouse ( ⁇ ) and a wild type mouse ( ⁇ ) in a home cage activity test. In one Example by this invention, it is a figure which shows the time staying in the wall side of the knock-in mouse (right bar) and the wild type mouse (left bar), and the time staying in a center range in an open field test. In one Example by this invention, it is a figure which shows the time to stay near the novel thing of a knock-in mouse (right bar) and a wild type mouse (left bar) in a novel object recognition test.
  • knock-in mice in a three-chamber test, knock-in mice (right bar) and wild-type mice (left bar) stayed in a room with other mice (stranger-near), and other mice It is a figure which shows the time (empty-near) which stayed in the room which does not exist.
  • the time to finish eating all eight arms of knock-in mice ( ⁇ ) and wild-type mice ( ⁇ ) It is a figure which shows the frequency
  • the expression of the mutant protein in which the amino acid corresponding to position 382 of Alanine is substituted with tyrosine or the mutant protein in which the amino acid glycine corresponding to position 348 of SEQ ID NO: 1 is replaced with cysteine is expressed by the endogenous TDP-43 gene promoter. Mutating the vertebrate as controlled by.
  • the TDP-43 gene is a gene that has been identified in humans (Gene ID: 23435), mice (Gene ID: ⁇ 230908), Drosophila melanogaster (Gene ID: 37781), and is widely present in vertebrates. Therefore, the vertebrate to be used is not particularly limited, but is preferably a non-human primate or rodent, and particularly preferably a marmoset, mouse or rat.
  • the amino acid corresponding to position 382 of SEQ ID NO: 1 is alanine
  • the amino acid corresponding to position 348 of SEQ ID NO: 1 is glycine.
  • amino acid corresponding to position 382 of SEQ ID NO: 1 does not necessarily have to be position 382 in the vertebrate, and corresponds to position 382 of SEQ ID NO: 1, that is, around the 382rd position of SEQ ID NO: 1.
  • amino acid sequences that are homologous to the amino acid sequence any amino acid corresponding to position 382 of SEQ ID NO: 1 may be used. The same applies to the amino acid corresponding to position 348 of SEQ ID NO: 1.
  • a vertebrate is given a mutation source, and from among a large number of mutants, Individuals may be selected in which alanine or glycine is mutated to tyrosine or cysteine, respectively. However, using reverse DNAs, this alanine or glycine may be replaced with tyrosine or cysteine, respectively, using exogenous DNA. .
  • substituting amino acids the expression of the mutant protein is controlled by the endogenous TDP-43 gene promoter, and there may be other insertions of foreign DNA as long as the effect of the mutant protein is produced.
  • An example of an amino acid substitution method is shown below, but the substitution method is not limited to this example.
  • the amino acid alanine corresponding to position 382 of SEQ ID NO: 1 is substituted with tyrosine, or the 348th position of SEQ ID NO: 1
  • the amino acid glycine corresponding to is substituted with cysteine.
  • DNA encoding the tag is bound in an in frame to express a fusion protein with mutant TDP-43.
  • an IRES sequence internal ribosomal entry site
  • the origin of the TDP-43 gene or cDNA is not particularly limited, but is preferably a vertebrate TDP-43 gene or cDNA, more preferably a human TDP-43 gene or cDNA.
  • the tag is not particularly limited, and examples thereof include oligopeptides such as His tag and Myc tag, fluorescent proteins such as GFP and EGFP, enzymes such as ⁇ -galactosidase, luciferase, and alkaline phosphatase.
  • an oligopeptide or a fluorescent protein is preferable, and when an IRES sequence is used, a fluorescent protein or an enzyme protein is preferable.
  • the knock-in DNA thus prepared is introduced into pluripotent stem cells such as ES cells and iPS cells, and cells in which the knock-in DNA is replaced with the endogenous TDP-43 gene are selected.
  • pluripotent stem cells such as ES cells and iPS cells
  • cells in which the knock-in DNA is replaced with the endogenous TDP-43 gene are selected.
  • a mutant protein in which the alanine of amino acid corresponding to position 382 of SEQ ID NO: 1 is substituted with tyrosine, or the amino acid corresponding to position 348 of SEQ ID NO: 1
  • Expression of mutant proteins in which glycine is replaced with cysteine is controlled by the endogenous TDP-43 gene promoter.
  • knock-in animals can be produced by injecting DNA for knock-in into fertilized eggs, selecting individuals in which the endogenous TDP-43 gene has been replaced, and raising the selected individuals to adulthood.
  • These knock-in animals are heterozygous for the mutated TDP-43 gene, but since the introduced mutation is a dominant mutation, these heterozygotes are referred to as amyotrophic lateral sclerosis and / or frontotemporal lobar degeneration. It can be used as a model animal for illness. Homozygotes can also be obtained by mating male and female heterozygotes.
  • a vertebrate produced by the above-described method is a mutant protein in which at least one allele of the endogenous TDP-43 gene is substituted with tyrosine at the amino acid alanine corresponding to position 382 of SEQ ID NO: 1, or Expression of the mutant protein in which the amino acid glycine corresponding to position 348 is replaced with cysteine is controlled by the endogenous TDP-43 gene promoter.
  • This mutant vertebrate is a mutation in which at least one allele of the endogenous TDP-43 gene is substituted with tyrosine for the amino acid corresponding to position 382 of SEQ ID NO: 1 by exogenous DNA, or position 348 of SEQ ID NO: 1. It may also be a vertebrate having a mutation in which the amino acid glycine corresponding to is substituted with cysteine. In the mutant vertebrate, foreign DNA may be inserted as long as the expression of the mutant protein is controlled by the endogenous TDP-43 gene promoter and the effect of the mutant protein is produced.
  • the mutant vertebrate may be heterozygous in which substitution has occurred in one allele of the endogenous TDP-43 gene, or may be homozygous in which substitution has occurred in both alleles.
  • endogenous TDP-43 gene is preferably replaced with an exogenous human TDP-43 gene.
  • This mutant vertebrate exhibits abnormal neurological symptoms such as tremor and abnormal limb reflex after birth. In addition, the gripping force is reduced, and it is difficult to grasp the object. In the central nerve cells of the spinal cord and brain, abnormal inclusion bodies of TDP-43 are produced. Thus, since the vertebrate manifests symptoms peculiar to amyotrophic lateral sclerosis, it is useful as a model animal for amyotrophic lateral sclerosis.
  • TDP-43 cDNA Human cDNA clone, FCC-101, TOYOBO Co., LTD.
  • SEQ ID NO: 9 was inserted into the HindIII and BamHI sites of the pBluescriptSK (+) plasmid vector.
  • a mutant TDP-43 cDNA (G298S, A315T, G348C, N352S, A382T) was prepared by in vitro mutagenesis method (Nuc. Acids Res. 2000 vol. 28 E78).
  • G298S primer attgtttcccaaactagctccaccccc (SEQ ID NO: 4)
  • A315T primer attaatgctgaacgtaccaaagttc (SEQ ID NO: 5)
  • G348C primer attacccgatgggcatgactggttc (SEQ ID NO: 6)
  • N352S primer ttggttttggttactacccgattggcc (SEQ ID NO: 7)
  • A382T primer tccccaaccaattgttgcaccagaatt (SEQ ID NO: 8)
  • the mutant TDP-43 cDNA cleaved with the same enzyme was inserted into the HindIII and KpnI sites of Venus / pcDNA3 (plasmid in which Venus was inserted into the BamHI and EcoRI sites of the pcDNA3 vector).
  • FIG. 1 shows various inclusion bodies observed with mutant TDP-43 in HeLa cells.
  • A) to (C) are inclusion bodies produced in the cytoplasm, which are relatively small diffused (A), medium lumps (B), and relatively large lumps It is an example of thing (C).
  • D) is an inclusion body produced in the nucleus.
  • the effect of mutant TDP-43 was similarly observed using rat brain neurons.
  • Wistar Rat on the 19th day of pregnancy was anesthetized after cervical dislocation, the brain was collected from the fetus taken out by laparotomy, and the hippocampus was cut out under a stereomicroscope. The collected hippocampus was immersed in PBS containing enzymes (Papain and DnaseI) at 37 ° C. for 10 minutes, and cells of hippocampal tissue were dispersed with a glass pipette. Cells collected from the hippocampus were cultured in an imaging dish having a diameter of 35 mm. The medium used here was 2% FBS / MEM with N2 and B27 added.
  • the mutant TDP-43 expression vector was transfected into rat hippocampal cultured cells by the calcium phosphate method, and as shown in FIG. 3, formation of abnormal inclusion bodies was also observed in the cells.
  • a DNA fragment amplified by PCR and a BAC (bacterial-artificial-chromosome) vector into which a wild-type TDP-43 gene has been inserted are introduced into Escherichia coli by electroporation to induce homologous recombination
  • the knock-in vector was completed.
  • FIG. 4 shows the structure of the knock-in vector, the structure of the endogenous TDP-43 gene before knock-in, and the structure of the endogenous TDP-43 gene after knock-in.
  • a chimeric mouse was prepared, a germline chimeric mouse was selected, and a mutant TDP-43 knock-in mouse was obtained from its offspring.
  • mutant type TDP-43 (A382T) knock-in mice signals indicating the expression of wild type TDP-43 and mutant type TDP-43 were detected.
  • the expression level of wild-type TDP-43 in wild-type mice was almost the same as the total expression level of wild-type TDP-43 and mutant TDP-43 in mutant mice.
  • the mutant TDP-43 (A382T) knock-in mouse in addition to these signals, a signal with a small molecular weight was also detected weakly. In general, however, it is considered that the mutant protein is easily degraded. It is considered that mutant TDP-43 (A382T) was partially degraded.
  • mutant TDP-43 knock-in mice Wild-type mice (7 males, 9 females), mutant TDP-43 (G348C) knock-in mice (6 males, 3 females), mutant TDP- For 43 (A382T) knock-in mice (4 males, 5 females), the body weight was measured immediately after birth until 14 months after birth, the average body weight was calculated, and the transition of the average body weight was graphed ( FIG. 6). As shown in FIG. 6, both knock-in mice gained weight more slowly than the wild type, and were significantly lighter than the wild type mice even after 14 months.
  • mutant TDP-43 knock-in mice Behavioral analysis of mutant TDP-43 knock-in mice When wild mice and mutant TDP-43 knock-in mice were observed for the behavior of the mice in the cage, the wild-type mice were free to grab the cage net. Both of the mutant TDP-43 knock-in mice move around in the cage, but their grip strength is low, and even if they hold the cage net, they cannot support their own weight. It was slow. This abnormality is thought to be due to a failure of the lower motor neuron.
  • mice when the mice were observed to move freely in the cage for 1-2 minutes and examined whether tremor occurred, they were not observed in 16 wild-type mice, but in mutant mice TDP-43 (G348C) knock-in mice produced 8 out of 10 mice, and mutant TDP-43 (A382T) knock-in mice produced 7 out of 9 mice.
  • limb reflexes and tremors were scored and evaluated every 5 years from 6 months to 10 months (0 to 4: the number of limbs with abnormal reflexes and tremors were left as is. Scored). Then, for each individual, the evaluation was made as a graph over time (FIG. 8). From FIG. 8, it can be seen that the tremor of the mutant mice gradually deteriorated from 6 months to 10 months after birth. In addition, abnormalities of limb reflexes were already observed in many mutant mice 6 months after birth.
  • mutant TDP-43 (G348C) knock-in mice and mutant TDP-43 (A382T) knock-in mice were every 15 weeks from 33 weeks to 78 weeks after birth. Evaluation was performed.
  • tremors “0” was used when tremors were observed, and “1” when tremors were not observed.
  • the grip strength “0” is available when the four limbs can be hung on the cage net, “1” when the four limbs can be hung on the cage net, but it falls immediately. If the forelimb of the book can hold the cage net but cannot hang on the cage net with four limbs, it is “2”. .
  • limb reflexes the number of limbs with abnormal reflexes or tremors was used as the score. Then, for each individual, the evaluation of tremor, grip strength, and limb reflex was shown in the figure over time (FIG. 9).
  • the mutant mouse is useful as an ALS model animal because it has an abnormality similar to ALS.
  • FIG. 10A shows an electromyogram when the MUP is completed within the normal time.
  • FIG. 10B shows an electromyogram when the MUP is completed within the normal time.
  • mutant TDP-43 knock-in mice Five months old mutant TDP-43 knock-in mice were reflux fixed with 4% formaldehyde solution, brains were collected, and again overnight with 4% formaldehyde solution. After fixation, it was replaced with Sucrose. Thereafter, a frozen section having a thickness of 30 micrometers was prepared by a retotome. In this section, a fluorescence image from Venus was observed with a fluorescence microscope. As shown in FIG. 11, mutant TDP-43 formed inclusion bodies in the cytoplasm in addition to being localized in the nucleus. Thus, the mutant TDP-43 knock-in mouse is useful as an ALS model animal showing symptoms similar to human ALS and an FTLD model animal showing symptoms similar to human FTLD.
  • the behavioral analysis device (limited company) of 12 mutant TDP-43 (A382T) knock-in mice and 11 wild-type mice until 360 minutes passed immediately after returning to the home gauge. (Merquest, SCANET). The number of times the mouse shielded the infrared rays inside the device (count number) was counted every 30 minutes. The results are shown in FIG. 12 ( ⁇ mutant mouse; ⁇ wild-type mouse).
  • mutant TDP-43 (A382T) knock-in mice are slower to adapt to the environment than wild-type mice.
  • mice The mouse was placed in a 50 cm ⁇ 50 cm field, and the time spent staying on the wall side and the time spent staying in the center range (18 cm ⁇ 18 cm) of the field were measured.
  • 11 mutant TDP-43 (G348C) knock-in mice and 11 wild-type mice were used. The results are shown in FIG. 13 (left bar wild type mouse; right bar mutant mouse).
  • mutant TDP-43 (G348C) knock-in mouse spent significantly longer in the central region than the wild type.
  • mutant TDP-43 (G348C) knock-in mice have a low degree of anxiety and tend not to feel anxiety in a new environment.
  • the mutant TDP-43 (A382T) knock-in mouse showed the same tendency when the open field test was conducted.
  • ⁇ Mouse was put in the device where the object as a novel object was installed, and the time spent staying near the object was measured.
  • 11 mutant TDP-43 (G348C) knock-in mice, 12 mutant TDP-43 (A348T) knock-in mice, and 11 wild-type mice were used. The results are shown in FIG. 14 (left bar wild type mouse; right bar mutant mouse).
  • both the mutant TDP-43 (G348C) knock-in mouse and the mutant TDP-43 (A348T) knock-in mouse have a lower degree of anxiety and are less likely to feel anxiety than the wild type. .
  • mutant TDP-43 (A348T) knock-in mice A similar evaluation was performed on mutant TDP-43 (A348T) knock-in mice, and the time spent in a room with mice that had never lived so far tended to be shorter than in wild-type mice. This indicates that the sociality of mutant TDP-43 knock-in mice tends to be lower than that of wild-type mice.
  • a device having eight arms extending radially was prepared, food was placed at the tip of each arm, and a mouse was placed in the device. Then, the time required to finish eating all eight arms, the number of times of intrusion into the arm that had already eaten food (number of working memory errors), and the total number of times of intrusion into the arm were measured. This test was repeated for 14 days. For the test, 11 mutant TDP-43 (G348C) knock-in mice and 11 wild-type mice were used. The results are shown in FIG. 16 ( ⁇ mutant mouse; ⁇ wild-type mouse).
  • mutant TDP-43 knock-in mice after 5 months of age have higher-order dysfunctions that are considered to reflect human FTLD, and were found to be useful as FTLD model animals.
  • a model mouse having symptoms similar to human amyotrophic lateral sclerosis and / or human frontotemporal lobar degeneration can be produced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

【課題】 ヒト筋萎縮性側索硬化症および/またはヒト前頭側頭葉変性症と同様な症状を有するモデルマウスを作製すること。 【解決手段】 脊椎動物の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されるように、脊椎動物に変異を起こさせることによって、ヒト筋萎縮性側索硬化症および/またはヒト前頭側頭葉変性症と同様な症状を有するモデルマウスを作製することができる。

Description

筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス
 本発明は、筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウスに関する。
 TAR DNA-binding protein 43kD (TDP-43)は、不均一核内リボ核酸タンパク質(heterogeneous nuclear ribonucleoprotein; hnRNP)の一種であり、mRNAや他のhnRNPと結合し、mRNAの安定化、hnRNAの選択的スプライシング、転写調節などに関与する。最近、TDP-43が、前頭側頭葉変性症(FTLD)や筋萎縮性側索硬化症(ALS)の変性部位に出現するユビキチン陽性封入体の構成因子であることが明らかになった(M.Neumann et al. 2006 vol.314 p.130-133)。その後、家族性ALSの病因遺伝子として、多数のTDP-43突然変異が同定された(J.Sreedharan et al. 2008 vol.319 p.1668-1672;E.Lee wt al. 2012 vol.13 p.38-50)。
 そこで、ヒトで同定された変異を模して、変異型TDP-43トランスジェニックマウスや変異型TDP-43(Q343R)ノックインマウス等が、TDP-43を利用したALSのモデルマウスとして、作製された(科学研究費2009年度研究実績報告書「筋萎縮性側索硬化症とTDP-43:その病理像の全貌と分子病態機序の解明」(研究課題番号20240037、代表者:高橋均))。しかしながら、FTLDやALSと同様な神経症状は出現せず、神経細胞死に至る原因になるような細胞内異常封入体も検出されなかった。この結果より、変異型TDP-43による神経症状の発症のためには、変異に加え、他の要因が必要であると考えられていた(科学研究費2009年度研究実績報告書「筋萎縮性側索硬化症とTDP-43:その病理像の全貌と分子病態機序の解明」(研究課題番号20240037、代表者:高橋均))。
 本発明は、ヒト筋萎縮性側索硬化症および/またはヒト前頭側頭葉変性症と同様な症状を有するモデルマウスを作製することを目的としてなされた。
 本発明の一実施態様は、内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質(配列番号2)、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質(配列番号3)の発現が、内在性TDP-43遺伝子プロモーターによって制御されている脊椎動物(ただし、ヒトを除く)である。当該脊椎動物は、内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、外来性DNAによって、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換した変異、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換した変異を有してもよい。当該脊椎動物は、筋萎縮性側索硬化症モデル動物または前頭側頭葉変性症のモデル動物であってもよく、ヒトTDP-43遺伝子のノックインマウスであってもよい。
 本発明のさらなる一実施態様は、前頭側頭葉変性症モデル動物または筋萎縮性側索硬化症モデル動物を作製する方法であって、脊椎動物(ただし、ヒトを除く)の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されるように、前記脊椎動物に変異を起こさせる工程を含む。当該方法において、前記脊椎動物の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、外来性DNAを用いて、配列番号1の382番目に対応するアミノ酸のアラニンをチロシンに置換する工程、または配列番号1の348番目に対応するアミノ酸のグリシンをシステインに置換する工程、によって、前記脊椎動物に変異を起こさせてもよい。また、当該方法において、前記脊椎動物の内在性TDP-43遺伝子又はその一部を、外来性ヒトTDP-43遺伝子又はその一部と置換してもよい。
==関連文献とのクロスリファレンス==
 本出願は、2012年5月31日付で出願した日本国特許出願2012-124947、及び2012年7月30日付で出願した日本国特許出願2012-168001に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
本発明による一実施例において、変異型TDP-43(G348C)を一過的にHeLa細胞に発現させたときに生じる異常封入体の様々な観察像である。 本発明による一実施例において、変異型TDP-43(G348C)を一過的にHeLa細胞に発現させたときに生じるアポトーシス観察像を時系列に示したものである。 本発明による一実施例において、変異型TDP-43(G348C)を一過的にラット脳神経細胞に発現させたときに生じる異常封入体の観察像である。白く光っているのが、Venusによる蛍光シグナルである。そして、中央にある神経細胞の細胞質に異常封入体が観察される。 本発明による一実施例における、変異型TDP-43ノックインベクターの構成(Targeting vector)、ノックイン前の内在性TDP-43遺伝子の構成(Tardbp genome)、及びノックイン後の内在性TDP-43遺伝子の構成を示す。 本発明による一実施例において、野生型マウス及び変異型TDP-43ノックインマウスの中枢神経における野性型または変異型TDP-43の発現を示したデータである。なお、<G>は変異型TDP-43(G348C)ノックインマウス、<A>は変異型TDP-43(A382T)ノックインマウスを示す。 本発明による一実施例において、野生型マウス及び変異型TDP-43ノックインマウスの体重を生後14ヶ月に至るまで測定し、その平均体重の推移を示したグラフである。 本発明による一実施例において、変異型TDP-43ノックインマウスの上位運動ニューロンの障害による行動異常を示した図である。 本発明による一実施例において、変異型TDP-43ノックインマウスの行動異常(四肢反射と振戦)を5段階評価し、野生型マウスの評価と共に、各個体別に、時間経過を追って作製した図である。なお、<G>は変異型TDP-43(G348C)ノックインマウス、<A>は変異型TDP-43(A382T)ノックインマウスを示す。 本発明による一実施例において、時間経過を追って変異型TDP-43ノックインマウスの行動異常(振戦、握力および四肢反射)を評価し、各個体別にその評価を、野生型マウスの評価と共に示した図である。なお、<G>は変異型TDP-43(G348C)ノックインマウス、<A>は変異型TDP-43(A382T)ノックインマウスを示す。xは死亡したため、測定できなかったことを示す。 本発明による一実施例において、生後4カ月の変異型TDP-43(G348C)ノックインマウスの筋電図を測定した結果において、MUP(Moter unit potential)の時間延長が見られた筋電図(A)、異常筋電図(B)、MUPが正常時間内に終了した筋電図(C)を示す図である。 本発明による一実施例において、生後5ヶ月の変異ノックインマウスの脳の組織切片で、Venusからの蛍光像を蛍光顕微鏡で観察した写真である。矢印は封入体からの蛍光シグナルを示す。 本発明による一実施例において、ホームケージ活動性試験におけるノックインマウス(■)および野生型マウス(●)の水平方向への行動量の推移を示す図である。 本発明による一実施例において、オープンフィールド試験における、ノックインマウス(右バー)および野生型マウス(左バー)の壁側に滞在する時間と中心範囲に滞在する時間を示す図である。 本発明による一実施例において、新奇物体認識試験における、ノックインマウス(右バー)および野生型マウス(左バー)の新奇物の近くに滞在する時間を示す図である。 本発明による一実施例において、3チャンバー試験における、ノックインマウス(右バー)および野生型マウス(左バー)の、他のマウスがいる部屋に滞在した時間(stranger-near)と、他のマウスがいない部屋に滞在した時間(empty-near)を示す図である。 本発明による一実施例において、8方向放射状迷路試験における、ノックインマウス(■)および野生型マウス(●)の、8本のアーム全ての餌を食べ終えるまでの時間、既に餌を食べたアームに浸入してしまった回数(作業記憶エラー)、およびアームへの総浸入回数を示す図である。
 実施の形態及び実施例に特に説明がない場合には、M. R. Green & J. Sambrook (Ed.), Molecular cloning, a laboratory manual (4th edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2012); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。
 なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデル動物の作製方法==
 筋萎縮性側索硬化症および/または前頭側頭葉変性症と同様な症状を有するモデル動物を作製する方法には、脊椎動物の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されるように、前記脊椎動物に変異を起こさせる工程を含む。
 TDP-43遺伝子は、ヒト(Gene ID: 23435)、マウス(Gene ID: 230908)、キイロショウジョウバエ(Gene ID: 37781)などで同定されている遺伝子であって、脊椎動物には広く存在する。従って、用いる脊椎動物は、特に限定されないが、ヒト以外の霊長類、またはげっ歯類であることが好ましく、マーモセット、マウスまたはラットであることが特に好ましい。その脊椎動物の内在性TDP-43遺伝子の少なくとも一方のアレルでは、配列番号1の382番目に対応するアミノ酸がアラニンであるか、配列番号1の348番目に対応するアミノ酸がグリシンである。なお、配列番号1の382番目に対応するアミノ酸は、その脊椎動物においては、必ずしも382番目である必要はなく、配列番号1の382番目に対応すれば、つまり、配列番号1の382番目周辺のアミノ酸配列と相同なアミノ酸配列の中で、配列番号1の382番目に相当するアミノ酸であれば良い。これは、配列番号1の348番目に対応するアミノ酸についても同様である。
 筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデル動物を作製するには、例えば、forward geneticsを利用し、脊椎動物に変異源を与え、多数の変異体の中から、このアラニンまたはグリシンを、それぞれチロシンまたはシステインに変異した個体を選択しても良いが、reverse geneticsを利用し、外来性DNAを用いて、このアラニンまたはグリシンを、それぞれチロシンまたはシステインに置換してもよい。なお、アミノ酸を置換する場合、変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御され、その変異タンパク質の効果が生じる限り、他に外来DNAの挿入等があっても良い。以下にアミノ酸の置換方法の一例を示すが、置換方法は、この例に限定されるものではない。
 まず、公知のin vitro mutagenesis法を用いて、単離されたTDP-43遺伝子またはcDNAにおいて、配列番号1の382番目に対応するアミノ酸のアラニンをチロシンに置換するか、または配列番号1の348番目に対応するアミノ酸のグリシンをシステインに置換する。必要であれば、タグをコードするDNAをin frameで結合させ、変異TDP-43との融合タンパクが発現するようにする。あるいは、変異TDP-43遺伝子またはcDNAとタグをコードする遺伝子との間に、IRES配列(internal ribosomal entry site;リボソーム内部進入部位)を挿入し、2つのタンパク質が別々に発現するようにしてもよい。
 ここで、TDP-43遺伝子またはcDNAの由来は特に限定されないが、脊椎動物TDP-43遺伝子またはcDNAであることが好ましく、ヒトTDP-43遺伝子またはcDNAであることがより好ましい。また、タグは特に限定されず、Hisタグ、Mycタグなどのオリゴペプチド、GFP、EGFPなどの蛍光タンパク質、βガラクトシダーゼ、ルシフェラーゼ、アルカリホスファターゼなどの酵素などが例示できる。融合タンパク質にする場合は、オリゴペプチドまたは蛍光タンパク質が、IRES配列を用いる場合は、蛍光タンパク質または酵素タンパク質が好ましい。
 こうして作成したノックイン用DNAを、ES細胞やiPS細胞などの多能性幹細胞に導入し、ノックイン用DNAが内在性TDP-43遺伝子と置換された細胞を選択する。得られた細胞では、内在性TDP-43遺伝子の一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御される。
 その後、得られた細胞を用いてキメラ動物を作製し、多能性幹細胞が生殖系列に入ったキメラ動物から、変異TDP-43遺伝子がノックインされた子孫を得ることができる。あるいは、ノックイン用DNAを、受精卵に注入し、内在性TDP-43遺伝子と置換された個体を選択し、選ばれた個体を成体まで育てることで、ノックイン動物を作製することもできる。これらのノックイン動物は、変異TDP-43遺伝子のヘテロ接合であるが、導入した変異は優性変異であるので、これらのヘテロ接合体を、筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデル動物として用いることができる。ヘテロ接合体の雌雄を交配させることによって、ホモ接合体も得ることができる。
==筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデル動物==
 上述した方法によって作製された脊椎動物は、内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されている。この変異脊椎動物は、内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、外来性DNAによって、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換した変異、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換した変異を有する脊椎動物であってもよい。なお、変異脊椎動物は、変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御され、その変異タンパク質の効果が生じる限り、他に外来DNAの挿入等があっても良い。
 これらの変異は優性変異であるので、変異脊椎動物は、内在性TDP-43遺伝子の一方のアレルにおいて置換が生じたヘテロ接合でもよいが、両方のアレルにおいて置換が生じたホモ接合でもよい。
 なお、内在性TDP-43遺伝子は、外来性ヒトTDP-43遺伝子と置換されていることが好ましい。
 この変異脊椎動物は、生後、振戦(ふるえ)や四肢異常反射のような、異常な神経症状を呈する。また、握力が低下し、ものを掴む動作が困難になる。脊髄や脳の中枢神経細胞では、TDP-43の細胞内異常封入体が生じる。このように、この脊椎動物には、筋萎縮性側索硬化症特有の症状が現れるため、筋萎縮性側索硬化症モデル動物として有用である。
 一方、ヒトFTLD病理所見においても、脳内でTDP-43の細胞内異常封入体が観察されており、この病理学的要素が前頭葉と側頭葉における神経細胞の脱落・減少と、MRIなどの画像診断による脳(前頭葉・側頭葉)の委縮に繋がると考えられている。このように、この脊椎動物には、TDP-43の細胞内異常封入体蓄積という、前頭側頭葉変性症特有の症状が現われ、脳細胞の変性が始まっていることを示しているため、前頭側頭葉変性症モデル動物として有用である。
(1)ベクター構築
 TDP-43cDNA(Human cDNA clone, FCC-101, TOYOBO Co.,LTD.)(配列番号9)をpBluescriptSK(+)プラスミドベクターのHindIII及びBamHI部位に挿入したプラスミドを用い、下記プライマーを用い、in vitro mutagenesis法(Nuc. Acids Res. 2000 vol.28 E78)によって変異型TDP-43cDNA(G298S、A315T、G348C、N352S、A382T)を作製した。 
G298Sプライマー: attgtttcccaaactagctccaccccc(配列番号4)
A315Tプライマー: attaatgctgaacgtaccaaagttc(配列番号5)
G348Cプライマー: attacccgatgggcatgactggttc (配列番号6)
N352Sプライマー: ttggttttggttactacccgattggcc(配列番号7)
A382Tプライマー: tccccaaccaattgttgcaccagaatt(配列番号8)
 次に、Venus/pcDNA3 (VenusがpcDNA3ベクターのBamHIとEcoRI部位に挿入されているプラスミド)のHindIII及びKpnI部位へ、同じ酵素で切断した変異型TDP-43cDNAを挿入した。このようにして、変異型TDP-43に蛍光蛋白質Venusを融合させた発現ベクターを作製した。
(2)封入体形成
 HeLa細胞に、変異型TDP-43発現ベクターをLipofectamin2000を用いてリポフェクションし、24時間後に共焦点蛍光顕微鏡でVenusの蛍光を観察したところ、細胞質にVenusを含む封入体を持つ細胞の頻度は、変異型TDP-43(G348C)及び変異型TDP-43(A382T)が最も高く、一方、野生型TDP-43の強制発現では封入体は少数しか見られなかった。そこで、変異型TDP-43ノックインマウスを作製するのに、これらの変異型を用いた。なお、以下のいずれの実験でも、変異型TDP-43(G348C)及び変異型TDP-43(A382T)について、同様の実験結果が得られたが、本明細書では、一例として、変異型TDP-43(G348C)で得られた結果を記載する。
 図1には、HeLa細胞において、変異型TDP-43で観察された様々な封入体を示す。(A)~(C)は、細胞質に生じた封入体で、比較的小さく拡散しているもの(A)、中くらいで塊になっているもの(B)、比較的大きな塊になっているもの(C)の一例である。(D)は、核に生じた封入体である。
 次に、明視野と蛍光の顕微鏡ライブイメージングにより、HeLa細胞の細胞死を検出した。すなわち、図2で示すように、時間とともに変異型TDP-43が核から細胞質に漏出し、封入体を形成するとともに、細胞の形態がつぶれていった。そして、明視野で観察された細胞死の時期と同時に、変異型TDP-43の発現を示す蛍光も薄れていった。これは、細胞内異常封入体形成が、細胞死の原因であることを示している。
 次に、ラット脳神経細胞を用いて、同様に変異型TDP-43の影響を観察した。まず、妊娠19日目のWistar Ratを麻酔後に頸椎脱臼し、開腹して取り出した胎児から脳を採取し、実体顕微鏡下において海馬を切り出した。採取した海馬を、酵素(Papain及びDnaseI)を含有したPBSに37℃で10分間浸漬し、ガラスピペットにより海馬組織の細胞を分散させた。直径35mmのイメージング用デッシュに海馬から採取した細胞を培養した。ここで培地は2%FBS/MEMにN2及びB27を添加したものを用いた。培養4日目に、変異型TDP-43発現ベクターをリン酸カルシウム法によりラット海馬培養細胞へトランスフェクトしたところ、図3に示すように、やはり、細胞内に異常封入体の形成が観察された。
(3)変異型TDP-43ノックインマウスの作製
 まず、pBluescriptベクターのXhoI HindIIIの間にNeoカセットが挿入されたベクターをApaI及びXhoIで切断し、変異型TDP-43の発現ベクターから、ApaI及びXhoIで切り出した変異型TDP-Venus-polyAを挿入し、TDP43-Venus-polyA-Neoカセット/pBstSKを作製した。
 このベクターを鋳型とし、PCRで増幅したDNA断片と、野生型TDP-43遺伝子が挿入されたBAC(bacterial artificial chromosome)ベクターとを大腸菌へエレクトロポレーション法により導入して、相同組み換えを誘発させることにより、ノックインベクターを完成させた。
 このベクターをES細胞にエレクトロポレーションにて導入し、G418で選択して得たクローンから、相同組換えを起こしたES細胞をスクリーニングして、変異型TDP-43タンパク質の最初のメチオニンからHindIIIまでが内在性TDP-43遺伝子のエクソン2に置換されたクローンを選択した。図4に、ノックインベクターの構成、ノックイン前の内在性TDP-43遺伝子の構成、及びノックイン後の内在性TDP-43遺伝子の構成を示す。
 このES細胞を用いて、キメラマウスを作製し、生殖系列キメラマウスを選択して、その子孫から変異型TDP-43ノックインマウスを得た。
 この変異型TDP-43ノックインマウスにおいて、ノックインした変異型TDP-43の発現を調べるため、ウエスタンブロットを行った。すなわち、生後4ヶ月の野生型マウスおよび変異型TDP-43ノックインマウスの脳を摘出し、粗抽出液を調製して、SDS-PAGEによってタンパク質を分離した。PVDFメンブレンにトランスファーした後で、抗TARDBPポリクローナル抗体(Proteintech社製、型番:12892-1-AP)を用いて、変異型TDP-43のシグナルを得た。その結果を図5に示す。
 野生型マウスでは、野性型TDP-43を示すシグナルが検出され、変異型TDP-43(A382T)ノックインマウスでは、野性型TDP-43および変異型TDP-43の発現を示すシグナルが検出された。ここで、野生型マウスの野生型TDP-43の発現量と、変異型マウスの野生型TDP-43および変異型TDP-43の合計発現量とがほぼ同程度だった。なお、変異型TDP-43(A382T)ノックインマウスでは、これらのシグナルの他に、分子量の小さいシグナルも弱く検出されたが、一般に、変異タンパク質は分解されやすいと考えられており、この余分なシグナルは変異型TDP-43(A382T)が部分的に分解されたものと考えられる。
 このように、変異型TDP-43(A382T)ノックインマウスでは、ノックインした変異遺伝子が、野生型マウスと同様な制御を受けていることが確認された。
(4)変異型TDP-43ノックインマウスの体重計測
 野生型マウス(雄7匹、雌9匹)、変異型TDP-43(G348C)ノックインマウス(雄6匹、雌3匹)、変異型TDP-43(A382T)ノックインマウス(雄4匹、雌5匹)について、生後すぐから、生後14ヶ月に至るまで、体重を測定し、その平均体重を算出し、その平均体重の推移をグラフ化した(図6)。 
 図6で示すように、両方のノックインマウスは、野生型に比べて体重の増加が遅く、14ヶ月後でも、野生型マウスより、有意に体重が軽かった。
(5)変異型TDP-43ノックインマウスの行動解析
 野生型マウスと変異型TDP-43ノックインマウスに対し、ケージ中のマウスの行動を観察すると、野生型マウスは、ケージの網を掴みながら自由にケージ内を動きまわるが、変異型TDP-43ノックインマウスは、両方とも、握力が低下しており、ケージの網を掴んでも、自分自身の体重を支えきれないことから、ケージ内での動きが緩慢になっていた。なお、この異常は、下位運動ニューロンの障害によると考えられる。
 次に、マウスの尾を持って、下にぶらさげると、正常マウスは、下肢を広げて突っ張るようにして、体全体のバランスを保とうとするが、異常マウスは、両方とも、下肢を縮めてしまって、体のバランスを保つことができない(図7)。この異常は、16匹の野生型マウスでは観察されなかったが、変異マウスでは、生後6ヶ月位から出現し始め、変異型TDP-43(G348C)ノックインマウスで10匹中6匹、変異型TDP-43(A382T)ノックインマウスで9匹中6匹に持続的に生じた。なお、この異常は、上位運動ニューロンの障害によると考えられる。
 さらに、マウスが、1-2分間ケージ内を自由に移動するところを観察し、振戦が生じるかどうか調べたところ、16匹の野生型マウスでは観察されなかったが、変異マウスでは、変異型TDP-43(G348C)ノックインマウスで10匹中8匹、変異型TDP-43(A382T)ノックインマウスで9匹中7匹に持続的に生じた。
 これらの行動異常を定量化するため、四肢反射と振戦を点数化して6ヶ月齢から10ヶ月齢まで毎週、5段階評価(0~4:異常反射や振戦がみられる肢の本数をそのまま点数とした)を行った。そして、各個体別に、時間経過を追って、評価を図にした(図8)。図8からは、変異マウスの振戦が、生後6ヶ月から10ヶ月までの間に、徐々に悪化していることがわかる。また、四肢反射は、生後6ヶ月後において、多くの変異マウスで、すでに異常が観察された。
 さらに、観察期間を延長し、変異型TDP-43(G348C)ノックインマウスおよび変異型TDP-43(A382T)ノックインマウスの振戦、握力および四肢反射について、生後33週から78週まで15週ごとに評価を行った。振戦については、振戦が見られる場合は「0」、見られない場合は「1」とした。握力については、4本の肢でケージの網にぶら下がることができる場合は「0」、4本の肢でケージの網にぶら下がることができるがすぐに落下してしまう場合は「1」、2本の前肢でケージの網を握ることはできるが4本の肢でケージの網にぶら下がることが出来ない場合は「2」、肢でケージの網を握ることができない場合は「3」とした。四肢反射については異常反射や振戦がみられる肢の本数をそのまま点数とした。そして、各個体別に、時間経過を追って、振戦、握力、および四肢反射について評価を図に表した(図9)。
 図9に示されるように、ALSを示唆する運動機能障害である、振戦、握力の低下および異常反射のうち少なくとも2つの症状が、生後33週から78週までの間に、全てのマウスにおいて現れた。
 このように、変異マウスは、ALSに類似した異常を有するため、ALSモデル動物として有用である。
(6)変異型TDP-43ノックインマウスの筋電図測定
 生後4カ月の変異型TDP-43(G348C)ノックインマウスにおいて、筋電図を測定し、その結果を図10に示した。 
 変異ノックインマウスでは、motor unit potential(MUP)が基線に戻るまでの時間が異常に延長したり(図10A)、下位運動神経の障害で起こるfibrilation potentialと見られる微弱な異常波形が出現したり(図10B)した。なお、比較のため、MUPが正常時間内に終了した時の筋電図を図10Cに示した。 
 このように、変異型TDP-43(G348C)ノックインマウスでは、運動神経障害が、筋電図波形にも現れた。 
(7)変異型TDP-43ノックインマウスの脳細胞の解析
 生後5ヶ月の変異型TDP-43ノックインマウスを4%ホルムアルデヒド溶液で還流固定後、脳を採取し、再度、4%ホルムアルデヒド溶液で1晩固定後、Sucroseに置換した。その後、リトラトームで厚さ30マイクロメートルの凍結切片を作製した。 
 この切片において、Venusからの蛍光像を蛍光顕微鏡で観察したところ、図11に示すように、変異型TDP-43は、核に局在する他に、細胞質に封入体を形成した。 
 このように、変異型TDP-43ノックインマウスは、ヒトALSと同様の症状を示すALSモデル動物およびヒトFTLDと同様の症状を示すFTLDモデル動物として有用である。
(8)変異型TDP-43ノックインマウスの高次脳機能解析
 以下のように、生後5ヶ月から9ヶ月の変異型TDP-43のノックインマウスの高次脳機能解析を行った。
 ==ホームケージ活動性試験==
 まず、変異型TDP-43(A382T)ノックインマウスを用いてホームケージ活動性試験を行い、このマウスの環境への適応性を評価した。
 12匹の変異型TDP-43(A382T)ノックインマウス、および、11匹の野性型マウスの、ホームゲージに戻した直後から360分経過するまでの水平方向の行動量を、行動解析装置(有限会社メルクエスト製、SCANET)を用いて調べた。装置内の赤外線をマウスが遮る回数(カウント数)を、30分毎に集計した。結果を図12に示す(■変異型マウス;●野生型マウス)。
 図12のグラフからわかるように、変異型TDP-43(A382T)ノックインマウスは、ホームケージへ戻してから240分経過するまで、野生型と比較して行動量が有意に多く(p値=0.0083)、その後は、両方のマウスの行動量には有意差が見られなかった。このように、変異型TDP-43(A382T)ノックインマウスは、野性型マウスと比較して、環境に適応するのが遅い。
 ==オープンフィールド試験==
 次に、オープンフィールド試験を行い、変異型TDP-43ノックインマウスの新規環境に対する不安耐性を評価した。
 マウスを50cm×50cmのフィールドに置き、壁側に滞在する時間と、フィールドの中心範囲(18cm×18cm)に滞在する時間を計測した。試験には、11匹の変異型TDP-43(G348C)ノックインマウス、および、11匹の野性型マウスを用いた。結果を図13に示す(左バー 野生型マウス;右バー 変異型マウス)。
 図13のグラフからわかるように、変異型TDP-43(G348C)ノックインマウスは、野性型よりも、中心範囲に滞在する時間が有意に長かった。このように、変異型TDP-43(G348C)ノックインマウスは、新規環境において、不安の程度が低く、不安を感じにくい傾向がある。変異型TDP-43(A382T)ノックインマウスについてもオープンフィールド試験を行ったところ、同様の傾向であった。
 ==新奇物体認識試験==
 次に、新奇物体認識試験を行い、変異型TDP-43ノックインマウスの新奇物に対する不安耐性についての評価を行った。
 新奇物としての物体を設置した装置内にマウスを入れ、その物体の近くに滞在する時間を計測した。試験には、11匹の変異型TDP-43(G348C)ノックインマウス、12匹の変異型TDP-43(A348T)ノックインマウス、および、11匹の野性型マウスを用いた。結果を図14に示す(左バー 野生型マウス;右バー 変異型マウス)。
 図14のグラフからわかるように、変異型TDP-43(G348C)ノックインマウスは、野性型マウスと比較して新奇物の近くに滞在する時間が有意に長かった(p値=0.1921)。また、変異型TDP-43(A348T)ノックインマウスも、野性型マウスと比較して新奇物の近くに滞在する時間が有意に長かった(p値=0.1728)。このように、変異型TDP-43(G348C)ノックインマウスおよび変異型TDP-43(A348T)ノックインマウスのいずれも、野性型と比較して、新奇物に対して不安の程度が低く不安を感じにくい。
 ==3チャンバー試験==
 次に、3チャンバー試験を行い、変異型TDP-43ノックインマウスの社会性を評価をした。
 3部屋に自由に出入りできる環境にしたケージを用意し、この3部屋のうち1部屋に、被験体とは今まで同居したことのないマウスを入れた。そして、この装置に入れた被験体がその部屋に滞在する時間(stranger-near)および別の部屋に滞在する時間(empty-near)を測定した。試験には被験体として、11匹の変異型TDP-43(G348C)ノックインマウス、11匹の変異型TDP-43(A348T)ノックインマウス、および、11~12匹の野性型マウスを用いた。結果を図15に示す(左バー 野生型マウス;右バー 変異型マウス)。
 図15のグラフからわかるように、変異型TDP-43(G348C)ノックインマウスが、他のマウスのいる部屋に滞在する時間は、野性型マウスの滞在時間と比較して有意に短かった(p値=0.0198)。変異型TDP-43(A348T)ノックインマウスについても同様の評価を行ったところ、今まで同居したことのないマウスのいる部屋に滞在する時間は、野性型マウスと比較して短い傾向であった。このことから、変異型TDP-43ノックインマウスの社会性は野生型マウスと比較して低い傾向であることがわかった。
 ==8方向放射状迷路試験==
 次に、8方向放射状迷路試験を行い、変異型TDP-43ノックインマウスの空間記憶を評価した。
 放射状に伸びた8本のアームを有する装置を用意し、各アームの先端に餌を配置し、マウスを装置内に入れた。そして、8本のアーム全ての餌を食べ終えるまでの時間、既に餌を食べ終えたアームに浸入した回数(作業記憶エラー回数)、およびアームへの総浸入回数を測定した。この試験は14日間、繰り返し行なった。試験には、11匹の変異型TDP-43(G348C)ノックインマウス、および、11匹の野性型マウスを用いた。結果を図16に示す(■変異型マウス;●野生型マウス)。
 図16のグラフからわかるように、変異型TDP-43(G348C)ノックインマウスは、野性型マウスと比較して、作業記憶エラーが多かった(p値=0.0039)。また、野性型マウスより8本のアーム全ての餌を食べ終えるまでの時間は短いが(P値=0.0027)、アームへの総浸入回数が多く(p値=0.0077)、過活動であった。
 このように、生後5ヶ月以降の変異型TDP-43ノックインマウスには、ヒトFTLDを反映していると考えられる高次機能障害がみられ、FTLDモデル動物として有用であることがわかった。
 本発明によって、ヒト筋萎縮性側索硬化症および/またはヒト前頭側頭葉変性症と同様な症状を有するモデルマウスを作製することができるようになった。

Claims (11)

  1.  内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されている脊椎動物(ただし、ヒトを除く)。
  2.  内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、外来性DNAによって、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換した変異、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換した変異を有する、請求項1に記載の脊椎動物。
  3.  筋萎縮性側索硬化症モデル動物である、請求項1または2に記載の脊椎動物。
  4.  前頭側頭葉変性症モデル動物である、請求項1または2に記載の脊椎動物。
  5.  ヒトTDP-43遺伝子のノックインマウスである、請求項1~4のいずれか1項に記載の脊椎動物。
  6.  筋萎縮性側索硬化症モデル動物を作製する方法であって、
     脊椎動物(ただし、ヒトを除く)の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されるように、前記脊椎動物に変異を起こさせる工程を含む方法。
  7.  前記脊椎動物の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、外来性DNAを用いて、配列番号1の382番目に対応するアミノ酸のアラニンをチロシンに置換する工程、または配列番号1の348番目に対応するアミノ酸のグリシンをシステインに置換する工程、によって、前記脊椎動物に変異を起こさせることを特徴とする、請求項6に記載の方法。
  8.  前記脊椎動物の内在性TDP-43遺伝子又はその一部を、外来性ヒトTDP-43遺伝子又はその一部と置換することを特徴とする、請求項7に記載の方法。
  9.  前頭側頭葉変性症モデルマウスを作製する方法であって、
     脊椎動物(ただし、ヒトを除く)の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、配列番号1の382番目に対応するアミノ酸のアラニンがチロシンに置換された変異タンパク質、または配列番号1の348番目に対応するアミノ酸のグリシンがシステインに置換された変異タンパク質の発現が、内在性TDP-43遺伝子プロモーターによって制御されるように、前記脊椎動物に変異を起こさせる工程を含む方法。
  10.  前記脊椎動物の内在性TDP-43遺伝子の少なくとも一方のアレルにおいて、外来性DNAを用いて、配列番号1の382番目に対応するアミノ酸のアラニンをチロシンに置換する工程、または配列番号1の348番目に対応するアミノ酸のグリシンをシステインに置換する工程、によって、前記脊椎動物に変異を起こさせることを特徴とする、請求項9に記載の方法。
  11.  前記脊椎動物の内在性TDP-43遺伝子又はその一部を、外来性ヒトTDP-43遺伝子又はその一部と置換することを特徴とする、請求項10に記載の方法。
PCT/JP2013/065029 2012-05-31 2013-05-30 筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス WO2013180214A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13796611.5A EP2856869A4 (en) 2012-05-31 2013-05-30 WALL MODEL OF AMYOTROPHIC LATERAL SCLEROSIS AND / OR FRONTO-TEMPORAL DEGENERATION
US14/404,570 US20150173330A1 (en) 2012-05-31 2013-05-30 Mouse model of amyotrophic lateral sclerosis and/or frontotemporal lobar degeneration
JP2014518720A JP6366188B2 (ja) 2012-05-31 2013-05-30 筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012124947 2012-05-31
JP2012-124947 2012-05-31
JP2012-168001 2012-07-30
JP2012168001 2012-07-30

Publications (1)

Publication Number Publication Date
WO2013180214A1 true WO2013180214A1 (ja) 2013-12-05

Family

ID=49673401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065029 WO2013180214A1 (ja) 2012-05-31 2013-05-30 筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス

Country Status (4)

Country Link
US (1) US20150173330A1 (ja)
EP (1) EP2856869A4 (ja)
JP (1) JP6366188B2 (ja)
WO (1) WO2013180214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197443A (ja) * 2016-04-25 2017-11-02 国立研究開発法人国立精神・神経医療研究センター Tdp−43プロテイノパチー治療用組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220024134A (ko) * 2019-06-27 2022-03-03 리제너론 파마슈티칼스 인코포레이티드 Tdp-43 단백질이상질환 모델링

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2327788A1 (en) * 2009-11-25 2011-06-01 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Conditional expression of transgenes in vivo

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", JOHN WILEY & SONS LTD.
"Molecular cloning, a laboratory manual", 2012, COLD SPRING HARBOR PRESS
HITOSHI TAKAHASHI: "Amytrophic latheral sclerosis and TDP-43: elucidation of the entire neuropathological picture and molecular pathomechanism", KAGAKU KENKYUHI HOJOKIN KENKYU SEIKA HOKOKUSHO, 2011, XP055180083, Retrieved from the Internet <URL:http://kaken.nii.ac.jp/pdf/2010/seika/jsps/13101/20240037seika.pdf> [retrieved on 20130611] *
KOJI YAMANAKA: "Glial pathology in amyotrophic lateral sclerosis", NEUROLOGY RESEARCH INTERNATIONAL, vol. 2011, no. 718987, 2011, pages 1192 - 1194, XP055180075 *
MAKOTO URUSHITANI: "Future perspectives of immunotherapy against ALS", CLINICAL NEUROLOGY, vol. 4, no. 11, 2009, pages 818 - 820, XP055180064 *
NUC. ACIDS RES., vol. 28, 2000, pages E78
TAKUYA KONNO ET AL.: "ALSIO (Idensei ALS-TDP) no Rinsho to Byori", CLINICAL NEUROSCIENCE, vol. 29, no. 9, 1 September 2011 (2011-09-01), pages 1019 - 1021, XP008176047 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197443A (ja) * 2016-04-25 2017-11-02 国立研究開発法人国立精神・神経医療研究センター Tdp−43プロテイノパチー治療用組成物

Also Published As

Publication number Publication date
EP2856869A4 (en) 2016-02-17
JP6366188B2 (ja) 2018-08-01
US20150173330A1 (en) 2015-06-25
EP2856869A1 (en) 2015-04-08
JPWO2013180214A1 (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
Gilley et al. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2
Lopez et al. Anatomically defined neuron-based rescue of neurodegenerative Niemann–Pick type C disorder
Puckelwartz et al. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice
Speed et al. Autism-associated insertion mutation (InsG) of Shank3 exon 21 causes impaired synaptic transmission and behavioral deficits
Hudry et al. Inhibition of the NFAT pathway alleviates amyloid beta neurotoxicity in a mouse model of Alzheimer's disease
JP7026678B2 (ja) C9orf72座位中にヘキサヌクレオチドリピート伸長を有する非ヒト動物
Ruehle et al. Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions
McDowell et al. Reduced cortical BDNF expression and aberrant memory in Carf knock-out mice
Khelfaoui et al. Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity
Sperber et al. A unique role for Fyn in CNS myelination
Bi et al. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith–Magenis syndrome
Danglot et al. Absence of TI-VAMP/Vamp7 leads to increased anxiety in mice
Zhang et al. Fuz regulates craniofacial development through tissue specific responses to signaling factors
Shen et al. Targeted disruption of Tgif, the mouse ortholog of a human holoprosencephaly gene, does not result in holoprosencephaly in mice
Volders et al. Drosophila rugose is a functional homolog of mammalian Neurobeachin and affects synaptic architecture, brain morphology, and associative learning
Pelletier et al. An early onset progressive motor neuron disorder in Scyl1-deficient mice is associated with mislocalization of TDP-43
US20160345547A1 (en) Non-human animals having a disruption in a c9orf72 locus
Sudo et al. Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage
Qian et al. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development
JP2020005660A (ja) 上位及び下位運動ニューロン機能並びに知覚の減衰を示す非ヒト動物
JP6366188B2 (ja) 筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウス
EP3158084A2 (en) Compositions and methods for modulating neuronal degeneration
US20080120731A1 (en) Transgenic Animal Models for Neurodevelopmental Disorders
Hao et al. The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans without its KASH or actin-binding domains
Yang et al. A giant ankyrin-B mechanism for neuro-diversity/divergence through stochastic ectopic axon projections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796611

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014518720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013796611

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14404570

Country of ref document: US