WO2013179962A1 - Light-source device - Google Patents

Light-source device Download PDF

Info

Publication number
WO2013179962A1
WO2013179962A1 PCT/JP2013/064172 JP2013064172W WO2013179962A1 WO 2013179962 A1 WO2013179962 A1 WO 2013179962A1 JP 2013064172 W JP2013064172 W JP 2013064172W WO 2013179962 A1 WO2013179962 A1 WO 2013179962A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
incident
source device
beam shaping
Prior art date
Application number
PCT/JP2013/064172
Other languages
French (fr)
Japanese (ja)
Inventor
永治 大橋
美範 森本
敏之 井上
牧 斎藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014518400A priority Critical patent/JP5820067B2/en
Publication of WO2013179962A1 publication Critical patent/WO2013179962A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to a light source device having a light emitting element.
  • Patent Document 1 describes the use of a laser diode in a light source device for an endoscope.
  • the laser diode LD is a light emitting element composed of a semiconductor and has a structure in which a P layer made of a P-type semiconductor, an active layer K, and an N layer made of an N-type semiconductor are stacked.
  • the active layer K emits laser light.
  • the laser light is divergent light that spreads in a substantially conical shape from the emission center OP.
  • the laser diode LD also has a light emitting point that emits light that spreads in the horizontal direction (X direction) parallel to the active layer K and a light emitting point that emits light that spreads in the vertical direction (Y direction) perpendicular to the active layer.
  • the cross-sectional shape of the light beam (beam) BM orthogonal to the optical axis becomes a vertically long substantially elliptical shape that is long in the Y direction. This means that the beams emitted from the laser diode LD have different divergence angles in the X direction corresponding to the short axis and the Y direction corresponding to the long axis.
  • the light source unit described in Patent Document 2 has two lenses, a coupling lens and a condenser lens. By arranging these two lenses on the optical path of the beam emitted from the laser diode LD, The beam shaping of the laser diode LD is performed.
  • the coupling lens is a lens that collimates and emits a beam having a divergence angle after collimating the beam once.
  • the entrance surface and the exit surface are composed of two first and second cylindrical lens surfaces having different focal lengths.
  • the first cylindrical lens surface has a refractive power only in the X direction corresponding to the short axis of the beam
  • the second cylindrical lens surface has a refractive power only in the Y direction corresponding to the long axis of the beam. Since the first cylindrical lens surface and the second cylindrical lens surface have different focal lengths (because of their different refractive powers), they are corrected so that the divergence angles of the major axis and the minor axis of the beam coincide with each other due to the refractive action of each lens surface.
  • the cross-sectional shape of the beam is shaped from a substantially elliptical shape to a substantially perfect circle. Since the beam emitted from the coupling lens is collimated, it is converted into a beam having a divergence angle by the condenser lens.
  • An object of the present invention is to provide a light source device capable of shaping the cross-sectional shape of a beam of a light emitting element while suppressing light transmission loss.
  • the light source device of the present invention includes a light emitting element and an optical element.
  • the light emitting element emits a diverging beam, and the beam has different divergence angles in a first direction and a second direction orthogonal to the first direction in the cross section.
  • the optical element has an incident surface on which a beam emitted from the light emitting element is incident, an exit surface that emits the incident beam, and a longitudinal axis that extends in a longitudinal direction from the incident surface toward the exit surface. It is an optical element that propagates in the longitudinal direction while being reflected internally, and has a reflective side surface that is oblique to at least one of the first and second directions of the beam on a plane orthogonal to the longitudinal axis.
  • the optical element twists around the optical axis by reflection at the reflection side surface with respect to at least one of the first component and the second component parallel to each of the first direction and the second direction among the light rays contained in the beam. It is preferable to make it occur.
  • the optical element is a light guide rod made of a columnar body formed of a transparent material, the reflection side surface is a boundary surface with air, and the reflection is total reflection.
  • the cross-sectional shape orthogonal to the longitudinal axis is a polygon
  • the reflection side surface is a flat surface.
  • the polygon is, for example, any one of a hexagon, a quadrangle, and a triangle.
  • the optical element is arranged in a posture in which an axis connecting two opposite vertices of the hexagon is inclined with respect to the first direction or the second direction.
  • the inclination angle of the axis with respect to the first direction or the second direction is, for example, 15 °.
  • the optical element is preferably arranged such that each side of the quadrangle is inclined with respect to a normal posture parallel to the first direction or the second direction.
  • the inclination angle with respect to the normal posture is preferably 45 °.
  • the optical element is preferably arranged in a state where the center of the polygonal cross section coincides with the light emission center of the light emitting element.
  • the area of the incident surface may have such a size that light from a plurality of light emitting elements can enter.
  • the optical element may have a tapered shape in which the reflection side surface is inclined with respect to the longitudinal axis.
  • the cross-sectional shape of the beam emitted from the light emitting element is, for example, an ellipse having a major axis and a minor axis corresponding to the first direction and the second direction, respectively, and the optical element is an elliptical beam incident on the incident surface. Is shaped into a perfect circle, for example, and emitted from the emission surface.
  • the oval shape includes a substantially oval shape in addition to a complete oval shape.
  • the true circle is not limited to a perfect true circle but includes a substantially perfect circle.
  • the light emitting element is, for example, a laser diode.
  • a first light source unit that emits a beam having a true circular cross section without using an optical element, a light emitting element and an optical element, and emitting a beam having a true circular cross section shaped by the optical element. You may provide at least 2 types of light source parts of the 2nd light source part to do.
  • the first light source unit includes, for example, a light emitting element and a phosphor that emits fluorescence when excited by light emitted from the light emitting element.
  • the present invention it is possible to provide a light source device capable of shaping the cross-sectional shape of the light emitting element beam while reducing light transmission loss.
  • an endoscope system 10 (hereinafter referred to as an endoscope system) according to a first embodiment of the present invention is obtained by imaging an endoscope 11 that images an in-vivo observation site.
  • a processor device 12 that generates an observation image of the observation region based on the signal, a light source device 13 that supplies light irradiating the observation region to the endoscope 11, and a monitor 14 that displays the observation image are provided.
  • the processor device 12 is provided with a console 15 that is an operation input unit such as a keyboard and a mouse.
  • the endoscope system 10 includes a normal observation mode for observing an observation site under white light, and a blood vessel information observation mode for observing the properties of blood vessels existing in the observation site using special light. ing.
  • the blood vessel information observation mode is a special light observation mode for diagnosing the characteristics of blood vessels such as blood vessel pattern and oxygen saturation, and for distinguishing tumors from good to bad.
  • the absorbance to blood hemoglobin is Narrow band light in a high wavelength range is used.
  • the blood vessel information observation mode includes a blood vessel enhancement observation mode for displaying a blood vessel enhancement image in which blood vessels are enhanced, and an oxygen saturation observation mode for displaying an oxygen saturation image in which the oxygen saturation of blood hemoglobin is displayed.
  • the endoscope 11 includes an insertion portion 16 inserted into a digestive tract of a living body, an operation portion 17 provided at a proximal end portion of the insertion portion 16, and between the operation portion 17, the processor device 12, and the light source device 13. And a universal cord 18 to be connected.
  • the insertion portion 16 includes a distal end portion 19, a bending portion 20, and a flexible tube portion 21 that are continuously provided from the distal end.
  • the illumination window 22 that irradiates the observation site with illumination light
  • the observation window 23 that receives the image light reflected by the observation site, and the observation window 23 are washed.
  • An air supply / water supply nozzle 24 for performing air supply / water supply, a forceps outlet 25 for projecting a treatment tool such as a forceps and an electric knife, and the like are provided.
  • An imaging element 44 (see FIG. 3) and an imaging optical system are built in the back of the observation window 23.
  • the bending portion 20 is composed of a plurality of connected bending pieces, and is bent in the vertical and horizontal directions by operating the angle knob 26 of the operation portion 17. By bending the bending portion 20, the direction of the distal end portion 19 is directed in a desired direction.
  • the flexible tube portion 21 is flexible so that it can be inserted into a tortuous duct such as the esophagus or the intestine.
  • the insertion unit 16 includes a communication cable that communicates a drive signal for driving the image sensor 44 and an image signal output from the image sensor 44, and a light guide 43 that guides illumination light supplied from the light source device 13 to the illumination window 22. (See FIG. 3) is inserted.
  • the operation unit 17 includes a forceps port 27 for inserting a treatment instrument, an air / water supply button for performing air / water supply operation, a release button for taking a still image, and the like. .
  • a communication cable and a light guide 43 extending from the insertion portion 16 are inserted into the universal cord 18.
  • One end of the universal cord 18 is fixed to the endoscope 11, and a connector 28 is provided at the other end serving as an open end.
  • the connector 28 is a composite type connector composed of a communication connector 28a and a light source connector 28b.
  • One end of a communication cable is disposed in the communication connector 28a, and the communication connector 28a is detachably connected to the processor device 12.
  • the light guide connector 28 b is provided with an incident end of the light guide 43, and the light source connector 28 b is detachably connected to the light source device 13.
  • the light source device 13 includes three types of first to third light source modules 31 to 33 each having a different emission wavelength, and a light source control unit 34 that drives and controls them.
  • the light source control unit 34 controls drive timing and synchronization timing of each unit of the light source device 13.
  • the first to third light source modules 31 to 33 have laser diodes LD1 to LD3 that respectively emit narrowband light in a specific wavelength range.
  • the laser diodes LD1 to LD3 are light emitting elements composed of semiconductors. As shown in FIG. 4, in the blue (B color) region, the laser diode LD1 emits narrowband light N1 having a wavelength region limited to 440 ⁇ 10 nm and a center wavelength of 445 nm, for example. In the blue (B color) region, the laser diode LD2 emits narrowband light N2, which is a narrowband light having a wavelength range limited to 410 ⁇ 10 nm and a center wavelength of 405 nm, for example.
  • the laser diode LD3 In the blue (B color) region, the laser diode LD3 emits narrowband light N3, which is a narrowband light whose wavelength range is limited to 470 ⁇ 10 nm and whose center wavelength is 473 nm, for example.
  • the laser diodes LD1, LD2, and LD3 InGaN-based, InGaNAs-based, and GaNAs-based ones can be used.
  • the laser diodes LD1 to LD3 are preferably broad area type laser diodes having a wide stripe width (waveguide width) capable of increasing the output.
  • the first light source module 31 is a light source unit that emits white light for normal observation.
  • the first light source module 31 includes a phosphor 36 in addition to the laser diode LD1.
  • the phosphor 36 is excited by the 445 nm blue-band narrow-band light N1 emitted from the laser diode LD1, and emits fluorescence FL in a wavelength region extending from the green region to the red region.
  • the phosphor 36 absorbs a part of the narrowband light N1 to emit fluorescence FL and transmits the remaining narrowband light N1.
  • the narrowband light N1 that passes through the phosphor 36 is diffused by the phosphor 36.
  • White light is generated by mixing the transmitted narrow-band light N1 and the excited fluorescence FL.
  • the phosphor 36 for example, a YAG-based or BAM (BgMgAl 10 O 17 ) -based phosphor is used.
  • Two first light source modules 31 are provided so that the amount of white light increases.
  • the second light source module 32 is a light source unit for blood vessel enhancement observation.
  • the absorption coefficient ⁇ a of blood hemoglobin has a wavelength dependence, increases rapidly in the region where the wavelength is 450 nm or less, and has a peak in the vicinity of 405 nm. Yes. Further, although the wavelength is lower than that of 450 nm or less, there is also a peak at wavelengths of 530 nm to 560 nm.
  • the observation site is irradiated with light having a wavelength with a large extinction coefficient ⁇ a, the blood vessel has a large absorption, and an image having a large contrast between the blood vessel and its peripheral portion is obtained.
  • the light scattering characteristic of the living tissue is also wavelength-dependent, and the scattering coefficient ⁇ S increases as the wavelength becomes shorter. Scattering affects the depth of light penetration into living tissue. That is, the greater the scattering, the more light that is reflected near the mucosal surface layer of the biological tissue and the less light that reaches the mid-deep layer. Therefore, the shorter the wavelength, the lower the depth of penetration, and the longer the wavelength, the higher the depth of penetration. In view of such light absorption characteristics of hemoglobin and light scattering characteristics of living tissue, the wavelength of light for blood vessel enhancement is selected.
  • the 405-nm narrow-band light N2 emitted from the second light source module 32 has a low depth of penetration and is therefore absorbed by the surface blood vessels, and is therefore used as light for emphasizing the surface blood vessels.
  • the narrowband light N2 the superficial blood vessel can be depicted with high contrast in the observation image.
  • the green component of white light emitted from the first light source module 31 is used as the light for emphasizing the middle deep blood vessel.
  • the light absorption coefficient gradually changes in the green region of 530 nm to 560 nm as compared with the blue region of 450 nm or less. It is not required to be. Therefore, as described later, a green component color-separated from white light by the G-color micro color filter of the image sensor 44 is used.
  • the third light source module 33 is a light source unit for observing oxygen saturation.
  • an absorption spectrum Hb indicates an absorption spectrum of reduced hemoglobin not bonded to oxygen
  • an absorption spectrum HbO2 indicates an absorption spectrum of oxidized hemoglobin bonded to oxygen.
  • reduced hemoglobin and oxyhemoglobin have different light absorption characteristics, and a difference occurs in the light absorption coefficient ⁇ a except for the isosbestic point (intersection of each spectrum Hb and HbO 2) showing the same light absorption coefficient ⁇ a. If there is a difference in the extinction coefficient ⁇ a, even if the light having the same light intensity and the same wavelength is irradiated, the reflectance changes if the oxygen saturation changes.
  • the oxygen saturation is measured using narrowband light N3 having a wavelength of 473 nm emitted from the third light source module 33 as a wavelength having a difference in the absorption coefficient ⁇ a.
  • the light source controller 34 turns on and off the laser diodes LD1 to LD3 and controls the amount of light via the driver 37. Specifically, the light source controller 34 turns on the laser diodes LD1 to LD3 by applying a drive pulse. Then, by performing PWM (Pulse Width Modulation) control for controlling the duty ratio of the drive pulse, the light emission amount is controlled by changing the drive current value.
  • the control of the drive current value may be PAM (Pulse Amplitude Modulation) control that changes the amplitude of the drive pulse.
  • a branched light guide 41 is provided on the downstream side of the optical path of the first to third light source modules 31 to 33.
  • the branching light guide 41 is an optical path integrating unit that integrates the optical paths of the first to third light source modules 31 to 33 into one optical path, as will be described in detail later. Since the light guide 43 of the endoscope 11 has one incident end, each branch light guide 41 supplies light from the first to third light source modules 31 to 33 to the endoscope 11 at each stage. The light paths of the modules 31 to 33 are integrated.
  • the branched light guide 41 has branch portions 41a to 41d whose entrance ends are branched into a plurality of portions, and emits light incident from the respective branch portions 41a to 41d from one exit end 41e.
  • the two first light source modules 31 are respectively arranged so as to face the incident surfaces of the branch portions 41a and 41b of the branch light guide 41, and the second and third light source modules 32 and 33 are respectively branched portions 41c and 41d. It arrange
  • the exit end 41e of the branched light guide 41 is disposed near the receptacle connector 42 to which the connector 28b of the endoscope 11 is connected.
  • a homogenizer 50 which will be described later, is provided at the emission end 41e, and the light of the first to third light source modules 31 to 33 incident on the branched light guide 41 is distributed to the connector 28b via the homogenizer 50.
  • the light guide 43 of the endoscope 11 is supplied.
  • the endoscope 11 includes a light guide 43, an imaging device 44, an analog processing circuit 45 (AFE: Analog Front End), and an imaging control unit 46.
  • the light guide 43 is a fiber bundle obtained by bundling a plurality of optical fibers (see reference numeral 201 in FIG. 18), and when the connector 28 is connected to the light source device 13, the incident end of the light guide 43 is the light source device 13. It faces the emission end of the homogenizer 50.
  • the exit end of the light guide 43 branches into two at the front stage of the illumination window 22 so that light is guided to the two illumination windows 22.
  • an irradiation lens 48 is disposed in the back of the illumination window 22 in the back of the illumination window 22 in the back of the illumination window 22, an irradiation lens 48 is disposed.
  • the light supplied from the light source device 13 is guided to the irradiation lens 48 by the light guide 43 and irradiated from the illumination window 22 toward the observation site.
  • the irradiation lens 48 is a concave lens, and widens the divergence angle of the light emitted from the light guide 43. Thereby, illumination light can be irradiated to the wide range of an observation site
  • an objective optical system 51 and an image sensor 44 are arranged in the back of the observation window 23.
  • the image light reflected by the observation site enters the objective optical system 51 through the observation window 23 and is imaged on the imaging surface 44 a of the imaging element 44 by the objective optical system 51.
  • the imaging device 44 is composed of a CCD image sensor, a CMOS image sensor, or the like, and has an imaging surface 44a in which a plurality of photoelectric conversion elements constituting pixels such as photodiodes are arranged in a matrix.
  • the image sensor 44 photoelectrically converts the light received by the imaging surface 44a and accumulates signal charges corresponding to the amount of received light in each pixel.
  • the signal charge is converted into a voltage signal by an amplifier and read out.
  • the voltage signal is output from the image sensor 44 as an image signal, and the image signal is sent to the AFE 45.
  • the image sensor 44 is a color image sensor, and micro-color filters of three colors B, G, and R having spectral characteristics as shown in FIG. 7 are assigned to each pixel on the imaging surface 44a.
  • the white light emitted from the first light source module 31 is split into three colors B, G, and R by the micro color filter.
  • the arrangement of the micro color filter is, for example, a Bayer arrangement.
  • the image sensor 44 performs an accumulation operation for accumulating signal charges and a read operation for reading the accumulated signal charges within an acquisition period of one frame.
  • the laser diode LD1 is turned on in accordance with the accumulation timing, white light composed of the narrowband light N1 and fluorescence FL is irradiated as illumination light to the observation site, and the reflected light is incident on the image sensor 44. .
  • the white light is color-separated by a micro color filter
  • the B pixel receives reflected light corresponding to the narrowband light N1
  • the G pixel in the fluorescent FL receives reflected light corresponding to the R component.
  • the image sensor 44 sequentially outputs the image signals B, G, and R for one frame in which the pixel values of the B, G, and R pixels are mixed according to the frame rate in accordance with the readout timing. Such an imaging operation is repeated while the normal observation mode is set.
  • the second light source module 32 is turned on in addition to the first light source module 31 in accordance with the accumulation timing.
  • the observation site is irradiated with white light (N1 + FL) composed of the narrowband light N1 and the fluorescence FL as illumination light.
  • the narrowband light N2 is added to the white light (N1 + FL), and these are irradiated to the observation site as illumination light.
  • the illumination light obtained by adding the narrow-band light N2 to the white light is split by the B, G, and R micro color filters of the image sensor 44 as in the normal observation mode.
  • the B pixel receives the narrowband light N2 in addition to the narrowband light N1.
  • the G pixel receives the G component of the fluorescence FL.
  • the R pixel receives the R component of the fluorescence FL.
  • the image sensor 44 sequentially outputs the image signals B, G, and R according to the frame rate in accordance with the readout timing. Such an imaging operation is repeated while the blood vessel enhancement observation mode is set.
  • the first light source module 31 in the oxygen saturation observation mode, is turned on in accordance with the accumulation timing.
  • white light N1 + FL
  • the first light source module 31 is turned off, and the third light source module 33 is turned on instead, and the narrow-band light N3 is irradiated onto the observation site.
  • the image sensor 44 sequentially outputs the image signals B, G, and R according to the frame rate in accordance with the readout timing.
  • the oxygen saturation observation mode unlike the normal observation mode and the blood vessel enhancement observation mode, white light (N1 + FL) and narrowband light N3 are alternately irradiated, so that the image signal B corresponding to white light in the first frame is used. , G, R are output, and in the next frame, the image signals B, G, R corresponding to the narrowband light N3 are output, and the image signals B, G, R are carried corresponding to each illumination light.
  • the information to be changed also changes every other frame. Such an imaging operation is repeated while the oxygen saturation mode is set.
  • the AFE 45 includes a correlated double sampling circuit (CDS), an automatic gain control circuit (AGC), and an analog / digital converter (A / D) (all not shown).
  • the CDS performs a correlated double sampling process on the analog image signal from the image sensor 44, and removes noise caused by resetting the signal charge.
  • AGC amplifies an image signal from which noise has been removed by CDS.
  • the A / D converts the image signal amplified by AGC into a digital image signal having a gradation value corresponding to a predetermined number of bits and inputs the digital image signal to the processor device 12.
  • the imaging control unit 46 is connected to the controller 56 in the processor device 12 and inputs a drive signal to the imaging device 44 in synchronization with the base clock signal input from the controller 56.
  • the imaging element 44 outputs an image signal to the AFE 45 at a predetermined frame rate based on the drive signal from the imaging control unit 46.
  • the processor device 12 includes a DSP (Digital Signal Processor) 57, an image processing unit 58, a frame memory 59, and a display control circuit 60 in addition to the controller 56.
  • the controller 56 includes a CPU, a ROM for storing control programs and setting data necessary for control, a RAM (Random Access Memory) that loads a program and functions as a working memory, and the CPU executes the control program. Each part of the processor unit 12 is controlled.
  • the DSP 57 acquires an image signal output from the image sensor 44.
  • the DSP 57 separates an image signal in which signals corresponding to B, G, and R pixels are mixed into B, G, and R image signals, and performs pixel interpolation processing on the image signals of the respective colors.
  • the DSP 57 performs signal processing such as gamma correction and white balance correction on each of the B, G, and R image signals.
  • the frame memory 59 stores image data output from the DSP 57 and processed data processed by the image processing unit 58.
  • the display control circuit 60 reads the image processed image data from the frame memory 59, converts it into a video signal such as a composite signal or a component signal, and outputs it to the monitor 14.
  • the image processing unit 58 displays the display image for normal observation based on the image signals B, G, and R separated into B, G, and R colors by the DSP 57. Is generated.
  • the display image is output to the monitor 14 as an observation image.
  • the image processing unit 58 updates the display image every time the image signals B, G, and R in the frame memory 59 are updated.
  • the image processing unit 58 in the blood vessel enhancement observation mode, the image processing unit 58 generates a display image for blood vessel enhancement observation based on the image signals B, G, and R.
  • the image signal B in the blood vessel enhancement observation mode includes information on the narrow band light N2 in addition to the B component of white light (including a part of the narrow band light N1 and the fluorescence FL). It is drawn with high contrast.
  • lesions such as cancer, there is a tendency to increase the density of superficial blood vessels compared to normal tissues, so there is a feature in the blood vessel pattern, so in blood vessel enhancement observation for the purpose of tumor discrimination, It is preferable that the superficial blood vessel is clearly depicted.
  • the superficial blood vessel region is extracted based on the image signal B, and the extracted region is subjected to contour emphasis processing or the like. Then, the image signal B that has undergone the contour enhancement processing is combined with a full-color image generated from the image signals B, G, and R. By doing so, the superficial blood vessels are more emphasized. The same processing may be performed on the middle- and deep-layer blood vessels in addition to the surface blood vessels.
  • the region of the middle-and-deep blood vessel is extracted from the image signal G that includes a lot of information about the middle-and-deep blood vessel, and contour enhancement processing is performed on the extracted region.
  • the completed image signal G is combined with a full-color image generated from the image signals B, G, and R.
  • the display image for blood vessel enhancement observation is generated based on the three color image signals B, G, and R in the same way as for normal observation, so that the observation site can be displayed in full color.
  • the image signal B in the mode has a higher blue density than the image signal B in the normal observation mode. For this reason, when a display image for blood vessel enhancement observation is generated, color correction may be performed so as to obtain a color similar to that of the normal observation display image.
  • the image processing unit 58 generates a display image for blood vessel enhancement observation every time the image signals B, G, and R in the frame memory 59 are updated.
  • the image signal B is generated using only two colors of the image signals B and G without using the image signal R, and the image signal B is generated by the B channel and the G channel of the monitor 14.
  • a method of displaying the observation region in a pseudo color such as a method of assigning a signal corresponding to the image signal G to the R channel of the monitor 14, may be employed.
  • the image processing unit 58 uses the image signals G1 and R1 acquired under white light and the image signal acquired under narrowband light N3. Based on B2, oxygen saturation calculation processing is performed.
  • the pixel value of the image signal B2 includes blood volume (concentration) information in addition to oxygen saturation. In order to obtain the oxygen saturation more accurately, it is necessary to separate blood volume information from the pixel value of the image signal B2.
  • the image processing unit 58 performs an inter-image calculation with the image signal B using the image signal R showing a high correlation with the blood volume, and separates oxygen saturation and blood volume information.
  • the image processing unit 58 collates pixel values at the same position of the image signals B2, G1, and R1, and calculates a signal ratio B / G between the pixel value of the image signal B2 and the pixel value of the image signal G1.
  • the signal ratio R / G between the pixel value of the image signal R1 and the pixel value of the image signal G1 is obtained.
  • the image signal G1 is used as a reference signal representing the brightness level of the observation region in order to normalize the pixel values of the image signal B2 and the image signal R1.
  • the oxygen saturation that is obtained by separating the blood volume information is calculated.
  • the full color image generated based on the image signals B1, G1, and R1 is subjected to color conversion in accordance with the calculated oxygen saturation value to generate a display image for oxygen saturation observation.
  • the branched light guide 41 provided in the light source device 13 is a fiber bundle in which a plurality of optical fibers are bundled in the same manner as the light guide 43 of the endoscope 11.
  • the branched light guide 41 has all the optical fibers bundled together at the exit end 41e, and divides all the optical fibers into four on the way to the incident end, A plurality of branch portions 41a to 41d are formed by bundling.
  • the thicknesses of the branch portions 41a and 41b and the branch portions 41c and 41d are changed by changing the number of bundled optical fibers, and the diameters thereof are D1 and D2.
  • the diameter D1 of the branch portions 41a and 41b is thicker than the diameter D2 of the branch portions 41c and 41d.
  • One reason for the difference in thickness is that the first light source module 31 that faces the branch portions 41a and 41b uses the phosphor 36, and therefore the second light source module 32 that does not use the phosphor 36. This is because the diameter of the emitted beam is larger than that of. Another reason is that the first light source module 31 emits white light for normal observation, so that a larger amount of light than the second light source modules 32 and 33 for special light observation is secured.
  • the diameter of the light guide 43 of the endoscope 11 is about 2 mm
  • the diameter of the exit end 41 e of the branched light guide 41 is about 2 mm accordingly.
  • the diameter D1 of the branch portions 41a and 41b is about 1.0 to 1.4 mm
  • the diameter D2 of the branch portions 41c and 41d is about 0.5 to 0.8 mm.
  • a homogenizer 50 is provided at the exit end 41e of the branched light guide 41.
  • the homogenizer 50 equalizes the light quantity distribution of the light of each color emitted from the first to third light source modules 31 to 33 and emitted from the emission end 41e in the front stage of the light guide 43 of the endoscope 11.
  • the homogenizer 50 is formed of a transparent material such as transparent glass and is a columnar body having a circular cross section perpendicular to the optical axis, and totally reflects light incident from the incident end 50a on the inner side surface 50b serving as an interface with air. Then, it propagates in the optical axis direction and exits from the exit end 50c.
  • an optical fiber having one end located in each of the regions a to d partitioned by a two-dot chain line at the emission end 41e is allocated to each of the branch portions 41a to 41d.
  • Each of the optical fibers corresponding to the branch portions 41a to 41d is unevenly distributed at the exit end 41e. The light incident from the branch portions 41a to 41d is propagated in each optical fiber, and naturally there is no propagation between the optical fibers.
  • the emission end 41e white light emitted from the first light source module 31 is emitted from the upper left and upper right areas a and b, and the narrowband light N2 emitted from the second light source module 32 is emitted from the area c, and the area d
  • the light of each color is unevenly distributed such that the narrow band light N3 emitted from the third light source module 33 is emitted. Therefore, the light quantity distribution of each color becomes non-uniform in the cross section of the beam emitted from the emission end 41e.
  • the homogenizer 50 propagates light in the direction of the optical axis while totally reflecting light incident from the end surface of the incident end 50a on the side surface 50b. Therefore, the incident position of light in the cross section orthogonal to the optical axis. And the emission position changes. By such an action, the uneven distribution of the light of each color at the emission end 41e of the branched light guide 41 is eliminated, and the light quantity distribution of the light of each color is made uniform in the cross section of the incident beam incident on the light guide 43.
  • the homogenizer 50 and the emission end 41e are integrated by heat-sealing with the end faces abutting each other.
  • the first light source module 31 includes a laser module 61, a fluorescent part 62, a single-line optical fiber 63 that guides the light of the laser module 61 to the fluorescent part 62, and a fluorescent part 62.
  • tip of this is provided.
  • the laser module 61 includes a light emitting element portion 66 having a laser diode LD1 and a case 67 that accommodates the light emitting element portion 66.
  • the case 67 is provided with a connection portion 67a that connects one end of the optical fiber 63. This is a so-called receptacle type module in which a condensing lens 68 is built in a case 67.
  • the light emitting element portion 66 is obtained by mounting a laser diode LD1 as a light emitting element on one surface of a disk-shaped stem 66a serving as a support, and covering the laser diode LD1 with a resin-made cylindrical transparent cap 66b. .
  • a lead wire 66c extends from the back surface of the stem 66a.
  • the laser diode LD1 is formed by joining a P layer made of a P-type semiconductor and an N layer made of an N-type semiconductor with an active layer interposed therebetween, and emits laser light from the active layer by laser oscillation.
  • Laser light is highly divergent, but is divergent light whose beam shape spreads from the light emitting point in a substantially conical shape.
  • the cross-sectional shape orthogonal to the optical axis of the beam is substantially elliptical.
  • the laser light is condensed at the incident end of the optical fiber 63 by the condenser lens 68.
  • the outgoing end of the optical fiber 63 is connected to the fluorescent part 62.
  • the fluorescent part 62 is obtained by filling a fluorescent material 36 in a cylindrical protective case 62a having a light shielding property.
  • An insertion hole into which the optical fiber 63 is inserted is formed at the center of the phosphor 36.
  • the optical fiber 63 is inserted into the phosphor 36 with a connection ferrule (not shown) attached to its end.
  • the phosphor 36 is obtained by dispersing and solidifying a powdery fluorescent material in a binder made of a resin material. Since the fluorescent material is dispersed, the emission point of the excited fluorescence FL is the entire emission end face of the phosphor 36. Further, since the laser light transmitted through the phosphor 36 is also diffused in the phosphor 36 by the light diffusing action of the binder, the entire area of the emission end face becomes a light emitting point.
  • the light emitted from the phosphor 36 is a diverging light that spreads in a substantially conical shape from the light emitting point.
  • the area of the light emitting point and the beam divergence angle are large.
  • a divergence angle correction unit 64 that corrects the divergence angle of light emitted from the emission end surface 36a of the phosphor 36 is provided in front of the fluorescent unit 62.
  • the divergence angle correction unit 64 has a cylindrical shape whose diameter increases toward the tip, and is formed of a light shielding material.
  • the divergence angle correction unit 64 reduces the divergence angle by regulating the spread of the divergent light emitted from the phosphor 36.
  • the divergence angle correction unit 64 has a mirror surface formed by coating the inner wall surface 64a with a reflective material, and the inner wall surface 64a functions as a reflector. Therefore, the light propagates in the optical axis direction while being specularly reflected by the inner wall surface 64a. Since the light absorption is reduced by making the inner wall surface 64a a mirror surface, there is little light transmission loss.
  • the divergence angle correction unit 64 is set with an inclination angle with respect to the diameter and the optical axis in consideration of the diameter D1 of the branch portions 41a and 41b.
  • the diameter and the tilt angle are changed from the first light source module 31 to the branch portions 41a and 41b. Is set so that the spot diameter of the beam incident on the beam substantially coincides with the diameter D1 of the branch portions 41a and 41b.
  • the divergence angle is set according to the NA (numerical aperture: Numerical Aperture) of an optical fiber that is a strand of a fiber bundle such as the branched light guide 41 or the light guide 43 of the endoscope 11.
  • NA number of aperture: Numerical Aperture
  • an optical fiber is composed of a core having a high refractive index and a clad having a low refractive index disposed around the core.
  • the incident light incident from the incident end of the optical fiber is a boundary between the core and the clad. And propagates in the optical axis direction while totally reflecting. In order to propagate the light, it is necessary to make the light incident on the incident end of the optical fiber at an incident angle that satisfies the total reflection condition.
  • the cross-sectional shape orthogonal to the optical axis is substantially elliptical.
  • the light beam contained in the laser light is diffused in the phosphor 36, it is emitted in almost all directions from almost the entire emission end face of the phosphor 36.
  • the cross-sectional shape of the divergence angle correction unit 64 is substantially true circle, the cross-sectional shape of the beam BM (see FIG. 54) of the laser light emitted from the phosphor 36 is made substantially circular by the divergence angle correction unit 64. It is shaped.
  • the fluorescence excited by the laser light is shaped into a substantially perfect circle by the action of the divergence angle correction unit 64. Therefore, the first light source module 31 emits mixed light in which laser light (narrow band light N1) and fluorescence (FL) are mixed, and the mixed light is emitted as a beam having a substantially circular cross section. Is done.
  • the second light source module 32 includes a light emitting element unit 71, a divergence angle correction unit 72, and a beam shaping unit 73.
  • the light emitting element unit 71 includes a laser diode LD2, and the form thereof is the same as that of the light emitting element unit 66 of the first light source module 31.
  • the divergence angle correction unit 72 and the beam shaping unit 73 are both light guide rods that are columnar bodies made of a transparent material such as quartz, and are also called light pipes, light tunnels, and the like.
  • the light emitting element unit 71 is disposed to face the end surface (incident surface) of the incident end 73 a of the beam shaping unit 73, the end surface (exit surface) of the emission end 73 c of the beam shaping unit 73, and the incident angle of the divergence angle correcting unit 72.
  • the end surfaces of the ends 72a are arranged to face each other.
  • the divergence angle correction unit 72 for example, the end surface of the incident end 72 a and the end surface of the output end 73 c of the beam shaping unit 73 are thermally fused, and the end surface of the incident end 73 a of the beam shaping unit 73 is the tip of the light emitting element unit 71. It is heat-sealed with the end face.
  • the three components of the divergence angle correction part 72, the beam shaping part 73, and the light emitting element part 71 are integrated. Since they are integrated by heat fusion, there is less interface with air in the optical path as compared to the case where each part is not integrated and air is interposed between each part. Therefore, there is little Fresnel loss due to the boundary surface, and light transmission loss can be reduced.
  • the divergence angle correction unit 72 and the beam shaping unit 73 are similar to the homogenizer 50, and light incident from the incident surface is formed on the inner surface (reflection side surface) of the side surface serving as a boundary surface with air. It is an optical element that propagates in the direction of the optical axis while being totally reflected and exits from the exit surface.
  • the divergence angle correction unit 72 has a tapered shape in which the diameter of the emission end 72c is smaller than that of the incident end 72a, and the side surface 72b has a tapered shape inclined with respect to the optical axis. Therefore, when the reflected light is repeatedly reflected on the side surface 72b so that the incident light has a second reflection angle ⁇ 2 smaller than the first reflection angle ⁇ 1, the reflection angle ⁇ gradually decreases. A decrease in the reflection angle ⁇ means that the divergence angle increases. Due to the action of the divergence angle correction unit 72, when the divergence angle of the light emitted from the laser diode LD2 is ⁇ 1, the divergence angle at the emission end 72c of the divergence angle correction unit 72 is expanded to ⁇ 2.
  • the correction amount of the divergence angle correction unit 72 is set so that the divergence angle ⁇ 2 substantially coincides with the divergence angle ⁇ (see FIG. 14) emitted from the first light source module 31.
  • the divergence angle is also preserved in the light guiding process by the homogenizer 50 or the light guide 43 of the endoscope 11. Therefore, as shown in FIG. 17, the light divergence angle ⁇ of the first light source module 31 and the light divergence angle ⁇ ( By matching ⁇ 2) in FIG. 16, the light irradiation spot diameter SD ⁇ of the first light source module 31 and the light irradiation spot diameter SD ⁇ of the second light source module 32 in the observation region SB can be made the same.
  • the irradiation spot diameters SD ⁇ and SD ⁇ do not match, unevenness occurs in the way they overlap, causing color unevenness.
  • the divergence angle correction unit 72 By causing the divergence angle correction unit 72 to match the divergence angle ⁇ with the divergence angle ⁇ , the irradiation spot diameters SD ⁇ and SD ⁇ can be made to match, so that the color unevenness is prevented.
  • a beam shaping unit 73 is a columnar body having a longitudinal axis extending in the longitudinal direction from the end face (incident surface) of the incident end 73a toward the end face (exiting surface) of the exit end 73c and parallel to the optical axis.
  • the cross-sectional shape orthogonal to the longitudinal axis is a hexagonal prism having a hexagonal shape. Since the side surface portion 73b is formed along the longitudinal direction and the cross-sectional shape is a hexagonal column, the side surface portion 73b is naturally composed of six planes.
  • the beam emitted from the laser diode LD2 enters the incident end 73a of the beam shaping unit 73.
  • the inner surface of the side surface portion 73b becomes a boundary surface with air. Therefore, the inner surface of the side surface portion 73b becomes a reflective side surface in which the light incident on the inner surface of the side surface portion 73b at an angle satisfying the total reflection condition among the beams incident in the beam shaping portion 73 is totally reflected.
  • the beam shaping unit 73 guides the beam incident on the incident end 73a in the optical axis direction while totally reflecting the inner surface of the side surface portion 73b.
  • the beam emitted from the laser diode LD2 has a substantially elliptical cross-sectional shape orthogonal to the optical axis as in the laser diode LD1 (see FIG. 54).
  • the beam shaping unit 73 shapes the substantially elliptical cross-sectional shape of the beam into a substantially perfect circle during light guide, and emits the shaped beam from the emission end 73c.
  • the beam shaping unit 73 is connected to the light emitting element unit 71 so that the optical axis A passing through the center of the hexagon and the light emission center OP of the incident beam BMin incident from the laser diode LD2 substantially coincide with each other.
  • the relative position is positioned.
  • the incident beam BMin is incident on the beam shaping unit 73 in a vertically long state in which the long axis LA is positioned in the vertical direction (Y direction) and the short axis SA is positioned in the horizontal direction (X direction).
  • Light rays included in the incident beam BMin spread radially from the emission center OP.
  • the intensity distribution of the incident beam BMin having a substantially elliptical cross section has anisotropy, and the major axis LA direction indicated by the solid line and the minor axis SA direction indicated by the dotted line.
  • the intensity distribution is different.
  • the graph of the intensity distribution is a graph in which the vertical axis represents the radiation intensity and the horizontal axis represents the angle (radiation angle) of the measurement position at which the radiation intensity is measured.
  • the intensity distribution is a distribution in which the radiation intensity at each radiation angle is measured while rotating the measurement unit around the laser diode, and the measured radiation intensity is plotted.
  • a position where the optical axis (emission center) of the measurement unit and the laser diode coincide is set as a measurement position with a radiation angle of 0 °, and the measurement unit is rotated in the positive direction and the negative direction based on the position.
  • the radiation intensity at the measurement position (radiation angle) is measured.
  • the radiation intensity becomes maximum at the measurement position where the radiation angle is 0 °, and the intensity distribution is a mountain-shaped distribution that decreases toward the periphery (as the radiation angle increases).
  • the divergence angle ⁇ of the laser diode is expressed in half-width (half width at half maximum, HWHM), which is 1/2 of the full width when the half value is shown with respect to the peak value (max) of the radiation intensity in the graph. Is done.
  • the divergence angle ⁇ yin in the major axis LA direction is wide, and the divergence angle ⁇ xin in the minor axis SA direction is narrowed.
  • the divergence angle ⁇ yin in the major axis LA direction is about 11 ° to 14 °
  • the divergence angle ⁇ xin in the minor axis SA direction is about 5 ° to 7 °, which is half of the divergence angle.
  • the beam shaping unit 73 is arranged in a posture inclined by an angle ⁇ L around the optical axis A with respect to the long axis LA and the short axis SA.
  • the angle ⁇ L connects two opposing vertices, an axis passing through the optical axis A is A1, a midpoint between two opposing sides S orthogonal to the axis A1
  • the axis A1 and the axis A2 are angles formed between the major axis LA and the minor axis SA, where A2 is an axis passing through the optical axis A.
  • the angle ⁇ L is 15 ° in this example.
  • both the long axis LA and the short axis SA of the incident beam BMin are not orthogonal to the hexagonal sides S constituting the inner surface of the side surface portion 73b of the beam shaping unit 73. It becomes.
  • the long axis LA and the short axis SA and the inner surface (reflection side surface) of the side surface portion 73b cross each other at an angle other than vertical.
  • both the long axis component and the short axis component parallel to the major axis LA and the minor axis SA are incident on each side S at an angle other than perpendicular. become.
  • the trajectory of the light ray when incident on each side S at an angle other than perpendicular is as follows.
  • the short axis component RS is incident on the incident end 73a of the beam shaping unit 73 from the light emission center OP. Since the emission center OP and the optical axis A coincide with each other, the short axis component RS has a short axis SA with the optical axis A as a base point in a cross section orthogonal to the optical axis A (Z direction) through which the beam shaping unit 73 passes. Is emitted in the X direction parallel to the. And it injects into the one side S of the hexagon which comprises the inner surface of the side part 73b.
  • the short axis component RS is totally reflected.
  • the minor axis component RS due to the inclination of the beam shaping unit 73 by the angle ⁇ L, the minor axis component RS has an angle other than perpendicular to the side S, that is, an incident angle of the angle ⁇ L with respect to the normal H of the side S. Therefore, the light is reflected at the reflection point P1 at the reflection angle ⁇ L. This means that a twist occurs around the optical axis A with respect to the short-axis component RS due to reflection at the reflection point P1.
  • the short axis component RS reflected at the reflection point P1 is incident on another side S, and this is the second reflection point P2. Due to the reflection at the reflection point P1, the short axis component RS is twisted around the optical axis A, so that the reflection point P2 also enters the side S at an angle other than perpendicular. And it reflects with the reflection angle of 0 degree or more with respect to the normal line of the edge
  • the short axis component RS repeats torsion around the optical axis A at each of the reflection points P1 to P3. Therefore, the short axis component RS travels in the direction of the optical axis A as if turning around the optical axis A in the beam shaping unit 73, as indicated by a two-dot chain arc-shaped arrow shown in FIG. Become.
  • the minor axis component RS is emitted in a direction different from the radiation direction at the time of incidence.
  • the radiation direction of the short axis component RS parallel to the X direction at the time of incidence is Is a component orthogonal to the Y direction.
  • the beam shaping unit 73 has a constant thickness from the entrance end 73a to the exit end 73c, and the side surface portion 73b is parallel to the optical axis. is there.
  • the long axis component RL is radiated in the Y direction with the optical axis A as a base point in a cross section orthogonal to the optical axis A.
  • the major axis component RL is an angle other than perpendicular to the side S, that is, the angle of the side S due to the inclination of the beam shaping unit 73 at the angle ⁇ L at the first reflection point P1 after entering the beam shaping unit 73. Incident with an incident angle of ⁇ L with respect to the normal H. Therefore, the long axis component RL is twisted around the optical axis A due to reflection at the reflection point P1, as with the short axis component RS.
  • the long axis component RL repeats torsion around the optical axis A every time it is reflected at the reflection points P2 and P3. As shown in the arc of the two-dot chain line shown in FIG. It advances while turning around the optical axis A. For this reason, the long-axis component RL also emits in a direction different from the radiation direction at the time of incidence, since the radiation direction of the long-axis component RL changes during light guide in the beam shaping unit 73, as with the short-axis component RS.
  • the long-axis component RL whose radiation direction at the time of incidence is parallel to the Y direction is Is a component parallel to the X direction.
  • the divergence angle ⁇ y at the time of incidence is preserved even during light guiding in the plane parallel to the optical axis, as in the short axis component RS.
  • the light is emitted with the divergence angle ⁇ y maintained.
  • the short axis component RS and the long axis component RL of the light rays included in the incident beam BMin have been described. However, the same applies to many of the intermediate components between the short axis component RS and the long axis component RL. Twist around the optical axis A occurs.
  • the light ray R1 shown in FIG. 24 is an intermediate component in which the radiation direction of the incident beam BMin is between the short-axis component RS and the long-axis component RL.
  • the light ray R1 is incident at an angle other than perpendicular to the side S. Therefore, the reflection at the reflection points P1 to P3 causes twisting around the optical axis A to be emitted. The direction changes.
  • the radiation direction of the light ray R1 is different from the short axis component RS and the long axis component RL
  • the incident angle with respect to the side S at the first reflection point P1 is different from the short axis component RS and the long axis component RL. Therefore, the magnitude of the twist angle around the optical axis A of the light ray R1 and the direction of twist (the direction in which the light ray R1 turns around the optical axis A as indicated by the arc-shaped arrow) are different.
  • the intermediate components there is a light ray that is perpendicular to the side S (parallel to the normal line of the side S), such as a light ray R2 shown in FIG.
  • the incident angle of the light ray R2 with respect to the normal of the side S is 0 °
  • the reflection angle at the reflection point P1 is also 0 °.
  • the base point of the light ray R2 is the optical axis A (light emission center OP)
  • the reflection angle is 0 °
  • the locus after reflection at the reflection point P1 of the light ray R2 is the same as the incident locus to the reflection point P1. It becomes. Therefore, the light ray R2 only repeats reflection between the first incident side S and the opposite side S, and no twist about the optical axis A occurs.
  • the light beam included in the incident beam BMin includes a light beam that does not twist around the optical axis A like the light beam R2 in the beam shaping unit 73.
  • the short-axis component RS and the long-axis component RL are included. Since most of the light rays including the incident light are incident on the side S at an angle other than perpendicular, the light rays are twisted around the optical axis A.
  • size of a twist angle is various. This means that the radiation direction of each light beam included in the incident beam BMin is dispersed in a cross section orthogonal to the optical axis A by internal reflection in the beam shaping unit 73.
  • the incident beam BMin having a substantially elliptical cross-section at the time of incidence is the circular shape of the outgoing beam BMout at the time of emission emitted from the emission end 73c. Will be shaped.
  • FIG. 27 is a graph obtained by measuring the intensity distribution of the outgoing beam BMout under the same conditions as in FIG. As shown in FIG. 19, in the incident beam BMin, there is a difference between the two such that the divergence angle ⁇ xin in the X direction is narrow and the divergence angle ⁇ yin in the Y direction is wide. As a result of the action 73, the divergence angle ⁇ xout in the X direction is widened, while the divergence angle ⁇ yout in the Y direction is narrowed, so that both substantially coincide as shown in FIG. Thereby, it can be seen that the cross-sectional shape of the outgoing beam BMout is shaped into a substantially perfect circle.
  • the divergence angle ⁇ yin in the Y direction is about 11 ° to 14 °
  • the divergence angle ⁇ xin in the X direction is about 5 ° to 7 °.
  • the graph shown in FIG. 28 shows the intensity distribution of the beam after the outgoing beam BMout further enters the divergence angle correction unit 72 shown in FIG. 16 and exits from the divergence angle correction unit 72.
  • the divergence angle ⁇ out of the outgoing beam BMout is expanded by the divergence angle correction unit 72.
  • the correction amount of the divergence angle is determined by the size of the tilt angle with respect to the optical axis of the side surface 72b of the divergence angle correction unit 72 and the length of the side surface 72b defining the number of reflections in the optical axis direction.
  • the divergence angle ⁇ is expanded from about 10 ° to about 20 °, which is almost doubled.
  • the third light source module 33 is provided with a light emitting element part 76 (see FIG. 10) having a laser diode LD3 (see FIG. 3) instead of the light emitting element part 71 of the second light source module 32,
  • the second light source module 32 has the same configuration.
  • the endoscope 11 When performing an endoscopic diagnosis, the endoscope 11 is connected to the processor device 12 and the light source device 13, the processor device 12 and the light source device 13 are turned on, and the endoscope system 10 is activated.
  • the insertion part 16 of the endoscope 11 is inserted into the subject's digestive tract, and observation in the digestive tract is started.
  • the first light source module 31 is turned on, and the white light in which the narrow band light N1 emitted from the laser diode LD1 and the fluorescence FL emitted from the phosphor 36 are mixed is observed. Is irradiated.
  • the cross-sectional shape orthogonal to the optical axis of the narrow-band light N1 emitted from the laser diode LD1 has a substantially elliptical shape, but is shaped into a substantially perfect circle by being diffused in the phosphor 36. Since the fluorescence is emitted from the phosphor 36 having a circular cross section, the cross section of the beam is also substantially circular. Therefore, as shown in FIG. 29, a substantially circular white light (mixed light) beam BM is emitted from the phosphor 36 and is incident on the branch portions 41 a and 41 b of the branch light guide 41. The white light is guided to the exit end 41e of the branched light guide 41 and enters the homogenizer 50 (see FIG. 10).
  • the white light guided from the branch portions 41a and 41b is unevenly distributed on the end face of the emission end 41e.
  • the light quantity distribution is uniform by the action of the homogenizer 50. It becomes.
  • white light having no unevenness in the amount of light in the cross section of the beam enters the light guide 43 of the endoscope 11.
  • White light is irradiated from the illumination window 22 to the observation site in the digestive tract through the light guide 43.
  • the observation site is imaged by the imaging device 44 during the irradiation with white light (N1 + FL), and B, G, and R image signals are generated by the DSP 57.
  • the image processing unit 58 In the normal observation mode, the image processing unit 58 generates a display image for normal observation based on the B, G, and R image signals.
  • the display control circuit 60 converts the display image for normal observation into a video signal and displays it on the monitor 14. Such processing is repeated in the normal observation mode.
  • a mode switching operation is performed by the console 15, and the processor device 12 is set to the blood vessel enhancement observation mode.
  • the second light source module 32 is turned on, and white light (N1 + FL) and narrowband light N2 are irradiated to the observation site.
  • the beam BM of the narrowband light N2 emitted from the laser diode LD2 is incident on the incident end 73a of the beam shaping unit 73, and in the optical axis A direction by internal reflection in the beam shaping unit 73. Light is guided.
  • the divergence angles ⁇ xin and ⁇ yin of the incident beam BMin do not coincide with each other, and the cross-sectional shape is substantially elliptical.
  • the incident beam BMin causes most of the light beams including the short axis component RS and the long axis component RL to pass through the optical axis A due to internal reflection in the beam shaping unit 73, as shown in FIGS. Twist around. Therefore, the radiation direction of each light beam included in the incident beam BMin changes during light guide and is dispersed at the time of emission.
  • the outgoing beam BMout is shaped into a substantially perfect circle having the same divergence angles ⁇ xout and ⁇ yout, and is emitted from the beam shaping unit 73.
  • the shaped beam BM enters the incident end 72a of the divergence angle correction unit 72 from the beam shaping unit 73, and the divergence angle ⁇ is widened by the action of the divergence angle correction unit 72 shown in FIG. As a result, the divergence angle ⁇ of the beam BM is expanded from the divergence angle ⁇ shown in FIG. 27 to the divergence angle ⁇ shown in FIG.
  • the beam BM of the narrow band light N2 emitted from the laser diode LD2 is shaped into a substantially perfect circle by the beam shaping unit 73, and after the divergence angle ⁇ is widened by the divergence angle correction unit 72, FIG. As shown, the light enters the incident end 41 c of the branched light guide 41. Similar to the white light beam BM emitted from the first light source module 31, the narrow band light N2 beam BM is shaped into a substantially circular cross section, and the divergence angle ⁇ is also equal to the divergence angle of the white light beam BM. Correction is made so that they are almost the same.
  • the white light and the narrowband light N2 enter the branch portions 41a, 41b, and 41c of the branch light guide 41, are guided to the output end 41e, and enter the homogenizer 50, respectively.
  • the white light and the narrow-band light N2 are supplied to the light guide 43 of the endoscope 11 after the light quantity distribution is made uniform by the homogenizer 50.
  • the white light and the narrow band light N2 are irradiated from the illumination window 22 to the observation site in the digestive tract through the light guide 43.
  • the observation site is imaged by the imaging device 44 during irradiation with white light (N1 + FL) and narrowband light N2, and B, G, and R image signals are generated by the DSP 57.
  • the image processing unit 58 In the blood vessel enhancement observation mode, as in the normal observation mode, the image processing unit 58 generates a display image for blood vessel enhancement observation based on the B, G, and R image signals.
  • the display control circuit 60 converts a display image for blood vessel enhancement observation into a video signal and displays it on the monitor 14. Such processing is repeated in the blood vessel enhancement observation mode.
  • the image signal B includes a signal corresponding to the narrowband light N2 in addition to the B component of white light, so that the superficial blood vessels are depicted with high contrast in the observation image.
  • the white light and the narrowband light N2 emitted from the first and second light source modules 31 and 32 are used, and the light source modules 31 and 32 are respectively divergence angles by the divergence angle correction units 64 and 72. Are corrected so as to substantially match. Therefore, as shown in FIG. 17, the sizes of the irradiation spots of the white light beam and the narrow-band light N2 that are irradiated on the observation region SB substantially coincide with each other. Further, since the second light source module 32 shapes the cross-sectional shape of the beam into a substantially perfect circle shape by the beam shaping unit 73, the irradiation spot shape of the narrow band light N2 is the irradiation spot of the white light emitted from the first light source module 31. Since the shape is the same, an observation image without color unevenness can be obtained.
  • the first light source module 31 and the third light source module 33 are alternately turned on every frame, and white light (N1 + FL) and narrowband light N3 are alternately turned on. Irradiated to the observation site.
  • the corrected white light and narrowband light N3 enter the branch portions 41a, 41b, and 41d of the branch light guide 41 at each irradiation timing, are guided to the exit end 41e, and enter the homogenizer 50.
  • the white light and the narrowband light N3 are supplied to the light guide 43 of the endoscope 11 after the light amount distribution is uniformized by the homogenizer 50.
  • the white light and the narrow band light N3 are sequentially irradiated from the illumination window 22 to the observation site in the digestive tract through the light guide 43.
  • the image sensor 44 sequentially outputs image signals corresponding to white light (N1 + FL) and narrowband light N3 to the DSP 57.
  • the DSP 57 generates an image signal of each color of B1, G1, and R1 based on the image signal acquired under the white light, and generates an image signal of B2 based on the image signal acquired under the narrowband light N3. Is generated.
  • the image processing unit 58 calculates the oxygen saturation with the blood volume information separated by performing an inter-image calculation of the image signals B2, G1, and R1. Then, the full color image generated based on the image signals B1, G1, and R1 is subjected to color conversion in accordance with the calculated oxygen saturation value to generate a display image for oxygen saturation observation.
  • the first and third light source modules 31 and 33 are used.
  • the third light source module 33 shapes the cross-sectional shape of the beam BM of the narrowband light N3 into a substantially true circle by the beam shaping unit 73, and widens the divergence angle by the divergence angle correction unit 72. .
  • the white light and the narrow-band light N3 emitted from the light source modules 31 and 33 have the same irradiation spot size and irradiation spot shape, so that no color unevenness occurs in the observation image.
  • the image signals corresponding to the white light and the narrowband light N3 are acquired in the frame order, but the inter-image calculation is performed based on the respective image signals. Therefore, by eliminating the color unevenness between the white light and the narrow-band light N3, the reliability of the inter-image calculation is also improved.
  • the beam shaping is performed by the beam shaping unit 73 formed of the light guide rod, a combination of two lenses of a coupling lens and a condenser lens having two cylindrical surfaces.
  • Patent Document 2 that performs beam shaping by combining two lenses, such as a combination of cylindrical lenses, the number of interfaces with air is reduced, so Fresnel loss is reduced and light transmission efficiency is reduced. Can be reduced.
  • high accuracy is required for alignment accuracy such as optical axis alignment.
  • the accuracy is not as high as that of a lens, so that the assemblability is good.
  • there is an advantage that the number of parts is small as compared with the case of using two lenses.
  • the angle ⁇ L of the hexagonal axis A1 and the axis A2 is inclined by 15 ° with respect to the X direction and the Y direction.
  • the angle ⁇ L does not have to be 15 °, and may be any angle in the range of 0 ° to 60 °.
  • the short axis component RS and the axis A2 of the light beam included in the incident beam BMin coincide with the long axis component RL and the axis A1.
  • the reflection angle at the first reflection point Px1 (angle with respect to the normal of the side S) is 0. It becomes °.
  • the short-axis component RS reciprocates between two opposing reflection points Px1, and no twist about the optical axis A occurs.
  • the long axis component RL since the long axis component RL is incident on the hexagonal apex, the apex becomes the first reflection point Py1. Since the major axis component RL and the vertex intersect with each other at an angle other than vertical, they intersect with each other. Therefore, since the reflection angle is 0 ° or more at the reflection point Py1, the long axis component RL is twisted around the optical axis A. Further, the intermediate component between the short axis component RS and the long axis component RL is also twisted around the optical axis A because it is incident on the side S at an angle other than perpendicular. As a result, the light rays included in the incident beam BMin are dispersed in a cross section orthogonal to the optical axis A, so that the cross-sectional shape of the beam BM is shaped into a substantially perfect circle.
  • the long axis component RL is incident perpendicular to the side S, so that no twist occurs around the optical axis A, but the short axis component RS is hexagonal. Is the first reflection point Px1 and is incident at an angle other than perpendicular to the side S, so that twist about the optical axis A occurs.
  • the intermediate component between the short-axis component RS and the long-axis component RL is twisted around the optical axis A as in the example of FIG. Thereby, the cross-sectional shape of the beam BM is shaped into a substantially perfect circle.
  • the beam shaping effect can be obtained.
  • both the short-axis component RS and the long-axis component RL are incident on the side S at an angle other than perpendicular because the shaping effect is high.
  • the angle ⁇ L is most preferably 15 °.
  • the emission center OP of the incident beam BMin may be offset with respect to the optical axis A, which is the hexagonal center of the beam shaping unit 73.
  • the optical axis A which is the hexagonal center of the beam shaping unit 73.
  • the emission center OP is offset with respect to the optical axis A
  • the cross-sectional area of the beam shaping unit 73 has to be increased with respect to the size of the incident beam BMin as compared with the case where there is no offset.
  • the disadvantage is large, and it is preferable that the optical axis A and the light emission center OP coincide.
  • the cross-sectional shape may be a quadrangle.
  • the beam shaping unit 81 is the same as the beam shaping unit 73 in terms of material and light guiding function, except that the cross-sectional shape is different.
  • the beam shaping unit 81 is a light guide rod formed of a columnar body having an incident end 81a, an emitting end 81c, and a side surface portion 81b extending in the longitudinal direction from the incident end 81a toward the emitting end 81c.
  • the cross-sectional shape is a square.
  • a beam incident on the incident end 81a from the light emitting element portion 71 is guided in the direction of the optical axis A by total reflection on the inner surface (reflection side surface) of the side surface portion 81b, and is emitted from the emission end 81c.
  • the beam shaping unit 81 is arranged so that the optical axis A and the light emission center OP of the laser diode LD2 coincide with each other. Further, in the beam shaping unit 81, two orthogonal axes connecting two opposing vertices of the quadrangle are respectively in the X direction (the short axis direction of the incident beam BMin) and the Y direction (the long axis direction of the incident beam BMin). Are arranged to match. This is a posture in which two opposite sides of the square are rotated by 45 ° around the optical axis A with respect to the normal posture (see FIG. 36) arranged so as to be parallel to the X direction and the Y direction. is there.
  • the first reflection points Px1 and Py1 of the short-axis component RS and the long-axis component RL of the incident beam BMin become two opposing vertices of a square.
  • Each of the short-axis component RS and the long-axis component RL and the quadrangular vertex intersect with each other at an angle other than vertical, so that they intersect with each other. Therefore, the short-axis component RS and the long-axis component RL radiated from the optical axis A are incident on the reflection points Py1 and Px1, respectively, and twisting around the optical axis A occurs. This produces a beam shaping effect that makes the substantially elliptical incident beam BMin substantially circular.
  • the beam shaping unit 81 may be in a posture inclined by an angle ⁇ L around the optical axis A from the posture with reference to the posture of FIG.
  • the angle ⁇ L is 5 °, for example.
  • This posture is a posture inclined about 40 ° with respect to the normal posture (see FIG. 36).
  • the short-axis component RS and the long-axis component RL are incident on the sides S at angles other than perpendicular at the first reflection points Px1 and Py1. This produces a beam shaping effect that makes the substantially elliptical incident beam BMin substantially circular.
  • FIG. 36 which is a comparative example of the present invention
  • FIG. 36 which is a comparative example of the present invention
  • both the short axis component RS and the long axis component RL are perpendicularly incident on the side S, so that no twist around the optical axis A occurs at the reflection point. The reason is considered.
  • the short axis component RS and the long axis component RL are incident perpendicular to the side S at the first reflection points Px1 and Py1. become. Therefore, the short axis component RS and the long axis component RL are not twisted around the optical axis A. The same applies to the second and subsequent reflections. Therefore, the short axis component RS and the long axis component RL do not change in the radial direction at both the incident time and the outgoing time, and the short axis component RS is in the X direction and the long axis component RL is in the Y direction at the outgoing time. Emitted.
  • the intermediate component between the short axis component RS and the long axis component RL of the incident beam BMin is incident at an angle other than perpendicular to the side S.
  • the surrounding twist occurs.
  • the short-axis component RS and the long-axis component RL that define a substantially elliptical shape are not shaped into a substantially perfect circle because twisting around the optical axis A does not occur.
  • the beam shaping unit 81 cannot obtain a good beam shaping effect when arranged in the normal posture, but if the posture is slightly inclined from the normal posture, the short axis component RS and the long axis component RL are obtained. Both are incident at an angle other than perpendicular to the side S, so that a good beam shaping effect can be obtained.
  • the most preferable posture among them is a posture inclined by 45 ° with respect to the normal posture, as shown in FIG.
  • the emission center OP of the incident beam BMin may be offset with respect to the optical axis A that is the center of the quadrangle of the beam shaping unit 81.
  • the posture is other than the normal posture, one of the short axis component RS and the long axis component RL can be incident on the side S at an angle other than perpendicular.
  • the cross-sectional area of the beam shaping unit 73 must be increased with respect to the size of the incident beam BMin, so that the beam of one light emitting element unit 71 is guided.
  • a square is illustrated as a quadrangle, but a rectangle or a parallelogram may be used.
  • a rectangle or a parallelogram may be used.
  • a square is the easiest to create. Therefore, the square is most preferable in consideration of manufacturing aptitude.
  • the cross-sectional shape may be a triangle.
  • the beam shaping unit 86 is the same as the beam shaping units 73 and 81 in terms of material and light guiding function, except that the cross-sectional shape is different.
  • the beam shaping unit 86 is a light guide rod formed of a columnar body having an incident end 86a, an exit end 86c, and a side surface portion 86b extending from the incident end 86a toward the exit end 86c.
  • the cross-sectional shape is an equilateral triangle.
  • a beam incident on the incident end 86a from the light emitting element portion 71 is guided in the direction of the optical axis A by total reflection on the inner surface (reflection side surface) of the side surface portion 86b, and is emitted from the emission end 86c.
  • the beam shaping unit 86 is arranged with the light emission center OP and the optical axis A aligned. Further, as shown in FIG. 38, the beam shaping unit 86 is arranged in a normal posture with one vertex upward, one side facing the vertex downward, and the lower side parallel to the X direction. .
  • one of the long axis components RL of the incident beam BMin is a vertex, and the other side S is the first reflection point Py1.
  • the long axis component RL crosses the vertex.
  • the long axis component RL is incident on the side S perpendicularly, but the major axis component RL incident perpendicularly to the side S is reflected perpendicularly on the side S and incident on the apex.
  • the second reflection point Py2 is a vertex. Since the incident angle of the light beam is an angle other than vertical at the apex, the major axis component RL is twisted around the optical axis A.
  • the short axis component RS is incident on two opposing sides S. Since the two opposing sides and the short axis component RS are obliquely crossed, the light enters the reflection point Px1 at an angle other than perpendicular. Therefore, twisting around the optical axis A occurs. In this way, twisting around the optical axis A occurs with respect to both the short axis component RS and the long axis component RL. Therefore, a beam shaping action that makes the cross-sectional shape of the incident beam BMin a substantially circular shape occurs.
  • the beam shaping unit 86 may have a posture other than the normal posture shown in FIG. 39 shows a posture rotated by 180 ° from the normal posture around the optical axis A, and FIG. 40 shows a posture inclined by about 5 ° from the posture of FIG. Since a triangle is a point object unlike a hexagon or a quadrangle, any direction of inclination causes a twist around the optical axis A to change the radiation direction for both the short axis component RS and the long axis component RL. Can be made.
  • the light emission center OP may be offset with respect to the optical axis A.
  • an equilateral triangle may not be an equilateral triangle, and may be a right triangle or an isosceles triangle.
  • the equilateral triangle is considered to be most easily created, and therefore the equilateral triangle is most preferable in consideration of the suitability for manufacturing.
  • the cross-sectional shape of the beam shaping unit has been described as an example of a hexagon, a quadrangle, or a triangle, but it may be a pentagon or a polygon more than a hexagon.
  • the beam shaping portion has a diameter of several millimeters or less, it is preferable that the diameter is not more than a hexagon in consideration of manufacturability.
  • the cross-sectional shape of the beam shaping unit may not be a polygon.
  • a perfect circle may be sufficient as a cross-sectional shape like the beam shaping part 91 shown to FIG.
  • the beam shaping unit 91 is the same as the beam shaping units 73, 81, and 86 in terms of material and light guiding function, except that the cross-sectional shape is different.
  • the beam shaping unit 91 is a light guide rod formed of a columnar body having an incident end 91a, an exit end 91c, and a side surface portion 91b extending from the incident end 91a toward the exit end 91c.
  • a beam incident on the incident end 91a from the light emitting element portion 71 is guided in the direction of the optical axis A by total reflection on the inner surface of the side surface portion 91b, and is emitted from the emission end 91c. Since the cross-sectional shape of the beam shaping unit 91 is a perfect circle, the inner surface of the side surface portion 91b that serves as a reflective side surface is configured by a curved surface.
  • the beam shaping unit 91 is arranged with the emission center OP of the laser diode LD2 offset from the optical axis A of the beam shaping unit 91.
  • the emission center OP is offset with respect to the optical axis A in both the X direction and the Y direction. Due to the offset, the first reflection point of the short-axis component RS is Px1, but the tangent TL of the reflection point Px1 and the short-axis component RS are not orthogonal.
  • the inner surface (reflection side surface) of the side surface portion 91 and the short axis component RS are obliquely crossed, and the short axis component RS has a reflection angle when reflected at the reflection point Px1.
  • twisting around the optical axis A occurs, and the radiation direction of the short-axis component RS changes.
  • the first reflection point is Py1, but the tangent TL of the reflection point Py1 and the long axis component RL are not orthogonal.
  • the inner surface (reflection side surface) of the side surface portion 91 and the long axis component RL are obliquely crossed, and the long axis component RL has a reflection angle when reflected at the reflection point Py1.
  • twisting around the optical axis A occurs, and the radiation direction of the long axis component RL changes.
  • the cross-sectional shape of the beam shaping unit 91 is a perfect circle, if there is no offset and the optical axis A and the light emission center OP coincide with each other, an intermediate component between the short axis component RS and the long axis component RL is obtained. Since no change in the radiation direction occurs, a beam shaping effect cannot be expected, and a substantially elliptical beam that is the same as the incident beam BMin is emitted from the emission end 91c.
  • the emission center OP is offset in both the X direction and the Y direction with respect to the optical axis A of the beam shaping unit 91.
  • It may be offset only in the parallel X direction, or may be offset only in the Y direction parallel to the long axis component RL as shown in FIG. It has been confirmed by experiments and simulations that the beam shaping effect can be obtained even when the offset is performed in only one direction.
  • offsetting in the two directions of the X direction and the Y direction is preferable because the beam shaping effect is high.
  • the beam shaping unit having a true circular cross section has been described as an example, but an elliptical shape may be used. Further, an oval shape in which a part of the inner surface of the side surface portion is a flat surface may be used (see FIG. 48).
  • the beam shaping unit 94 has a perfect cross-sectional shape, and the incident surface has a size that can receive the incident beams BMin of the four light emitting element units 71.
  • Other points such as the material and the light guiding function are the same as those of the beam shaping unit 91.
  • the cross-sectional shape may be an oval shape in which a part of the inner surface of the side surface part is a flat surface.
  • illustration is abbreviate
  • the beam shaping unit 98 is a light guide rod having an incident end 98a, an emission end 98c, and a side surface portion 98b extending from the incidence end 98a to the emission end 98c, and is configured by a columnar body having a square cross section.
  • the beam shaping portion 98 is tapered with respect to the optical axis A at the side surface portion 98b, and has a tapered shape in which the incident end 98a is thinner than the emission end 98c. By tapering the side surface portion 98b in this manner, the beam shaping portion 98 is provided with the same divergence angle correction function as the divergence angle correction portion 72 (see FIGS. 15 and 16).
  • the number of parts can be reduced and the space can be saved as compared with the first to fifth embodiments.
  • the beam shaping unit 98 has a square cross-sectional shape, but may of course be a polygon other than a quadrangle such as a hexagon or a triangle. Further, like the beam shaping unit 99 shown in FIG. 50, the cross-sectional shape may be circular. However, when the cross-sectional shape is a perfect circle, it is necessary to offset the light emission center OP with respect to the optical axis A as in the embodiment shown in FIG.
  • the table shown in FIG. 51 includes, in addition to the evaluation results evaluated from the two viewpoints of the suitability for manufacturing and the ease of relative alignment with the light emitting elements, for the beam shaping sections of the first to sixth embodiments. This is a summary of the evaluation results of comprehensive evaluation.
  • manufacturing aptitude the applicability of products having a light guide rod diameter on the order of several millimeters or less is evaluated. Manufacturability in the case of no taper where the side surface portion is not tapered is very good (evaluation A) and the triangle is somewhat bad (evaluation C) except for the cross section of the triangle.
  • the hexagonal shape a hexagonal prism as a light guide rod exists as an off-the-shelf product, and it can be used.
  • the circular shape is slightly worse (evaluation C) regardless of the presence or absence of a taper, and the others are very good (evaluation A). This is because an offset is required in the case of a circle, whereas an offset may or may not be present in the case of a polygon.
  • the hexagon is very good (evaluation A)
  • the circle and the rectangle are good (evaluation B)
  • the triangle is slightly bad (evaluation C).
  • the evaluation is that a square is good (evaluation B), a circle and a hexagon are slightly bad (evaluation C), and a triangle is bad (evaluation D).
  • the beam shaping unit which is the optical element of the present invention, has been described in the form of a light guide rod formed of a columnar body.
  • the mirror pipe 101 may be formed. Even in the mirror pipe 101, the incident beam can be guided in the optical axis direction by being reflected by the mirror surface 102 which is the inner surface of the side surface portion inside the hollow. Then, if the cross-sectional shape orthogonal to the optical axis is a polygon, beam shaping can be performed. Of course, the cross-sectional shape may be circular. In this case, it is necessary to offset the light emission center of the light emitting element with respect to the optical axis. In addition, since the specular reflection has a larger reflection loss than the total reflection, the light guide rod is more advantageous than the mirror pipe 101 in view of light transmission efficiency.
  • the second and third light source modules 32 and 33 that emit narrowband light have been described as examples of the light source unit using the beam shaping unit.
  • the color of the beam and the emission wavelength are not limited to the above example. It can be changed as appropriate.
  • the light source part which uses beam shaping parts such as the 2nd, 3rd light source modules 32 and 33, is used in combination with the 1st light source module 31 which emits white light as a light source part which does not use a beam shaping part.
  • a combination with another light source unit may be used.
  • a beam shaping unit may be used for at least one light source unit of B, G, and R.
  • the first light source module 31 has been described as an example of a light source unit that emits a substantially circular beam without using a beam shaping unit.
  • a light source unit that emits a substantially circular beam is as in the first light source module 31.
  • the phosphor and the light emitting element may not be combined.
  • a light emitting element such as an LED or an EL other than the laser diode may be used.
  • a light source such as a xenon lamp or a halogen lamp may be used.
  • the laser diode is described as an example of the light emitting element of the light source unit using the beam shaping unit, but the beam shaping unit may be applied to other light emitting elements such as an LED and an EL (electroluminescence). Since LEDs and EL generally emit a substantially circular beam, the need for beam shaping is low, but among light emitting elements using LEDs and EL, a substantially elliptical beam is emitted depending on the type and specification. In some cases. In such a case, the need for beam shaping arises, so the beam shaping unit of the present invention may be applied.
  • the optical shaping element has been described by taking the beam shaping unit for shaping a substantially elliptical beam into a substantially perfect circle as an example, but the cross-sectional shape of the incident beam as a shaping source may be other than an elliptical shape.
  • the beams may have different divergence angles in the first direction and the second direction orthogonal to the first direction.
  • the optical element only needs to have a reflective side surface that is oblique to at least one of the first direction and the second direction, and the cross-sectional shape after shaping may not be a perfect circle.
  • the present invention can be applied to other types of endoscope systems such as a system including an ultrasonic endoscope in which an imaging element and an ultrasonic transducer are built in a distal end portion and a processor device that performs image processing. it can.
  • the beam shaping unit is applied to the endoscope light source device, but the beam shaping unit may be applied to a device other than the endoscope light source device.
  • devices other than the endoscope light source device include an electron microscope light source device.
  • an electron microscope in order to observe a living tissue in the same manner as an endoscope, a plurality of light beams that emit a plurality of lights having different wavelengths, like the first to third light source modules 31 to 33 described in the above embodiment.
  • a light source unit is provided. In such a case, the beam shaping unit of the present invention is effective.
  • the projector device 110 is a device that displays an image by projecting light carrying image information on a screen.
  • the projector device 110 includes a light source unit 113 having a light emitting element unit 111 having a laser diode LD and a beam shaping unit 112.
  • An imaging lens 114 and a light modulation element 115 are arranged in front of the light source unit 113.
  • the imaging lens 114 focuses the beam emitted from the light source unit 113 and forms an image on the light modulation element 115.
  • the light modulation element 115 includes a liquid crystal element or a DMD (digital micromirror device) element in which cells corresponding to pixels are arranged in a matrix.
  • the light modulation element 115 drives each pixel based on the image data, modulates the imaged light, and generates image light carrying image information. The generated image light is projected onto the screen and an image is displayed.
  • the beam shaping unit 112 is the beam shaping unit of any of the first to sixth embodiments, and shapes the cross-sectional shape of the incident beam from the laser diode LD from a substantially elliptical shape to a substantially perfect circular shape. By this beam shaping action, the irradiation spot shape of the light imaged on the light modulation element 115 can be made circular.
  • the light source unit having the beam shaping unit 112 in addition to the projector device, for example, in an optical disc device that reads information by irradiating light on a disc on which information is recorded, light constituting a reading unit You may apply to a pick-up apparatus.
  • Endoscope light guide 50 Homogenizer 61 Laser module 62 Fluorescence part 64, 72 Divergence angle correction part 66, 71, 76 Light emitting element part 73, 81, 86, 91, 94, 96, 98, 99 Beam shaping part ( Optical element) 73a Incident end 73b Side surface portion 73c Emission end A Optical axis BM Beam BMin Incident beam BMout Emission beams LD1 to LD3 Laser diodes (light emitting elements) OP emission center

Abstract

In the present invention, the cross-section of a beam from a light-emitting element is shaped, with light-transmission losses reduced. [Solution] A light-source device (13) for an endoscope is provided with the following: a light-emitting-element part (71) that has a laser diode (LD2); and a light-source module that has a beam-shaping part (73). Said beam-shaping part (73) is a prism-shaped light-guiding rod, and the cross-section thereof perpendicular to an optical axis (A) is hexagonal. A substantially elliptical beam emitted by the laser diode (LD2) is shaped by the beam-shaping part (73) into a substantially circular shape. When a minor-axis component (RS) of the elliptical beam enters the beam-shaping part (73), said minor-axis component (RS) is guided in the direction of the optical axis (A), undergoing total internal reflection at the interior surface of a side face (73b) of the beam-shaping part (73). As the beam is being thus guided, since minor-axis components (RS) are incident upon sides of the hexagon at non-perpendicular angles, said minor-axis components (RS) are reflected at angles, causing rotation about the optical axis (A). Many of the light rays constituting the beam undergo such rotation, shaping the cross-section of the beam into a substantially circular shape.

Description

光源装置Light source device
 本発明は、発光素子を有する光源装置に関するものである。 The present invention relates to a light source device having a light emitting element.
 発光素子、例えばレーザダイオードを有する光源装置が各種の分野で使用されている。特許文献1には、レーザダイオードを内視鏡用の光源装置に使用することが記載されている。 A light source device having a light emitting element such as a laser diode is used in various fields. Patent Document 1 describes the use of a laser diode in a light source device for an endoscope.
 図54に示すように、レーザダイオードLDは、半導体で構成された発光素子であり、P型半導体からなるP層、活性層K、N型半導体からなるN層が積層された構造を有しており、活性層Kからレーザ光を発する。レーザ光は、発光中心OPから略円錐状に広がる発散光である。また、レーザダイオードLDは、活性層Kと平行な水平方向(X方向)に広がる光を発する発光点と活性層に対して垂直な垂直方向(Y方向)に広がる光を発する発光点との間に光軸方向における非点隔差ΔAsがあるため、光軸と直交する、光束(ビーム)BMの断面形状は、Y方向に長い縦長の略楕円形状になることが知られている。これは、レーザダイオードLDが発するビームは、短軸に相当するX方向と長軸に対応するY方向のそれぞれの発散角が異なることを意味する。 As shown in FIG. 54, the laser diode LD is a light emitting element composed of a semiconductor and has a structure in which a P layer made of a P-type semiconductor, an active layer K, and an N layer made of an N-type semiconductor are stacked. The active layer K emits laser light. The laser light is divergent light that spreads in a substantially conical shape from the emission center OP. The laser diode LD also has a light emitting point that emits light that spreads in the horizontal direction (X direction) parallel to the active layer K and a light emitting point that emits light that spreads in the vertical direction (Y direction) perpendicular to the active layer. Since there is an astigmatism difference ΔAs in the optical axis direction, it is known that the cross-sectional shape of the light beam (beam) BM orthogonal to the optical axis becomes a vertically long substantially elliptical shape that is long in the Y direction. This means that the beams emitted from the laser diode LD have different divergence angles in the X direction corresponding to the short axis and the Y direction corresponding to the long axis.
 ビームの断面形状は、被照射体における照射スポット形状に反映されるため、照射スポット形状を略真円形にしたい場合には、ビームの断面形状を略楕円形から略真円形に整形するビーム整形が行われる。特許文献2に記載の光源ユニットは、カップリングレンズと集光レンズの2枚のレンズを有しており、これらの2枚のレンズを、レーザダイオードLDが発するビームの光路上に配置することにより、レーザダイオードLDのビーム整形を行っている。 Since the cross-sectional shape of the beam is reflected in the irradiation spot shape on the irradiated object, beam shaping is performed to shape the cross-sectional shape of the beam from a substantially elliptical shape to a substantially perfect circular shape when it is desired to make the irradiation spot shape a substantially circular shape. Done. The light source unit described in Patent Document 2 has two lenses, a coupling lens and a condenser lens. By arranging these two lenses on the optical path of the beam emitted from the laser diode LD, The beam shaping of the laser diode LD is performed.
 カップリングレンズは、発散角を持つビームをいったん平行光化して出射し、集光レンズにカップリングするレンズである。カップリングレンズは、入射面と出射面が、焦点距離が異なる2つの第1及び第2のシリンドリカルレンズ面で構成されている。第1シリンドリカルレンズ面は、ビームの短軸に相当するX方向のみに屈折力を持ち、第2シリンドリカルレンズ面は、ビームの長軸に相当するY方向のみに屈折力を持つレンズ面である。第1シリンドリカルレンズ面と第2シリンドリカルレンズ面は、焦点距離が異なるため(屈折力が異なるため)、各レンズ面の屈折作用によってビームの長軸と短軸の発散角が一致するように補正されて、ビームの断面形状が、略楕円形状から略真円形に整形される。カップリングレンズを出射したビームは、平行光化されているため、集光レンズによって発散角を持つビームに変換される。 The coupling lens is a lens that collimates and emits a beam having a divergence angle after collimating the beam once. In the coupling lens, the entrance surface and the exit surface are composed of two first and second cylindrical lens surfaces having different focal lengths. The first cylindrical lens surface has a refractive power only in the X direction corresponding to the short axis of the beam, and the second cylindrical lens surface has a refractive power only in the Y direction corresponding to the long axis of the beam. Since the first cylindrical lens surface and the second cylindrical lens surface have different focal lengths (because of their different refractive powers), they are corrected so that the divergence angles of the major axis and the minor axis of the beam coincide with each other due to the refractive action of each lens surface. Thus, the cross-sectional shape of the beam is shaped from a substantially elliptical shape to a substantially perfect circle. Since the beam emitted from the coupling lens is collimated, it is converted into a beam having a divergence angle by the condenser lens.
特開2011-041758号公報JP 2011-041758 A 特開2000-304993号公報JP 2000-304993 A
 しかしながら、特許文献2に記載のビーム整形技術のように、レンズの屈折作用を利用してビーム整形を行う場合には、1枚のレンズによってビームをいったん平行光化し、もう1枚の集光レンズで集光する必要があるため、その分、空気とレンズとの境界面の数が多くなり、光伝達損失が大きいという問題がある。なお、特許文献2に記載されているように、2つのシリンドリカルレンズ面を有するカップリングレンズと、カップリングレンズから出射した平行光を集光する集光レンズの2枚のレンズを用いる代わりに、1面にビーム整形用のシリンドリカルレンズ面が形成されたシリンドリカルレンズを2枚組み合わせても、同じようにビーム整形を行うことができる。しかしながら、この場合も、1枚のシリンドリカルレンズによってビームをいったん平行光化した後、もう1枚のシリンドリカルレンズで平行光を、発散角を持つビームに変換するため、2枚のレンズが必要になることに変わりはなく、光伝達損失が大きくなるという問題点を解消することはできない。    However, as in the beam shaping technique described in Patent Document 2, when beam shaping is performed using the refraction action of a lens, the beam is once converted into parallel light by one lens, and another condenser lens. Therefore, there is a problem that the number of interfaces between the air and the lens increases, and the light transmission loss is large. As described in Patent Document 2, instead of using two lenses, a coupling lens having two cylindrical lens surfaces and a condensing lens that condenses parallel light emitted from the coupling lens, Even if two cylindrical lenses having a cylindrical lens surface for beam shaping formed on one surface are combined, beam shaping can be performed in the same manner. However, in this case as well, two beams are required because the beam is once collimated by one cylindrical lens and then converted into a beam having a divergence angle by another cylindrical lens. In fact, the problem of increased optical transmission loss cannot be solved. *
 本発明は、光伝達損失を抑えながら、発光素子のビームの断面形状を整形することが可能な光源装置を提供することを目的とする。 An object of the present invention is to provide a light source device capable of shaping the cross-sectional shape of a beam of a light emitting element while suppressing light transmission loss.
 上記目的を達成するために、本発明の光源装置は、発光素子と光学素子とを備えている。発光素子は、発散するビームを発し、ビームは、その断面における第一方向と第一方向と直交する第二方向のそれぞれの発散角が異なる。光学素子は、発光素子が発するビームが入射する入射面と、入射されたビームを出射する出射面と、入射面から出射面に向かって長手方向に延びる長手軸とを有し、入射したビームを内部で反射させながら長手方向に伝播する光学素子であり、長手軸と直交する平面においてビームの第一及び第二の方向のうち少なくとも一つの方向と斜交する反射側面を有する。 In order to achieve the above object, the light source device of the present invention includes a light emitting element and an optical element. The light emitting element emits a diverging beam, and the beam has different divergence angles in a first direction and a second direction orthogonal to the first direction in the cross section. The optical element has an incident surface on which a beam emitted from the light emitting element is incident, an exit surface that emits the incident beam, and a longitudinal axis that extends in a longitudinal direction from the incident surface toward the exit surface. It is an optical element that propagates in the longitudinal direction while being reflected internally, and has a reflective side surface that is oblique to at least one of the first and second directions of the beam on a plane orthogonal to the longitudinal axis.
 光学素子は、ビームに含まれる光線のうち第一の方向と第二の方向のそれぞれと平行な第一成分及び第二成分の少なくとも一方に対して、反射側面における反射により光軸周りの捩れを生じさせることが好ましい。 The optical element twists around the optical axis by reflection at the reflection side surface with respect to at least one of the first component and the second component parallel to each of the first direction and the second direction among the light rays contained in the beam. It is preferable to make it occur.
 光学素子は、透明材料で形成された柱状体からなる導光ロッドであり、反射側面は空気との境界面であり、反射は全反射であることが好ましい。 It is preferable that the optical element is a light guide rod made of a columnar body formed of a transparent material, the reflection side surface is a boundary surface with air, and the reflection is total reflection.
 光学素子において、例えば、長手軸と直交する断面の形状は多角形であり、反射側面は平面で構成されている。多角形は、例えば、六角形、四角形、三角形のいずれかである。 In the optical element, for example, the cross-sectional shape orthogonal to the longitudinal axis is a polygon, and the reflection side surface is a flat surface. The polygon is, for example, any one of a hexagon, a quadrangle, and a triangle.
 多角形が六角形である場合は、光学素子は、六角形の対向する2つの頂点を結ぶ軸が、第一方向又は第二方向に対して傾斜した姿勢で配置されていることが好ましい。第一方向又は第二方向に対する軸の傾斜角は、例えば15°である。 When the polygon is a hexagon, it is preferable that the optical element is arranged in a posture in which an axis connecting two opposite vertices of the hexagon is inclined with respect to the first direction or the second direction. The inclination angle of the axis with respect to the first direction or the second direction is, for example, 15 °.
 多角形が四角形である場合は、光学素子は、四角形の各辺が第一方向又は第二方向と平行な正姿勢に対して傾斜して配置されていることが好ましい。正姿勢に対する傾斜角は45°であることが好ましい。 In the case where the polygon is a quadrangle, the optical element is preferably arranged such that each side of the quadrangle is inclined with respect to a normal posture parallel to the first direction or the second direction. The inclination angle with respect to the normal posture is preferably 45 °.
 光学素子は、多角形の断面の中心と発光素子の発光中心とが一致した状態で配置されていることが好ましい。 The optical element is preferably arranged in a state where the center of the polygonal cross section coincides with the light emission center of the light emitting element.
 光学素子において、入射面の面積は、複数個の発光素子からの光が入射可能な大きさを有していてもよい。光学素子は、反射側面が長手軸に対して傾斜したテーパ形状であってもよい。 In the optical element, the area of the incident surface may have such a size that light from a plurality of light emitting elements can enter. The optical element may have a tapered shape in which the reflection side surface is inclined with respect to the longitudinal axis.
 発光素子が発するビームの断面の形状は、例えば、第一方向及び第二方向のそれぞれに対応する長軸及び短軸を有する楕円形であり、光学素子は、入射面に入射する楕円形のビームを、例えば、真円形に整形して出射面から出射する。ここで、楕円形には、完全な楕円形に加えて、略楕円形状も含まれる。真円形についても同様に、完全な真円形に限らず、略真円形状も含まれる。発光素子は、例えばレーザダイオードである。 The cross-sectional shape of the beam emitted from the light emitting element is, for example, an ellipse having a major axis and a minor axis corresponding to the first direction and the second direction, respectively, and the optical element is an elliptical beam incident on the incident surface. Is shaped into a perfect circle, for example, and emitted from the emission surface. Here, the oval shape includes a substantially oval shape in addition to a complete oval shape. Similarly, the true circle is not limited to a perfect true circle but includes a substantially perfect circle. The light emitting element is, for example, a laser diode.
 光学素子を用いずに断面の形状が真円形のビームを出射する第1光源部と、発光素子と光学素子とを有し、光学素子によって整形された、断面の形状が真円形のビームを出射する第2光源部の少なくとも2種類の光源部を備えていてもよい。第1光源部は、例えば、発光素子と発光素子が発する光によって励起して蛍光を発する蛍光体とを有する。 A first light source unit that emits a beam having a true circular cross section without using an optical element, a light emitting element and an optical element, and emitting a beam having a true circular cross section shaped by the optical element. You may provide at least 2 types of light source parts of the 2nd light source part to do. The first light source unit includes, for example, a light emitting element and a phosphor that emits fluorescence when excited by light emitted from the light emitting element.
 本発明によれば、光伝達損失を低減しつつ、発光素子のビームの断面形状を整形することが可能な光源装置を提供することができる。 According to the present invention, it is possible to provide a light source device capable of shaping the cross-sectional shape of the light emitting element beam while reducing light transmission loss.
本発明の内視鏡システムの外観図である。It is an external view of the endoscope system of the present invention. 内視鏡の先端部の正面図である。It is a front view of the front-end | tip part of an endoscope. 内視鏡システムの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of an endoscope system. 照明光の分光スペクトルを示すグラフである。It is a graph which shows the spectrum of illumination light. ヘモグロビンの吸収スペクトルを示すグラフである。It is a graph which shows the absorption spectrum of hemoglobin. 生体組織の散乱係数を示すグラフである。It is a graph which shows the scattering coefficient of a biological tissue. 撮像素子のカラーマイクロフイルタの分光特性を示すグラフである。It is a graph which shows the spectral characteristic of the color microfilter of an image pick-up element. 通常観察モードの照明光の照射タイミング及び撮像タイミングを示す説明図である。It is explanatory drawing which shows the irradiation timing of the illumination light in normal observation mode, and an imaging timing. 血管強調観察モードの照明光の照射タイミング及び撮像タイミングを示す説明図である。It is explanatory drawing which shows the irradiation timing and imaging timing of the illumination light of the blood vessel emphasis observation mode. 酸素飽和度観察モードの照明光の照射タイミング及び撮像タイミングを示す説明図である。It is explanatory drawing which shows the irradiation timing and imaging timing of the illumination light in oxygen saturation observation mode. 通常観察モードにおける画像処理手順を示す説明図である。It is explanatory drawing which shows the image processing procedure in normal observation mode. 血管強調観察モードにおける画像処理手順を示す説明図である。It is explanatory drawing which shows the image processing procedure in blood-vessel emphasis observation mode. 酸素飽和度観察モードにおける画像処理手順を示す説明図である。It is explanatory drawing which shows the image processing procedure in oxygen saturation observation mode. 分岐型ライトガイドと光源モジュールの斜視図である。It is a perspective view of a branched light guide and a light source module. 分岐型ライトガイドの出射端における光ファイバの配置の説明図である。It is explanatory drawing of arrangement | positioning of the optical fiber in the output end of a branched light guide. ホモジナイザの説明図である。It is explanatory drawing of a homogenizer. 第1光源モジュールの斜視図である。It is a perspective view of a 1st light source module. 第1光源モジュールの発散角補正部の説明図である。It is explanatory drawing of the divergence angle correction | amendment part of a 1st light source module. 第2光源モジュールの斜視図である。It is a perspective view of a 2nd light source module. 第2光源モジュールの発散角補正部の側面図である。It is a side view of the divergence angle correction | amendment part of a 2nd light source module. 発散角補正後の照射スポット径の説明図である。It is explanatory drawing of the irradiation spot diameter after a divergence angle correction | amendment. ビーム整形部と入射ビームの説明図である。It is explanatory drawing of a beam shaping part and an incident beam. 入射ビームの強度分布を示すグラフである。It is a graph which shows intensity distribution of an incident beam. 光線の短軸成分の軌跡の説明図である。It is explanatory drawing of the locus | trajectory of the short-axis component of a light ray. 光線の短軸成分の内部反射と光軸周りの捩れの説明図である。It is explanatory drawing of the internal reflection of the short-axis component of a light ray, and the twist around an optical axis. 光線の長軸成分の軌跡の説明図である。It is explanatory drawing of the locus | trajectory of the long-axis component of a light ray. 光線の長軸成分の内部反射と光軸周りの捩れの説明図である。It is explanatory drawing of the internal reflection of the major axis component of a light ray, and the twist around an optical axis. 光線の他の成分の内部反射と光軸周りの捩れの説明図である。It is explanatory drawing of the internal reflection of the other component of a light ray, and the twist around an optical axis. 光軸周りの捩れが生じない光線の説明図である。It is explanatory drawing of the light ray which the twist around an optical axis does not produce. 入射ビームと出射ビームの形状の説明図である。It is explanatory drawing of the shape of an incident beam and an emitted beam. 出射ビームの強度分布を示すグラフである。It is a graph which shows intensity distribution of an emitted beam. 発散角補正後の出射ビームの強度分布を示すグラフである。It is a graph which shows intensity distribution of the outgoing beam after divergence angle correction. ビーム整形部による効果の説明図である。It is explanatory drawing of the effect by a beam shaping part. 図18とは別の姿勢で配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned with the attitude | position different from FIG. 図30とは別の姿勢で配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned with the attitude | position different from FIG. 中心をオフセットさせて配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned by offsetting the center. 断面が四角形のビーム整形部の斜視図である。It is a perspective view of the beam shaping part with a square cross section. 図33のビーム整形部の入射端の説明図である。It is explanatory drawing of the incident end of the beam shaping part of FIG. 図34とは別の姿勢で配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned with the attitude | position different from FIG. 比較例の説明図である。It is explanatory drawing of a comparative example. 断面が三角形のビーム整形部の斜視図である。It is a perspective view of the beam shaping part whose section is a triangle. 図37のビーム整形部の入射端の説明図である。It is explanatory drawing of the incident end of the beam shaping part of FIG. 図38とは別の姿勢で配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned with the attitude | position different from FIG. 図39とは別の姿勢で配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned with the attitude | position different from FIG. 断面が真円のビーム整形部の斜視図である。It is a perspective view of the beam shaping part whose cross section is a perfect circle. 図41のビーム整形部の入射端の説明図であるIt is explanatory drawing of the incident end of the beam shaping part of FIG. 図41の比較例の説明図である。It is explanatory drawing of the comparative example of FIG. 短軸方向にオフセットさせて配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned offset in the short axis direction. 長軸方向にオフセットさせた配置したビーム整形部の説明図である。It is explanatory drawing of the beam shaping part arrange | positioned offset in the major axis direction. 複数のビームを導光するビーム整形部の説明図である。It is explanatory drawing of the beam shaping part which guides a some beam. 図46のビーム整形部の斜視図である。It is a perspective view of the beam shaping part of FIG. 断面が長円形のビーム整形部の説明図である。It is explanatory drawing of the beam shaping part whose cross section is an oval. 断面が四角形で、側面部がテーパ形状のビーム整形部の斜視図である。It is a perspective view of the beam shaping part whose cross section is a rectangle and whose side part is a taper shape. 断面が真円で、側面部がテーパ形状のビーム整形部の斜視図である。It is a perspective view of the beam shaping part whose cross section is a perfect circle and whose side part is a taper shape. ビーム整形部の各態様の評価結果を表す表である。It is a table | surface showing the evaluation result of each aspect of a beam shaping part. ミラーパイプの斜視図である。It is a perspective view of a mirror pipe. ビーム整形部を用いたプロジェクタ装置の説明図である。It is explanatory drawing of the projector apparatus using a beam shaping part. レーザダイオードのビーム形状の説明図である。It is explanatory drawing of the beam shape of a laser diode.
 「第1実施形態」
 図1に示すように、本発明の第1実施形態の内視鏡システム10(以下、内視鏡システムという)は、生体内の観察部位を撮像する内視鏡11と、撮像により得られた信号に基づいて観察部位の観察画像を生成するプロセッサ装置12と、観察部位を照射する光を内視鏡11に供給する光源装置13と、観察画像を表示するモニタ14とを備えている。プロセッサ装置12には、キーボードやマウスなどの操作入力部であるコンソール15が設けられている。
“First Embodiment”
As shown in FIG. 1, an endoscope system 10 (hereinafter referred to as an endoscope system) according to a first embodiment of the present invention is obtained by imaging an endoscope 11 that images an in-vivo observation site. A processor device 12 that generates an observation image of the observation region based on the signal, a light source device 13 that supplies light irradiating the observation region to the endoscope 11, and a monitor 14 that displays the observation image are provided. The processor device 12 is provided with a console 15 that is an operation input unit such as a keyboard and a mouse.
 内視鏡システム10は、白色光のもとで観察部位を観察するための通常観察モードと、特殊光を利用して観察部位に存在する血管の性状を観察するための血管情報観察モードを備えている。血管情報観察モードは、血管のパターンや酸素飽和度などの性状を把握して、腫瘍の良悪鑑別などの診断を行うための特殊光観察モードであり、特殊光として、血中ヘモグロビンに対する吸光度が高い波長域の狭帯域光が利用される。血管情報観察モードには、血管が強調された血管強調画像を表示する血管強調観察モードと、血中ヘモグロビンの酸素飽和度が表示された酸素飽和度画像を表示する酸素飽和度観察モードがある。 The endoscope system 10 includes a normal observation mode for observing an observation site under white light, and a blood vessel information observation mode for observing the properties of blood vessels existing in the observation site using special light. ing. The blood vessel information observation mode is a special light observation mode for diagnosing the characteristics of blood vessels such as blood vessel pattern and oxygen saturation, and for distinguishing tumors from good to bad. As special light, the absorbance to blood hemoglobin is Narrow band light in a high wavelength range is used. The blood vessel information observation mode includes a blood vessel enhancement observation mode for displaying a blood vessel enhancement image in which blood vessels are enhanced, and an oxygen saturation observation mode for displaying an oxygen saturation image in which the oxygen saturation of blood hemoglobin is displayed.
 内視鏡11は、生体の消化管内に挿入される挿入部16と、挿入部16の基端部分に設けられた操作部17と、操作部17とプロセッサ装置12及び光源装置13との間を連結するユニバーサルコード18とを備えている。 The endoscope 11 includes an insertion portion 16 inserted into a digestive tract of a living body, an operation portion 17 provided at a proximal end portion of the insertion portion 16, and between the operation portion 17, the processor device 12, and the light source device 13. And a universal cord 18 to be connected.
 挿入部16は、先端から順に連設された、先端部19、湾曲部20、可撓管部21からなる。図2に示すように、先端部19の先端面には、観察部位に照明光を照射する照明窓22、観察部位で反射した像光が入射する観察窓23、観察窓23を洗浄するために送気・送水を行うための送気・送水ノズル24、鉗子や電気メスといった処置具を突出させる鉗子出口25などが設けられている。観察窓23の奥には、撮像素子44(図3参照)や結像用の光学系が内蔵されている。 The insertion portion 16 includes a distal end portion 19, a bending portion 20, and a flexible tube portion 21 that are continuously provided from the distal end. As shown in FIG. 2, on the distal end surface of the distal end portion 19, the illumination window 22 that irradiates the observation site with illumination light, the observation window 23 that receives the image light reflected by the observation site, and the observation window 23 are washed. An air supply / water supply nozzle 24 for performing air supply / water supply, a forceps outlet 25 for projecting a treatment tool such as a forceps and an electric knife, and the like are provided. An imaging element 44 (see FIG. 3) and an imaging optical system are built in the back of the observation window 23.
 湾曲部20は、連結された複数の湾曲駒からなり、操作部17のアングルノブ26を操作することにより、上下左右方向に湾曲動作する。湾曲部20が湾曲することにより、先端部19の向きが所望の方向に向けられる。可撓管部21は、食道や腸など曲がりくねった管道に挿入できるように可撓性を有している。挿入部16には、撮像素子44を駆動する駆動信号や撮像素子44が出力する画像信号を通信する通信ケーブルや、光源装置13から供給される照明光を照明窓22に導光するライトガイド43(図3参照)が挿通されている。 The bending portion 20 is composed of a plurality of connected bending pieces, and is bent in the vertical and horizontal directions by operating the angle knob 26 of the operation portion 17. By bending the bending portion 20, the direction of the distal end portion 19 is directed in a desired direction. The flexible tube portion 21 is flexible so that it can be inserted into a tortuous duct such as the esophagus or the intestine. The insertion unit 16 includes a communication cable that communicates a drive signal for driving the image sensor 44 and an image signal output from the image sensor 44, and a light guide 43 that guides illumination light supplied from the light source device 13 to the illumination window 22. (See FIG. 3) is inserted.
 操作部17には、アンブルノブ26の他、処置具を挿入するための鉗子口27、送気・送水操作を行う送気・送水ボタン、静止画像を撮影するためのレリーズボタンなどが設けられている。 In addition to the amble knob 26, the operation unit 17 includes a forceps port 27 for inserting a treatment instrument, an air / water supply button for performing air / water supply operation, a release button for taking a still image, and the like. .
 ユニバーサルコード18には、挿入部16から延設される通信ケーブルやライトガイド43が挿通されている。ユニバーサルコード18の一端は内視鏡11に固定されており、開放端となる他端にはコネクタ28が設けられている。コネクタ28は、通信用コネクタ28aと光源用コネクタ28bからなる複合タイプのコネクタである。通信用コネクタ28aには通信ケーブルの一端が配設されており、通信用コネクタ28aはプロセッサ装置12に着脱自在に接続される。光源用コネクタ28bにはライトガイド43の入射端が配設されており、光源用コネクタ28bは光源装置13に着脱自在に接続される。 A communication cable and a light guide 43 extending from the insertion portion 16 are inserted into the universal cord 18. One end of the universal cord 18 is fixed to the endoscope 11, and a connector 28 is provided at the other end serving as an open end. The connector 28 is a composite type connector composed of a communication connector 28a and a light source connector 28b. One end of a communication cable is disposed in the communication connector 28a, and the communication connector 28a is detachably connected to the processor device 12. The light guide connector 28 b is provided with an incident end of the light guide 43, and the light source connector 28 b is detachably connected to the light source device 13.
 図3に示すように、光源装置13は、それぞれ発光波長が異なる3種類の第1~第3の光源モジュール31~33と、これらを駆動制御する光源制御部34とを備えている。光源制御部34は、光源装置13の各部の駆動タイミングや同期タイミングなどの制御を行う。 As shown in FIG. 3, the light source device 13 includes three types of first to third light source modules 31 to 33 each having a different emission wavelength, and a light source control unit 34 that drives and controls them. The light source control unit 34 controls drive timing and synchronization timing of each unit of the light source device 13.
 第1~第3光源モジュール31~33は、特定の波長域の狭帯域光をそれぞれ発光するレーザダイオードLD1~LD3を有している。レーザダイオードLD1~LD3は、半導体で構成された発光素子である。図4に示すように、レーザダイオードLD1は、青色(B色)領域において、例えば波長域が440±10nmに制限され、中心波長が445nmの狭帯域光N1を発光する。レーザダイオードLD2は、青色(B色)領域において、例えば波長域が410±10nmに制限され、中心波長が405nmの狭帯域光である狭帯域光N2を発光する。レーザダイオードLD3は、青色(B色)領域において、例えば波長域が470±10nmに制限され、中心波長が473nmの狭帯域光である狭帯域光N3を発光する。レーザダイオードLD1、LD2、LD3としては、InGaN系、InGaNAs系、GaNAs系のものを用いることができる。また、レーザダイオードLD1~LD3としては、高出力化が可能なストライプ幅(導波路の幅)が広いブロードエリア型のレーザダイオードが好ましい。 The first to third light source modules 31 to 33 have laser diodes LD1 to LD3 that respectively emit narrowband light in a specific wavelength range. The laser diodes LD1 to LD3 are light emitting elements composed of semiconductors. As shown in FIG. 4, in the blue (B color) region, the laser diode LD1 emits narrowband light N1 having a wavelength region limited to 440 ± 10 nm and a center wavelength of 445 nm, for example. In the blue (B color) region, the laser diode LD2 emits narrowband light N2, which is a narrowband light having a wavelength range limited to 410 ± 10 nm and a center wavelength of 405 nm, for example. In the blue (B color) region, the laser diode LD3 emits narrowband light N3, which is a narrowband light whose wavelength range is limited to 470 ± 10 nm and whose center wavelength is 473 nm, for example. As the laser diodes LD1, LD2, and LD3, InGaN-based, InGaNAs-based, and GaNAs-based ones can be used. The laser diodes LD1 to LD3 are preferably broad area type laser diodes having a wide stripe width (waveguide width) capable of increasing the output.
 第1光源モジュール31は、通常観察用の白色光を発する光源部である。第1光源モジュール31は、レーザダイオードLD1に加えて、蛍光体36を有している。図4に示すように、蛍光体36は、レーザダイオードLD1が発する445nmの青色領域の狭帯域光N1によって励起されて、緑色領域から赤色領域に渡る波長域の蛍光FLを発光する。蛍光体36は、狭帯域光N1の一部を吸収して蛍光FLを発光するとともに、残りの狭帯域光N1を透過させる。蛍光体36を透過する狭帯域光N1は、蛍光体36によって拡散される。透過する狭帯域光N1と励起される蛍光FLが混合することによって白色光が生成される。蛍光体36としては、例えば、YAG系、BAM(BgMgAl1017)系等の蛍光体が使用される。第1光源モジュール31は、白色光の光量が多くなるように2個設けられている。 The first light source module 31 is a light source unit that emits white light for normal observation. The first light source module 31 includes a phosphor 36 in addition to the laser diode LD1. As shown in FIG. 4, the phosphor 36 is excited by the 445 nm blue-band narrow-band light N1 emitted from the laser diode LD1, and emits fluorescence FL in a wavelength region extending from the green region to the red region. The phosphor 36 absorbs a part of the narrowband light N1 to emit fluorescence FL and transmits the remaining narrowband light N1. The narrowband light N1 that passes through the phosphor 36 is diffused by the phosphor 36. White light is generated by mixing the transmitted narrow-band light N1 and the excited fluorescence FL. As the phosphor 36, for example, a YAG-based or BAM (BgMgAl 10 O 17 ) -based phosphor is used. Two first light source modules 31 are provided so that the amount of white light increases.
 第2光源モジュール32は、血管強調観察用の光源部である。血中ヘモグロビンの吸光スペクトルを表す図5において、血液のヘモグロビンの吸光係数μaは、波長依存性を有しており、波長が450nm以下の領域において急激に上昇し、405nm付近においてピークを有している。また、波長が450nm以下と比較すると低い値ではあるが、波長が530nm~560nmにおいてもピークを有している。吸光係数μaが大きな波長の光を観察部位に照射すると、血管においては吸収が大きいので、血管とその周辺部分とのコントラストが大きな像が得られる。 The second light source module 32 is a light source unit for blood vessel enhancement observation. In FIG. 5 showing the absorption spectrum of blood hemoglobin, the absorption coefficient μa of blood hemoglobin has a wavelength dependence, increases rapidly in the region where the wavelength is 450 nm or less, and has a peak in the vicinity of 405 nm. Yes. Further, although the wavelength is lower than that of 450 nm or less, there is also a peak at wavelengths of 530 nm to 560 nm. When the observation site is irradiated with light having a wavelength with a large extinction coefficient μa, the blood vessel has a large absorption, and an image having a large contrast between the blood vessel and its peripheral portion is obtained.
 また、図6に示すように、生体組織の光の散乱特性にも波長依存性があり、短波長になるほど散乱係数μSは大きくなる。散乱は生体組織内への光の深達度に影響する。すなわち、散乱が大きいほど、生体組織の粘膜表層付近で反射される光が多く、中深層に到達する光が少ない。そのため、短波長であるほど深達度は低く、長波長になるほど深達度は高い。こうしたヘモグロビンの吸光特性と生体組織の光の散乱特性を鑑みて、血管強調用の光の波長が選択される。 Further, as shown in FIG. 6, the light scattering characteristic of the living tissue is also wavelength-dependent, and the scattering coefficient μS increases as the wavelength becomes shorter. Scattering affects the depth of light penetration into living tissue. That is, the greater the scattering, the more light that is reflected near the mucosal surface layer of the biological tissue and the less light that reaches the mid-deep layer. Therefore, the shorter the wavelength, the lower the depth of penetration, and the longer the wavelength, the higher the depth of penetration. In view of such light absorption characteristics of hemoglobin and light scattering characteristics of living tissue, the wavelength of light for blood vessel enhancement is selected.
 第2光源モジュール32が発する405nmの狭帯域光N2は、深達度が低いので、表層血管による吸収が大きいため、表層血管強調用の光として用いられる。狭帯域光N2を用いることにより、観察画像において表層血管を高コントラストで描出することができる。また、中深層血管強調用の光としては、第1光源モジュール31が発する白色光の緑色成分が用いられる。図5に示す吸光スペクトルにおいて、450nm以下の青色領域と比較して、530nm~560nmの緑色領域においては、吸光係数は緩やかに変化するので、中深層血管強調用の光は、青色領域ほど狭帯域であることは要求されない。そのため、後述するように、撮像素子44のG色のマイクロカラーフイルタによって白色光から色分離した緑色成分が用いられる。 The 405-nm narrow-band light N2 emitted from the second light source module 32 has a low depth of penetration and is therefore absorbed by the surface blood vessels, and is therefore used as light for emphasizing the surface blood vessels. By using the narrowband light N2, the superficial blood vessel can be depicted with high contrast in the observation image. Further, the green component of white light emitted from the first light source module 31 is used as the light for emphasizing the middle deep blood vessel. In the absorption spectrum shown in FIG. 5, the light absorption coefficient gradually changes in the green region of 530 nm to 560 nm as compared with the blue region of 450 nm or less. It is not required to be. Therefore, as described later, a green component color-separated from white light by the G-color micro color filter of the image sensor 44 is used.
 第3光源モジュール33は、酸素飽和度観察用の光源部である。図5において、吸光スペクトルHbは酸素と結合していない還元ヘモグロビンの吸光スペクトルを示し、吸光スペクトルHbO2は、酸素と結合した酸化ヘモグロビンの吸光スペクトルを示す。このように還元ヘモグロビンと酸化ヘモグロビンは、異なる吸光特性を持っており、同じ吸光係数μaを示す等吸収点(各スペクトルHb、HbO2の交点)を除いて、吸光係数μaに差が生じる。吸光係数μaに差があると、同じ光強度かつ同じ波長の光を照射しても、酸素飽和度が変化すれば、反射率が変化する。酸素飽和度観察モードにおいては、吸光係数μaに差がある波長として、第3光源モジュール33が発する波長473nmの狭帯域光N3が用いられて、酸素飽和度が測定される。 The third light source module 33 is a light source unit for observing oxygen saturation. In FIG. 5, an absorption spectrum Hb indicates an absorption spectrum of reduced hemoglobin not bonded to oxygen, and an absorption spectrum HbO2 indicates an absorption spectrum of oxidized hemoglobin bonded to oxygen. Thus, reduced hemoglobin and oxyhemoglobin have different light absorption characteristics, and a difference occurs in the light absorption coefficient μa except for the isosbestic point (intersection of each spectrum Hb and HbO 2) showing the same light absorption coefficient μa. If there is a difference in the extinction coefficient μa, even if the light having the same light intensity and the same wavelength is irradiated, the reflectance changes if the oxygen saturation changes. In the oxygen saturation observation mode, the oxygen saturation is measured using narrowband light N3 having a wavelength of 473 nm emitted from the third light source module 33 as a wavelength having a difference in the absorption coefficient μa.
 光源制御部34は、ドライバ37を介してレーザダイオードLD1~LD3の点灯、消灯、及び光量の制御を行う。具体的には、光源制御部34は、レーザダイオードLD1~LD3に対して駆動パルスを与えることにより、点灯させる。そして、駆動パルスのデューティ比を制御するPWM(Pulse Width Modulation)制御を行うことにより、駆動電流値を変化させて発光量を制御する。駆動電流値の制御は、駆動パルスの振幅を変えるPAM(Pulse Amplitude Modulation)制御などでもよい。 The light source controller 34 turns on and off the laser diodes LD1 to LD3 and controls the amount of light via the driver 37. Specifically, the light source controller 34 turns on the laser diodes LD1 to LD3 by applying a drive pulse. Then, by performing PWM (Pulse Width Modulation) control for controlling the duty ratio of the drive pulse, the light emission amount is controlled by changing the drive current value. The control of the drive current value may be PAM (Pulse Amplitude Modulation) control that changes the amplitude of the drive pulse.
 第1~第3の光源モジュール31~33の光路の下流側には、分岐型ライトガイド41が設けられている。分岐型ライトガイド41は、後で詳述するように、第1~第3の光源モジュール31~33の光路を1つの光路に統合する光路統合部である。内視鏡11のライトガイド43の入射端は1つであるため、分岐型ライトガイド41によって、第1~第3の光源モジュール31~33の光を内視鏡11に供給する前段において、各モジュール31~33の光の光路が統合される。分岐型ライトガイド41は、入射端が複数に分岐した分岐部41a~41dを有し、各分岐部41a~41dから入射した光を、1つの出射端41eから出射する。 A branched light guide 41 is provided on the downstream side of the optical path of the first to third light source modules 31 to 33. The branching light guide 41 is an optical path integrating unit that integrates the optical paths of the first to third light source modules 31 to 33 into one optical path, as will be described in detail later. Since the light guide 43 of the endoscope 11 has one incident end, each branch light guide 41 supplies light from the first to third light source modules 31 to 33 to the endoscope 11 at each stage. The light paths of the modules 31 to 33 are integrated. The branched light guide 41 has branch portions 41a to 41d whose entrance ends are branched into a plurality of portions, and emits light incident from the respective branch portions 41a to 41d from one exit end 41e.
 2つの第1光源モジュール31はそれぞれ、分岐型ライトガイド41の分岐部41a、41bの入射面と対向するように配置され、第2及び第3光源モジュール32、33はそれぞれ、分岐部41c、41dの入射面と対向するように配置される。 The two first light source modules 31 are respectively arranged so as to face the incident surfaces of the branch portions 41a and 41b of the branch light guide 41, and the second and third light source modules 32 and 33 are respectively branched portions 41c and 41d. It arrange | positions so that it may oppose with the entrance plane.
 分岐型ライトガイド41の出射端41eは、内視鏡11のコネクタ28bが接続されるレセプタクルコネクタ42の近くに配置されている。出射端41eには、後述するホモジナイザ50が設けられており、分岐型ライトガイド41に入射した第1~第3の光源モジュール31~33の光は、ホモジナイザ50を経由して、コネクタ28bに配された内視鏡11のライトガイド43に供給される。 The exit end 41e of the branched light guide 41 is disposed near the receptacle connector 42 to which the connector 28b of the endoscope 11 is connected. A homogenizer 50, which will be described later, is provided at the emission end 41e, and the light of the first to third light source modules 31 to 33 incident on the branched light guide 41 is distributed to the connector 28b via the homogenizer 50. The light guide 43 of the endoscope 11 is supplied.
 内視鏡11は、ライトガイド43、撮像素子44、アナログ処理回路45(AFE:Analog Front End)、撮像制御部46を備えている。ライトガイド43は、複数本の光ファイバ(図18の符号201参照)をバンドル化したファイババンドルであり、コネクタ28が光源装置13に接続されたときに、ライトガイド43の入射端が光源装置13のホモジナイザ50の出射端と対向する。ライトガイド43の出射端は、2つの照明窓22に光が導光されるように、照明窓22の前段で2本に分岐している。 The endoscope 11 includes a light guide 43, an imaging device 44, an analog processing circuit 45 (AFE: Analog Front End), and an imaging control unit 46. The light guide 43 is a fiber bundle obtained by bundling a plurality of optical fibers (see reference numeral 201 in FIG. 18), and when the connector 28 is connected to the light source device 13, the incident end of the light guide 43 is the light source device 13. It faces the emission end of the homogenizer 50. The exit end of the light guide 43 branches into two at the front stage of the illumination window 22 so that light is guided to the two illumination windows 22.
 照明窓22の奥には、照射レンズ48が配置されている。光源装置13から供給された光はライトガイド43により照射レンズ48に導光されて照明窓22から観察部位に向けて照射される。照射レンズ48は凹レンズからなり、ライトガイド43から出射する光の発散角を広げる。これにより、観察部位の広い範囲に照明光を照射することができる。 In the back of the illumination window 22, an irradiation lens 48 is disposed. The light supplied from the light source device 13 is guided to the irradiation lens 48 by the light guide 43 and irradiated from the illumination window 22 toward the observation site. The irradiation lens 48 is a concave lens, and widens the divergence angle of the light emitted from the light guide 43. Thereby, illumination light can be irradiated to the wide range of an observation site | part.
 観察窓23の奥には、対物光学系51と撮像素子44が配置されている。観察部位で反射した像光は、観察窓23を通して対物光学系51に入射し、対物光学系51によって撮像素子44の撮像面44aに結像される。 In the back of the observation window 23, an objective optical system 51 and an image sensor 44 are arranged. The image light reflected by the observation site enters the objective optical system 51 through the observation window 23 and is imaged on the imaging surface 44 a of the imaging element 44 by the objective optical system 51.
 撮像素子44は、CCDイメージセンサやCMOSイメージセンサなどからなり、フォトダイオードなどの画素を構成する複数の光電変換素子がマトリックスに配列された撮像面44aを有している。撮像素子44は、撮像面44aで受光した光を光電変換して、各画素においてそれぞれの受光量に応じた信号電荷を蓄積する。信号電荷はアンプによって電圧信号に変換されて読み出される。電圧信号は画像信号として撮像素子44から出力されて、画像信号はAFE45に送られる。 The imaging device 44 is composed of a CCD image sensor, a CMOS image sensor, or the like, and has an imaging surface 44a in which a plurality of photoelectric conversion elements constituting pixels such as photodiodes are arranged in a matrix. The image sensor 44 photoelectrically converts the light received by the imaging surface 44a and accumulates signal charges corresponding to the amount of received light in each pixel. The signal charge is converted into a voltage signal by an amplifier and read out. The voltage signal is output from the image sensor 44 as an image signal, and the image signal is sent to the AFE 45.
 撮像素子44は、カラー撮像素子であり、撮像面44aには、図7に示すような分光特性を有するB、G、Rの3色のマイクロカラーフイルタが各画素に割り当てられている。マイクロカラーフイルタによって、第1光源モジュール31が発光する白色光がB、G、Rの3色に分光される。マイクロカラーフイルタの配列は例えばベイヤー配列である。 The image sensor 44 is a color image sensor, and micro-color filters of three colors B, G, and R having spectral characteristics as shown in FIG. 7 are assigned to each pixel on the imaging surface 44a. The white light emitted from the first light source module 31 is split into three colors B, G, and R by the micro color filter. The arrangement of the micro color filter is, for example, a Bayer arrangement.
 図8Aに示すように、通常観察モードにおいては、撮像素子44は、1フレームの取得期間内で、信号電荷を蓄積する蓄積動作と、蓄積した信号電荷を読み出す読み出し動作が行なわれる。通常観察モードにおいては、蓄積タイミングに合わせてレーザダイオードLD1が点灯し、照明光として狭帯域光N1と蛍光FLとからなる白色光が観察部位に照射され、その反射光が撮像素子44に入射する。撮像素子44において、白色光はマイクロカラーフイルタで色分離されて、狭帯域光N1に対応する反射光をB画素が受光し、蛍光FLの中のG成分をG画素が、蛍光FLの中のR成分に対応する反射光をR画素が受光する。撮像素子44は、読み出しタイミングに合わせて、B、G、Rの各画素の画素値が混在した1フレーム分の画像信号B、G、Rをフレームレートに従って順次出力する。こうした撮像動作は、通常観察モードに設定されている間、繰り返される。 As shown in FIG. 8A, in the normal observation mode, the image sensor 44 performs an accumulation operation for accumulating signal charges and a read operation for reading the accumulated signal charges within an acquisition period of one frame. In the normal observation mode, the laser diode LD1 is turned on in accordance with the accumulation timing, white light composed of the narrowband light N1 and fluorescence FL is irradiated as illumination light to the observation site, and the reflected light is incident on the image sensor 44. . In the image sensor 44, the white light is color-separated by a micro color filter, the B pixel receives reflected light corresponding to the narrowband light N1, the G pixel in the fluorescent FL, the G pixel in the fluorescent FL, The R pixel receives reflected light corresponding to the R component. The image sensor 44 sequentially outputs the image signals B, G, and R for one frame in which the pixel values of the B, G, and R pixels are mixed according to the frame rate in accordance with the readout timing. Such an imaging operation is repeated while the normal observation mode is set.
 図8Bに示すように、血管強調観察モードにおいては、蓄積タイミングに合わせて第1光源モジュール31に加えて、第2光源モジュール32が点灯する。第1光源モジュール31が点灯すると、通常観察モードと同様に、照明光として狭帯域光N1と蛍光FLとからなる白色光(N1+FL)が観察部位に照射される。第2光源モジュール32が点灯すると、白色光(N1+FL)に、狭帯域光N2が追加されて、これらが照明光として観察部位に照射される。 As shown in FIG. 8B, in the blood vessel enhancement observation mode, the second light source module 32 is turned on in addition to the first light source module 31 in accordance with the accumulation timing. When the first light source module 31 is turned on, similarly to the normal observation mode, the observation site is irradiated with white light (N1 + FL) composed of the narrowband light N1 and the fluorescence FL as illumination light. When the second light source module 32 is turned on, the narrowband light N2 is added to the white light (N1 + FL), and these are irradiated to the observation site as illumination light.
 白色光に狭帯域光N2が追加された照明光は、通常観察モードと同様に、撮像素子44のB,G,Rのマイクロカラーフイルタで分光される。撮像素子44において、B画素は、狭帯域光N1に加えて、狭帯域光N2を受光する。G画素は、蛍光FLのG成分を受光する。R画素は、蛍光FLのR成分を受光する。血管強調観察モードにおいても、撮像素子44は、読み出しタイミングに合わせて、画像信号B、G、Rをフレームレートに従って順次出力する。こうした撮像動作は、血管強調観察モードに設定されている間、繰り返される。 The illumination light obtained by adding the narrow-band light N2 to the white light is split by the B, G, and R micro color filters of the image sensor 44 as in the normal observation mode. In the image sensor 44, the B pixel receives the narrowband light N2 in addition to the narrowband light N1. The G pixel receives the G component of the fluorescence FL. The R pixel receives the R component of the fluorescence FL. Even in the blood vessel enhancement observation mode, the image sensor 44 sequentially outputs the image signals B, G, and R according to the frame rate in accordance with the readout timing. Such an imaging operation is repeated while the blood vessel enhancement observation mode is set.
 図8Cに示すように、酸素飽和度観察モードにおいては、蓄積タイミングに合わせて第1光源モジュール31が点灯する。第1光源モジュール31が点灯すると、通常観察モードと同様に、白色光(N1+FL)が観察部位に照射される。次のフレームにおいては、第1光源モジュール31が消灯して、代わりに第3光源モジュール33が点灯して、狭帯域光N3が観察部位に照射される。酸素飽和度観察モードにおいても、撮像素子44は、読み出しタイミングに合わせて、画像信号B、G、Rをフレームレートに従って順次出力する。 As shown in FIG. 8C, in the oxygen saturation observation mode, the first light source module 31 is turned on in accordance with the accumulation timing. When the first light source module 31 is lit, white light (N1 + FL) is irradiated to the observation site as in the normal observation mode. In the next frame, the first light source module 31 is turned off, and the third light source module 33 is turned on instead, and the narrow-band light N3 is irradiated onto the observation site. Even in the oxygen saturation observation mode, the image sensor 44 sequentially outputs the image signals B, G, and R according to the frame rate in accordance with the readout timing.
 ただし、酸素飽和度観察モードでは、通常観察モードや血管強調観察モードと異なり、白色光(N1+FL)と狭帯域光N3が交互に照射されるので、最初のフレームで白色光に対応する画像信号B、G、Rが出力され、次のフレームでは狭帯域光N3に対応する画像信号B、G、Rが出力されるというように、各照明光に対応して画像信号B、G、Rが担持する情報も1フレームおきに変化する。こうした撮像動作は、酸素飽和度モードに設定されている間、繰り返される。 However, in the oxygen saturation observation mode, unlike the normal observation mode and the blood vessel enhancement observation mode, white light (N1 + FL) and narrowband light N3 are alternately irradiated, so that the image signal B corresponding to white light in the first frame is used. , G, R are output, and in the next frame, the image signals B, G, R corresponding to the narrowband light N3 are output, and the image signals B, G, R are carried corresponding to each illumination light. The information to be changed also changes every other frame. Such an imaging operation is repeated while the oxygen saturation mode is set.
 図3において、AFE45は、相関二重サンプリング回路(CDS)、自動ゲイン制御回路(AGC)、及びアナログ/デジタル変換器(A/D)(いずれも図示省略)から構成されている。CDSは、撮像素子44からのアナログの画像信号に対して相関二重サンプリング処理を施し、信号電荷のリセットに起因するノイズを除去する。AGCは、CDSによりノイズが除去された画像信号を増幅する。A/Dは、AGCで増幅された画像信号を、所定のビット数に応じた階調値を持つデジタルな画像信号に変換してプロセッサ装置12に入力する。 3, the AFE 45 includes a correlated double sampling circuit (CDS), an automatic gain control circuit (AGC), and an analog / digital converter (A / D) (all not shown). The CDS performs a correlated double sampling process on the analog image signal from the image sensor 44, and removes noise caused by resetting the signal charge. AGC amplifies an image signal from which noise has been removed by CDS. The A / D converts the image signal amplified by AGC into a digital image signal having a gradation value corresponding to a predetermined number of bits and inputs the digital image signal to the processor device 12.
 撮像制御部46は、プロセッサ装置12内のコントローラ56に接続されており、コントローラ56から入力されるベースクロック信号に同期して、撮像素子44に対して駆動信号を入力する。撮像素子44は、撮像制御部46からの駆動信号に基づいて、所定のフレームレートで画像信号をAFE45に出力する。 The imaging control unit 46 is connected to the controller 56 in the processor device 12 and inputs a drive signal to the imaging device 44 in synchronization with the base clock signal input from the controller 56. The imaging element 44 outputs an image signal to the AFE 45 at a predetermined frame rate based on the drive signal from the imaging control unit 46.
 プロセッサ装置12は、コントローラ56の他、DSP(Digital Signal Processor)57、画像処理部58と、フレームメモリ59と、表示制御回路60を備えている。コントローラ56は、CPU、制御プログラムや制御に必要な設定データを記憶するROM、プログラムをロードして作業メモリとして機能するRAM(Random Access Memory)などからなり、CPUが制御プログラムを実行することにより、プロセッサ装置12の各部を制御する。 The processor device 12 includes a DSP (Digital Signal Processor) 57, an image processing unit 58, a frame memory 59, and a display control circuit 60 in addition to the controller 56. The controller 56 includes a CPU, a ROM for storing control programs and setting data necessary for control, a RAM (Random Access Memory) that loads a program and functions as a working memory, and the CPU executes the control program. Each part of the processor unit 12 is controlled.
 DSP57は、撮像素子44が出力する画像信号を取得する。DSP57は、B、G、Rの各画素に対応する信号が混在した画像信号を、B、G、Rの画像信号に分離し、各色の画像信号に対して画素補間処理を行う。この他、DSP57は、ガンマ補正や、B、G、Rの各画像信号に対してホワイトバランス補正などの信号処理を施す。 The DSP 57 acquires an image signal output from the image sensor 44. The DSP 57 separates an image signal in which signals corresponding to B, G, and R pixels are mixed into B, G, and R image signals, and performs pixel interpolation processing on the image signals of the respective colors. In addition, the DSP 57 performs signal processing such as gamma correction and white balance correction on each of the B, G, and R image signals.
 フレームメモリ59は、DSP57が出力する画像データや、画像処理部58が処理した処理済みのデータを記憶する。表示制御回路60は、フレームメモリ59から画像処理済みの画像データを読み出して、コンポジット信号やコンポーネント信号などのビデオ信号に変換してモニタ14に出力する。 The frame memory 59 stores image data output from the DSP 57 and processed data processed by the image processing unit 58. The display control circuit 60 reads the image processed image data from the frame memory 59, converts it into a video signal such as a composite signal or a component signal, and outputs it to the monitor 14.
 図9Aに示すように、通常観察モードにおいては、画像処理部58は、DSP57によってB、G、Rの各色に色分離された画像信号B、G、Rに基づいて、通常観察用の表示画像を生成する。表示画像が、観察画像としてモニタ14に出力される。画像処理部58は、フレームメモリ59内の画像信号B、G、Rが更新される毎に、表示画像を更新する。 As shown in FIG. 9A, in the normal observation mode, the image processing unit 58 displays the display image for normal observation based on the image signals B, G, and R separated into B, G, and R colors by the DSP 57. Is generated. The display image is output to the monitor 14 as an observation image. The image processing unit 58 updates the display image every time the image signals B, G, and R in the frame memory 59 are updated.
 図9Bに示すように、血管強調観察モードにおいては、画像処理部58は、画像信号B、G、Rに基づいて、血管強調観察用の表示画像を生成する。血管強調観察モードにおける画像信号Bには、白色光のB成分(狭帯域光N1と蛍光FLの一部を含む)に加えて、狭帯域光N2の情報が含まれているため、表層血管が高コントラストで描出される。癌などの病変においては、正常組織と比較して、表層血管の密集度が高くなる傾向があるなど血管のパターンに特徴があるため、腫瘍の良悪鑑別を目的とする血管強調観察においては、表層血管が鮮明に描出されることが好ましい。 As shown in FIG. 9B, in the blood vessel enhancement observation mode, the image processing unit 58 generates a display image for blood vessel enhancement observation based on the image signals B, G, and R. The image signal B in the blood vessel enhancement observation mode includes information on the narrow band light N2 in addition to the B component of white light (including a part of the narrow band light N1 and the fluorescence FL). It is drawn with high contrast. In lesions such as cancer, there is a tendency to increase the density of superficial blood vessels compared to normal tissues, so there is a feature in the blood vessel pattern, so in blood vessel enhancement observation for the purpose of tumor discrimination, It is preferable that the superficial blood vessel is clearly depicted.
 また、より表層血管を強調する場合には、例えば、画像信号Bに基づいて表層血管の領域を抽出して、抽出した領域に対して輪郭強調処理などを施す。そして、輪郭強調処理が施された画像信号Bを、画像信号B、G、Rから生成したフルカラー画像に合成する。こうすることで、より表層血管が強調される。表層血管に加えて中深層血管に対しても同様の処理を行ってもよい。中深層血管を強調する場合には、中深層血管の情報が多く含まれている画像信号Gから中深層血管の領域を抽出して、抽出した領域に対して輪郭強調処理を施して、強調処理済みの画像信号Gを、画像信号B、G、Rから生成したフルカラー画像に合成する。 Further, when emphasizing the superficial blood vessel, for example, the superficial blood vessel region is extracted based on the image signal B, and the extracted region is subjected to contour emphasis processing or the like. Then, the image signal B that has undergone the contour enhancement processing is combined with a full-color image generated from the image signals B, G, and R. By doing so, the superficial blood vessels are more emphasized. The same processing may be performed on the middle- and deep-layer blood vessels in addition to the surface blood vessels. When emphasizing the middle-and-deep blood vessel, the region of the middle-and-deep blood vessel is extracted from the image signal G that includes a lot of information about the middle-and-deep blood vessel, and contour enhancement processing is performed on the extracted region. The completed image signal G is combined with a full-color image generated from the image signals B, G, and R.
 血管強調観察用の表示画像は、通常観察用と同様に、三色の画像信号B、G、Rに基づいて生成されるため観察部位をフルカラーで表示することが可能となるが、血管強調観察モードにおける画像信号Bは、通常観察モードにおける画像信号Bと比較すると、青色の濃度が高い。そのため、血管強調観察用の表示画像を生成する場合には、通常観察用の表示画像と同様の色味になるように色補正を行ってもよい。画像処理部58は、フレームメモリ59内の画像信号B、G、Rが更新される毎に、血管強調観察用の表示画像を生成する。 The display image for blood vessel enhancement observation is generated based on the three color image signals B, G, and R in the same way as for normal observation, so that the observation site can be displayed in full color. The image signal B in the mode has a higher blue density than the image signal B in the normal observation mode. For this reason, when a display image for blood vessel enhancement observation is generated, color correction may be performed so as to obtain a color similar to that of the normal observation display image. The image processing unit 58 generates a display image for blood vessel enhancement observation every time the image signals B, G, and R in the frame memory 59 are updated.
 なお、血管強調観察用の表示画像を生成する方式としては、画像信号Rを使わずに、画像信号B、Gの二色のみで生成して、画像信号Bをモニタ14のBチャンネル及びGチャンネルに、画像信号Gに対応する信号をモニタ14のRチャンネルに割り当てる方式など、観察部位を疑似カラーで表示する方式を採用してもよい。 As a method for generating a display image for blood vessel enhancement observation, the image signal B is generated using only two colors of the image signals B and G without using the image signal R, and the image signal B is generated by the B channel and the G channel of the monitor 14. In addition, a method of displaying the observation region in a pseudo color, such as a method of assigning a signal corresponding to the image signal G to the R channel of the monitor 14, may be employed.
 図9Cに示すように、酸素飽和度観察モードにおいては、画像処理部58は、白色光のもとで取得された画像信号G1、R1と、狭帯域光N3のもとで取得された画像信号B2に基づいて、酸素飽和度算出処理を行う。画像信号B2の画素値には、酸素飽和度に加えて血液量(濃度)の情報も含まれている。より正確に酸素飽和度を求めるためには、画像信号B2の画素値から血液量の情報を分離する必要がある。画像処理部58は、血液量に対して高い相関を示す画像信号Rを利用して、画像信号Bとの間で画像間演算を行って、酸素飽和度と血液量の情報を分離する。 As shown in FIG. 9C, in the oxygen saturation observation mode, the image processing unit 58 uses the image signals G1 and R1 acquired under white light and the image signal acquired under narrowband light N3. Based on B2, oxygen saturation calculation processing is performed. The pixel value of the image signal B2 includes blood volume (concentration) information in addition to oxygen saturation. In order to obtain the oxygen saturation more accurately, it is necessary to separate blood volume information from the pixel value of the image signal B2. The image processing unit 58 performs an inter-image calculation with the image signal B using the image signal R showing a high correlation with the blood volume, and separates oxygen saturation and blood volume information.
 具体的には、画像処理部58は、各画像信号B2、G1、R1の同じ位置の画素値を照合して、画像信号B2の画素値と画像信号G1の画素値の信号比B/Gと、画像信号R1の画素値と画像信号G1の画素値の信号比R/Gを求める。画像信号G1は、画像信号B2と画像信号R1の画素値を規格化するために、観察部位の明るさレベルを表す参照信号として用いられる。そして、予め作成された、信号比B/G及びR/Gと酸素飽和度及び血液量との相関関係を記憶したテーブルに基づいて、血液量の情報が分離された、酸素飽和度を算出する。そして、画像信号B1、G1、R1に基づいて生成されるフルカラー画像に対して、算出した酸素飽和度の値に応じた色変換を行って、酸素飽和度観察用の表示画像を生成する。 Specifically, the image processing unit 58 collates pixel values at the same position of the image signals B2, G1, and R1, and calculates a signal ratio B / G between the pixel value of the image signal B2 and the pixel value of the image signal G1. The signal ratio R / G between the pixel value of the image signal R1 and the pixel value of the image signal G1 is obtained. The image signal G1 is used as a reference signal representing the brightness level of the observation region in order to normalize the pixel values of the image signal B2 and the image signal R1. Then, based on a table that stores the correlation between the signal ratios B / G and R / G, the oxygen saturation, and the blood volume, the oxygen saturation that is obtained by separating the blood volume information is calculated. . Then, the full color image generated based on the image signals B1, G1, and R1 is subjected to color conversion in accordance with the calculated oxygen saturation value to generate a display image for oxygen saturation observation.
 図10において、光源装置13に設けられる分岐型ライトガイド41は、内視鏡11のライトガイド43と同様に、複数本の光ファイバをバンドル化したファイババンドルである。分岐型ライトガイド41は、出射端41eにおいて全ての光ファイバが1つに束ねられており、入射端に向かう途中で全ての光ファイバを4つに分割して、分割された各光ファイバをそれぞれ束ねることで複数の分岐部41a~41dが形成される。 In FIG. 10, the branched light guide 41 provided in the light source device 13 is a fiber bundle in which a plurality of optical fibers are bundled in the same manner as the light guide 43 of the endoscope 11. The branched light guide 41 has all the optical fibers bundled together at the exit end 41e, and divides all the optical fibers into four on the way to the incident end, A plurality of branch portions 41a to 41d are formed by bundling.
 分岐部41a、41bと分岐部41c、41dは、光ファイバを束ねる本数を変えることで太さが変えられており、それぞれの直径はD1、D2である。分岐部41a、41bの直径D1の方が、分岐部41c、41dの直径D2よりも太い。このように太さが違う理由は、1つには、分岐部41a、41bと対向する第1光源モジュール31が蛍光体36を使用しているため、蛍光体36を使用しない第2光源モジュール32、33と比較して、発光するビームの直径が大きくなるためである。もう1つの理由は、第1光源モジュール31は通常観察用の白色光を発光するので、特殊光観察用の第2光源モジュール32、33よりも大きな光量を確保するためである。 The thicknesses of the branch portions 41a and 41b and the branch portions 41c and 41d are changed by changing the number of bundled optical fibers, and the diameters thereof are D1 and D2. The diameter D1 of the branch portions 41a and 41b is thicker than the diameter D2 of the branch portions 41c and 41d. One reason for the difference in thickness is that the first light source module 31 that faces the branch portions 41a and 41b uses the phosphor 36, and therefore the second light source module 32 that does not use the phosphor 36. This is because the diameter of the emitted beam is larger than that of. Another reason is that the first light source module 31 emits white light for normal observation, so that a larger amount of light than the second light source modules 32 and 33 for special light observation is secured.
 具体的な寸法は、内視鏡11のライトガイド43の直径が約2mm程度であり、分岐型ライトガイド41の出射端41eの直径もそれに合わせて約2mm程度である。分岐部41a、41bの直径D1は、約1.0~1.4mm程度であり、分岐部41c、41dの直径D2は、約0.5~0.8mm程度である。 Specifically, the diameter of the light guide 43 of the endoscope 11 is about 2 mm, and the diameter of the exit end 41 e of the branched light guide 41 is about 2 mm accordingly. The diameter D1 of the branch portions 41a and 41b is about 1.0 to 1.4 mm, and the diameter D2 of the branch portions 41c and 41d is about 0.5 to 0.8 mm.
 分岐型ライトガイド41の出射端41eにはホモジナイザ50が設けられている。ホモジナイザ50は、内視鏡11のライトガイド43の前段において、第1~第3の光源モジュール31~33が発し、出射端41eが出射する各色の光の光量分布を均一化するものである。ホモジナイザ50は、透明ガラスなどの透明材料で形成され、光軸と直交する断面形状が円形の柱状体であり、入射端50aから入射した光を、空気との界面となる内部側面50bで全反射させながら光軸方向に伝播して出射端50cから出射する。 A homogenizer 50 is provided at the exit end 41e of the branched light guide 41. The homogenizer 50 equalizes the light quantity distribution of the light of each color emitted from the first to third light source modules 31 to 33 and emitted from the emission end 41e in the front stage of the light guide 43 of the endoscope 11. The homogenizer 50 is formed of a transparent material such as transparent glass and is a columnar body having a circular cross section perpendicular to the optical axis, and totally reflects light incident from the incident end 50a on the inner side surface 50b serving as an interface with air. Then, it propagates in the optical axis direction and exits from the exit end 50c.
 図11に示すように、分岐型ライトガイド41は、例えば、出射端41eにおいて二点鎖線で区画された各領域a~dに一端が位置する光ファイバが、それぞれ各分岐部41a~41dに割り当てられており、出射端41eにおいて各分岐部41a~41dに対応するそれぞれの光ファイバが居所的に偏在している。分岐部41a~41dから入射した光は、それぞれの光ファイバ内で伝播され、当然ながら光ファイバ間で伝播は無い。そのため、出射端41eにおいては、左上、右上の領域a、bから第1光源モジュール31が発する白色光が出射し、領域cから第2光源モジュール32が発する狭帯域光N2が出射し、領域dから第3光源モジュール33が発する狭帯域光N3が出射するというように、各色の光が偏在することになる。そのため、出射端41eから出射するビームの断面内においては、各色の光量分布が不均一になる。 As shown in FIG. 11, in the branched light guide 41, for example, an optical fiber having one end located in each of the regions a to d partitioned by a two-dot chain line at the emission end 41e is allocated to each of the branch portions 41a to 41d. Each of the optical fibers corresponding to the branch portions 41a to 41d is unevenly distributed at the exit end 41e. The light incident from the branch portions 41a to 41d is propagated in each optical fiber, and naturally there is no propagation between the optical fibers. Therefore, at the emission end 41e, white light emitted from the first light source module 31 is emitted from the upper left and upper right areas a and b, and the narrowband light N2 emitted from the second light source module 32 is emitted from the area c, and the area d Thus, the light of each color is unevenly distributed such that the narrow band light N3 emitted from the third light source module 33 is emitted. Therefore, the light quantity distribution of each color becomes non-uniform in the cross section of the beam emitted from the emission end 41e.
 図12に示すように、ホモジナイザ50は、入射端50aの端面から入射した光を側面50bで全反射させながら光を光軸方向に伝播するため、光軸と直交する断面内において光の入射位置と出射位置が変化する。こうした作用により、分岐型ライトガイド41の出射端41eにおける各色の光の偏在が解消されて、ライトガイド43に入射する入射ビームの断面内において各色の光の光量分布が均一化される。ホモジナイザ50と出射端41eは、端面同士を突き当てて熱融着されて一体化される。 As shown in FIG. 12, the homogenizer 50 propagates light in the direction of the optical axis while totally reflecting light incident from the end surface of the incident end 50a on the side surface 50b. Therefore, the incident position of light in the cross section orthogonal to the optical axis. And the emission position changes. By such an action, the uneven distribution of the light of each color at the emission end 41e of the branched light guide 41 is eliminated, and the light quantity distribution of the light of each color is made uniform in the cross section of the incident beam incident on the light guide 43. The homogenizer 50 and the emission end 41e are integrated by heat-sealing with the end faces abutting each other.
 図13及び図14に示すように、第1光源モジュール31は、レーザモジュール61と、蛍光部62と、レーザモジュール61の光を蛍光部62に導光する単線の光ファイバ63と、蛍光部62の先端に取り付けられる発散角補正部64とを備えている。レーザモジュール61は、レーザダイオードLD1を有する発光素子部66と、発光素子部66を収容するケース67とを備えており、ケース67には光ファイバ63の一端を接続する接続部67aが設けられ、ケース67内に集光レンズ68が内蔵された、いわゆるレセプタクル型のモジュールである。 As shown in FIGS. 13 and 14, the first light source module 31 includes a laser module 61, a fluorescent part 62, a single-line optical fiber 63 that guides the light of the laser module 61 to the fluorescent part 62, and a fluorescent part 62. The divergence angle correction | amendment part 64 attached to the front-end | tip of this is provided. The laser module 61 includes a light emitting element portion 66 having a laser diode LD1 and a case 67 that accommodates the light emitting element portion 66. The case 67 is provided with a connection portion 67a that connects one end of the optical fiber 63. This is a so-called receptacle type module in which a condensing lens 68 is built in a case 67.
 発光素子部66は、支持体となる円板状のステム66aの一面に発光素子であるレーザダイオードLD1が取り付けられて、樹脂製の円筒状の透明キャップ66bでレーザダイオードLD1を覆ったものである。ステム66aの裏面からは、リード線66cが延びている。 The light emitting element portion 66 is obtained by mounting a laser diode LD1 as a light emitting element on one surface of a disk-shaped stem 66a serving as a support, and covering the laser diode LD1 with a resin-made cylindrical transparent cap 66b. . A lead wire 66c extends from the back surface of the stem 66a.
 レーザダイオードLD1は、図54に示したとおり、P型半導体からなるP層とN型半導体からなるN層が活性層を挟んで接合されたものであり、レーザ発振により活性層からレーザ光を発する。レーザ光は直進性が高いが、ビーム形状が発光点から略円錐状に広がる発散光である。ビームの光軸と直交する断面形状は略楕円形状をしている。レーザ光は集光レンズ68によって光ファイバ63の入射端に集光される。 As shown in FIG. 54, the laser diode LD1 is formed by joining a P layer made of a P-type semiconductor and an N layer made of an N-type semiconductor with an active layer interposed therebetween, and emits laser light from the active layer by laser oscillation. . Laser light is highly divergent, but is divergent light whose beam shape spreads from the light emitting point in a substantially conical shape. The cross-sectional shape orthogonal to the optical axis of the beam is substantially elliptical. The laser light is condensed at the incident end of the optical fiber 63 by the condenser lens 68.
 光ファイバ63の出射端は、蛍光部62に接続される。蛍光部62は、遮光性を有する円筒状の保護ケース62a内に蛍光体36を充填したものである。蛍光体36の中心には、光ファイバ63が挿入される挿通孔が形成されている。光ファイバ63は、その端部に接続用のフェルール(図示せず)が取り付けられた状態で蛍光体36に挿入される。 The outgoing end of the optical fiber 63 is connected to the fluorescent part 62. The fluorescent part 62 is obtained by filling a fluorescent material 36 in a cylindrical protective case 62a having a light shielding property. An insertion hole into which the optical fiber 63 is inserted is formed at the center of the phosphor 36. The optical fiber 63 is inserted into the phosphor 36 with a connection ferrule (not shown) attached to its end.
 蛍光体36は、粉末状の蛍光材料を、樹脂材料からなるバインダに分散して固めたものである。蛍光材料は分散されているため、励起された蛍光FLの発光点は、蛍光体36の出射端面の全域となる。また、蛍光体36を透過するレーザ光もバインダの光拡散作用により蛍光体36内で拡散するため、出射端面の全域が発光点となる。 The phosphor 36 is obtained by dispersing and solidifying a powdery fluorescent material in a binder made of a resin material. Since the fluorescent material is dispersed, the emission point of the excited fluorescence FL is the entire emission end face of the phosphor 36. Further, since the laser light transmitted through the phosphor 36 is also diffused in the phosphor 36 by the light diffusing action of the binder, the entire area of the emission end face becomes a light emitting point.
 蛍光体36から発する光は、レーザダイオードLD1と同様に、発光点から略円錐状に広がる発散光であるが、レーザダイオードLD1と比較すると、発光点の面積及びビームの発散角が大きい。 Like the laser diode LD1, the light emitted from the phosphor 36 is a diverging light that spreads in a substantially conical shape from the light emitting point. However, compared with the laser diode LD1, the area of the light emitting point and the beam divergence angle are large.
 蛍光部62の前方には、蛍光体36の出射端面36aから発する光の発散角を補正する発散角補正部64が設けられている。発散角補正部64は、先端に向かって直径が広がる円筒形状をしており、遮光性の材料で形成されている。発散角補正部64は、蛍光体36が発する発散光の広がりを規制して発散角を小さくする。また、発散角補正部64は、内壁面64aに反射材がコーティングされることにより鏡面が形成されており、内壁面64aはリフレクタとして機能する。そのため、光を内壁面64aで鏡面反射させながら光軸方向に伝播する。内壁面64aを鏡面にすることで光の吸収を減らしているため、光伝達損失が少ない。 A divergence angle correction unit 64 that corrects the divergence angle of light emitted from the emission end surface 36a of the phosphor 36 is provided in front of the fluorescent unit 62. The divergence angle correction unit 64 has a cylindrical shape whose diameter increases toward the tip, and is formed of a light shielding material. The divergence angle correction unit 64 reduces the divergence angle by regulating the spread of the divergent light emitted from the phosphor 36. The divergence angle correction unit 64 has a mirror surface formed by coating the inner wall surface 64a with a reflective material, and the inner wall surface 64a functions as a reflector. Therefore, the light propagates in the optical axis direction while being specularly reflected by the inner wall surface 64a. Since the light absorption is reduced by making the inner wall surface 64a a mirror surface, there is little light transmission loss.
 発散角補正部64は、分岐部41a、41bの直径D1を考慮して、直径や光軸に対する傾斜角が設定されており、直径や傾斜角は、第1光源モジュール31から分岐部41a、41bに入射するビームのスポット径が分岐部41a、41bの直径D1とほぼ一致するように、設定される。 The divergence angle correction unit 64 is set with an inclination angle with respect to the diameter and the optical axis in consideration of the diameter D1 of the branch portions 41a and 41b. The diameter and the tilt angle are changed from the first light source module 31 to the branch portions 41a and 41b. Is set so that the spot diameter of the beam incident on the beam substantially coincides with the diameter D1 of the branch portions 41a and 41b.
 また、発散角は、分岐型ライトガイド41や内視鏡11のライトガイド43などのファイババンドルの素線となる光ファイバのNA(開口数:Numerical Aperture)に合わせて設定される。周知のように、光ファイバは、屈折率の高いコアと、コアの周囲に配された、屈折率が低いクラッドとからなり、光ファイバの入射端から入射した入射光は、コアとクラッドの境界において全反射しながら光軸方向に伝播する。光を伝播させるためには、全反射条件を満たす入射角で、光ファイバの入射端に光を入射させることが必要である。 Also, the divergence angle is set according to the NA (numerical aperture: Numerical Aperture) of an optical fiber that is a strand of a fiber bundle such as the branched light guide 41 or the light guide 43 of the endoscope 11. As is well known, an optical fiber is composed of a core having a high refractive index and a clad having a low refractive index disposed around the core. The incident light incident from the incident end of the optical fiber is a boundary between the core and the clad. And propagates in the optical axis direction while totally reflecting. In order to propagate the light, it is necessary to make the light incident on the incident end of the optical fiber at an incident angle that satisfies the total reflection condition.
 NAは、光ファイバがどれだけ光を集めることができるかを表す指標であり、最大受光角θmaxのsinで定義される(NA=sinθmax)。最大受光角θmaxが大きいほどNAの値は大きい。光ファイバに入射する入射光線の入射角が最大受光角θmax以下であれば、光ファイバ内においてコアとクラッドの境界で全反射が生じるため、入射光線は光軸方向に伝播して導光される。入射角が最大受光角θmaxを越えると、全反射せずに透過してしまうため、導光されない。導光されない入射光線は光伝達損失となる。光伝達損失を低減するために、発散角補正部64は、第1光源モジュール31のビームの発散角を、最大受光角θmax以下に規制する。 NA is an index representing how much light can be collected by the optical fiber, and is defined by sin of the maximum light receiving angle θmax (NA = sin θmax). The larger the maximum light receiving angle θmax, the larger the NA value. If the incident angle of the incident light incident on the optical fiber is less than or equal to the maximum light receiving angle θmax, total reflection occurs at the boundary between the core and the clad in the optical fiber, so that the incident light propagates in the optical axis direction and is guided. . When the incident angle exceeds the maximum light receiving angle θmax, light is not guided because it is transmitted without being totally reflected. Incident light that is not guided becomes a light transmission loss. In order to reduce the light transmission loss, the divergence angle correction unit 64 regulates the divergence angle of the beam of the first light source module 31 to be equal to or less than the maximum light receiving angle θmax.
 また、上述のとおり、レーザダイオードLD1が発するレーザ光のビームにおいて、光軸と直交する断面形状は略楕円形をしている。しかし、レーザ光に含まれる光線は、蛍光体36内で拡散されるため、蛍光体36の出射端面のほぼ全域から四方八方に出射される。発散角補正部64は断面形状が略真円形をしているので、蛍光体36から出射したレーザ光は、発散角補正部64により、ビームBM(図54参照)の断面形状が略真円形に整形される。また、レーザ光によって励起された蛍光についても、同様に、発散角補正部64の作用により、略真円形に整形される。そのため、第1光源モジュール31からは、レーザ光(狭帯域光N1)及び蛍光(FL)が混合された混合光が出射されるが、混合光は、断面形状が略真円形状のビームとして出射される。 Further, as described above, in the laser beam emitted from the laser diode LD1, the cross-sectional shape orthogonal to the optical axis is substantially elliptical. However, since the light beam contained in the laser light is diffused in the phosphor 36, it is emitted in almost all directions from almost the entire emission end face of the phosphor 36. Since the cross-sectional shape of the divergence angle correction unit 64 is substantially true circle, the cross-sectional shape of the beam BM (see FIG. 54) of the laser light emitted from the phosphor 36 is made substantially circular by the divergence angle correction unit 64. It is shaped. Similarly, the fluorescence excited by the laser light is shaped into a substantially perfect circle by the action of the divergence angle correction unit 64. Therefore, the first light source module 31 emits mixed light in which laser light (narrow band light N1) and fluorescence (FL) are mixed, and the mixed light is emitted as a beam having a substantially circular cross section. Is done.
 図15に示すように、第2光源モジュール32は、発光素子部71と、発散角補正部72と、ビーム整形部73とからなる。発光素子部71は、レーザダイオードLD2を備えており、その形態は、第1光源モジュール31の発光素子部66と同様である。発散角補正部72及びビーム整形部73は、ともに、石英などの透明材料で形成された柱状体である導光ロッドであり、ライトパイプ、ライトトンネルなどとも呼ばれる。 As shown in FIG. 15, the second light source module 32 includes a light emitting element unit 71, a divergence angle correction unit 72, and a beam shaping unit 73. The light emitting element unit 71 includes a laser diode LD2, and the form thereof is the same as that of the light emitting element unit 66 of the first light source module 31. The divergence angle correction unit 72 and the beam shaping unit 73 are both light guide rods that are columnar bodies made of a transparent material such as quartz, and are also called light pipes, light tunnels, and the like.
 発光素子部71は、ビーム整形部73の入射端73aの端面(入射面)と対向して配置され、ビーム整形部73の出射端73cの端面(出射面)と、発散角補正部72の入射端72aの端面が対向して配置される。発散角補正部72は、例えば、入射端72aの端面とビーム整形部73の出射端73cの端面が熱融着されており、ビーム整形部73の入射端73aの端面は発光素子部71の先端の端面と熱融着されている。これにより、発散角補正部72、ビーム整形部73、発光素子部71の3つの部品が一体化されている。熱融着により一体化されているため、各部が一体化されておらず各部の間に空気が介在している場合と比較して、その光路中において空気との境界面が少ない。そのため、境界面によるフレネルロスが少なく、光伝達損失を低減できる。 The light emitting element unit 71 is disposed to face the end surface (incident surface) of the incident end 73 a of the beam shaping unit 73, the end surface (exit surface) of the emission end 73 c of the beam shaping unit 73, and the incident angle of the divergence angle correcting unit 72. The end surfaces of the ends 72a are arranged to face each other. In the divergence angle correction unit 72, for example, the end surface of the incident end 72 a and the end surface of the output end 73 c of the beam shaping unit 73 are thermally fused, and the end surface of the incident end 73 a of the beam shaping unit 73 is the tip of the light emitting element unit 71. It is heat-sealed with the end face. Thereby, the three components of the divergence angle correction part 72, the beam shaping part 73, and the light emitting element part 71 are integrated. Since they are integrated by heat fusion, there is less interface with air in the optical path as compared to the case where each part is not integrated and air is interposed between each part. Therefore, there is little Fresnel loss due to the boundary surface, and light transmission loss can be reduced.
 図16に示すように、発散角補正部72及びビーム整形部73は、ホモジナイザ50と同様に、入射面から入射した光を、空気との境界面となる、側面部の内面(反射側面)において全反射させながら光軸方向に伝播して出射面から出射する光学素子である。 As shown in FIG. 16, the divergence angle correction unit 72 and the beam shaping unit 73 are similar to the homogenizer 50, and light incident from the incident surface is formed on the inner surface (reflection side surface) of the side surface serving as a boundary surface with air. It is an optical element that propagates in the direction of the optical axis while being totally reflected and exits from the exit surface.
 発散角補正部72は、入射端72aよりも出射端72cの径が細い先細形状をしており、側面72bは光軸に対して傾斜したテーパ形状となっている。そのため、入射した光は、1回目の反射角θ1よりも2回目の反射角θ2が小さくなるというように、側面72bで反射を繰り返すと、反射角θが徐々に小さくなっていく。反射角θの減少は、発散角が拡大することを意味する。発散角補正部72の作用により、レーザダイオードLD2が発する光の発散角をβ1とすると、発散角補正部72の出射端72cにおける発散角はβ2に拡大される。 The divergence angle correction unit 72 has a tapered shape in which the diameter of the emission end 72c is smaller than that of the incident end 72a, and the side surface 72b has a tapered shape inclined with respect to the optical axis. Therefore, when the reflected light is repeatedly reflected on the side surface 72b so that the incident light has a second reflection angle θ2 smaller than the first reflection angle θ1, the reflection angle θ gradually decreases. A decrease in the reflection angle θ means that the divergence angle increases. Due to the action of the divergence angle correction unit 72, when the divergence angle of the light emitted from the laser diode LD2 is β1, the divergence angle at the emission end 72c of the divergence angle correction unit 72 is expanded to β2.
 発散角補正部72の光軸方向の長さが長いほど、側面72bにおける反射回数が多くなるため、発散角の拡大効果は大きい。また、側面72bの傾斜角が大きいほど、1回の反射による発散角の拡大効果は大きい。 The longer the length of the divergence angle correction unit 72 in the optical axis direction, the greater the number of reflections on the side surface 72b, so the effect of expanding the divergence angle is greater. Moreover, the larger the inclination angle of the side surface 72b, the greater the effect of expanding the divergence angle by one reflection.
 発散角補正部72の補正量は、発散角β2が、第1光源モジュール31が出射する発散角α(図14参照)とほぼ一致するように設定される。発散角は、ホモジナイザ50や内視鏡11のライトガイド43での導光過程においても保存される。そのため、図17に示すように、ライトガイド43の1本1本の光ファイバ201が出射する、第1光源モジュール31の光の発散角αと、第2光源モジュール32の光の発散角β(図16におけるβ2)を一致させることで、観察部位SBにおける、第1光源モジュール31の光の照射スポット径SDαと、第2光源モジュール32の光の照射スポット径SDβを同じにすることができる。照射スポット径SDα、SDβが一致していないと、両者の重なり方にムラが生じるため、色ムラの原因となる。発散角補正部72により、発散角βを発散角αと一致させることにより、照射スポット径SDα、SDβを一致させることができるため、上記色ムラが防止される。 The correction amount of the divergence angle correction unit 72 is set so that the divergence angle β2 substantially coincides with the divergence angle α (see FIG. 14) emitted from the first light source module 31. The divergence angle is also preserved in the light guiding process by the homogenizer 50 or the light guide 43 of the endoscope 11. Therefore, as shown in FIG. 17, the light divergence angle α of the first light source module 31 and the light divergence angle β ( By matching β2) in FIG. 16, the light irradiation spot diameter SDα of the first light source module 31 and the light irradiation spot diameter SDβ of the second light source module 32 in the observation region SB can be made the same. If the irradiation spot diameters SDα and SDβ do not match, unevenness occurs in the way they overlap, causing color unevenness. By causing the divergence angle correction unit 72 to match the divergence angle β with the divergence angle α, the irradiation spot diameters SDα and SDβ can be made to match, so that the color unevenness is prevented.
 図15において、ビーム整形部73は、入射端73aの端面(入射面)から出射端73cの端面(出射面)に向かって長手方向に延びる、光軸と平行な長手軸を有する柱状体であり、長手軸と直交する断面形状が六角形の六角柱である。側面部73bは長手方向に沿って形成されており、断面形状が六角柱であるので、当然ながら、側面部73bは6つの平面で構成される。 In FIG. 15, a beam shaping unit 73 is a columnar body having a longitudinal axis extending in the longitudinal direction from the end face (incident surface) of the incident end 73a toward the end face (exiting surface) of the exit end 73c and parallel to the optical axis. The cross-sectional shape orthogonal to the longitudinal axis is a hexagonal prism having a hexagonal shape. Since the side surface portion 73b is formed along the longitudinal direction and the cross-sectional shape is a hexagonal column, the side surface portion 73b is naturally composed of six planes.
 図16に示すように、ビーム整形部73の入射端73aには、レーザダイオードLD2が発するビームが入射する。側面部73bの内面は、空気との境界面となる。そのため、側面部73bの内面は、ビーム整形部73内に入射したビームのうち、全反射条件を満たす角度で側面部73bの内面に入射する光線が全反射する反射側面となる。ビーム整形部73は、入射端73aに入射したビームを、側面部73bの内面で全反射させながら光軸方向に導光する。 As shown in FIG. 16, the beam emitted from the laser diode LD2 enters the incident end 73a of the beam shaping unit 73. The inner surface of the side surface portion 73b becomes a boundary surface with air. Therefore, the inner surface of the side surface portion 73b becomes a reflective side surface in which the light incident on the inner surface of the side surface portion 73b at an angle satisfying the total reflection condition among the beams incident in the beam shaping portion 73 is totally reflected. The beam shaping unit 73 guides the beam incident on the incident end 73a in the optical axis direction while totally reflecting the inner surface of the side surface portion 73b.
 レーザダイオードLD2が発するビームは、レーザダイオードLD1と同様に光軸と直交する断面形状が略楕円形をしている(図54参照)。ビーム整形部73は、導光中にビームの略楕円形の断面形状を略真円形に整形して、整形後のビームを出射端73cから出射する。 The beam emitted from the laser diode LD2 has a substantially elliptical cross-sectional shape orthogonal to the optical axis as in the laser diode LD1 (see FIG. 54). The beam shaping unit 73 shapes the substantially elliptical cross-sectional shape of the beam into a substantially perfect circle during light guide, and emits the shaped beam from the emission end 73c.
 図18に示すように、ビーム整形部73は、六角形の中心を通る光軸Aと、レーザダイオードLD2から入射する入射ビームBMinの発光中心OPがほぼ一致するように、発光素子部71との相対的な位置が位置決めされている。入射ビームBMinは、例えば、長軸LAが垂直方向(Y方向)に、短軸SAが水平方向(X方向)に位置するような縦長の状態で、ビーム整形部73に入射する。入射ビームBMinに含まれる光線は、発光中心OPから放射状に広がる。 As shown in FIG. 18, the beam shaping unit 73 is connected to the light emitting element unit 71 so that the optical axis A passing through the center of the hexagon and the light emission center OP of the incident beam BMin incident from the laser diode LD2 substantially coincide with each other. The relative position is positioned. For example, the incident beam BMin is incident on the beam shaping unit 73 in a vertically long state in which the long axis LA is positioned in the vertical direction (Y direction) and the short axis SA is positioned in the horizontal direction (X direction). Light rays included in the incident beam BMin spread radially from the emission center OP.
 図19に示すように、断面形状が略楕円形をしている入射ビームBMinの強度分布は、異方性を有しており、実線で示す長軸LA方向と、点線で示す短軸SA方向の強度分布が異なる。 As shown in FIG. 19, the intensity distribution of the incident beam BMin having a substantially elliptical cross section has anisotropy, and the major axis LA direction indicated by the solid line and the minor axis SA direction indicated by the dotted line. The intensity distribution is different.
 ここで、強度分布のグラフは、縦軸に放射強度を、横軸に放射強度を測定する測定位置の角度(放射角度)をとったグラフである。強度分布は、レーザダイオードを中心に、測定部を回転させながら各放射角度における放射強度を測定し、測定した放射強度をプロットした分布である。測定方法は、測定部とレーザダイオードの光軸(発光中心)が一致する位置を放射角度が0°の測定位置とし、その位置を基準として測定部を正方向及び負方向に回転させて、各測定位置(放射角度)における放射強度を測定する。放射強度は、放射角度が0°の測定位置において最大となり、強度分布は、周辺に向かうにつれて(放射角度が大きくなるにつれて)低下する山形の分布となる。レーザダイオードの発散角θは、グラフにおいて、放射強度のピーク値(max)に対して半値(half)を示すときの全幅の1/2である半値半幅(half width at half maximum, HWHM)で表される。長軸LA方向の発散角θyinが広く、短軸SA方向の発散角θxinが狭くなる。具体的には、長軸LA方向の発散角θyinは約11°~14°であり、短軸SA方向の発散角θxinは、その半分の約5°~7°である。 Here, the graph of the intensity distribution is a graph in which the vertical axis represents the radiation intensity and the horizontal axis represents the angle (radiation angle) of the measurement position at which the radiation intensity is measured. The intensity distribution is a distribution in which the radiation intensity at each radiation angle is measured while rotating the measurement unit around the laser diode, and the measured radiation intensity is plotted. In the measurement method, a position where the optical axis (emission center) of the measurement unit and the laser diode coincide is set as a measurement position with a radiation angle of 0 °, and the measurement unit is rotated in the positive direction and the negative direction based on the position. The radiation intensity at the measurement position (radiation angle) is measured. The radiation intensity becomes maximum at the measurement position where the radiation angle is 0 °, and the intensity distribution is a mountain-shaped distribution that decreases toward the periphery (as the radiation angle increases). The divergence angle θ of the laser diode is expressed in half-width (half width at half maximum, HWHM), which is 1/2 of the full width when the half value is shown with respect to the peak value (max) of the radiation intensity in the graph. Is done. The divergence angle θyin in the major axis LA direction is wide, and the divergence angle θxin in the minor axis SA direction is narrowed. Specifically, the divergence angle θyin in the major axis LA direction is about 11 ° to 14 °, and the divergence angle θxin in the minor axis SA direction is about 5 ° to 7 °, which is half of the divergence angle.
 また、図18において、ビーム整形部73は、長軸LA及び短軸SAに対して、光軸A周りに角度φLだけ傾いた姿勢で配置されている。角度φLは、ビーム整形部73の六角形の断面内において、対向する2つの頂点同士を結び、光軸Aを通る軸をA1とし、軸A1と直交し、対向する2つの辺Sの中点同士を結び、光軸Aを通る軸をA2としたときに、軸A1及び軸A2が、長軸LA及び短軸SAのそれぞれとの間で成す角度である。角度φLは、本例においては15°である。 Further, in FIG. 18, the beam shaping unit 73 is arranged in a posture inclined by an angle φL around the optical axis A with respect to the long axis LA and the short axis SA. In the hexagonal cross section of the beam shaping unit 73, the angle φL connects two opposing vertices, an axis passing through the optical axis A is A1, a midpoint between two opposing sides S orthogonal to the axis A1 The axis A1 and the axis A2 are angles formed between the major axis LA and the minor axis SA, where A2 is an axis passing through the optical axis A. The angle φL is 15 ° in this example.
 このようにビーム整形部73を傾けると、入射ビームBMinの長軸LA及び短軸SAの両方が、ビーム整形部73の側面部73bの内面を構成する、六角形の各辺Sと直交しない状態となる。これは、長軸LA及び短軸SAと、側面部73bの内面(反射側面)とが、垂直以外の角度で交差する斜交した状態と言い換えることができる。これにより、入射ビームBMinに含まれる光線のうち、長軸LA及び短軸SAのそれぞれと平行な長軸成分及び短軸成分の両方が、各辺Sに対して垂直以外の角度で入射することになる。このように、各辺Sに対して垂直以外の角度で入射した場合の光線の軌跡は、次のようになる。 When the beam shaping unit 73 is tilted in this way, both the long axis LA and the short axis SA of the incident beam BMin are not orthogonal to the hexagonal sides S constituting the inner surface of the side surface portion 73b of the beam shaping unit 73. It becomes. In other words, the long axis LA and the short axis SA and the inner surface (reflection side surface) of the side surface portion 73b cross each other at an angle other than vertical. As a result, of the light rays included in the incident beam BMin, both the long axis component and the short axis component parallel to the major axis LA and the minor axis SA are incident on each side S at an angle other than perpendicular. become. In this way, the trajectory of the light ray when incident on each side S at an angle other than perpendicular is as follows.
 図20、21に示すように、入射ビームBMinの光線の短軸成分をRSとすると、短軸成分RSは、発光中心OPからビーム整形部73の入射端73aに入射する。発光中心OPと光軸Aは一致しているため、ビーム整形部73の通る光軸A(Z方向)と直交する断面内においては、短軸成分RSは、光軸Aを基点として短軸SAと平行なX方向に放射される。そして、側面部73bの内面を構成する、六角形の一つの辺Sに入射する。ここを1回目の反射点P1として短軸成分RSは全反射する。ここで、ビーム整形部73の角度φLの傾斜により、短軸成分RSは、辺Sに対して垂直以外の角度、つまり、辺Sの法線Hに対して角度φLの入射角が付いた状態で入射するため、反射点P1において反射角φLの角度で反射する。これは反射点P1における反射により短軸成分RSに対して光軸A周りで捩れが生じることを意味する。 20 and 21, assuming that the short axis component of the light beam of the incident beam BMin is RS, the short axis component RS is incident on the incident end 73a of the beam shaping unit 73 from the light emission center OP. Since the emission center OP and the optical axis A coincide with each other, the short axis component RS has a short axis SA with the optical axis A as a base point in a cross section orthogonal to the optical axis A (Z direction) through which the beam shaping unit 73 passes. Is emitted in the X direction parallel to the. And it injects into the one side S of the hexagon which comprises the inner surface of the side part 73b. This is the first reflection point P1, and the short axis component RS is totally reflected. Here, due to the inclination of the beam shaping unit 73 by the angle φL, the minor axis component RS has an angle other than perpendicular to the side S, that is, an incident angle of the angle φL with respect to the normal H of the side S. Therefore, the light is reflected at the reflection point P1 at the reflection angle φL. This means that a twist occurs around the optical axis A with respect to the short-axis component RS due to reflection at the reflection point P1.
 反射点P1で反射した短軸成分RSは別の辺Sに入射して、ここが2回目の反射点P2となる。反射点P1における反射により、短軸成分RSは光軸A周りの捩れが生じているため、反射点P2においても、辺Sに対して垂直以外の角度で入射する。そして、辺Sの法線に対して0°以上の反射角で反射して、反射点P3に向かう。同様に反射点P3においても、短軸成分RSは、辺Sに対して垂直以外の角度で入射し、反射点P3においても光軸A周りの捩れが生じる。 The short axis component RS reflected at the reflection point P1 is incident on another side S, and this is the second reflection point P2. Due to the reflection at the reflection point P1, the short axis component RS is twisted around the optical axis A, so that the reflection point P2 also enters the side S at an angle other than perpendicular. And it reflects with the reflection angle of 0 degree or more with respect to the normal line of the edge | side S, and goes to the reflection point P3. Similarly, the short-axis component RS is incident on the reflection point P3 at an angle other than perpendicular to the side S, and twisting around the optical axis A occurs at the reflection point P3.
 短軸成分RSは、反射点P1~P3のそれぞれにおいて、光軸A周りの捩れを繰り返す。そのため、図21に示す二点鎖線の円弧状の矢印に示すように、短軸成分RSは、ビーム整形部73内を、あたかも光軸A周りを旋回しながら光軸A方向に進行することになる。このように、短軸成分RSの放射方向は、ビーム整形部73内の導光中に変化するため、入射時点の放射方向とは、異なる方向に出射する。例えば、仮に導光中の反射点P1~P3の3回の反射による光軸A周りの捩れ角が90°だとすると、入射時点におけるX方向と平行な短軸成分RSの放射方向が、出射時点においてはY方向と直交する成分となる。 The short axis component RS repeats torsion around the optical axis A at each of the reflection points P1 to P3. Therefore, the short axis component RS travels in the direction of the optical axis A as if turning around the optical axis A in the beam shaping unit 73, as indicated by a two-dot chain arc-shaped arrow shown in FIG. Become. Thus, since the radiation direction of the short axis component RS changes during the light guide in the beam shaping unit 73, the minor axis component RS is emitted in a direction different from the radiation direction at the time of incidence. For example, if the torsion angle around the optical axis A due to three reflections at the reflection points P1 to P3 during light guide is 90 °, the radiation direction of the short axis component RS parallel to the X direction at the time of incidence is Is a component orthogonal to the Y direction.
 一方、図20に示すように、短軸成分RSは、光軸Aと平行な面内においては、入射時点における発散角θxが導光中においても保存されて、発散角θxが保持された状態で出射される。これは、ビーム整形部73は、発散角補正部72(図16参照)とは異なり、入射端73aから出射端73cまで太さが一定であり、側面部73bが光軸と平行であるためである。 On the other hand, as shown in FIG. 20, in the short axis component RS, in the plane parallel to the optical axis A, the divergence angle θx at the time of incidence is preserved even during light guiding, and the divergence angle θx is maintained. It is emitted at. This is because, unlike the divergence angle correction unit 72 (see FIG. 16), the beam shaping unit 73 has a constant thickness from the entrance end 73a to the exit end 73c, and the side surface portion 73b is parallel to the optical axis. is there.
 図22、23は、短軸成分RSと直交する長軸成分RLの軌跡を示している。長軸成分RLは、光軸Aと直交する断面内においては、光軸Aを基点としてY方向に放射される。そして、長軸成分RLは、ビーム整形部73に入射後の1回目の反射点P1において、角度φLのビーム整形部73の傾斜により、辺Sに対して垂直以外の角度、つまり、辺Sの法線Hに対して角度φLの入射角が付いた状態で入射する。そのため、長軸成分RLは、短軸成分RSと同様に、反射点P1での反射により光軸A周りで捩れが生じる。 22 and 23 show the trajectory of the long-axis component RL orthogonal to the short-axis component RS. The long axis component RL is radiated in the Y direction with the optical axis A as a base point in a cross section orthogonal to the optical axis A. The major axis component RL is an angle other than perpendicular to the side S, that is, the angle of the side S due to the inclination of the beam shaping unit 73 at the angle φL at the first reflection point P1 after entering the beam shaping unit 73. Incident with an incident angle of φL with respect to the normal H. Therefore, the long axis component RL is twisted around the optical axis A due to reflection at the reflection point P1, as with the short axis component RS.
 これにより、長軸成分RLは、反射点P2、P3で反射を繰り返す毎に、光軸A周りの捩れを繰り返すため、図23に示す二点鎖線の円弧状の矢印に示すように、あたかも、光軸A周りを旋回しながら進行する。そのため、長軸成分RLも、短軸成分RSと同様に、その放射方向がビーム整形部73内の導光中に変化するため、入射時点の放射方向とは、異なる方向に出射する。例えば、仮に導光中の反射点P1~P3の3回の反射による光軸A周りの捩れ角が90°だとすると、入射時点における放射方向がY方向と平行な長軸成分RLは、出射時点においてはX方向と平行な成分となる。 As a result, the long axis component RL repeats torsion around the optical axis A every time it is reflected at the reflection points P2 and P3. As shown in the arc of the two-dot chain line shown in FIG. It advances while turning around the optical axis A. For this reason, the long-axis component RL also emits in a direction different from the radiation direction at the time of incidence, since the radiation direction of the long-axis component RL changes during light guide in the beam shaping unit 73, as with the short-axis component RS. For example, if the torsion angle around the optical axis A due to three reflections at the reflection points P1 to P3 during light guiding is 90 °, the long-axis component RL whose radiation direction at the time of incidence is parallel to the Y direction is Is a component parallel to the X direction.
 一方、図22に示すように、長軸成分RLについても、短軸成分RSと同様に、光軸と平行な面内においては、入射時点における発散角θyが導光中においても保存されて、発散角θyが保持された状態で出射される。 On the other hand, as shown in FIG. 22, for the long axis component RL, the divergence angle θy at the time of incidence is preserved even during light guiding in the plane parallel to the optical axis, as in the short axis component RS. The light is emitted with the divergence angle θy maintained.
 以上の説明では、入射ビームBMinに含まれる光線のうちの短軸成分RSと長軸成分RLについて説明したが、短軸成分RSと長軸成分RLの間の中間成分の多くについても、同様に、光軸A周りの捩れが生じる。 In the above description, the short axis component RS and the long axis component RL of the light rays included in the incident beam BMin have been described. However, the same applies to many of the intermediate components between the short axis component RS and the long axis component RL. Twist around the optical axis A occurs.
 例えば、図24に示す光線R1は、入射ビームBMinにおける放射方向が短軸成分RSと長軸成分RLとの間にある中間成分である。光線R1は、短軸成分RSや長軸成分RLと同様に、辺Sに対して垂直以外の角度で入射するため、反射点P1~P3における反射により、光軸A周りで捩れが生じて放射方向が変化する。ただし、光線R1は、入射時点における放射方向が短軸成分RSや長軸成分RLと異なるので、1回目の反射点P1における辺Sに対する入射角は短軸成分RSや長軸成分RLと異なる。そのため、光線R1の光軸A周りの捩れ角の大きさや、捩れの向き(円弧状の矢印で示すように光線R1が光軸A周りに旋回する向き)が異なる。 For example, the light ray R1 shown in FIG. 24 is an intermediate component in which the radiation direction of the incident beam BMin is between the short-axis component RS and the long-axis component RL. Like the short axis component RS and the long axis component RL, the light ray R1 is incident at an angle other than perpendicular to the side S. Therefore, the reflection at the reflection points P1 to P3 causes twisting around the optical axis A to be emitted. The direction changes. However, since the radiation direction of the light ray R1 is different from the short axis component RS and the long axis component RL, the incident angle with respect to the side S at the first reflection point P1 is different from the short axis component RS and the long axis component RL. Therefore, the magnitude of the twist angle around the optical axis A of the light ray R1 and the direction of twist (the direction in which the light ray R1 turns around the optical axis A as indicated by the arc-shaped arrow) are different.
 また、中間成分の中には、図25に示す光線R2のように、辺Sに対して垂直(辺Sの法線と平行)に入射する光線もある。この場合には、辺Sの法線に対する光線R2の入射角は0°であり反射点P1における反射角も0°になる。光線R2の基点は、光軸A(発光中心OP)であるため、反射角が0°の場合には、光線R2の反射点P1における反射後の軌跡も反射点P1への入射軌跡と同じ軌跡となる。そのため、光線R2は、最初に入射した辺Sとそれに対向する辺Sの2辺の間で反射を繰り返すのみとなり、光軸A周りの捩れは生じない。 Further, among the intermediate components, there is a light ray that is perpendicular to the side S (parallel to the normal line of the side S), such as a light ray R2 shown in FIG. In this case, the incident angle of the light ray R2 with respect to the normal of the side S is 0 °, and the reflection angle at the reflection point P1 is also 0 °. Since the base point of the light ray R2 is the optical axis A (light emission center OP), when the reflection angle is 0 °, the locus after reflection at the reflection point P1 of the light ray R2 is the same as the incident locus to the reflection point P1. It becomes. Therefore, the light ray R2 only repeats reflection between the first incident side S and the opposite side S, and no twist about the optical axis A occurs.
 このように、入射ビームBMinに含まれる光線には、ビーム整形部73内において、光線R2のように光軸A周りの捩れが生じない光線もあるが、短軸成分RSと長軸成分RLを含むほとんどの光線が辺Sに対して垂直以外の角度で入射するため、それらの光線は、光軸A周りの捩れが生じる。また、捩れ角の大きさは様々である。これは、入射ビームBMinに含まれる各光線の放射方向が、ビーム整形部73内の内部反射によって、光軸Aと直交する断面内において分散されることを意味する。 As described above, the light beam included in the incident beam BMin includes a light beam that does not twist around the optical axis A like the light beam R2 in the beam shaping unit 73. However, the short-axis component RS and the long-axis component RL are included. Since most of the light rays including the incident light are incident on the side S at an angle other than perpendicular, the light rays are twisted around the optical axis A. Moreover, the magnitude | size of a twist angle is various. This means that the radiation direction of each light beam included in the incident beam BMin is dispersed in a cross section orthogonal to the optical axis A by internal reflection in the beam shaping unit 73.
 こうした分散作用により、図26に示すように、入射時点においては断面形状が略楕円形をした入射ビームBMinが、出射端73cから出射する出射時点の出射ビームBMoutにおいては、その断面形状が真円形に整形されることになる。 As a result of such dispersion action, as shown in FIG. 26, the incident beam BMin having a substantially elliptical cross-section at the time of incidence is the circular shape of the outgoing beam BMout at the time of emission emitted from the emission end 73c. Will be shaped.
 図27は、出射ビームBMoutの強度分布を、図19と同じ条件で測定したグラフである。図19に示すように、入射ビームBMinにおいては、X方向の発散角θxinが狭く、Y方向の発散角θyinが広いというように、両者に差があるが、出射ビームBMoutにおいては、ビーム整形部73の作用により、X方向の発散角θxoutが広げられる一方、Y方向の発散角θyoutが狭められて、図27に示すように、両者がほぼ一致する。これにより、出射ビームBMoutの断面形状が略真円形に整形されていることが分かる。具体的には、入射時点において、Y方向(長軸LA方向)の発散角θyinが約11°~14°、X方向(短軸SA方向)の発散角θxinが約5°~7°であった入射ビームBMinが、ビーム整形部73の整形作用により、発散角θyout=θxoutが約10°の略真円形の出射ビームBMoutに整形される。 FIG. 27 is a graph obtained by measuring the intensity distribution of the outgoing beam BMout under the same conditions as in FIG. As shown in FIG. 19, in the incident beam BMin, there is a difference between the two such that the divergence angle θxin in the X direction is narrow and the divergence angle θyin in the Y direction is wide. As a result of the action 73, the divergence angle θxout in the X direction is widened, while the divergence angle θyout in the Y direction is narrowed, so that both substantially coincide as shown in FIG. Thereby, it can be seen that the cross-sectional shape of the outgoing beam BMout is shaped into a substantially perfect circle. Specifically, at the time of incidence, the divergence angle θyin in the Y direction (major axis LA direction) is about 11 ° to 14 °, and the divergence angle θxin in the X direction (short axis SA direction) is about 5 ° to 7 °. The incident beam BMin is shaped into a substantially perfect output beam BMout having a divergence angle θyout = θxout of about 10 ° by the shaping action of the beam shaping unit 73.
 なお、図28に示すグラフは、出射ビームBMoutが、さらに図16に示す発散角補正部72に入射し、発散角補正部72から出射した後のビームの強度分布を示す。このグラフに示すように、出射ビームBMoutの発散角θoutは、発散角補正部72によって広げられる。発散角の補正量は、発散角補正部72の側面72bの光軸に対する傾斜角の大きさや、反射回数を規定する側面72bの光軸方向の長さによって決められる。本例においては、発散角θが約10°からほぼ2倍の約20°に広げられている。 The graph shown in FIG. 28 shows the intensity distribution of the beam after the outgoing beam BMout further enters the divergence angle correction unit 72 shown in FIG. 16 and exits from the divergence angle correction unit 72. As shown in this graph, the divergence angle θout of the outgoing beam BMout is expanded by the divergence angle correction unit 72. The correction amount of the divergence angle is determined by the size of the tilt angle with respect to the optical axis of the side surface 72b of the divergence angle correction unit 72 and the length of the side surface 72b defining the number of reflections in the optical axis direction. In this example, the divergence angle θ is expanded from about 10 ° to about 20 °, which is almost doubled.
 第3光源モジュール33については、第2光源モジュール32の発光素子部71の代わりに、レーザダイオードLD3(図3参照)を有する発光素子部76(図10参照)を備えている点を除いて、第2光源モジュール32と同様の構成を有する。発散角補正部72及びビーム整形部73については、同様の構成及び作用を有するため、説明を省略する。 The third light source module 33 is provided with a light emitting element part 76 (see FIG. 10) having a laser diode LD3 (see FIG. 3) instead of the light emitting element part 71 of the second light source module 32, The second light source module 32 has the same configuration. About the divergence angle correction | amendment part 72 and the beam shaping part 73, since it has the same structure and effect | action, description is abbreviate | omitted.
 以下、上記構成による作用について説明する。内視鏡診断を行う場合には、内視鏡11をプロセッサ装置12と光源装置13に接続し、プロセッサ装置12と光源装置13の電源を入れて、内視鏡システム10を起動する。 Hereinafter, the operation of the above configuration will be described. When performing an endoscopic diagnosis, the endoscope 11 is connected to the processor device 12 and the light source device 13, the processor device 12 and the light source device 13 are turned on, and the endoscope system 10 is activated.
 内視鏡11の挿入部16を被検者の消化管内に挿入して、消化管内の観察が開始される。通常観察モードでは、図8Aに示すように、第1光源モジュール31が点灯して、レーザダイオードLD1が発する狭帯域光N1と、蛍光体36が発する蛍光FLとが混合された白色光が観察部位に照射される。 The insertion part 16 of the endoscope 11 is inserted into the subject's digestive tract, and observation in the digestive tract is started. In the normal observation mode, as shown in FIG. 8A, the first light source module 31 is turned on, and the white light in which the narrow band light N1 emitted from the laser diode LD1 and the fluorescence FL emitted from the phosphor 36 are mixed is observed. Is irradiated.
 レーザダイオードLD1が発する狭帯域光N1のビームの光軸と直交する断面形状は、略楕円形状をしているが、蛍光体36内で拡散されることにより、略真円形に整形される。そして、蛍光は断面が円形の蛍光体36から発光されるため、そのビームの断面形状も略真円形である。そのため、図29に示すように、蛍光体36からは略真円形の白色光(混合光)のビームBMが出射して、分岐型ライトガイド41の分岐部41a、41bに入射する。白色光は、分岐型ライトガイド41の出射端41eに導光されて、ホモジナイザ50(図10参照)に入射する。 The cross-sectional shape orthogonal to the optical axis of the narrow-band light N1 emitted from the laser diode LD1 has a substantially elliptical shape, but is shaped into a substantially perfect circle by being diffused in the phosphor 36. Since the fluorescence is emitted from the phosphor 36 having a circular cross section, the cross section of the beam is also substantially circular. Therefore, as shown in FIG. 29, a substantially circular white light (mixed light) beam BM is emitted from the phosphor 36 and is incident on the branch portions 41 a and 41 b of the branch light guide 41. The white light is guided to the exit end 41e of the branched light guide 41 and enters the homogenizer 50 (see FIG. 10).
 図11に示すように、各分岐部41a、41bから導光された白色光は、出射端41eの端面において偏在しているが、図12に示すように、ホモジナイザ50の作用によって光量分布が均一化される。これにより、ビームの断面において光量ムラの無い白色光が、内視鏡11のライトガイド43に入射する。白色光は、ライトガイド43を通じて照明窓22から消化管内の観察部位に照射される。 As shown in FIG. 11, the white light guided from the branch portions 41a and 41b is unevenly distributed on the end face of the emission end 41e. However, as shown in FIG. 12, the light quantity distribution is uniform by the action of the homogenizer 50. It becomes. As a result, white light having no unevenness in the amount of light in the cross section of the beam enters the light guide 43 of the endoscope 11. White light is irradiated from the illumination window 22 to the observation site in the digestive tract through the light guide 43.
 図8A及び図9Aに示すように、白色光(N1+FL)を照射中に撮像素子44によって観察部位が撮像されて、DSP57によってB、G、Rの画像信号が生成される。通常観察モードにおいては、画像処理部58は、B、G、Rの画像信号に基づいて、通常観察用の表示画像を生成する。表示制御回路60は、通常観察用の表示画像をビデオ信号に変換してモニタ14に表示する。通常観察モードにおいては、こうした処理が繰り返される。 As shown in FIG. 8A and FIG. 9A, the observation site is imaged by the imaging device 44 during the irradiation with white light (N1 + FL), and B, G, and R image signals are generated by the DSP 57. In the normal observation mode, the image processing unit 58 generates a display image for normal observation based on the B, G, and R image signals. The display control circuit 60 converts the display image for normal observation into a video signal and displays it on the monitor 14. Such processing is repeated in the normal observation mode.
 血管強調観察を行う場合には、コンソール15によってモード切り換え操作が行われて、プロセッサ装置12が血管強調観察モードに設定される。 When performing blood vessel enhancement observation, a mode switching operation is performed by the console 15, and the processor device 12 is set to the blood vessel enhancement observation mode.
 血管強調観察モードでは、図8Bに示すように、第1光源モジュール31に加えて、第2光源モジュール32が点灯して、白色光(N1+FL)と狭帯域光N2が観察部位に照射される。レーザダイオードLD2が発する狭帯域光N2のビームBMは、図20、22に示すように、ビーム整形部73の入射端73aに入射して、ビーム整形部73内の内部反射により光軸A方向に導光される。 In the blood vessel enhancement observation mode, as shown in FIG. 8B, in addition to the first light source module 31, the second light source module 32 is turned on, and white light (N1 + FL) and narrowband light N2 are irradiated to the observation site. As shown in FIGS. 20 and 22, the beam BM of the narrowband light N2 emitted from the laser diode LD2 is incident on the incident end 73a of the beam shaping unit 73, and in the optical axis A direction by internal reflection in the beam shaping unit 73. Light is guided.
 図19に示すように、入射時点においては、入射ビームBMinの発散角θxin、θyinは、一致しておらず、断面形状は略楕円形をしている。入射ビームBMinは、ビーム整形部73内において、図20~図26に示すように、ビーム整形部73内の内部反射によって、短軸成分RS及び長軸成分RLを含む光線の多くが光軸A周りで捩れる。そのため、入射ビームBMinに含まれる各光線の放射方向が、導光中に変化して、出射時点において分散される。これにより、図26、図27に示すように、出射ビームBMoutは、発散角θxout、θyoutが一致した、略真円形に整形されて、ビーム整形部73から出射する。 As shown in FIG. 19, at the time of incidence, the divergence angles θxin and θyin of the incident beam BMin do not coincide with each other, and the cross-sectional shape is substantially elliptical. As shown in FIG. 20 to FIG. 26, the incident beam BMin causes most of the light beams including the short axis component RS and the long axis component RL to pass through the optical axis A due to internal reflection in the beam shaping unit 73, as shown in FIGS. Twist around. Therefore, the radiation direction of each light beam included in the incident beam BMin changes during light guide and is dispersed at the time of emission. As a result, as shown in FIGS. 26 and 27, the outgoing beam BMout is shaped into a substantially perfect circle having the same divergence angles θxout and θyout, and is emitted from the beam shaping unit 73.
 整形後のビームBMは、ビーム整形部73から発散角補正部72の入射端72aに入射して、図16に示す発散角補正部72の作用によって、発散角θが広げられる。これにより、ビームBMの発散角θが、図27に示す発散角θから図28に示す発散角θに広げられる。 The shaped beam BM enters the incident end 72a of the divergence angle correction unit 72 from the beam shaping unit 73, and the divergence angle θ is widened by the action of the divergence angle correction unit 72 shown in FIG. As a result, the divergence angle θ of the beam BM is expanded from the divergence angle θ shown in FIG. 27 to the divergence angle θ shown in FIG.
 このように、レーザダイオードLD2が発する狭帯域光N2のビームBMは、ビーム整形部73により断面形状が略真円形に整形され、発散角補正部72により発散角θが広げられた後、図29に示すように、分岐型ライトガイド41の入射端41cに入射する。狭帯域光N2のビームBMは、第1光源モジュール31が発する白色光のビームBMと同様に、断面形状が略真円形に整形され、かつ、発散角θも白色光のビームBMの発散角とほぼ一致するように補正される。 As described above, the beam BM of the narrow band light N2 emitted from the laser diode LD2 is shaped into a substantially perfect circle by the beam shaping unit 73, and after the divergence angle θ is widened by the divergence angle correction unit 72, FIG. As shown, the light enters the incident end 41 c of the branched light guide 41. Similar to the white light beam BM emitted from the first light source module 31, the narrow band light N2 beam BM is shaped into a substantially circular cross section, and the divergence angle θ is also equal to the divergence angle of the white light beam BM. Correction is made so that they are almost the same.
 白色光及び狭帯域光N2は、それぞれ、分岐型ライトガイド41の分岐部41a、41b、41cに入射して、出射端41eに導光されて、ホモジナイザ50に入射する。そして、白色光及び狭帯域光N2は、ホモジナイザ50で光量分布が均一化された後、内視鏡11のライトガイド43に供給される。白色光及び狭帯域光N2は、ライトガイド43を通じて照明窓22から消化管内の観察部位に照射される。 The white light and the narrowband light N2 enter the branch portions 41a, 41b, and 41c of the branch light guide 41, are guided to the output end 41e, and enter the homogenizer 50, respectively. The white light and the narrow-band light N2 are supplied to the light guide 43 of the endoscope 11 after the light quantity distribution is made uniform by the homogenizer 50. The white light and the narrow band light N2 are irradiated from the illumination window 22 to the observation site in the digestive tract through the light guide 43.
 図8B及び図9Bに示すように、白色光(N1+FL)及び狭帯域光N2を照射中に撮像素子44によって観察部位が撮像されて、DSP57によってB、G、Rの画像信号が生成される。血管強調観察モードにおいては通常観察モードと同様に、画像処理部58は、B、G、Rの画像信号に基づいて、血管強調観察用の表示画像を生成する。表示制御回路60は、血管強調観察用の表示画像をビデオ信号に変換してモニタ14に表示する。血管強調観察モードにおいては、こうした処理が繰り返される。血管強調観察モードでは、画像信号Bに、白色光のB成分に加えて、狭帯域光N2に対応する信号が含まれているので、観察画像において表層血管が高コントラストで描出される。 As shown in FIG. 8B and FIG. 9B, the observation site is imaged by the imaging device 44 during irradiation with white light (N1 + FL) and narrowband light N2, and B, G, and R image signals are generated by the DSP 57. In the blood vessel enhancement observation mode, as in the normal observation mode, the image processing unit 58 generates a display image for blood vessel enhancement observation based on the B, G, and R image signals. The display control circuit 60 converts a display image for blood vessel enhancement observation into a video signal and displays it on the monitor 14. Such processing is repeated in the blood vessel enhancement observation mode. In the blood vessel enhancement observation mode, the image signal B includes a signal corresponding to the narrowband light N2 in addition to the B component of white light, so that the superficial blood vessels are depicted with high contrast in the observation image.
 血管強調観察モードでは、第1及び第2光源モジュール31、32が発する白色光と狭帯域光N2が用いられるが、各光源モジュール31、32は、発散角補正部64、72によってそれぞれの発散角がほぼ一致するように補正される。そのため、図17に示すように、観察部位SBに照射される、白色光及び狭帯域光N2のビームの照射スポットの大きさがほぼ一致する。さらに、第2光源モジュール32は、ビーム整形部73によってビームの断面形状を略真円形状に整形するため、狭帯域光N2の照射スポット形状は、第1光源モジュール31が発する白色光の照射スポット形状と同じになるため、色ムラの無い観察画像が得られる。 In the blood vessel enhancement observation mode, the white light and the narrowband light N2 emitted from the first and second light source modules 31 and 32 are used, and the light source modules 31 and 32 are respectively divergence angles by the divergence angle correction units 64 and 72. Are corrected so as to substantially match. Therefore, as shown in FIG. 17, the sizes of the irradiation spots of the white light beam and the narrow-band light N2 that are irradiated on the observation region SB substantially coincide with each other. Further, since the second light source module 32 shapes the cross-sectional shape of the beam into a substantially perfect circle shape by the beam shaping unit 73, the irradiation spot shape of the narrow band light N2 is the irradiation spot of the white light emitted from the first light source module 31. Since the shape is the same, an observation image without color unevenness can be obtained.
 酸素飽和度観察を行う場合には、コンソール15からモード切り換え操作が行われて、プロセッサ装置12の動作モードが酸素飽和度観察モードに設定される。 When performing the oxygen saturation observation, a mode switching operation is performed from the console 15 and the operation mode of the processor device 12 is set to the oxygen saturation observation mode.
 酸素飽和度観察モードでは、図8Cに示すように、第1光源モジュール31と、第3光源モジュール33が1フレーム毎に交互に点灯し、白色光(N1+FL)と、狭帯域光N3が交互に観察部位に照射される。 In the oxygen saturation observation mode, as shown in FIG. 8C, the first light source module 31 and the third light source module 33 are alternately turned on every frame, and white light (N1 + FL) and narrowband light N3 are alternately turned on. Irradiated to the observation site.
 補正後の白色光及び狭帯域光N3は、それぞれの照射タイミングにおいて、分岐型ライトガイド41の分岐部41a、41b、41dに入射して、出射端41eに導光されてホモジナイザ50に入射する。そして、白色光及び狭帯域光N3は、ホモジナイザ50で光量分布が均一化された後、内視鏡11のライトガイド43に供給される。白色光及び狭帯域光N3は、ライトガイド43を通じて照明窓22から消化管内の観察部位に順次照射される。 The corrected white light and narrowband light N3 enter the branch portions 41a, 41b, and 41d of the branch light guide 41 at each irradiation timing, are guided to the exit end 41e, and enter the homogenizer 50. The white light and the narrowband light N3 are supplied to the light guide 43 of the endoscope 11 after the light amount distribution is uniformized by the homogenizer 50. The white light and the narrow band light N3 are sequentially irradiated from the illumination window 22 to the observation site in the digestive tract through the light guide 43.
 図8C及び図9Cに示すように、撮像素子44は、白色光(N1+FL)及び狭帯域光N3に対応する画像信号をDSP57に順次出力する。DSP57は、白色光の元で取得した画像信号に基づいて、B1、G1、R1の各色の画像信号を生成して、狭帯域光N3の元で取得した画像信号に基づいて、B2の画像信号を生成する。画像処理部58は、画像信号B2、G1、R1の画像間演算を行うことにより、血液量の情報が分離された、酸素飽和度を算出する。そして、画像信号B1、G1、R1に基づいて生成されるフルカラー画像に対して、算出した酸素飽和度の値に応じた色変換を行って、酸素飽和度観察用の表示画像を生成する。 As shown in FIGS. 8C and 9C, the image sensor 44 sequentially outputs image signals corresponding to white light (N1 + FL) and narrowband light N3 to the DSP 57. The DSP 57 generates an image signal of each color of B1, G1, and R1 based on the image signal acquired under the white light, and generates an image signal of B2 based on the image signal acquired under the narrowband light N3. Is generated. The image processing unit 58 calculates the oxygen saturation with the blood volume information separated by performing an inter-image calculation of the image signals B2, G1, and R1. Then, the full color image generated based on the image signals B1, G1, and R1 is subjected to color conversion in accordance with the calculated oxygen saturation value to generate a display image for oxygen saturation observation.
 このように酸素飽和度観察モードでは、第1及び第3光源モジュール31、33が用いられる。第3光源モジュール33は、第2光源モジュール32と同様に、ビーム整形部73によって狭帯域光N3のビームBMの断面形状が略真円形に整形され、発散角補正部72によって発散角が広げられる。そのため、各光源モジュール31、33が発する白色光及び狭帯域光N3は、照射スポットの大きさや照射スポット形状が一致するため、観察画像における色ムラは生じない。また、酸素飽和度観察モードにおいては、血管強調観察モードと異なり、白色光と狭帯域光N3に対応する画像信号は面順次で取得されるが、それぞれの画像信号に基づいて画像間演算が行われるため、白色光と狭帯域光N3の色ムラを解消することで、画像間演算の信頼性も向上する。 Thus, in the oxygen saturation observation mode, the first and third light source modules 31 and 33 are used. Similarly to the second light source module 32, the third light source module 33 shapes the cross-sectional shape of the beam BM of the narrowband light N3 into a substantially true circle by the beam shaping unit 73, and widens the divergence angle by the divergence angle correction unit 72. . For this reason, the white light and the narrow-band light N3 emitted from the light source modules 31 and 33 have the same irradiation spot size and irradiation spot shape, so that no color unevenness occurs in the observation image. In the oxygen saturation observation mode, unlike the blood vessel enhancement observation mode, the image signals corresponding to the white light and the narrowband light N3 are acquired in the frame order, but the inter-image calculation is performed based on the respective image signals. Therefore, by eliminating the color unevenness between the white light and the narrow-band light N3, the reliability of the inter-image calculation is also improved.
 また、本発明では、導光ロッドで形成されたビーム整形部73によりビーム整形を行っているので、2つのシリンドリカル面を持つカップリングレンズと集光レンズの2枚のレンズの組み合わせや、2枚のシリンドリカルレンズの組み合わせなど、2枚のレンズの組み合わせによりビーム整形を行う従来技術(特許文献2)と比較して、空気との境界面の数が減るため、フレネルロスが少なくなり、光伝達効率を低減することができる。また、2枚のレンズを使用する場合には、光軸合わせなど位置合わせの精度に高い精度が要求される。これに対して、導光ロッドを使用する場合には、レンズほど高い精度は要求されないので、組み立て性もよい。また、2枚のレンズを使用する場合と比較して、部品点数も少ないというメリットもある。 In the present invention, since the beam shaping is performed by the beam shaping unit 73 formed of the light guide rod, a combination of two lenses of a coupling lens and a condenser lens having two cylindrical surfaces, Compared to the prior art (Patent Document 2) that performs beam shaping by combining two lenses, such as a combination of cylindrical lenses, the number of interfaces with air is reduced, so Fresnel loss is reduced and light transmission efficiency is reduced. Can be reduced. When two lenses are used, high accuracy is required for alignment accuracy such as optical axis alignment. On the other hand, when a light guide rod is used, the accuracy is not as high as that of a lens, so that the assemblability is good. In addition, there is an advantage that the number of parts is small as compared with the case of using two lenses.
 上記例において、図18に示したように、六角形の断面形状を持つビーム整形部73において、X方向及びY方向に対する、六角形の軸A1、軸A2の角度φLを15°傾けた例で説明したが、角度φLは、15°でなくてもよく、0°~60°の範囲の任意の角度でよい。 In the above example, as shown in FIG. 18, in the beam shaping unit 73 having a hexagonal cross-sectional shape, the angle φL of the hexagonal axis A1 and the axis A2 is inclined by 15 ° with respect to the X direction and the Y direction. As described above, the angle φL does not have to be 15 °, and may be any angle in the range of 0 ° to 60 °.
 図30は、角度φL=0°の例である。角度φLが0°の場合には、入射ビームBMinに含まれる光線の短軸成分RSと軸A2が、長軸成分RLと軸A1がそれぞれ一致する。この場合、光軸Aを基点とする短軸成分RSは、六角形の辺Sに対して垂直に入射するので、1回目の反射点Px1における反射角(辺Sの法線に対する角度)は0°になる。そのため、短軸成分RSは、対向する2つの反射点Px1の2点間を往復することになり、光軸A周りの捩れは生じない。 FIG. 30 shows an example in which the angle φL = 0 °. When the angle φL is 0 °, the short axis component RS and the axis A2 of the light beam included in the incident beam BMin coincide with the long axis component RL and the axis A1. In this case, since the short-axis component RS having the optical axis A as the base point is incident perpendicular to the hexagonal side S, the reflection angle at the first reflection point Px1 (angle with respect to the normal of the side S) is 0. It becomes °. For this reason, the short-axis component RS reciprocates between two opposing reflection points Px1, and no twist about the optical axis A occurs.
 一方、長軸成分RLは、六角形の頂点に入射するため、頂点が1回目の反射点Py1になる。長軸成分RLと頂点は、垂直以外の角度で交差するので斜交している。そのため、反射点Py1においては反射角が0°以上になるため、長軸成分RLは光軸A周りで捩れる。また、短軸成分RSと長軸成分RLの間の中間成分についても、辺Sに対して垂直以外の角度で入射するため、光軸A周りで捩れる。これにより、入射ビームBMinに含まれる光線が、光軸Aと直交する断面内において分散されるため、ビームBMの断面形状が略真円形に整形される。 On the other hand, since the long axis component RL is incident on the hexagonal apex, the apex becomes the first reflection point Py1. Since the major axis component RL and the vertex intersect with each other at an angle other than vertical, they intersect with each other. Therefore, since the reflection angle is 0 ° or more at the reflection point Py1, the long axis component RL is twisted around the optical axis A. Further, the intermediate component between the short axis component RS and the long axis component RL is also twisted around the optical axis A because it is incident on the side S at an angle other than perpendicular. As a result, the light rays included in the incident beam BMin are dispersed in a cross section orthogonal to the optical axis A, so that the cross-sectional shape of the beam BM is shaped into a substantially perfect circle.
 また、図31は、角度φL=30°の例である。この場合、図30の例とは反対に、長軸成分RLについては、辺Sに対して垂直に入射するため、光軸A周りの捩れは生じないが、短軸成分RSについては、六角形の頂点が1回目の反射点Px1であり、辺Sに対して垂直以外の角度で入射することになるので、光軸A周りの捩れが生じる。また、短軸成分RSと長軸成分RLの間の中間成分は、図30の例と同様に、光軸A周りの捩れが生じる。これにより、ビームBMの断面形状が略真円形に整形される。 FIG. 31 shows an example in which the angle φL = 30 °. In this case, contrary to the example of FIG. 30, the long axis component RL is incident perpendicular to the side S, so that no twist occurs around the optical axis A, but the short axis component RS is hexagonal. Is the first reflection point Px1 and is incident at an angle other than perpendicular to the side S, so that twist about the optical axis A occurs. Further, the intermediate component between the short-axis component RS and the long-axis component RL is twisted around the optical axis A as in the example of FIG. Thereby, the cross-sectional shape of the beam BM is shaped into a substantially perfect circle.
 このように、短軸成分RSと長軸成分RLの少なくとも一方に対して光軸A周りの捩れが生じれば、ビーム整形の効果が得られることが実験やシミュレーションにより分かっている。もちろん、図18に示すように、短軸成分RSと長軸成分RLの両方が辺Sに対して垂直以外の角度で入射する方が、整形効果が高いので好ましい。その中でも、六角形の断面を持つビーム整形部73の場合には、図18で示したように、角度φLが15°の場合が最も好ましいことが実験やシミュレーションにより分かっている。 As described above, it is known from experiments and simulations that if at least one of the short axis component RS and the long axis component RL is twisted around the optical axis A, the beam shaping effect can be obtained. Of course, as shown in FIG. 18, it is preferable that both the short-axis component RS and the long-axis component RL are incident on the side S at an angle other than perpendicular because the shaping effect is high. Among them, in the case of the beam shaping unit 73 having a hexagonal cross section, as shown in FIG. 18, it is known from experiments and simulations that the angle φL is most preferably 15 °.
 また、図32に示すように、ビーム整形部73の六角形の中心である光軸Aに対して、入射ビームBMinの発光中心OPをオフセットさせてもよい。こうしても、短軸成分RSと長軸成分RLの一方(図32の例では長軸成分RL)を、辺Sに対して垂直以外の角度で入射させることができるからである。これにより、短軸成分RSと長軸成分RLの一方について、光軸A周りの捩れが生じるため、ビーム整形効果が得られる。ただし、光軸Aに対して発光中心OPをオフセットした場合、オフセットが無い場合と比較すると、入射ビームBMinの大きさに対してビーム整形部73の断面積を大きくしなければならないというデメリットがある。1つの発光素子部71の入射ビームを導光する場合には、デメリットが大きいので、光軸Aと発光中心OPは一致していることが好ましい。 32, the emission center OP of the incident beam BMin may be offset with respect to the optical axis A, which is the hexagonal center of the beam shaping unit 73. This is because one of the short axis component RS and the long axis component RL (the long axis component RL in the example of FIG. 32) can be incident on the side S at an angle other than perpendicular. Thereby, about one of the short-axis component RS and the long-axis component RL, a twist around the optical axis A is generated, so that a beam shaping effect is obtained. However, when the emission center OP is offset with respect to the optical axis A, there is a demerit that the cross-sectional area of the beam shaping unit 73 has to be increased with respect to the size of the incident beam BMin as compared with the case where there is no offset. . When the incident beam of one light emitting element portion 71 is guided, the disadvantage is large, and it is preferable that the optical axis A and the light emission center OP coincide.
 「第2実施形態」
 図33、34に示すビーム整形部81のように、断面形状は四角形でもよい。ビーム整形部81は、断面形状が異なる点を除いて、材質や導光機能についてはビーム整形部73と同様である。ビーム整形部81は、入射端81aと出射端81cと、入射端81aから出射端81cに向かって長手方向に延びる側面部81bとを有する柱状体で構成された導光ロッドである。断面形状は正方形である。発光素子部71から入射端81aに入射するビームは、側面部81bの内面(反射側面)における全反射によって光軸A方向に導光されて、出射端81cから出射される。
“Second Embodiment”
Like the beam shaping unit 81 shown in FIGS. 33 and 34, the cross-sectional shape may be a quadrangle. The beam shaping unit 81 is the same as the beam shaping unit 73 in terms of material and light guiding function, except that the cross-sectional shape is different. The beam shaping unit 81 is a light guide rod formed of a columnar body having an incident end 81a, an emitting end 81c, and a side surface portion 81b extending in the longitudinal direction from the incident end 81a toward the emitting end 81c. The cross-sectional shape is a square. A beam incident on the incident end 81a from the light emitting element portion 71 is guided in the direction of the optical axis A by total reflection on the inner surface (reflection side surface) of the side surface portion 81b, and is emitted from the emission end 81c.
 ビーム整形部81は、光軸AとレーザダイオードLD2の発光中心OPとを一致させて配置されている。また、ビーム整形部81は、四角形の対向する2つの頂点をそれぞれ結ぶ直交する2つの軸が、X方向(入射ビームBMinの短軸方向)とY方向(入射ビームBMinの長軸方向)のそれぞれと一致するように配置される。これは、四角形の対向する2つの辺を、X方向とY方向のそれぞれと平行になるように配置した正姿勢(図36参照)に対して、光軸A周りに45°回転させた姿勢である。 The beam shaping unit 81 is arranged so that the optical axis A and the light emission center OP of the laser diode LD2 coincide with each other. Further, in the beam shaping unit 81, two orthogonal axes connecting two opposing vertices of the quadrangle are respectively in the X direction (the short axis direction of the incident beam BMin) and the Y direction (the long axis direction of the incident beam BMin). Are arranged to match. This is a posture in which two opposite sides of the square are rotated by 45 ° around the optical axis A with respect to the normal posture (see FIG. 36) arranged so as to be parallel to the X direction and the Y direction. is there.
 ビーム整形部81をこのような姿勢とすることにより、入射ビームBMinの短軸成分RSと長軸成分RLの1回目の反射点Px1、Py1は、四角形の対向する2つの頂点となる。短軸成分RSと長軸成分RLのそれぞれと四角形の頂点とは、垂直以外の角度で交差するので斜交する。そのため、光軸Aを基点として放射される、短軸成分RSと長軸成分RLは、反射点Py1、Px1のそれぞれに入射して、光軸A周りの捩れが生じる。これにより、略楕円形の入射ビームBMinを略真円形にするビーム整形効果が生じる。 By setting the beam shaping unit 81 in such an attitude, the first reflection points Px1 and Py1 of the short-axis component RS and the long-axis component RL of the incident beam BMin become two opposing vertices of a square. Each of the short-axis component RS and the long-axis component RL and the quadrangular vertex intersect with each other at an angle other than vertical, so that they intersect with each other. Therefore, the short-axis component RS and the long-axis component RL radiated from the optical axis A are incident on the reflection points Py1 and Px1, respectively, and twisting around the optical axis A occurs. This produces a beam shaping effect that makes the substantially elliptical incident beam BMin substantially circular.
 図35に示すように、ビーム整形部81は、図34の姿勢を基準として、その姿勢から光軸A周りに角度φL傾けた姿勢でもよい。角度φLは例えば5°である。この姿勢は、正姿勢(図36参照)に対しては、約40°傾けた姿勢である。この姿勢の場合には、短軸成分RSと長軸成分RLは、1回目の反射点Px1、Py1において、それぞれ辺Sに対して垂直以外の角度で入射することになる。これにより、略楕円形の入射ビームBMinを略真円形にするビーム整形効果が生じる。 As shown in FIG. 35, the beam shaping unit 81 may be in a posture inclined by an angle φL around the optical axis A from the posture with reference to the posture of FIG. The angle φL is 5 °, for example. This posture is a posture inclined about 40 ° with respect to the normal posture (see FIG. 36). In this posture, the short-axis component RS and the long-axis component RL are incident on the sides S at angles other than perpendicular at the first reflection points Px1 and Py1. This produces a beam shaping effect that makes the substantially elliptical incident beam BMin substantially circular.
 なお、ビーム整形部81の断面が四角形の場合には、本発明の比較例である図36に示すように、四角形の対向する2辺がX方向及びY方向のそれぞれと平行となる正姿勢では、良好なビーム整形効果が得られないことが実験やシミュレーションの結果から分かっている。これは、以下に示すように、正姿勢においては、短軸成分RSと長軸成分RLの両方が辺Sに対して垂直に入射するため、反射点における光軸A周りの捩れが生じないことが理由と考えられる。 When the cross section of the beam shaping unit 81 is a square, as shown in FIG. 36, which is a comparative example of the present invention, in a normal posture where two opposite sides of the square are parallel to the X direction and the Y direction, respectively. It is known from the results of experiments and simulations that a good beam shaping effect cannot be obtained. This is because, as shown below, in the positive posture, both the short axis component RS and the long axis component RL are perpendicularly incident on the side S, so that no twist around the optical axis A occurs at the reflection point. The reason is considered.
 図36に示すように、ビーム整形部81が正姿勢の場合には、短軸成分RSと長軸成分RLは、1回目の反射点Px1、Py1において、辺Sに対して垂直に入射することになる。そのため、短軸成分RSと長軸成分RLは、その光軸A周りの捩れが生じることはない。これは2回目以降の反射においても同様である。そのため、短軸成分RSと長軸成分RLは、入射時点と出射時点のどちらにおいても放射方向に変化は無く、出射時点においても短軸成分RSはX方向に、長軸成分RLはY方向に出射される。 As shown in FIG. 36, when the beam shaping unit 81 is in the positive posture, the short axis component RS and the long axis component RL are incident perpendicular to the side S at the first reflection points Px1 and Py1. become. Therefore, the short axis component RS and the long axis component RL are not twisted around the optical axis A. The same applies to the second and subsequent reflections. Therefore, the short axis component RS and the long axis component RL do not change in the radial direction at both the incident time and the outgoing time, and the short axis component RS is in the X direction and the long axis component RL is in the Y direction at the outgoing time. Emitted.
 もちろん、正姿勢の場合でも、入射ビームBMinの光線のうち、短軸成分RSと長軸成分RLの間の中間成分については、辺Sに対して垂直以外の角度で入射するため、光軸A周りの捩れが生じる。しかし、略楕円形を規定する短軸成分RSと長軸成分RLについては、光軸A周りの捩れが生じないため、略真円形に整形されることはない。 Of course, even in the normal posture, the intermediate component between the short axis component RS and the long axis component RL of the incident beam BMin is incident at an angle other than perpendicular to the side S. The surrounding twist occurs. However, the short-axis component RS and the long-axis component RL that define a substantially elliptical shape are not shaped into a substantially perfect circle because twisting around the optical axis A does not occur.
 以上のとおり、ビーム整形部81は、正姿勢で配置した場合には良好なビーム整形効果は得られないが、正姿勢から少しでも傾いた姿勢であれば、短軸成分RS及び長軸成分RLの両方が、辺Sに対して垂直以外の角度で入射することになるため、良好なビーム整形効果が得られる。実験やシミュレーションの結果によれば、その中でも最も好ましい姿勢は、図34に示すように、正姿勢に対して45°傾けた姿勢である。 As described above, the beam shaping unit 81 cannot obtain a good beam shaping effect when arranged in the normal posture, but if the posture is slightly inclined from the normal posture, the short axis component RS and the long axis component RL are obtained. Both are incident at an angle other than perpendicular to the side S, so that a good beam shaping effect can be obtained. According to the results of experiments and simulations, the most preferable posture among them is a posture inclined by 45 ° with respect to the normal posture, as shown in FIG.
 また、六角形のビーム整形部73において述べたとおり、ビーム整形部81の四角形の中心である光軸Aに対して、入射ビームBMinの発光中心OPをオフセットさせてもよい。こうしても、正姿勢以外であれば、短軸成分RSと長軸成分RLの一方を、辺Sに対して垂直以外の角度で入射させることができるからである。ただし、オフセットが無い場合と比較すると、入射ビームBMinの大きさに対してビーム整形部73の断面積を大きくしなければならないというデメリットがあるので、1つの発光素子部71のビームを導光する場合には、光軸Aと発光中心OPは一致していることが好ましい。 Further, as described in the hexagonal beam shaping unit 73, the emission center OP of the incident beam BMin may be offset with respect to the optical axis A that is the center of the quadrangle of the beam shaping unit 81. Even in this case, if the posture is other than the normal posture, one of the short axis component RS and the long axis component RL can be incident on the side S at an angle other than perpendicular. However, as compared with the case where there is no offset, there is a demerit that the cross-sectional area of the beam shaping unit 73 must be increased with respect to the size of the incident beam BMin, so that the beam of one light emitting element unit 71 is guided. In some cases, it is preferable that the optical axis A and the light emission center OP coincide.
 また、本例においては、四角形として正方形を例示したが、長方形でもよいし、平行四辺形でもよい。もちろん、正方形が最も作成が容易であると考えられるので、製造適性を考慮すると、正方形が最も好ましい。 In this example, a square is illustrated as a quadrangle, but a rectangle or a parallelogram may be used. Of course, it is considered that a square is the easiest to create. Therefore, the square is most preferable in consideration of manufacturing aptitude.
 「第3実施形態」
 図37、38に示すビーム整形部86のように、断面形状は三角形でもよい。ビーム整形部86は、断面形状が異なる点を除いて、材質や導光機能についてはビーム整形部73、81と同様である。ビーム整形部86は、入射端86aと出射端86cと、入射端86aから出射端86cに向かって延びる側面部86bとを有する柱状体で構成された導光ロッドである。断面形状は正三角形である。発光素子部71から入射端86aに入射するビームは、側面部86bの内面(反射側面)における全反射によって光軸A方向に導光されて、出射端86cから出射される。
“Third Embodiment”
Like the beam shaping unit 86 shown in FIGS. 37 and 38, the cross-sectional shape may be a triangle. The beam shaping unit 86 is the same as the beam shaping units 73 and 81 in terms of material and light guiding function, except that the cross-sectional shape is different. The beam shaping unit 86 is a light guide rod formed of a columnar body having an incident end 86a, an exit end 86c, and a side surface portion 86b extending from the incident end 86a toward the exit end 86c. The cross-sectional shape is an equilateral triangle. A beam incident on the incident end 86a from the light emitting element portion 71 is guided in the direction of the optical axis A by total reflection on the inner surface (reflection side surface) of the side surface portion 86b, and is emitted from the emission end 86c.
 ビーム整形部86は、発光中心OPと光軸Aを一致させた状態で配置される。また、図38に示すように、ビーム整形部86は、1つの頂点を上方に、頂点に対向する1つの辺を下方にし、下方の辺がX方向と平行となる正姿勢で配置されている。 The beam shaping unit 86 is arranged with the light emission center OP and the optical axis A aligned. Further, as shown in FIG. 38, the beam shaping unit 86 is arranged in a normal posture with one vertex upward, one side facing the vertex downward, and the lower side parallel to the X direction. .
 このようにビーム整形部86を配置すると、入射ビームBMinの長軸成分RLは、一方が頂点、他方については辺Sが1回目の反射点Py1となる。長軸成分RLは頂点に対しては斜交している。長軸成分RLは、辺Sに対しては、垂直で入射することになるが、辺Sに垂直に入射した長軸成分RLは、辺Sで垂直に反射して頂点に入射するため、2回目の反射点Py2は頂点となる。光線の入射角度は、頂点においては垂直以外の角度になるため、長軸成分RLには光軸A周りの捩れが生じる。一方、短軸成分RSは、対向する2つの辺Sに入射する。対向する2つの辺と、短軸成分RSとは斜交するため、反射点Px1に対しては垂直以外の角度で入射することになる。そのため、光軸A周りの捩れが生じる。このように、短軸成分RSと長軸成分RLの両方に関して光軸A周りの捩れが生じる。そのため、入射ビームBMinの断面形状を略真円形にするビーム整形作用が生じる。 When the beam shaping unit 86 is arranged in this way, one of the long axis components RL of the incident beam BMin is a vertex, and the other side S is the first reflection point Py1. The long axis component RL crosses the vertex. The long axis component RL is incident on the side S perpendicularly, but the major axis component RL incident perpendicularly to the side S is reflected perpendicularly on the side S and incident on the apex. The second reflection point Py2 is a vertex. Since the incident angle of the light beam is an angle other than vertical at the apex, the major axis component RL is twisted around the optical axis A. On the other hand, the short axis component RS is incident on two opposing sides S. Since the two opposing sides and the short axis component RS are obliquely crossed, the light enters the reflection point Px1 at an angle other than perpendicular. Therefore, twisting around the optical axis A occurs. In this way, twisting around the optical axis A occurs with respect to both the short axis component RS and the long axis component RL. Therefore, a beam shaping action that makes the cross-sectional shape of the incident beam BMin a substantially circular shape occurs.
 また、図39、40に示すように、ビーム整形部86は、図38に示す正姿勢以外の姿勢でもよい。図39は、正姿勢から光軸Aを中心に180°回転させた姿勢であり、図40は、図39の姿勢から、約5°傾斜させた姿勢である。三角形は、六角形や四角形と異なり、点対象であるので、どのような傾斜角度でも、短軸成分RSと長軸成分RLの両方に関して、光軸A周りの捩れを生じさせて放射方向を変化させることができる。 Further, as shown in FIGS. 39 and 40, the beam shaping unit 86 may have a posture other than the normal posture shown in FIG. 39 shows a posture rotated by 180 ° from the normal posture around the optical axis A, and FIG. 40 shows a posture inclined by about 5 ° from the posture of FIG. Since a triangle is a point object unlike a hexagon or a quadrangle, any direction of inclination causes a twist around the optical axis A to change the radiation direction for both the short axis component RS and the long axis component RL. Can be made.
 なお、ビーム整形部86のように断面形状が三角形の場合には、光軸Aに対して、発光中心OPをオフセットしてもよい。また、本例では正三角形の例で説明したが、正三角形でなくてもよく、直角三角形や二等辺三角形でもよい。もちろん、正三角形が最も作成が容易であると考えられるので、製造適性を考慮すると正三角形が最も好ましい。 When the cross-sectional shape is a triangle like the beam shaping unit 86, the light emission center OP may be offset with respect to the optical axis A. Further, although an example of an equilateral triangle has been described in this example, it may not be an equilateral triangle, and may be a right triangle or an isosceles triangle. Of course, the equilateral triangle is considered to be most easily created, and therefore the equilateral triangle is most preferable in consideration of the suitability for manufacturing.
 第1~第3実施形態では、ビーム整形部の断面形状が六角形、四角形、三角形の例で説明したが、五角形でもよいし、六角形以上の多角形でもよい。しかし、ビーム整形部の直径が数mm、あるいはそれ以下の場合には、製造適性を考えると、六角形以下であることが好ましい。 In the first to third embodiments, the cross-sectional shape of the beam shaping unit has been described as an example of a hexagon, a quadrangle, or a triangle, but it may be a pentagon or a polygon more than a hexagon. However, when the beam shaping portion has a diameter of several millimeters or less, it is preferable that the diameter is not more than a hexagon in consideration of manufacturability.
 「第4実施形態」
 また、ビーム整形部の断面形状は多角形でなくてもよい。例えば、図41、42に示すビーム整形部91のように、断面形状は真円でもよい。
“Fourth Embodiment”
Further, the cross-sectional shape of the beam shaping unit may not be a polygon. For example, a perfect circle may be sufficient as a cross-sectional shape like the beam shaping part 91 shown to FIG.
 ビーム整形部91は、断面形状が異なる点を除いて、材質や導光機能についてはビーム整形部73、81、86と同様である。ビーム整形部91は、入射端91aと出射端91cと、入射端91aから出射端91cに向かって延びる側面部91bとを有する柱状体で構成された導光ロッドである。発光素子部71から入射端91aに入射するビームは、側面部91bの内面における全反射によって光軸A方向に導光されて、出射端91cから出射される。ビーム整形部91は、断面形状が真円であるため、反射側面となる、側面部91bの内面は、曲面で構成される。 The beam shaping unit 91 is the same as the beam shaping units 73, 81, and 86 in terms of material and light guiding function, except that the cross-sectional shape is different. The beam shaping unit 91 is a light guide rod formed of a columnar body having an incident end 91a, an exit end 91c, and a side surface portion 91b extending from the incident end 91a toward the exit end 91c. A beam incident on the incident end 91a from the light emitting element portion 71 is guided in the direction of the optical axis A by total reflection on the inner surface of the side surface portion 91b, and is emitted from the emission end 91c. Since the cross-sectional shape of the beam shaping unit 91 is a perfect circle, the inner surface of the side surface portion 91b that serves as a reflective side surface is configured by a curved surface.
 ビーム整形部91は、図42に示すように、ビーム整形部91の光軸Aに対して、レーザダイオードLD2の発光中心OPをオフセットさせて配置されている。発光中心OPは、光軸Aに対して、X方向及びY方向の両方においてオフセットされている。オフセットにより、短軸成分RSの1回目の反射点はPx1となるが、反射点Px1の接線TLと、短軸成分RSは直交しない。そのため、反射点Px1において、側面部91の内面(反射側面)と短軸成分RSとが斜交することになり、短軸成分RSは、反射点Px1で反射すると反射角が付く。これにより、光軸A周りの捩れが生じて、短軸成分RSの放射方向が変化する。長軸成分RLについても、1回目の反射点はPy1となるが、反射点Py1の接線TLと長軸成分RLは直交しない。そのため、側面部91の内面(反射側面)と長軸成分RLとが斜交することになり、長軸成分RLは、反射点Py1で反射すると反射角が付く。これにより、光軸A周りの捩れが生じで、長軸成分RLの放射方向が変化する。こうした作用により、ビームの断面形状を略真円形にするビーム整形効果が得られる。 As shown in FIG. 42, the beam shaping unit 91 is arranged with the emission center OP of the laser diode LD2 offset from the optical axis A of the beam shaping unit 91. The emission center OP is offset with respect to the optical axis A in both the X direction and the Y direction. Due to the offset, the first reflection point of the short-axis component RS is Px1, but the tangent TL of the reflection point Px1 and the short-axis component RS are not orthogonal. Therefore, at the reflection point Px1, the inner surface (reflection side surface) of the side surface portion 91 and the short axis component RS are obliquely crossed, and the short axis component RS has a reflection angle when reflected at the reflection point Px1. As a result, twisting around the optical axis A occurs, and the radiation direction of the short-axis component RS changes. Also for the long axis component RL, the first reflection point is Py1, but the tangent TL of the reflection point Py1 and the long axis component RL are not orthogonal. Therefore, the inner surface (reflection side surface) of the side surface portion 91 and the long axis component RL are obliquely crossed, and the long axis component RL has a reflection angle when reflected at the reflection point Py1. As a result, twisting around the optical axis A occurs, and the radiation direction of the long axis component RL changes. By such an operation, a beam shaping effect that makes the cross-sectional shape of the beam substantially circular is obtained.
 ビーム整形部91のように、断面形状が真円の場合には、光軸Aに対して、発光中心OPをオフセットさせることが、ビーム整形効果を得るための必須条件である。比較例として示す図43のように、ビーム整形部91の光軸Aと発光中心OPを一致させると、短軸成分RSと長軸成分RLの1回目の反射点となるPx1、Py1において、その接線TLが短軸成分RSと長軸成分RLと直交することになる。そのため、光軸A周りの捩れは生じない。さらに、ビーム整形部91の断面形状が真円形の場合には、オフセットが無く、光軸Aと発光中心OPが一致していると、短軸成分RSと長軸成分RLの間の中間成分についても放射方向の変化が生じないため、ビーム整形効果は期待できず、出射端91cにおいては、入射ビームBMinと同じ、略楕円形のビームが出射することになる。 When the cross-sectional shape is a perfect circle like the beam shaping unit 91, offsetting the emission center OP with respect to the optical axis A is an essential condition for obtaining the beam shaping effect. As shown in FIG. 43 as a comparative example, when the optical axis A of the beam shaping unit 91 and the light emission center OP coincide with each other, in Px1 and Py1 that are the first reflection points of the short axis component RS and the long axis component RL, The tangent line TL is orthogonal to the short axis component RS and the long axis component RL. Therefore, twisting around the optical axis A does not occur. Further, when the cross-sectional shape of the beam shaping unit 91 is a perfect circle, if there is no offset and the optical axis A and the light emission center OP coincide with each other, an intermediate component between the short axis component RS and the long axis component RL is obtained. Since no change in the radiation direction occurs, a beam shaping effect cannot be expected, and a substantially elliptical beam that is the same as the incident beam BMin is emitted from the emission end 91c.
 また、図42の例では、ビーム整形部91の光軸Aに対して、発光中心OPをX方向とY方向の両方においてオフセットしているが、図44に示すように、短軸成分RSと平行なX方向にのみオフセットさせてもよいし、図45に示すように、長軸成分RLと平行なY方向にのみオフセットさせてもよい。このように一方向のみオフセットさせても、ビーム整形効果があることが、実験やシミュレーションによって確認されている。もちろん、X方向とY方向の2方向においてオフセットさせる方が、ビーム整形効果は高いので好ましい。 In the example of FIG. 42, the emission center OP is offset in both the X direction and the Y direction with respect to the optical axis A of the beam shaping unit 91. However, as shown in FIG. It may be offset only in the parallel X direction, or may be offset only in the Y direction parallel to the long axis component RL as shown in FIG. It has been confirmed by experiments and simulations that the beam shaping effect can be obtained even when the offset is performed in only one direction. Of course, offsetting in the two directions of the X direction and the Y direction is preferable because the beam shaping effect is high.
 また、本例においては、断面形状が真円形のビーム整形部を例に説明したが、楕円形でもよい。また、側面部の内面の一部が平面となる長円形でもよい(図48参照)。 In this example, the beam shaping unit having a true circular cross section has been described as an example, but an elliptical shape may be used. Further, an oval shape in which a part of the inner surface of the side surface portion is a flat surface may be used (see FIG. 48).
 「第5実施形態」
 図46、47に示すビーム整形部94のように、複数の発光素子部71からの入射ビームを導光するようにしてもよい。ビーム整形部94は、断面形状が真円であり、入射面は、4つの発光素子部71の入射ビームBMinを受け入れ可能な大きさを有する。材質や導光機能など他の点については、ビーム整形部91と同様である。
“Fifth Embodiment”
Like the beam shaping unit 94 shown in FIGS. 46 and 47, incident beams from a plurality of light emitting element units 71 may be guided. The beam shaping unit 94 has a perfect cross-sectional shape, and the incident surface has a size that can receive the incident beams BMin of the four light emitting element units 71. Other points such as the material and the light guiding function are the same as those of the beam shaping unit 91.
 第4実施形態で説明したように、断面形状が真円のビーム整形部の場合には、光軸Aに対して発光中心OPをオフセットさせることが必須条件となる。複数の入射ビームBMinを1つのビーム整形部で整形する場合には、図47に示すように、1つの入射端に複数の発光素子部71を配置することになるため、レイアウト上の制約から、各発光素子部71の発光中心OPは、光軸Aに対してオフセットされることになる。上述のとおり、オフセットさせる形態は、1つの入射ビームBMinを導光する場合には、オフセットが無い場合と比較して断面積が大きくなるというデメリットはあるが、複数の発光素子部71からの複数の入射ビームBMinを導光させる場合には、レイアウト上の制約からオフセットが必要になるため、逆に有効である。 As described in the fourth embodiment, in the case of a beam shaping section having a perfect cross-sectional shape, it is an essential condition to offset the light emission center OP with respect to the optical axis A. In the case where a plurality of incident beams BMin are shaped by one beam shaping unit, as shown in FIG. 47, a plurality of light emitting element units 71 are arranged at one incident end. The light emission center OP of each light emitting element unit 71 is offset with respect to the optical axis A. As described above, in the case of guiding the one incident beam BMin, there is a demerit that the cross-sectional area becomes larger when the one incident beam BMin is guided. In the case where the incident beam BMin is guided, an offset is necessary due to layout restrictions, which is effective.
 また、図48に示すビーム整形部96のように、断面形状は、側面部の内面の一部が平面となる長円形でもよい。また、図示は省略するが、楕円形でもよい。 Further, like the beam shaping unit 96 shown in FIG. 48, the cross-sectional shape may be an oval shape in which a part of the inner surface of the side surface part is a flat surface. Moreover, although illustration is abbreviate | omitted, an ellipse may be sufficient.
 「第6実施形態」
 図49に示すビーム整形部98のように、側面部98bにテーパを付けることにより、発散角補正機能を付与してもよい。ビーム整形部98は、入射端98aと出射端98cと、入射端98aから出射端98cに延びる側面部98bを有しており、断面形状が四角形の柱状体で構成された導光ロッドである。ビーム整形部98は、その側面部98bにおいて光軸Aに対するテーパが付けられており、出射端98cよりも入射端98aが細くなる先細形状をしている。このように側面部98bにテーパを付けることで、ビーム整形部98に、発散角補正部72(図15、16参照)と同様の発散角補正機能が付与される。
“Sixth Embodiment”
Like the beam shaping part 98 shown in FIG. 49, you may provide a divergence angle correction | amendment function by tapering the side part 98b. The beam shaping unit 98 is a light guide rod having an incident end 98a, an emission end 98c, and a side surface portion 98b extending from the incidence end 98a to the emission end 98c, and is configured by a columnar body having a square cross section. The beam shaping portion 98 is tapered with respect to the optical axis A at the side surface portion 98b, and has a tapered shape in which the incident end 98a is thinner than the emission end 98c. By tapering the side surface portion 98b in this manner, the beam shaping portion 98 is provided with the same divergence angle correction function as the divergence angle correction portion 72 (see FIGS. 15 and 16).
 これによれば、ビーム整形部とは別に発散角補正部72を設ける必要がなくなるので、第1~第5実施形態と比較して、部品点数の削減や省スペース化を実現することができる。その反面、側面部にテーパを付与することは製造が難しいため、製造適性の点では、第1~第5実施形態のように側面部を光軸と平行に形成する方が有利である。 According to this, since it is not necessary to provide the divergence angle correction unit 72 separately from the beam shaping unit, the number of parts can be reduced and the space can be saved as compared with the first to fifth embodiments. On the other hand, since it is difficult to produce a taper on the side surface portion, it is advantageous to form the side surface portion parallel to the optical axis as in the first to fifth embodiments in terms of manufacturability.
 ビーム整形部98は、断面形状を四角形としているが、もちろん、六角形、三角形などの四角形以外の多角形でもよい。また、図50に示すビーム整形部99のように、断面形状を円形としてもよい。ただし、断面形状が真円形の場合には、図41で示した形態と同様に、光軸Aに対して発光中心OPをオフセットさせることが必要である。 The beam shaping unit 98 has a square cross-sectional shape, but may of course be a polygon other than a quadrangle such as a hexagon or a triangle. Further, like the beam shaping unit 99 shown in FIG. 50, the cross-sectional shape may be circular. However, when the cross-sectional shape is a perfect circle, it is necessary to offset the light emission center OP with respect to the optical axis A as in the embodiment shown in FIG.
 図51に示す表は、上記第1~第6実施形態のビーム整形部について、製造適性と、発光素子との相対的な位置合わせの容易性の2つの観点で評価した評価結果に加えて、それらを総合的に評価した評価結果をまとめたものである。製造適性については、導光ロッドの直径が数ミリからそれ以下のオーダの製品についての適性を評価している。側面部にテーパを付けないテーパ無しの場合の製造適性は、断面が三角形以外は、非常に良く(評価A)、三角形はやや悪い(評価C)。六角形については、導光ロッドとして六角柱のものが既製品として存在し、それを利用することもできるため特に良い。 The table shown in FIG. 51 includes, in addition to the evaluation results evaluated from the two viewpoints of the suitability for manufacturing and the ease of relative alignment with the light emitting elements, for the beam shaping sections of the first to sixth embodiments. This is a summary of the evaluation results of comprehensive evaluation. As for manufacturing aptitude, the applicability of products having a light guide rod diameter on the order of several millimeters or less is evaluated. Manufacturability in the case of no taper where the side surface portion is not tapered is very good (evaluation A) and the triangle is somewhat bad (evaluation C) except for the cross section of the triangle. As for the hexagonal shape, a hexagonal prism as a light guide rod exists as an off-the-shelf product, and it can be used.
 テーパを付けるテーパ有りの場合の製造適性は、断面形状に関わらず、テーパ無しに比べて悪い。断面形状別で比較すると、円錐以外、製造が非常に難しい。そのため、製造適性の評価は、断面形状が円形の場合は良く(評価B)、多角形は悪い。多角形の中では、四角形が最も容易であり(評価C)、三角形と六角形は非常に難しい(評価D)。 製造 Manufacturing aptitude with a taper to taper is worse than without taper regardless of the cross-sectional shape. When compared by cross-sectional shape, manufacturing is very difficult except for the cone. Therefore, the evaluation of manufacturing aptitude is good when the cross-sectional shape is circular (evaluation B), and the polygon is bad. Among polygons, quadrangles are the easiest (evaluation C), and triangles and hexagons are very difficult (evaluation D).
 位置合わせの容易性の評価については、テーパの有無に関わらず、円形がやや悪く(評価C)、それ以外は非常によい(評価A)。円形の場合にはオフセットが必要となるのに対して、多角形の場合にはオフセットが有っても無くてもよいからである。総合的に判断すると、テーパ無しの場合には、六角形が非常に良い(評価A)、円形及び四角形が良い(評価B)、三角形がやや悪い(評価C)という評価となる。テーパ有りの場合には、四角形が良い(評価B)、円形及び六角形がやや悪い(評価C)、三角形が悪い(評価D)という評価となる。 Regarding the evaluation of the ease of alignment, the circular shape is slightly worse (evaluation C) regardless of the presence or absence of a taper, and the others are very good (evaluation A). This is because an offset is required in the case of a circle, whereas an offset may or may not be present in the case of a polygon. Comprehensively, when there is no taper, the hexagon is very good (evaluation A), the circle and the rectangle are good (evaluation B), and the triangle is slightly bad (evaluation C). When there is a taper, the evaluation is that a square is good (evaluation B), a circle and a hexagon are slightly bad (evaluation C), and a triangle is bad (evaluation D).
 上記実施形態では、本発明の光学素子であるビーム整形部を、柱状体で構成した導光ロッドの形態で説明したが、図52に示すように、内部が中空の円筒状の内面に鏡面102を形成したミラーパイプ101の形態でもよい。ミラーパイプ101でも、入射ビームを、中空内部の側面部の内面である鏡面102によって反射することにより光軸方向に導光することができる。そして、光軸と直交する断面形状を多角形にすれば、ビーム整形を行うことが可能となる。もちろん、断面形状は円形でもよい。この場合には光軸に対して発光素子の発光中心をオフセットする必要がある。なお、鏡面反射は、全反射と比べて反射ロスが大きいため、光伝達効率を考えると、ミラーパイプ101よりも導光ロッドの方が有利である。 In the above embodiment, the beam shaping unit, which is the optical element of the present invention, has been described in the form of a light guide rod formed of a columnar body. However, as shown in FIG. Alternatively, the mirror pipe 101 may be formed. Even in the mirror pipe 101, the incident beam can be guided in the optical axis direction by being reflected by the mirror surface 102 which is the inner surface of the side surface portion inside the hollow. Then, if the cross-sectional shape orthogonal to the optical axis is a polygon, beam shaping can be performed. Of course, the cross-sectional shape may be circular. In this case, it is necessary to offset the light emission center of the light emitting element with respect to the optical axis. In addition, since the specular reflection has a larger reflection loss than the total reflection, the light guide rod is more advantageous than the mirror pipe 101 in view of light transmission efficiency.
 上記実施形態では、ビーム整形部を用いる光源部として、狭帯域光を発する第2、第3の光源モジュール32、33を例に説明したが、ビームの色や発光波長は上記例に限定されず、適宜変更が可能である。また、ビーム整形部を用いない光源部として、白色光を発する第1光源モジュール31を用い、それとの組み合わせで、第2、第3の光源モジュール32、33などのビーム整形部を用いる光源部を使用しているが、もちろん、他の光源部との組み合わせでもよい。例えば、B、G、Rの単色光を発する3つの光源部を用いて白色光を生成する光源装置において、B、G、Rの少なくとも1つの光源部にビーム整形部を使用してもよい。 In the above embodiment, the second and third light source modules 32 and 33 that emit narrowband light have been described as examples of the light source unit using the beam shaping unit. However, the color of the beam and the emission wavelength are not limited to the above example. It can be changed as appropriate. Moreover, the light source part which uses beam shaping parts, such as the 2nd, 3rd light source modules 32 and 33, is used in combination with the 1st light source module 31 which emits white light as a light source part which does not use a beam shaping part. Of course, a combination with another light source unit may be used. For example, in a light source device that generates white light using three light source units that emit monochromatic light of B, G, and R, a beam shaping unit may be used for at least one light source unit of B, G, and R.
 また、ビーム整形部を用いずに略真円形のビームを発する光源部として第1光源モジュール31を例に説明したが、略真円形のビームを発する光源部としては、第1光源モジュール31のように蛍光体と発光素子を組み合わせたものでなくてもよい。例えば、レーザダイオード以外のLEDやELなどの発光素子を用いたものでもよい。また、キセノンランプやハロゲンランプなどの光源でもよい。 Further, the first light source module 31 has been described as an example of a light source unit that emits a substantially circular beam without using a beam shaping unit. However, a light source unit that emits a substantially circular beam is as in the first light source module 31. In addition, the phosphor and the light emitting element may not be combined. For example, a light emitting element such as an LED or an EL other than the laser diode may be used. Further, a light source such as a xenon lamp or a halogen lamp may be used.
 上記実施形態では、ビーム整形部を用いる光源部の発光素子としてレーザダイオードを例に説明したが、LEDやEL(エレクトロルミネッセンス)などの他の発光素子にビーム整形部を適用してもよい。LEDやELは、一般に、略真円形のビームを発するため、ビーム整形の必要性は低いが、LEDやELを使用した発光素子の中にも、種類や仕様によっては略楕円形のビームを発する場合もある。そのような場合には、ビーム整形の必要性が生じるので、本発明のビーム整形部を適用してもよい。 In the above embodiment, the laser diode is described as an example of the light emitting element of the light source unit using the beam shaping unit, but the beam shaping unit may be applied to other light emitting elements such as an LED and an EL (electroluminescence). Since LEDs and EL generally emit a substantially circular beam, the need for beam shaping is low, but among light emitting elements using LEDs and EL, a substantially elliptical beam is emitted depending on the type and specification. In some cases. In such a case, the need for beam shaping arises, so the beam shaping unit of the present invention may be applied.
 上記実施形態では、本発明の光学素子として、略楕円形のビームを略真円形に整形するビーム整形部を例に説明したが、整形元の入射ビームの断面形状は楕円形以外でもよく、断面において第一方向と第一方向と直交する第二方向のそれぞれの発散角が異なるビームであればよい。そして、光学素子は、第一方向及び第二方向の少なくとも1つの方向に対して斜交する反射側面を有していればよく、整形後の断面形状についても真円でなくてもよい。 In the above embodiment, the optical shaping element has been described by taking the beam shaping unit for shaping a substantially elliptical beam into a substantially perfect circle as an example, but the cross-sectional shape of the incident beam as a shaping source may be other than an elliptical shape. In this case, the beams may have different divergence angles in the first direction and the second direction orthogonal to the first direction. The optical element only needs to have a reflective side surface that is oblique to at least one of the first direction and the second direction, and the cross-sectional shape after shaping may not be a perfect circle.
 上記実施形態では、B、G、Rのマイクロカラーフイルタが設けられたカラー撮像素子を用いて、白色光をマイクロカラーフイルタで色分離して複数色の画像を同時に取得する同時方式を例に説明したが、カラーフイルタが設けられていないモノクロ撮像素子を用いて、各色の画像を順次取得する面順次方式に適用してもよい。 In the above-described embodiment, an example of a simultaneous method in which white light is color-separated by a micro color filter and a plurality of color images are simultaneously acquired using a color image sensor provided with B, G, and R micro color filters is described. However, the present invention may be applied to a frame sequential method in which images of respective colors are sequentially acquired using a monochrome imaging element not provided with a color filter.
 上記実施形態では、光源装置とプロセッサ装置が別体で構成される例で説明したが、2つの装置を一体で構成してもよい。また、本発明は、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡と画像処理を行うプロセッサ装置からなるシステム等、他の形態の内視鏡システムにも適用することができる。 In the above embodiment, the example in which the light source device and the processor device are configured separately is described, but the two devices may be configured integrally. In addition, the present invention can be applied to other types of endoscope systems such as a system including an ultrasonic endoscope in which an imaging element and an ultrasonic transducer are built in a distal end portion and a processor device that performs image processing. it can.
 上記実施形態は、ビーム整形部を内視鏡用光源装置に適用した形態であるが、ビーム整形部を内視鏡用光源装置以外に適用してもよい。内視鏡用光源装置以外のものとしては、例えば、電子顕微鏡用光源装置がある。電子顕微鏡においても、内視鏡と同様に生体組織の観察を行うために、上記実施形態で示した第1~第3の光源モジュール31~33のように、波長が異なる複数の光を発する複数の光源部を設ける場合がある。このような場合に本発明のビーム整形部は有効である。 In the above embodiment, the beam shaping unit is applied to the endoscope light source device, but the beam shaping unit may be applied to a device other than the endoscope light source device. Examples of devices other than the endoscope light source device include an electron microscope light source device. Also in an electron microscope, in order to observe a living tissue in the same manner as an endoscope, a plurality of light beams that emit a plurality of lights having different wavelengths, like the first to third light source modules 31 to 33 described in the above embodiment. In some cases, a light source unit is provided. In such a case, the beam shaping unit of the present invention is effective.
 「第7実施形態」
 電子顕微鏡用光源装置の他に、図53に示すプロジェクタ装置に本発明を適用してもよい。プロジェクタ装置110は、スクリーンに画像情報を担持した光を投写して画像を表示する装置である。
“Seventh Embodiment”
In addition to the light source device for an electron microscope, the present invention may be applied to a projector device shown in FIG. The projector device 110 is a device that displays an image by projecting light carrying image information on a screen.
 プロジェクタ装置110は、レーザダイオードLDを有する発光素子部111と、ビーム整形部112とを有する光源ユニット113を備えている。光源ユニット113の前方には、結像レンズ114と、光変調素子115が配置されている。結像レンズ114は、光源ユニット113が出射するビームを集光して光変調素子115に結像させる。光変調素子115は、画素に対応するセルがマトリックスに配列された液晶素子やDMD(デジタルマイクロミラーデバイス)素子などからなる。光変調素子115は、画像データに基づいて各画素が駆動されて、結像された光を変調して画像情報を担持した画像光を生成する。生成された画像光がスクリーンに投写されて画像が表示される。 The projector device 110 includes a light source unit 113 having a light emitting element unit 111 having a laser diode LD and a beam shaping unit 112. An imaging lens 114 and a light modulation element 115 are arranged in front of the light source unit 113. The imaging lens 114 focuses the beam emitted from the light source unit 113 and forms an image on the light modulation element 115. The light modulation element 115 includes a liquid crystal element or a DMD (digital micromirror device) element in which cells corresponding to pixels are arranged in a matrix. The light modulation element 115 drives each pixel based on the image data, modulates the imaged light, and generates image light carrying image information. The generated image light is projected onto the screen and an image is displayed.
 ビーム整形部112は、上記第1~第6実施形態のいずれかのビーム整形部であり、レーザダイオードLDからの入射ビームの断面形状を略楕円形から略真円形に整形する。このビーム整形作用により、光変調素子115に結像される光の照射スポット形状を円形にすることができる。 The beam shaping unit 112 is the beam shaping unit of any of the first to sixth embodiments, and shapes the cross-sectional shape of the incident beam from the laser diode LD from a substantially elliptical shape to a substantially perfect circular shape. By this beam shaping action, the irradiation spot shape of the light imaged on the light modulation element 115 can be made circular.
 なお、ビーム整形部112を有する光源ユニットの適用例としては、プロジェクタ装置以外に、例えば、情報が記録されたディスクに対して光を照射して情報を読み取る光ディスク装置において、読み取り部を構成する光ピックアップ装置に適用してもよい。 As an application example of the light source unit having the beam shaping unit 112, in addition to the projector device, for example, in an optical disc device that reads information by irradiating light on a disc on which information is recorded, light constituting a reading unit You may apply to a pick-up apparatus.
10 内視鏡システム
11 内視鏡
12 プロセッサ装置
13 光源装置
28 コネクタ
31 第1光源モジュール
32 第2光源モジュール
33 第3光源モジュール
36 蛍光体
41 分岐型ライトガイド
41a~41d 分岐部
41e 出射端
42 レセプタクルコネクタ
43 内視鏡のライトガイド
50 ホモジナイザ
61 レーザモジュール
62 蛍光部
64、72 発散角補正部
66、71、76 発光素子部
73、81、86、91、94、96、98、99 ビーム整形部(光学素子)
73a 入射端
73b 側面部
73c 出射端
A 光軸
BM ビーム
BMin 入射ビーム
BMout 出射ビーム
LD1~LD3 レーザダイオード(発光素子)
OP 発光中心
DESCRIPTION OF SYMBOLS 10 Endoscope system 11 Endoscope 12 Processor apparatus 13 Light source apparatus 28 Connector 31 1st light source module 32 2nd light source module 33 3rd light source module 36 Phosphor 41 Branch type | mold light guide 41a-41d Branch part 41e Output end 42 Receptacle Connector 43 Endoscope light guide 50 Homogenizer 61 Laser module 62 Fluorescence part 64, 72 Divergence angle correction part 66, 71, 76 Light emitting element part 73, 81, 86, 91, 94, 96, 98, 99 Beam shaping part ( Optical element)
73a Incident end 73b Side surface portion 73c Emission end A Optical axis BM Beam BMin Incident beam BMout Emission beams LD1 to LD3 Laser diodes (light emitting elements)
OP emission center

Claims (16)

  1.  発散するビームを発する発光素子であり、前記ビームは、その断面における第一方向と前記第一方向と直交する第二方向のそれぞれの発散角が異なる発光素子と、
     前記発光素子が発するビームが入射する入射面と、前記入射されたビームを出射する出射面と、前記入射面から前記出射面に向かって長手方向に延びる長手軸とを有し、入射したビームを内部で反射させながら前記長手方向に伝播する光学素子であり、前記長手軸と直交する平面において前記ビームの前記第一及び前記第二の方向のうち少なくとも一つの方向と斜交する反射側面を有する光学素子とを備えていることを特徴とする光源装置。
    A light-emitting element that emits a diverging beam, and the beam is a light-emitting element having different divergence angles in a first direction and a second direction perpendicular to the first direction in a cross section thereof;
    An incident surface on which a beam emitted by the light emitting element is incident; an exit surface that emits the incident beam; and a longitudinal axis that extends in a longitudinal direction from the incident surface toward the exit surface. An optical element that propagates in the longitudinal direction while being reflected internally, and has a reflective side surface that is oblique to at least one of the first and second directions of the beam in a plane perpendicular to the longitudinal axis. A light source device comprising an optical element.
  2.  前記光学素子は、前記ビームに含まれる光線のうち前記第一の方向と前記第二の方向のそれぞれと平行な第一成分及び第二成分の少なくとも一方に対して、前記反射側面における反射により光軸周りの捩れを生じさせることを特徴とする請求の範囲第1項に記載の光源装置。 The optical element reflects at least one of a first component and a second component parallel to each of the first direction and the second direction among the light rays included in the beam by reflection on the reflection side surface. The light source device according to claim 1, wherein twisting around an axis is generated.
  3.  前記光学素子は、透明材料で形成された柱状体からなる導光ロッドであり、前記反射側面は空気との境界面であり、前記反射は全反射であることを特徴とする請求の範囲第2項に記載の光源装置。 The optical element is a light guide rod made of a columnar body made of a transparent material, the reflection side surface is a boundary surface with air, and the reflection is total reflection. The light source device according to item.
  4.  前記光学素子において、前記長手軸と直交する断面の形状は多角形であり、前記反射側面は平面で構成されていることを特徴とする請求の範囲第3項に記載の光源装置。 4. The light source device according to claim 3, wherein in the optical element, a cross-sectional shape orthogonal to the longitudinal axis is a polygon, and the reflection side surface is a flat surface.
  5.  前記多角形は、六角形、四角形、三角形のいずれかであることを特徴とする請求の範囲第4項に記載の光源装置。 The light source device according to claim 4, wherein the polygon is any one of a hexagon, a quadrangle, and a triangle.
  6.  前記多角形は、六角形であり、
     前記光学素子は、前記六角形の対向する2つの頂点を結ぶ軸が、前記第一方向又は第二方向に対して傾斜した姿勢で配置されていることを特徴とする請求の範囲第5項に記載の光源装置。
    The polygon is a hexagon;
    6. The optical element according to claim 5, wherein an axis connecting two opposite vertices of the hexagon is arranged in a posture inclined with respect to the first direction or the second direction. The light source device described.
  7.  前記第一方向又は第二方向に対する前記軸の傾斜角は15°であることを特徴とする請求の範囲第6項に記載の光源装置。 The light source device according to claim 6, wherein an inclination angle of the axis with respect to the first direction or the second direction is 15 °.
  8.  前記多角形は、四角形であり、
     前記光学素子は、前記四角形の各辺が前記第一方向又は第二方向と平行な正姿勢に対して傾斜して配置されていることを特徴とする請求の範囲第5項に記載の光源装置。
    The polygon is a rectangle,
    The light source device according to claim 5, wherein the optical element is arranged such that each side of the quadrangle is inclined with respect to a normal posture parallel to the first direction or the second direction. .
  9.  前記正姿勢に対する傾斜角は45°であることを特徴とする請求の範囲第8項に記載の光源装置。 The light source device according to claim 8, wherein an inclination angle with respect to the normal posture is 45 °.
  10.  前記光学素子は、前記多角形の断面の中心と前記発光素子の発光中心とが一致した状態で配置されていることを特徴とする請求の範囲第4項に記載の光源装置。 The light source device according to claim 4, wherein the optical element is arranged in a state where the center of the polygonal cross section coincides with the light emission center of the light emitting element.
  11.  前記光学素子において、前記入射面の面積は、複数個の前記発光素子からの光が入射可能な大きさを有することを特徴とする請求の範囲第3項に記載の光源装置。 4. The light source device according to claim 3, wherein the area of the incident surface of the optical element has a size that allows light from a plurality of the light emitting elements to be incident thereon.
  12.  前記光学素子は、前記反射側面が前記長手軸に対して傾斜したテーパ形状であることを特徴とする請求の範囲第3項に記載の光源装置。 The light source device according to claim 3, wherein the optical element has a tapered shape in which the reflection side surface is inclined with respect to the longitudinal axis.
  13.  前記発光素子が発する前記ビームの断面の形状は、前記第一方向及び前記第二方向のそれぞれに対応する長軸及び短軸を有する楕円形であり、
     前記光学素子は、前記入射面に入射する前記楕円形のビームを、真円形に整形して前記出射面から出射することを特徴とする請求の範囲第1項~第12項に記載の光源装置。
    The shape of the cross section of the beam emitted from the light emitting element is an ellipse having a major axis and a minor axis corresponding to the first direction and the second direction, respectively.
    The light source device according to any one of claims 1 to 12, wherein the optical element shapes the elliptical beam incident on the incident surface into a perfect circle and emits the light from the emission surface. .
  14.  前記発光素子は、レーザダイオードであることを特徴とする請求の範囲第13項に記載の光源装置。 14. The light source device according to claim 13, wherein the light emitting element is a laser diode.
  15.  前記光学素子を用いずに前記断面の形状が真円形のビームを出射する第1光源部と、前記発光素子と前記光学素子とを有し、前記光学素子によって整形された、前記断面の形状が真円形のビームを出射する第2光源部の少なくとも2種類の光源部を備えていることを特徴とする請求の範囲第14項に記載の光源装置。 The first light source unit that emits a beam having a perfectly circular cross section without using the optical element, the light emitting element and the optical element, and the shape of the cross section shaped by the optical element is The light source device according to claim 14, comprising at least two types of light source parts of a second light source part that emits a perfect circular beam.
  16.  前記第1光源部は、前記発光素子と前記発光素子が発する光によって励起して蛍光を発する蛍光体とを有することを特徴とする請求の範囲第15項に記載の光源装置。 16. The light source device according to claim 15, wherein the first light source unit includes the light emitting element and a phosphor that emits fluorescence when excited by light emitted from the light emitting element.
PCT/JP2013/064172 2012-05-28 2013-05-22 Light-source device WO2013179962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518400A JP5820067B2 (en) 2012-05-28 2013-05-22 Light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012121031 2012-05-28
JP2012-121031 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013179962A1 true WO2013179962A1 (en) 2013-12-05

Family

ID=49673163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064172 WO2013179962A1 (en) 2012-05-28 2013-05-22 Light-source device

Country Status (2)

Country Link
JP (1) JP5820067B2 (en)
WO (1) WO2013179962A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244291A (en) * 2012-05-28 2013-12-09 Fujifilm Corp Light source device
JPWO2013179961A1 (en) * 2012-05-28 2016-01-18 富士フイルム株式会社 Endoscope system
JP2017046743A (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Light source device for endoscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142242A (en) * 1981-02-26 1982-09-02 Tokyo Shibaura Electric Co Laser apparatus
JP2006047680A (en) * 2004-08-04 2006-02-16 Ricoh Co Ltd Optical system for shaping beam and laser light source and preparing method of the same system
JP2006122251A (en) * 2004-10-27 2006-05-18 Kyocera Corp Led fiber light source device and endoscopic apparatus using the same
JP2007094213A (en) * 2005-09-29 2007-04-12 Rohm Co Ltd Optical transmitting system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752930B2 (en) * 2010-12-06 2015-07-22 株式会社ディスコ Laser processing equipment
JP5474746B2 (en) * 2010-12-06 2014-04-16 本田技研工業株式会社 Semi-solid metal supply method
KR20120133901A (en) * 2011-06-01 2012-12-11 삼성전자주식회사 Image signal processing device driving a plurality of light sources sequentially, display apparatus using the image signal processing device and display method thereof
WO2013179961A1 (en) * 2012-05-28 2013-12-05 富士フイルム株式会社 Light-source device and endoscope system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142242A (en) * 1981-02-26 1982-09-02 Tokyo Shibaura Electric Co Laser apparatus
JP2006047680A (en) * 2004-08-04 2006-02-16 Ricoh Co Ltd Optical system for shaping beam and laser light source and preparing method of the same system
JP2006122251A (en) * 2004-10-27 2006-05-18 Kyocera Corp Led fiber light source device and endoscopic apparatus using the same
JP2007094213A (en) * 2005-09-29 2007-04-12 Rohm Co Ltd Optical transmitting system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAO ISAWA: "Beam-Shaping Techniques and Focusing Performance for a Diode Bar Used as a Pumping Source", THE REVIEW OF LASER ENGINEERING, vol. 26, no. 10, October 1998 (1998-10-01), pages 740 - 743 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244291A (en) * 2012-05-28 2013-12-09 Fujifilm Corp Light source device
JPWO2013179961A1 (en) * 2012-05-28 2016-01-18 富士フイルム株式会社 Endoscope system
JP2017046743A (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Light source device for endoscope

Also Published As

Publication number Publication date
JP5820067B2 (en) 2015-11-24
JPWO2013179962A1 (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP5612028B2 (en) Light source device and endoscope system
JP7280394B2 (en) Endoscope light source device
WO2013140961A1 (en) Light source device and endoscopic system
US8764644B2 (en) Endoscope light source unit and endoscopy system
JP2014000301A (en) Light source device and endoscope system
JP5997676B2 (en) Endoscope light source device and endoscope system using the same
CN108366717B (en) Endoscope device
JP5930454B2 (en) Light source device
JP5997630B2 (en) Light source device and endoscope system using the same
JP2011156339A (en) Medical apparatus and endoscope apparatus
US20120053420A1 (en) Endoscopic light guide and endoscope having the same
WO2015111541A1 (en) Light source module and endoscope light source system
EP2564760A1 (en) Endoscopic diagnosis system
JP5820067B2 (en) Light source device
WO2013179961A1 (en) Light-source device and endoscope system
JP5819779B2 (en) Light source device
JP2014121363A (en) Light source device and endoscope system using the same
JP5450339B2 (en) Endoscope light source device
WO2014081298A2 (en) Broad spectrum led and laser based light engine
JP2014132918A (en) Light source device and endoscope system using the same
JP2016137309A (en) Light source device
JP5331855B2 (en) Endoscopic diagnosis device
JP2006122251A (en) Led fiber light source device and endoscopic apparatus using the same
JP6746707B2 (en) Lighting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796947

Country of ref document: EP

Kind code of ref document: A1