WO2013179860A1 - 光結合器および共焦点観察システム - Google Patents

光結合器および共焦点観察システム Download PDF

Info

Publication number
WO2013179860A1
WO2013179860A1 PCT/JP2013/062854 JP2013062854W WO2013179860A1 WO 2013179860 A1 WO2013179860 A1 WO 2013179860A1 JP 2013062854 W JP2013062854 W JP 2013062854W WO 2013179860 A1 WO2013179860 A1 WO 2013179860A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
optical coupler
wdm optical
light
transmittance
Prior art date
Application number
PCT/JP2013/062854
Other languages
English (en)
French (fr)
Inventor
俊明 山邉
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380028326.9A priority Critical patent/CN104350402A/zh
Priority to EP13797359.0A priority patent/EP2857875B1/en
Priority to JP2014518364A priority patent/JP6139516B2/ja
Priority to US14/404,526 priority patent/US9158104B2/en
Publication of WO2013179860A1 publication Critical patent/WO2013179860A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0028Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Definitions

  • the present invention relates to an optical coupler using an optical coupler, and further relates to a confocal observation system using the optical coupler.
  • Optical couplers are known as passive optical devices that demultiplex and multiplex light.
  • optical couplers are also used in confocal endoscope systems and the like in recent years.
  • a 2 ⁇ 2 port having a first port and a second port on the input side (output side) and a third port and a fourth port on the output side (input side)
  • WDM Widelength Division Multiplexing
  • the excitation light emitted from the laser light source enters the first port and exits from the third port, and the fluorescence of the subject by the emitted excitation light enters the third port, It is configured to be guided to the light receiving unit through the second port.
  • the excitation light having a wavelength of 488 nm incident from the first port is demultiplexed at a ratio of 90:10 to the third port and the fourth port, and is incident from the third port. It is designed so that light having a fluorescence peak wavelength of 515 nm is demultiplexed at a ratio of 0: 100 to the first port and the second port.
  • the transmittance when light entering from one input port is output from the output port changes sinusoidally with respect to the wavelength, and is complementary at the straight port and the cross port. (180 degrees out of phase). Therefore, in order to efficiently guide the excitation light to the scanning fiber side and to demultiplex the fluorescence mainly to the light receiving unit side, the peak of the transmittance to one port is preferably as much as possible. It is necessary to match the peak of transmittance to the other port to the peak wavelength of the fluorescence.
  • An object of the present invention is to efficiently acquire an optical signal over a wider bandwidth using a WDM optical coupler.
  • the optical coupler of the present invention is positioned as a cross port when the first port and the second port are used as an input end, and as a straight port when the second port is used as an input end.
  • a first WDM optical coupler including a port, a fifth port, a sixth port, and a straight port when the fifth port is an input end, and a cross port when the sixth port is an input end
  • a second WDM optical coupler including a seventh port that is positioned as a cross port when the fifth port is an input end and an eighth port that is positioned as a straight port when the sixth port is an input end.
  • the fourth port of the first WDM optical coupler and the fifth port of the second WDM optical coupler are optically connected, and the second port of the first WDM optical coupler and the second WD Eighth port type optical coupler is characterized in that it is optically connected.
  • the light having the first peak wavelength incident on the first port is emitted from the seventh port via the fourth and fifth ports
  • Light that includes a second peak wavelength that is longer than the first peak wavelength that is incident on the seventh port is transmitted from the sixth port directly or via the fifth, fourth, second, and eighth ports to the sixth port. It preferably has a transmittance characteristic such that it is emitted from
  • the transmittance cycle between the straight ports of the first WDM optical coupler and between the cross ports is twice the cycle of the transmittance between the straight ports of the second WDM optical coupler and between the cross ports.
  • the peak wavelength of the transmittance between the cross ports of the second WDM optical coupler is preferably substantially equal to the second peak wavelength
  • the transmittance between the cross ports of the first WDM optical coupler is, for example, It is preferably 80% or more with respect to the first peak wavelength.
  • the transmittance between the straight ports of the second WDM optical coupler reaches a peak at the first peak wavelength together with the transmittance between the cross ports of the first WDM optical coupler, and then between the straight ports of the first WDM optical coupler. It is preferable to reach the next peak together with the transmittance.
  • the transmittance characteristics of the first WDM optical coupler and the second WDM optical coupler are the same.
  • the peak wavelength of the transmittance between the cross ports of the first and second WDM optical couplers substantially coincides with the second peak wavelength, and the transmittance between the straight ports of the first and second WDM optical couplers.
  • the band of 50% or more and less than 100% preferably includes the first peak wavelength.
  • the first WDM optical coupler includes a third port positioned as a straight port when the first port is used as an input terminal, for example, and the third port is terminated, for example.
  • a confocal observation system of the present invention is a confocal observation system including the optical coupler, and the confocal observation system includes a light source that emits light having a first peak wavelength, and a photodetector.
  • the first port of the 1WDM optical coupler is optically connected to the light source
  • the sixth port of the second WDM optical coupler is optically connected to the photodetector
  • the light source is observed through the seventh port of the second WDM optical coupler.
  • the object is irradiated with the light, and the photodetector acquires return light having a second peak wavelength longer than the first peak wavelength from the observation object through the seventh port of the second WDM optical coupler. Yes.
  • the confocal observation system preferably includes scanning means for scanning the observation target with light having the first peak wavelength that has passed through the seventh port of the second WDM optical coupler in order to perform focus observation.
  • the light emitted from is used as excitation light, and the light acquired from the observation object is fluorescence by the excitation light.
  • the scanning confocal endoscope of the present invention is characterized by including the above-described confocal observation system.
  • an optical signal can be efficiently acquired over a wider bandwidth using a WDM optical coupler.
  • mold optical coupler which comprises the optical coupler of 1st Embodiment, and the spectral distribution of excitation light and fluorescence.
  • FIG. 1 is a block diagram showing the configuration of a confocal observation system using the optical coupler of the first embodiment of the present invention.
  • the confocal observation system 10 is, for example, a scanning confocal endoscope, and the light (for example, excitation light) from the light source 11 is passed through the optical coupler 12, the optical connector 13, and the SFE scanner 14.
  • the subject S is irradiated from the tip.
  • Reflected light (for example, fluorescence) from the subject S passes through the SFE scanner 14, the optical connector 13, and the optical coupler 12, and a light receiving unit (light detector) 15 such as a photomultiplier tube (PMT) in which an excitation light cut filter is disposed in the previous stage. Is detected.
  • a signal from the light receiving unit 15 is sent to the signal processing unit 16, and an image of the subject S generated by the signal processing unit 16 is displayed on the monitor 17.
  • FIG. 2 is a block diagram showing the configuration of the optical transmission system 20 of the present embodiment.
  • the optical coupler 12 of the present embodiment is configured by combining a first WDM optical coupler 18 and a second WDM optical coupler 19, and the first and second WDM optical couplers 18 and 19 have, for example, two inputs and two outputs.
  • a (2 ⁇ 2) WDM optical coupler is used.
  • the optical connector 13 is omitted.
  • the first WDM optical coupler 18 includes first to fourth ports.
  • the third port is positioned as a straight port when the first port is an input end, and is positioned as a cross port when the second port is an input end.
  • the fourth port is positioned as a cross port when the first port is an input end, and is positioned as a straight port when the second port is an input end.
  • the second WDM optical coupler 19 includes fifth to eighth ports.
  • the seventh port is positioned as a straight port when the fifth port is an input end, and is positioned as a cross port when the sixth port is an input end.
  • the eighth port is configured as a cross port when the fifth port is an input end, and is positioned as a straight port when the sixth port is an input end.
  • the fourth port P4 of the first WDM optical coupler 18 is optically connected to the fifth port P5 of the second WDM optical coupler 19, and the second port P2 of the first WDM optical coupler 18 is connected to the second WDM optical coupler 19.
  • the eighth port P8 is optically connected.
  • the third port P3 of the first WDM optical coupler 18 is terminated.
  • the first and second WDM optical couplers 18 and 19 function as one optical coupler 12 having the first port P1, the sixth port P6, and the seventh port P7 as input / output ports by being configured as described above. .
  • the optical connection between the ports is performed by fusion, for example.
  • the light source 11 is connected to the first port P1 of the optical coupler 12, and the light receiving unit 15 and the SFE scanner 14 are connected to the sixth port P6 and the seventh port P7, respectively.
  • the scanning confocal endoscope 10 of the present embodiment performs, for example, fluorescence observation of a living body.
  • the light source 11 a laser light source or an LED light source that emits excitation light that causes fluorescence of an observation target or a reagent is used. .
  • Excitation light from the light source 11 is input to the optical coupler 12 from the first port P1 and supplied to the SFE scanner 14 from the seventh port P7.
  • Excitation light supplied to the SFE scanner 14 is irradiated from the distal end of the endoscope insertion section toward an observation target to which a reagent is administered, for example, through a scanning fiber (not shown).
  • Fluorescence emitted from the surface of the observation object by the excitation light is input from the seventh port P7 to the optical coupler 12 through the scanning fiber of the SFE scanner 14, and is guided from the sixth port P6 to the light receiving unit 15.
  • the excitation light is, for example, laser light in the vicinity of 480 nm, and the light acquired from the observation target is, for example, fluorescence in the 500 to 600 nm band having a peak at 515 nm due to the excitation light.
  • the excitation light is, for example, laser light in the vicinity of 555 nm
  • the light acquired from the observation object is, for example, fluorescence in the 540 to 650 nm (700 nm) band having a peak at 585 nm due to the excitation light.
  • FIG. 9 shows the spectrum distribution at this time (corresponding to the fluorescence of rhodamine B).
  • the horizontal axis represents wavelength (nm) and the vertical axis represents an arbitrary unit (au) of light intensity.
  • the scanning fiber of the SFE scanner 14 is composed of, for example, a single optical fiber, and a scanning mechanism (not shown) using a piezoelectric element or the like is provided near the tip of the scanning fiber.
  • the scanning fiber irradiates excitation light while its own tip is bent up and down and left and right by a scanning mechanism, and obtains an object to be observed by acquiring the one that is focused on the tip out of the fluorescence that is return light.
  • the acquired fluorescence is detected by the light receiving unit 15 and synthesized by the subsequent signal processing unit 16. Thereby, a two-dimensional image of the observation object is acquired.
  • an excitation light cut filter is disposed in front of the light receiving unit 15. The excitation light cut filter effectively removes the excitation light component that causes noise in the light receiving unit 15.
  • the transmittance characteristics of the optical coupler 12 of the first embodiment and the operational effects in the optical coupler 12 will be described.
  • the first and second WDM optical couplers 18 and 19 those having the same transmittance characteristic or branching ratio characteristic are used.
  • FIG. 3 shows the transmittance characteristics of the first WDM optical coupler 18 and the second WDM optical coupler 19 having the same transmittance characteristics used in the first embodiment alone, and the excitation light and fluorescence spectra in the present embodiment. Distribution is shown.
  • the horizontal axis indicates the wavelength of light (nm)
  • the left vertical axis indicates the light transmittance (%)
  • the right vertical axis indicates the arbitrary unit (au) of the light intensity.
  • a curve S1 indicates the transmittance (%) between the straight ports of the first WDM optical coupler 18 and the second WDM optical coupler 19, and a curve C1 indicates the transmittance (%) between the cross ports.
  • the straight line L1 is the spectrum of the excitation light from the light source 11 input to the optical coupler 12, and the peak value is shown as 100 (au).
  • Curve L2 is the spectrum of the fluorescence input to the optical coupler 12, and the peak value is shown as 100 (au).
  • the transmittances S1 and C1 have complementary sine waveforms whose sum is 100%, and one is 180 ° out of phase with the other.
  • the transmittance characteristics of the first and second WDM optical couplers 18 and 19 of the present embodiment are set as follows. That is, for the fluorescence spectrum distribution L2, the peak wavelength of the transmittance C1 between the crossports is set to substantially match the peak wavelength of the spectrum distribution L2, and for the excitation light spectrum L1, it is straight.
  • a band of 50% or more and less than 100% of the transmittance S1 between ports is set so as to include the spectrum L1 (peak wavelength of excitation light).
  • the transmittance S1 between the straight ports is more preferably 50% with respect to the peak wavelength L1 of the excitation light.
  • FIG. 4 shows the transmittance characteristics of light from the first port P1 to the seventh port P7 (P1-P7) of the optical coupler 12 coupled with the first WDM optical coupler 18 and the second WDM optical coupler 19, and the seventh port.
  • the light transmittance characteristics from P7 to the sixth port P6 (P7-P6) are shown.
  • the horizontal axis indicates the wavelength of light (nm), and the left vertical axis indicates the light transmittance (%).
  • FIG. 4 shows spectral distributions L1 and L2 of excitation light and fluorescence, and an arbitrary unit (au) of light intensity is shown on the right vertical axis.
  • the eighth port of the light input from the fifth port P5 to the second WDM optical coupler 19 is used.
  • the light demultiplexed to P8 is input again to the first WDM optical coupler 18 through the second port P2.
  • part of the light demultiplexed to the fifth port P5 is the second port P2 of the first WDM optical coupler 18 and the second WDM optical coupler.
  • the signal is input again to the second WDM optical coupler 19 through the 19th eighth port P8.
  • the transmittance for the excitation light guided to the SFE scanner 14 from the first port P1 through the seventh port P7 is stabilized at about 40%. Focusing on the fluorescence input from the seventh port P7, the fluorescence component (fluorescence 1) in the band near the peak is output directly from the seventh port P7 to the sixth port P6. Also, most of the fluorescence component (fluorescence 2) demultiplexed to the fifth port P5 is re-input to the second WDM optical coupler 19 through the loop between the second port P2 and the eighth port P8, and the sixth port P6. Is output. As a result, as shown in FIG. 3, the light receiving unit 15 can acquire not only the peak wavelength band of the fluorescent component without leakage but also a wider band than when the WDM optical coupler is used alone. it can.
  • the first embodiment of the present invention it is possible to efficiently detect the fluorescence 2 that could not be obtained in the past, and the optical signal can be widened using a WDM optical coupler. It becomes possible to acquire efficiently over this.
  • optical transmission system according to a second embodiment of the present invention will be described with reference to FIGS.
  • the optical transmission system of the second embodiment is the same as that of the first embodiment except that WDM optical couplers having different transmittance characteristics are used for the first WDM optical coupler and the second WDM optical coupler of the optical coupler 12. is there. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 5 and 6 are graphs showing the transmittance characteristics of the first WDM optical coupler 18 and the second WDM optical coupler 19 in the second embodiment, and the spectral distributions L1 and L2 of excitation light and fluorescence, respectively.
  • the curve S2 in FIG. 5 is the transmittance (%) between the straight ports (P1-P3, P4-P2) of the first WDM optical coupler 18, and the curve C2 is between the cross ports (P1-P4) of the first WDM optical coupler 18.
  • 6 represents the transmittance (%) between the straight ports (P5-P7, P8-P6) of the second WDM optical coupler 19, and the curve C3 represents the second WDM optical coupler 19.
  • FIG. 7 shows the curves in FIGS. 5 and 6 in the same graph.
  • shaft in each graph shows is the same as that of FIG.
  • the cross port (P1-P1) is used to guide the pumping light input from the first port P1 to the fourth port P4 as much as possible.
  • the transmittance C2 is selected as the transmittance between P4).
  • the transmittance S2 is selected.
  • the branching rate between the ports P1 and P3 of the excitation light is 0 to 20% (that is, the branching rate between the ports P1 and P4 is 100 to 80%). At this time, the reflection component of the excitation light is hardly guided to the second port P2 even if it is input from the fourth port P4.
  • the straight port (as shown in FIG. 6) guides the pumping light input from the fifth port P5 to the seventh port P7 as much as possible.
  • the transmittance S3 is selected as the transmittance between P5 and P7).
  • the fluorescence 1 that is the fluorescence peak vicinity band component input from the SFE scanner 14 to the seventh port P7 is guided to the sixth port P6 without loss.
  • the transmittance C3 between the crossports (P7-P6) is selected.
  • the branching rate between the ports P5 and P7 of the excitation light is 100 to 80% (that is, the branching rate between the ports P5 and P8 is 0 to 20%).
  • the peak of the fluorescence input from the seventh port P7 is selected so as to substantially coincide with the peak of the transmittance C3 between the cross ports (P7-P6) of the second WDM optical coupler 19. At this time, the reflection component of the excitation light is hardly guided to the sixth port P6 even if it is input from the seventh port P7.
  • the periods of the transmittances S ⁇ b> 2 and C ⁇ b> 2 between the straight ports and the cross ports of the first WDM optical coupler 18 are the same as those of the second WDM optical coupler 19. It is set to a value (for example, an integer of 2 or more) that is approximately twice or more the cycle of the transmittances S3 and C3 between the straight ports and between the cross ports. In the present embodiment, a double is assumed.
  • FIG. 8 shows the transmittance characteristics of light from the first port P1 to the seventh port P7 (P1-P7) and the seventh port P7 to the sixth port P6 (P7-P6) of the optical coupler 12 of the second embodiment.
  • the horizontal axis indicates the light wavelength (nm), and the left vertical axis indicates the light transmittance (%).
  • FIG. 8 also shows excitation light and fluorescence spectral distributions L1 and L2, and the right vertical axis shows an arbitrary unit (au) of light intensity.
  • the transmittance between the ports has the relationship shown in FIG. Specifically, the transmittance C2 between the cross ports of the first WDM type optical coupler 18 and the transmittance S3 between the straight ports of the second WDM type optical coupler 19 reach a peak in the vicinity of 480 nm which is the peak wavelength of the pumping light. Become. Further, the peak at which the transmittance S3 reaches next after the vicinity of 480 nm is substantially the same wavelength region as that of the straight port S2 of the first WDM optical coupler 18 (in the present embodiment, the vicinity of 540 nm).
  • the transmittance between the ports P1 and P7 of the optical coupler 12 is a curve T3, and the transmittance between the ports P7 and P6 is a curve T4. That is, in the second embodiment, the transmittance T3 between the ports P1 and P7 exhibits a narrowband transmittance distribution having a high transmittance only in the vicinity of the peak wavelength of the excitation light. Further, as described above, the transmittance T3 between the ports P7 and P6 extends over a wide band substantially including the entire fluorescence band by making the peak of the transmittance S3 and the peak of the transmittance S2 approximately coincide with each other in a predetermined wavelength range. Exhibit a transmittance distribution showing a high transmittance.
  • the same effect as that of the first embodiment can be obtained, the transmittance distribution in a narrow band with respect to the irradiation light, and the wide band with respect to the return light.
  • An optical coupler having a transmittance distribution can be configured.
  • laser light having an emission line spectrum is described as an example of irradiation light (excitation light).
  • excitation light light having a narrow-band continuous spectrum distribution using an LED or the like is irradiated with light (excitation light). It can also be applied when used as light.
  • the explanation has been made by taking fluorescence as an example of the return light, but the return light is not limited to the fluorescence. That is, the present invention can also be applied to a case where light having a peak wavelength ⁇ 1 is used as irradiation light and reflected light having a peak wavelength ⁇ 2 ( ⁇ ⁇ 1) is detected as return light.
  • the transmittance between the straight port and the cross port of two WDM optical couplers is selected according to the peak wavelengths ⁇ 1 and ⁇ 2 of the irradiation light and return light, the return light can be efficiently transmitted over a wide band. Can be obtained.
  • the optical transmission system of the present invention can be used for other uses such as a microscope in addition to an endoscope.
  • the scanning confocal endoscope the observation object is scanned by moving the fiber.
  • the scanning confocal endoscope is used for a microscope or the like, the scanning can be performed by moving the sample side.
  • a 2 ⁇ 2 WDM optical coupler is used, but a 2-input, 1-output coupler can be used as the first WDM optical coupler, and the number of input / output ports is as follows. It is not limited to this embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

第1WDM型光カプラ18の第4ポートP4と第2WDM型光カプラ19の第5ポートP5を光学的に接続し、第1WDM型光カプラ18の第2ポートP2と第2WDM型光カプラ19の第8ポートP8を光学的に接続する。第1WDM型光カプラ18の第1ポートP1に励起光を照射する光源11を接続し、第2WDM型光カプラ19の第6ポートP6に受光部(光検出器)15を接続する。第2WDM型光カプラ19の第7ポートP7を通して観察対象物に励起光を照射し、観察対象物からの蛍光を第2WDM型光カプラ19の第7ポートP7を通して取得し、入力された蛍光を受光部15で検出する。

Description

光結合器および共焦点観察システム
 本発明は、光カプラを用いた光結合器に関し、更にこの光結合器を用いた共焦点観察システムに関する。
 光を分波・合波する受動光デバイスとして光カプラ(光ファイバカプラ)が知られている。光カプラは光ファイバ通信に用いられる他、近年では共焦点内視鏡システムなどにおいても利用される。例えば励起光を用いた共焦点内視鏡システムとして、入力側(出力側)として第1ポート、第2ポート、出力側(入力側)として第3ポート、第4ポートを備えた2×2のWDM(Wavelength Division Multiplexing:波長分割多重方式)型光カプラを用いる構成が知られている(特許文献1)。この共焦点内視鏡システムでは、レーザ光源から照射された励起光を第1ポートに入射するとともに第3ポートから射出し、射出された励起光による被写体の蛍光が第3ポートへ入射して、第2ポートを通して受光ユニットへ導かれるよう構成されている。また、この光カプラでは、理想的には、第1ポートから入射される波長488nmの励起光が第3ポート、第4ポートに90:10の割合で分波され、第3ポートから入射される蛍光のピーク波長515nmの光が第1ポート、第2ポートに0:100の割合で分波されるように設計されている。
特開2010-262149号公報
 2×2のWDM型光カプラにおいて、1つの入力側ポートから入った光が出力側ポートから出力される際の透過率は、波長に対して正弦的に変化し、ストレートポート、クロスポートにおいて相補的である(180度位相がずれている)。したがって、励起光を効率よくスキャニング・ファイバ側へ導き、かつ蛍光が主に受光ユニット側へ分波されるようにするには、一方のポートへの透過率のピークをなるべく励起光(略単一波長)の波長に合わせ、他方のポートへの透過率のピークを略蛍光のピーク波長に合わせる必要がある。しかし、蛍光のスペクトルの広がりは、一般に励起光の波長と蛍光のピーク波長の差よりも広いので、スペクトルの裾野部分の帯域に含まれる蛍光の多くは、レーザ光源が接続された第1ポート側へも分波されてしまう。
 つまり、上記特許文献1に記載の共焦点を用いた走査型内視鏡(SFE:Scanning (Single Fiber) Endoscope)において、蛍光スペクトルのピーク波長近傍の成分のみではなく、裾野部分の帯域成分を効率よく検出できることが望まれている。また、上述のような従来の構成では、取得蛍光波長ピークを限定するため、蛍光ピーク波長が少しずれると蛍光の取得効率の著しい低下を招いたり、蛍光試薬の種類毎に光カプラの変更が必要となったりする。
 本発明は、WDM型光カプラを用いて、光信号をより広い帯域幅に亘って効率的に取得することを課題としている。
 本発明の光結合器は、第1ポートおよび第2ポートと、第1ポートを入力端とした場合にクロスポートとして位置し、第2ポートを入力端とした場合にストレートポートとして位置する第4ポートとを備える第1WDM型光カプラと、第5ポートおよび第6ポートと、第5ポートを入力端とした場合にストレートポートとして位置し、第6ポートを入力端とした場合にクロスポートとして位置する第7ポートと、第5ポートを入力端とする場合にクロスポートとして位置し、第6ポートを入力端とする場合にストレートポートとして位置する第8ポートとを備える第2WDM型光カプラとを備え、第1WDM型光カプラの第4ポートと第2WDM型光カプラの第5ポートが光学的に接続され、第1WDM型光カプラの第2ポートと第2WDM型光カプラの第8ポートが光学的に接続されたことを特徴としている。
 第1WDM型光カプラと第2WDM型光カプラは、互いに、第1ポートに入射した第1のピーク波長をもつ光が、第4、第5の各ポートを介して第7ポートから射出され、第7ポートに入射した第1のピーク波長よりも長い第2のピーク波長を含む光が、直接第6ポートから、または第5、第4、第2、第8の各ポートを介して第6ポートから射出されるような透過率特性を有することが好ましい。
 例えば第1WDM型光カプラのストレートポート間、クロスポート間の透過率の周期が第2WDM型光カプラのストレートポート間、クロスポート間の透過率の周期の2倍である。このとき、第2WDM型光カプラのクロスポート間の透過率のピーク波長が、第2ピーク波長に実質的に一致することが好ましく、また第1WDM型光カプラのクロスポート間の透過率は、例えば第1のピーク波長に対して80%以上であることが好ましい。更に第2WDM型光カプラのストレートポート間の透過率は、第1WDM型光カプラのクロスポート間の透過率とともに第1のピーク波長においてピークを迎えた後、該第1WDM型光カプラのストレートポート間の透過率とともに次のピークを迎えることが好ましい。
 また例えば、第1WDM型光カプラと第2WDM型光カプラの透過率特性は同一である。このとき第1および第2WDM型光カプラのクロスポート間の透過率のピーク波長が、第2ピーク波長に略一致することが好ましく、第1および第2WDM型光カプラのストレートポート間の透過率の50%以上、100%未満の帯域が、第1ピーク波長を含むことが好ましい。
 また、第1WDM型光カプラは、例えば第1ポートを入力端とした場合にストレートポートとして位置する第3ポートを備え、該第3ポートは例えば終端処理される。
 本発明の共焦点観察システムは、上記光結合器を備える共焦点観察システムであって、共焦点観察システムは、第1ピーク波長を有する光を照射する光源と、光検出器とを備え、第1WDM型光カプラの第1ポートが光源に光学的に接続され、第2WDM型光カプラの第6ポートが光検出器に光学的に接続され、光源が第2WDM型光カプラの第7ポートを通して観察対象物に前記光を照射し、光検出器が観察対象物からの第1ピーク波長よりも長い第2ピーク波長を有する戻り光を第2WDM型光カプラの第7ポートを通して取得することを特徴としている。
 共焦点観察システムは、焦点観察を行うために、第2WDM型光カプラの第7ポートを通した第1ピーク波長を有する光を観察対象上で走査させる走査手段を備ることが好ましく、例えば光源から照射される光は励起光として用いられ、観察対象物から取得される光はこの励起光による蛍光である。
 本発明の走査型共焦点内視鏡は、上記の共焦点観察システムを備えたことを特徴としている。
 本発明によれば、WDM型光カプラを用いて、光信号をより広い帯域幅に亘って効率的に取得することができる。
本実施形態の共焦点観察システムを適用した走査型共焦点内視鏡の構成を示すブロック図である。 本実施形態の共焦点観察システムで用いられる光伝送システムの構成を示すブロック図である。 第1実施形態の光結合器を構成する第1、第2WDM型光カプラの透過率特性および励起光、蛍光の分光分布を示すグラフである。 第1実施形態の光結合器における第1ポート、第7ポート間の透過率および第7ポート、第6ポート間の透過率と、励起光および蛍光の分光分布の関係を示すグラフである。 第2実施形態の光結合器を構成する第1WDM型光カプラの透過率特性および励起光、蛍光の分光分布を示すグラフである。 第2実施形態の光結合器を構成する第2WDM型光カプラの透過率特性および励起光、蛍光の分光分布を示すグラフである。 第2実施形態における第1、第2WDM型光カプラの透過率の関係を示すグラフである。 第2実施形態の光結合器における第1ポート、第7ポート間の透過率および第7ポート、第6ポート間の透過率と、励起光および蛍光の分光分布の関係を示すグラフである。 555nmのレーザ光に対して観察対象物の蛍光のスペクトル分布を例示すグラフである。
 以下、本発明の実施の形態を、図面を参照して説明する。図1は、本発明の第1実施形態の光結合器を用いた共焦点観察システムの構成を示すブロック図である。
 本実施形態において共焦点観察システム10は、例えば走査型共焦点内視鏡であり、光源11からの光(例えば励起光)を光結合器12、光コネクタ13、SFEスキャナ14を通して内視鏡の先端から被写体Sに照射する。被写体Sからの反射光(例えば蛍光)はSFEスキャナ14、光コネクタ13、光結合器12を通して励起光カットフィルタを前段に配置した光増倍管(PMT)などの受光部(光検出器)15において検出される。受光部15からの信号は信号処理部16に送られ、信号処理部16において生成された被写体Sの画像がモニタ17に表示される。
 図2は、本実施形態の光伝送システム20の構成を示すブロック図である。本実施形態の光結合器12は、第1WDM型光カプラ18、第2WDM型光カプラ19を結合して構成され、第1、第2WDM型光カプラ18、19には、例えば2入力、2出力(2×2)のWDM型光カプラが用いられる。なお、図2においては、光コネクタ13は省略されている。
 第1WDM型光カプラ18は、第1~第4ポートを備える。第3ポートは、第1ポートを入力端とした場合にストレートポートとして位置し、第2ポートを入力端とした場合にクロスポートとして位置する。また第4ポートは、第1ポートを入力端とした場合にクロスポートとして位置し、第2ポートを入力端とした場合にストレートポートとして位置する。
 また第2WDM型光カプラ19は、第5~第8ポートを備える。第7ポートは、第5ポートを入力端とした場合にストレートポートとして位置し、第6ポートを入力端とした場合にクロスポートとして位置する。また第8ポートは、第5ポートを入力端とした場合にクロスポートとして構成され、第6ポートを入力端とした場合にストレートポートとして位置する。
 第1WDM型光カプラ18の第4ポートP4は、第2WDM型光カプラ19の第5ポートP5に光学的に接続され、第1WDM型光カプラ18の第2ポートP2は、第2WDM型光カプラ19の第8ポートP8に光学的に接続される。また本実施形態においては第1WDM型光カプラ18の第3ポートP3は終端処理される。第1、第2WDM型光カプラ18、19は、以上のように構成することにより第1ポートP1、第6ポートP6、第7ポートP7を入出力ポートとする1つの光結合器12として機能する。なお、上記各ポート間の光学的な接続は例えば融着によって行われる。
 また本実施形態において、光結合器12の第1ポートP1には光源11が接続され、第6ポートP6、第7ポートP7には、それぞれ受光部15、SFEスキャナ14が接続される。本実施形態の走査型共焦点内視鏡10は、例えば生体の蛍光観察を行うものであり、光源11としては観察対象や試薬の蛍光を引き起こす励起光を照射するレーザ光源またはLED光源が用いられる。
 光源11からの励起光は、第1ポートP1から光結合器12に入力され、第7ポートP7からSFEスキャナ14へと供給される。SFEスキャナ14へ供給された励起光は、スキャニング・ファイバ(図示せず)を通して内視鏡挿入部の先端から例えば試薬が投与された観察対象に向けて照射される。励起光により観察対象物表面から発せられる蛍光はSFEスキャナ14のスキャニング・ファイバを通して第7ポートP7から光結合器12へ入力され、第6ポートP6から受光部15へと導光される。なお、励起光は例えば480nm近傍のレーザ光であり、観察対象物から取得される光は例えば励起光による515nmにピークをもつ500~600nm帯の蛍光である。
 また、励起光は例えば555nm近傍のレーザ光であり、観察対象物から取得される光は例えば励起光による585nmにピークをもつ540~650nm(700nm)帯の蛍光である。図9にこのときのスペクトル分布を示す(ローダミンBの蛍光に対応)。なお図9において横軸は波長(nm)、縦軸は光の強度の任意単位(au)である。
 SFEスキャナ14のスキャニング・ファイバは、例えば単一の光ファイバから構成され、その先端近傍には圧電素子などを用いた走査機構(図示せず)が設けられる。スキャニング・ファイバは自身の先端を走査機構によって上下左右に撓められながら励起光を照射するとともに、戻り光である蛍光のうち、該先端に焦点を結ぶものを取得することで観察対象物を2次元的に走査する。取得された蛍光は、受光部15で検出されて後段の信号処理部16で合成処理される。これにより、観察対象物の2次元画像が取得される。なお、受光部15の前段には励起光カットフィルタが配設されている。励起光カットフィルタは、受光部15においてノイズの原因となる励起光成分を効果的に除去している。
 次に図3、図4を参照して、第1実施形態の光結合器12の透過率特性、および光結合器12内における作用効果について説明する。なお第1実施形態では、第1、第2WDM型光カプラ18、19として、互いに透過率特性または分岐比特性が同じものが用いられる。
 図3には、第1実施形態で用いられる同一の透過率特性を有する第1WDM型光カプラ18、第2WDM型光カプラ19単独での透過率特性、および本実施形態における励起光、蛍光の分光分布が示される。なお図3のグラフにおいて、横軸は光の波長(nm)を示し、左縦軸は光の透過率(%)、右縦軸は光の強度の任意単位(au)を示す。
 図3において、曲線S1は第1WDM型光カプラ18、第2WDM型光カプラ19のストレートポート間の透過率(%)を示し、曲線C1はクロスポート間の透過率(%)を示す。直線L1は、光結合器12に入力される光源11からの励起光のスペクトルであり、そのピーク値が100(au)として示される。また、曲線L2は光結合器12に入力される蛍光のスペクトルであり、そのピーク値が100(au)として示される。
 透過率S1、C1は、その和が100%となる相補的な正弦波形を呈し、一方は他方に対して180°位相がずれている。本実施形態の第1、第2WDM型光カプラ18、19の透過率特性は、以下のように設定される。すなわち、蛍光のスペクトル分布L2に対しては、クロスポート間の透過率C1のピーク波長が、スペクトル分布L2のピーク波長に略一致するように設定され、励起光のスペクトルL1に対しては、ストレートポート間の透過率S1の50%以上、100%未満の帯域が、スペクトルL1(励起光のピーク波長)を含むように設定される。なお、ストレートポート間の透過率S1は、励起光のピーク波長L1に対して50%となることがより好ましい。
 図4は、第1WDM型光カプラ18、第2WDM型光カプラ19を結合した光結合器12の第1ポートP1から第7ポートP7(P1-P7)への光の透過率特性および第7ポートP7から第6ポートP6(P7-P6)への光の透過率特性を示すもので、横軸は光の波長(nm)を示し、左縦軸は光の透過率(%)を示す。また、図3と同様に図4には励起光、蛍光の分光分布L1、L2が示され、右縦軸に光強度の任意単位(au)が示される。
 本実施形態では、第2ポートP2が第8ポートP8へ光学的に接続されてループを形成しているため、第5ポートP5から第2WDM型光カプラ19に入力された光のうち第8ポートP8に分波された光は第2ポートP2を通して第1WDM型光カプラ18に再び入力される。また第7ポートP7から第2WDM型光カプラ19に入力された光のうち第5ポートP5に分波された光の一部は第1WDM型光カプラ18の第2ポートP2、第2WDM型光カプラ19の第8ポートP8を通して第2WDM型光カプラ19へ再び入力される。これにより、光結合器12のポートP1-P7間の透過率は曲線T1となり、ポートP7-P6間の透過率は曲線T2となる。
 すなわち、本実施形態の光結合器12を用いた場合、第1ポートP1から第7ポートP7を経てSFEスキャナ14に導かれる励起光に対する透過率は40%程度で安定する。第7ポートP7から入力された蛍光に着目すると、ピーク近傍の帯域の蛍光成分(蛍光1)は第7ポートP7から直接第6ポートP6へと出力される。また、第5ポートP5へ分波された蛍光成分(蛍光2)の多くは第2ポートP2、第8ポートP8間のループを介して第2WDM型光カプラ19に再入力され、第6ポートP6へと出力される。これにより、図3に示すように、受光部15では、蛍光成分のうち、ピーク波長帯域を略漏れなく取得できるだけでなく、WDM型光カプラを単独で用いるときよりも広い帯域を取得することができる。
 以上のように本発明の第1実施形態によれば、従来取得不能であった蛍光2も効率よく検出することが可能になり、WDM型光カプラを用いて、光信号をより広い帯域幅に亘って効率的に取得することが可能になる。また、本実施形態によれば、蛍光ピークの波長が多少ずれても蛍光の取得効率の低下を防止できるため、幅広い蛍光試薬への対応が可能となる。
 次に、図5~図8を参照して、本発明の第2実施形態の光伝送システムについて説明する。第2実施形態の光伝送システムは、光結合器12の第1WDM型光カプラと第2WDM型光カプラに互いに異なる透過率特性を有するWDM型光カプラを用いる点以外、第1実施形態と同様である。したがって、第1実施形態と同様の構成については、同一参照符号を用いその説明を省略する。
 図5、図6は、それぞれ第2実施形態における第1WDM型光カプラ18、第2WDM型光カプラ19の透過率特性、および励起光、蛍光の分光分布L1、L2を示すグラフである。図5の曲線S2は第1WDM型光カプラ18のストレートポート(P1-P3、P4-P2)間の透過率(%)、曲線C2は第1WDM型光カプラ18のクロスポート(P1-P4)間の透過率(%)を示し、図6の曲線S3は第2WDM型光カプラ19のストレートポート(P5-P7、P8-P6)間の透過率(%)、曲線C3は第2WDM型光カプラ19のクロスポート(P5-P8、P7-P6)間の透過率(%)を示す。また、図7は図5、図6の各曲線を同一グラフに示したものである。なお各グラフにおける各軸が示す物理量は図3、4と同様である。
 図5に示されるように、第2実施形態の第1WDM型光カプラ18では、第1ポートP1から入力された励起光を可能な限り第4ポートP4へ導光するようにクロスポート(P1-P4)間の透過率として透過率C2が選択される。また、第2実施形態の第1WDM型光カプラ18では透過率、第4ポートP4から入力される蛍光2をなるべく損失なく第2ポートP2へ導光するようにストレートポート(P4-P2)間の透過率S2が選択される。例えば励起光のポートP1-P3間の分岐率は0~20%(つまり、ポートP1-P4間の分岐率は100~80%)とされる。なお、このとき励起光の反射成分は第4ポートP4から入力されても第2ポートP2へは殆ど導光されない。
 一方、図6に示されるように、第2実施形態の第2WDM型光カプラ19では、第5ポートP5から入力された励起光を可能な限り第7ポートP7へ導光するようにストレートポート(P5-P7)間の透過率として透過率S3が選択される。また、第2実施形態の第2WDM型光カプラ19では、SFEスキャナ14から第7ポートP7へ入力される蛍光のピーク近傍帯域成分である蛍光1を損失なく第6ポートP6へ導光するようにクロスポート(P7-P6)間の透過率C3が選択される。例えば励起光のポートP5-P7間の分岐率は100~80%(つまり、ポートP5-P8間の分岐率は0~20%)とされる。また、第7ポートP7から入力される蛍光のピークが、第2WDM型光カプラ19のクロスポート(P7-P6)間の透過率C3のピークと略一致するように選択される。なお、このとき励起光の反射成分は第7ポートP7から入力されても第6ポートP6へは殆ど導光されない。
 また図5、図6に示されるように、第2実施形態において、例えば第1WDM型光カプラ18のストレートポート間、クロスポート間の透過率S2、C2の周期は、第2WDM型光カプラ19のストレートポート間、クロスポート間の透過率S3、C3の周期の略2倍以上の値(例えば2以上の整数)に設定される。本実施形態では、2倍を想定している。
 図8は、第2実施形態の光結合器12の第1ポートP1から第7ポートP7(P1-P7)への光の透過率特性および第7ポートP7から第6ポートP6(P7-P6)への光の透過率特性を示すもので、横軸は光の波長(nm)を示し、左縦軸は光の透過率(%)を示す。また、図5~7と同様に図8には励起光、蛍光の分光分布L1、L2も示され、右縦軸に光強度の任意単位(au)が示される。
 各光カプラ18、19の透過率の関係を上記のように設定すると、各ポート間の透過率は、図7に示す関係をもつ。具体的には、第1WDM型光カプラ18のクロスポート間の透過率C2と第2WDM型光カプラ19のストレートポート間の透過率S3は、互いに励起光のピーク波長である480nm近傍にてピークとなる。さらに、透過率S3が480nm近傍の次に迎えるピークは、第1WDM型光カプラ18のストレートポートS2のピークと略同一の波長域(本実施形態では540nm近傍)となる。
 従って、図8に示されるように、第2実施形態では、光結合器12のポートP1-P7間の透過率は曲線T3となり、ポートP7-P6間の透過率は曲線T4となる。すなわち第2実施形態において、ポートP1-P7間の透過率T3は、励起光のピーク波長近傍においてのみ透過率が高い狭帯域の透過率分布を呈する。また、上述した通り、透過率S3のピークと透過率S2のピークが所定波長域で略一致させることにより、ポートP7-P6間の透過率T4は、蛍光の帯域全体を略含む広い帯域に亘って高い透過率を示す透過率分布を呈する。
 以上のように、本発明の第2実施形態においても第1実施形態と同様の効果を得ることができるとともに、照射光に対して狭い帯域の透過率分布、かつ戻り光に対して広い帯域の透過率分布を有する光結合器を構成することができる。
 なお、本実施形態では、照射光(励起光)として輝線スペクトルを有するレーザ光を例に説明したが、本実施形態はLEDなどを用いた狭帯域の連続スペクトル分布を有する光を照射光(励起光)として用いる場合にも適用できる。また、本実施形態では戻り光として蛍光を例に説明を行ったが、戻り光としては蛍光に限定されるものではない。すなわちピーク波長λ1の光を照射光とし、ピーク波長λ2(≠λ1)の反射光を戻り光として検出する場合にも適用できる。照射光、戻り光のピーク波長λ1、λ2に合わせて、本実施形態のように2つのWDM型光カプラのストレートポート、クロスポート間の透過率を選択すれば、戻り光を広帯域に亘り効率的に取得することが可能となる。
 なお、本発明の光伝送システムは、内視鏡の他、顕微鏡など他の用途にも用いられる。また、走査型共焦点内視鏡では、ファイバを移動して観察対象を走査したが、顕微鏡などに利用する場合には、試料側を移動して走査する構成とすることもできる。
 本実施形態では、入出力が2×2のWDM型光カプラが用いられたが、第1WDM型光カプラとして2入力、1出力のカプラを用いることも可能であり、また入出力ポートの数は本実施形態に限定されない。
[符号の説明]
 10 共焦点観察システム
 11 光源
 12 光結合器
 14 SFEスキャナ
 15 受光部(光検出器)
 18 第1WDM型光カプラ
 19 第2WDM型光カプラ
 

Claims (14)

  1.  第1ポートおよび第2ポートと、前記第1ポートを入力端とした場合にクロスポートとして位置し、前記第2ポートを入力端とした場合にストレートポートとして位置する第4ポートとを備える第1WDM型光カプラと、
     第5ポートおよび第6ポートと、前記第5ポートを入力端とした場合にストレートポートとして位置し、前記第6ポートを入力端とした場合にクロスポートとして位置する第7ポートと、前記第5ポートを入力端とする場合にクロスポートとして位置し、前記第6ポートを入力端とする場合にストレートポートとして位置する第8ポートとを備える第2WDM型光カプラとを備え、
     前記第1WDM型光カプラの第4ポートと前記第2WDM型光カプラの第5ポートが光学的に接続され、前記第1WDM型光カプラの第2ポートと前記第2WDM型光カプラの第8ポートが光学的に接続される
     ことを特徴とする光結合器。
  2.  前記第1WDM型光カプラと前記第2WDM型光カプラは、互いに、
     第1ポートに入射した第1のピーク波長をもつ光は、第4、第5の各ポートを介して第7ポートから射出され、
     第7ポートに入射した第1のピーク波長よりも長い第2のピーク波長を含む光は、直接第6ポートから、または第5、第4、第2、第8の各ポートを介して第6ポートから射出されるような透過率特性を有することを特徴とする請求項1に記載の光結合器。
  3.  前記第1WDM型光カプラのストレートポート間、クロスポート間の透過率の周期が前記第2WDM型光カプラのストレートポート間、クロスポート間の透過率の周期の2倍であることを特徴とする請求項2に記載の光結合器。
  4.  前記第2WDM型光カプラのクロスポート間の透過率のピーク波長が、前記第2ピーク波長に実質的に一致することを特徴とする請求項3に記載の光結合器。
  5.  前記第1WDM型光カプラのクロスポート間の透過率が、前記第1のピーク波長に対して80%以上であることを特徴とする請求項3または請求項4に記載の光結合器。
  6.  前記第2WDM型光カプラのストレートポート間の透過率は、前記第1WDM型光カプラのクロスポート間の透過率とともに前記第1のピーク波長においてピークを迎えた後、該第1WDM型光カプラのストレートポート間の透過率とともに次のピークを迎えることを特徴とする請求項3から請求項5の何れかに記載の光結合器。
  7.  前記第1WDM型光カプラと前記第2WDM型光カプラの透過率特性が同一であることを特徴とする請求項2に記載の光結合器。
  8.  前記第1および第2WDM型光カプラのクロスポート間の透過率のピーク波長が、前記第2ピーク波長に略一致することを特徴とする請求項7に記載の光結合器。
  9.  前記第1および第2WDM型光カプラのストレートポート間の透過率の50%以上、100%未満の帯域が、前記第1ピーク波長を含むことを特徴とする請求項7または請求項8に記載の光結合器。
  10.  前記第1WDM型光カプラは、前記第1ポートを入力端とした場合にストレートポートとして位置する第3ポートを備え、該第3ポートが終端処理されることを特徴とする請求項1から請求項9の何れか一項に記載の光結合器。
  11.  請求項1から請求項10の何れか一項に記載の光結合器を備える共焦点観察システムであって、
     前記共焦点観察システムは、第1ピーク波長を有する光を照射する光源と、光検出器とを備え、
     前記第1WDM型光カプラの第1ポートは前記光源に光学的に接続され、
     前記第2WDM型光カプラの第6ポートは前記光検出器に光学的に接続され、
     前記光源は前記第2WDM型光カプラの第7ポートを通して観察対象物に前記光を照射し、
     前記光検出器は前記観察対象物からの前記第1ピーク波長よりも長い第2ピーク波長を有する戻り光を前記第2WDM型光カプラの前記第7ポートを通して取得することを特徴とする共焦点観察システム。
  12.  共焦点観察を行うために、前記第2WDM型光カプラの前記第7ポートを通した前記第1ピーク波長を有する光を前記観察対象上で走査させる走査手段を備えることを特徴とする請求項11の何れか一項に記載の共焦点観察システム。
  13.  前記光源から照射される光が励起光として用いられ、前記観察対象物から取得される光が前記励起光による蛍光であることを特徴とする請求項11または請求項12の何れか一項に記載の共焦点観察システム。
  14.  請求項11~13の何れか一項に記載の共焦点観察システムを備えることを特徴とする走査型共焦点内視鏡。
     
PCT/JP2013/062854 2012-05-29 2013-05-07 光結合器および共焦点観察システム WO2013179860A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380028326.9A CN104350402A (zh) 2012-05-29 2013-05-07 光合成器和共焦观察系统
EP13797359.0A EP2857875B1 (en) 2012-05-29 2013-05-07 Optical combiner and confocal observation system
JP2014518364A JP6139516B2 (ja) 2012-05-29 2013-05-07 光結合器および共焦点観察システム
US14/404,526 US9158104B2 (en) 2012-05-29 2013-05-07 Optical coupler device and confocal observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-122179 2012-05-29
JP2012122179 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013179860A1 true WO2013179860A1 (ja) 2013-12-05

Family

ID=49673064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062854 WO2013179860A1 (ja) 2012-05-29 2013-05-07 光結合器および共焦点観察システム

Country Status (5)

Country Link
US (1) US9158104B2 (ja)
EP (1) EP2857875B1 (ja)
JP (1) JP6139516B2 (ja)
CN (1) CN104350402A (ja)
WO (1) WO2013179860A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138907A (ja) * 1984-06-20 1986-02-25 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ フアイバ光学フイルタ
JP2004061982A (ja) * 2002-07-30 2004-02-26 Ntt Advanced Technology Corp Wdm用光部品及びその製造方法
JP2006510932A (ja) * 2002-12-17 2006-03-30 カールツァイス アーゲー コヒーレンス顕微鏡
JP2010262149A (ja) 2009-05-08 2010-11-18 Hoya Corp 走査型観察装置用光伝達システム、共焦点観察システム、光カプラ、および画像作成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH653618A5 (fr) 1983-06-21 1986-01-15 Bobst Sa Procede et dispositif pour maintenir constante la densite d'une couleur imprimee.
US5664037A (en) * 1995-09-28 1997-09-02 Corning Incorporated Multi-neckdown fiber optic coupler
JP2977024B2 (ja) * 1996-12-03 1999-11-10 日本電気株式会社 波長多重通信用光回路及びこれを含む光伝送通信システム
KR100279742B1 (ko) * 1998-05-21 2001-02-01 정선종 광섬유 마하젠더 간섭계 광필터
US20020057866A1 (en) * 2000-10-16 2002-05-16 Henry Hung Apparatus for adding wavelength components in wavelength division mulitplexed optical signals using multiple wavelength sagnac interferometer switch
KR100735220B1 (ko) * 2005-11-21 2007-07-03 삼성전자주식회사 양방향 광 교차 결합기
CN200980079Y (zh) * 2006-05-23 2007-11-21 陈谷红 单纤双向波分复用器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138907A (ja) * 1984-06-20 1986-02-25 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ フアイバ光学フイルタ
JP2004061982A (ja) * 2002-07-30 2004-02-26 Ntt Advanced Technology Corp Wdm用光部品及びその製造方法
JP2006510932A (ja) * 2002-12-17 2006-03-30 カールツァイス アーゲー コヒーレンス顕微鏡
JP2010262149A (ja) 2009-05-08 2010-11-18 Hoya Corp 走査型観察装置用光伝達システム、共焦点観察システム、光カプラ、および画像作成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857875A4

Also Published As

Publication number Publication date
JP6139516B2 (ja) 2017-05-31
EP2857875A4 (en) 2016-03-30
EP2857875B1 (en) 2017-07-05
US20150144805A1 (en) 2015-05-28
JPWO2013179860A1 (ja) 2016-01-18
US9158104B2 (en) 2015-10-13
CN104350402A (zh) 2015-02-11
EP2857875A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5745851B2 (ja) モジュール式撮像デバイス、前記デバイス用のモジュール、及び前記撮像デバイスの作動方法
JP6340424B2 (ja) 内視鏡システム及び内視鏡用光源装置
WO2009133734A1 (ja) 光学的検査装置、電磁波検出方法、電磁波検出装置、生態観察方法、顕微鏡、および、内視鏡並びに光断層画像生成装置
CN101636102B (zh) 荧光观察装置
EP2093560A1 (en) Fluorescence detection device and fluorescence observation system
US20110133101A1 (en) Modular imaging system, modules for this system and method implemented using this system
EP3241481B1 (en) Dual path endoscope
WO2015111541A1 (ja) 光源モジュールと内視鏡用光源システム
JP5852300B2 (ja) 光検出装置、顕微鏡および内視鏡
JP6139516B2 (ja) 光結合器および共焦点観察システム
KR20090111569A (ko) 이중 클래딩 광섬유 소자를 이용한 복합형 영상장치
JPWO2009133734A1 (ja) 光学的検査装置、電磁波検出方法、電磁波検出装置、生態観察方法、顕微鏡、および、内視鏡並びに光断層画像生成装置
JP5530153B2 (ja) 走査型光検出装置
JP2009282103A (ja) 共焦点スキャナ顕微鏡
WO2019087640A1 (ja) 光源装置
JP6058108B2 (ja) 光検出装置、顕微鏡および内視鏡
JP5083618B2 (ja) 共焦点スキャナ顕微鏡
KR102567223B1 (ko) 공초점 형광 현미경에 탑재된 광학 시스템
US8300310B2 (en) Method for FCS measurements
CN110088598B (zh) 用于采集由介质中的粒子发射的荧光的设备
Strupler et al. Spectrally encoded fluorescence imaging based on a wavelength-swept source
JP2007139433A (ja) 光ファイバ測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518364

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404526

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013797359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013797359

Country of ref document: EP