WO2013179799A1 - Two-pack type curable polyurethane foam composition, polyurethane foam molded body, and shoe sole - Google Patents

Two-pack type curable polyurethane foam composition, polyurethane foam molded body, and shoe sole Download PDF

Info

Publication number
WO2013179799A1
WO2013179799A1 PCT/JP2013/061505 JP2013061505W WO2013179799A1 WO 2013179799 A1 WO2013179799 A1 WO 2013179799A1 JP 2013061505 W JP2013061505 W JP 2013061505W WO 2013179799 A1 WO2013179799 A1 WO 2013179799A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycol
foamed polyurethane
isocyanate group
range
parts
Prior art date
Application number
PCT/JP2013/061505
Other languages
French (fr)
Japanese (ja)
Inventor
智昭 新地
弘 須崎
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2013179799A1 publication Critical patent/WO2013179799A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/485Polyethers containing oxyethylene units and other oxyalkylene units containing mixed oxyethylene-oxypropylene or oxyethylene-higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the present invention relates to a two-component curable foamed polyurethane composition capable of exhibiting excellent performances such as hydrolysis resistance, oil resistance, and flexibility, a foamed polyurethane molded product using the same, and a shoe sole. More specifically, for example, the sole material of various shoes such as men's shoes, women's shoes, athletic shoes, safety shoes, work shoes, and indoor shoes, the sole material of various shoes such as slippers, sandals, sandals, gloves, work clothes, Two-component curable polyurethane foam composition useful as a material for various wearing articles such as hats and masks, or as an industrial member (for example, a roll, packing, hose, sheet, cushioning material, cushion, vehicle member, packaging member, etc.)
  • the present invention relates to a foamed polyurethane molded article and a shoe sole.
  • foamed polyurethane is obtained by reacting polyisocyanate and polyol.
  • polyol such as polyether polyol, polyester polyol, and polycarbonate polyol
  • polyether-based foamed polyurethane polyester-based foamed polyurethane
  • polycarbonate Classified into polyurethane foam for example, polyether-based foamed polyurethane, polyester-based foamed polyurethane, polycarbonate Classified into polyurethane foam.
  • the polyether-based foamed polyurethane has good hydrolysis resistance, but is inferior in oil resistance.
  • the strength of the foamed polyurethane molded product is reduced. There were problems such as changes in the surface, swelling and deterioration.
  • Polyester-based foamed polyurethane has relatively good oil resistance but is poor in hydrolysis resistance. For example, under water or in a hot and humid environment, the strength of the foamed polyurethane molded product is reduced. There were problems such as changes, swelling and deterioration.
  • the polycarbonate-based foamed polyurethane for example, a foamed polyurethane using polycarbonate diol of 1,6-hexanediol, has a stable carbonate bond in the polymer chain, so that it has hydrolysis resistance, weather resistance, heat resistance, etc. Although it has good performance such as flexibility, it has the disadvantage of poor flexibility due to its high crystallinity. For example, in applications that require particularly flexibility (flexibility) such as shoe soles, cushions, gloves, and hoses. There was a problem that it was difficult to use.
  • the performance at the initial stage of molding is stable and stable, and has excellent oil resistance, hydrolysis resistance, bending Development of a two-pack curable foamed polyurethane composition that exhibits properties (flexibility) and a foamed polyurethane molded product using the same have been desired.
  • the polymer polyol contains a specific repeating unit, both terminal groups are hydroxyl groups, and a polycarbonate diol having a number average molecular weight of 300 to 10,000.
  • a certain foam is known (for example, patent document 1).
  • Patent Document 1 it is possible to provide a polyurethane foam having a good balance of physical properties such as oil resistance, flexibility, hydrolysis resistance, and weather resistance.
  • Patent Document 1 Although the polyurethane foam obtained in Patent Document 1 is improved in oil resistance, it has a problem that it is not suitable for practical use because it is inferior in flexibility (flexibility).
  • Patent Document 2 a polyurethane foam produced from polyisocyanate and polycarbonate polyol is known (for example, Patent Document 2).
  • a polyurethane foam having good hydrolysis resistance and heat resistance can be provided, and it can be used under conditions of high temperature and high humidity that could not be used conventionally.
  • the obtained foamed polyurethane molded product (that is, polyurethane foam) has a problem in practical use because performance such as flexibility (flexibility) is still insufficient.
  • the object of the present invention is to have excellent stability with no change in the performance at the initial stage of molding in oil or in an environment exposed to an oily atmosphere, in water or in a hot and humid environment, and excellent oil and water resistance.
  • a two-component curable foamed polyurethane composition comprises a main agent containing a urethane prepolymer (A) having an isocyanate group at the molecular end, and an isocyanate group. It contains a curing agent containing a reactive compound (B), water (C), and a catalyst (D), and the isocyanate group reactive compound (B) contains polycarbonate diol (B1) and polyoxyethylene propylene glycol (B2).
  • the two-component curable foamed polyurethane composition has excellent stability with no change in the initial molding performance, oil resistance, and hydrolysis resistance.
  • the present inventors have found that excellent performance such as flexibility (flexibility) can be exhibited, and have completed the present invention.
  • the two-component curable foamed polyurethane composition comprises a main component containing a urethane prepolymer (A) having an isocyanate group at the molecular end, an isocyanate group-reactive compound (B), water (C), a catalyst ( D) and a curing agent containing D), and the isocyanate group-reactive compound (B) is essentially composed of polycarbonate diol (B1), polyoxyethylene propylene glycol (B2), and glycol (B3) having a molecular weight of 50 to 300.
  • the (B1) is in the range of 6 to 88% by mass
  • the (B2) is in the range of 5 to 93% by mass with respect to the total amount of the (B1) to (B3).
  • B3) is contained in the range of 0.5 to 20% by mass
  • the content of the polycarbonate diol (B1) in the two-component curable foamed polyurethane composition is 5 to 35% by mass. It relates two-part curable polyurethane foam composition, characterized in that in the range of.
  • the present invention relates to a foamed polyurethane molded product obtained by molding the two-component curable foamed polyurethane composition.
  • the present invention relates to a shoe sole including the polyurethane foam molded article, wherein the density of the polyurethane foam molded article is in the range of 0.3 to 1.1 g / cm 3. .
  • the two-component curable foamed polyurethane composition of the present invention is a foam that exhibits no change in initial molding performance, excellent stability, and excellent performance such as oil resistance, hydrolysis resistance, and flexibility (flexibility).
  • Polyurethane molded products can be provided, especially as polyurethane elastomer foams, such as men's shoes, women's shoes, sports shoes, safety shoes, work shoes, indoor shoes, and other shoe soles, indoor slippers, sandals, sandals, etc.
  • industrial members such as rolls, packing, hoses, sheets, cushioning materials, cushions, vehicle members, packaging members, etc. It can be used for various purposes.
  • the two-component curable foamed polyurethane composition of the present invention comprises a urethane prepolymer (A) having an isocyanate group at the molecular end (hereinafter referred to as “isocyanate group-terminated urethane prepolymer (A)”). And a curing agent containing an isocyanate group-reactive compound (B), water (C), and a catalyst (D).
  • the isocyanate group-terminated urethane prepolymer (A) used in the present invention can be obtained by reacting polyisocyanate and polyol according to a known method, and the reaction method and reaction conditions are not particularly limited.
  • polyisocyanate in the present invention refers to a compound having two or more isocyanate groups (hereinafter also referred to as NCO groups) in the molecule.
  • any of known aliphatic polyisocyanate, aromatic polyisocyanate, and alicyclic polyisocyanate can be used.
  • diphenylmethane diisocyanate MDI; 4,4′-form, 2,4′-form or 2,2′-form, or a mixture thereof, crude MDI
  • carbodiimide-modified MDI modified MDI
  • polymethylene poly Phenyl polyisocyanate carbodiimidized diphenylmethane polyisocyanate
  • xylylene diisocyanate XDI
  • 1,5 -Aromatic polyisocyanates such as naphthalene diisocyanate (NDI), tetramethylxylene diisocyanate, phenylene diisocyanate, or hexamethylene diisocyanate (HD
  • MDI carbodiimide-modified MDI
  • polyol used in the present invention examples include polyester polyol, polyether polyol, polycarbonate polyol, and low molecular weight glycol (having a molecular weight of 50 to 300).
  • the polyester polyol is a known method using as raw materials a polycarboxylic acid having an aromatic skeleton or a polycarboxylic acid not having an aromatic skeleton, and a polyol having an aromatic skeleton or a polyol having no aromatic skeleton. Can be synthesized.
  • polycarboxylic acid used for producing the polyester polyol examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid.
  • Polycarboxylic acids having an aromatic skeleton such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid
  • polycarboxylic acids having no aromatic skeleton such as acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, trimellitic acid, and pyromellitic acid. These may be used alone or in combination of two or more.
  • polycarboxylic acid referred to in the present invention is a general term including polycarboxylic acids and acid derivatives such as lower ester compounds (for example, methyl ester compounds), acid anhydrides, and acid halides. .
  • diol used in the production of the polyester polyol examples include polyols having an aromatic skeleton such as dihydroxynaphthalene, bisphenol A, bisphenol S, bisphenol AF, bisphenol Si 2 , and alkylene oxide adducts thereof, or ethylene glycol ( EG), 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butylene glycol (1,4BG), 1,5-pentanediol, 1,6-hexanediol, Neopentyl glycol, trimethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl -Aliphatic diols such as 2-ethyl-1,3-propanediol and 2-methyl-1,3-propanediol; 1,4-
  • alcohols and saccharides such as glycerin, trimethylolethane, trimethylolpropane, sorbitol, sucrose, and aconite sugar; or amines can also be used as a raw material for synthesizing the polyester polyol. These may be used alone or in combination of two or more.
  • the hydroxyl value of the polyester polyol is desirably set in consideration of the target viscosity of the isocyanate group-terminated urethane prepolymer (A) as the main agent.
  • the hydroxyl value of the polyester polyol is preferably in the range of 25 to 240 mg KOH / g (hereinafter abbreviated as a unit), more preferably in the range of 35 to 120. If the hydroxyl value of the polyester polyol is within such a range, an urethane prepolymer having an appropriate viscosity can be obtained without causing an extreme increase in the viscosity of the isocyanate group-terminated urethane prepolymer (A). It can be expressed.
  • the polyester polyol includes polyester diols, polyamide polyester diols and the like obtained by using polycarboxylic acids, polyols, polyamines and the like other than the above.
  • polyether polyol examples include polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene propylene glycol (PEPG), and polytetramethylene glycol (PTMG). Among these, a hydroxyl value of 14 to PPG in the range of 120 is preferred.
  • the polyether polyol may have any structure of linear, branched and cyclic.
  • the hydroxyl value of the polyether polyol is preferably in the range of 14 to 120, more preferably in the range of 20 to 80. If the hydroxyl value of the polyether polyol is within such a range, the brittleness of the obtained foamed polyurethane molded article can be easily controlled, and excellent strength and wear resistance can be obtained.
  • lactones for example, ⁇ -caprolactone, ⁇ -butyrolactone, etc.
  • polyether polyol such as PTMG
  • Examples of the polycarbonate diol include those synthesized from diol and carbonate as raw materials.
  • Examples of the diol include ethylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, and 3-methyl. 1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-1,3-propanediol and the like.
  • Examples of the carbonate include ethylene carbonate, phenyl carbonate, and diethyl carbonate. These may be used alone or in combination of two or more.
  • the molecular weight of the low molecular weight glycol is preferably in the range of 50 to 300, more preferably in the range of 50 to 200.
  • the molecular weight of the low molecular weight glycol is within such a range, it is preferable because when it is used as a polyol, the reactivity can be controlled more efficiently and the moldability (yield and molding unevenness) becomes better.
  • Examples of the low molecular weight glycol include ethylene glycol (EG), 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1, Aliphatic diols such as 3-propanediol and 2-methyl-1,3-propanediol; Alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A; Glycerin , Trimethylolpropane Such trifunctional or more hydroxyl group-containing compound such as pent
  • polycaprolactone polyol for example, polycaprolactone polyol, aromatic polyester polyol, acrylic polyol, polyolefin polyol, castor oil-based polyol, etc. obtained by ring-opening polymerization of a caprolactone monomer can be used.
  • polystyrene resin examples include alkylene oxides such as ethylene oxide (EO), propylene oxide (PO), and butylene oxide as starting materials having at least three hydroxyl groups such as glycerin, trimethylolpropane, pentaerythritol, and sorbitol.
  • alkylene oxides such as ethylene oxide (EO), propylene oxide (PO), and butylene oxide as starting materials having at least three hydroxyl groups such as glycerin, trimethylolpropane, pentaerythritol, and sorbitol.
  • Polyether polyols such as poly (oxyalkylene) glycol and poly (oxytetramethylene) glycol obtained by addition polymerization of carboxylic acid; or polyvalent carboxylic acids such as adipic acid, sebacic acid, azelaic acid, succinic acid, maleic acid, and phthalic acid Acid and ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1, -Polyhydric alcohols such as ethanediol, neopentyl glycol, 2, -methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, glycerin, trimethylolpropane, diethylene glycol, triethylene glycol, tetraethylene glycol Polyester polyol obtained by polycondensation of poly
  • the isocyanate equivalent of the isocyanate group-terminated urethane prepolymer (A) used as the main component (hereinafter referred to as “NCO equivalent”) is preferably in the range of 150 to 350, more preferably in the range of 200 to 300. If the NCO equivalent of (A) is within such a range, the viscosity becomes an appropriate viscosity that is easy to use in a foaming machine without causing an abnormal increase in melt viscosity during the operation, and excellent workability can be obtained.
  • the “isocyanate equivalent” (unit: g / mol) in the present invention is a value measured in accordance with the JIS K7301-1995 test method for tolylene diisocyanate type prepolymers for thermosetting urethane elastomers.
  • the isocyanate group-terminated urethane prepolymer (A) is produced by reacting an NCO group of a polyisocyanate with a hydroxyl group (hereinafter also referred to as OH group) of a polyol in an equivalent ratio by a known method. be able to.
  • reaction method for obtaining the isocyanate group-terminated urethane prepolymer (A) for example, a polyisocyanate charged in a reaction vessel is charged with a polyol from which water has been removed by an appropriate method such as dropping, dividing, or batching, What is necessary is just to employ
  • the production of the isocyanate group-terminated urethane prepolymer (A) is usually carried out without a solvent, but may be allowed to react in an organic solvent.
  • an organic solvent that does not inhibit the reaction may be used, and usually examples thereof include ethyl acetate, n-butyl acetate, methyl ethyl ketone, toluene and the like.
  • the organic solvent used for the reaction is removed by an appropriate method such as heating under reduced pressure or distilling off the thin film during or after the reaction.
  • the reaction conditions (temperature, time, pressure, etc.) of the isocyanate group-terminated urethane prepolymer (A) are not particularly limited as long as the reaction behavior and product quality can be controlled normally.
  • the reaction is preferably performed at a reaction temperature of 50 to 90 ° C. under a reaction time of 2 to 24 hours.
  • the pressure may be normal pressure, pressurization, or reduced pressure.
  • the reaction method can be selected from known reaction methods such as batch, semi-continuous, and continuous, and is not particularly limited.
  • a urethanization catalyst can be used as necessary.
  • the urethanization catalyst can be appropriately added in any step of reaction from raw material adjustment / preparation. There are various methods for adding the urethanization catalyst, such as batch, division, and continuous, but there is no particular limitation.
  • urethanization catalyst known catalysts can be used and are not particularly limited.
  • nitrogen-containing compounds such as triethylamine, tributylamine, benzyldibutylamine, triethylenediamine, and N-methylmorpholine; or titanium tetrabutoxide, dibutyltin oxide ,
  • Organometallic compounds such as dibutyltin dilaurate, tin 2-ethylcaproate, zinc naphthenate, cobalt naphthenate, zinc 2-ethylcaproate, molybdenum glycolate, potassium acetate, zinc stearate, tin octylate, dibutyltin dilaurate
  • inorganic compounds such as iron chloride and zinc chloride.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon, but it may be carried out in a dry air atmosphere or in a condition not containing moisture such as sealed conditions.
  • an inert gas atmosphere such as nitrogen or argon
  • the equivalent ratio of the NCO group of the polyisocyanate to the OH group of the polyol is preferably in the range of 2 to 90, more preferably in the range of 3 to 45.
  • the reaction can be easily controlled, an abnormal reaction does not occur, and a urethane foam molded article having an excellent performance balance can be obtained.
  • the curing agent used in the present invention includes, as essential components, an isocyanate group-reactive compound (B), water (C) as a foaming agent, and a catalyst (D).
  • the isocyanate group-reactive compound (B) essentially contains three types of polyols: polycarbonate diol (B1), polyoxyethylene propylene glycol (B2), and glycol (B3) having a molecular weight of 50 to 300.
  • the polycarbonate diol (B1) is liquid at 60 ° C., and the hydroxyl value of the (B1) is preferably in the range of 45 to 150 mgKOH / g, more preferably in the range of 50 to 120.
  • the hydroxyl value of (B1) is within such a range, it is preferable because performance such as excellent moldability (yield and molding unevenness), strength, and wear resistance can be obtained.
  • the hydroxyl value as used in the field of this invention means the value measured according to the measuring method mentioned later.
  • a polycarbonate diol as conventionally used that is solid or semi-solid at 40 to 60 ° C. cannot be melted during production or cannot be sufficiently melted. It cannot be used.
  • the polycarbonate diol (B1) used in the present invention is liquid at 60 ° C., it does not require any melting work, can simplify the manufacturing process such as weighing, transferring, and charging, and is excellent in workability. Is greatly improved. However, when the polycarbonate diol is solid or semi-solid at 60 ° C. as in the prior art, there is no fluidity, and the workability such as weighing, transferring, and charging is clearly inferior, resulting in a significant decrease in productivity. There is.
  • Examples of the polycarbonate diol (B1) include those synthesized from diol and carbonate as raw materials.
  • Examples of the diol include ethylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol ethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, Examples include 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, and 2-methyl-1,3-propanediol.
  • Examples of the carbonate include ethylene carbonate, phenyl carbonate, diethyl carbonate, and the like. These may be used alone or in combination of two or more.
  • DURANOL T4671 (trademark: Asahi Kasei Chemicals Corporation, hydroxyl value 100-120, melting point 5-15 ° C.), T4672 (trademark: manufactured by the company, hydroxyl value 45-56, Melting point: 5 to 15 ° C.), T4691 (trademark: manufactured by the company, hydroxyl value: 100-120, melting point: 50-60 ° C), T4692 (trademark: manufactured by the company, hydroxyl value: 51-61, melting point: 50-60 ° C), T5650J (trademark) Manufactured by the same company, hydroxyl value 130 to 150, melting point ⁇ 5 ° C.
  • T5651 (trademark: manufactured by the company, hydroxyl value 100 to 120, melting point ⁇ 5 ° C. or lower)
  • T5652 (trademark: manufactured by the company, hydroxyl value 51 to 61 ° C., Melting point: -5 ° C or lower)
  • T6001 (trademark: manufactured by the company, hydroxyl value 100-120, melting point 40-50 ° C)
  • T6002 (trademark: manufactured by the company, hydroxy acid Value 51-61, melting point 40 ⁇ 50 ° C.), and the like.
  • (B1) used in the present invention is not limited to these commercially available products.
  • the content of the polycarbonate diol (B1) in the isocyanate group-reactive compound (B) is in the range of 6 to 88% by mass, preferably 15 to 15%, based on the total amount of the (B1) to (B3). It is in the range of 75% by mass.
  • a foamed polyurethane molded article having excellent performance such as oil resistance and flexibility can be obtained.
  • the (B1) is less than 6% by mass, the oil resistance tends to be inferior.
  • the (B1) exceeds 88% by mass the flexibility tends to be inferior.
  • the content of the polycarbonate diol (B1) in the two-component curable foamed polyurethane composition is in the range of 5 to 35% by mass, preferably in the range of 10 to 30% by mass.
  • a foamed polyurethane molded product having a performance balance such as excellent oil resistance, hydrolysis resistance, and flexibility (flexibility) can be obtained.
  • the (B1) is less than 5% by mass, the obtained foamed polyurethane molded product may be inferior in oil resistance.
  • said (B1) exceeds 35 mass%, there exists a possibility that the foaming polyurethane molding obtained may be inferior to a flexibility.
  • polyoxyethylene propylene glycol (B2) having a hydroxyl value and an ethylene oxide addition rate in specific ranges is essential.
  • the polyoxyethylene propylene glycol (B2) used in the present invention preferably has a hydroxyl value in the range of 10 to 120, and the ethylene oxide (EO) addition rate in the (B2) is 5 to 50%. More preferably, the hydroxyl value is in the range of 15 to 60, and the EO addition rate is in the range of 10 to 40%.
  • excellent performance such as good compatibility with polycarbonate diol, hydrolysis resistance, flexibility (flexibility) and the like can be expressed.
  • polyoxyethylene propylene glycol (B2) examples include EO-PO block polymers and EO-PO random polymers.
  • EO is an abbreviation for ethylene oxide
  • PO is an abbreviation for propylene oxide.
  • Examples of the commercially available polyoxyethylene propylene glycol (B2) include Exenol 820 (trademark: Asahi Glass Co., Ltd., hydroxyl value 34), Adeka polyether Exenol 850 (trademark: Asahi Glass Co., Ltd., hydroxyl value 24), Preminol 7003 (Trademark: Asahi Glass Co., Ltd., hydroxyl value 27), Preminol 5005 (Trademark: Asahi Glass Co., Ltd., hydroxyl value 28.5), CM-294 (Trademark: ADEKA Corporation, EO-PO block polymer, hydroxyl group) No. 39), CM-424 (trademark: manufactured by ADEKA Corporation, EO-PO block polymer, hydroxyl value 25.5) and the like.
  • the (B2) used in the present invention is not limited to these commercially available products.
  • the content of polyoxyethylene propylene glycol (B2) in the isocyanate group-reactive compound (B) is in the range of 5 to 93% by mass with respect to the total amount of (B1) to (B3), preferably Is in the range of 15 to 85% by mass.
  • the content ratio of (B2) is within such a range, a foamed polyurethane molded article having performances such as excellent compatibility with polycarbonate diol, hydrolysis resistance, and flexibility (flexibility) can be obtained.
  • (B2) is less than 5% by mass, the flexibility (flexibility) tends to be inferior.
  • the said (B2) exceeds 93 mass%, it exists in the tendency for it to be inferior to oil resistance and abrasion resistance.
  • the glycol (B3) used in the present invention is a glycol having a molecular weight in the range of 50 to 300. If the molecular weight of (B3) is within such a range, it is possible to obtain performances such as excellent moldability (yield and molding unevenness), strength, wear resistance, and flexibility (flexibility).
  • Examples of the low molecular weight glycol (B3) include ethylene glycol (EG), 1,2-propanediol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5 -Pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2- Aliphatic diols such as ethyl-1,3-propanediol and 2-methyl-1,3-propanediol; alicyclic groups such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A Diols; glycerin, trimethyl Rupuropan and trifunctional or more hydroxyl group-containing
  • ethylene glycol (EG), propylene glycol (PG), 1,4-butylene glycol (1,4BG), and diethylene glycol (DEG) are preferable. is there.
  • Said (B3) may be used alone or in combination of two or more.
  • the content of glycol (B3) in the isocyanate group-reactive compound (B) is in the range of 0.5 to 20% by mass, preferably 3 with respect to the total amount of (B1) to (B3). It is in the range of ⁇ 12% by mass. If the content ratio of (B3) is within such a range, a foamed polyurethane molded product having excellent properties such as strength and abrasion resistance can be obtained. However, when the (B3) is less than 0.5% by mass, the strength and wear resistance tend to be inferior. Further, when (B3) exceeds 20% by mass, the flexibility (flexibility) tends to be inferior.
  • isocyanate group-reactive compound (B) other isocyanate group-reactive compounds such as polyols and polyamines other than the above (B1) to (B3) may be used in combination as long as the object of the present invention is not impaired. Good.
  • a polyol that can be used for the synthesis of the aforementioned isocyanate group-terminated urethane prepolymer (A) can also be used.
  • Examples of the other isocyanate group-reactive compounds include polyaminochlorophenylmethane compounds, mixtures of polyaminochlorophenylmethane compounds and polytetramethylene glycol, and 4,4′-diamino-3 which is a dinuclear polyaminochlorophenylmethane compound. 3,3′-dichlorodiphenylmethane (hereinafter referred to as MBOCA). These may be used alone or in combination of two or more.
  • the amount of the isocyanate group-reactive compound (B) is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the isocyanate group-terminated urethane prepolymer (A). Parts by weight, and more preferably in the range of 50 to 200 parts by weight. If the blending amount of (B) is within such a range, it can be efficiently stirred and mixed in a foaming machine at the time of molding, and foam cells having a uniform and fine shape can be formed.
  • a two-component curable foamed polyurethane composition suitable for a foamed polyurethane molded product such as a shoe sole having excellent performance such as (flexibility) and abrasion resistance can be obtained.
  • water (C) is used as a foaming agent in the water foaming method.
  • the “water” as used in the present invention is, for example, liquid water, but, for example, air, inert gas (for example, nitrogen, argon, etc.), moisture in gas such as carbon dioxide, water vapor, substrate It is a generic term that includes the surface layer and moisture in the substrate.
  • the amount of water (C) is usually preferably in the range of 0.01 to 1.5 parts by weight, more preferably 0.1 to 1.5 parts by weight with respect to 100 parts by weight of the isocyanate group-reactive compound (B).
  • the range is 0.6 parts by mass. If the blending amount of the water (C) is within such a range, a two-component curable foamed polyurethane composition capable of expressing a stable foamed state can be obtained.
  • the method of adding water (C) when mixing the main agent and the curing agent is not particularly limited.
  • a curing agent an isocyanate group-reactive compound (B), water (C), a catalyst (D), and additives as necessary are added and mixed in advance, and then the main agent and Examples thereof include a method of mixing the curing agent and injecting, foaming, and curing into a mold.
  • water (C) is used as the foaming agent, but a known foaming agent used for foaming during the urethanization reaction may be used in combination.
  • a foaming aid may be used in combination, for example, 1,1-dichloro-1-fluoroethane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-penta Low boiling point compounds such as halogenated hydrocarbons such as fluorobutane and methylene chloride or hydrocarbons such as pentane can be used.
  • additives such as a foam stabilizer can be used as necessary.
  • foam stabilizer all those effective for the production of foamed polyurethane moldings can be used.
  • surfactants such as silicon compounds such as polydimethylsiloxane and polysiloxane-polyalkylene oxide block copolymers, metal soaps, ethylene oxide and / or propylene oxide adducts of alkylphenols and fatty acids.
  • Catalyst (D) The catalyst (D) is blended with the two-component curable polyurethane foam composition of the present invention.
  • the type and amount of the catalyst (D) are preferably selected in consideration of the time from mixing the catalyst to pouring into the mold, the temperature, the final foamed state of the foam, and the like.
  • the catalyst (D) is not particularly limited.
  • the blending amount of the catalyst (D) is preferably in the range of 0.15 to 2 parts by mass, more preferably 0.3 to 1 part per 100 parts by mass of the isocyanate group-reactive compound (B). The range is 5 parts by mass. If the blending amount of the catalyst (D) is within such a range, a two-component curable foamed polyurethane composition capable of expressing a stable foamed state can be obtained.
  • the main component containing the isocyanate group-terminated urethane prepolymer (A) is mixed and mixed as a curing agent with the isocyanate group-reactive compound (B) and water (C) in the range of the blending amount. This is preferable because the reactivity can be controlled efficiently and the moldability (yield and molding unevenness) is improved.
  • the two-component curable foamed polyurethane composition of the present invention can be obtained by blending the main agent and the curing agent prepared as described above according to the composition and immediately mixing them sufficiently.
  • the mixing ratio of the main agent and the curing agent is [total number of moles of NCO groups ( ⁇ ) of the isocyanate group-containing urethane prepolymer (A) as the main agent], [isocyanate group-reactive compound (B) and water (C).
  • the blending ratio ( ⁇ / ⁇ ) of the main agent and the curing agent is preferably in the range of 1 / 0.7 to 1 / 1.2, more preferably in the range of 1 / 0.8 to 1 / 1.0. . If the mixing ratio of the main agent and the curing agent is within such a range, a two-component curable foamed polyurethane composition capable of exhibiting excellent strength and abrasion resistance can be obtained.
  • the foamed polyurethane molded article of the present invention is obtained by molding using the two-component curable foamed polyurethane composition.
  • thermoplastic polyurethane resin, cast polyurethane resin, polyurethane foam (polyurethane elastomer foam) , Rigid polyurethane foam, flexible polyurethane foam, etc.) and the like, and foamed polyurethane molded bodies are preferred.
  • an isocyanate group-terminated urethane prepolymer prepared by reacting the polyisocyanate and the polyol in advance is prepared.
  • the foamed polyurethane molded article of the present invention for example, water (C), catalyst (D) in the isocyanate group-reactive compound (B), and additives as required (for example, antistatic agent, antistatic agent) It is preferable to use a mixture obtained by premixing an auxiliary agent, a foaming auxiliary agent, etc.) as a curing agent.
  • a premixed mixture (curing agent) and the main agent containing the isocyanate group-terminated urethane prepolymer (A) can be mixed and foamed by high-speed stirring in a foam molding machine.
  • a method for producing a foamed polyurethane molded product of the present invention a method using a water foaming method including the following [Step 1] to [Step 4] using a two-component curable foamed polyurethane composition is exemplified. it can.
  • Step 1 Main agent adjustment step Polyisocyanate is charged into the reaction apparatus, and a predetermined amount of polyol is charged dropwise or divided while paying attention to heat generation at an internal temperature of 60 to 90 ° C., and allowed to react with stirring under a nitrogen atmosphere. A main agent containing the terminal urethane prepolymer (A) is obtained.
  • Step 2 Step of adjusting a two-component curable foamed polyurethane composition (mixing of main agent and curing agent)
  • the main component containing the isocyanate group-terminated urethane prepolymer (A), and the isocyanate group-reactive compound (B), water (C), catalyst (D), and other additives for example, charging
  • a predetermined amount of the main agent and the curing agent is stirred and mixed to prepare a foaming reaction liquid.
  • Step 3 Casting Step Immediately, the foaming reaction solution prepared in Step 2 is poured into a mold of a foam molding machine that has been heated in advance.
  • Step 4 Curing step
  • the foaming reaction liquid is heated and held in an appropriate temperature range (for example, 40 to 50 ° C.) while being injected into the mold, and then foamed and cured, and further at an appropriate temperature (for example, 40 to 50 ° C.). After holding (for example, for 3 to 15 minutes), the foamed polyurethane molded article is taken out.
  • an appropriate temperature range for example, 40 to 50 ° C.
  • an appropriate temperature for example, 40 to 50 ° C.
  • the foam molding machine is not particularly limited, and known ones such as a low pressure foam molding machine and an injection foam molding machine can be used.
  • the water foaming method is most preferable from the viewpoint of production efficiency, production cost, etc.
  • the foaming method using hollow beads mechanical You may combine well-known foaming methods, such as a foaming method and a chemical foaming method.
  • the foamed urethane molded product of the present invention is, for example, an antistatic agent, an antistatic aid, a foaming aid, a flame retardant, a foam stabilizer, a chain extender, a plasticizer, a filler, as long as the object of the present invention is not impaired.
  • Known additives such as a colorant, a colorant, a weathering stabilizer, a light stabilizer, and an antioxidant can be appropriately used.
  • any known one can be used.
  • a substituted quaternary ammonium cation-based antistatic compound substituted with a hydrocarbon group and an oxyhydrocarbon group an organic acid metal salt
  • Anionic antistatic compounds, nonionic antistatic compounds, and the like can be used.
  • substituted sulfonic acid quaternary ammonium examples include dialkylsulfuric acid derivatives, methanesulfonic acid ester derivatives, p-toluenesulfonic acid ester derivatives, and the like. These can be used individually or in mixture of 2 or more types.
  • organic acid metal salt-based anionic antistatic compound examples include bis (trifluoromethanesulfonyl) imide metal salt, tris (trifluoromethanesulfonyl) methane metal salt, alkylsulfonic acid metal salt, benzenesulfonic acid metal salt, Alternatively, organic metal salts such as alkylbenzene sulfonic acid metal salts can be used. These can be used individually or in mixture of 2 or more types.
  • a known antistatic aid may be contained within a range not impairing the object of the present invention, and the content thereof is not particularly limited.
  • antistatic aid known ones can be used, and examples thereof include cyclic ketones, sorbitan fatty acid esters, and lactone monomers.
  • examples of the cyclic ketones include cyclopentanone, cyclohexanone, cycloheptanone, and derivatives thereof
  • sorbitan fatty acid esters include, for example, sorbitan sesquioleate, sorbitan monooleate, sorbitan monostearate, sorbitan monolaurate.
  • lactone monomers such as acrylate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, and lactone monomers include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ - Examples include lactone monomers such as valerolactone, ⁇ -caprolactone, and ⁇ -crotonolactone. These can be used alone or in combination of two or more.
  • the antistatic agent or the antistatic auxiliary agent is a plasticizer that is suitably used for adjusting the flexibility of the polyol or the foamed polyurethane molded body so as to be uniformly contained in the foamed polyurethane molded body.
  • a plasticizer that is suitably used for adjusting the flexibility of the polyol or the foamed polyurethane molded body so as to be uniformly contained in the foamed polyurethane molded body.
  • it is preferably used in the production of a foamed polyurethane molding in a state of being previously dissolved in an adipate polyester plasticizer, a benzoic acid polyester plasticizer, or the like.
  • a method for forming the foamed polyurethane molded article of the present invention a known method can be employed. For example, a mold forming method in which the mixed foamed liquid discharged from the molding machine is open-injected into the mold, or an injection molding method in which the mixed foamed liquid is directly injected into a closed mold directly connected to the discharge port of the molding machine.
  • any mold can be used as long as it is used as a mold for forming a molded body, and any shape may be used.
  • it includes not only a normally used upper mold, lower mold open mold, flat mold, cylindrical mold, and concave mold, but also a closed mold used for injection molding.
  • the material of the mold any known material such as iron, aluminum, or epoxy resin can be used.
  • the foamed polyurethane molded article of the present invention has excellent performance such as hydrolysis resistance, oil resistance, flexibility (flexibility), etc., and as a polyurethane elastomer foam, for example, men's shoes, women's shoes, sports shoes, etc.
  • a polyurethane elastomer foam for example, men's shoes, women's shoes, sports shoes, etc.
  • the sole material of various footwear such as slippers, sandals, and sandals for indoor use, and the materials of various articles such as gloves, work clothes, hats, and masks.
  • it is useful for various uses such as packing, hose, seat, cushioning material, cushion, vehicle member, packaging member and the like.
  • the shoe sole of the present invention may include the foamed polyurethane molded product in a single layer, or may include the foamed polyurethane molded product in any one of multiple layers.
  • the density of the foamed polyurethane molded product is in the range of 0.3 to 1.1 g / cm 3 , preferably in the range of 0.3 to 0.8, more preferably 0.00. It is in the range of 4 to 0.7. If the density of the polyurethane foam layer on the sole is within this range, the performance such as excellent mechanical properties (strength, elasticity), durability, flexibility (flexibility), and comfort will be improved and maintained. Can be made.
  • a test piece (length 150 mm ⁇ width 25 mm ⁇ thickness 10 mm) was prepared using the two-component curable foamed polyurethane composition obtained in the examples and comparative examples, and a 2 mm notch was placed in the center of the test piece, 90 degrees. The bending test was repeated, and the flexibility was determined according to the following criteria. Criteria for flexibility. ⁇ (Good): When the growth of the notch is less than 5 mm. X (defect): When notch growth is 5 mm or more or fracture.
  • Example 1 Manufacture of two-component curable polyurethane foam composition (P-1) >> In a reaction vessel, 650 parts of 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as “4,4′MDI” as polyisocyanate. Trademark: Millionate MT, manufactured by Nippon Polyurethane Industry Co., Ltd.) and carbodiimide-modified MDI (trademark: Cosmonate LL) , Manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was started and stirring was started.
  • 4,4′MDI 4,4′-diphenylmethane diisocyanate
  • polypropylene glycol (trademark: Exenol 3020, manufactured by Asahi Glass Co., Ltd., hydroxyl value 37) and 80 parts of dipropylene glycol were charged in a divided manner and reacted at 60 ° C. for 8 hours under a nitrogen stream.
  • Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), and 7.9 parts of ethylene glycol (molecular weight 62.1) which is glycol (B3)
  • polytetramethylene glycol (trademark: PTMG-2000, manufactured by Mitsubishi Chemical Corporation, having a hydroxyl value of 56)
  • ion-exchanged water as the foaming agent (C)
  • catalyst (D) 0.5 parts of triethylenediamine and silicon Y-7006 as a foam stabilizer (trademark: Nippon Unicar Co., Ltd.) Company Ltd.) were blended 0.5 part, thoroughly stirred and mixed to obtain a polyol compound as a curing agent.
  • a two-component curable foamed polyurethane composition (P-1) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foam molded product obtained using the two-part curable polyurethane foam composition (P-1) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Example 2 ⁇ Production of two-component curable foamed polyurethane composition (P-2) ⁇ In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
  • B1 polycarbonate diol
  • Exenol 820 trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34
  • B2 polyoxyethylene propylene glycol
  • B3 7.9 parts of ethylene glycol as glycol (B3)
  • PTMG-2000 Trademark: Mitsubishi Chemical Corporation, hydroxyl value 56
  • water (C) as a foaming agent 0.5 parts ion-exchanged water
  • catalyst (D) 0.5 parts triethylenediamine
  • foam stabilizer As a blend, 0.5 parts of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) was mixed and stirred thoroughly.
  • a polyol compound is agent.
  • a two-component curable foamed polyurethane composition (P-2) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foam-molded article obtained using the two-component curable polyurethane foam composition (P-2) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Example 3 Manufacture of two-component curable polyurethane foam composition (P-3) ⁇
  • a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
  • Duranol T-5651 which is polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point -5 ° C.
  • a two-component curable foamed polyurethane composition (P-3) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foam-molded article obtained using the two-component curable polyurethane foam composition (P-3) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Example 4 Provide of two-component curable foamed polyurethane composition (P-4) ⁇
  • a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
  • B-4 polycarbonate diol (B1) Duranol T-4671 (Trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 5 to 15 ° C.) 40 parts, 50 parts of ADEKA polyether CM-294 (trademark: ADEKA Corporation, EO-PO block polymer having a hydroxyl value of 39) which is polyoxyethylene propylene glycol (B2), and glycol (B3) 7.9 parts of ethylene glycol, 21 parts of PTMG-2000 (Trademark: Mitsubishi Chemical Corporation, hydroxyl value 56), 0.5 parts of ion-exchanged water as a foaming agent (C), catalyst (D) As a
  • a two-component curable foamed polyurethane composition (P-4) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foam molded product obtained using the two-component curable polyurethane foam composition (P-4) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Example 5 Provide of two-component curable foamed polyurethane composition (P-5) ⁇
  • a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
  • Duranol T-5651 which is polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point -5 ° C.
  • Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), 7.9 parts of ethylene glycol which is glycol (B3), and polytetra 5 parts of a polyol obtained by addition polymerization of ⁇ -caprolactone to methylene glycol (with a lactone addition rate of 20% and a hydroxyl value of 45), 0.5 parts of ion-exchanged water as a foaming agent (C), and a trimethyl as a catalyst (D) 0.5 parts of ethylenediamine and silicon Y-7006 (trademark: Nippon Unicar Co., Ltd.) as a foam stabilizer 0.5 parts (manufactured by the company) was blended and sufficiently stirred and mixed to obtain a polyol compound as a curing agent.
  • Exenol 820 trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of
  • a two-component curable foamed polyurethane composition (P-5) is prepared by stirring and mixing. Preheated to 40 ° C., 200 g is poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm), and immediately After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foamed molded product obtained using the two-component curable polyurethane foam composition (P-5) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Example 6 Manufacture of two-component curable polyurethane foam composition (P-6) >> In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
  • a two-component curable foamed polyurethane composition (P-6) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foamed molded product obtained using the two-part curable polyurethane foam composition (P-6) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Example 7 Manufacture of two-component curable polyurethane foam composition (P-7) ⁇
  • an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
  • Duranol T4672 which is a polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 50.5, melting point 40 to 50 ° C.) 40 parts, 50 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylene propylene glycol (B2), 7 parts of ethylene glycol as glycol (B3), and PTMG-2000 ( Trademarks: Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value 56) 10 parts, water (C) as a blowing agent 0.5 parts ion-exchanged water, catalyst (D) tri 0.5 parts of ethylenediamine and silicon Y-7006 (trademark: Nippon Unicar) as a foam stabilizer Formula Company Ltd.) were blended 0.5 part, sufficient stirring to obtain
  • a two-part curable polyurethane foam composition (P-7) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foamed molded article obtained using the two-component curable polyurethane foam composition (P-7) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
  • Ethylene glycol 7.9 parts, PTMG-2000 (trademark: manufactured by Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value 56), water as foaming agent (C ) 0.5 parts of ion-exchanged water, 0.5 parts of triethylenediamine as catalyst (D), and 0.5 parts of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) as the foam stabilizer. The mixture was stirred and mixed to obtain a polyol compound as a curing agent.
  • a two-component curable foamed polyurethane composition (P-8) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foam molded product obtained using the two-component curable urethane foam composition (P-8) was inferior in oil resistance.
  • Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), 7.9 parts of ethylene glycol which is glycol (B3), and a foaming agent
  • B2 polyoxyethylene propylene glycol
  • B3 polyoxyethylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • B3 polyoxyethylene propylene glycol
  • D triethylenediamine
  • a two-part curable polyurethane foam composition (P-9) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foamed molded product obtained using the two-component curable urethane foam composition (P-9) was inferior in flexibility.
  • polyester polyol A having a hydroxyl value of 56.1 mgKOH / g synthesized from ethylene glycol (EG) / 1,4-butylene glycol (1,4BG) and adipic acid (AA) as a polyol.
  • EG / 1,4BG 5/5 molar ratio. 445 parts were charged in portions and mixed, and reacted at 60 ° C. for 8 hours under a nitrogen stream to obtain an isocyanate group-terminated urethane prepolymer (A-2) having an NCO equivalent of 250 as the main agent.
  • DEG diethylene glycol
  • TMP trimethylolpropane
  • DEG / TMP 15/1 molar ratio.
  • a two-part curable polyurethane foam composition (P-10) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out. As shown in Table 2, the foamed molded product obtained using the two-component curable urethane foam composition (P-10) was inferior in hydrolysis resistance.
  • the mixture was stirred and mixed to obtain a polyol compound as a curing agent.
  • a two-component curable foamed polyurethane composition (P-11) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foam-molded article obtained using the two-component curable foamed polyurethane composition (P-11) was inferior in oil resistance.
  • B isocyanate group-reactive compound
  • a two-component curable foamed polyurethane composition (P-12) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, it was left at 40 ° C. for 5 minutes. Thereafter, an attempt was made to take out the foamed molded article using the two-component curable foamed polyurethane composition (P-12) from the mold, but the foam collapsed due to insufficient foaming and could not be taken out.
  • Duranol T6001 (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 40 to 50 ° C.) which is a polycarbonate diol (B1) as an isocyanate group reactive compound (B-13)
  • Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylenepropylene glycol (B2), 23 parts of ethylene glycol as glycol (B3), and PTMG-2000 (trademark: 10 parts by Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value 56), 0.5 parts of ion-exchanged water as the foaming agent (C), and triethylenediamine 0 as the catalyst (D) .5 parts, and silicon Y-7006 (trademark: Nippon Unica as a foam stabilizer) It blended Ltd.) 0.5 parts thoroughly stirred to obtain a mixed
  • a two-part curable polyurethane foam composition (P-13) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm ⁇ 120 mm ⁇ 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
  • the foamed molded product obtained using the two-component curable foamed polyurethane composition (P-13) was inferior in flexibility.
  • the two-component curable foamed polyurethane composition of the present invention can provide a foamed polyurethane molded product having no change in the initial molding performance, excellent stability, and excellent oil resistance, hydrolysis resistance, and flexibility (flexibility).
  • polyurethane elastomer foam for example, soles of various shoes such as men's shoes, women's shoes, athletic shoes, safety shoes, work shoes, indoor shoes, etc., sole materials of various footwear such as indoor slippers and sandals, sandals, or In addition to the materials of various articles such as gloves, work clothes, hats, masks, etc., they are useful as industrial members in various applications such as rolls, packings, hoses, sheets, cushioning materials, cushions, vehicle members, and packaging members.

Abstract

Provided is a two-pack type curable polyurethane foam composition which does not undergo change in the properties at the initial stage of molding and has excellent stability, while exhibiting excellent performances in oil resistance, hydrolysis resistance, bendability (flexibility) and the like. This two-pack type curable polyurethane foam composition contains: a base material that contains (A) a urethane prepolymer having an isocyanate group at a molecular end; and a curing agent that contains (B) an isocyanate group-reactive compound, (C) water and (D) a catalyst. The component (B) essentially contains (B1) a polycarbonate diol, (B2) a polyoxyethylene propylene glycol and (B3) a glycol having a molecular weight of 50-300. Relative to the total amount of the components (B1)-(B3), the component (B1) is contained in an amount of 6-88% by mass, the component (B2) is contained in an amount of 5-93% by mass and the component (B3) is contained in an amount of 0.5-20% by mass. The content of the component (B1) in the two-pack type curable polyurethane foam composition is 5-35% by mass.

Description

2液硬化型発泡ポリウレタン組成物、発泡ポリウレタン成形体、及び靴底Two-component curable foamed polyurethane composition, foamed polyurethane molded product, and shoe sole
 本発明は、優れた耐加水分解性、耐油性、屈曲性などの性能を発現可能な2液硬化型発泡ポリウレタン組成物、それを用いてなる発泡ポリウレタン成形体、及び靴底に関する。更に詳しくは、例えば、紳士靴、婦人靴、運動靴、安全靴、作業靴、室内靴等の各種靴の靴底、スリッパ、サンダル、草履等の各種履物の底材質、あるいは手袋、作業服、帽子、マスク等の各種着用物品の材質、あるいは工業部材(例えば、ロール、パッキン、ホース、シート、緩衝材、クッション、乗物部材、包装部材等)として有用な2液硬化型発泡ポリウレタン組成物、それを用いてなる発泡ポリウレタン成形体、及び靴底に関する。 The present invention relates to a two-component curable foamed polyurethane composition capable of exhibiting excellent performances such as hydrolysis resistance, oil resistance, and flexibility, a foamed polyurethane molded product using the same, and a shoe sole. More specifically, for example, the sole material of various shoes such as men's shoes, women's shoes, athletic shoes, safety shoes, work shoes, and indoor shoes, the sole material of various shoes such as slippers, sandals, sandals, gloves, work clothes, Two-component curable polyurethane foam composition useful as a material for various wearing articles such as hats and masks, or as an industrial member (for example, a roll, packing, hose, sheet, cushioning material, cushion, vehicle member, packaging member, etc.) The present invention relates to a foamed polyurethane molded article and a shoe sole.
 従来、靴やスリッパ、サンダルなどの各種履物の底用材質として、例えば皮革、ゴム、発泡ポリウレタンなどが使用されてきた。これら材質の中でも発泡ポリウレタンは、他の素材に比べて、特に耐摩耗性や履き心地などの性能が良好であるため、その需要を伸ばしてきた。 Conventionally, leather, rubber, foamed polyurethane, and the like have been used as bottom materials for various footwear such as shoes, slippers, and sandals. Among these materials, polyurethane foam has increased its demand because it has particularly good performances such as wear resistance and comfort compared to other materials.
 通常、発泡ポリウレタンはポリイソシアネートとポリオールを反応させて得られるが、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールなどの使用されるポリオールの種類により、例えば、ポリエーテル系発泡ポリウレタン、ポリエステル系発泡ポリウレタン、ポリカーボネート系発泡ポリウレタンなどに分類される。 Normally, foamed polyurethane is obtained by reacting polyisocyanate and polyol. Depending on the type of polyol used, such as polyether polyol, polyester polyol, and polycarbonate polyol, for example, polyether-based foamed polyurethane, polyester-based foamed polyurethane, polycarbonate Classified into polyurethane foam.
 このうち、ポリエーテル系発泡ポリウレタンは、耐加水分解性は良好であるが、耐油性に劣るため、例えば、油中や油性雰囲気に暴露される環境下では、発泡ポリウレタン成形体の強度低下、寸法の変化、膨潤や劣化の発生などの問題があった。 Among these, the polyether-based foamed polyurethane has good hydrolysis resistance, but is inferior in oil resistance. For example, in an environment exposed to oil or an oily atmosphere, the strength of the foamed polyurethane molded product is reduced. There were problems such as changes in the surface, swelling and deterioration.
 また、ポリエステル系発泡ポリウレタンは、耐油性は比較的良好であるが、耐加水分解性に劣るため、例えば、水中や高温多湿の環境下では、発泡ポリウレタン成形体の強度低下、成形初期の寸法の変化、膨潤や劣化の発生などの問題があった。 Polyester-based foamed polyurethane has relatively good oil resistance but is poor in hydrolysis resistance. For example, under water or in a hot and humid environment, the strength of the foamed polyurethane molded product is reduced. There were problems such as changes, swelling and deterioration.
 更に、ポリカーボネート系発泡ポリウレタンは、例えば、1,6-ヘキサンジオールのポリカーボネートジオールを用いた発泡ポリウレタンなどのように、ポリマー鎖中のカーボネート結合が安定であるため、耐加水分解性、耐候性、耐熱性などの性能は良好であるものの、結晶性が高すぎるため柔軟性に劣るという欠点があり、例えば、靴底、クッション、手袋、ホースなどの特に屈曲性(柔軟性)が要求される用途では使用し難いという問題があった。 Furthermore, the polycarbonate-based foamed polyurethane, for example, a foamed polyurethane using polycarbonate diol of 1,6-hexanediol, has a stable carbonate bond in the polymer chain, so that it has hydrolysis resistance, weather resistance, heat resistance, etc. Although it has good performance such as flexibility, it has the disadvantage of poor flexibility due to its high crystallinity. For example, in applications that require particularly flexibility (flexibility) such as shoe soles, cushions, gloves, and hoses. There was a problem that it was difficult to use.
 このように、油中や油性雰囲気に暴露される環境下でも、水中や高温多湿の環境下においても、成形初期の性能に変化がなく安定であり、優れた耐油性、耐加水分解性、屈曲性(柔軟性)を発現する2液硬化型発泡ポリウレタン組成物、及びそれを用いた発泡ポリウレタン成形体の開発が望まれていた。 In this way, even in an environment exposed to oil or an oily atmosphere, in water or in a hot and humid environment, the performance at the initial stage of molding is stable and stable, and has excellent oil resistance, hydrolysis resistance, bending Development of a two-pack curable foamed polyurethane composition that exhibits properties (flexibility) and a foamed polyurethane molded product using the same have been desired.
 かかる目的を達成させるために、これまで種々の提案がなされてきた。例えば、高分子ポリオール、有機ポリイソシアネートからなるポリウレタンを含有する発泡体において、前記高分子ポリオールが特定の繰り返し単位を含み、両末端基が水酸基であり、数平均分子量が300~10000のポリカーボネートジオールである発泡体、が知られている(例えば、特許文献1)。 Various proposals have been made so far to achieve this purpose. For example, in a foam containing a polyurethane composed of a polymer polyol and an organic polyisocyanate, the polymer polyol contains a specific repeating unit, both terminal groups are hydroxyl groups, and a polycarbonate diol having a number average molecular weight of 300 to 10,000. A certain foam is known (for example, patent document 1).
 前記特許文献1によれば、耐油性、柔軟性、耐加水分解性、耐候性などの物性バランスが良好なポリウレタンフォームを提供できるという。 According to Patent Document 1, it is possible to provide a polyurethane foam having a good balance of physical properties such as oil resistance, flexibility, hydrolysis resistance, and weather resistance.
 しかしながら、前記特許文献1で得られるポリウレタンフォームは、耐油性の向上は認められるものの、屈曲性(柔軟性)に劣るために実用には未だ適さないという問題があった。 However, although the polyurethane foam obtained in Patent Document 1 is improved in oil resistance, it has a problem that it is not suitable for practical use because it is inferior in flexibility (flexibility).
 また、ポリイソシアネートとポリカーボネートポリオールから製造されるポリウレタンフォーム、が知られている(例えば、特許文献2)。 Further, a polyurethane foam produced from polyisocyanate and polycarbonate polyol is known (for example, Patent Document 2).
 前記特許文献2によれば、耐加水分解性や耐熱性が良好なポリウレタンフォームを提供でき、従来では使用できなかった高温高湿の条件で使用することが可能であるという。 According to Patent Document 2, a polyurethane foam having good hydrolysis resistance and heat resistance can be provided, and it can be used under conditions of high temperature and high humidity that could not be used conventionally.
 しかしながら、特許文献2では、得られる発泡ポリウレタン成形品(即ち、ポリウレタンフォーム)は、屈曲性(柔軟性)などの性能が未だ不充分であり実用上問題があった。 However, in Patent Document 2, the obtained foamed polyurethane molded product (that is, polyurethane foam) has a problem in practical use because performance such as flexibility (flexibility) is still insufficient.
 以上のように、油中や油性雰囲気に暴露される環境下でも、水中や高温多湿の環境下においても、成形初期の性能に変化がなく安定性に優れ、且つ優れた耐油性、耐加水分解性、屈曲性(柔軟性)などの性能を発現する2液硬化型発泡ポリウレタン組成物、それを用いた発泡ポリウレタン成形体、及び靴底の開発が切望されていた。 As described above, even in an environment exposed to oil or an oily atmosphere, in water or in a hot and humid environment, there is no change in the performance at the initial stage of molding, and it has excellent stability and excellent oil resistance and hydrolysis resistance. Development of a two-component curable foamed polyurethane composition that exhibits performance such as flexibility and flexibility (flexibility), a foamed polyurethane molded product using the same, and a shoe sole has been desired.
特開2008-37991号公報JP 2008-37991 A 特開2005-60643号公報JP 2005-60643 A
 本発明の目的は、油中や油性雰囲気に暴露される環境下でも、水中や高温多湿の環境下においても、成形初期の性能に変化がなく安定性に優れ、且つ優れた耐油性、耐加水分解性、屈曲性(柔軟性)などの性能を発現する2液硬化型発泡ポリウレタン組成物、それを用いた発泡ポリウレタン成形体、及び靴底を提供することである。 The object of the present invention is to have excellent stability with no change in the performance at the initial stage of molding in oil or in an environment exposed to an oily atmosphere, in water or in a hot and humid environment, and excellent oil and water resistance. To provide a two-component curable foamed polyurethane composition that exhibits performance such as degradability and flexibility (flexibility), a foamed polyurethane molded article using the same, and a shoe sole.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、2液硬化型発泡ポリウレタン組成物が、分子末端にイソシアネート基を有するウレタンプレポリマー(A)を含む主剤と、イソシアネート基反応性化合物(B)、水(C)、触媒(D)を含む硬化剤を含有するものであり、前記イソシアネート基反応性化合物(B)がポリカーボネートジオール(B1)とポリオキシエチレンプロピレングリコール(B2)と低分子量のグリコール(B3)を必須成分に含有することにより、前記2液硬化型発泡ポリウレタン組成物が、成形初期の性能に変化がなく安定性に優れ、且つ耐油性、耐加水分解性、屈曲性(柔軟性)などの優れた性能を発現できることを見出し、本発明を完成するに到った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a two-component curable foamed polyurethane composition comprises a main agent containing a urethane prepolymer (A) having an isocyanate group at the molecular end, and an isocyanate group. It contains a curing agent containing a reactive compound (B), water (C), and a catalyst (D), and the isocyanate group reactive compound (B) contains polycarbonate diol (B1) and polyoxyethylene propylene glycol (B2). ) And a low molecular weight glycol (B3) as essential components, the two-component curable foamed polyurethane composition has excellent stability with no change in the initial molding performance, oil resistance, and hydrolysis resistance. The present inventors have found that excellent performance such as flexibility (flexibility) can be exhibited, and have completed the present invention.
 即ち、本発明は、2液硬化型発泡ポリウレタン組成物が、分子末端にイソシアネート基を有するウレタンプレポリマー(A)を含む主剤と、イソシアネート基反応性化合物(B)、水(C)、触媒(D)を含む硬化剤を含有するものであり、前記イソシアネート基反応性化合物(B)がポリカーボネートジオール(B1)とポリオキシエチレンプロピレングリコール(B2)と分子量50~300のグリコール(B3)とを必須に含有するものであり、前記(B1)~(B3)の合計量に対して、前記(B1)を6~88質量%の範囲、前記(B2)を5~93質量%の範囲、前記(B3)を0.5~20質量%の範囲で含み、且つ、2液硬化型発泡ポリウレタン組成物中の前記ポリカーボネートジオール(B1)の含有率が5~35質量%の範囲であることを特徴とする2液硬化型発泡ポリウレタン組成物に関するものである。 That is, in the present invention, the two-component curable foamed polyurethane composition comprises a main component containing a urethane prepolymer (A) having an isocyanate group at the molecular end, an isocyanate group-reactive compound (B), water (C), a catalyst ( D) and a curing agent containing D), and the isocyanate group-reactive compound (B) is essentially composed of polycarbonate diol (B1), polyoxyethylene propylene glycol (B2), and glycol (B3) having a molecular weight of 50 to 300. The (B1) is in the range of 6 to 88% by mass, the (B2) is in the range of 5 to 93% by mass with respect to the total amount of the (B1) to (B3). B3) is contained in the range of 0.5 to 20% by mass, and the content of the polycarbonate diol (B1) in the two-component curable foamed polyurethane composition is 5 to 35% by mass. It relates two-part curable polyurethane foam composition, characterized in that in the range of.
 本発明は、前記2液硬化型発泡ポリウレタン組成物を成形して得られることを特徴とする発泡ポリウレタン成形体に関するものである。 The present invention relates to a foamed polyurethane molded product obtained by molding the two-component curable foamed polyurethane composition.
 本発明は、前記発泡ポリウレタン成形体を含む靴底であって、前記発泡ポリウレタン成形体の密度が0.3~1.1g/cmの範囲であることを特徴とする靴底に関するものである。 The present invention relates to a shoe sole including the polyurethane foam molded article, wherein the density of the polyurethane foam molded article is in the range of 0.3 to 1.1 g / cm 3. .
 本発明の2液硬化型発泡ポリウレタン組成物は、成形初期の性能に変化がなく安定性に優れ、且つ優れた耐油性、耐加水分解性、屈曲性(柔軟性)などの性能を発現する発泡ポリウレタン成形体を提供でき、特にポリウレタンエラストマーフォームとして、例えば、紳士靴、婦人靴、運動靴、安全靴、作業靴、室内靴等の各種靴の靴底、室内用のスリッパやサンダル、草履等の各種履物の底材質、あるいは手袋、作業服、帽子、マスク等の各種物品の材質の他に、工業部材として、例えば、ロール、パッキン、ホース、シート、緩衝材、クッション、乗物部材、包装部材等、種々の用途に利用可能である。 The two-component curable foamed polyurethane composition of the present invention is a foam that exhibits no change in initial molding performance, excellent stability, and excellent performance such as oil resistance, hydrolysis resistance, and flexibility (flexibility). Polyurethane molded products can be provided, especially as polyurethane elastomer foams, such as men's shoes, women's shoes, sports shoes, safety shoes, work shoes, indoor shoes, and other shoe soles, indoor slippers, sandals, sandals, etc. In addition to various footwear materials or materials for various articles such as gloves, work clothes, hats, masks, etc., industrial members such as rolls, packing, hoses, sheets, cushioning materials, cushions, vehicle members, packaging members, etc. It can be used for various purposes.
<(A)イソシアネート基末端ウレタンプレポリマー>
 (1)ポリイソシアネート
 本発明の2液硬化型発泡ポリウレタン組成物は、分子末端にイソシアネート基を有するウレタンプレポリマー(A)(以下「イソシアネート基末端ウレタンプレポリマー(A)」という。)を含む主剤と、イソシアネート基反応性化合物(B)、水(C)、触媒(D)を含む硬化剤とを配合して得ることができる。
<(A) Isocyanate group-terminated urethane prepolymer>
(1) Polyisocyanate The two-component curable foamed polyurethane composition of the present invention comprises a urethane prepolymer (A) having an isocyanate group at the molecular end (hereinafter referred to as “isocyanate group-terminated urethane prepolymer (A)”). And a curing agent containing an isocyanate group-reactive compound (B), water (C), and a catalyst (D).
 本発明で用いるイソシアネート基末端ウレタンプレポリマー(A)は、ポリイソシアネートとポリオールを公知の方法に従い反応させて得ることができ、その反応方法及び反応条件は、特に限定しない。 The isocyanate group-terminated urethane prepolymer (A) used in the present invention can be obtained by reacting polyisocyanate and polyol according to a known method, and the reaction method and reaction conditions are not particularly limited.
 尚、本発明でいう「ポリイソシアネート」とは、分子中に2以上のイソシアネート基(以下、NCO基とも言う。)を有する化合物をいう。 The “polyisocyanate” in the present invention refers to a compound having two or more isocyanate groups (hereinafter also referred to as NCO groups) in the molecule.
 本発明では、前記ポリイソシアネートとして、公知の脂肪族ポリイソシアネート、芳香族ポリイソシアネート、及び脂環式ポリイソシアネートのいずれも用いることができる。例えば、ジフェニルメタンジイソシアネ-ト(MDI;その4,4’体、2,4’体又は2,2’体、若しくはそれらの混合物、クルードMDI)、カルボジイミド変性MDI(変性MDI)、ポリメチレンポリフェニルポリイソシアネート、カルボジイミド化ジフェニルメタンポリイソシアネート、キシレンジイソシアネート、トリレンジイソシアネ-ト(TDI;その2,4体、又は2,6体、若しくはそれらの混合物)、キシリレンジイソシアネート(XDI)、1,5-ナフタレンジイソシアネート(NDI)、テトラメチルキシレンジイソシアネート、フェニレンジイソシアネート等の芳香族ポリイソシアネ-ト、あるいはヘキサメチレンジイソシアネート(HDI)、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート、リジンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネート、あるいはイソホロンジイソシアネート(IPDI)、水添ジフェニルメタンジイソシアネート(水添MDI)、水添キシリレンジイソシアネート(水添XDI)、シクロヘキサンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂環式ポリイソシアネートが挙げられ、また、市販品としては、例えば、ミリオネートMT(商標:日本ポリウレタン工業株式会社製、4,4’-MDI)、コスモネートLL(商標:三井化学ポリウレタン株式会社製、カルボジイミド変性MDI)などが挙げられる。これらの中でも、ポリオールとの反応性、水との反応性、及び作業性等に優れることから、好ましくはMDIである。これらは単独使用でも2種以上を併用してもよい。 In the present invention, as the polyisocyanate, any of known aliphatic polyisocyanate, aromatic polyisocyanate, and alicyclic polyisocyanate can be used. For example, diphenylmethane diisocyanate (MDI; 4,4′-form, 2,4′-form or 2,2′-form, or a mixture thereof, crude MDI), carbodiimide-modified MDI (modified MDI), polymethylene poly Phenyl polyisocyanate, carbodiimidized diphenylmethane polyisocyanate, xylene diisocyanate, tolylene diisocyanate (TDI; 2,4, 2,6, or a mixture thereof), xylylene diisocyanate (XDI), 1,5 -Aromatic polyisocyanates such as naphthalene diisocyanate (NDI), tetramethylxylene diisocyanate, phenylene diisocyanate, or hexamethylene diisocyanate (HDI), dimer acid diisocyanate, norbornene diisocyanate , Lysine diisocyanate, aliphatic polyisocyanate such as tetramethylxylylene diisocyanate, or isophorone diisocyanate (IPDI), hydrogenated diphenylmethane diisocyanate (hydrogenated MDI), hydrogenated xylylene diisocyanate (hydrogenated XDI), cyclohexane diisocyanate, dicyclohexylmethane diisocyanate And cycloaliphatic polyisocyanates such as isophorone diisocyanate. Commercially available products include, for example, Millionate MT (trademark: 4,4′-MDI, manufactured by Nippon Polyurethane Industry Co., Ltd.), Cosmonate LL (trademark: Mitsui). Chemical Polyurethane Co., Ltd., carbodiimide-modified MDI) and the like. Among these, MDI is preferable because it is excellent in reactivity with polyol, reactivity with water, and workability. These may be used alone or in combination of two or more.
 (2)ポリオール
 本発明で用いるポリオールとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、低分子量グリコール(分子量50~300のもの)などが挙げられる。
(2) Polyol Examples of the polyol used in the present invention include polyester polyol, polyether polyol, polycarbonate polyol, and low molecular weight glycol (having a molecular weight of 50 to 300).
 前記ポリエステルポリオールは、芳香族骨格を有するポリカルボン酸又は芳香族骨格を有さないポリカルボン酸と、芳香族骨格を有するポリオール又は芳香族骨格を有さないポリオールとを原料に用いて公知の方法に従い合成することができる。 The polyester polyol is a known method using as raw materials a polycarboxylic acid having an aromatic skeleton or a polycarboxylic acid not having an aromatic skeleton, and a polyol having an aromatic skeleton or a polyol having no aromatic skeleton. Can be synthesized.
 前記ポリエステルポリオールの製造に使用するポリカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸などの芳香族骨格を有するポリカルボン酸、あるいはコハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、トリメリット酸、ピロメリット酸などの芳香族骨格を有さないポリカルボン酸が挙げられる。これらは、単独使用でも2種以上を併用してもよい。 Examples of the polycarboxylic acid used for producing the polyester polyol include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid. Polycarboxylic acids having an aromatic skeleton such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Examples thereof include polycarboxylic acids having no aromatic skeleton such as acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, trimellitic acid, and pyromellitic acid. These may be used alone or in combination of two or more.
 尚、本発明でいう「ポリカルボン酸」とは、ポリカルボン酸のほかに、それらの低級エステル化合物(例えばメチルエステル体)、酸無水物、酸ハロゲン化物などの酸誘導体も含めた総称である。 The “polycarboxylic acid” referred to in the present invention is a general term including polycarboxylic acids and acid derivatives such as lower ester compounds (for example, methyl ester compounds), acid anhydrides, and acid halides. .
 前記ポリエステルポリオールの製造に使用するジオールとしては、例えば、ジヒドロキシナフタレン、ビスフェノールA、ビスフェノールS、ビスフェノールAF、ビスフェノールSi2、及びこれらのアルキレンオキサイド付加物などの芳香族骨格を有するポリオール、あるいはエチレングリコール(EG)、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブチレングリコール(1,4BG)、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール等の脂肪族ジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環族ジオール類などの芳香族骨格を有さないジオールが挙げられる。これらは、単独使用でも2種以上を併用してもよい。 Examples of the diol used in the production of the polyester polyol include polyols having an aromatic skeleton such as dihydroxynaphthalene, bisphenol A, bisphenol S, bisphenol AF, bisphenol Si 2 , and alkylene oxide adducts thereof, or ethylene glycol ( EG), 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butylene glycol (1,4BG), 1,5-pentanediol, 1,6-hexanediol, Neopentyl glycol, trimethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl -Aliphatic diols such as 2-ethyl-1,3-propanediol and 2-methyl-1,3-propanediol; 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc. Examples thereof include diols having no aromatic skeleton such as alicyclic diols. These may be used alone or in combination of two or more.
 前記ポリエステルポリオールの合成原料として、その他にも、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ソルビトール、ショ糖、アコニット糖等のアルコール類や糖類;あるいはアミン類なども使用できる。これらは、単独使用でも2種以上を併用してもよい。 In addition, for example, alcohols and saccharides such as glycerin, trimethylolethane, trimethylolpropane, sorbitol, sucrose, and aconite sugar; or amines can also be used as a raw material for synthesizing the polyester polyol. These may be used alone or in combination of two or more.
 前記ポリエステルポリオールの水酸基価は、主剤であるイソシアネート基末端ウレタンプレポリマー(A)の目標粘度を考慮して設定することが望ましい。 The hydroxyl value of the polyester polyol is desirably set in consideration of the target viscosity of the isocyanate group-terminated urethane prepolymer (A) as the main agent.
 前記ポリエステルポリオールの水酸基価は、好ましくは25~240mgKOH/g(以下、単位略す)の範囲であり、より好ましくは35~120の範囲である。前記ポリエステルポリオールの水酸基価がかかる範囲であるならば、前記イソシアネート基末端ウレタンプレポリマー(A)の極端な粘度上昇を起こすことなく、適度な粘度のウレタンプレポリマーが得られ、良好な作業性を発現できる。 The hydroxyl value of the polyester polyol is preferably in the range of 25 to 240 mg KOH / g (hereinafter abbreviated as a unit), more preferably in the range of 35 to 120. If the hydroxyl value of the polyester polyol is within such a range, an urethane prepolymer having an appropriate viscosity can be obtained without causing an extreme increase in the viscosity of the isocyanate group-terminated urethane prepolymer (A). It can be expressed.
 前記ポリエステルポリオールには、上記以外のポリカルボン酸、ポリオール、ポリアミン等を併用して得られるポリエステルジオール、ポリアミドポリエステルジオールなども含まれる。 The polyester polyol includes polyester diols, polyamide polyester diols and the like obtained by using polycarboxylic acids, polyols, polyamines and the like other than the above.
 また、前記ポリエーテルポリオールとしては、例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリエチレンプロピレングリコール(PEPG)、ポリテトラメチレングリコール(PTMG)などが挙げられ、これらの中でも、水酸基価14~120の範囲であるPPGが好ましい。前記ポリエーテルポリオールは、直鎖、分岐、環状の何れの構造を有していてもよい。 Examples of the polyether polyol include polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene propylene glycol (PEPG), and polytetramethylene glycol (PTMG). Among these, a hydroxyl value of 14 to PPG in the range of 120 is preferred. The polyether polyol may have any structure of linear, branched and cyclic.
 前記ポリエーテルポリオールの水酸基価は、好ましくは14~120の範囲、より好ましくは20~80の範囲である。前記ポリエーテルポリオールの水酸基価がかかる範囲であれば、得られる発泡ポリウレタン成形体の脆性の制御が容易にでき、優れた強度と耐摩耗性を得ることができる。 The hydroxyl value of the polyether polyol is preferably in the range of 14 to 120, more preferably in the range of 20 to 80. If the hydroxyl value of the polyether polyol is within such a range, the brittleness of the obtained foamed polyurethane molded article can be easily controlled, and excellent strength and wear resistance can be obtained.
 本発明では、前記PTMGなどのポリエーテルポリオールにラクトン類(例えば、ε-カプロラクトン、γ-ブチロラクトンなど)が開環付加重合した化合物も同様に使用できる。 In the present invention, compounds obtained by ring-opening addition polymerization of lactones (for example, ε-caprolactone, γ-butyrolactone, etc.) to the polyether polyol such as PTMG can also be used.
 前記ポリカーボネートジオールとしては、例えば、ジオールとカーボネートを原料に合成されるものなどが挙げられる。ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオールなどが挙げられる。また、カーボネートとしては、例えば、エチレンカーボネート、フェニルカーボネート、ジエチルカーボネート等などが挙げられる。これらは単独使用でも2種以上を併用してもよい。 Examples of the polycarbonate diol include those synthesized from diol and carbonate as raw materials. Examples of the diol include ethylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, and 3-methyl. 1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-1,3-propanediol and the like. Examples of the carbonate include ethylene carbonate, phenyl carbonate, and diethyl carbonate. These may be used alone or in combination of two or more.
 前記低分子量グリコールの分子量は、好ましくは50~300の範囲であり、より好ましくは50~200の範囲である。前記低分子量グリコールの分子量がかかる範囲であるならば、ポリオールとして併用した場合に、反応性の制御がより効率的にでき、且つ成形性(歩留まり、成形ムラ)がより良好になるので、好ましい。 The molecular weight of the low molecular weight glycol is preferably in the range of 50 to 300, more preferably in the range of 50 to 200. When the molecular weight of the low molecular weight glycol is within such a range, it is preferable because when it is used as a polyol, the reactivity can be controlled more efficiently and the moldability (yield and molding unevenness) becomes better.
 前記低分子量グリコールとしては、例えば、エチレングリコール(EG)、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール等の脂肪族ジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環族ジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上の水酸基含有化合物などが挙げられ、これらの中でも、ジプロピレングリコールが好ましい。前記低分子量グリコールは、直鎖、分岐、環状の何れの構造を有していてもよい。 Examples of the low molecular weight glycol include ethylene glycol (EG), 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1, Aliphatic diols such as 3-propanediol and 2-methyl-1,3-propanediol; Alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A; Glycerin , Trimethylolpropane Such trifunctional or more hydroxyl group-containing compound such as pentaerythritol. Among these, dipropylene glycol is preferred. The low molecular weight glycol may have a linear, branched, or cyclic structure.
 また、ポリオールとして、例えば、カプロラクトンモノマーの開環重合により得られるポリカプロラクトンポリオール、芳香族ポリエステルポリオール、アクリルポリオール、ポリオレフィンポリオール、ひまし油系ポリオールなども使用できる。 Further, as the polyol, for example, polycaprolactone polyol, aromatic polyester polyol, acrylic polyol, polyolefin polyol, castor oil-based polyol, etc. obtained by ring-opening polymerization of a caprolactone monomer can be used.
 更に、前記ポリオールと共に、本発明の目的を阻害しない範囲で、その他のポリオールを使用してもよい。前記その他のポリオールとしては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の少なくとも3個以上の水酸基を有する出発原料にエチレンオキサイド(EO)、プロピレンオキサイド(PO)、ブチレンオキサイド等のアルキレンオキサイドを付加重合して得られるポリ(オキシアルキレン)グリコール、ポリ(オキシテトラメチレン)グリコール等のポリエーテルポリオール;あるいはアジピン酸、セバシン酸、アゼライン酸、コハク酸、マレイン酸、フタル酸等の多価カルボン酸とエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、2,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オタンジオール,ネオペンチルグリコール、2,-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、グリセリン、トリメチロールプロパン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の多価アルコールを重縮合して得られるポリエステルポリオール;あるいはポリラクトンポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、又はポリブタジエンポリオール、ポリエーテルエステルポリオールの存在下で、アクリロニトリルやスチレン等のエチレン性不飽和単量体を重合させるポリマーポリオール等が挙げられる。 Furthermore, other polyols may be used together with the polyol as long as the object of the present invention is not impaired. Examples of the other polyol include alkylene oxides such as ethylene oxide (EO), propylene oxide (PO), and butylene oxide as starting materials having at least three hydroxyl groups such as glycerin, trimethylolpropane, pentaerythritol, and sorbitol. Polyether polyols such as poly (oxyalkylene) glycol and poly (oxytetramethylene) glycol obtained by addition polymerization of carboxylic acid; or polyvalent carboxylic acids such as adipic acid, sebacic acid, azelaic acid, succinic acid, maleic acid, and phthalic acid Acid and ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1, -Polyhydric alcohols such as ethanediol, neopentyl glycol, 2, -methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, glycerin, trimethylolpropane, diethylene glycol, triethylene glycol, tetraethylene glycol Polyester polyol obtained by polycondensation of polymer; or polymerizing ethylenically unsaturated monomers such as acrylonitrile and styrene in the presence of polylactone polyol, polyether ester polyol, polycarbonate polyol, polybutadiene polyol, polyether ester polyol And polymer polyols to be used.
 (3)イソシアネート基末端ウレタンプレポリマー(A)
 本発明において、主剤として用いるイソシアネート基末端ウレタンプレポリマー(A)のイソシアネート当量(以下「NCO当量」という)は、好ましくは150~350の範囲であり、より好ましくは200~300の範囲である。前記(A)のNCO当量がかかる範囲であるならば、作業中に溶融粘度の異常な上昇を起こすことなく、発泡機で使用しやすい適度な粘度となり、優れた作業性を得ることができる。
(3) Isocyanate group-terminated urethane prepolymer (A)
In the present invention, the isocyanate equivalent of the isocyanate group-terminated urethane prepolymer (A) used as the main component (hereinafter referred to as “NCO equivalent”) is preferably in the range of 150 to 350, more preferably in the range of 200 to 300. If the NCO equivalent of (A) is within such a range, the viscosity becomes an appropriate viscosity that is easy to use in a foaming machine without causing an abnormal increase in melt viscosity during the operation, and excellent workability can be obtained.
 尚、本発明でいう「イソシアネート当量」(単位:g/mol)とは、JIS K7301-1995 熱硬化性ウレタンエラストマー用トリレンジイソシアネート型プレポリマー試験方法に従い測定した値である。 The “isocyanate equivalent” (unit: g / mol) in the present invention is a value measured in accordance with the JIS K7301-1995 test method for tolylene diisocyanate type prepolymers for thermosetting urethane elastomers.
 前記イソシアネート基末端ウレタンプレポリマー(A)は、ポリイソシアネートの有するNCO基が、ポリオールの有する水酸基(以下OH基ともいう)に対して、過剰となる当量比で公知の方法により反応させて製造することができる。 The isocyanate group-terminated urethane prepolymer (A) is produced by reacting an NCO group of a polyisocyanate with a hydroxyl group (hereinafter also referred to as OH group) of a polyol in an equivalent ratio by a known method. be able to.
 前記イソシアネート基末端ウレタンプレポリマー(A)を得るための反応方法としては、例えば、反応容器中に仕込んだポリイソシアネートに、水分を除去したポリオールを滴下、分割、一括など適当な方法にて仕込み、ポリオールの有する水酸基が実質的に無くなるまで反応させる方法を採用すればよい。 As a reaction method for obtaining the isocyanate group-terminated urethane prepolymer (A), for example, a polyisocyanate charged in a reaction vessel is charged with a polyol from which water has been removed by an appropriate method such as dropping, dividing, or batching, What is necessary is just to employ | adopt the method made to react until the hydroxyl group which a polyol has disappears substantially.
 反応中の発熱を穏やかに制御しながら安全且つ正常に反応を進行させるためには、滴下あるいは分割による仕込方法が、好ましい。 In order to allow the reaction to proceed safely and normally while gently controlling the exotherm during the reaction, a charging method by dropping or dividing is preferred.
 前記イソシアネート基末端ウレタンプレポリマー(A)の製造は、通常、無溶剤で行なうが、有機溶剤中で反応させてもよい。有機溶剤中で反応させる場合には、反応を阻害しない有機溶剤を使用すればよく、通常は、例えば、酢酸エチル、酢酸n-ブチル、メチルエチルケトン、トルエン等が挙げられる。反応に使用した有機溶剤は、反応途中又は反応終了後に、減圧加熱や薄膜留去等の適当な方法により除去する。 The production of the isocyanate group-terminated urethane prepolymer (A) is usually carried out without a solvent, but may be allowed to react in an organic solvent. When the reaction is carried out in an organic solvent, an organic solvent that does not inhibit the reaction may be used, and usually examples thereof include ethyl acetate, n-butyl acetate, methyl ethyl ketone, toluene and the like. The organic solvent used for the reaction is removed by an appropriate method such as heating under reduced pressure or distilling off the thin film during or after the reaction.
 前記イソシアネート基末端ウレタンプレポリマー(A)の反応条件(温度、時間、圧力など)は、反応挙動や製品品質などを正常に制御できる範囲で設定すればよく、特に限定しない。通常は、反応温度50~90℃で、反応時間2~24時間の条件にて、行うことが好ましい。圧力は、常圧、加圧、減圧の何れでもよい。 The reaction conditions (temperature, time, pressure, etc.) of the isocyanate group-terminated urethane prepolymer (A) are not particularly limited as long as the reaction behavior and product quality can be controlled normally. Usually, the reaction is preferably performed at a reaction temperature of 50 to 90 ° C. under a reaction time of 2 to 24 hours. The pressure may be normal pressure, pressurization, or reduced pressure.
 反応方式は、例えば、バッチ、半連続、連続など、公知の反応方式を選択することができ、特に限定しない。 The reaction method can be selected from known reaction methods such as batch, semi-continuous, and continuous, and is not particularly limited.
 また、前記イソシアネート基末端ウレタンプレポリマー(A)を製造する際には、必要に応じてウレタン化触媒を使用することができる。前記ウレタン化触媒は、原料調整・仕込から反応の任意の工程で適宜加えることができる。また、ウレタン化触媒の添加方法は、一括、分割、連続など種々あるが、特に限定しない。 Further, when the isocyanate group-terminated urethane prepolymer (A) is produced, a urethanization catalyst can be used as necessary. The urethanization catalyst can be appropriately added in any step of reaction from raw material adjustment / preparation. There are various methods for adding the urethanization catalyst, such as batch, division, and continuous, but there is no particular limitation.
 前記ウレタン化触媒としては、公知のものが使用でき、特に限定しないが、例えば、トリエチルアミン、トリブチルアミン、ベンジルジブチルアミン、トリエチレンジアミン、N-メチルモルホリン等の含窒素化合物;あるいはチタンテトラブトキシド、ジブチルスズオキシド、ジラウリン酸ジブチルスズ、2-エチルカプロン酸スズ、ナフテン酸亜鉛、ナフテン酸コバルト、2-エチルカプロン酸亜鉛、グリコール酸モリブデン、酢酸カリウム、ステアリン酸亜鉛、オクチル酸錫、ジブチル錫ジラウレート等の有機金属化合物;あるいは塩化鉄、塩化亜鉛等の無機化合物などが挙げられる。 As the urethanization catalyst, known catalysts can be used and are not particularly limited. For example, nitrogen-containing compounds such as triethylamine, tributylamine, benzyldibutylamine, triethylenediamine, and N-methylmorpholine; or titanium tetrabutoxide, dibutyltin oxide , Organometallic compounds such as dibutyltin dilaurate, tin 2-ethylcaproate, zinc naphthenate, cobalt naphthenate, zinc 2-ethylcaproate, molybdenum glycolate, potassium acetate, zinc stearate, tin octylate, dibutyltin dilaurate Or inorganic compounds such as iron chloride and zinc chloride.
 通常、反応は、窒素やアルゴンなどの不活性ガス雰囲気下で行うことが好ましいが、乾燥空気雰囲気下又は密閉条件下などの水分が混入しない条件下で行ってもよい。 Usually, the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon, but it may be carried out in a dry air atmosphere or in a condition not containing moisture such as sealed conditions.
 前記ポリイソシアネートが有するNCO基と、前記ポリオールが有するOH基との当量比(即ち[NCO/OH])は、好ましくは2~90の範囲であり、より好ましくは3~45の範囲である。前記[NCO/OH]がかかる範囲であれば、反応の制御が容易にでき、異常な反応も起こさず、優れた性能バランスを有する発泡ウレタン成形体を得ることができるので、好ましい。 The equivalent ratio of the NCO group of the polyisocyanate to the OH group of the polyol (ie [NCO / OH]) is preferably in the range of 2 to 90, more preferably in the range of 3 to 45. When the [NCO / OH] is within such a range, the reaction can be easily controlled, an abnormal reaction does not occur, and a urethane foam molded article having an excellent performance balance can be obtained.
<(B)イソシアネート基反応性化合物>
 次いで、主剤であるイソシアネート基末端ウレタンプレポリマー(A)に配合する硬化剤の主たる構成について、以下に説明する。
<(B) Isocyanate group reactive compound>
Subsequently, the main structure of the hardening | curing agent mix | blended with the isocyanate group terminal urethane prepolymer (A) which is a main ingredient is demonstrated below.
 本発明で用いる硬化剤とは、必須成分として、イソシアネート基反応性化合物(B)、発泡剤である水(C)、及び触媒(D)を含む。 The curing agent used in the present invention includes, as essential components, an isocyanate group-reactive compound (B), water (C) as a foaming agent, and a catalyst (D).
 前記イソシアネート基反応性化合物(B)とは、ポリカーボネートジオール(B1)、ポリオキシエチレンプロピレングリコール(B2)、及び分子量50~300のグリコール(B3)という3種のポリオールを必須に含む。 The isocyanate group-reactive compound (B) essentially contains three types of polyols: polycarbonate diol (B1), polyoxyethylene propylene glycol (B2), and glycol (B3) having a molecular weight of 50 to 300.
 前記ポリカーボネートジオール(B1)は、60℃で液体であり、且つ前記(B1)の水酸基価は、好ましくは45~150mgKOH/gの範囲、より好ましくは50~120の範囲である。前記(B1)の水酸基価がかかる範囲であれば、優れた成形性(歩留まり、成形ムラ)、強度、耐摩耗性などの性能を得ることができ、好ましい。尚、本発明でいう水酸基価とは、後述する測定方法に従い測定した値をいう。 The polycarbonate diol (B1) is liquid at 60 ° C., and the hydroxyl value of the (B1) is preferably in the range of 45 to 150 mgKOH / g, more preferably in the range of 50 to 120. When the hydroxyl value of (B1) is within such a range, it is preferable because performance such as excellent moldability (yield and molding unevenness), strength, and wear resistance can be obtained. In addition, the hydroxyl value as used in the field of this invention means the value measured according to the measuring method mentioned later.
 ポリオールコンパウンドの生産時の設定温度は通常40~60℃であるため、40~60℃で固形又は半固形の従来用いられている如きポリカーボネートジオールでは、生産時に溶融できないか、あるいは充分に溶融できないために、使用できない。 Since the set temperature during the production of a polyol compound is usually 40 to 60 ° C., a polycarbonate diol as conventionally used that is solid or semi-solid at 40 to 60 ° C. cannot be melted during production or cannot be sufficiently melted. It cannot be used.
 本発明で必須に用いるポリカーボネートジオール(B1)は、60℃で液体であるので溶融作業を全く必要とせず、秤量・移送・仕込みなどの製造工程を簡略化でき、作業性に優れるので、生産性が大変に向上する。しかしながら、従来のように、ポリカーボネートジオールが60℃で固形又は半固形の場合には、流動性がなく、秤量・移送・仕込みなどの作業性に明らかに劣るため、生産性が著しく低下するという問題がある。 Since the polycarbonate diol (B1) used in the present invention is liquid at 60 ° C., it does not require any melting work, can simplify the manufacturing process such as weighing, transferring, and charging, and is excellent in workability. Is greatly improved. However, when the polycarbonate diol is solid or semi-solid at 60 ° C. as in the prior art, there is no fluidity, and the workability such as weighing, transferring, and charging is clearly inferior, resulting in a significant decrease in productivity. There is.
 前記ポリカーボネートジオール(B1)としては、例えば、ジオールとカーボネートを原料に合成されるものなどが挙げられる。前記ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオールエチレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオールなどが挙げられる。また、前記カーボネートとしては、例えば、エチレンカーボネート、フェニルカーボネート、ジエチルカーボネート等などが挙げられる。これらは単独使用でも2種以上を併用してもよい。 Examples of the polycarbonate diol (B1) include those synthesized from diol and carbonate as raw materials. Examples of the diol include ethylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol ethylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, Examples include 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, and 2-methyl-1,3-propanediol. Examples of the carbonate include ethylene carbonate, phenyl carbonate, diethyl carbonate, and the like. These may be used alone or in combination of two or more.
 前記ポリカーボネートジオール(B1)の市販品としては、例えば、デュラノール T4671(商標:旭化成ケミカルズ株式会社、水酸基価100~120、融点5~15℃)、T4672(商標:同社製、水酸基価45~56、融点5~15℃)、T4691(商標:同社製、水酸基価100~120、融点50~60℃)、T4692(商標:同社製、水酸基価51~61、融点50~60℃)、T5650J(商標:同社製、水酸基価130~150、融点-5℃以下)、T5651(商標:同社製、水酸基価100~120、融点-5℃以下)、T5652(商標:同社製、水酸基価51~61、融点-5℃以下)、T6001(商標:同社製、水酸基価100~120、融点40~50℃)、T6002(商標:同社製、水酸基価51~61、融点40~50℃)などが挙げられる。本発明で用いる(B1)は、これら市販品に限定するものではない。 Commercially available products of the polycarbonate diol (B1) include, for example, DURANOL T4671 (trademark: Asahi Kasei Chemicals Corporation, hydroxyl value 100-120, melting point 5-15 ° C.), T4672 (trademark: manufactured by the company, hydroxyl value 45-56, Melting point: 5 to 15 ° C.), T4691 (trademark: manufactured by the company, hydroxyl value: 100-120, melting point: 50-60 ° C), T4692 (trademark: manufactured by the company, hydroxyl value: 51-61, melting point: 50-60 ° C), T5650J (trademark) Manufactured by the same company, hydroxyl value 130 to 150, melting point −5 ° C. or lower), T5651 (trademark: manufactured by the company, hydroxyl value 100 to 120, melting point −5 ° C. or lower), T5652 (trademark: manufactured by the company, hydroxyl value 51 to 61 ° C., Melting point: -5 ° C or lower), T6001 (trademark: manufactured by the company, hydroxyl value 100-120, melting point 40-50 ° C), T6002 (trademark: manufactured by the company, hydroxy acid Value 51-61, melting point 40 ~ 50 ° C.), and the like. (B1) used in the present invention is not limited to these commercially available products.
 前記イソシアネート基反応性化合物(B)中のポリカーボネートジオール(B1)の含有率は、前記(B1)~(B3)の合計量に対して、6~88質量%の範囲であり、好ましくは15~75質量%の範囲である。前記(B1)の含有率がかかる範囲であれば、優れた耐油性や屈曲性などの性能を有する発泡ポリウレタン成形体を得ることができる。しかしながら、前記(B1)が6質量%未満の場合には、耐油性に劣る傾向にある。また、前記(B1)が88質量%を超える場合には、屈曲性に劣る傾向にある。 The content of the polycarbonate diol (B1) in the isocyanate group-reactive compound (B) is in the range of 6 to 88% by mass, preferably 15 to 15%, based on the total amount of the (B1) to (B3). It is in the range of 75% by mass. When the content ratio of (B1) is within such a range, a foamed polyurethane molded article having excellent performance such as oil resistance and flexibility can be obtained. However, when the (B1) is less than 6% by mass, the oil resistance tends to be inferior. Moreover, when the (B1) exceeds 88% by mass, the flexibility tends to be inferior.
 前記2液硬化型発泡ポリウレタン組成物中の前記ポリカーボネートジオール(B1)の含有率は、5~35質量%の範囲であり、好ましくは10~30質量%の範囲である。前記(B1)の含有率がかかる範囲であれば、優れた耐油性、耐加水分解性、屈曲性(柔軟性)などの性能バランスを有する発泡ポリウレタン成形体を得ることができる。しかしながら、前記(B1)が5質量%未満の場合には、得られる発泡ポリウレタン成形物は耐油性に劣る恐れがある。また、前記(B1)が35質量%を超える場合には、得られる発泡ポリウレタン成形物は屈曲性に劣る恐れがある。 The content of the polycarbonate diol (B1) in the two-component curable foamed polyurethane composition is in the range of 5 to 35% by mass, preferably in the range of 10 to 30% by mass. When the content ratio of (B1) is within such a range, a foamed polyurethane molded product having a performance balance such as excellent oil resistance, hydrolysis resistance, and flexibility (flexibility) can be obtained. However, when the (B1) is less than 5% by mass, the obtained foamed polyurethane molded product may be inferior in oil resistance. Moreover, when said (B1) exceeds 35 mass%, there exists a possibility that the foaming polyurethane molding obtained may be inferior to a flexibility.
 また、本発明では、水酸基価及びエチレンオキサイド付加率が特定の範囲にあるポリオキシエチレンプロピレングリコール(B2)を必須に用いる。本発明で必須に用いるポリオキシエチレンプロピレングリコール(B2)とは、好ましくは、水酸基価が10~120の範囲であり、且つ前記(B2)中のエチレンオキサイド(EO)付加率が5~50%の範囲のものであり、より好ましくは、水酸基価が15~60の範囲であり、且つEO付加率が10~40%の範囲のものである。前記(B2)の水酸基価とEO付加率がかかる範囲であれば、ポリカーボネートジオールとの良好な相溶性、耐加水分解性、屈曲性(柔軟性)などの優れた性能を発現できる。 Also, in the present invention, polyoxyethylene propylene glycol (B2) having a hydroxyl value and an ethylene oxide addition rate in specific ranges is essential. The polyoxyethylene propylene glycol (B2) used in the present invention preferably has a hydroxyl value in the range of 10 to 120, and the ethylene oxide (EO) addition rate in the (B2) is 5 to 50%. More preferably, the hydroxyl value is in the range of 15 to 60, and the EO addition rate is in the range of 10 to 40%. When the hydroxyl value and the EO addition rate of (B2) are within such ranges, excellent performance such as good compatibility with polycarbonate diol, hydrolysis resistance, flexibility (flexibility) and the like can be expressed.
 前記ポリオキシエチレンプロピレングリコール(B2)としては、例えば、EO-POブロックポリマー、EO-POランダムポリマーなどが挙げられる。尚、本発明でいう、EOとはエチレンオキサイドの略称であり、POとはプロピレンオキサイドとの略称である。 Examples of the polyoxyethylene propylene glycol (B2) include EO-PO block polymers and EO-PO random polymers. In the present invention, EO is an abbreviation for ethylene oxide, and PO is an abbreviation for propylene oxide.
 前記ポリオキシエチレンプロピレングリコール(B2)の市販品としては、例えば、エクセノール 820(商標:旭硝子株式会社製、水酸基価34)、アデカポリエーテル エクセノール 850(商標:旭硝子株式会社製、水酸基価24)、プレミノール 7003(商標:旭硝子株式会社製、水酸基価27)、プレミノールル 5005(商標:旭硝子株式会社製、水酸基価28.5)、CM-294(商標:株式会社ADEKA製、EO-POブロックポリマー、水酸基価39)、CM-424(商標:株式会社ADEKA製、EO-POブロックポリマー、水酸基価25.5)などが挙げられる。本発明で用いる前記(B2)は、これら市販品に限定するものではない。 Examples of the commercially available polyoxyethylene propylene glycol (B2) include Exenol 820 (trademark: Asahi Glass Co., Ltd., hydroxyl value 34), Adeka polyether Exenol 850 (trademark: Asahi Glass Co., Ltd., hydroxyl value 24), Preminol 7003 (Trademark: Asahi Glass Co., Ltd., hydroxyl value 27), Preminol 5005 (Trademark: Asahi Glass Co., Ltd., hydroxyl value 28.5), CM-294 (Trademark: ADEKA Corporation, EO-PO block polymer, hydroxyl group) No. 39), CM-424 (trademark: manufactured by ADEKA Corporation, EO-PO block polymer, hydroxyl value 25.5) and the like. The (B2) used in the present invention is not limited to these commercially available products.
 前記イソシアネート基反応性化合物(B)中のポリオキシエチレンプロピレングリコール(B2)の含有率は、前記(B1)~(B3)の合計量に対して、5~93質量%の範囲であり、好ましくは15~85質量%の範囲である。前記(B2)の含有率がかかる範囲であれば、ポリカーボネートジオールとの優れた相溶性、耐加水分解性、屈曲性(柔軟性)などの性能を有する発泡ポリウレタン成形体を得ることができる。しかしながら、前記(B2)が5質量%未満の場合には、屈曲性(柔軟性)に劣る傾向にある。また、前記(B2)が93質量%を超える場合には、耐油性、耐磨耗性に劣る傾向にある。 The content of polyoxyethylene propylene glycol (B2) in the isocyanate group-reactive compound (B) is in the range of 5 to 93% by mass with respect to the total amount of (B1) to (B3), preferably Is in the range of 15 to 85% by mass. When the content ratio of (B2) is within such a range, a foamed polyurethane molded article having performances such as excellent compatibility with polycarbonate diol, hydrolysis resistance, and flexibility (flexibility) can be obtained. However, when (B2) is less than 5% by mass, the flexibility (flexibility) tends to be inferior. Moreover, when the said (B2) exceeds 93 mass%, it exists in the tendency for it to be inferior to oil resistance and abrasion resistance.
 また、本発明で必須に用いるグリコール(B3)とは、分子量50~300の範囲のグリコールである。前記(B3)の分子量がかかる範囲であれば、優れた成形性(歩留まり、成形ムラ)、強度、耐摩耗性、屈曲性(柔軟性)などの性能を得ることができる。 The glycol (B3) used in the present invention is a glycol having a molecular weight in the range of 50 to 300. If the molecular weight of (B3) is within such a range, it is possible to obtain performances such as excellent moldability (yield and molding unevenness), strength, wear resistance, and flexibility (flexibility).
 前記低分子量のグリコール(B3)としては、例えば、エチレングリコール(EG)、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール等の脂肪族ジオール類;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環族ジオール類;グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上の水酸基含有化合物などが挙げられ、などが挙げられる。これらの中でも、優れた強度、耐摩耗性を得ることができることから、好ましくは、エチレングリコール(EG)、プロピレングリコール(PG)、1,4-ブチレングリコール(1,4BG)、ジエチレングリコール(DEG)である。前記(B3)は単独使用でも2種以上を併用してもよい。 Examples of the low molecular weight glycol (B3) include ethylene glycol (EG), 1,2-propanediol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5 -Pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2- Aliphatic diols such as ethyl-1,3-propanediol and 2-methyl-1,3-propanediol; alicyclic groups such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A Diols; glycerin, trimethyl Rupuropan and trifunctional or more hydroxyl group-containing compound pentaerythritol and the like, and the like. Among these, since excellent strength and wear resistance can be obtained, ethylene glycol (EG), propylene glycol (PG), 1,4-butylene glycol (1,4BG), and diethylene glycol (DEG) are preferable. is there. Said (B3) may be used alone or in combination of two or more.
 前記イソシアネート基反応性化合物(B)中のグリコール(B3)の含有率は、前記(B1)~(B3)の合計量に対して、0.5~20質量%の範囲であり、好ましくは3~12質量%の範囲である。前記(B3)の含有率がかかる範囲であれば、優れた強度、耐摩耗性などの性能を有する発泡ポリウレタン成形体を得ることができる。しかしながら、前記(B3)が0.5質量%未満の場合には、強度、耐摩耗性に劣る傾向にある。また、前記(B3)が20質量%を超える場合には、屈曲性(柔軟性)に劣る傾向にある。 The content of glycol (B3) in the isocyanate group-reactive compound (B) is in the range of 0.5 to 20% by mass, preferably 3 with respect to the total amount of (B1) to (B3). It is in the range of ˜12% by mass. If the content ratio of (B3) is within such a range, a foamed polyurethane molded product having excellent properties such as strength and abrasion resistance can be obtained. However, when the (B3) is less than 0.5% by mass, the strength and wear resistance tend to be inferior. Further, when (B3) exceeds 20% by mass, the flexibility (flexibility) tends to be inferior.
 また、前記イソシアネート基反応性化合物(B)と共に、本発明の目的を阻害しない範囲で、前記(B1)~(B3)以外のポリオール、ポリアミンなどのその他のイソシアネート基反応性化合物を併用してもよい。 Further, together with the isocyanate group-reactive compound (B), other isocyanate group-reactive compounds such as polyols and polyamines other than the above (B1) to (B3) may be used in combination as long as the object of the present invention is not impaired. Good.
 前記その他のイソシアネート基反応性化合物としては、前述のイソシアネート基末端ウレタンプレポリマー(A)の合成に使用可能なポリオールなども使用できる。 As the other isocyanate group-reactive compound, a polyol that can be used for the synthesis of the aforementioned isocyanate group-terminated urethane prepolymer (A) can also be used.
 また、前記その他のイソシアネート基反応性化合物としては、例えば、ポリアミノクロロフェニルメタン化合物、ポリアミノクロロフェニルメタン化合物とポリテトラメチレングリコールの混合物、ポリアミノクロロフェニルメタン化合物の二核体である4,4’-ジアミノ-3,3’-ジクロロジフェニルメタン(以下、MBOCAという。)なども挙げられる。これらは単独使用でもよく2種以上を併用してもよい。 Examples of the other isocyanate group-reactive compounds include polyaminochlorophenylmethane compounds, mixtures of polyaminochlorophenylmethane compounds and polytetramethylene glycol, and 4,4′-diamino-3 which is a dinuclear polyaminochlorophenylmethane compound. 3,3′-dichlorodiphenylmethane (hereinafter referred to as MBOCA). These may be used alone or in combination of two or more.
 本発明の2液硬化型発泡ポリウレタン組成物において、前記イソシアネート基反応性化合物(B)の配合量は、前記イソシアネート基末端ウレタンプレポリマー(A)100質量部に対して、好ましくは10~400質量部の範囲であり、より好ましくは50~200質量部の範囲である。前記(B)の配合量がかかる範囲であるならば、成形加工時に発泡機中で効率的に攪拌混合でき、均一で微細な形状の発泡セルの形成が可能であり、適度な硬度、屈曲性(柔軟性)、耐摩耗性などの優れた性能を有する靴底等の発泡ポリウレタン成形体に適した2液硬化型発泡ポリウレタン組成物を得ることができる。 In the two-component curable polyurethane foam composition of the present invention, the amount of the isocyanate group-reactive compound (B) is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the isocyanate group-terminated urethane prepolymer (A). Parts by weight, and more preferably in the range of 50 to 200 parts by weight. If the blending amount of (B) is within such a range, it can be efficiently stirred and mixed in a foaming machine at the time of molding, and foam cells having a uniform and fine shape can be formed. A two-component curable foamed polyurethane composition suitable for a foamed polyurethane molded product such as a shoe sole having excellent performance such as (flexibility) and abrasion resistance can be obtained.
<(C)水>
 本発明では、水(C)を水発泡法における発泡剤として使用する。
<(C) Water>
In the present invention, water (C) is used as a foaming agent in the water foaming method.
 本発明でいう「水」とは、例えば、液体の水はもちろんであるが、例えば、空気、不活性ガス(例えば、窒素、アルゴンなど)、炭酸ガスなどの気体中の湿気、水蒸気、基材の表層あるいは基材中の水分なども含めた総称を意味する。 The “water” as used in the present invention is, for example, liquid water, but, for example, air, inert gas (for example, nitrogen, argon, etc.), moisture in gas such as carbon dioxide, water vapor, substrate It is a generic term that includes the surface layer and moisture in the substrate.
 水(C)の配合量は、通常、前記イソシアネート基反応性化合物(B)100質量部に対して、好ましくは0.01~1.5質量部の範囲であり、より好ましくは0.1~0.6質量部の範囲である。前記水(C)の配合量がかかる範囲であるならば、安定した発泡状態を発現可能な2液硬化型発泡ポリウレタン組成物を得ることができる。 The amount of water (C) is usually preferably in the range of 0.01 to 1.5 parts by weight, more preferably 0.1 to 1.5 parts by weight with respect to 100 parts by weight of the isocyanate group-reactive compound (B). The range is 0.6 parts by mass. If the blending amount of the water (C) is within such a range, a two-component curable foamed polyurethane composition capable of expressing a stable foamed state can be obtained.
 本発明では、主剤と硬化剤とを混合する際の水(C)の添加方法は、特に限定しない。例えば、硬化剤として、イソシアネート基反応性化合物(B)、水(C)、触媒(D)、及び必要に応じて添加剤などを加えて、予め混合し調整しておき、次いで、前記主剤と前記硬化剤を混合し成形型に注入、発泡、硬化させる方法などが挙げられる。 In the present invention, the method of adding water (C) when mixing the main agent and the curing agent is not particularly limited. For example, as a curing agent, an isocyanate group-reactive compound (B), water (C), a catalyst (D), and additives as necessary are added and mixed in advance, and then the main agent and Examples thereof include a method of mixing the curing agent and injecting, foaming, and curing into a mold.
 本発明では、発泡剤として水(C)を使用するが、ウレタン化反応時の発泡に用いられる公知の発泡剤を併用してもよい。 In the present invention, water (C) is used as the foaming agent, but a known foaming agent used for foaming during the urethanization reaction may be used in combination.
 更に、発泡助剤を併用してもよく、例えば、1,1-ジクロロ-1-フルオロエタン、1,1,1,3,3-ペンタフルオロプロパン、1,1,1,3,3-ペンタフルオロブタン、メチレンクロライドなどのハロゲン化炭化水素あるいはペンタンなどの炭化水素等の低沸点化合物を使用することができる。 Further, a foaming aid may be used in combination, for example, 1,1-dichloro-1-fluoroethane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-penta Low boiling point compounds such as halogenated hydrocarbons such as fluorobutane and methylene chloride or hydrocarbons such as pentane can be used.
 本発明の2液硬化型発泡ポリウレタン組成物の製造の際には、必要により整泡剤等の添加剤を使用することができる。 In the production of the two-component curable foamed polyurethane composition of the present invention, additives such as a foam stabilizer can be used as necessary.
 前記整泡剤としては、発泡ポリウレタン成形体の製造用として効果のあるもの全てを使用することができる。例えば、ポリジメチルシロキサンやポリシロキサン-ポリアルキレンオキシドブロック共重合体等のシリコン系化合物、金属石鹸、アルキルフェノールや脂肪酸のエチレンオキシド及び/又はプロピレンオキシド付加物等の公知の界面活性剤が挙げられる。 As the foam stabilizer, all those effective for the production of foamed polyurethane moldings can be used. Examples thereof include known surfactants such as silicon compounds such as polydimethylsiloxane and polysiloxane-polyalkylene oxide block copolymers, metal soaps, ethylene oxide and / or propylene oxide adducts of alkylphenols and fatty acids.
<触媒(D)>
 本発明の2液硬化型発泡ポリウレタン組成物には、触媒(D)を配合する。
<Catalyst (D)>
The catalyst (D) is blended with the two-component curable polyurethane foam composition of the present invention.
 前記触媒(D)の種類及び添加量は、触媒の混合後から型内に流し込むまでの時間、温度、最終的な発泡体の発泡状態などを考慮して選択することが、好ましい。 The type and amount of the catalyst (D) are preferably selected in consideration of the time from mixing the catalyst to pouring into the mold, the temperature, the final foamed state of the foam, and the like.
 前記触媒(D)としては、特に限定しないが、例えば、トリエチルアミン、トリエチレンジアミン、パルミチルジメチルアミン、ペンタメチルジエチレントリアミン、N,N-ジメチルアミノエチルエーテル、ジメチルエタノールアミン、トリエタノールアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-メチルイミダゾール、N-エチルモルフォリン、トルエンジアミン、4,4’-ジアミノジフェニルメタン等のアミン化合物、あるいはジオクチルチンジラウレート、スタナスオクトエート、ジブチル錫ジラウレート等の有機金属化合物、あるいは4,4’-ジアミノ-3,3’-ジクロロジフェニルメタン(MBOCAと言う)、トリメチレンビス(4-アミノベンゾエート)、メチレンビス(2-エチル-6-メチルアニリン)、メチレンビス(2,3-ジクロロアニリン)等のポリアミノクロロフェニルメタン化合物などが挙げられ、これらの中では、泡化特性が比較的強い点から、トリエチレンジアミン、N,N-ジメチルアミノエチルエーテルが好ましい。これらは単独使用でも2種以上を併用してもいい。 The catalyst (D) is not particularly limited. For example, triethylamine, triethylenediamine, palmityldimethylamine, pentamethyldiethylenetriamine, N, N-dimethylaminoethyl ether, dimethylethanolamine, triethanolamine, N, N, Amine compounds such as N ′, N′-tetramethylhexamethylenediamine, N-methylimidazole, N-ethylmorpholine, toluenediamine, 4,4′-diaminodiphenylmethane, or dioctyltin dilaurate, stannous octoate, dibutyltin Organometallic compounds such as dilaurate, or 4,4′-diamino-3,3′-dichlorodiphenylmethane (referred to as MBOCA), trimethylenebis (4-aminobenzoate), methylenebis (2-ethyl- -Methylaniline) and polyaminochlorophenylmethane compounds such as methylenebis (2,3-dichloroaniline). Among these, triethylenediamine, N, N-dimethylaminoethyl are preferred because of their relatively strong foaming properties. Ether is preferred. These may be used alone or in combination of two or more.
 前記触媒(D)の配合量は、イソシアネート基反応性化合物(B)100質量部に対して、好ましくは、0.15~2質量部の範囲であり、より好ましくは、0.3~1.5質量部の範囲である。前記触媒(D)の配合量がかかる範囲であるならば、安定した発泡状態を発現可能な2液硬化型発泡ポリウレタン組成物を得ることができる。 The blending amount of the catalyst (D) is preferably in the range of 0.15 to 2 parts by mass, more preferably 0.3 to 1 part per 100 parts by mass of the isocyanate group-reactive compound (B). The range is 5 parts by mass. If the blending amount of the catalyst (D) is within such a range, a two-component curable foamed polyurethane composition capable of expressing a stable foamed state can be obtained.
 前記イソシアネート基末端ウレタンプレポリマー(A)を含む主剤に、硬化剤として、前記イソシアネート基反応性化合物(B)と水(C)と共に触媒(D)を前記配合量の範囲で配合して混合することにより、反応性の制御が効率的にでき、且つ成形性(歩留まり、成形ムラ)が良好になるので、好ましい。 The main component containing the isocyanate group-terminated urethane prepolymer (A) is mixed and mixed as a curing agent with the isocyanate group-reactive compound (B) and water (C) in the range of the blending amount. This is preferable because the reactivity can be controlled efficiently and the moldability (yield and molding unevenness) is improved.
 前記のように調製した主剤と硬化剤を組成に従い配合し、直ちに充分に混合することにより、本発明の2液硬化型発泡ポリウレタン組成物を得ることができる。 The two-component curable foamed polyurethane composition of the present invention can be obtained by blending the main agent and the curing agent prepared as described above according to the composition and immediately mixing them sufficiently.
 前記主剤と硬化剤の配合比は、〔主剤であるイソシアネート基含有ウレタンプレポリマー(A)が有するNCO基の全モル数(α)〕と〔イソシアネート基反応性化合物(B)と水(C)を含めた硬化剤が有するNCO反応性基(即ちOH基+NH基)の合計モル数(β)〕との比、即ちα/βで表すことができる。前記主剤と硬化剤の配合比(α/β)としては、好ましくは1/0.7~1/1.2の範囲、より好ましくは1/0.8~1/1.0の範囲である。前記主剤と硬化剤の配合比がかかる範囲であるならば、優れた強度と耐摩耗性を発現可能な2液硬化型発泡ポリウレタン組成物を得ることができる。 The mixing ratio of the main agent and the curing agent is [total number of moles of NCO groups (α) of the isocyanate group-containing urethane prepolymer (A) as the main agent], [isocyanate group-reactive compound (B) and water (C). To the total number of moles (β) of NCO-reactive groups (that is, OH groups + NH groups) possessed by the curing agent including, that is, α / β. The blending ratio (α / β) of the main agent and the curing agent is preferably in the range of 1 / 0.7 to 1 / 1.2, more preferably in the range of 1 / 0.8 to 1 / 1.0. . If the mixing ratio of the main agent and the curing agent is within such a range, a two-component curable foamed polyurethane composition capable of exhibiting excellent strength and abrasion resistance can be obtained.
<発泡ポリウレタン成形体>
 本発明の発泡ポリウレタン成形体とは、前記2液硬化型発泡ポリウレタン組成物を用いて、成形して得られるものであり、例えば、熱可塑性ポリウレタン樹脂、注型ポリウレタン樹脂、発泡ポリウレタン(ポリウレタンエラストマーフォーム、硬質ポリウレタンフォーム、軟質ポリウレタンフォーム等)などのポリウレタン樹脂を用いてなる成形体が挙げられ、好ましくは発泡ポリウレタン成形体である。
<Polyurethane molded body>
The foamed polyurethane molded article of the present invention is obtained by molding using the two-component curable foamed polyurethane composition. For example, thermoplastic polyurethane resin, cast polyurethane resin, polyurethane foam (polyurethane elastomer foam) , Rigid polyurethane foam, flexible polyurethane foam, etc.) and the like, and foamed polyurethane molded bodies are preferred.
 前記発泡ポリウレタン成形体の製造方法としては、ワンショット法、プレポリマー法など種々の公知の方法を採用できるが、それらの中でも、予め前記ポリイソシアネートと前記ポリオールを反応させ調整したイソシアネート基末端ウレタンプレポリマー(A)を含む主剤と、イソシアネート基反応性化合物(B)〔即ち、ポリカーボネートジオール(B1)とポリオキシエチレンプロピレングリコール(B2)と分子量50~300のグリコール(B3)〕、水(C)、及び触媒(D)を必須に含む硬化剤とを混合して、2液硬化型発泡ポリウレタン組成物として反応させるプレポリマー法が、反応性の制御がより効率的にでき、且つ成形性(歩留まり、成形ムラ)がより良好になる点から、好ましい。 Various known methods such as a one-shot method and a prepolymer method can be adopted as a method for producing the foamed polyurethane molded body. Among them, an isocyanate group-terminated urethane prepolymer prepared by reacting the polyisocyanate and the polyol in advance is prepared. Main component containing polymer (A), isocyanate group-reactive compound (B) [ie, polycarbonate diol (B1), polyoxyethylene propylene glycol (B2) and glycol (B3) having a molecular weight of 50 to 300], water (C) And a prepolymer method in which a curing agent containing the catalyst (D) as an essential component is mixed and reacted as a two-component curable foamed polyurethane composition, the reactivity can be controlled more efficiently, and the moldability (yield) , Molding unevenness) is preferable from the viewpoint of better.
 本発明の発泡ポリウレタン成形体を製造方法としては、例えば、イソシアネート基反応性化合物(B)中に水(C)、触媒(D)、必要に応じて添加剤(例えば、帯電防止剤、帯電防止助剤、発泡助剤など)をプレミックスした混合物を硬化剤として使用することが好ましい。そのようなプレミックスした混合物(硬化剤)と、イソシアネート基末端ウレタンプレポリマー(A)を含む主剤とを発泡成形機中で高速攪拌することによって混合し発泡させることができる。また、イソシアネート基末端ウレタンプレポリマー(A)を含む主剤に、イソシアネート基反応性化合物(B)、水(C)、触媒(D)などを別々に混合し撹拌してもよい。 As a method for producing the foamed polyurethane molded article of the present invention, for example, water (C), catalyst (D) in the isocyanate group-reactive compound (B), and additives as required (for example, antistatic agent, antistatic agent) It is preferable to use a mixture obtained by premixing an auxiliary agent, a foaming auxiliary agent, etc.) as a curing agent. Such a premixed mixture (curing agent) and the main agent containing the isocyanate group-terminated urethane prepolymer (A) can be mixed and foamed by high-speed stirring in a foam molding machine. Moreover, you may mix and stir separately an isocyanate group reactive compound (B), water (C), a catalyst (D), etc. with the main ingredient containing an isocyanate group terminal urethane prepolymer (A).
 具体的には、本発明の発泡ポリウレタン成形体の製造方法として、2液硬化型発泡ポリウレタン組成物を用いた下記のような〔工程1〕~〔工程4〕を含む水発泡法による方法が例示できる。 Specifically, as a method for producing a foamed polyurethane molded product of the present invention, a method using a water foaming method including the following [Step 1] to [Step 4] using a two-component curable foamed polyurethane composition is exemplified. it can.
 〔工程1〕主剤の調整工程
 反応装置にポリイソシアネートを仕込み、内温60~90℃で所定量のポリオールを発熱に注意しながら滴下又は分割で仕込み、窒素雰囲気下攪拌しながら反応させ、イソシアネート基末端ウレタンプレポリマー(A)を含有する主剤を得る。
[Step 1] Main agent adjustment step Polyisocyanate is charged into the reaction apparatus, and a predetermined amount of polyol is charged dropwise or divided while paying attention to heat generation at an internal temperature of 60 to 90 ° C., and allowed to react with stirring under a nitrogen atmosphere. A main agent containing the terminal urethane prepolymer (A) is obtained.
 〔工程2〕2液硬化型発泡ポリウレタン組成物の調整工程(主剤と硬化剤の混合)
 次いで、前記イソシアネート基末端ウレタンプレポリマー(A)を含有する主剤、及びイソシアネート基反応性化合物(B)、水(C)、触媒(D)、及び必要に応じてその他の添加剤(例えば、帯電防止剤、帯電防止助剤、発泡助剤など)を含有する硬化剤とを、2液混合用の低圧発泡成形機の個別の貯蔵タンクに入れて適温(例えば40~50℃)に調整し、使用時に前記主剤と硬化剤の所定量を攪拌混合して発泡反応液を調整する。
[Step 2] Step of adjusting a two-component curable foamed polyurethane composition (mixing of main agent and curing agent)
Next, the main component containing the isocyanate group-terminated urethane prepolymer (A), and the isocyanate group-reactive compound (B), water (C), catalyst (D), and other additives (for example, charging) A curing agent containing an inhibitor, an antistatic aid, a foaming aid, etc.) in a separate storage tank of a low-pressure foam molding machine for mixing two liquids, and adjusting the temperature to an appropriate temperature (for example, 40 to 50 ° C.) At the time of use, a predetermined amount of the main agent and the curing agent is stirred and mixed to prepare a foaming reaction liquid.
 〔工程3〕注型工程
 直ちに、工程2で調整した前記発泡反応液を予め加温しておいた発泡成形機の金型内に注入する。
[Step 3] Casting Step Immediately, the foaming reaction solution prepared in Step 2 is poured into a mold of a foam molding machine that has been heated in advance.
 〔工程4〕硬化工程
 金型内に注入された状態で発泡反応液を適切な温度範囲(例えば40~50℃)で加熱保持して、発泡・硬化させ、更に適温(例えば40~50℃)で保持(例えば3~15分間)した後、発泡ポリウレタン成形体を取り出す。尚、靴底などの発泡ポリウレタン成形体を得る場合には、切削加工などの処理を施して、目的の形状に整えればよい。
[Step 4] Curing step The foaming reaction liquid is heated and held in an appropriate temperature range (for example, 40 to 50 ° C.) while being injected into the mold, and then foamed and cured, and further at an appropriate temperature (for example, 40 to 50 ° C.). After holding (for example, for 3 to 15 minutes), the foamed polyurethane molded article is taken out. In addition, when obtaining foamed polyurethane moldings, such as a shoe sole, what is necessary is just to perform processes, such as cutting, and to arrange in the target shape.
 前記発泡成形機は、特に限定せず、例えば、低圧発泡成形機、射出発泡成形機等の公知のものを使用できる。 The foam molding machine is not particularly limited, and known ones such as a low pressure foam molding machine and an injection foam molding machine can be used.
 本発明の発泡ポリウレタン成形体の製造方法としては、生産効率面、製造コストなどの点から水発泡法が最も好ましいが、水発泡法以外にも、例えば、中空ビーズを用いた発泡法、機械的発泡法、化学的発泡法などの公知の発泡法を組み合わせてもよい。 As the method for producing the foamed polyurethane molded product of the present invention, the water foaming method is most preferable from the viewpoint of production efficiency, production cost, etc. In addition to the water foaming method, for example, the foaming method using hollow beads, mechanical You may combine well-known foaming methods, such as a foaming method and a chemical foaming method.
 本発明の発泡ウレタン成形体には、本発明の目的を損なわない範囲で、例えば、帯電防止剤、帯電防止助剤、発泡助剤、難燃剤、整泡剤、鎖伸長剤、可塑剤、充填剤、着色剤、耐候安定剤、光安定剤、酸化防止剤等の公知の添加剤を適宜使用することができる。 The foamed urethane molded product of the present invention is, for example, an antistatic agent, an antistatic aid, a foaming aid, a flame retardant, a foam stabilizer, a chain extender, a plasticizer, a filler, as long as the object of the present invention is not impaired. Known additives such as a colorant, a colorant, a weathering stabilizer, a light stabilizer, and an antioxidant can be appropriately used.
 前記帯電防止剤としては、公知のものが何れも使用でき、例えば、炭化水素基及びオキシ炭化水素基で置換された置換スルホン酸第四級アンモニウム系のカチオン系制電性化合物、有機酸金属塩系のアニオン系制電性化合物、あるいはノニオン系制電性化合物などが挙げられる。 As the antistatic agent, any known one can be used. For example, a substituted quaternary ammonium cation-based antistatic compound substituted with a hydrocarbon group and an oxyhydrocarbon group, an organic acid metal salt Anionic antistatic compounds, nonionic antistatic compounds, and the like.
 前記置換スルホン酸第四級アンモニウムとしては、例えば、ジアルキル硫酸誘導体、メタンスルホン酸エステル誘導体、p-トルエンスルホン酸エステル誘導体等が挙げられる。これらは、単独或いは2種以上を混合して用いることができる。 Examples of the substituted sulfonic acid quaternary ammonium include dialkylsulfuric acid derivatives, methanesulfonic acid ester derivatives, p-toluenesulfonic acid ester derivatives, and the like. These can be used individually or in mixture of 2 or more types.
 前記有機酸金属塩系のアニオン系制電性化合物としては、例えば、ビス(トリフルオロメタンスルホニル)イミド金属塩、トリス(トリフルオロメタンスルホニル)メタン金属塩、アルキルスルホン酸金属塩、ベンゼンスルホン酸金属塩、又はアルキルベンゼンスルホン酸金属塩等の有機金属塩が挙げられる。これらは、単独或いは2種以上を混合して用いることができる。 Examples of the organic acid metal salt-based anionic antistatic compound include bis (trifluoromethanesulfonyl) imide metal salt, tris (trifluoromethanesulfonyl) methane metal salt, alkylsulfonic acid metal salt, benzenesulfonic acid metal salt, Alternatively, organic metal salts such as alkylbenzene sulfonic acid metal salts can be used. These can be used individually or in mixture of 2 or more types.
 また、本発明の目的を阻害しない範囲で、公知の帯電防止助剤を含有してもよく、その含有量は特に限定しない。 In addition, a known antistatic aid may be contained within a range not impairing the object of the present invention, and the content thereof is not particularly limited.
 前記帯電防止助剤としては、公知のものが使用でき、例えば、環状ケトン類、ソルビタン脂肪酸エステル類、ラクトン系単量体類などが挙げられる。前記環状ケトン類としては、例えばシクロペンタノン、シクロヘキサノン、シクロヘプタノン等及びその誘導体等、あるいはソルビタン脂肪酸エステル類としては、例えばソルビタンセスキオレエート、ソルビタンモノオレエート、ソルビタンモノステアレート、ソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等、あるいはラクトン系単量体類としては、例えばβ-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、γ-クロトノラクトン等のラクトンモノマーが挙げられる。これらは、単独または2種以上を組み合わせて使用することができる。 As the antistatic aid, known ones can be used, and examples thereof include cyclic ketones, sorbitan fatty acid esters, and lactone monomers. Examples of the cyclic ketones include cyclopentanone, cyclohexanone, cycloheptanone, and derivatives thereof, and sorbitan fatty acid esters include, for example, sorbitan sesquioleate, sorbitan monooleate, sorbitan monostearate, sorbitan monolaurate. Examples of the lactone monomers such as acrylate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, and lactone monomers include β-propiolactone, γ-butyrolactone, δ- Examples include lactone monomers such as valerolactone, ε-caprolactone, and γ-crotonolactone. These can be used alone or in combination of two or more.
 前記帯電防止剤や帯電防止助剤は、発泡ポリウレタン成形体中に均一に含まれるようにするために、前記ポリオールや、発泡ポリウレタン成形体の柔軟性を調節するために適宜使用される可塑剤(例えば、アジペート系ポリエステル可塑剤、安息香酸系ポリエステル可塑剤等)などに予め溶解させた状態で発泡ポリウレタン成形体の製造時に使用することが好ましい。 The antistatic agent or the antistatic auxiliary agent is a plasticizer that is suitably used for adjusting the flexibility of the polyol or the foamed polyurethane molded body so as to be uniformly contained in the foamed polyurethane molded body. For example, it is preferably used in the production of a foamed polyurethane molding in a state of being previously dissolved in an adipate polyester plasticizer, a benzoic acid polyester plasticizer, or the like.
 また、本発明の発泡ポリウレタン成形体の成形方法としては、公知の方法を採用することができる。例えば、成形機より吐出した混合発泡液をモールドにオープン注入するモールド成形方法、あるいは成形機の吐出口に直結したクローズドモールドに混合発泡液を直接射出するインジェクション成形方法等が挙げられる。 In addition, as a method for forming the foamed polyurethane molded article of the present invention, a known method can be employed. For example, a mold forming method in which the mixed foamed liquid discharged from the molding machine is open-injected into the mold, or an injection molding method in which the mixed foamed liquid is directly injected into a closed mold directly connected to the discharge port of the molding machine.
 本発明に使用される成形型としては、成形体を形成する型として使用されるものであれば特に制限なく使用でき、その形状はいずれでもよい。例えば、通常使用される上型、下型からなるオープン型、平面状型、筒状型、凹型だけでなく、インジェクション成形で使用されるクローズドモールド等も含まれる。また、成形型の材質は、鉄、アルミ、エポキシ樹脂等の公知のものが何れでも使用できる。 As the mold used in the present invention, any mold can be used as long as it is used as a mold for forming a molded body, and any shape may be used. For example, it includes not only a normally used upper mold, lower mold open mold, flat mold, cylindrical mold, and concave mold, but also a closed mold used for injection molding. As the material of the mold, any known material such as iron, aluminum, or epoxy resin can be used.
 本発明の発泡ポリウレタン成形体は、優れた耐加水分解性、耐油性、屈曲性(柔軟性)などの性能を有しているので、ポリウレタンエラストマーフォームとして、例えば、紳士靴、婦人靴、運動靴、安全靴、作業靴、室内靴等の各種靴の靴底、室内用のスリッパやサンダル、草履等の各種履物の底材質、あるいは手袋、作業服、帽子、マスク等の各種物品の材質の他に、工業部材として、例えば、パッキン、ホース、シート、緩衝材、クッション、乗物部材、包装部材等、種々の用途に有用である。 The foamed polyurethane molded article of the present invention has excellent performance such as hydrolysis resistance, oil resistance, flexibility (flexibility), etc., and as a polyurethane elastomer foam, for example, men's shoes, women's shoes, sports shoes, etc. In addition to the soles of various shoes such as safety shoes, work shoes, and indoor shoes, the sole material of various footwear such as slippers, sandals, and sandals for indoor use, and the materials of various articles such as gloves, work clothes, hats, and masks. In addition, as an industrial member, for example, it is useful for various uses such as packing, hose, seat, cushioning material, cushion, vehicle member, packaging member and the like.
 本発明の靴底は、前記発泡ポリウレタン成形体を単層で含むものでもよく、あるいは前記発泡ポリウレタン成形体を多層のいずれかの層に含むものでもよい。本発明の靴底において、前記発泡ポリウレタン成形体の密度は、0.3~1.1g/cmの範囲であり、好ましくは0.3~0.8の範囲であり、より好ましくは0.4~0.7の範囲である。前記靴底の発泡ポリウレタン層の密度がかかる範囲であるならば、優れた機械的特性(強度、弾性)、耐久性、屈曲性(柔軟性)、履き心地などの性能を従来よりも向上させ維持させることができる。 The shoe sole of the present invention may include the foamed polyurethane molded product in a single layer, or may include the foamed polyurethane molded product in any one of multiple layers. In the shoe sole of the present invention, the density of the foamed polyurethane molded product is in the range of 0.3 to 1.1 g / cm 3 , preferably in the range of 0.3 to 0.8, more preferably 0.00. It is in the range of 4 to 0.7. If the density of the polyurethane foam layer on the sole is within this range, the performance such as excellent mechanical properties (strength, elasticity), durability, flexibility (flexibility), and comfort will be improved and maintained. Can be made.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。また、本文中の「部」、「%」は全て質量基準である。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. In addition, “part” and “%” in the text are all based on mass.
〔発泡ポリウレタン成形体の密度の測定方法〕
 実施例及び比較例で得た発泡ポリウレタン成形体の質量を体積で割ることにより密度(g/cm)を算出した。
[Method for measuring density of foamed polyurethane molded product]
The density (g / cm 3 ) was calculated by dividing the mass of the polyurethane foam molded body obtained in the examples and comparative examples by the volume.
〔発泡ポリウレタン成形体の硬度の測定方法〕
 実施例及び比較例で得た発泡ポリウレタン成形体の硬度をJIS K 7312-1996(硬さ試験)に準拠して、スプリング硬さ試験(タイプC)にて評価した。
[Method for measuring hardness of foamed polyurethane molded product]
The hardness of the foamed polyurethane moldings obtained in Examples and Comparative Examples was evaluated by a spring hardness test (type C) according to JIS K 7312-1996 (hardness test).
〔耐油性の評価方法と判定基準〕
 実施例及び比較例で得た2液硬化型発泡ポリウレタン組成物を用いて、試験片(縦150mm×横25mm×厚み10mm)を作成した。尚、浸漬前の試験片の体積を「V」とする。
 前記試験片を20℃のイソオクタン中に20時間浸漬後の膨潤した体積「V」を測定して、下式に従い、体積変化率(%)を算出し、下記の基準に従い、耐油性を判定した。
 体積変化率(%)=(V-V)/V×100
 耐油性の判定基準。
  ○(良好):体積変化率が12%以下の場合。
  ×(不良):体積変化率が12%超える場合。
[Oil resistance evaluation method and criteria]
A test piece (length 150 mm × width 25 mm × thickness 10 mm) was prepared using the two-component curable foamed polyurethane composition obtained in Examples and Comparative Examples. Incidentally, the volume before immersion of the test piece to "V 0".
Measure the swollen volume “V 1 ” after immersion of the test piece in isooctane at 20 ° C. for 20 hours, calculate the volume change rate (%) according to the following formula, and determine the oil resistance according to the following criteria: did.
Volume change rate (%) = (V 1 −V 0 ) / V 0 × 100
Criteria for oil resistance.
○ (Good): When the volume change rate is 12% or less.
X (defect): When the volume change rate exceeds 12%.
〔耐加水分解性の評価方法と判定基準〕
 実施例及び比較例で得た2液硬化型発泡ポリウレタン組成物を用いて、JIS K 7312-1996(引張試験)に準拠し作成した2号形ダンベル試験片を内温80℃、相対湿度95%の恒温恒湿器内に10日間放置した。放置前と放置後の引張強度をJIS K 7312-1996(引張試験)に準拠し、試験速度500mm/分、標線間20mm、測定温度23℃で測定し、下記の基準に従い、耐加水分解性を判定した。
 耐加水分解性の判定基準。
  ○(良好):10日間放置後の引張強度の保持率が50%以上の場合。
  ×(不良):10日間放置後の引張強度の保持率が50%未満の場合。
[Evaluation method and criteria for hydrolysis resistance]
A No. 2 dumbbell test piece prepared in accordance with JIS K 7312-1996 (tensile test) using the two-component curable foamed polyurethane composition obtained in the examples and comparative examples was subjected to an internal temperature of 80 ° C. and a relative humidity of 95%. Were left in a constant temperature and humidity chamber for 10 days. The tensile strength before and after standing is measured according to JIS K 7312-1996 (tensile test), at a test speed of 500 mm / min, between marked lines, at a measuring temperature of 23 ° C., and in accordance with the following criteria, hydrolysis resistance Was judged.
Criteria for hydrolysis resistance.
○ (Good): When the tensile strength retention after standing for 10 days is 50% or more.
X (Bad): When the tensile strength retention after standing for 10 days is less than 50%.
〔屈曲性評価方法と判定基準〕
 実施例及び比較例で得た2液硬化型発泡ポリウレタン組成物を用いて、試験片(縦150mm×横25mm×厚み10mm)を作成し、2mmのノッチを試験片の中心部分に入れ、90度の繰り返し屈曲試験を行い、下記の基準に従い、屈曲性を判定した。
 屈曲性の判定基準。
  ○(良好):ノッチの成長が5mm未満の場合。
  ×(不良):ノッチの成長が5mm以上又は破断の場合。
[Flexibility evaluation method and criteria]
A test piece (length 150 mm × width 25 mm × thickness 10 mm) was prepared using the two-component curable foamed polyurethane composition obtained in the examples and comparative examples, and a 2 mm notch was placed in the center of the test piece, 90 degrees. The bending test was repeated, and the flexibility was determined according to the following criteria.
Criteria for flexibility.
○ (Good): When the growth of the notch is less than 5 mm.
X (defect): When notch growth is 5 mm or more or fracture.
〔実施例1〕
≪2液硬化型発泡ポリウレタン組成物(P-1)の製造≫
 反応容器に、ポリイソシアネートとして4,4’-ジフェニルメタンジイソシアネート(以下「4,4’MDI」と略す。商標:ミリオネートMT、日本ポリウレタン工業株式会社製)650部とカルボジイミド変性MDI(商標:コスモネートLL、三井化学ポリウレタン株式会社製)34部を仕込み、攪拌を開始した。次いで、ポリオールとしてポリプロピレングリコール(商標:エクセノール3020、旭硝子株式会社製、水酸基価37のもの)255部とジプロピレングリコール80部を分割で仕込み混合し、窒素気流下60℃で8時間反応を行い、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-1)として、ポリカーボネートジオール(B1)であるデュラノール T5651(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点-5℃以下のもの)10部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)70部と、グリコール(B3)であるエチレングリコール(分子量62.1)7.9部、及びポリテトラメチレングリコール(商標:PTMG-2000、三菱化学株式会社製、水酸基価56のもの)20部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/81質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-1)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-1)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
[Example 1]
<< Manufacture of two-component curable polyurethane foam composition (P-1) >>
In a reaction vessel, 650 parts of 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as “4,4′MDI” as polyisocyanate. Trademark: Millionate MT, manufactured by Nippon Polyurethane Industry Co., Ltd.) and carbodiimide-modified MDI (trademark: Cosmonate LL) , Manufactured by Mitsui Chemicals Polyurethane Co., Ltd.) was started and stirring was started. Next, as a polyol, 255 parts of polypropylene glycol (trademark: Exenol 3020, manufactured by Asahi Glass Co., Ltd., hydroxyl value 37) and 80 parts of dipropylene glycol were charged in a divided manner and reacted at 60 ° C. for 8 hours under a nitrogen stream. An isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In a separate mixing vessel, 10 parts of the isocyanate group-reactive compound (B-1), Duranol T5651, which is a polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point −5 ° C. or lower) 70 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), and 7.9 parts of ethylene glycol (molecular weight 62.1) which is glycol (B3) And 20 parts of polytetramethylene glycol (trademark: PTMG-2000, manufactured by Mitsubishi Chemical Corporation, having a hydroxyl value of 56), 0.5 parts of ion-exchanged water as the foaming agent (C), and as the catalyst (D) 0.5 parts of triethylenediamine and silicon Y-7006 as a foam stabilizer (trademark: Nippon Unicar Co., Ltd.) Company Ltd.) were blended 0.5 part, thoroughly stirred and mixed to obtain a polyol compound as a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a curing agent are charged in a mixing container at a mass ratio of main agent / curing agent = 100/81, and the temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-1) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foam molded product obtained using the two-part curable polyurethane foam composition (P-1) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔実施例2〕
≪2液硬化型発泡ポリウレタン組成物(P-2)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-2)として、ポリカーボネートジオール(B1)であるデュラノール T6001(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点40~50℃のもの)20部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)60部と、グリコール(B3)であるエチレングリコール7.9部、及びPTMG-2000(商標:三菱化学株式会社製、水酸基価56のもの)20部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/83質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-2)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-2)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
[Example 2]
≪Production of two-component curable foamed polyurethane composition (P-2) ≫
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing vessel, 20 parts of an isocyanate group-reactive compound (B-2), Duranol T6001, which is a polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 40 to 50 ° C.) 60 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylene propylene glycol (B2), 7.9 parts of ethylene glycol as glycol (B3), and PTMG-2000 ( Trademark: Mitsubishi Chemical Corporation, hydroxyl value 56) 20 parts, water (C) as a foaming agent 0.5 parts ion-exchanged water, catalyst (D) 0.5 parts triethylenediamine, and foam stabilizer As a blend, 0.5 parts of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) was mixed and stirred thoroughly. To obtain a polyol compound is agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a curing agent are charged in a mixing container in a mass ratio of main agent / curing agent = 100/83, and the liquid temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-2) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foam-molded article obtained using the two-component curable polyurethane foam composition (P-2) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔実施例3〕
≪2液硬化型発泡ポリウレタン組成物(P-3)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-3)として、ポリカーボネートジオール(B1)であるデュラノール T-5651(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点-5℃以下のもの)40部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)50部と、グリコール(B3)であるエチレングリコール7.9部、及びPTMG-2000(商標:三菱化学株式会社製、水酸基価56のもの)10部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/89質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-3)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-3)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
Example 3
≪Manufacture of two-component curable polyurethane foam composition (P-3) ≫
By the same operation as in Example 1, a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing container, as the isocyanate group-reactive compound (B-3), Duranol T-5651, which is polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point -5 ° C. or less) 40 parts, 50 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylene propylene glycol (B2), 7.9 parts of ethylene glycol as glycol (B3), and PTMG- 2000 (Trademark: manufactured by Mitsubishi Chemical Corporation, hydroxyl value 56) 10 parts, water (C) as a foaming agent 0.5 parts ion-exchanged water, catalyst (D) 0.5 parts triethylenediamine, and control As a foaming agent, 0.5 part of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) is blended, stirred thoroughly, mixed and hardened. To obtain a polyol compound is an agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a hardener are charged in a mixing container at a main agent / curing agent = 100/89 mass ratio, and the temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-3) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foam-molded article obtained using the two-component curable polyurethane foam composition (P-3) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔実施例4〕
≪2液硬化型発泡ポリウレタン組成物(P-4)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-4)として、ポリカーボネートジオール(B1)であるデュラノール T-4671(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点5~15℃のもの)40部と、ポリオキシエチレンプロピレングリコール(B2)であるアデカポリエーテル CM-294(商標:株式会社ADEKA製、EO-POブロックポリマー、水酸基価39のもの)50部と、グリコール(B3)であるエチレングリコール7.9部、及びPTMG-2000(商標:三菱化学株式会社製、水酸基価56のもの)21部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/89質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-4)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-4)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
Example 4
≪Production of two-component curable foamed polyurethane composition (P-4) ≫
By the same operation as in Example 1, a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing vessel, as the isocyanate group-reactive compound (B-4), polycarbonate diol (B1) Duranol T-4671 (Trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 5 to 15 ° C.) 40 parts, 50 parts of ADEKA polyether CM-294 (trademark: ADEKA Corporation, EO-PO block polymer having a hydroxyl value of 39) which is polyoxyethylene propylene glycol (B2), and glycol (B3) 7.9 parts of ethylene glycol, 21 parts of PTMG-2000 (Trademark: Mitsubishi Chemical Corporation, hydroxyl value 56), 0.5 parts of ion-exchanged water as a foaming agent (C), catalyst (D) As a foam stabilizer, 0.5 parts of triethylenediamine and silicon Y-7006 (trademark: Nippon Unicar Co., Ltd.) Ltd.) were blended 0.5 part, thoroughly stirred and mixed to obtain a polyol compound as a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a hardener are charged in a mixing container at a main agent / curing agent = 100/89 mass ratio, and the temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-4) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foam molded product obtained using the two-component curable polyurethane foam composition (P-4) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔実施例5〕
≪2液硬化型発泡ポリウレタン組成物(P-5)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-5)として、ポリカーボネートジオール(B1)であるデュラノール T-5651(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点-5℃以下のもの)75部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)20部と、グリコール(B3)であるエチレングリコール7.9部、及びポリテトラメチレングリコールにε-カプロラクトンを付加重合したポリオール(ラクトン付加率20%、水酸基価45のもの)5部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/97質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-5)を調製して、40℃に予め加熱しておいて金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-5)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
Example 5
≪Production of two-component curable foamed polyurethane composition (P-5) ≫
By the same operation as in Example 1, a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing vessel, as the isocyanate group-reactive compound (B-5), Duranol T-5651, which is polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point -5 ° C. or less) 75 parts, 20 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), 7.9 parts of ethylene glycol which is glycol (B3), and polytetra 5 parts of a polyol obtained by addition polymerization of ε-caprolactone to methylene glycol (with a lactone addition rate of 20% and a hydroxyl value of 45), 0.5 parts of ion-exchanged water as a foaming agent (C), and a trimethyl as a catalyst (D) 0.5 parts of ethylenediamine and silicon Y-7006 (trademark: Nippon Unicar Co., Ltd.) as a foam stabilizer 0.5 parts (manufactured by the company) was blended and sufficiently stirred and mixed to obtain a polyol compound as a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a hardener are charged in a mixing container at a main agent / curing agent = 100/97 mass ratio, and the liquid temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-5) is prepared by stirring and mixing. Preheated to 40 ° C., 200 g is poured into a mold (290 mm × 120 mm × 10 mm), and immediately After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foamed molded product obtained using the two-component curable polyurethane foam composition (P-5) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔実施例6〕
≪2液硬化型発泡ポリウレタン組成物(P-6)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-6)として、ポリカーボネートジオール(B1)であるデュラノール T5652(商標:旭化成ケミカルズ株式会社製、水酸基価56、融点40~50℃のもの)40部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)50部と、グリコール(B3)である1,4-ブチレングリコール9.1部、及びPTMG-2000(商標:三菱化学株式会社製、ポリテトラメチレングリコール、数平均分子量2000、水酸基価56のもの)10部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/61質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-6)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-6)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
Example 6
<< Manufacture of two-component curable polyurethane foam composition (P-6) >>
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing container, 40 parts of Duranol T5652 (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 56, melting point 40 to 50 ° C.) which is a polycarbonate diol (B1) as an isocyanate group reactive compound (B-6) 50 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylene propylene glycol (B2), 9.1 parts of 1,4-butylene glycol as glycol (B3), and PTMG-2000 (Trademark: manufactured by Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value 56) 10 parts, water (C) as the blowing agent 0.5 parts ion-exchanged water, catalyst ( D) 0.5 part of triethylenediamine and silicon Y-7006 (trademark: Japan) as the foam stabilizer Blended Nika Ltd.) 0.5 parts thoroughly stirred to obtain a mixed polyol compound which is a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as the main agent and the polyol compound as the hardener are charged in a mixing container at a main agent / curing agent = 100/61 mass ratio, and the temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-6) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foamed molded product obtained using the two-part curable polyurethane foam composition (P-6) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔実施例7〕
≪2液硬化型発泡ポリウレタン組成物(P-7)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-7)として、ポリカーボネートジオール(B1)であるデュラノール T4672(商標:旭化成ケミカルズ株式会社製、水酸基価50.5、融点40~50℃のもの)40部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)50部と、グリコール(B3)であるエチレングリコール7部、及びPTMG-2000(商標:三菱化学株式会社製、ポリテトラメチレングリコール、数平均分子量2000、水酸基価56のもの)10部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/74質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-7)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 本発明の2液硬化型発泡ポリウレタン組成物(P-7)を用いて得た発泡成形体は、第1表に示した如く、優れた物性(耐油性、耐加水分解性、屈曲性)を有していた。
Example 7
≪Manufacture of two-component curable polyurethane foam composition (P-7) ≫
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing container, as the isocyanate group-reactive compound (B-7), Duranol T4672 which is a polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 50.5, melting point 40 to 50 ° C.) 40 parts, 50 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylene propylene glycol (B2), 7 parts of ethylene glycol as glycol (B3), and PTMG-2000 ( Trademarks: Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value 56) 10 parts, water (C) as a blowing agent 0.5 parts ion-exchanged water, catalyst (D) tri 0.5 parts of ethylenediamine and silicon Y-7006 (trademark: Nippon Unicar) as a foam stabilizer Formula Company Ltd.) were blended 0.5 part, sufficient stirring to obtain a mixed polyol compound which is a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a hardener are charged in a mixing container at a main agent / curing agent = 100/74 mass ratio, and the temperature is adjusted to 50 ° C. Then, a two-part curable polyurethane foam composition (P-7) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 1, the foamed molded article obtained using the two-component curable polyurethane foam composition (P-7) of the present invention has excellent physical properties (oil resistance, hydrolysis resistance, flexibility). Had.
〔比較例1〕
≪2液硬化型発泡ポリウレタン組成物(P-8)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-8)として、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)70部、グリコール(B3)であるエチレングリコール7.9部、及びPTMG-2000(商標:三菱化学株式会社製、ポリテトラメチレングリコール、数平均分子量2000、水酸基価=56のもの)30部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/79質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-8)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 前記2液硬化型発泡ウレタン組成物(P-8)を用いて得た発泡成形体は、第2表に示した如く、耐油性に劣っていた。
[Comparative Example 1]
≪Production of two-component curable polyurethane foam composition (P-8) ≫
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing container, 70 parts of Exenol 820 (trade name: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34), which is polyoxyethylenepropylene glycol (B2), is used as the isocyanate group-reactive compound (B-8). ) Ethylene glycol 7.9 parts, PTMG-2000 (trademark: manufactured by Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value = 56), water as foaming agent (C ) 0.5 parts of ion-exchanged water, 0.5 parts of triethylenediamine as catalyst (D), and 0.5 parts of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) as the foam stabilizer. The mixture was stirred and mixed to obtain a polyol compound as a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a hardener are charged in a mixing container at a main agent / curing agent = 100/79 mass ratio, and the liquid temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-8) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 2, the foam molded product obtained using the two-component curable urethane foam composition (P-8) was inferior in oil resistance.
〔比較例2〕
≪2液硬化型発泡ポリウレタン組成物(P-9)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-9)として、ポリカーボネートジオール(B1)であるデュラノール T-5651(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点-5℃以下のもの)90部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)10部と、グリコール(B3)であるエチレングリコール7.9部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/102質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-9)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後、硬化した発泡成形体を取り出した。
 前記2液硬化型発泡ウレタン組成物(P-9)を用いて得た発泡成形体は、第2表に示した如く、屈曲性に劣っていた。
[Comparative Example 2]
≪Production of two-component curable foamed polyurethane composition (P-9) ≫
By the same operation as in Example 1, a urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing vessel, as the isocyanate group-reactive compound (B-9), Duranol T-5651, which is polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point -5 ° C. or less) 90 parts, 10 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), 7.9 parts of ethylene glycol which is glycol (B3), and a foaming agent Mixing 0.5 parts of ion-exchanged water as certain water (C), 0.5 parts of triethylenediamine as catalyst (D), and 0.5 parts of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) as a foam stabilizer. The mixture was sufficiently stirred and mixed to obtain a polyol compound as a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a curing agent are charged in a mixing container in a mass ratio of main agent / curing agent = 100/102, and the liquid temperature is adjusted to 50 ° C. Then, a two-part curable polyurethane foam composition (P-9) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 2, the foamed molded product obtained using the two-component curable urethane foam composition (P-9) was inferior in flexibility.
〔比較例3〕
≪2液硬化型発泡ポリウレタン組成物(P-10)の製造≫
 反応容器に、ポリイソシアネートとして4,4’-ジフェニルメタンジイソシアネート(以下「4,4’MDI」と略す。商標:ミリオネートMT、日本ポリウレタン工業株式会社製)590部とカルボジイミド変性MDI(商標:コスモネートLL、三井化学ポリウレタン株式会社製)32部を仕込み、攪拌を開始した。次いで、ポリオールとしてポリエステルポリオールA〔エチレングリコール(EG)/1,4-ブチレングリコール(1,4BG)とアジピン酸(AA)から合成された水酸基価56.1mgKOH/gのもの。EG/1,4BG=5/5モル比。〕445部を分割で仕込み混合し、窒素気流下60℃で8時間反応を行い、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-2)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-10)として、ポリカーボネートジオール(B1)であるデュラノール T-5651(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点-5℃以下のもの)40部と、グリコール(B3)であるEG8.8部、ポリエステルポリオールB〔EG/1,4BGとAAから合成された水酸基価66のもの。EG/1,4BG=5/5モル比。〕51.5部と、ポリエステルポリオールC〔ジエチレングリコール(DEG)/トリメチロールプロパン(TMP)とAAから合成された水酸基価60のもの。DEG/TMP=15/1モル比。〕4.8部、発泡剤として水(C)0.37部、触媒(D)としてトリエチレンジアミン(TEDA)0.33部を配合し、充分に撹拌混合し、硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-2)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/97質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-10)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 前記2液硬化型発泡ウレタン組成物(P-10)を用いて得た発泡成形体は、第2表に示した如く、耐加水分解性に劣っていた。
[Comparative Example 3]
≪Manufacture of two-component curable polyurethane foam composition (P-10) ≫
In a reaction vessel, 590 parts of 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as “4,4′MDI” as polyisocyanate. Trademark: Millionate MT, manufactured by Nippon Polyurethane Industry Co., Ltd.) and carbodiimide-modified MDI (trademark: Cosmonate LL) , Made by Mitsui Chemicals Polyurethane Co., Ltd.) and 32 parts were stirred. Next, polyester polyol A [having a hydroxyl value of 56.1 mgKOH / g synthesized from ethylene glycol (EG) / 1,4-butylene glycol (1,4BG) and adipic acid (AA) as a polyol. EG / 1,4BG = 5/5 molar ratio. 445 parts were charged in portions and mixed, and reacted at 60 ° C. for 8 hours under a nitrogen stream to obtain an isocyanate group-terminated urethane prepolymer (A-2) having an NCO equivalent of 250 as the main agent.
In another mixing vessel, as the isocyanate group-reactive compound (B-10), Duranol T-5651, which is a polycarbonate diol (B1) (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point −5 ° C. or lower) 40 parts, 8.8 parts of EG which is glycol (B3), polyester polyol B [EG having a hydroxyl value of 66 synthesized from EG / 1, 4BG and AA. EG / 1,4BG = 5/5 molar ratio. ] 51.5 parts, polyester polyol C [having a hydroxyl value of 60 synthesized from diethylene glycol (DEG) / trimethylolpropane (TMP) and AA. DEG / TMP = 15/1 molar ratio. 4.8 parts, 0.37 parts of water (C) as a blowing agent, 0.33 parts of triethylenediamine (TEDA) as a catalyst (D), and sufficiently stirred and mixed to obtain a polyol compound as a curing agent. It was.
Next, the isocyanate group-terminated urethane prepolymer (A-2) as a main agent and the polyol compound as a curing agent are charged in a mixing container at a main agent / curing agent = 100/97 mass ratio, and the temperature is adjusted to 50 ° C. Then, a two-part curable polyurethane foam composition (P-10) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 2, the foamed molded product obtained using the two-component curable urethane foam composition (P-10) was inferior in hydrolysis resistance.
〔比較例4〕
≪2液硬化型発泡ポリウレタン組成物(P-11)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-11)として、ポリカーボネートジオール(B1)であるデュラノール T6001(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点40~50℃のもの)3部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)97部と、グリコール(B3)であるエチレングリコール3部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/47質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-11)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 前記2液硬化型発泡ポリウレタン組成物(P-11)を用いて得た発泡成形体は、第2表に示した如く、耐油性に劣っていた。
[Comparative Example 4]
<< Manufacture of two-component curable polyurethane foam composition (P-11) >>
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In a separate mixing vessel, 3 parts of Duranol T6001 (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 40 to 50 ° C.), which is a polycarbonate diol (B1), as an isocyanate group reactive compound (B-11) And 97 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), 3 parts of ethylene glycol which is glycol (B3), and water (C ) 0.5 parts of ion-exchanged water, 0.5 parts of triethylenediamine as catalyst (D), and 0.5 parts of silicon Y-7006 (trademark: manufactured by Nihon Unicar Co., Ltd.) as the foam stabilizer. The mixture was stirred and mixed to obtain a polyol compound as a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a hardener are charged in a mixing container at a main agent / curing agent = 100/47 mass ratio, and the liquid temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-11) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 2, the foam-molded article obtained using the two-component curable foamed polyurethane composition (P-11) was inferior in oil resistance.
〔比較例5〕
≪2液硬化型発泡ポリウレタン組成物(P-12)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B)として、ポリカーボネートジオール(B1)であるデュラノール T6001(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点40~50℃のもの)40部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)50部と、PTMG-2000(商標:三菱化学株式会社製、ポリテトラメチレングリコール、数平均分子量2000、水酸基価56のもの)10部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/39質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-12)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置した。
 その後、前記2液硬化型発泡ポリウレタン組成物(P-12)を用いてなる発泡成形体を金型より取り出そうとしたが、発泡不良で強度不足のため型崩れしてしまい取り出せなかった。
[Comparative Example 5]
≪Production of two-component curable polyurethane foam composition (P-12) ≫
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In a separate mixing vessel, 40 parts of an isocyanate group-reactive compound (B), Duranol T6001, which is a polycarbonate diol (B1) (trade name: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 40 to 50 ° C.) 50 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) which is polyoxyethylene propylene glycol (B2), PTMG-2000 (trademark: manufactured by Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight) 2000, having a hydroxyl value of 56), 10 parts of water (C) as the blowing agent, 0.5 parts of ion-exchanged water, 0.5 part of triethylenediamine as the catalyst (D), and silicon Y-7006 (as the foam stabilizer) (Trade name: made by Nihon Unicar Co., Ltd.) To obtain a polyol compound.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a curing agent are charged in a mixing container in a mass ratio of main agent / curing agent = 100/39, and the temperature is adjusted to 50 ° C. Then, a two-component curable foamed polyurethane composition (P-12) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, it was left at 40 ° C. for 5 minutes.
Thereafter, an attempt was made to take out the foamed molded article using the two-component curable foamed polyurethane composition (P-12) from the mold, but the foam collapsed due to insufficient foaming and could not be taken out.
〔比較例6〕
≪2液硬化型発泡ポリウレタン組成物(P-13)の製造≫
 前記実施例1と同様の操作にて、主剤であるNCO当量が250のイソシアネート基末端ウレタンプレポリマー(A-1)を得た。
 別の混合容器で、イソシアネート基反応性化合物(B-13)として、ポリカーボネートジオール(B1)であるデュラノール T6001(商標:旭化成ケミカルズ株式会社製、水酸基価112、融点40~50℃のもの)40部と、ポリオキシエチレンプロピレングリコール(B2)であるエクセノール820(商標:旭硝子株式会社製、水酸基価34のもの)50部と、グリコール(B3)であるエチレングリコール23部、及びPTMG-2000(商標:三菱化学株式会社製、ポリテトラメチレングリコール、数平均分子量2000、水酸基価56のもの)10部、発泡剤である水(C)としてイオン交換水0.5部、触媒(D)としてトリエチレンジアミン0.5部、及び整泡剤としてシリコン Y-7006(商標:日本ユニカー株式会社製)0.5部を配合し、充分に撹拌、混合し硬化剤であるポリオールコンパウンドを得た。
 次いで、混合容器中に主剤である前記イソシアネート基末端ウレタンプレポリマー(A-1)と硬化剤である前記ポリオールコンパウンドを主剤/硬化剤=100/166質量比で仕込み、液温50℃に温調し攪拌混合して、2液硬化型発泡ポリウレタン組成物(P-13)を調製して、40℃に予め加熱しておいた金型(290mm×120mm×10mm)中に200gを注入し、直ちに金型の蓋をした後、40℃で5分間放置し、その後硬化した発泡成形体を取り出した。
 前記2液硬化型発泡ポリウレタン組成物(P-13)を用いて得た発泡成形体は、第2表に示した如く、屈曲性に劣っていた。
[Comparative Example 6]
≪Manufacture of two-component curable polyurethane foam composition (P-13) ≫
In the same manner as in Example 1, an isocyanate group-terminated urethane prepolymer (A-1) having an NCO equivalent of 250 as the main agent was obtained.
In another mixing container, 40 parts of Duranol T6001 (trademark: manufactured by Asahi Kasei Chemicals Corporation, hydroxyl value 112, melting point 40 to 50 ° C.) which is a polycarbonate diol (B1) as an isocyanate group reactive compound (B-13) 50 parts of Exenol 820 (trademark: manufactured by Asahi Glass Co., Ltd., having a hydroxyl value of 34) as polyoxyethylenepropylene glycol (B2), 23 parts of ethylene glycol as glycol (B3), and PTMG-2000 (trademark: 10 parts by Mitsubishi Chemical Corporation, polytetramethylene glycol, number average molecular weight 2000, hydroxyl value 56), 0.5 parts of ion-exchanged water as the foaming agent (C), and triethylenediamine 0 as the catalyst (D) .5 parts, and silicon Y-7006 (trademark: Nippon Unica as a foam stabilizer) It blended Ltd.) 0.5 parts thoroughly stirred to obtain a mixed polyol compound which is a curing agent.
Next, the isocyanate group-terminated urethane prepolymer (A-1) as a main agent and the polyol compound as a curing agent are charged in a mixing container in a mass ratio of main agent / curing agent = 100/166, and the temperature of the liquid is adjusted to 50 ° C. Then, a two-part curable polyurethane foam composition (P-13) was prepared by stirring and mixing, and 200 g was poured into a mold (290 mm × 120 mm × 10 mm) preheated to 40 ° C. After closing the mold, the mold was left at 40 ° C. for 5 minutes, and then the cured foamed molded article was taken out.
As shown in Table 2, the foamed molded product obtained using the two-component curable foamed polyurethane composition (P-13) was inferior in flexibility.
 尚、実施例及び比較例に記載の略号と名称は下記のとおりである。
4,4’MDI:4,4’-ジフェニルメタンジイソシアネート
EG     :エチレングリコール
1,4BG  :1,4-ブチレングリコール
AA     :アジピン酸
DEG    :ジエチレングリコール
TMP    :トリメチロールプロパン
EO     :エチレンオキサイド
PO     :プロピレンオキサイド
TEDA   :トリエチレンジアミン
In addition, the symbol and name as described in an Example and a comparative example are as follows.
4,4'MDI: 4,4'-diphenylmethane diisocyanate EG: ethylene glycol 1,4BG: 1,4-butylene glycol AA: adipic acid DEG: diethylene glycol TMP: trimethylolpropane EO: ethylene oxide PO: propylene oxide TEDA: tri Ethylenediamine
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の2液硬化型発泡ポリウレタン組成物は、成形初期の性能に変化がなく安定性に優れ、且つ耐油性、耐加水分解性、屈曲性(柔軟性)に優れる発泡ポリウレタン成形体を提供でき、ポリウレタンエラストマーフォームとして、例えば、紳士靴、婦人靴、運動靴、安全靴、作業靴、室内靴等の各種靴の靴底、室内用のスリッパやサンダル、草履等の各種履物の底材質、あるいは手袋、作業服、帽子、マスクなどの各種物品の材質の他に、工業部材として、例えばロール、パッキン、ホース、シート、緩衝材、クッション、乗物部材、包装部材など種々の用途に有用である。 The two-component curable foamed polyurethane composition of the present invention can provide a foamed polyurethane molded product having no change in the initial molding performance, excellent stability, and excellent oil resistance, hydrolysis resistance, and flexibility (flexibility). As polyurethane elastomer foam, for example, soles of various shoes such as men's shoes, women's shoes, athletic shoes, safety shoes, work shoes, indoor shoes, etc., sole materials of various footwear such as indoor slippers and sandals, sandals, or In addition to the materials of various articles such as gloves, work clothes, hats, masks, etc., they are useful as industrial members in various applications such as rolls, packings, hoses, sheets, cushioning materials, cushions, vehicle members, and packaging members.

Claims (8)

  1.  2液硬化型発泡ポリウレタン組成物が、分子末端にイソシアネート基を有するウレタンプレポリマー(A)を含む主剤と、イソシアネート基反応性化合物(B)、水(C)、触媒(D)を含む硬化剤を含有するものであり、前記イソシアネート基反応性化合物(B)がポリカーボネートジオール(B1)とポリオキシエチレンプロピレングリコール(B2)と分子量50~300のグリコール(B3)とを必須に含有するものであり、前記(B1)~(B3)の合計量に対して、前記(B1)を6~88質量%の範囲、前記(B2)を5~93質量%の範囲、前記(B3)を0.5~20質量%の範囲で含み、且つ、2液硬化型発泡ポリウレタン組成物中の前記ポリカーボネートジオール(B1)の含有率が5~35質量%の範囲であることを特徴とする2液硬化型発泡ポリウレタン組成物。 Curing agent in which the two-component curable foamed polyurethane composition contains a main component containing a urethane prepolymer (A) having an isocyanate group at the molecular end, an isocyanate group-reactive compound (B), water (C), and a catalyst (D) The isocyanate group-reactive compound (B) essentially contains polycarbonate diol (B1), polyoxyethylene propylene glycol (B2), and glycol (B3) having a molecular weight of 50 to 300. , (B1) is in the range of 6 to 88% by mass, (B2) is in the range of 5 to 93% by mass, and (B3) is 0.5 in the total amount of (B1) to (B3). The content of the polycarbonate diol (B1) in the two-component curable foamed polyurethane composition is in the range of 5 to 35% by mass. Two-part curable polyurethane foam composition characterized.
  2.  前記ポリカーボネートジオール(B1)が60℃で液体であり、且つ、前記(B1)の水酸基価が45~150mgKOH/gの範囲である請求項1記載の2液硬化型発泡ポリウレタン組成物。 The two-component curable foamed polyurethane composition according to claim 1, wherein the polycarbonate diol (B1) is liquid at 60 ° C, and the hydroxyl value of the (B1) is in the range of 45 to 150 mgKOH / g.
  3.  前記ポリオキシエチレンプロピレングリコール(B2)の水酸基価が10~120mgKOH/gの範囲であり、且つ、前記(B2)中のエチレンオキサイド付加率が5~50質量%の範囲である請求項1記載の2液硬化型発泡ポリウレタン組成物。 The hydroxyl group value of the polyoxyethylene propylene glycol (B2) is in the range of 10 to 120 mgKOH / g, and the ethylene oxide addition rate in the (B2) is in the range of 5 to 50% by mass. Two-component curable foamed polyurethane composition.
  4.  前記グリコール(B3)が、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブチレングリコール、1,4-ブチレングリコール、及びジエチレングリコールからなる群より選ばれる少なくとも一種である請求項1記載の2液硬化型発泡ポリウレタン組成物。 The glycol (B3) is at least one selected from the group consisting of ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butylene glycol, and diethylene glycol. The two-component curable foamed polyurethane composition according to claim 1.
  5.  前記イソシアネート基末端ウレタンプレポリマー(A)のイソシアネート基当量が、150~350の範囲である請求項1記載の2液硬化型発泡ポリウレタン組成物。 The two-component curable foamed polyurethane composition according to claim 1, wherein the isocyanate group equivalent of the isocyanate group-terminated urethane prepolymer (A) is in the range of 150 to 350.
  6.  前記硬化剤が、前記イソシアネート基反応性化合物(B)100質量部に対して、水(C)を0.01~1.5質量部の範囲、及び触媒(D)を0.15~2質量部の範囲で含有するものである請求項1記載の2液硬化型発泡ポリウレタン組成物。 The curing agent is in the range of 0.01 to 1.5 parts by weight of water (C) and 0.15 to 2 parts by weight of catalyst (D) with respect to 100 parts by weight of the isocyanate group-reactive compound (B). The two-component curable foamed polyurethane composition according to claim 1, which is contained within a range of parts.
  7.  請求項1~6の何れか一項に記載の2液硬化型発泡ポリウレタン組成物を成形して得られることを特徴とする発泡ポリウレタン成形体。 A foamed polyurethane molded article obtained by molding the two-component curable foamed polyurethane composition according to any one of claims 1 to 6.
  8.  請求項7記載の発泡ポリウレタン成形体を含む靴底であって、前記発泡ポリウレタン成形体の密度が、0.3~1.1g/cmの範囲であることを特徴とする靴底。 A shoe sole comprising the foamed polyurethane molded product according to claim 7, wherein the density of the foamed polyurethane molded product is in the range of 0.3 to 1.1 g / cm 3 .
PCT/JP2013/061505 2012-05-28 2013-04-18 Two-pack type curable polyurethane foam composition, polyurethane foam molded body, and shoe sole WO2013179799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-120784 2012-05-28
JP2012120784 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013179799A1 true WO2013179799A1 (en) 2013-12-05

Family

ID=49673006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061505 WO2013179799A1 (en) 2012-05-28 2013-04-18 Two-pack type curable polyurethane foam composition, polyurethane foam molded body, and shoe sole

Country Status (1)

Country Link
WO (1) WO2013179799A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033734A1 (en) * 2013-09-04 2015-03-12 Dic株式会社 Urethane foam composition and bump cushion
JP2016044238A (en) * 2014-08-22 2016-04-04 東ソー株式会社 Method of producing polyurethane foam
WO2018160945A1 (en) * 2017-03-03 2018-09-07 Dow Global Technologies Llc Low density polyurethane elastomer foam with high ball rebound
CN110248978A (en) * 2017-02-22 2019-09-17 三井化学株式会社 The manufacturing method of foaming polyurethanes elastomer raw material, foaming polyurethanes elastomer and foaming polyurethanes elastomer
CN110964167A (en) * 2018-09-29 2020-04-07 青岛科技大学 Preparation method of polyester type polyurethane foam
CN114133523A (en) * 2021-11-15 2022-03-04 山东一诺威聚氨酯股份有限公司 Polyurethane composition for lightweight dynamic impact resistant new energy automobile battery box and preparation method thereof
CN117186344A (en) * 2023-11-08 2023-12-08 山东一诺威聚氨酯股份有限公司 Bio-based environment-friendly breathable insole and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263618A (en) * 1996-03-28 1997-10-07 Toyo Tire & Rubber Co Ltd Production of polyurethane for shoe sole
JP2001064352A (en) * 1999-08-31 2001-03-13 Asahi Chem Ind Co Ltd Polyisocyanate composition
JP2003026754A (en) * 2001-07-17 2003-01-29 Kao Corp Polyurethane expanded elastomer
WO2011132490A1 (en) * 2010-04-22 2011-10-27 Dic株式会社 Two-component curable foam polyurethane resin composition, molded body formed from the same, and shoe sole

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263618A (en) * 1996-03-28 1997-10-07 Toyo Tire & Rubber Co Ltd Production of polyurethane for shoe sole
JP2001064352A (en) * 1999-08-31 2001-03-13 Asahi Chem Ind Co Ltd Polyisocyanate composition
JP2003026754A (en) * 2001-07-17 2003-01-29 Kao Corp Polyurethane expanded elastomer
WO2011132490A1 (en) * 2010-04-22 2011-10-27 Dic株式会社 Two-component curable foam polyurethane resin composition, molded body formed from the same, and shoe sole

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033734A1 (en) * 2013-09-04 2015-03-12 Dic株式会社 Urethane foam composition and bump cushion
JP5858315B2 (en) * 2013-09-04 2016-02-10 Dic株式会社 Bump cushion
JP2016044238A (en) * 2014-08-22 2016-04-04 東ソー株式会社 Method of producing polyurethane foam
EP3587466A4 (en) * 2017-02-22 2020-12-30 Mitsui Chemicals, Inc. Foamed polyurethane elastomer raw material, foamed polyurethane elastomer, and production method for foamed polyurethane elastomer
CN110248978A (en) * 2017-02-22 2019-09-17 三井化学株式会社 The manufacturing method of foaming polyurethanes elastomer raw material, foaming polyurethanes elastomer and foaming polyurethanes elastomer
CN110520457A (en) * 2017-03-03 2019-11-29 陶氏环球技术有限责任公司 Low-density polyurethane elastomer foam with high ball rebound degree
JP2020510723A (en) * 2017-03-03 2020-04-09 ダウ グローバル テクノロジーズ エルエルシー Low density polyurethane elastomer foam with high ball resilience
WO2018160945A1 (en) * 2017-03-03 2018-09-07 Dow Global Technologies Llc Low density polyurethane elastomer foam with high ball rebound
CN110520457B (en) * 2017-03-03 2022-01-18 陶氏环球技术有限责任公司 Low density polyurethane elastomer foam with high ball rebound
US11332569B2 (en) 2017-03-03 2022-05-17 Dow Global Technologies Llc Low density polyurethane elastomer foam with high ball rebound
JP7112417B2 (en) 2017-03-03 2022-08-03 ダウ グローバル テクノロジーズ エルエルシー Low density polyurethane elastomer foam with high ball resilience
AU2018227869B2 (en) * 2017-03-03 2023-02-09 Dow Global Technologies Llc Low density polyurethane elastomer foam with high ball rebound
CN110964167A (en) * 2018-09-29 2020-04-07 青岛科技大学 Preparation method of polyester type polyurethane foam
CN114133523A (en) * 2021-11-15 2022-03-04 山东一诺威聚氨酯股份有限公司 Polyurethane composition for lightweight dynamic impact resistant new energy automobile battery box and preparation method thereof
CN117186344A (en) * 2023-11-08 2023-12-08 山东一诺威聚氨酯股份有限公司 Bio-based environment-friendly breathable insole and preparation method thereof
CN117186344B (en) * 2023-11-08 2024-03-08 山东一诺威聚氨酯股份有限公司 Bio-based environment-friendly breathable insole and preparation method thereof

Similar Documents

Publication Publication Date Title
US8673991B2 (en) Two-part curable polyurethane foam resin composition, molded article using the same, and shoe sole
WO2013179799A1 (en) Two-pack type curable polyurethane foam composition, polyurethane foam molded body, and shoe sole
JP6811531B2 (en) High-strength polyurethane foam composition and method
JP5810767B2 (en) Two-component curable polyurethane foam resin composition, urethane molded body, shoe sole, and industrial member
KR101861214B1 (en) Thermoplastic polyurethane with reduced tendency to bloom
US6486224B2 (en) Polyurethane elastomers having improved hydrolysis resistance
US7670501B2 (en) Carbon dioxide blown low density, flexible microcellular polyurethane elastomers
WO2018092744A1 (en) Thermoplastic polyurethane resin for foaming and production method thereof, and molded article
JP2010503750A (en) Isocyanate-terminated polycaprolactone polyurethane prepolymer
TW200418895A (en) Polyurethane dispersion and articles prepared therefrom
MXPA05004673A (en) Polyurethane compounds and articles prepared therefrom.
JPWO2009131106A1 (en) Polyurethane foam and polishing pad
JP2013163778A (en) Two-pack thermosetting polyurethane elastomer composition, elastic molding, and roll
TWI816882B (en) Composition for polyurethane integral surface layer foaming, polyurethane integral surface layer foaming and manufacturing method thereof
JP6756353B2 (en) Two-component curable adhesive composition
WO2021202876A1 (en) Polyurethane prepolymer composition comprising an alkyl benzoate
EP1157055B1 (en) Thermosetting poly urethane/urea-forming compositions
TWI419906B (en) Biomass material having multi isocyanate groups and method for manufacturing the same
JP7243941B2 (en) Laminates and soles
JP7363319B2 (en) Polyurethane resin composition, molded product and shoe sole using the same
JP7453222B2 (en) Isocyanate-polyamide block copolymer
US20220289893A1 (en) A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and the use thereof
JP2022011733A (en) Heat-accumulating polyurethane, heat accumulating material containing the same, and heat accumulating molding
TW202206496A (en) Solvent-free polyurethane material and middle sole prepared thereof
JP2005105240A (en) Thermosetting polyurethane elastomer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP