WO2013179753A1 - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
WO2013179753A1
WO2013179753A1 PCT/JP2013/059203 JP2013059203W WO2013179753A1 WO 2013179753 A1 WO2013179753 A1 WO 2013179753A1 JP 2013059203 W JP2013059203 W JP 2013059203W WO 2013179753 A1 WO2013179753 A1 WO 2013179753A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
engine control
control device
steering
threshold
Prior art date
Application number
PCT/JP2013/059203
Other languages
French (fr)
Japanese (ja)
Inventor
通晴 郡司
元之 服部
尚之 関口
照太 三好
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013179753A1 publication Critical patent/WO2013179753A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0801Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0808Steering state, e.g. state of power assisted steering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/104Driver's intention to turn, e.g. by evaluating direction indicators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control device.
  • Patent Document 1 discloses a technique for automatically stopping and restarting an engine by comparing a physical quantity related to driver steering with a threshold value.
  • the objective of this invention is providing the engine control apparatus which can implement
  • the first threshold is set to a smaller value as the vehicle speed is higher.
  • FIG. 1 is a system diagram illustrating an engine control apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart showing a flow of engine automatic stop control processing executed by the engine control unit 10 of the first embodiment.
  • 3 is a flowchart showing a flow of an engine restart control process executed by the engine control unit 10 of the first embodiment.
  • 3 is a time chart illustrating a coast stop control operation of the first embodiment.
  • FIG. 1 is a system diagram illustrating an engine control apparatus according to the first embodiment.
  • the rotational driving force input from the engine 1 is input to the belt-type continuously variable transmission 3 via the torque converter 2, and is transmitted to the drive wheels 4 after being shifted by a desired gear ratio.
  • the vehicle according to the first embodiment is a vehicle that has a low-power system and does not have a traveling motor.
  • the engine 1 has a starter 1a that starts the engine. Specifically, a starter motor is provided, engine cranking is performed based on an engine start command, fuel is injected, and when the engine 1 can rotate independently, the starter motor is stopped.
  • a torque converter 2 On the output side of the engine 1, there is provided a torque converter 2 having a lock-up clutch that performs torque amplification in a low vehicle speed range and prohibits relative rotation at a predetermined vehicle speed (for example, about 14 km / h) or higher.
  • a belt type continuously variable transmission 3 is connected to the output side of the torque converter 2.
  • the belt-type continuously variable transmission 3 is composed of a starting clutch, a primary pulley and a secondary pulley, and a belt spanned between these pulleys, and the pulley groove width is changed by hydraulic control to achieve a desired gear ratio. Achieve.
  • an oil pump driven by the engine 1 is provided in the belt type continuously variable transmission 3, and when the engine is operating, the oil pump is used as a hydraulic source to supply the converter pressure of the torque converter 2 and the lockup clutch pressure, Further, the pulley pressure and clutch engagement pressure of the belt type continuously variable transmission 3 are supplied. Further, the belt-type continuously variable transmission 3 is provided with an electric oil pump 3a. When the oil pump cannot supply hydraulic pressure due to automatic engine stop, the electric oil pump 3a is activated and the required hydraulic pressure is supplied to each actuator. It is configured to be able to supply. Therefore, even when the engine is stopped, a desired gear ratio can be achieved and the clutch engagement pressure can be maintained.
  • the operating state of the engine 1 is controlled by the engine control unit 10.
  • the engine control unit 10 has a steering angle signal from a steering angle sensor that detects a steering angle (hereinafter also referred to as a steering angle), and an accelerator signal from an accelerator opening sensor 12 that detects an accelerator pedal operation amount of a driver.
  • a brake operation amount signal (master cylinder pressure) from a master cylinder pressure sensor 13 for detecting a master cylinder pressure generated based on a brake pedal operation amount, a wheel speed signal from a wheel speed sensor 14 provided on each wheel, a CVT described later Inputs the CVT status signal from the control unit 15, the steering torque signal from the steering torque sensor 16 that detects the steering torque of the steering wheel, the winker switch signal from the winker switch 17, the engine water temperature, the crank angle, the engine speed, etc. .
  • the vehicle speed calculation unit 10a calculates the vehicle speed from the wheel speed signal.
  • the engine control unit 10 starts or automatically stops the engine 1 based on the various signals.
  • a pedal force sensor that detects a brake pedal stroke amount or a brake pedal depression force
  • a sensor that detects a wheel cylinder pressure, or the like may be used to detect the brake pedal operation amount.
  • the CVT control unit 15 transmits and receives engine operation state and CVT state signals to and from the engine control unit 10, and controls the gear ratio of the belt type continuously variable transmission 3 based on these signals. Specifically, when the travel range is selected, the start clutch is engaged, and the gear ratio is determined from the gear ratio map based on the accelerator pedal opening and the vehicle speed, and each pulley hydraulic pressure is controlled. Further, when the vehicle speed is lower than the predetermined vehicle speed, the lockup clutch is released, and when the vehicle speed is higher than the predetermined vehicle speed, the lockup clutch is engaged, and the engine 1 and the belt type continuously variable transmission 3 are brought into a directly connected state. Furthermore, when the engine is automatically stopped while the travel range is selected, the electric oil pump 3a is operated to ensure the necessary hydraulic pressure. The CVT control unit 15 engages / releases the start clutch in response to a start clutch engage / release request from the engine control unit 10.
  • coast stop control for stopping the engine 1 is performed. Assume that the coast stop control is satisfied (engine stop permission condition) when all of the following six conditions are satisfied. 1. Brake condition (Brake operation amount is more than the predetermined operation amount) 2. Accelerator condition (zero accelerator pedal operation amount) 3. Range condition (travel range is selected) 4. Vehicle speed conditions (vehicle speed is below the standard vehicle speed (vehicle speed at which the lock-up clutch is released)) 5. Rudder angle condition (The state where the steering angle is less than the start judgment rudder angle threshold continues for the first judgment time or more) 6. Torque condition (The state where the steering torque is less than the start determination torque threshold continues for the third determination time or more)
  • the coast stop control cancellation condition is a case where the range condition is satisfied among the following six conditions and any one of the remaining five conditions is satisfied.
  • Brake conditions the brake operation amount is less than the predetermined operation amount
  • Accelerator condition Accelerator pedal operation amount is not zero
  • Range condition travel range is selected
  • Vehicle speed conditions vehicle speed exceeds the standard vehicle speed
  • Steering angle condition the state where the steering angle is larger than the release determination steering angle threshold ( ⁇ start determination steering angle threshold) continues for the second determination time ( ⁇ first determination time)
  • Torque condition (The state where the steering torque exceeds the release determination torque threshold continues for the fourth determination time or more)
  • the start determination steering angle threshold value is determined according to the vehicle speed.
  • release determination steering angle threshold value is correct
  • the engine control unit 10 includes a threshold setting unit 10b that sets a start determination steering angle threshold and a cancellation determination steering angle threshold.
  • FIG. 2 is a flowchart showing the flow of the engine automatic stop control process executed by the engine control unit 10 of the first embodiment, and each step will be described below.
  • This process is repeatedly executed at a predetermined calculation cycle when the engine 1 is not automatically stopped.
  • step S1 it is determined whether or not a vehicle speed condition (vehicle speed ⁇ reference vehicle speed) is satisfied. If YES, the process proceeds to step S2, and if NO, the process proceeds to step S10.
  • step S2 it is determined whether or not a brake condition (brake operation amount ⁇ predetermined operation amount) is satisfied. If YES, the process proceeds to step S3, and if NO, the process proceeds to step S10.
  • step S3 it is determined whether or not an accelerator condition (accelerator pedal operation amount is zero) is satisfied. If YES, the process proceeds to step S4, and if NO, the process proceeds to step S10. In step S4, it is determined whether or not the range condition (travel range selection) is satisfied. If YES, the process proceeds to step S5, and if NO, the process proceeds to step S10.
  • an accelerator condition acceleration pedal operation amount is zero
  • step S4 it is determined whether or not the range condition (travel range selection) is satisfied. If YES, the process proceeds to step S5, and if NO, the process proceeds to step S10.
  • step S5 the threshold value setting unit 10b corrects the initial value of the start determination steering angle threshold value based on the vehicle speed.
  • the start determination steering angle threshold value Alo1 after correction based on the vehicle speed VSP can be obtained, for example, by the following equation (1).
  • Alo1 (1-VSP ⁇ Kvsp) ⁇ Alo0... (1)
  • Kvsp is a correction coefficient
  • Alo0 is a start determination steering angle threshold value when the vehicle speed is zero.
  • step S6 the threshold setting unit 10b corrects the start determination rudder angle threshold corrected for the vehicle speed in accordance with the turn signal state.
  • the corrected start determination rudder angle threshold value Alof according to the state of the winker can be obtained, for example, by the following equation (2).
  • Alof Alo1 ⁇ Kw... (2)
  • Kw is a correction coefficient
  • Kw is 1 when the turn signal is turned off
  • Kwr ⁇ 1 when the turn signal on the opposite lane is turned on
  • the non-opposing lane side own lane side
  • the start determination rudder angle threshold is set to a smaller value when the turn signal is turned on than when the turn signal is turned off. Further, the start determination rudder angle threshold value is set to a smaller value when the turn signal on the opposite lane side is turned on than when the turn signal on the non-opposition lane side is turned on.
  • step S7 it is determined whether or not the steering angle condition (steering angle ⁇ the start determination steering angle threshold state continues for the first determination time or more) is established. If YES, the process proceeds to step S8, and if NO, step S8 is performed. Proceed to S10. In step S8, it is determined whether or not a torque condition (steering torque ⁇ start determination torque threshold state continues for the third determination time or more) is satisfied. If YES, the process proceeds to step S9, and if NO, step S10 is determined. Proceed to In step S9, the engine stop is permitted and the engine 1 is stopped. In step S10, engine stop is not permitted.
  • the steering angle condition steering angle ⁇ the start determination steering angle threshold state continues for the first determination time or more
  • FIG. 3 is a flowchart showing the flow of the engine restart control process executed by the engine control unit 10 of the first embodiment. Each step will be described below. This process is repeatedly executed at a predetermined calculation cycle when the engine 1 is not automatically stopped.
  • step S11 it is determined whether or not the range condition (travel range selection) is satisfied. If YES, the process proceeds to step S12, and if NO, the process proceeds to step S19.
  • step S12 it is determined whether or not a brake condition (brake operation amount ⁇ predetermined operation amount) is satisfied. If YES, the process proceeds to step S20, and if NO, the process proceeds to step S13.
  • step S13 it is determined whether or not an accelerator condition (accelerator pedal operation amount> 0) is satisfied. If YES, the process proceeds to step S20, and if NO, the process proceeds to step S14. In step S14, it is determined whether or not the vehicle speed condition (vehicle speed> reference vehicle speed) is satisfied. If YES, the process proceeds to step S20, and if NO, the process proceeds to step S15.
  • accelerator condition accelerator pedal operation amount> 0
  • step S15 the threshold value setting unit 10b corrects the initial value of the release determination steering angle threshold value based on the vehicle speed.
  • Ahi0 is a release determination steering angle threshold value when the vehicle speed is zero.
  • the cancellation determination steering angle threshold is set to a smaller value as the vehicle speed is higher.
  • step S16 the threshold setting unit 10b corrects the cancellation determination rudder angle threshold corrected for the vehicle speed in accordance with the turn signal state.
  • the cancellation determination steering angle threshold is set to a smaller value when the turn signal is turned on than when the turn signal is turned off.
  • the release determination rudder angle threshold is set to a smaller value when the turn signal on the opposite lane side is on than when the turn signal on the non-opposition lane side is turned on.
  • step S17 it is determined whether or not the steering angle condition (steering angle> the state where the release determination steering angle threshold is continued for the second determination time or longer) is established. If YES, the process proceeds to step S20. Proceed to S18. In step S18, it is determined whether or not the torque condition (steering torque> release determination torque threshold state continues for the fourth determination time or more) is satisfied. If YES, the process proceeds to step S20. If NO, the process proceeds to step S19. move on. In step S19, the engine stop is permitted, and the engine 1 is stopped. In step S20, the engine stop is not permitted and the engine 1 is restarted.
  • the steering angle condition steering angle> the state where the release determination steering angle threshold is continued for the second determination time or longer
  • FIG. 4 is a time chart illustrating the coast stop control operation of the first embodiment. It is assumed that the brake condition, the accelerator condition, the range condition, the vehicle speed condition, and the torque condition are satisfied among the conditions for establishing the coast stop control at a time point before the time point t1. The driver is turning on the turn signal. At the time point t1, since the time during which the steering torque exceeds the release determination torque threshold Thif continues for the fourth determination time tThi, the torque condition is not satisfied.
  • the steering angle becomes less than the start determination steering angle threshold value Alof, but since the state has not continued for the first determination time tTlo, the steering angle condition remains unsatisfied.
  • the torque condition is satisfied because the state where the steering torque is less than the start determination torque threshold value Tlof continues for the third determination time tTlo.
  • the steering angle is less than the start determination steering angle threshold Alof for the first determination time tAlo, so the steering angle condition is satisfied and the engine 1 is automatically stopped.
  • the torque condition is not satisfied and the engine 1 is restarted.
  • the start and release determination rudder angle threshold values Alo1, Ahi1 after correction by the vehicle speed VSP gradually increase as the vehicle speed VSP decreases according to the equations (1), (3), and are maximum when the vehicle stops. Value. Further, since the winker is turned on, the final start and release determination rudder angle threshold values Alof and Ahif are smaller than Alo1 and Ahi1 according to equations (2) and (4).
  • the start and release determination thresholds are set to relatively large values (for example, about Alo0 and Ahi0 in the first embodiment) to improve practical fuel consumption
  • the driver wants to bend even if the steering angle is small as the vehicle speed increases. Since the intention is increased, the vehicle is relatively high in speed and the physical quantity related to steering is small, but the engine is automatically stopped or stopped when the driver does not want the engine to be stopped.
  • the start and release determination thresholds are set to relatively small values (for example, Alo1 and Ahi1 at time points t1 to t3 in FIG. 4) in order to reduce discomfort, the driver wants to turn to the driver at a very low vehicle speed but with a large steering angle Since the engine does not automatically stop or continues to stop when there is no intention, the practical fuel consumption deteriorates.
  • the engine 1 when the vehicle speed VSP is high and the driver's intention to turn is strong, the engine 1 can be prevented from being automatically stopped when the steering angle is small, and the uncomfortable feeling given to the driver can be reduced. Conversely, when the vehicle speed VSP is low, the driver's willingness to turn is weak. Therefore, even if the steering angle is large, the engine 1 can be easily stopped automatically to improve the practical fuel consumption. In other words, the higher the vehicle speed VSP is, the smaller the start and release determination steering angle threshold values Alof and Ahif can be set, so that the trade-off between improvement in practical fuel consumption and reduction in discomfort can be eliminated.
  • the start and release determination steering angle threshold values Alof, Ahif are set to a smaller value than when the turn signal is turned off.
  • the intersection, temporary stop, and lane change are obvious, so setting the start and release determination rudder angle thresholds Alof, Ahif as described above causes the engine 1 against the driver's will.
  • the engine 1 can be prevented from being automatically stopped, and the engine 1 can be restarted early according to the driver's intention to start.
  • the start and release determination rudder angle threshold values Alof and Ahif are set to a smaller value than when the turn signal on the non-opposition lane side is turned on.
  • the turn signal is turned on in the direction crossing the oncoming lane, it is a scene to start by sewing the gap of the oncoming vehicle, so by setting the start and release determination rudder angle thresholds Alof, Ahif as described above, the driver The engine 1 can be prevented from being automatically stopped against the intention, and the engine 1 can be restarted early according to the driver's intention to start.
  • Example 1 An engine having an engine control unit 10 (engine control means) that automatically stops the engine 1 when a physical quantity related to steering becomes less than a start determination steering angle threshold Alof (first threshold) while the vehicle is coasting at a low vehicle speed.
  • the control device includes a threshold setting unit 10b (threshold setting means) that sets the start determination steering angle threshold Alof to a smaller value as the vehicle speed increases.
  • the physical quantity related to steering is used as the steering angle. By looking at the steering angle, it is possible to detect the steering state with respect to straight travel, and therefore it is possible to accurately determine the driver's intention to turn.
  • the engine control unit 10 restarts the engine 1 when the steering angle exceeds the release determination steering angle threshold Ahi1 (second threshold) during the automatic stop of the engine 1, and the threshold setting unit 10b
  • the angle threshold value Alof is set to a value smaller than the release determination steering angle threshold value Ahif.
  • the engine control unit 10 automatically stops the engine 1 when the time during which the steering angle is less than the start determination steering angle threshold Alof continues for the first determination time tAlo, and then the steering angle sets the release determination steering angle threshold Ahif.
  • the engine 1 is restarted when the elapsed time exceeds the second determination time tAhi, which is shorter than the first determination time tAlo. As a result, when the driver intends to turn, the engine 1 can be restarted quickly and the vehicle can travel.
  • the threshold setting unit 10b sets the start determination rudder angle threshold Alof and the release determination rudder angle threshold Ahif to smaller values when the turn signal is on than when the turn signal is off. As a result, the engine 1 can be prevented from being automatically stopped against the driver's will, and the engine 1 can be restarted early according to the driver's intention to start.
  • the threshold setting unit 10b starts and determines the start determination rudder angle threshold Alof and the release determination rudder angle threshold Ahif than when the non-opposing lane side turn signal is on. Set to a small value. As a result, the engine 1 can be prevented from being automatically stopped against the driver's will, and the engine 1 can be restarted early according to the driver's intention to start.
  • the automatic stop / restart control device for an engine according to the present invention has been described based on each embodiment.
  • the present invention is not limited to the above-described configuration, and other configurations can be adopted without departing from the scope of the present invention.
  • a steering angle is used as a physical quantity related to steering
  • a steering torque or a steering speed may be used instead of the steering angle.
  • the torque condition of the embodiment is not necessary.

Abstract

According to the present invention, when a vehicle is traveling by inertia in a low speed range, the engine is automatically stopped when a physical quantity associated with steering falls below a first threshold, and the first threshold is set to smaller values at higher vehicle speeds.

Description

エンジン制御装置Engine control device
 本発明は、エンジン制御装置に関する。 The present invention relates to an engine control device.
 特許文献1には、ドライバの操舵に関する物理量と閾値との比較によりエンジンの自動停止および再始動を実施する技術が開示されている。 Patent Document 1 discloses a technique for automatically stopping and restarting an engine by comparing a physical quantity related to driver steering with a threshold value.
特許第4301050号公報Japanese Patent No. 4301050
 しかしながら、上記従来技術にあっては、車速にかかわらず閾値が一定であるため、車両走行中にエンジンを自動停止させるコーストストップ制御に適用した場合、実用燃費の向上と違和感軽減とのトレードオフが問題となる。
  本発明の目的は、実用燃費の向上と違和感軽減との両立を実現できるエンジン制御装置を提供することにある。
However, in the above prior art, since the threshold value is constant regardless of the vehicle speed, there is a trade-off between improvement in practical fuel consumption and reduction in discomfort when applied to coast stop control that automatically stops the engine while the vehicle is running. It becomes a problem.
The objective of this invention is providing the engine control apparatus which can implement | achieve coexistence with the improvement of a practical fuel consumption, and a discomfort reduction.
 本発明では、車両が低車速域で惰性走行中、操舵に関する物理量が第1閾値未満となったときエンジンを自動停止させるにあたり、車速が高いほど第1閾値を小さな値に設定する。 In the present invention, when the vehicle is coasting in the low vehicle speed range and the physical quantity related to steering becomes less than the first threshold, the first threshold is set to a smaller value as the vehicle speed is higher.
 よって、本発明にあっては、車速が高いほど操舵に関する物理量が同じであってもエンジンが自動停止しにくくなるため、実用燃費の向上と違和感軽減との両立を実現できる。 Therefore, in the present invention, the higher the vehicle speed, the more difficult the engine is to automatically stop even if the physical quantity related to steering is the same, so it is possible to achieve both improvement in practical fuel consumption and reduction in discomfort.
実施例1のエンジン制御装置を示すシステム図である。1 is a system diagram illustrating an engine control apparatus according to Embodiment 1. FIG. 実施例1のエンジンコントロールユニット10で実行されるエンジン自動停止制御処理の流れを示すフローチャートである。3 is a flowchart showing a flow of engine automatic stop control processing executed by the engine control unit 10 of the first embodiment. 実施例1のエンジンコントロールユニット10で実行されるエンジン再始動制御処理の流れを示すフローチャートである。3 is a flowchart showing a flow of an engine restart control process executed by the engine control unit 10 of the first embodiment. 実施例1のコーストストップ制御作用を示すタイムチャートである。3 is a time chart illustrating a coast stop control operation of the first embodiment.
1 エンジン
1a 始動装置
2 トルクコンバータ
3 ベルト式無段変速機
3a 電動オイルポンプ
4 駆動輪
10 エンジンコントロールユニット(エンジン制御手段)
10a 車速演算部
10b 閾値設定部(閾値設定手段)
12 アクセル開度センサ
13 マスタシリンダ圧センサ
14 車輪速センサ
15 コントロールユニット
16 操舵トルクセンサ
17 ウインカースイッチ
1 engine
1a Starter
2 Torque converter
3 Belt type continuously variable transmission
3a Electric oil pump
4 Drive wheels
10 Engine control unit (engine control means)
10a Vehicle speed calculator
10b Threshold setting unit (threshold setting means)
12 Accelerator position sensor
13 Master cylinder pressure sensor
14 Wheel speed sensor
15 Control unit
16 Steering torque sensor
17 Turn signal switch
 以下、本発明のエンジン制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。
  〔実施例1〕
  まず、実施例1の構成を説明する。
  図1は、実施例1のエンジン制御装置を示すシステム図である。
エンジン1から入力された回転駆動力は、トルクコンバータ2を介してベルト式無段変速機3に入力され、所望の変速比によって変速された後、駆動輪4に伝達される。実施例1の車両は、弱電系の電源システムを有し、走行用モータを持たない車両である。
  エンジン1は、エンジン始動を行う始動装置1aを有する。具体的には、スタータモータが備えられ、エンジン始動指令に基づいてエンジンクランキングを行うと共に、燃料を噴射し、エンジン1が自立回転可能になると、スタータモータを停止する。
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the engine control apparatus of this invention is demonstrated based on the Example shown on drawing.
[Example 1]
First, the configuration of the first embodiment will be described.
FIG. 1 is a system diagram illustrating an engine control apparatus according to the first embodiment.
The rotational driving force input from the engine 1 is input to the belt-type continuously variable transmission 3 via the torque converter 2, and is transmitted to the drive wheels 4 after being shifted by a desired gear ratio. The vehicle according to the first embodiment is a vehicle that has a low-power system and does not have a traveling motor.
The engine 1 has a starter 1a that starts the engine. Specifically, a starter motor is provided, engine cranking is performed based on an engine start command, fuel is injected, and when the engine 1 can rotate independently, the starter motor is stopped.
 エンジン1の出力側には、低車速域でトルク増幅を行うと共に、所定車速(例えば、14km/h程度)以上では、相対回転を禁止するロックアップクラッチを有するトルクコンバータ2が設けられている。トルクコンバータ2の出力側にはベルト式無段変速機3が接続されている。
  ベルト式無段変速機3は、発進クラッチと、プライマリプーリおよびセカンダリプーリと、これら両プーリに掛け渡されたベルトとから構成され、プーリ溝幅を油圧制御によって変更することで所望の変速比を達成する。また、ベルト式無段変速機3内には、エンジン1によって駆動されるオイルポンプが設けられ、エンジン作動時には、オイルポンプを油圧源としてトルクコンバータ2のコンバータ圧やロックアップクラッチ圧を供給し、また、ベルト式無段変速機3のプーリ圧やクラッチ締結圧を供給する。
  さらに、ベルト式無段変速機3には電動オイルポンプ3aが設けられており、エンジン自動停止によってオイルポンプによる油圧供給ができない場合には、電動オイルポンプ3aが作動し、必要な油圧を各アクチュエータに供給可能に構成されている。よって、エンジン停止時であっても、所望の変速比を達成し、また、クラッチ締結圧を維持することができる。
On the output side of the engine 1, there is provided a torque converter 2 having a lock-up clutch that performs torque amplification in a low vehicle speed range and prohibits relative rotation at a predetermined vehicle speed (for example, about 14 km / h) or higher. A belt type continuously variable transmission 3 is connected to the output side of the torque converter 2.
The belt-type continuously variable transmission 3 is composed of a starting clutch, a primary pulley and a secondary pulley, and a belt spanned between these pulleys, and the pulley groove width is changed by hydraulic control to achieve a desired gear ratio. Achieve. In addition, an oil pump driven by the engine 1 is provided in the belt type continuously variable transmission 3, and when the engine is operating, the oil pump is used as a hydraulic source to supply the converter pressure of the torque converter 2 and the lockup clutch pressure, Further, the pulley pressure and clutch engagement pressure of the belt type continuously variable transmission 3 are supplied.
Further, the belt-type continuously variable transmission 3 is provided with an electric oil pump 3a. When the oil pump cannot supply hydraulic pressure due to automatic engine stop, the electric oil pump 3a is activated and the required hydraulic pressure is supplied to each actuator. It is configured to be able to supply. Therefore, even when the engine is stopped, a desired gear ratio can be achieved and the clutch engagement pressure can be maintained.
 エンジン1は、エンジンコントロールユニット10によって作動状態が制御される。エンジンコントロールユニット10には、ステアリングの操舵角(以下、舵角とも言う。)を検出する操舵角センサからの操舵角信号、ドライバのアクセルペダル操作量を検出するアクセル開度センサ12からのアクセル信号、ブレーキペダル操作量に基づいて生じるマスタシリンダ圧検出するマスタシリンダ圧センサ13からのブレーキ操作量信号(マスタシリンダ圧)、各輪に備えられた車輪速センサ14からの車輪速信号、後述するCVTコントロールユニット15からのCVT状態信号、ステアリングの操舵トルクを検出する操舵トルクセンサ16からの操舵トルク信号、ウインカースイッチ17からのウインカースイッチ信号、エンジン水温、クランク角やエンジン回転数等の信号を入力する。車速演算部10aは、車輪速信号から車速を演算する。
  エンジンコントロールユニット10は、上記各種信号に基づいてエンジン1の始動もしくは自動停止を実施する。なお、マスタシリンダ圧センサ13に代えてブレーキペダルストローク量やブレーキペダル踏力を検出する踏力センサ、もしくはホイルシリンダ圧を検出するセンサ等の用い、これによりブレーキペダル操作量を検出しても良い。
The operating state of the engine 1 is controlled by the engine control unit 10. The engine control unit 10 has a steering angle signal from a steering angle sensor that detects a steering angle (hereinafter also referred to as a steering angle), and an accelerator signal from an accelerator opening sensor 12 that detects an accelerator pedal operation amount of a driver. , A brake operation amount signal (master cylinder pressure) from a master cylinder pressure sensor 13 for detecting a master cylinder pressure generated based on a brake pedal operation amount, a wheel speed signal from a wheel speed sensor 14 provided on each wheel, a CVT described later Inputs the CVT status signal from the control unit 15, the steering torque signal from the steering torque sensor 16 that detects the steering torque of the steering wheel, the winker switch signal from the winker switch 17, the engine water temperature, the crank angle, the engine speed, etc. . The vehicle speed calculation unit 10a calculates the vehicle speed from the wheel speed signal.
The engine control unit 10 starts or automatically stops the engine 1 based on the various signals. Instead of the master cylinder pressure sensor 13, a pedal force sensor that detects a brake pedal stroke amount or a brake pedal depression force, a sensor that detects a wheel cylinder pressure, or the like may be used to detect the brake pedal operation amount.
 CVTコントロールユニット15は、エンジンコントロールユニット10との間でエンジン作動状態とCVT状態の信号を送受信し、これら信号に基づいてベルト式無段変速機3の変速比等を制御する。具体的には、走行レンジが選択されているときには、発進クラッチの締結を行うと共に、アクセルペダル開度と車速とに基づいて変速比マップから変速比を決定し、各プーリ油圧を制御する。また、車速が所定車速未満のときは、ロックアップクラッチを解放し、所定車速以上のときはロックアップクラッチを締結し、エンジン1とベルト式無段変速機3とを直結状態とする。さらに、走行レンジ選択中におけるエンジン自動停止時には、電動オイルポンプ3aを作動させ、必要な油圧を確保する。なお、CVTコントロールユニット15は、エンジンコントロールユニット10からの発進クラッチ締結/解放要求に応じて発進クラッチの締結/解放を行う。 The CVT control unit 15 transmits and receives engine operation state and CVT state signals to and from the engine control unit 10, and controls the gear ratio of the belt type continuously variable transmission 3 based on these signals. Specifically, when the travel range is selected, the start clutch is engaged, and the gear ratio is determined from the gear ratio map based on the accelerator pedal opening and the vehicle speed, and each pulley hydraulic pressure is controlled. Further, when the vehicle speed is lower than the predetermined vehicle speed, the lockup clutch is released, and when the vehicle speed is higher than the predetermined vehicle speed, the lockup clutch is engaged, and the engine 1 and the belt type continuously variable transmission 3 are brought into a directly connected state. Furthermore, when the engine is automatically stopped while the travel range is selected, the electric oil pump 3a is operated to ensure the necessary hydraulic pressure. The CVT control unit 15 engages / releases the start clutch in response to a start clutch engage / release request from the engine control unit 10.
 [コーストストップ制御]
  実施例1では、車両走行中であっても、減速中であり、このまま車両停止する可能性が高いと判断したときは、エンジン1を停止するコーストストップ制御を行う。
  コーストストップ制御の成立条件(エンジン停止許可条件)は、以下の6条件がすべて成立している場合とする。
  1.ブレーキ条件(ブレーキ操作量が所定操作量以上)
  2.アクセル条件(アクセルペダル操作量がゼロ)
  3.レンジ条件(走行レンジが選択されている)
  4.車速条件(車速が基準車速(ロックアップクラッチを解放する車速)以下)
  5.舵角条件(操舵角が開始判定舵角閾値未満である状態が第1判定時間以上継続)
  6.トルク条件(操舵トルクが開始判定トルク閾値未満である状態が第3判定時間以上継続)
[Coast stop control]
In the first embodiment, even when the vehicle is running, when it is determined that the vehicle is decelerating and the vehicle is likely to stop as it is, coast stop control for stopping the engine 1 is performed.
Assume that the coast stop control is satisfied (engine stop permission condition) when all of the following six conditions are satisfied.
1. Brake condition (Brake operation amount is more than the predetermined operation amount)
2. Accelerator condition (zero accelerator pedal operation amount)
3. Range condition (travel range is selected)
4. Vehicle speed conditions (vehicle speed is below the standard vehicle speed (vehicle speed at which the lock-up clutch is released))
5. Rudder angle condition (The state where the steering angle is less than the start judgment rudder angle threshold continues for the first judgment time or more)
6. Torque condition (The state where the steering torque is less than the start determination torque threshold continues for the third determination time or more)
 また、コーストストップ制御の解除条件は、以下の6条件のうち、レンジ条件が成立し、かつ、残りの5条件のいずれか1つが成立している場合とする。
  1.ブレーキ条件(ブレーキ操作量が所定操作量未満)
  2.アクセル条件(アクセルペダル操作量がゼロ以外)
  3.レンジ条件(走行レンジが選択されている)
  4.車速条件(車速が基準車速を超えている)
  5.舵角条件(操舵角が解除判定舵角閾値(<開始判定舵角閾値)よりも大きい状態が第2判定時間(<第1判定時間)以上継続)
  6.トルク条件(操舵トルクが解除判定トルク閾値を超えている状態が第4判定時間以上継続)
In addition, the coast stop control cancellation condition is a case where the range condition is satisfied among the following six conditions and any one of the remaining five conditions is satisfied.
1. Brake conditions (the brake operation amount is less than the predetermined operation amount)
2. Accelerator condition (accelerator pedal operation amount is not zero)
3. Range condition (travel range is selected)
4. Vehicle speed conditions (vehicle speed exceeds the standard vehicle speed)
5. Steering angle condition (the state where the steering angle is larger than the release determination steering angle threshold (<start determination steering angle threshold) continues for the second determination time (<first determination time))
6. Torque condition (The state where the steering torque exceeds the release determination torque threshold continues for the fourth determination time or more)
 ここで、実施例1では、実用燃費の向上と違和感軽減との両立を狙いとし、以下に示すエンジン自動停止制御処理およびエンジン再始動制御処理を実施するにあたり、車速に応じて開始判定舵角閾値および解除判定舵角閾値を補正する。エンジンコントロールユニット10は、開始判定舵角閾値および解除判定舵角閾値を設定する閾値設定部10bを備える。 Here, in the first embodiment, with the aim of achieving both improvement in practical fuel consumption and reduction in uncomfortable feeling, in performing the engine automatic stop control process and the engine restart control process described below, the start determination steering angle threshold value is determined according to the vehicle speed. And the cancellation | release determination steering angle threshold value is correct | amended. The engine control unit 10 includes a threshold setting unit 10b that sets a start determination steering angle threshold and a cancellation determination steering angle threshold.
 [エンジン自動停止制御処理]
  図2は、実施例1のエンジンコントロールユニット10で実行されるエンジン自動停止制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。この処理は、エンジン1が自動停止していない場合、所定の演算周期で繰り返し実行される。
  ステップS1では、車速条件(車速≧基準車速)が成立したか否かを判定し、YESの場合にはステップS2へ進み、NOの場合はステップS10へ進む。
  ステップS2では、ブレーキ条件(ブレーキ操作量≧所定操作量)が成立したか否かを判定し、YESの場合はステップS3へ進み、NOの場合はステップS10へ進む。
  ステップS3では、アクセル条件(アクセルペダル操作量がゼロ)が成立したか否かを判定し、YESの場合はステップS4へ進み、NOの場合はステップS10へ進む。
  ステップS4では、レンジ条件(走行レンジ選択)が成立したか否かを判定し、YESの場合はステップS5へ進み、NOの場合はステップS10へ進む。
[Engine automatic stop control processing]
FIG. 2 is a flowchart showing the flow of the engine automatic stop control process executed by the engine control unit 10 of the first embodiment, and each step will be described below. This process is repeatedly executed at a predetermined calculation cycle when the engine 1 is not automatically stopped.
In step S1, it is determined whether or not a vehicle speed condition (vehicle speed ≧ reference vehicle speed) is satisfied. If YES, the process proceeds to step S2, and if NO, the process proceeds to step S10.
In step S2, it is determined whether or not a brake condition (brake operation amount ≧ predetermined operation amount) is satisfied. If YES, the process proceeds to step S3, and if NO, the process proceeds to step S10.
In step S3, it is determined whether or not an accelerator condition (accelerator pedal operation amount is zero) is satisfied. If YES, the process proceeds to step S4, and if NO, the process proceeds to step S10.
In step S4, it is determined whether or not the range condition (travel range selection) is satisfied. If YES, the process proceeds to step S5, and if NO, the process proceeds to step S10.
 ステップS5では、閾値設定部10bにおいて、開始判定舵角閾値の初期値に対し、車速による補正を行う。車速VSPによる補正後の開始判定舵角閾値Alo1は、例えば、以下の式(1)で求めることができる。
  Alo1 = (1-VSP×Kvsp)×Alo0 …(1)
  ここで、Kvspは補正係数、Alo0は車速ゼロのときの開始判定舵角閾値とする。
  本ステップの補正により、開始判定舵角閾値は、車速が高いほど小さな値に設定される。
In step S5, the threshold value setting unit 10b corrects the initial value of the start determination steering angle threshold value based on the vehicle speed. The start determination steering angle threshold value Alo1 after correction based on the vehicle speed VSP can be obtained, for example, by the following equation (1).
Alo1 = (1-VSP × Kvsp) × Alo0… (1)
Here, Kvsp is a correction coefficient, and Alo0 is a start determination steering angle threshold value when the vehicle speed is zero.
By the correction of this step, the start determination rudder angle threshold is set to a smaller value as the vehicle speed is higher.
 ステップS6では、閾値設定部10bにおいて、車速補正された開始判定舵角閾値に対し、ウインカーの状態に応じた補正を行う。ウインカーの状態に応じた補正後の開始判定舵角閾値Alofは、例えば、以下の式(2)で求めることができる。
  Alof = Alo1×Kw …(2)
  ここで、Kwは補正係数であり、補正係数Kwは、ウインカーがオフされているとき1、対向車線側のウインカーがオンされているときKwr(<1)、非対向車線側(自車線側)のウインカーがオンされているときkwl(Kwr<kwl<1)とする。
  本ステップの補正により、開始判定舵角閾値は、ウインカーがオンされている場合にはオフされている場合よりも小さな値に設定される。また、開始判定舵角閾値は、対向車線側のウインカーがオンされている場合には非対向車線側のウインカーがオンされている場合よりも小さな値に設定される。
In step S6, the threshold setting unit 10b corrects the start determination rudder angle threshold corrected for the vehicle speed in accordance with the turn signal state. The corrected start determination rudder angle threshold value Alof according to the state of the winker can be obtained, for example, by the following equation (2).
Alof = Alo1 × Kw… (2)
Here, Kw is a correction coefficient, and the correction coefficient Kw is 1 when the turn signal is turned off, Kwr (<1) when the turn signal on the opposite lane is turned on, the non-opposing lane side (own lane side) Let kwl (Kwr <kwl <1) when the turn signal of is turned on.
By the correction of this step, the start determination rudder angle threshold is set to a smaller value when the turn signal is turned on than when the turn signal is turned off. Further, the start determination rudder angle threshold value is set to a smaller value when the turn signal on the opposite lane side is turned on than when the turn signal on the non-opposition lane side is turned on.
 ステップS7では、舵角条件(操舵角<開始判定舵角閾値の状態が第1判定時間以上継続)が成立したか否かを判定し、YESの場合はステップS8へ進み、NOの場合はステップS10へ進む。
  ステップS8では、トルク条件(操舵トルク<開始判定トルク閾値の状態が第3判定時間以上継続)が成立したか否かを判定し、YESの場合はステップS9へ進み、NOの場合にはステップS10へ進む。
  ステップS9では、エンジン停止を許可し、エンジン1を停止させる。
  ステップS10では、エンジン停止非許可とする。
In step S7, it is determined whether or not the steering angle condition (steering angle <the start determination steering angle threshold state continues for the first determination time or more) is established. If YES, the process proceeds to step S8, and if NO, step S8 is performed. Proceed to S10.
In step S8, it is determined whether or not a torque condition (steering torque <start determination torque threshold state continues for the third determination time or more) is satisfied. If YES, the process proceeds to step S9, and if NO, step S10 is determined. Proceed to
In step S9, the engine stop is permitted and the engine 1 is stopped.
In step S10, engine stop is not permitted.
 [エンジン再始動制御処理]
  図3は、実施例1のエンジンコントロールユニット10で実行されるエンジン再始動制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。この処理は、エンジン1が自動停止していない場合、所定の演算周期で繰り返し実行される。
  ステップS11では、レンジ条件(走行レンジ選択)が成立したか否かを判定し、YESの場合はステップS12へ進み、NOの場合はステップS19へ進む。
  ステップS12では、ブレーキ条件(ブレーキ操作量<所定操作量)が成立したか否かを判定し、YESの場合はステップS20へ進み、NOの場合はステップS13へ進む。
  ステップS13では、アクセル条件(アクセルペダル操作量>0)が成立したか否かを判定し、YESの場合はステップS20へ進み、NOの場合はステップS14へ進む。
  ステップS14では、車速条件(車速>基準車速)が成立したか否かを判定し、YESの場合はステップS20へ進み、NOの場合はステップS15へ進む。
[Engine restart control processing]
FIG. 3 is a flowchart showing the flow of the engine restart control process executed by the engine control unit 10 of the first embodiment. Each step will be described below. This process is repeatedly executed at a predetermined calculation cycle when the engine 1 is not automatically stopped.
In step S11, it is determined whether or not the range condition (travel range selection) is satisfied. If YES, the process proceeds to step S12, and if NO, the process proceeds to step S19.
In step S12, it is determined whether or not a brake condition (brake operation amount <predetermined operation amount) is satisfied. If YES, the process proceeds to step S20, and if NO, the process proceeds to step S13.
In step S13, it is determined whether or not an accelerator condition (accelerator pedal operation amount> 0) is satisfied. If YES, the process proceeds to step S20, and if NO, the process proceeds to step S14.
In step S14, it is determined whether or not the vehicle speed condition (vehicle speed> reference vehicle speed) is satisfied. If YES, the process proceeds to step S20, and if NO, the process proceeds to step S15.
 ステップS15では、閾値設定部10bにおいて、解除判定舵角閾値の初期値に対し、車速による補正を行う。車速VSPによる補正後の解除判定舵角閾値Ahi1は、例えば、以下の式で求めることができる。
  Ahi1 = (1-VSP×Kvsp)×Ahi0 …(3)
  ここで、Ahi0は車速ゼロのときの解除判定舵角閾値とする。
  本ステップの補正により、解除判定舵角閾値は、車速が高いほど小さな値に設定される。
In step S15, the threshold value setting unit 10b corrects the initial value of the release determination steering angle threshold value based on the vehicle speed. The cancellation determination rudder angle threshold Ahi1 after correction by the vehicle speed VSP can be obtained by the following equation, for example.
Ahi1 = (1-VSP × Kvsp) × Ahi0… (3)
Here, Ahi0 is a release determination steering angle threshold value when the vehicle speed is zero.
By the correction in this step, the cancellation determination steering angle threshold is set to a smaller value as the vehicle speed is higher.
 ステップS16では、閾値設定部10bにおいて、車速補正された解除判定舵角閾値に対し、ウインカーの状態に応じた補正を行う。ウインカーの状態に応じた補正後の解除判定舵角閾値Ahifは、例えば、以下の式で求めることができる。
  Ahif = Ahi1×Kw …(4)
  KwはステップS6と同様の方法で設定する。
  本ステップの補正により、解除判定舵角閾値は、ウインカーがオンされている場合にはオフされている場合よりも小さな値に設定される。また、解除判定舵角閾値は、対向車線側のウインカーがオンされている場合には非対向車線側のウインカーがオンされている場合よりも小さな値に設定される。
In step S16, the threshold setting unit 10b corrects the cancellation determination rudder angle threshold corrected for the vehicle speed in accordance with the turn signal state. The release determination rudder angle threshold value Ahif after correction according to the state of the winker can be obtained by the following equation, for example.
Ahif = Ahi1 × Kw (4)
Kw is set in the same manner as in step S6.
By the correction of this step, the cancellation determination steering angle threshold is set to a smaller value when the turn signal is turned on than when the turn signal is turned off. Further, the release determination rudder angle threshold is set to a smaller value when the turn signal on the opposite lane side is on than when the turn signal on the non-opposition lane side is turned on.
 ステップS17では、舵角条件(操舵角>解除判定舵角閾値の状態が第2判定時間以上継続)が成立したか否かを判定し、YESの場合はステップS20へ進み、NOの場合はステップS18へ進む。
  ステップS18では、トルク条件(操舵トルク>解除判定トルク閾値の状態が第4判定時間以上継続)が成立したか否かを判定し、YESの場合はステップS20へ進み、NOの場合はステップS19へ進む。
  ステップS19では、エンジン停止を許可し、エンジン1の停止を継続する。
  ステップS20では、エンジン停止を非許可とし、エンジン1を再始動させる。
In step S17, it is determined whether or not the steering angle condition (steering angle> the state where the release determination steering angle threshold is continued for the second determination time or longer) is established. If YES, the process proceeds to step S20. Proceed to S18.
In step S18, it is determined whether or not the torque condition (steering torque> release determination torque threshold state continues for the fourth determination time or more) is satisfied. If YES, the process proceeds to step S20. If NO, the process proceeds to step S19. move on.
In step S19, the engine stop is permitted, and the engine 1 is stopped.
In step S20, the engine stop is not permitted and the engine 1 is restarted.
 次に、作用を説明する。
  図4は、実施例1のコーストストップ制御作用を示すタイムチャートである。
  時点t1よりも前の時点では、コーストストップ制御の成立条件のうち、ブレーキ条件、アクセル条件、レンジ条件、車速条件およびトルク条件が成立しているものとする。また、ドライバはウインカーをオンしている。
  時点t1では、操舵トルクが解除判定トルク閾値Thifを超える時間が第4判定時間tThi継続したため、トルク条件が非成立となる。
Next, the operation will be described.
FIG. 4 is a time chart illustrating the coast stop control operation of the first embodiment.
It is assumed that the brake condition, the accelerator condition, the range condition, the vehicle speed condition, and the torque condition are satisfied among the conditions for establishing the coast stop control at a time point before the time point t1. The driver is turning on the turn signal.
At the time point t1, since the time during which the steering torque exceeds the release determination torque threshold Thif continues for the fourth determination time tThi, the torque condition is not satisfied.
 時点t2では、操舵角が開始判定舵角閾値Alof未満となるが、その状態が第1判定時間tTlo以上継続していないため、舵角条件は非成立のままである。
  時点t3では、操舵トルクが開始判定トルク閾値Tlof未満である状態が第3判定時間tTlo継続したため、トルク条件が成立する。
  時点t4では、操舵角が開始判定舵角閾値Alof未満である状態が第1判定時間tAlo継続したため、舵角条件が成立し、エンジン1が自動停止される。
  時点t5では、操舵トルクが解除判定トルク閾値Thifを超える時間が第4判定時間tThi継続したため、トルク条件が非成立となり、エンジン1が再始動される。
At the time point t2, the steering angle becomes less than the start determination steering angle threshold value Alof, but since the state has not continued for the first determination time tTlo, the steering angle condition remains unsatisfied.
At the time point t3, the torque condition is satisfied because the state where the steering torque is less than the start determination torque threshold value Tlof continues for the third determination time tTlo.
At time t4, the steering angle is less than the start determination steering angle threshold Alof for the first determination time tAlo, so the steering angle condition is satisfied and the engine 1 is automatically stopped.
At the time point t5, since the time during which the steering torque exceeds the release determination torque threshold value Thif continues for the fourth determination time tThi, the torque condition is not satisfied and the engine 1 is restarted.
 上記タイムチャートにおいて、車速VSPによる補正後の開始および解除判定舵角閾値Alo1,Ahi1は、式(1),(3)により、車速VSPが低下するに連れて徐々に高くなり、車両停止時に最大値となる。また、ウインカーがオンされているため、最終的な開始および解除判定舵角閾値Alof,Ahifは、式(2),(4)により、Alo1,Ahi1よりも小さな値となる。 In the above time chart, the start and release determination rudder angle threshold values Alo1, Ahi1 after correction by the vehicle speed VSP gradually increase as the vehicle speed VSP decreases according to the equations (1), (3), and are maximum when the vehicle stops. Value. Further, since the winker is turned on, the final start and release determination rudder angle threshold values Alof and Ahif are smaller than Alo1 and Ahi1 according to equations (2) and (4).
 ここで、車速による補正を実施せず、開始および解除判定閾値を一定値とした場合の実用燃費の向上と違和感軽減とのトレードオフについて説明する。
  実用燃費向上のために開始および解除判定閾値を比較的大きな値(例えば、実施例1のAlo0,Ahi0程度)に設定した場合、車速が高くなるに連れて操舵角が小さくてもドライバの曲がりたい意思は大きくなることから、比較的車速が高く操舵に関する物理量は小さいがドライバがエンジンを停止して欲しくないときにエンジンが自動停止または自動停止が維持されてしまうため、ドライバに違和感を与える。一方、違和感軽減のために開始および解除判定閾値を比較的小さな値(例えば、図4の時点t1~t3におけるAlo1,Ahi1)に設定した場合、極低車速で操舵角は大きいがドライバに曲がりたい意思が無いときにエンジンが自動停止しないまたは自動停止が継続されてしまうため、実用燃費の悪化を招く。
Here, the trade-off between the improvement of the practical fuel consumption and the reduction of the uncomfortable feeling when the start and release determination threshold values are set to constant values without performing the correction based on the vehicle speed will be described.
When the start and release determination thresholds are set to relatively large values (for example, about Alo0 and Ahi0 in the first embodiment) to improve practical fuel consumption, the driver wants to bend even if the steering angle is small as the vehicle speed increases. Since the intention is increased, the vehicle is relatively high in speed and the physical quantity related to steering is small, but the engine is automatically stopped or stopped when the driver does not want the engine to be stopped. On the other hand, if the start and release determination thresholds are set to relatively small values (for example, Alo1 and Ahi1 at time points t1 to t3 in FIG. 4) in order to reduce discomfort, the driver wants to turn to the driver at a very low vehicle speed but with a large steering angle Since the engine does not automatically stop or continues to stop when there is no intention, the practical fuel consumption deteriorates.
 これに対し、実施例1では、車速VSPが高くドライバの曲がりたい意思が強いときには、操舵角が小さいときにエンジン1が自動停止されるのを抑制でき、ドライバに与える違和感を軽減できる。逆に、車速VSPが低いときはドライバの曲がりたい意思が弱いため、操舵角が大きくてもエンジン1を自動停止させやすくすることで、実用燃費を向上できる。つまり、車速VSPが高いほど開始および解除判定舵角閾値Alof,Ahifを小さな値に設定することで、実用燃費の向上と違和感軽減とのトレードオフを解消できる。 On the other hand, in the first embodiment, when the vehicle speed VSP is high and the driver's intention to turn is strong, the engine 1 can be prevented from being automatically stopped when the steering angle is small, and the uncomfortable feeling given to the driver can be reduced. Conversely, when the vehicle speed VSP is low, the driver's willingness to turn is weak. Therefore, even if the steering angle is large, the engine 1 can be easily stopped automatically to improve the practical fuel consumption. In other words, the higher the vehicle speed VSP is, the smaller the start and release determination steering angle threshold values Alof and Ahif can be set, so that the trade-off between improvement in practical fuel consumption and reduction in discomfort can be eliminated.
 また、実施例1では、ウインカーがオンされている場合にはオフされている場合よりも開始および解除判定舵角閾値Alof,Ahifを小さな値に設定する。ウインカーがオンされている場合は、交差点や一時停止、車線変更が明らかであるため、上記のように開始および解除判定舵角閾値Alof,Ahifを設定することで、ドライバの意に反してエンジン1が自動停止されるのを抑制できると共に、ドライバの発進意思に応じてエンジン1を早期に再始動できる。 Also, in the first embodiment, when the turn signal is turned on, the start and release determination steering angle threshold values Alof, Ahif are set to a smaller value than when the turn signal is turned off. When the turn signal is on, the intersection, temporary stop, and lane change are obvious, so setting the start and release determination rudder angle thresholds Alof, Ahif as described above causes the engine 1 against the driver's will. The engine 1 can be prevented from being automatically stopped, and the engine 1 can be restarted early according to the driver's intention to start.
 このとき、対向車線側のウインカーがオンされている場合には、非対向車線側のウインカーがオンされている場合よりも開始および解除判定舵角閾値Alof,Ahifを小さな値に設定する。対向車線を横切る方向にウインカーがオンされている場合は、対向車の隙間を縫って発進するシーンであるため、上記のように開始および解除判定舵角閾値Alof,Ahifを設定することで、ドライバの意に反してエンジン1が自動停止されるのを抑制できると共に、ドライバの発進意思に応じてエンジン1を早期に再始動できる。 At this time, when the turn signal on the opposite lane side is turned on, the start and release determination rudder angle threshold values Alof and Ahif are set to a smaller value than when the turn signal on the non-opposition lane side is turned on. When the turn signal is turned on in the direction crossing the oncoming lane, it is a scene to start by sewing the gap of the oncoming vehicle, so by setting the start and release determination rudder angle thresholds Alof, Ahif as described above, the driver The engine 1 can be prevented from being automatically stopped against the intention, and the engine 1 can be restarted early according to the driver's intention to start.
 次に、効果を説明する。
  実施例1にあっては、以下に列挙する効果を奏する。
  (1) 車両が低車速で惰性走行中に操舵に関する物理量が開始判定舵角閾値Alof(第1閾値)未満となったときエンジン1を自動停止させるエンジンコントロールユニット10(エンジン制御手段)を有するエンジン制御装置において、車速が高いほど開始判定舵角閾値Alofを小さな値に設定する閾値設定部10b(閾値設定手段)を備えた。
  これにより、実用燃費の向上と違和感軽減との両立を実現できる。
Next, the effect will be described.
In Example 1, the following effects are exhibited.
(1) An engine having an engine control unit 10 (engine control means) that automatically stops the engine 1 when a physical quantity related to steering becomes less than a start determination steering angle threshold Alof (first threshold) while the vehicle is coasting at a low vehicle speed. The control device includes a threshold setting unit 10b (threshold setting means) that sets the start determination steering angle threshold Alof to a smaller value as the vehicle speed increases.
As a result, it is possible to achieve both improvement in practical fuel consumption and reduction in discomfort.
 (2) 操舵に関する物理量を操舵角とした。
  操舵角を見ることで直進に対する操舵状態を検知できるため、ドライバの曲がりたい意思を精度良く判定できる。
(2) The physical quantity related to steering is used as the steering angle.
By looking at the steering angle, it is possible to detect the steering state with respect to straight travel, and therefore it is possible to accurately determine the driver's intention to turn.
 (3) 弱電系の電源システムを有し、走行用モータを持たない車両に適用した。
  モータ走行できない車両は、ドライバに曲がる意思があるとき、エンジン1を始動させることで初めて走行可能となるため、ドライバに曲がる意思がある場合に車両が走行不能となるのを抑制できる。
(3) It was applied to a vehicle with a weak electric power system and no running motor.
A vehicle that cannot be driven by a motor can be driven for the first time by starting the engine 1 when the driver is willing to turn. Therefore, when the driver is willing to turn, the vehicle can be prevented from being disabled.
 (4) エンジンコントロールユニット10は、エンジン1の自動停止中に操舵角が解除判定舵角閾値Ahi1(第2閾値)を超えたときエンジン1を再始動させ、閾値設定部10bは、開始判定舵角閾値Alofを解除判定舵角閾値Ahifよりも小さな値に設定する。
  ドライバに曲がる意思が無い場合は、曲がる意思がある場合よりも操舵量が小さいため、開始判定舵角閾値Alofを解除判定舵角閾値Ahifよりも小さくすることで、ドライバの曲がる意思があるとき、ドライバの意に反してエンジン1が自動停止されるのを抑制できる。
(4) The engine control unit 10 restarts the engine 1 when the steering angle exceeds the release determination steering angle threshold Ahi1 (second threshold) during the automatic stop of the engine 1, and the threshold setting unit 10b The angle threshold value Alof is set to a value smaller than the release determination steering angle threshold value Ahif.
When the driver is not willing to turn, the steering amount is smaller than when there is a intention to turn, so by making the start determination rudder angle threshold Alof smaller than the release determination rudder angle threshold Ahif, when the driver has an intention to bend, It is possible to suppress the engine 1 from being automatically stopped against the intention of the driver.
 (5) エンジンコントロールユニット10は、操舵角が開始判定舵角閾値Alof未満である時間が第1判定時間tAlo継続したときエンジン1を自動停止させ、その後、操舵角が解除判定舵角閾値Ahifを超えた時間が第1判定時間tAloよりも短い第2判定時間tAhi継続したときエンジン1を再始動させる。
  これにより、ドライバに曲がる意思がある場合には、エンジン1を素早く再始動させ、車両を走行させることができる。
(5) The engine control unit 10 automatically stops the engine 1 when the time during which the steering angle is less than the start determination steering angle threshold Alof continues for the first determination time tAlo, and then the steering angle sets the release determination steering angle threshold Ahif. The engine 1 is restarted when the elapsed time exceeds the second determination time tAhi, which is shorter than the first determination time tAlo.
As a result, when the driver intends to turn, the engine 1 can be restarted quickly and the vehicle can travel.
 (6) 閾値設定部10bは、ウインカーがオンされている場合にはオフされている場合よりも開始判定舵角閾値Alofおよび解除判定舵角閾値Ahifを小さな値に設定する。
  これにより、ドライバの意に反してエンジン1が自動停止されるのを抑制できると共に、ドライバの発進意思に応じてエンジン1を早期に再始動できる。
(6) The threshold setting unit 10b sets the start determination rudder angle threshold Alof and the release determination rudder angle threshold Ahif to smaller values when the turn signal is on than when the turn signal is off.
As a result, the engine 1 can be prevented from being automatically stopped against the driver's will, and the engine 1 can be restarted early according to the driver's intention to start.
 (7) 閾値設定部10bは、対向車線側のウインカーがオンされている場合には、非対向車線側のウインカーがオンされている場合よりも開始判定舵角閾値Alofおよび解除判定舵角閾値Ahifを小さな値に設定する。
  これにより、ドライバの意に反してエンジン1が自動停止されるのを抑制できると共に、ドライバの発進意思に応じてエンジン1を早期に再始動できる。
(7) When the oncoming lane side blinker is turned on, the threshold setting unit 10b starts and determines the start determination rudder angle threshold Alof and the release determination rudder angle threshold Ahif than when the non-opposing lane side turn signal is on. Set to a small value.
As a result, the engine 1 can be prevented from being automatically stopped against the driver's will, and the engine 1 can be restarted early according to the driver's intention to start.
 (他の実施例)
  以上、本発明に係るエンジンの自動停止再始動制御装置を、各実施例に基づいて説明したが、上記構成に限られず本発明の範囲を逸脱しない範囲で他の構成を取り得る。
  例えば、実施例では、操舵に関する物理量として操舵角を用いた例を示したが、操舵角に代えて操舵トルクや操舵速度を用いても良い。操舵トルクや操舵速度を見ることで、ドライバが操舵中であるか否かを検知できるため、ドライバの曲がりたい意思をより正確に判定でき、実施例と同様の作用効果を得ることができる。なお、操舵トルクを用いる場合、実施例のトルク条件は不要である。
  また、操舵に関する物理量として、操舵角、操舵トルク、操舵速度のうちの2つまたは3つを組み合わせた構成としても良い。
(Other examples)
The automatic stop / restart control device for an engine according to the present invention has been described based on each embodiment. However, the present invention is not limited to the above-described configuration, and other configurations can be adopted without departing from the scope of the present invention.
For example, in the embodiment, an example in which a steering angle is used as a physical quantity related to steering is shown, but a steering torque or a steering speed may be used instead of the steering angle. By looking at the steering torque and the steering speed, it is possible to detect whether or not the driver is steering, so that the driver's intention to bend can be determined more accurately, and the same effects as the embodiment can be obtained. Note that when the steering torque is used, the torque condition of the embodiment is not necessary.
Moreover, it is good also as a structure which combined two or three of a steering angle, a steering torque, and a steering speed as a physical quantity regarding steering.

Claims (7)

  1.  車両が低車速で惰性走行中に操舵に関する物理量が第1閾値未満となったときエンジンを自動停止させるエンジン制御手段を有するエンジン制御装置において、
     車速が高いほど前記第1閾値を小さな値に設定する閾値設定手段を備えたことを特徴とするエンジン制御装置。
    In an engine control device having engine control means for automatically stopping an engine when a physical quantity related to steering becomes less than a first threshold value while the vehicle is coasting at a low vehicle speed,
    An engine control device comprising threshold setting means for setting the first threshold to a smaller value as the vehicle speed is higher.
  2.  請求項1に記載のエンジン制御装置において、
     前記操舵に関する物理量は、操舵トルク、操舵速度または操舵角の少なくとも1つであることを特徴とするエンジン制御装置。
    The engine control device according to claim 1,
    The engine control device according to claim 1, wherein the physical quantity related to the steering is at least one of a steering torque, a steering speed, and a steering angle.
  3.  請求項1または請求項2に記載のエンジン制御装置において、
     弱電系の電源システムを有し、走行用モータを持たない車両に適用したことを特徴とするエンジン制御装置。
    The engine control device according to claim 1 or 2,
    An engine control device applied to a vehicle having a weak electric power supply system and not having a motor for traveling.
  4.  請求項1ないし請求項3のいずれか1項に記載のエンジン制御装置において、
     前記エンジン制御手段は、エンジンの自動停止中に操舵に関する物理量が第2閾値を超えたときエンジンを再始動させ、
     前記閾値設定手段は、前記第1閾値を前記第2閾値よりも小さな値に設定することを特徴とするエンジン制御装置。
    The engine control device according to any one of claims 1 to 3,
    The engine control means restarts the engine when a physical quantity related to steering exceeds a second threshold during automatic engine stop,
    The engine control device, wherein the threshold value setting means sets the first threshold value to a value smaller than the second threshold value.
  5.  請求項4に記載のエンジン制御装置において、
     前記エンジン制御手段は、操舵に関する物理量が前記第1閾値未満である時間が第1判定時間継続したときエンジンを自動停止させ、その後、前記操舵に関する物理量が前記第2閾値を超えた時間が前記第1判定時間よりも短い第2判定時間継続したときエンジンを再始動させることを特徴とするエンジン制御装置。
    The engine control apparatus according to claim 4, wherein
    The engine control means automatically stops the engine when a time during which a physical quantity related to steering is less than the first threshold continues for a first determination time, and thereafter, a time when the physical quantity related to steering exceeds the second threshold. An engine control device that restarts an engine when a second determination time shorter than one determination time is continued.
  6.  請求項4または請求項5に記載のエンジン制御装置において、
     前記閾値設定手段は、ウインカーがオンされている場合にはオフされている場合よりも前記第1閾値および前記第2閾値を小さな値に設定することを特徴とするエンジン制御装置。
    In the engine control device according to claim 4 or 5,
    The engine control apparatus according to claim 1, wherein the threshold value setting means sets the first threshold value and the second threshold value to a smaller value when the turn signal is turned on than when the turn signal is turned off.
  7.  請求項4ないし請求項6のいずれか1項に記載のエンジン制御装置において、
     前記閾値設定手段は、対向車線側のウインカーがオンされている場合には、非対向車線側のウインカーがオンされている場合よりも前記第1閾値および前記第2閾値を小さな値に設定することを特徴とするエンジン制御装置。
    The engine control device according to any one of claims 4 to 6,
    The threshold value setting means sets the first threshold value and the second threshold value to a smaller value when the turn signal on the opposite lane side is on than when the turn signal on the non-opposition lane side is turned on. An engine control device.
PCT/JP2013/059203 2012-06-01 2013-03-28 Engine control device WO2013179753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-125577 2012-06-01
JP2012125577A JP2013249781A (en) 2012-06-01 2012-06-01 Engine control device

Publications (1)

Publication Number Publication Date
WO2013179753A1 true WO2013179753A1 (en) 2013-12-05

Family

ID=49672961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059203 WO2013179753A1 (en) 2012-06-01 2013-03-28 Engine control device

Country Status (2)

Country Link
JP (1) JP2013249781A (en)
WO (1) WO2013179753A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304086A1 (en) * 2015-04-14 2016-10-20 Ford Global Technologies, Llc Method for increasing electric operation in hybrid electric vehicles
CN109742985A (en) * 2019-01-30 2019-05-10 广东工业大学 A kind of the weak magnetic property calculation method and system of permanent magnet synchronous motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966987B2 (en) * 2013-03-22 2016-08-10 トヨタ自動車株式会社 Vehicle control device
JP6257315B2 (en) * 2013-12-25 2018-01-10 ダイハツ工業株式会社 Vehicle control device
JP6567967B2 (en) * 2015-12-24 2019-08-28 ダイハツ工業株式会社 Engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932599A (en) * 1995-07-21 1997-02-04 Denso Corp Automatic starting and stopping device of internal combustion engine
JP2007270767A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Engine starter
JP2007270791A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Engine starter
WO2011021305A1 (en) * 2009-08-21 2011-02-24 トヨタ自動車株式会社 Engine control device
JP2012067702A (en) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd Engine control device and method of idle stop vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3747832B2 (en) * 2001-10-04 2006-02-22 日産自動車株式会社 Vehicle with automatic engine stop function
JP5569089B2 (en) * 2010-03-26 2014-08-13 株式会社デンソー Idle stop control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932599A (en) * 1995-07-21 1997-02-04 Denso Corp Automatic starting and stopping device of internal combustion engine
JP2007270767A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Engine starter
JP2007270791A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Engine starter
WO2011021305A1 (en) * 2009-08-21 2011-02-24 トヨタ自動車株式会社 Engine control device
JP2012067702A (en) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd Engine control device and method of idle stop vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304086A1 (en) * 2015-04-14 2016-10-20 Ford Global Technologies, Llc Method for increasing electric operation in hybrid electric vehicles
US9932914B2 (en) * 2015-04-14 2018-04-03 Ford Global Technologies, Llc Method for increasing electric operation in hybrid electric vehicles
CN109742985A (en) * 2019-01-30 2019-05-10 广东工业大学 A kind of the weak magnetic property calculation method and system of permanent magnet synchronous motor
CN109742985B (en) * 2019-01-30 2021-01-26 广东工业大学 Weak magnetic performance calculation method and system of permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP2013249781A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5870660B2 (en) Vehicle engine automatic control device
EP3179125B1 (en) Vehicle control device, and vehicle control method
WO2013077114A1 (en) Automatic engine-stop control device for vehicle
WO2013179753A1 (en) Engine control device
JP5990947B2 (en) Vehicle control device
WO2017203874A1 (en) Control device and control method for vehicle comprising continuously variable transmission
JP2015166561A (en) Engine automatic controller
US10501083B2 (en) Vehicle control device and vehicle control method
WO2013125327A1 (en) Engine automatic stop and restart control device
JP6071066B2 (en) Control device for automatic engine stop vehicle
JP4159527B2 (en) Engine stop control device for vehicle
JP5708185B2 (en) Vehicle control device
JP2019203527A (en) Vehicle control device
JP2016113947A (en) Vehicular control device
JP7152893B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5966987B2 (en) Vehicle control device
JP6481536B2 (en) ENGINE CONTROL METHOD AND ENGINE CONTROL DEVICE
JP2017048706A (en) Drive control device for vehicle and control method of drive control device for vehicle
JP6187402B2 (en) Control device for vehicle drive unit
JP5935549B2 (en) Automatic engine stop control device for vehicle
JP2019031999A (en) Controller of continuously variable transmission
JP2018114831A (en) Vehicle and method for controlling vehicle
JP2018115703A (en) Vehicle and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798095

Country of ref document: EP

Kind code of ref document: A1