WO2013179572A1 - Fourier transform spectrometer and fourier transform spectroscopic method - Google Patents

Fourier transform spectrometer and fourier transform spectroscopic method Download PDF

Info

Publication number
WO2013179572A1
WO2013179572A1 PCT/JP2013/002882 JP2013002882W WO2013179572A1 WO 2013179572 A1 WO2013179572 A1 WO 2013179572A1 JP 2013002882 W JP2013002882 W JP 2013002882W WO 2013179572 A1 WO2013179572 A1 WO 2013179572A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
light
unit
fourier transform
interferogram
Prior art date
Application number
PCT/JP2013/002882
Other languages
French (fr)
Japanese (ja)
Inventor
長井 慶郎
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014518248A priority Critical patent/JP5915737B2/en
Publication of WO2013179572A1 publication Critical patent/WO2013179572A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry

Definitions

  • the present invention relates to a Fourier transform spectrometer and a Fourier transform spectroscopic method, and in particular, a Fourier transform spectrometer and a Fourier transform type using a moving mirror that reciprocally vibrates in the optical axis direction as an optical path difference forming optical element of an interferometer. It relates to a spectroscopic method.
  • a spectrometer is a device that measures a spectrum representing a component (light intensity) of each wavelength (each wave number) in light to be measured.
  • a Fourier transform spectrometer that measures the interference light of the light to be measured with an interferometer and obtains the spectrum of the light to be measured by Fourier transforming the measurement result.
  • the output of the interferometer is a composite waveform in which light of a plurality of wavelengths included in the light to be measured is interfered at once by the interferometer, and is called an interferogram.
  • the spectrum of the light to be measured is obtained by Fourier transforming the interferogram.
  • This interferogram has a profile that has one or a plurality of steep peaks in a predetermined range and a substantially zero level in the remaining range, and the center peak of the one or more steep peaks has a center burst. Called.
  • the interferometer of such a Fourier transform type spectrometer is configured to include a plurality of optical elements that receive predetermined light and form two optical paths between the incident position of the predetermined light and the interference position,
  • the plurality of optical elements include an optical path difference forming optical element that generates an optical path difference between the two optical paths by moving in the optical axis direction.
  • Examples of the optical path difference forming optical element include a moving mirror that scans a scanning range along the optical axis direction at a constant speed.
  • a movable mirror usually uses a gas bearing or a voice coil motor to drive the movable mirror, so that the interferometer becomes relatively large. For this reason, in order to achieve further miniaturization, for example, moving mirrors using parallel movement mechanisms disclosed in Patent Document 1 and Patent Document 2 have been proposed.
  • the movable mirror of the parallel movement mechanism disclosed in Patent Document 1 and Patent Document 2 is between the first and second leaf springs arranged opposite to each other and the first and second leaf springs, and both ends thereof.
  • First and second supports respectively disposed on the first and second plate springs, and provided on a surface of one end of the first plate spring, and the first and second plates.
  • a piezoelectric element that translates one of the first and second support bodies in the opposing direction of the first and second leaf springs by bending one of the springs, and the first plate On the surface of the other end of the spring, a mirror surface region for reflecting light is provided.
  • the movable mirror of the parallel movement mechanism When the piezoelectric element is extended, the movable mirror of the parallel movement mechanism having such a configuration is deformed so that the first leaf spring is convex upward, and as a result, the mirror surface area is displaced downward in the facing direction. When the piezoelectric element is reduced, the first leaf spring is deformed so as to protrude downward, and as a result, the mirror surface area is displaced upward in the facing direction.
  • the movable mirror of the parallel movement mechanism repeats the displacement by resonance in order to obtain a large amount of displacement.
  • the amplitude of the interferogram is modulated by the influence of the frequency characteristics of the electric circuit that receives the interference light from the interferometer of the measured light, particularly the amplifier, and the amplitude of the spectrum obtained by the Fourier transform of the interferogram Will also change. That is, an error occurs in the spectral intensity of the spectral result.
  • the present invention has been made in view of the above-described circumstances, and its purpose is to obtain a more accurate measurement result even when external vibration having a frequency close to the resonance frequency causing the swell is applied. It is to provide a Fourier transform spectrometer and a Fourier transform spectrometer that can be used.
  • a Fourier transform spectrometer and a Fourier transform spectroscopic method include a time based on an amplitude variation period in an optical path difference forming optical element that generates an optical path difference between two optical paths of an interferometer.
  • a plurality of interferograms of predetermined light are continuously measured, and a spectrum is obtained based on the plurality of interferograms. For this reason, such a Fourier transform spectrometer and the method can obtain a more accurate measurement result even when an external vibration having a frequency close to the resonance frequency causing the swell is applied.
  • the Fourier transform spectrometer is a diagram showing a waveform (interferogram) of interference light of measured light to be measured. It is a figure which shows the relationship between the said interferogram and a window function. It is a figure which shows the frequency characteristic of the amplification part of the light reception process part in the said Fourier-transform type spectrometer.
  • the Fourier transform type spectrometer it is a schematic diagram showing the relationship between the frequency characteristics of the amplification unit in the light reception processing unit and the frequency band of the signal included in the interferogram.
  • FIG. 5 is a diagram for explaining a calculation method of a first mode of a vibration period in a moving mirror in the Fourier transform spectrometer.
  • FIG. 5 is a diagram for explaining a calculation method of a second aspect of a vibration period in a moving mirror in the Fourier transform spectrometer. It is a figure for demonstrating the mode of writing and reading of the amplitude of the moving mirror by the circular buffer in the said Fourier-transform type spectrometer.
  • FIG. 1 is a block diagram showing a configuration of a Fourier transform spectrometer in the embodiment.
  • FIG. 2 is a diagram mainly illustrating a configuration of an interferometer in the Fourier transform spectrometer according to the embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of the light receiving processing unit 20 in the Fourier transform spectrometer according to the embodiment.
  • FIG. 4 is a diagram illustrating an interference waveform of laser light in the Fourier transform spectrometer according to the embodiment as an example. The horizontal axis in FIG. 4 is the optical path difference, and the vertical axis is the intensity of the interference waveform.
  • FIG. 4 The horizontal axis in FIG. 4 is the optical path difference, and the vertical axis is the intensity of the interference waveform.
  • FIG. 5 is a perspective view illustrating a configuration of a movable mirror in the interferometer of the Fourier transform spectrometer according to the embodiment.
  • FIG. 6 is a cross-sectional view showing a state of reciprocal vibration of the movable mirror in the Fourier transform spectrometer of the embodiment. 6A shows a state in the case of displacement downward in the drawing indicated by an arrow, and FIG. FIG. 6C shows a state of reciprocal vibration at one end of the movable mirror 115.
  • a Fourier transform spectrometer (hereinafter abbreviated as “FT spectrometer”) D in the embodiment is an apparatus for measuring a spectrum of light to be measured, and measures the light to be measured with an interferometer.
  • This is a device for obtaining the spectrum of the light to be measured by Fourier transforming the waveform (interferogram) of the measured interference light of the light to be measured.
  • the transformation target to be Fourier-transformed to obtain the spectrum of the light to be measured includes the interference.
  • An integrated interferogram obtained by integrating a plurality of interferograms of the light to be measured generated by a meter is used.
  • Such an FT spectrometer D is reflected by the measurement light source unit 50 for irradiating the measurement light to the sample SM, which is an object to be measured, and the sample SM.
  • the reflected light of the measurement light is incident as the measurement light, and the interferometer 11 that emits the interference light of the measurement light, and the interference light of the measurement light obtained by the interferometer 11 are received and photoelectrically converted.
  • a light reception processing unit 20 that outputs an electrical signal related to the waveform of the interference light of the light to be measured (an electrical signal representing a light intensity change in the interference light of the light to be measured), and a sampling timing at which measurement data is sampled by the light reception processing unit 20
  • generate, the control calculating part 41, the input part 42, and the output part 43 are provided.
  • the measurement light source unit 50 is a device that irradiates the sample SM with measurement light with a predetermined geometry, and includes, for example, a measurement light source 51 (see FIG. 2) and its peripheral circuits.
  • the measurement light source 51 is a device that emits measurement light and irradiates the sample SM with the measurement light with a geometry of 45: 0 degrees, for example.
  • the measurement light is used to measure the spectrum of the reflected light in the sample SM, and is light having a continuous spectrum in a predetermined wavelength band set in advance. In this embodiment, for example, a halogen lamp is used as such a measurement light source 51.
  • the measurement light emitted from the measurement light source 51 is incident on the surface (measurement surface SF) of the sample SM at an incident angle of 45 degrees as shown in FIG. Reflected by the SM, the reflected light of the reflected measurement light is measured from the 0 degree direction. That is, the component of the reflected light reflected in the normal direction (0 degree) of the measurement surface enters the interferometer 11 as the light to be measured.
  • the FT spectrometer D of the present embodiment is a reflection type in which the reflected light of the measurement light reflected by the sample SM is the light to be measured.
  • the light to be measured is reflected light of the measurement light reflected by the sample SM.
  • the light to be measured may be light re-radiated from the sample SM (for example, fluorescence emission) by irradiating the measurement light.
  • the light may be light emitted by the sample SM without being irradiated with the measurement light.
  • the reflective FT spectrometer D can measure not only the reflected light but also such re-radiated light and self-luminous light.
  • the FT spectrometer D may be a transmission type that measures measurement light that has passed through the sample, and the light to be measured may be measurement light that has passed through the sample.
  • the interferometer 11 receives the light to be measured, branches the incident light to be measured into two first and second light to be measured, and each of the branched first and second light to be measured, It travels (propagates) to each of the first and second optical paths, which are two different paths, and merges again. Between this branch point (branch position) and a merge point (merging position, interference position) If there is an optical path difference between the first and second optical paths, a phase difference is generated at the time of the merging, so that the light is shaded by the merging.
  • an interferometer having various types of first and second optical paths such as a Mach-Zehnder interferometer can be used. In this embodiment, as shown in FIG. It is constituted by.
  • the interferometer 11 includes a semi-transparent mirror (half mirror) 112, a fixed mirror 114, and a moving mirror 115 whose light reflecting surface moves in the optical axis direction as a plurality of optical elements.
  • the fixed mirror 114 and the movable mirror 115 are arranged so that the normals of the mirror surfaces are orthogonal to each other, and the semi-transparent mirror 112 has a normal line corresponding to each of the normal lines of the fixed mirror 114 and the movable mirror 115.
  • the light to be measured incident on the interferometer 11 is branched into two first and second light to be measured by the semi-transparent mirror 112.
  • the branched first first measured light is reflected by the semi-transparent mirror 112 and enters the fixed mirror 114.
  • the first light to be measured is reflected by the fixed mirror 114 and returns to the semi-transparent mirror 112 again following the optical path that has come.
  • the other branched second measured light passes through the semi-transparent mirror 112 and enters the movable mirror 115.
  • This second light to be measured is reflected by the movable mirror 115, and reversely follows the optical path that has come to return to the semi-transparent mirror 112 again.
  • the first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other.
  • the light to be measured is incident on the interferometer 11 along the normal direction on the mirror surface of the movable mirror 115, and the interference light of the light to be measured is reflected on the mirror surface of the fixed mirror 114.
  • the light is emitted from the interferometer 11 along the normal direction.
  • the interferometer 11 is arranged on the reflection side of the semi-transparent mirror 112 reflected by the semi-transparent mirror 112 when the light to be measured is branched into two first and second measured light beams by the semi-transparent mirror 112.
  • a phase compensation plate 113 is further provided. That is, in the present embodiment, the first measured light reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, and the first measured light reflected by the fixed mirror 114 is phase compensated. The light enters the semi-transparent mirror 112 again through the plate 113.
  • the phase compensation plate 113 is a phase difference between the first measured light and the second measured light, which is caused by the difference in the number of times the first measured light is transmitted through the semi-transparent mirror 112 and the number of times the second measured light is transmitted through the semi-transmissive mirror 112 Is used to compensate for the phase difference.
  • the first measured light is transmitted from the incident position of the measured light through the semi-transparent mirror 112, the phase compensation plate 113, the fixed mirror 114, and the phase compensation plate 113 in this order.
  • the second measured light follows a second optical path from the incident position of the measured light to reach the semi-transmissive mirror 112 again through the semi-transmissive mirror 112 and the movable mirror 115 in this order.
  • the intensity of light caused by the optical path difference generated by the moving mirror 115 is generated.
  • a collimator lens 111 is disposed as an incident optical system at an appropriate position between the sample surface SF and the semi-transparent mirror 112 in order to cause the light to be measured to enter the semi-transparent mirror 112 with parallel light.
  • a condensing lens 116 is further disposed as an emission optical system at an appropriate position between the light receiving unit 21 and the light receiving unit 21.
  • the movable mirror 115 of the interferometer 11 will be further described.
  • the movable mirror 115 is an example of an optical path difference forming optical element, and an optical element that generates an optical path difference between the two first and second optical paths by using resonance vibration is used.
  • the movable mirror 115 reciprocates twice or more in the optical axis direction in order to generate a plurality of interferograms of the light to be measured.
  • the movable mirror 115 for example, a movable mirror of a parallel movement mechanism disclosed in Patent Document 1 and Patent Document 2 can be used. More specifically, as shown in FIG. 5, the movable mirror 115 includes first and second leaf springs 151 and 152 arranged in parallel to face each other, and the first and second leaf springs 151 and 152. Between the first and second leaf springs 151 and 152 and the first support member 153 arranged to be connected to the first and second leaf springs 151 and 152 at one end between the first and second leaf springs 151 and 152.
  • a second support 154 that is connected to the first and second leaf springs 151 and 152 at the other end separated from the first support 153, and an upper surface of the other end of the first leaf spring 151;
  • the piezoelectric element 155 is disposed, and a mirror surface region 156 formed on the upper surface at one end of the first leaf spring 151 is provided. That is, the piezoelectric element 155 is disposed above the second support 154 in the first plate spring 151 and on the surface opposite to the second support 154.
  • the mirror surface region 156 is disposed above the first support 153 in the first leaf spring 151 and on the surface (main outer surface) opposite to the second support 154.
  • the piezoelectric element 155 has a structure in which a piezoelectric material 155a such as PZT (lead zirconate titanate), which is a piezoelectric material, is sandwiched between a pair of electrodes 155b and 155c (see FIG. 5).
  • the mirror surface region 156 is formed by attaching a mirror or forming a thin film of metal such as aluminum.
  • the movable mirror 115 is manufactured by, for example, MEMS (Micro Electro Mechanical Systems) technology.
  • the first leaf spring 151 is deformed so as to be convex upward.
  • the piezoelectric element 155 shrinks while the first leaf spring 151 and 152 are displaced downward in the opposing direction, the first leaf spring 151 is deformed to be convex downward as shown in FIG. 6B.
  • the mirror surface region 16 is displaced upward in the facing direction.
  • the movable mirror 115 repeats the displacement by resonance in order to obtain a large amount of displacement, and reciprocates along the optical axis direction.
  • the movable mirror 15 when there is no distortion in the reciprocating movement, the movable mirror 15 has an origin position X0 (center position of vibration amplitude) at which the displacement amount becomes 0 (zero) and a displacement amount from the origin position X0. Is displaced in a substantially sinusoidal shape with the passage of time, and vibrates accurately at a constant frequency and at a constant period.
  • the movable mirror 115 includes a driving unit configured by a parallel leaf spring structure including the first and second leaf springs 151 and 152 arranged in parallel to face each other, and the first and second leaf springs 151 and 152. And a mirror surface 156 serving as a reflection surface formed on one main outer surface of the.
  • the optical path difference is caused by the reflection surface moving in parallel along the optical axis by the above-described resonance driving of the driving unit.
  • the light receiving processing unit 20 includes a first light receiving unit 21, an amplifying unit 22, a high pass filter 23, and a low pass filter (Low Pass Filter). 24 and an analog-digital converter (hereinafter referred to as “AD converter”) 25.
  • AD converter analog-digital converter
  • the first light receiving unit 21 is a circuit that outputs an electric signal corresponding to the light intensity in the interference light of the measurement light by receiving and photoelectrically converting the interference light of the measurement light obtained by the interferometer 11. .
  • the FT spectrometer D of the present embodiment is, for example, a specification whose measurement object is light in the infrared region with a wavelength of 1200 nm or more, more specifically, light in the infrared region with a wavelength of 1200 nm or more to 2500 nm or less.
  • the first light receiving unit 21 is, for example, an infrared sensor configured to include such an InGaAs photodiode and its peripheral circuit that can receive such infrared light.
  • the first light receiving unit 21 outputs the light reception result to the amplification unit 22.
  • the amplifying unit 22 is a circuit that amplifies the output (amplification result) of the first light receiving unit 21 with a predetermined amplification factor, and includes an amplifier such as an operational amplifier and its peripheral circuits.
  • the amplification unit 22 outputs the amplification result to the high pass filter 23.
  • the high-pass filter 23 is a circuit for passing a signal having a frequency equal to or higher than a predetermined cutoff frequency and cutting low-frequency noise, and outputs the filtered result to the low-pass filter 24.
  • the low-pass filter 24 is a circuit for passing a signal having a frequency equal to or lower than a predetermined cutoff frequency and cutting high-frequency noise, and outputs the filtered result to the AD conversion unit 25.
  • the high-pass filter 23 and the low-pass filter 24 constitute a band-pass filter that passes only a desired frequency band in order to cut noise.
  • the AD conversion unit 25 is a circuit that converts the output of the first light receiving unit 21 input via the amplification unit 22, the high pass filter 23, and the low pass filter 24 from an analog signal to a digital signal (AD conversion).
  • the AD conversion timing (sampling timing) is executed at the zero cross timing input from the zero cross detector 37 described later.
  • the AD conversion unit 25 outputs a digital signal as a result of the conversion to the control calculation unit 41.
  • the timing generation unit 30 includes, for example, a position measurement light source 31, a second light receiving unit 36, and a zero cross detection unit 37. Then, in order to obtain the interference light of the laser light emitted from the position measuring light source 31 with the interferometer 11, the timing generation unit 30 has a collimator lens 32, an optical multiplexer 33, as shown in FIG. An optical demultiplexer 34 and a condenser lens 35 are further provided.
  • the position measuring light source 31 is a light source device that emits monochromatic laser light, and includes, for example, a semiconductor laser that emits red laser light having a wavelength of 680 nm.
  • a collimator lens 32 and an optical multiplexer 33 are incident optical systems for causing the laser light emitted from the position measuring light source 31 to enter the interferometer 11 as parallel light.
  • the optical multiplexer 33 is, for example, a dichroic mirror that reflects laser light and transmits measured light, and a collimator so that the normal line intersects the normal line (optical axis) of the movable mirror 115 at 45 degrees. It is disposed between the lens 111 and the semi-transparent mirror 112.
  • the collimator lens 32 is, for example, a biconvex lens, and the laser beam emitted from the position measuring light source 31 is incident on the optical multiplexer 33 arranged in this manner at an incident angle of 45 degrees as appropriate. It is arranged in the position.
  • the optical demultiplexer 34 and the condensing lens 35 are emission optical systems for taking out the interference light of the laser light generated by the interferometer 11 from the interferometer 11.
  • the optical demultiplexer 34 is, for example, a dichroic mirror that reflects the interference light of the laser light and transmits the interference light of the light to be measured, and its normal line is 45 degrees with respect to the normal line (optical axis) of the fixed mirror 114.
  • the condensing lens 35 is, for example, a biconvex lens, and condenses the interference light of the laser beam emitted at an emission angle of 45 degrees in the optical demultiplexer 34 arranged in this manner, thereby the second light receiving unit 36. To enter.
  • the optical elements such as the collimator lens 32, the optical multiplexer 33, the optical demultiplexer 34, and the condenser lens 35 are arranged in this way, the monochromatic laser light emitted from the position measuring light source 31 is converted into the collimator lens 32.
  • the optical path is bent by about 90 degrees by the dichroic mirror 33 of the optical multiplexer 33 and travels along the optical axis of the interferometer 11 (normal direction on the mirror surface of the movable mirror 115). . Therefore, this laser light travels in the interferometer 11 as with the light to be measured, and the interferometer 11 generates the interference light.
  • the interference light of this laser light is bent by about 90 degrees by the dichroic mirror 34 of the optical demultiplexer 34, taken out from the interferometer 11, collected by the condenser lens 35, and condensed by the second light receiving unit 36. Is received.
  • the second light receiving unit 36 receives the interference light of the laser light obtained by the interferometer 11 and photoelectrically converts it, thereby outputting an electric signal corresponding to the light intensity of the interference light of the laser light. Circuit.
  • the second light receiving unit 36 is, for example, a light receiving sensor including a silicon photodiode (SPD) and its peripheral circuit.
  • SPD silicon photodiode
  • the second light receiving unit 36 outputs an electrical signal corresponding to the light intensity of the interference light of the laser light to the zero cross detection unit 37.
  • the zero cross detection unit 37 is a circuit that detects a timing (zero cross timing) at which the electric signal corresponding to the light intensity of the interference light of the laser beam input from the second light receiving unit 36 becomes zero.
  • the zero cross timing is a position on the time axis at which the electric signal becomes a predetermined zero.
  • the interference light of the laser light becomes strong and weak in a sine wave shape according to the amount of movement.
  • the movable mirror 115 of the interferometer 11 moves by a length that is 1 ⁇ 2 of the wavelength of the laser light
  • the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the movable mirror 115 is There is a 2 ⁇ shift before and after.
  • the interference light of the laser light repeatedly increases and decreases in a sine wave shape as the moving mirror 115 moves.
  • the zero cross detector 37 detects the zero cross of the electrical signal that repeats the strength in a sine wave form.
  • the zero-cross detection unit 37 outputs the detected zero-cross timing to the AD conversion unit 23, and the AD conversion unit 23 outputs the interference light of the measured light input from the first light receiving unit 21 at the zero-cross timing.
  • An electrical signal corresponding to the light intensity is sampled and AD converted.
  • the moving mirror operation detection unit 200 is a sensor device that detects the movement of the moving mirror 115 in order to detect one scan of the moving mirror 115 in order to obtain the amplitude of the moving mirror 115.
  • the moving mirror operation detection unit 200 includes a photo reflector as a detection sensor.
  • This photoreflector includes a light emitting element that irradiates light on the back surface of the movable mirror 115 and a light receiving element that receives light reflected on the back surface of the movable mirror 115, and the amount of reflected light that changes according to the movement of the movable mirror 115.
  • the movement of the movable mirror 115 is detected by detection, and this photo reflector outputs a signal synchronized with the movement of the movable mirror 115. Therefore, one cycle of the output of the photo reflector corresponds to one reciprocation of the movable mirror 115, and one scan of the movable mirror 115 is detected from the output of the photo reflector.
  • control calculation unit 41 controls each part of the FT spectrometer D according to the function of each part in order to obtain the spectrum of the light to be measured.
  • the control calculation unit 41 is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Erasable Programmable Read Only) that stores various programs executed by the CPU and data necessary for the execution in advance.
  • a non-volatile memory element such as Memory
  • a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU
  • microcomputer including a peripheral circuit thereof.
  • the control calculation unit 41 may further include a relatively large capacity storage device such as a hard disk, for example, in order to store data output from the AD conversion unit 23. Then, the control calculation unit 41 is functionally executed by executing a program, such as a sampling data storage unit 411, a center burst position calculation unit 412, an integrated interferogram calculation unit 413, a spectrum calculation unit 414, and a moving mirror amplitude storage.
  • a program such as a sampling data storage unit 411, a center burst position calculation unit 412, an integrated interferogram calculation unit 413, a spectrum calculation unit 414, and a moving mirror amplitude storage.
  • the unit 415 and the amplitude fluctuation calculation unit 416 are configured.
  • the sampling data storage unit 411 stores measurement data related to the interference light of the light to be measured output from the AD conversion unit 23. As described above, the measurement data is obtained by sampling the electrical signal corresponding to the light intensity in the interference light of the light to be measured by the AD conversion unit 23 at the zero cross timing detected by the zero cross detection unit 37.
  • the center burst position calculation unit 412 obtains the position of the center burst from the measurement data stored in the sampling data storage unit 411 by a known conventional method.
  • the integrated interferogram calculation unit 413 aligns a plurality of interferograms obtained by continuously measuring the measured light at a plurality of times at each center burst position obtained by the center burst position calculation unit 412. While performing, the integrated interferogram is obtained by integrating.
  • the spectrum calculation unit 414 obtains a spectrum by Fourier-transforming an integrated interferogram obtained by integrating a plurality of interferograms by the integrated interferogram calculating unit 413.
  • the moving mirror amplitude storage unit 415 and the amplitude fluctuation calculation unit 416 will be described later.
  • the input unit 42 for example, various commands such as a command for instructing the measurement start of the sample SM, and a spectrum such as an input of an identifier in the sample SM to be measured and a selection input of a window function used for Fourier transform, for example.
  • a device that inputs various data necessary for measurement to the FT spectrometer D such as a keyboard and a mouse.
  • the output unit 43 is a device that outputs the command and data input from the input unit 42 and the spectrum of the light to be measured measured by the FT spectrometer D.
  • the output unit 43 is a CRT display, LCD, organic EL display, and plasma.
  • a display device such as a display, or a printing device such as a printer.
  • FIG. 7 is a diagram illustrating a waveform (interferogram) of actually measured interference light of the measured light in the Fourier transform spectrometer according to the embodiment.
  • the horizontal axis in FIG. 7 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude Fm (x) of the interferogram.
  • FIG. 8 is a diagram showing the relationship between the interferogram and the window function.
  • the horizontal axis in FIG. 8 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude.
  • a solid line is an interferogram, and a broken line is a window function.
  • the sample SM when measuring the sample SM to be measured, the sample SM is first set in the FT spectrometer D, and measurement is started.
  • the measurement light source 51 emits measurement light and irradiates the sample SM with the measurement light at an incident angle of 45 degrees, for example. Then, the reflected light of the measurement light reflected by the sample SM is measured from the 0 degree direction as light to be measured, and is incident on the interferometer 11.
  • the light to be measured incident on the interferometer 11 is received by the first light receiving unit 21 of the light receiving processing unit 20 as interference light of the light to be measured by the interferometer 11. More specifically, the light to be measured is converted into parallel light by the collimator lens 111, and is reflected and transmitted by the semi-transparent mirror 112 through the optical multiplexer 33, thereby being branched into the first and second light to be measured.
  • the first light to be measured branched by being reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, reflected by the fixed mirror 114, and traces the optical path that has come in reverse, and again the semi-transparent mirror 112. Return to.
  • the second light to be measured branched by passing through the semi-transparent mirror 112 is incident on the movable mirror 115, reflected by the movable mirror 115, and returns to the semi-transparent mirror 112 by tracing back the optical path that has come.
  • the first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other.
  • the interference light of the light to be measured is emitted from the interferometer 11 to the first light receiving unit 21.
  • the first light receiving unit 21 photoelectrically converts the incident interference light of the measurement light, and outputs an electrical signal corresponding to the light intensity in the interference light of the measurement light to the amplification unit 22.
  • the amplifying unit 22 amplifies the electric signal corresponding to the interference light of the light to be measured with a predetermined amplification factor, and outputs it to the AD converting unit 23.
  • the FT spectrometer D also captures monochromatic laser light emitted from the position measurement light source 31.
  • This laser light is incident on the interferometer 11 via the optical multiplexer 33, interferes with the interferometer 11 in the same manner as described above, becomes interference light of the laser light, and passes through the optical demultiplexer 34 to the second light receiving unit.
  • Light is received at 36.
  • the second light receiving unit 36 photoelectrically converts the incident interference light of the laser beam, and outputs an electrical signal corresponding to the light intensity in the interference light of the laser beam to the zero cross detection unit 37.
  • the zero cross detection unit 37 detects a timing at which the electric signal corresponding to the interference light of the laser beam becomes zero as a zero cross timing, and outputs the zero cross timing to the AD conversion unit 23 as a sampling timing (AD conversion timing).
  • the movable mirror 115 of the interferometer 11 is moved along the optical axis direction according to the control of the control calculation unit 41 by resonance vibration. Yes.
  • the AD conversion unit 23 samples the electrical signal output from the amplification unit 22 according to the light intensity in the interference light of the light to be measured at the zero cross timing input from the zero cross detection unit 37, and converts the electrical signal from an analog signal to a digital signal. AD conversion is performed, and the electric signal of the digital signal subjected to the AD conversion is output to the control calculation unit 41.
  • measurement data in the interferogram of the light to be measured is output from the AD conversion unit 23 to the control calculation unit 41, and this measurement data is stored in the sampling data storage unit 411.
  • An example of the interferogram of the light to be measured thus measured is shown in FIG.
  • the interferogram of such light to be measured is measured in a similar manner continuously several times in accordance with the reciprocation of the movable mirror 115, and these Each measurement data of each interferogram is stored in the sampling data storage unit 411.
  • the movable mirror 115 reciprocates once, one scan is completed, and one interferogram measurement data is obtained for each of the forward path and the backward path. That is, one interferogram is data from the maximum amplitude position at one end to the maximum amplitude position at the other end via the vibration center (optical path difference 0).
  • the center burst position calculation unit 412 obtains the position of the center burst in the interferogram of the measured light for each measurement data of each interferogram stored in the sampling data storage unit 411.
  • the integrated interferogram calculation unit 413 obtains a plurality of interferograms of the measured light obtained by measuring a plurality of times by the center burst position calculation unit 412 in each of the forward path and the return path.
  • An integrated interferogram for the measured light is obtained by performing integration while performing alignment at each center burst position.
  • the spectrum calculation unit 414 obtains the spectrum of the light to be measured by Fourier-transforming the accumulated interferogram in each of the forward path and the return path obtained by the accumulated interferogram calculation unit 413. Then, the spectrum calculation unit 414 obtains the spectrum of the final measured light output to the output unit 43 as the measurement result by obtaining the average of the obtained spectra for each of the forward path and the return path.
  • the interferogram F m (x i ) in the m-th measurement has an optical path difference x i , a wave number ⁇ j , and a wave number ⁇ j spectrum.
  • the amplitude is B ( ⁇ j )
  • the position of the optical path difference 0 is X
  • the phase at the position of the optical path difference 0 of the wave number ⁇ j is ⁇ ( ⁇ j )
  • Expression 1 Note that m represents the measurement result of the mth measurement.
  • Equation 2 the integrated interferogram F (x i ) is expressed by Equation 2.
  • the spectrum calculating unit 414 obtains the spectrum of the light to be measured by, for example, fast Fourier transform (FFT) of the integrated interferogram.
  • FFT fast Fourier transform
  • window function A window (x i ) can include various appropriate functions.
  • the window functions A window (x i ) are functions represented by Expression 5-1 to Expression 5-3.
  • Equation 5-1 is called the Hanning Window function
  • Equation 5-2 is called the Hamming Window function
  • Equation 5-3 is called the Blackman Window function. .
  • control calculation unit 41 outputs the obtained spectrum to the output unit 43.
  • FIG. 9 is a diagram illustrating frequency characteristics of the amplification unit of the light receiving processing unit in the Fourier transform spectrometer according to the embodiment.
  • FIG. 9A is an overall view
  • FIG. 9B is a partially enlarged view thereof.
  • the horizontal axis in FIGS. 9A and 9B is the frequency expressed in kHz
  • the vertical axis is the amplification factor (gain).
  • FIG. 10 is a schematic diagram showing the relationship between the frequency characteristic of the amplification unit in the light receiving processing unit and the frequency band of the signal included in the interferogram.
  • the horizontal axis in FIG. 10 is the frequency
  • the vertical axis is the amplification factor (gain).
  • FIG. 11 is a diagram showing the relationship between each amplitude of the movable mirror in the interferometer and the intensity ratio of the spectrum obtained based on each interferogram at that amplitude.
  • FIG. 12 shows an average of spectra measured at amplitudes before and after the case where the amplitude of the moving mirror is 5500 (the number of sampling in one interferogram measurement (one scan), the same applies hereinafter). It is a figure which shows the intensity ratio of a spectrum.
  • Each horizontal axis in FIGS. 11 and 12 is a wavelength expressed in nm units, and each vertical axis represents a spectral ratio of each amplitude to a spectrum when the amplitude of the moving mirror is 5500 (the amplitude of the starting mirror is 5500).
  • the spectrum in each amplitude is normalized with respect to the spectrum at each amplitude).
  • the amplifying unit 22 has a frequency at which the amplification factor gradually decreases from the frequency 0 (zero) as the frequency increases (see FIG. 9B), and then decreases more rapidly. Has characteristics.
  • the driving frequency is constant. Therefore, while the movable mirror 115 is driven to resonate, the time required for the movable mirror 115 to reciprocate once by vibration is constant regardless of the amplitude. For this reason, when the undulation occurs in the movable mirror 115 and the amplitude varies, the speed of the movable mirror 115 changes, and the frequency band of the signal included in the interferogram varies. For example, if the amplitude of the moving mirror 115 that is resonating when there is no external vibration and no undulation is set as the target amplitude, as shown in FIG. 10, the undulation is generated by the external vibration and resonance occurs at an amplitude smaller than the target amplitude.
  • the speed of the moving mirror 115 decreases, so that the interferogram obtained by the moving mirror 115 resonating at the target amplitude (
  • interferogram of target amplitude the frequency band BNw of the signal included in the interferogram obtained by the moving mirror 115 that is swelled by external vibration and resonates with an amplitude larger than the target amplitude increases the speed of the moving mirror 115. It fluctuates to the high frequency side from the frequency band BN0 of the signal included in the interferogram of the target amplitude.
  • the frequency band BN fluctuates in this way, it is included in the interferogram obtained by the movable mirror 115 that resonates at an amplitude smaller than the target amplitude, as shown in FIG.
  • the signal to be transmitted is amplified with a larger amplification factor than the amplification factor of the signal included in the interferogram of the target amplitude.
  • the signal included in the interferogram obtained by the movable mirror 115 that resonates with an amplitude larger than the target amplitude is amplified with a smaller amplification factor than the amplification factor of the signal included in the target amplitude interferogram. Will be.
  • the amplification factor when the signal included in the interferogram is amplified by the amplification unit 22 fluctuates.
  • the intensity of the spectrum obtained by the Fourier transform of the interferogram changes and an error occurs in the spectrum.
  • the signal included in the interferogram is a signal extracted as a spectrum of the light to be measured by Fourier transform of the interferogram.
  • the movable mirror 115 resonates at an amplitude of the magnitude before and after the target amplitude.
  • a spectrum obtained by Fourier transform from the obtained interferogram was simulated (numerical experiment). For example, when the target amplitude is the count value 5500, each spectrum is numerically calculated by Fourier transform from each interferogram when the amplitude is the count value 4000, 4500, 5000, 6000, 6500, 7000. The ratio is shown in FIG. In order to convert the count value into a length, an equation of (count value) ⁇ (wavelength of position measurement light source 31; 680 nm) / 4) is used. For example, the count value 5500 is 0.935 mm. is there.
  • the solid line “4000” is the ratio r 0 ( ⁇ ) of the spectrum B 4000 ( ⁇ ) having an amplitude of 4000 to the reference spectrum B 5500 ( ⁇ )
  • the solid line “4500” is the reference spectrum B 5500
  • the solid line “5000” is the ratio r 2 of the spectrum B 5000 ( ⁇ ) with the amplitude 5000 to the reference spectrum B 5500 ( ⁇ ).
  • the solid line “5500” is the ratio r 3 ( ⁇ ) of the spectrum B 5500 ( ⁇ ) (ie, the reference spectrum) having the amplitude 5500 to the reference spectrum B 5500 ( ⁇ ), and the solid line “6000” the spectrum B 6000 of the amplitude 6000 to the reference spectrum B 5500 ( ⁇ ) ( ⁇ ) is the ratio r 4 of (lambda), "6
  • the solid line 00 is a spectrum B 6500 of the amplitude 6500 to the reference spectrum B 5500 ( ⁇ ) ( ⁇ ) ratio r 5 of (lambda), and, the solid line” 7000 "is the reference spectrum B 5500 (lambda)
  • This is the ratio r 6 ( ⁇ ) of the spectrum B 7000 ( ⁇ ) having an amplitude of 7000.
  • the ratios r 0 ( ⁇ ) to r 6 ( ⁇ ) are divided into upper and lower portions approximately symmetrically about the ratio r 3 ( ⁇ ). That is, the ratio r 0 ( ⁇ ) to ratio r 2 ( ⁇ ) is greater than the ratio r 3 ( ⁇ ), while the ratio r 4 ( ⁇ ) to ratio r 6 ( ⁇ ) is greater than the ratio r 3 ( ⁇ ). small.
  • the solid line “5000” is the average ⁇ r 0 ( ⁇ )> of the reference spectrum, that is, the ratio r 3 ( ⁇ ) itself, and the solid line “5000-6000” is the spectrum at the amplitude 5000.
  • the average ⁇ r 1 ( ⁇ )> of the spectrum at the target amplitude 5500 and the spectrum at the amplitude 6000, and the solid line “4500-6500” indicates that the spectrum at the amplitude 4500, the spectrum at the amplitude 5000, and the target amplitude 5500
  • the average of the spectrum and the spectrum at amplitude 6000 and the spectrum at amplitude 6500 ⁇ r 2 ( ⁇ )>, and the solid line “4000-7000” is the spectrum at amplitude 4000 and the spectrum and amplitude at amplitude 4500
  • the average ⁇ r 0 ( ⁇ )> is the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at the zero amplitude before and after the target amplitude (in other words, as described above)
  • the ratio r 3 ( ⁇ ) itself) and the average ⁇ r 1 ( ⁇ )> are the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at one amplitude before and after the target amplitude.
  • the average ⁇ r 2 ( ⁇ )> is the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at the two amplitudes before and after the target amplitude
  • the average ⁇ r 3 ( ⁇ )> is the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at the three amplitudes before and after the target amplitude.
  • the measurement time (total measurement time, total scan time) of the interferogram that is continuously measured is an integer of the amplitude fluctuation period of the movable mirror 115. It is set to be doubled. That is, when the measurement time of a plurality of interferograms measured continuously is not an integral multiple of the amplitude fluctuation period of the movable mirror 115, the measurement time of the interferogram measured continuously is set. Accordingly, when the integrated interferogram is obtained, the interferogram when the amplitude of the movable mirror 115 is large is included in the accumulated interferogram, or conversely, when the amplitude of the movable mirror 115 is small.
  • interferograms are included in the integrated interferogram.
  • the interferogram is accumulated including many interferograms that are amplified with a relatively small amplification factor.
  • the intensity of the spectrum obtained by Fourier transform of the integrated interferogram is smaller than the true value.
  • the measurement time of the interferogram ends at a point when the undulation is small, when the interferogram is obtained, the interferogram is accumulated including many interferograms that are amplified with a relatively large amplification factor.
  • the intensity of the spectrum obtained by Fourier transform of the integrated interferogram becomes a value larger than the true value. Therefore, as described above, when the measurement time of the interferogram is set to an integral multiple of the amplitude fluctuation period of the movable mirror 115, the interferogram measured at the time when the swell is large when obtaining the integrated interferogram. The interferograms measured at the time when the undulation is small are almost evenly included, so that they work to cancel each other, and as described with reference to FIG. Integrated interferogram closer to true results with reduced impact. Therefore, the intensity of the spectrum obtained by Fourier transform of such an integrated interferogram becomes a value closer to the true value, the measurement accuracy is improved, and the reproducibility is improved.
  • control calculation unit 41 includes a movable mirror amplitude storage unit 415 and an amplitude variation calculation unit 416, and the amplitude variation calculation unit 416 is an integral multiple of the amplitude variation period.
  • the sampling data storage unit 411 stores measurement data of a plurality of interferograms obtained by measuring a plurality of interferograms of the light to be measured continuously by the interferometer 11 over time.
  • the default RepeatNum0 is ( Interferograms are measured and stored in each of the outbound and return paths of the number of times Tmeas / Tscan), and the integrated interferogram calculation unit 413 individually accumulates these interferograms in each of the outbound and inbound paths.
  • the measurement time is appropriately set according to the desired number of integrations.
  • RepeatNum is an integral multiple of the amplitude variation period ⁇ I of the movable mirror 115 and is set to be equal to or greater than the default number. It is represented by the formula FC.
  • RepeatNum Round (ceil (RepeatNum0 / ⁇ I) ⁇ ⁇ I) (FC)
  • round (z) is a function that rounds off z
  • ceil (z) is a function that rounds z up to the nearest integer of z.
  • the moving mirror amplitude storage unit 415 stores each amplitude of the moving mirror 115 in each of a plurality of scans (measurement of a plurality of interferograms) executed continuously. Therefore, the movable mirror amplitude storage unit 415 includes a plurality of storage areas for storing the amplitude of the movable mirror 115 in one scan (measurement of the interferogram in one round trip of the movable mirror 115, the forward path and the return path), In this embodiment, the movable mirror amplitude storage unit 415 sequentially stores the amplitudes of the movable mirror 115 in each scan from the storage area of the first address to the storage area of the final address, for example, as shown in FIG.
  • the circular buffer circuit When the amplitude is stored in the storage area of the final address, the circular buffer circuit returns to the storage area of the top address and stores the amplitude again in order from the storage area of the top address to the storage area of the final address. Therefore, the moving mirror amplitude storage unit 415 of the circular buffer circuit stores past amplitude data that has been traced back to the size of the circular buffer circuit (the number of storage areas) from the latest amplitude data.
  • the amplitude fluctuation calculation unit 416 obtains the amplitude of the movable mirror 115 in one scan, stores the obtained amplitude of the movable mirror 115 in the movable mirror amplitude storage unit 415, and stores it in the movable mirror amplitude storage unit 415. From the amplitude of the movable mirror 115, it is determined whether or not there is a variation in the amplitude of the movable mirror 115. If it is determined that there is a variation in the amplitude of the movable mirror 115 as a result of the determination, the variation in the amplitude is determined. The period is obtained.
  • the amplitude fluctuation calculation unit 416 is an example of the amplitude calculation unit and the amplitude fluctuation period calculation unit, and further functions as an amplitude fluctuation determination unit that determines whether or not the amplitude of the movable mirror 115 fluctuates. It is also an example of a period determination unit.
  • the operation of detecting the amplitude of the movable mirror 115 in this one scan and storing the detected amplitude of the movable mirror 115 in the movable mirror amplitude storage unit 415 is executed for each scan after the scan is completed, for example. If it is not determined that the amplitude of the movable mirror 115 is varied as a result of the determination, the variation period of the amplitude cannot be obtained. In this case, the amplitude fluctuation calculation unit 416 calculates a plurality of interferograms obtained by continuously measuring a plurality of interferograms of the light to be measured by the interferometer 11 during the measurement time set by the user. The measurement data is stored in the sampling data storage unit 411.
  • the amplitude fluctuation calculating unit 416 performs the forward and return periods (moving mirror 115) in one scan of the movable mirror 115 detected by the movable mirror operation detecting unit 200. 1), the number of measurement data output from the AD conversion unit 25 (in other words, the number of zero cross timings output from the zero cross detection unit 37) is counted. Store in the amplitude storage unit 415. As described above, since the movable mirror 115 is driven to resonate, the time required for one reciprocation is the same (constant) even if the amplitude varies.
  • the amplitude fluctuation calculation unit 416 counts the number of measurement data output from the AD conversion unit 25 (output from the zero cross detection unit 37 during the time from the start of the forward path to the end of the return path in one scan. The number of zero cross timings) is counted, and each count value is stored in the movable mirror amplitude storage unit 415.
  • the sampling timing is zero-cross timing, and the sampling interval is determined by the wavelength of the laser light of the position measurement light source 31. Therefore, (count value) ⁇ (wavelength of the position measurement light source 31; 680 nm). / 4), the amplitude of the movable mirror 115 is obtained in actual length.
  • the amplitude fluctuation calculation unit 416 determines that the detected amplitude of the movable mirror 115 is The presence / absence is determined based on whether the target amplitude MirrorAmpTarget is within a predetermined range ⁇ ⁇ N.
  • the detected amplitude of the movable mirror 115 is within a predetermined range ⁇ ⁇ N centered on the target amplitude MirrorAmpTarget, it is determined that the amplitude of the movable mirror 115 does not vary, while the detected movement
  • the amplitude of the mirror 115 is not within a predetermined range ⁇ ⁇ N centering on the target amplitude MirrorAmpTarget, it is determined that the amplitude of the movable mirror 115 is varied.
  • the amplitude fluctuation calculation unit 416 determines the presence / absence based on whether or not the detected amplitude of the moving mirror 115 is not less than the lower limit target amplitude MirrorAmpTarget- ⁇ N and not more than the upper limit target amplitude MirrorAmpTarget + ⁇ N. To do. When the detected amplitude of the movable mirror 115 is not less than the lower limit value and not more than the upper limit value, it is determined that there is no variation in the amplitude of the movable mirror 115, while the detected amplitude of the movable mirror 115 is Is less than the lower limit value or exceeds the upper limit value, it is determined that there is a variation in the amplitude of the movable mirror 115.
  • the amplitude fluctuation calculation unit 416 is stored in the movable mirror amplitude storage unit 415 by the calculation method of the following first aspect or second aspect. From the amplitude of the movable mirror 115, the amplitude fluctuation period (swell period) is obtained.
  • FIG. 13 is a diagram for explaining a calculation method of the first mode of the vibration period in the movable mirror.
  • FIG. 14 is a diagram for explaining a calculation method of the second mode of the vibration period in the movable mirror.
  • Each horizontal axis in FIGS. 13 and 14 represents the number of scans of the movable mirror, and each vertical axis represents the amplitude of the movable mirror.
  • the target amplitude of the movable mirror 115 is set to MirrorAmpTarget
  • the amplitude of the movable mirror 115 in the i-th scanning (measurement) is set to MirrorAmp (i)
  • the number of storage areas of the movable mirror amplitude storage unit 415 is set to Imax. .
  • the amplitude fluctuation calculation unit 416 further searches the storage area of the movable mirror amplitude storage unit 415 in order, and the amplitude fluctuation calculation unit 416 performs the same method (the same crossing mode) as the first crossing method (the first crossing mode) next. ) To find the amplitude MirrorAmp (I2) that intersects the target amplitude MirrorAmpTarget.
  • the amplitude MirrorAmp (I1) is data that intersects in a manner exceeding the target amplitude MirrorAmpTarget from a state where the amplitude is smaller than the target amplitude MirrorAmpTarget.
  • the amplitude fluctuation calculation unit 416 sets the next intersecting position as I02.
  • the position I01 is between the amplitude MirrorAmp (I1-1) and the amplitude MirrorAmp (I1), and is obtained by the following equation 8-1 of linear interpolation.
  • the position I02 is between the amplitude MirrorAmp (I2-1) and the amplitude MirrorAmp (I2), and is obtained by the following linear interpolation 8-2.
  • the amplitude fluctuation calculation unit 416 obtains the amplitude fluctuation period ⁇ I of the movable mirror 115 as abs (I02-I01) from the obtained position I01 and position I02.
  • abs (x) is an absolute value function for obtaining the absolute value of x.
  • the amplitude MirrorAmp (i) exceeding the target amplitude MirrorAmpTarget is found from the state of the amplitude smaller than the target amplitude MirrorAmpTarget. Conversely, from the state of the amplitude larger than the target amplitude MirrorAmpTarget, An amplitude MirrorAmp (i) below the target amplitude MirrorAmpTarget may be found and similarly the amplitude variation period is determined.
  • the calculation method according to the first aspect is a calculation method that directly obtains the amplitude fluctuation period. However, the calculation method according to the second aspect obtains half of the amplitude fluctuation period and doubles it to obtain the amplitude fluctuation period. Is what you want.
  • the second method compared to the calculation method of the first mode.
  • the aspect calculation method can detect a longer amplitude fluctuation period. That is, the calculation method of the second aspect can detect an amplitude fluctuation period having a period twice as long as the period that can be calculated by the calculation method of the first aspect.
  • the storage area of the unit 415 is searched, and the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (i) that intersects the target amplitude MirrorAmpTarget. For example, as shown in FIG. 14A, the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (I1) exceeding the target amplitude MirrorAmpTarget by the search from a state of an amplitude smaller than the target amplitude MirrorAmpTarget.
  • the amplitude fluctuation calculation unit 416 sets the first intersecting position as I01.
  • the amplitude fluctuation calculation unit 416 further searches the storage area of the movable mirror amplitude storage unit 415 in order, and the amplitude fluctuation calculation unit 416 then reverses the method of the first crossing (first crossing mode) (reverse)
  • the amplitude MirrorAmp (I2) that intersects with the target amplitude MirrorAmpTarget is found. That is, in the example shown in FIG. 14A, the amplitude MirrorAmp (I1) is data that intersects in a manner that exceeds the target amplitude MirrorAmpTarget from a state where the amplitude is smaller than the target amplitude MirrorAmpTarget.
  • an amplitude MirrorAmp (i) lower than the target amplitude MirrorAmpTarget is found as an amplitude MirrorAmp (I2) from the state of the amplitude larger than the target amplitude MirrorAmpTarget.
  • the amplitude fluctuation calculation unit 416 sets the next intersecting position as I02.
  • the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (I2) lower than the target amplitude MirrorAmpTarget by the search from a state of an amplitude larger than the target amplitude MirrorAmpTarget.
  • the amplitude fluctuation calculation unit 416 sets the first intersecting position as I02.
  • the amplitude fluctuation calculation unit 416 further searches the storage area of the movable mirror amplitude storage unit 415 in order, and the amplitude fluctuation calculation unit 416 then reverses the method of the first crossing (first crossing mode) (reverse)
  • the amplitude MirrorAmp (I1) that intersects the target amplitude MirrorAmpTarget is found. That is, in the example shown in FIG.
  • the amplitude MirrorAmp (I2) is data that intersects in a manner that is lower than the target amplitude MirrorAmpTarget from a state where the amplitude is larger than the target amplitude MirrorAmpTarget. Then, from the state of the amplitude smaller than the target amplitude MirrorAmpTarget, the amplitude MirrorAmp (i) exceeding the target amplitude MirrorAmpTarget is found as the amplitude MirrorAmp (I1).
  • the amplitude fluctuation calculation unit 416 sets the next intersecting position as I01.
  • the position I01 is between the amplitude MirrorAmp (I1-1) and the amplitude MirrorAmp (I1), and is obtained by the following equation 9-1 of linear interpolation.
  • the position I02 is between the amplitude MirrorAmp (I2-1) and the amplitude MirrorAmp (I2), and is obtained by the following linear interpolation 9-2.
  • the amplitude fluctuation calculation unit 416 obtains the amplitude fluctuation period ⁇ I of the movable mirror 115 as 2 ⁇ abs (I02 ⁇ I01) from the obtained position I01 and position I02.
  • the amplitude fluctuation calculation unit 416 can obtain the amplitude fluctuation period of the movable mirror 115.
  • the measurement time of the interferogram that is continuously measured is the amplitude of the movable mirror 115. Since the time is set based on the fluctuation cycle, the fluctuation cycle of the amplitude of the movable mirror 115 is taken into consideration. Therefore, such an FT spectrometer D and the method can obtain a more accurate measurement result even when an external vibration having a frequency close to the resonance frequency causing the swell is applied.
  • the measurement time of the interferograms that are continuously measured is set to a time that is an integral multiple of the amplitude fluctuation period of the movable mirror 115.
  • the interferogram obtained when the amplitude of the movable mirror 115 is relatively small and the interferogram obtained when the amplitude of the movable mirror 115 is relatively large are substantially equal.
  • Such an FT spectrometer D and the method can obtain an interferogram closer to the true interferogram, and can obtain a more accurate measurement result.
  • the FT spectrometer D and the method according to the present embodiment when it is determined that the amplitude of the moving mirror 115 does not vary, a spectrum is obtained by a normal calculation process, and the amplitude of the moving mirror 115 varies. Only when it is determined that there is an interferogram, the measurement time of an interferogram that is continuously measured is set to a time that is an integral multiple of the amplitude variation period. Therefore, such an FT spectrometer D and the method do not require the influence of external vibration, and the measurement time of the interferogram that is continuously measured is not required in the normal measurement. Since it is possible to omit the process of removing the influence of external vibration such as setting the time based on the fluctuation cycle of the amplitude of the movable mirror 115, the processing load and the measurement time can be reduced as a whole.
  • the zero-cross detection unit 37, the movable mirror operation detection unit 200, the movable mirror amplitude storage unit 415, and the amplitude variation calculation unit 416 are a first detection unit that detects the amplitude variation period of the optical path difference forming optical element.
  • the zero cross detector 37, the moving mirror operation detector 200, and the amplitude fluctuation calculator 416 correspond to an example of an (amplitude fluctuation period detector), and correspond to an example of an amplitude calculator that calculates the amplitude of the optical path difference forming optical element.
  • the movable mirror amplitude storage unit 415 corresponds to an example of an amplitude storage unit that stores the amplitude obtained by the amplitude calculation unit, and the amplitude variation calculation unit 416 obtains an amplitude variation period from the amplitude stored in the amplitude storage unit. This corresponds to an example of an amplitude fluctuation period calculation unit.
  • the light reception processing unit 20, the timing generation unit 30, and the sampling data storage unit 411 of the control calculation unit 41 are time based on the amplitude variation period detected by the first detection unit (amplitude variation period detection unit).
  • the interferometer 11 corresponds to an example of an interferogram measuring unit that continuously measures a plurality of interferograms of predetermined light, and includes a center burst position calculating unit 412, an integrated interferogram calculating unit 413, and a spectrum calculating unit 414.
  • the FT spectrometer D measures wavelengths from 1200 nm to 2500 nm.
  • the FT spectrometer D may be a device that measures light in the near infrared region, and may also be an FT spectrometer.
  • the meter D may be a device that measures light in the infrared region, and the FT spectrometer D may be a device that measures light from the near infrared region to the infrared region.
  • a Fourier transform spectrometer includes a plurality of optical elements that receive predetermined light and form two optical paths between an incident position of the predetermined light and an interference position. Includes an interferometer including an optical path difference forming optical element that generates an optical path difference between the two optical paths by reciprocatingly oscillating in the optical axis direction, and a first detecting period of amplitude fluctuation of the optical path difference forming optical element.
  • a plurality of interferograms of the predetermined light are continuously measured by the interferometer at a time based on the amplitude variation period detected by one detection unit (for example, an amplitude variation period detection unit) and the first detection unit.
  • the measurement time of a plurality of interferograms that are continuously measured is set to a time based on the amplitude variation period of the optical path difference forming optical element.
  • the amplitude variation period is taken into account. Accordingly, such a Fourier transform spectrometer can obtain a more accurate measurement result even when external vibration having a frequency close to the resonance frequency that causes the swell is applied.
  • the interferogram measurement unit is a time that is an integral multiple of the fluctuation period of the amplitude detected by the first detection unit. A plurality of interferograms of predetermined light are continuously measured.
  • the measurement time of a plurality of interferograms that are continuously measured is set to a time that is an integral multiple of the amplitude fluctuation period detected by the first detector.
  • the interferogram obtained when the optical path difference forming optical element has a relatively small amplitude is also the interferogram obtained when the optical path difference forming optical element has a relatively large amplitude.
  • an amplitude variation determination unit that determines presence / absence of variation in the amplitude of the optical path difference forming optical element based on a detection result of the first detection unit.
  • the interferogram measuring unit further includes the interference in a time that is an integral multiple of the amplitude variation period only when the amplitude variation determination unit determines that there is a variation in the amplitude of the optical path difference forming optical element.
  • a plurality of interferograms of the predetermined light are continuously measured by a meter.
  • such a Fourier transform spectrometer when it is determined that there is no fluctuation in the amplitude of the optical path difference forming optical element, a spectrum is obtained by a normal calculation process, and there is a fluctuation in the amplitude of the optical path difference forming optical element. Only when it is determined that the measurement time of the interferograms that are continuously measured is set to a time that is an integral multiple of the amplitude fluctuation period detected by the first detector. Therefore, such a Fourier transform spectrometer does not require the removal of the influence of external vibration, and it is not necessary for normal measurement. Since the process of removing the influence of external vibration such as setting the time based on the fluctuation cycle of the amplitude of the optical element can be omitted, the processing load can be reduced as a whole and the measurement time can be shortened.
  • the first detection unit includes an amplitude calculation unit that calculates an amplitude of the optical path difference forming optical element, and the amplitude calculated by the amplitude calculation unit.
  • An amplitude storage unit that stores the amplitude, and an amplitude variation period calculation unit that obtains the variation period of the amplitude from the amplitude stored in the amplitude storage unit.
  • the first detection unit includes an amplitude calculation unit, an amplitude storage unit, and an amplitude variation period calculation unit.
  • the predetermined light is near-infrared and / or infrared light incident as a measurement target.
  • a Fourier transform spectrometer capable of measuring any of light in the near infrared region, light in the infrared region, and light from the near infrared region to the infrared region is provided.
  • the near infrared region has a wavelength of 700 nm to 2500 nm, and the infrared region has a wavelength of 2500 nm to 4000 nm.
  • a and / or B means at least one of A and B.
  • the optical path difference forming optical element is configured by a parallel leaf spring structure including first and second leaf springs arranged in parallel to face each other. And a reflection surface formed on one main outer surface of the first and second leaf springs, and the optical path difference is determined by the resonance drive of the drive unit so that the reflection surface is along the optical axis. Caused by moving in parallel.
  • a Fourier transform type spectrometer provided with a drive unit having a parallel leaf spring structure is provided.
  • the Fourier transform type spectroscopic method includes a plurality of optical elements that form two optical paths of predetermined light between an incident position of the predetermined light and an interference position.
  • the element includes an incident step of entering an interferometer including an optical path difference forming optical element that generates an optical path difference between the two optical paths by moving in the optical axis direction, and an amplitude of the optical path difference forming optical element.
  • a plurality of interferograms of the predetermined light are continuously measured by the interferometer at a time based on an amplitude fluctuation period detection step for detecting a fluctuation period and the amplitude fluctuation period detected in the amplitude fluctuation period detection step.
  • a spectrum processing for obtaining a spectrum using Fourier transform. And a step.
  • the measurement time of a plurality of interferograms that are continuously measured is set as the time based on the fluctuation period of the amplitude of the optical path difference forming optical element.
  • the amplitude variation period is taken into account. Therefore, such a Fourier transform type spectroscopic method can obtain a more accurate measurement result even when an external vibration having a frequency close to the resonance frequency causing the swell is applied.
  • a Fourier transform spectrometer and a Fourier transform spectrometer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A Fourier transform spectrometer and a Fourier transform spectroscopic method according to the present invention, wherein a plurality of interferograms of predetermined light are continuously measured by an interferometer in a time based on the amplitude fluctuation cycle of an optical path difference forming optical element that produces an optical path difference between two optical paths of the interferometer, and a spectrum is obtained on the basis of the plurality of interferograms. Consequently, these Fourier transform spectrometer and spectroscopic method are capable of obtaining a more accurate measurement result even when external vibration with a frequency close to such a resonance frequency that undulation is generated is applied.

Description

フーリエ変換型分光計およびフーリエ変換型分光方法Fourier transform spectrometer and Fourier transform spectroscopic method
 本発明は、フーリエ変換型分光計およびフーリエ変換型分光方法に関し、特に、干渉計の光路差形成光学素子として、光軸方向に往復振動する移動鏡を用いたフーリエ変換型分光計およびフーリエ変換型分光方法に関する。 The present invention relates to a Fourier transform spectrometer and a Fourier transform spectroscopic method, and in particular, a Fourier transform spectrometer and a Fourier transform type using a moving mirror that reciprocally vibrates in the optical axis direction as an optical path difference forming optical element of an interferometer. It relates to a spectroscopic method.
 分光計は、測定対象の被測定光における各波長(各波数)の成分(光強度)を表すスペクトルを測定する装置である。この分光計の1つに、干渉計で被測定光の干渉光を測定し、この測定結果をフーリエ変換することによって被測定光のスペクトルを求めるフーリエ変換型分光計がある。 A spectrometer is a device that measures a spectrum representing a component (light intensity) of each wavelength (each wave number) in light to be measured. As one of the spectrometers, there is a Fourier transform spectrometer that measures the interference light of the light to be measured with an interferometer and obtains the spectrum of the light to be measured by Fourier transforming the measurement result.
 このフーリエ変換型分光計では、前記干渉計の出力は、前記被測定光に含まれる複数の波長の光が前記干渉計によって一括で干渉された合成波形であり、インターフェログラムと呼ばれ、このインターフェログラムをフーリエ変換することによって、被測定光のスペクトルが求められる。このインターフェログラムは、所定の範囲で1または複数の急峻なピークを持つと共に残余の範囲では略ゼロレベルとなるプロファイルとなり、この1または複数の急峻なピークのうちの中央のピークは、センターバーストと呼ばれる。 In this Fourier transform spectrometer, the output of the interferometer is a composite waveform in which light of a plurality of wavelengths included in the light to be measured is interfered at once by the interferometer, and is called an interferogram. The spectrum of the light to be measured is obtained by Fourier transforming the interferogram. This interferogram has a profile that has one or a plurality of steep peaks in a predetermined range and a substantially zero level in the remaining range, and the center peak of the one or more steep peaks has a center burst. Called.
 このようなフーリエ変換型分光計の前記干渉計は、所定光が入射され前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子を備えて構成され、前記複数の光学素子には、光軸方向に移動することによって前記2個の光路間に光路差を生じさせる光路差形成光学素子が含まれている。この光路差形成光学素子として、一定速度で走査範囲を光軸方向に沿って走査する移動鏡が挙げられる。しかしながら、このような移動鏡には、通常、移動鏡の駆動にガスベアリングやボイスコイルモータが用いられるために、干渉計が比較的大型化してしまう。このため、より小型化を図るために、例えば、特許文献1および特許文献2に開示の平行移動機構を利用した移動鏡が提案されている。 The interferometer of such a Fourier transform type spectrometer is configured to include a plurality of optical elements that receive predetermined light and form two optical paths between the incident position of the predetermined light and the interference position, The plurality of optical elements include an optical path difference forming optical element that generates an optical path difference between the two optical paths by moving in the optical axis direction. Examples of the optical path difference forming optical element include a moving mirror that scans a scanning range along the optical axis direction at a constant speed. However, such a movable mirror usually uses a gas bearing or a voice coil motor to drive the movable mirror, so that the interferometer becomes relatively large. For this reason, in order to achieve further miniaturization, for example, moving mirrors using parallel movement mechanisms disclosed in Patent Document 1 and Patent Document 2 have been proposed.
 この特許文献1および特許文献2に開示の平行移動機構の移動鏡は、互いに対向して配置される第1および第2板バネと、前記第1および第2板バネの間であってその両端部にそれぞれ配置され、第1および第2板バネのそれぞれに連結される第1および第2支持体と、前記第1板バネの一方端の表面上に設けられ、前記第1および第2板バネの一方を曲げ変形させることにより前記第1および第2支持体の一方を前記第1および第2板バネの対向方向に平行移動させる圧電素子とを備えて構成されており、前記第1板バネの他方端の表面上には、光を反射する鏡面領域が設けられている。このような構成の平行移動機構の移動鏡は、前記圧電素子が伸張すると、前記第1板バネが上に凸となるように変形し、この結果、鏡面領域が対向方向の下方に変位する一方、前記圧電素子が縮小すると、前記第1板バネが下に凸となるように変形し、この結果、鏡面領域が対向方向の上方に変位する。そして、この平行移動機構の移動鏡は、大きな変位量を得るために共振によって前記変位を繰り返している。 The movable mirror of the parallel movement mechanism disclosed in Patent Document 1 and Patent Document 2 is between the first and second leaf springs arranged opposite to each other and the first and second leaf springs, and both ends thereof. First and second supports respectively disposed on the first and second plate springs, and provided on a surface of one end of the first plate spring, and the first and second plates. A piezoelectric element that translates one of the first and second support bodies in the opposing direction of the first and second leaf springs by bending one of the springs, and the first plate On the surface of the other end of the spring, a mirror surface region for reflecting light is provided. When the piezoelectric element is extended, the movable mirror of the parallel movement mechanism having such a configuration is deformed so that the first leaf spring is convex upward, and as a result, the mirror surface area is displaced downward in the facing direction. When the piezoelectric element is reduced, the first leaf spring is deformed so as to protrude downward, and as a result, the mirror surface area is displaced upward in the facing direction. The movable mirror of the parallel movement mechanism repeats the displacement by resonance in order to obtain a large amount of displacement.
 ところで、前記特許文献1および特許文献2に開示の平行移動機構の移動鏡は、共振によって振動しているため、この平行移動機構の移動鏡の外部から振動が該平行移動機構の移動鏡に加わった場合、この外部振動の周波数が平行移動機構の移動鏡における共振周波数に近いと、平行移動機構の移動鏡における振幅にいわゆるうねりが生じてしまう。このため、平行移動機構の移動鏡における振幅が変化してしまう一方、共振駆動により一往復にかかる時間は変化しないため、移動鏡の移動速度が変化してしまうことになる。この結果、被測定光の干渉計による干渉光を受光処理する電気回路、特に増幅器の周波数特性の影響によってインターフェログラムの振幅が変調されてしまい、インターフェログラムのフーリエ変換によって得られるスペクトルの振幅も変わってしまう。すなわち、分光結果のスペクトル強度に誤差が生じてしまう。 By the way, since the movable mirror of the parallel movement mechanism disclosed in Patent Document 1 and Patent Document 2 vibrates due to resonance, vibration is applied to the movable mirror of the parallel movement mechanism from the outside of the movable mirror of the parallel movement mechanism. In this case, when the frequency of the external vibration is close to the resonance frequency of the movable mirror of the parallel movement mechanism, so-called undulation occurs in the amplitude of the movable mirror of the parallel movement mechanism. For this reason, while the amplitude in the movable mirror of the parallel movement mechanism changes, the time required for one reciprocation by resonance driving does not change, so the moving speed of the movable mirror changes. As a result, the amplitude of the interferogram is modulated by the influence of the frequency characteristics of the electric circuit that receives the interference light from the interferometer of the measured light, particularly the amplifier, and the amplitude of the spectrum obtained by the Fourier transform of the interferogram Will also change. That is, an error occurs in the spectral intensity of the spectral result.
特開2011-80854号公報JP 2011-80854 A 特開2012-42257号公報JP 2012-42257 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、前記うねりを生じるような共振周波数に近い周波数の外部振動が加わった場合でも、より正確な測定結果を得ることができるフーリエ変換型分光計およびフーリエ変換型分光方法を提供することである。 The present invention has been made in view of the above-described circumstances, and its purpose is to obtain a more accurate measurement result even when external vibration having a frequency close to the resonance frequency causing the swell is applied. It is to provide a Fourier transform spectrometer and a Fourier transform spectrometer that can be used.
 本発明にかかるフーリエ変換型分光計およびフーリエ変換型分光方法は、干渉計の2個の光路間に光路差を生じさせる光路差形成光学素子における振幅の変動周期に基づく時間で、前記干渉計によって所定光のインターフェログラムが連続的に複数個測定され、これら複数のインターフェログラムに基づいて、スペクトルが求められる。このため、このようなフーリエ変換型分光計および該方法は、前記うねりを生じるような共振周波数に近い周波数の外部振動が加わった場合でも、より正確な測定結果を得ることができる。 A Fourier transform spectrometer and a Fourier transform spectroscopic method according to the present invention include a time based on an amplitude variation period in an optical path difference forming optical element that generates an optical path difference between two optical paths of an interferometer. A plurality of interferograms of predetermined light are continuously measured, and a spectrum is obtained based on the plurality of interferograms. For this reason, such a Fourier transform spectrometer and the method can obtain a more accurate measurement result even when an external vibration having a frequency close to the resonance frequency causing the swell is applied.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の一実施形態におけるフーリエ変換型分光計の構成を示すブロック図である。It is a block diagram which shows the structure of the Fourier-transform type spectrometer in one Embodiment of this invention. 前記フーリエ変換型分光計における主に干渉計の構成を示す図である。It is a figure which mainly shows the structure of the interferometer in the said Fourier-transform type spectrometer. 前記フーリエ変換分光計における受光処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the light reception process part in the said Fourier-transform spectrometer. 一例として、前記フーリエ変換型分光計におけるレーザ光の干渉波形を示す図である。As an example, it is a figure which shows the interference waveform of the laser beam in the said Fourier-transform spectrometer. 前記フーリエ変換型分光計の干渉計における移動鏡の構成を示す斜視図である。It is a perspective view which shows the structure of the movement mirror in the interferometer of the said Fourier-transform type spectrometer. 前記フーリエ変換分光計における移動鏡の往復振動の様子を示す断面図である。It is sectional drawing which shows the mode of the reciprocating vibration of the movable mirror in the said Fourier-transform spectrometer. 前記フーリエ変換型分光計において、一例として、実測した被測定光の干渉光の波形(インターフェログラム)を示す図である。In the Fourier transform spectrometer, as an example, it is a diagram showing a waveform (interferogram) of interference light of measured light to be measured. 前記インターフェログラムと窓関数との関係を示す図である。It is a figure which shows the relationship between the said interferogram and a window function. 前記フーリエ変換型分光計における受光処理部の増幅部の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the amplification part of the light reception process part in the said Fourier-transform type spectrometer. 前記フーリエ変換型分光計において、受光処理部における増幅部の周波数特性とインターフェログラムに含まれる信号の周波数帯域との関係を示す模式図である。In the Fourier transform type spectrometer, it is a schematic diagram showing the relationship between the frequency characteristics of the amplification unit in the light reception processing unit and the frequency band of the signal included in the interferogram. 干渉計における移動鏡の各振幅とその振幅での各インターフェログラムに基づいて得られるスペクトルの強度比との関係を示す図である。It is a figure which shows the relationship between each amplitude of the movable mirror in an interferometer, and the intensity ratio of the spectrum obtained based on each interferogram in the amplitude. 移動鏡の振幅が5500(AD変換のカウント値)である場合を中心に、その前後の振幅で測定したスペクトルを平均したスペクトルの強度比を示す図である。It is a figure which shows the intensity ratio of the spectrum which averaged the spectrum measured by the amplitude before and behind that centering on the case where the amplitude of a movable mirror is 5500 (A / D conversion count value). 前記フーリエ変換型分光計において、移動鏡における振動周期の第1態様の算出方法を説明するための図である。FIG. 5 is a diagram for explaining a calculation method of a first mode of a vibration period in a moving mirror in the Fourier transform spectrometer. 前記フーリエ変換型分光計において、移動鏡における振動周期の第2態様の算出方法を説明するための図である。FIG. 5 is a diagram for explaining a calculation method of a second aspect of a vibration period in a moving mirror in the Fourier transform spectrometer. 前記フーリエ変換型分光計において、サーキュラーバファーによる移動鏡の振幅の書き込みと読み込みとの様子を説明するための図である。It is a figure for demonstrating the mode of writing and reading of the amplitude of the moving mirror by the circular buffer in the said Fourier-transform type spectrometer.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably.
 図1は、実施形態におけるフーリエ変換型分光計の構成を示すブロック図である。図2は、実施形態のフーリエ変換型分光計における主に干渉計の構成を示す図である。図3は、実施形態のフーリエ変換分光計における受光処理部20の構成を示すブロック図である。図4は、一例として、実施形態のフーリエ変換型分光計におけるレーザ光の干渉波形を示す図である。図4の横軸は、光路差であり、その縦軸は、干渉波形の強度である。図5は、実施形態のフーリエ変換型分光計の干渉計における移動鏡の構成を示す斜視図である。図6は、実施形態のフーリエ変換分光計における移動鏡の往復振動の様子を示す断面図である。図6Aは、矢符で示す図面下方に変位する場合の様子を示し、図6Bは、矢符で示す図面上方に変位する場合の様子を示す。そして、図6Cは、移動鏡115の一方端部における往復振動の様子を示す。 FIG. 1 is a block diagram showing a configuration of a Fourier transform spectrometer in the embodiment. FIG. 2 is a diagram mainly illustrating a configuration of an interferometer in the Fourier transform spectrometer according to the embodiment. FIG. 3 is a block diagram illustrating a configuration of the light receiving processing unit 20 in the Fourier transform spectrometer according to the embodiment. FIG. 4 is a diagram illustrating an interference waveform of laser light in the Fourier transform spectrometer according to the embodiment as an example. The horizontal axis in FIG. 4 is the optical path difference, and the vertical axis is the intensity of the interference waveform. FIG. 5 is a perspective view illustrating a configuration of a movable mirror in the interferometer of the Fourier transform spectrometer according to the embodiment. FIG. 6 is a cross-sectional view showing a state of reciprocal vibration of the movable mirror in the Fourier transform spectrometer of the embodiment. 6A shows a state in the case of displacement downward in the drawing indicated by an arrow, and FIG. FIG. 6C shows a state of reciprocal vibration at one end of the movable mirror 115.
 実施形態におけるフーリエ変換型分光計(以下、「FT型分光計」と略記する。)Dは、被測定光のスペクトルを測定する装置であって、前記被測定光を干渉計で測定し、この測定した被測定光の干渉光の波形(インターフェログラム)をフーリエ変換することによって被測定光のスペクトルを求める装置である。そして、本実施形態のFT型分光計Dでは、SN比を改善し、良好な精度の結果を得るために、前記被測定光のスペクトルを求めるためにフーリエ変換される変換対象には、前記干渉計で生成された前記被測定光のインターフェログラムを複数積算することによって得られた積算インターフェログラムが用いられる。このようなFT型分光計Dは、例えば、図1ないし図6に示すように、測定対象の物体である試料SMに測定光を照射するための測定光光源部50と、試料SMで反射した測定光の反射光が被測定光として入射され、前記被測定光の干渉光を射出する干渉計11と、干渉計11で得られた被測定光の干渉光を受光して光電変換することによって被測定光の干渉光の波形に関する電気信号(被測定光の干渉光における光強度変化を表す電気信号)を出力する受光処理部20と、前記受光処理部20で測定データをサンプリングするサンプリングタイミングを生成するタイミング発生部30と、制御演算部41と、入力部42と、出力部43とを備えている。 A Fourier transform spectrometer (hereinafter abbreviated as “FT spectrometer”) D in the embodiment is an apparatus for measuring a spectrum of light to be measured, and measures the light to be measured with an interferometer. This is a device for obtaining the spectrum of the light to be measured by Fourier transforming the waveform (interferogram) of the measured interference light of the light to be measured. Then, in the FT spectrometer D of the present embodiment, in order to improve the S / N ratio and obtain a good accuracy result, the transformation target to be Fourier-transformed to obtain the spectrum of the light to be measured includes the interference. An integrated interferogram obtained by integrating a plurality of interferograms of the light to be measured generated by a meter is used. Such an FT spectrometer D, for example, as shown in FIGS. 1 to 6, is reflected by the measurement light source unit 50 for irradiating the measurement light to the sample SM, which is an object to be measured, and the sample SM. The reflected light of the measurement light is incident as the measurement light, and the interferometer 11 that emits the interference light of the measurement light, and the interference light of the measurement light obtained by the interferometer 11 are received and photoelectrically converted. A light reception processing unit 20 that outputs an electrical signal related to the waveform of the interference light of the light to be measured (an electrical signal representing a light intensity change in the interference light of the light to be measured), and a sampling timing at which measurement data is sampled by the light reception processing unit 20 The timing generation part 30 to produce | generate, the control calculating part 41, the input part 42, and the output part 43 are provided.
 測定光光源部50は、測定光を所定のジオメトリで試料SMへ照射する装置であり、例えば、測定光光源51(図2参照)およびその周辺回路を備えて構成される。測定光光源51は、測定光を放射してこの測定光を例えば45:0度のジオメトリで試料SMへ照射する装置である。測定光は、試料SMにおけるその反射光のスペクトルを測定するために用いられ、予め設定された所定の波長帯で連続スペクトルを持つ光である。このような測定光光源51には、本実施形態では、例えばハロゲンランプが用いられる。 The measurement light source unit 50 is a device that irradiates the sample SM with measurement light with a predetermined geometry, and includes, for example, a measurement light source 51 (see FIG. 2) and its peripheral circuits. The measurement light source 51 is a device that emits measurement light and irradiates the sample SM with the measurement light with a geometry of 45: 0 degrees, for example. The measurement light is used to measure the spectrum of the reflected light in the sample SM, and is light having a continuous spectrum in a predetermined wavelength band set in advance. In this embodiment, for example, a halogen lamp is used as such a measurement light source 51.
 本実施形態のFT型分光計Dでは、測定光光源51から照射された測定光は、図2に示すように、45度の入射角で試料SMの表面(測定面SF)に入射し、試料SMで反射され、この反射された測定光の反射光は、0度の方向から測定される。すなわち、測定面の法線方向(0度)に反射した反射光の成分が被測定光として干渉計11に入射される。このように本実施形態のFT型分光計Dは、試料SMで反射した測定光の反射光を被測定光とする反射型である。 In the FT spectrometer D of the present embodiment, the measurement light emitted from the measurement light source 51 is incident on the surface (measurement surface SF) of the sample SM at an incident angle of 45 degrees as shown in FIG. Reflected by the SM, the reflected light of the reflected measurement light is measured from the 0 degree direction. That is, the component of the reflected light reflected in the normal direction (0 degree) of the measurement surface enters the interferometer 11 as the light to be measured. As described above, the FT spectrometer D of the present embodiment is a reflection type in which the reflected light of the measurement light reflected by the sample SM is the light to be measured.
 なお、この例では、被測定光は、試料SMで反射した測定光の反射光であるが、測定光を照射することによって試料SMから再放射(例えば蛍光発光等)される光であってもよく、また、測定光が照射されることなく、試料SMで自発光した光であってもよい。反射型のFT型分光計Dは、反射光だけでなく、このような再放射の光や、自発光の光も測定可能である。また、FT型分光計Dは、試料を透過した測定光を測定する透過型であってもよく、被測定光は、試料を透過した測定光であってもよい。 In this example, the light to be measured is reflected light of the measurement light reflected by the sample SM. However, the light to be measured may be light re-radiated from the sample SM (for example, fluorescence emission) by irradiating the measurement light. In addition, the light may be light emitted by the sample SM without being irradiated with the measurement light. The reflective FT spectrometer D can measure not only the reflected light but also such re-radiated light and self-luminous light. The FT spectrometer D may be a transmission type that measures measurement light that has passed through the sample, and the light to be measured may be measurement light that has passed through the sample.
 干渉計11は、被測定光が入射され、この入射された被測定光を2個の第1および第2被測定光に分岐し、これら分岐した第1および第2被測定光のそれぞれを、互いに異なる2個の経路である第1および第2光路のそれぞれに進行(伝播)させ、再び合流させるものであり、この分岐点(分岐位置)から合流点(合流位置、干渉位置)までの間に第1および第2光路間に光路差があると、前記合流の際に位相差が生じているため、前記合流によって光に濃淡を生じるものである。干渉計11は、例えばマッハツェンダー干渉計等の種々のタイプの第1および第2光路を備える干渉計を利用することができるが、本実施形態では、図2に示すように、マイケルソン干渉計によって構成されている。 The interferometer 11 receives the light to be measured, branches the incident light to be measured into two first and second light to be measured, and each of the branched first and second light to be measured, It travels (propagates) to each of the first and second optical paths, which are two different paths, and merges again. Between this branch point (branch position) and a merge point (merging position, interference position) If there is an optical path difference between the first and second optical paths, a phase difference is generated at the time of the merging, so that the light is shaded by the merging. As the interferometer 11, for example, an interferometer having various types of first and second optical paths such as a Mach-Zehnder interferometer can be used. In this embodiment, as shown in FIG. It is constituted by.
 より具体的には、図2に示すように、干渉計11は、複数の光学素子として半透鏡(ハーフミラー)112、固定鏡114、および、光反射面が光軸方向に移動する移動鏡115を備え、固定鏡114と移動鏡115とは、各鏡面の各法線が互いに直交するようにそれぞれ配置され、半透鏡112は、その法線が前記固定鏡114および移動鏡115における各法線の直交点を通り、これら各法線に対し45度の角度で交差するように配置される。この干渉計11において、干渉計11に入射された被測定光は、半透鏡112で2個の第1および第2被測定光に分岐する。この分岐した一方の第1被測定光は、半透鏡112で反射されて固定鏡114に入射する。この第1被測定光は、固定鏡114で反射し、来た光路を逆に辿って再び半透鏡112に戻る。一方、この分岐した他方の第2被測定光は、半透鏡112を通過して移動鏡115に入射する。この第2被測定光は、移動鏡115で反射し、来た光路を逆に辿って再び半透鏡112に戻る。これら固定鏡114で反射された第1被測定光および移動鏡115で反射された第2被測定光は、半透鏡112で互いに合流して干渉する。このような構成のマイケルソン干渉計11では、被測定光は、移動鏡115の鏡面における法線方向に沿って干渉計11へ入射され、被測定光の干渉光は、固定鏡114の鏡面における法線方向に沿って干渉計11から射出される。 More specifically, as shown in FIG. 2, the interferometer 11 includes a semi-transparent mirror (half mirror) 112, a fixed mirror 114, and a moving mirror 115 whose light reflecting surface moves in the optical axis direction as a plurality of optical elements. The fixed mirror 114 and the movable mirror 115 are arranged so that the normals of the mirror surfaces are orthogonal to each other, and the semi-transparent mirror 112 has a normal line corresponding to each of the normal lines of the fixed mirror 114 and the movable mirror 115. Are arranged so as to cross each normal line at an angle of 45 degrees. In the interferometer 11, the light to be measured incident on the interferometer 11 is branched into two first and second light to be measured by the semi-transparent mirror 112. The branched first first measured light is reflected by the semi-transparent mirror 112 and enters the fixed mirror 114. The first light to be measured is reflected by the fixed mirror 114 and returns to the semi-transparent mirror 112 again following the optical path that has come. On the other hand, the other branched second measured light passes through the semi-transparent mirror 112 and enters the movable mirror 115. This second light to be measured is reflected by the movable mirror 115, and reversely follows the optical path that has come to return to the semi-transparent mirror 112 again. The first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other. In the Michelson interferometer 11 having such a configuration, the light to be measured is incident on the interferometer 11 along the normal direction on the mirror surface of the movable mirror 115, and the interference light of the light to be measured is reflected on the mirror surface of the fixed mirror 114. The light is emitted from the interferometer 11 along the normal direction.
 そして、本実施形態では、干渉計11は、被測定光を半透鏡112で2個の第1および第2被測定光に分岐する場合において、半透鏡112で反射した半透鏡112の反射側に配置される位相補償板113をさらに備えている。すなわち、本実施形態では、半透鏡112で反射した第1被測定光は、位相補償板113を介して固定鏡114へ入射され、固定鏡114で反射された第1被測定光は、位相補償板113を介して再び半透鏡112へ入射される。位相補償板113は、第1被測定光の半透鏡112の透過回数と第2被測定光の半透鏡112の透過回数の相違から生じる第1被測定光と第2被測定光との位相差を無くして前記位相差を補償するものである。 In this embodiment, the interferometer 11 is arranged on the reflection side of the semi-transparent mirror 112 reflected by the semi-transparent mirror 112 when the light to be measured is branched into two first and second measured light beams by the semi-transparent mirror 112. A phase compensation plate 113 is further provided. That is, in the present embodiment, the first measured light reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, and the first measured light reflected by the fixed mirror 114 is phase compensated. The light enters the semi-transparent mirror 112 again through the plate 113. The phase compensation plate 113 is a phase difference between the first measured light and the second measured light, which is caused by the difference in the number of times the first measured light is transmitted through the semi-transparent mirror 112 and the number of times the second measured light is transmitted through the semi-transmissive mirror 112 Is used to compensate for the phase difference.
 したがって、本実施形態では、第1被測定光は、このような被測定光の入射位置から、半透鏡112、位相補償板113、固定鏡114および位相補償板113をこの順に介して半透鏡112に再び至る第1光路を辿る。第2被測定光は、このような被測定光の入射位置から、半透鏡112および移動鏡115をこの順に介して半透鏡112に再び至る第2光路を辿る。FT型分光計Dの干渉計11では、移動鏡115によって生じる光路差に起因する光の強弱が生じる。 Therefore, in the present embodiment, the first measured light is transmitted from the incident position of the measured light through the semi-transparent mirror 112, the phase compensation plate 113, the fixed mirror 114, and the phase compensation plate 113 in this order. Follow the first optical path that leads to again. The second measured light follows a second optical path from the incident position of the measured light to reach the semi-transmissive mirror 112 again through the semi-transmissive mirror 112 and the movable mirror 115 in this order. In the interferometer 11 of the FT type spectrometer D, the intensity of light caused by the optical path difference generated by the moving mirror 115 is generated.
 また、本実施形態では、被測定光を平行光で半透鏡112へ入射させるために、試料面SFと半透鏡112との間の適宜な位置に、入射光学系として例えばコリメータレンズ111が配置され、半透鏡112で第1および第2被測定光を合流して干渉させることによって生じた被測定光の干渉光を集光して第1受光部21へ入射させるために、半透鏡112と第1受光部21との間の適宜な位置に、射出光学系として例えば集光レンズ116がさらに配置されている。 In the present embodiment, for example, a collimator lens 111 is disposed as an incident optical system at an appropriate position between the sample surface SF and the semi-transparent mirror 112 in order to cause the light to be measured to enter the semi-transparent mirror 112 with parallel light. In order to collect the interference light of the light to be measured generated by combining the first and second light to be measured with the semi-transparent mirror 112 and causing them to interfere with each other, For example, a condensing lens 116 is further disposed as an emission optical system at an appropriate position between the light receiving unit 21 and the light receiving unit 21.
 ここで、干渉計11の移動鏡115について、さらに説明する。本実施形態では、移動鏡115には、光路差形成光学素子の一例であり、共振振動を用いることによって2個の第1および第2光路間に光路差を生じさせる光学素子が用いられている。移動鏡115は、被測定光のインターフェログラムを複数生成するために、光軸方向に2回以上往復する。 Here, the movable mirror 115 of the interferometer 11 will be further described. In the present embodiment, the movable mirror 115 is an example of an optical path difference forming optical element, and an optical element that generates an optical path difference between the two first and second optical paths by using resonance vibration is used. . The movable mirror 115 reciprocates twice or more in the optical axis direction in order to generate a plurality of interferograms of the light to be measured.
 このような移動鏡115には、例えば、前記特許文献1および特許文献2に開示の平行移動機構の移動鏡が利用可能である。より具体的には、この移動鏡115は、図5に示すように、互いに対向して平行配置される第1および第2板バネ151、152と、前記第1および第2板バネ151、152の間における一方端部に、前記第1および第2板バネ151、152に連結されて配置される第1支持体153と、前記第1および第2板バネ151、152の間における、前記第1支持体153から離間した他方端部に、前記第1および第2板バネ151、152に連結されて配置される第2支持体154と、第1板バネ151の他方端部における上面上に配置された圧電素子155と、第1板バネ151の一方端部における上面上に形成された鏡面領域156とを備えている。すなわち、圧電素子155は、第1板バネ151における第2支持体154の上方で、かつ、第2支持体154とは反対側の表面上に配置されている。鏡面領域156は、第1板バネ151における第1支持体153の上方で、かつ、第2支持体154とは反対側の表面(主外面)上に配置されている。圧電素子155は、圧電材料である例えばPZT(チタン酸ジルコン酸鉛)等の圧電体155aを一対の電極155b、155cで狭持した構造である(図5参照)。鏡面領域156は、鏡を貼着したり、例えばアルミニウム等の金属の薄膜を形成したりすることによって形成される。移動鏡115は、例えばMEMS(Micro Electro Mechanical Systems)技術によって製造される。 As such a movable mirror 115, for example, a movable mirror of a parallel movement mechanism disclosed in Patent Document 1 and Patent Document 2 can be used. More specifically, as shown in FIG. 5, the movable mirror 115 includes first and second leaf springs 151 and 152 arranged in parallel to face each other, and the first and second leaf springs 151 and 152. Between the first and second leaf springs 151 and 152 and the first support member 153 arranged to be connected to the first and second leaf springs 151 and 152 at one end between the first and second leaf springs 151 and 152. A second support 154 that is connected to the first and second leaf springs 151 and 152 at the other end separated from the first support 153, and an upper surface of the other end of the first leaf spring 151; The piezoelectric element 155 is disposed, and a mirror surface region 156 formed on the upper surface at one end of the first leaf spring 151 is provided. That is, the piezoelectric element 155 is disposed above the second support 154 in the first plate spring 151 and on the surface opposite to the second support 154. The mirror surface region 156 is disposed above the first support 153 in the first leaf spring 151 and on the surface (main outer surface) opposite to the second support 154. The piezoelectric element 155 has a structure in which a piezoelectric material 155a such as PZT (lead zirconate titanate), which is a piezoelectric material, is sandwiched between a pair of electrodes 155b and 155c (see FIG. 5). The mirror surface region 156 is formed by attaching a mirror or forming a thin film of metal such as aluminum. The movable mirror 115 is manufactured by, for example, MEMS (Micro Electro Mechanical Systems) technology.
 このような構造の移動鏡115では、図6Aに示すように、圧電素子155が伸張すると、第1板バネ151が上に凸となるように変形し、この結果、鏡面領域156が、第1および第2板バネ151、152に関する対向方向の下方に変位する一方、圧電素子155が縮小すると、図6Bに示すように、第1板バネ151が、下に凸となるように変形し、この結果、鏡面領域16が前記対向方向の上方に変位する。そして、この移動鏡115は、大きな変位量を得るために共振によって前記変位を繰り返し、光軸方向に沿って往復振動している。より具体的には、往復移動に歪みがない場合には、移動鏡15は、変位量が0(ゼロ)となる原点位置X0(振動振幅の中心位置)と、その原点位置X0からの変位量が最大となる位置Xmとの間で、時間経過とともに略正弦波状に変位し、固有振動数で一定の周期でかつ正確に振動する。 In the movable mirror 115 having such a structure, as shown in FIG. 6A, when the piezoelectric element 155 expands, the first leaf spring 151 is deformed so as to be convex upward. When the piezoelectric element 155 shrinks while the first leaf spring 151 and 152 are displaced downward in the opposing direction, the first leaf spring 151 is deformed to be convex downward as shown in FIG. 6B. As a result, the mirror surface region 16 is displaced upward in the facing direction. The movable mirror 115 repeats the displacement by resonance in order to obtain a large amount of displacement, and reciprocates along the optical axis direction. More specifically, when there is no distortion in the reciprocating movement, the movable mirror 15 has an origin position X0 (center position of vibration amplitude) at which the displacement amount becomes 0 (zero) and a displacement amount from the origin position X0. Is displaced in a substantially sinusoidal shape with the passage of time, and vibrates accurately at a constant frequency and at a constant period.
 このように移動鏡115は、互いに対向して平行配置される第1および第2板バネ151、152から成る平行板バネ構造により構成された駆動部と、第1および第2板バネ151、152の一方の主外面上に形成された反射面となる鏡面156とを備える。光路差は、前記駆動部の上述の共振駆動により、前記反射面が光軸に沿って平行に移動することによって生じる。 As described above, the movable mirror 115 includes a driving unit configured by a parallel leaf spring structure including the first and second leaf springs 151 and 152 arranged in parallel to face each other, and the first and second leaf springs 151 and 152. And a mirror surface 156 serving as a reflection surface formed on one main outer surface of the. The optical path difference is caused by the reflection surface moving in parallel along the optical axis by the above-described resonance driving of the driving unit.
 図1に戻って、受光処理部20は、例えば、図3に示すように、第1受光部21と、増幅部22と、ハイパスフィルタ(High Pass Filter)23と、ローパスフィルタ(Low Pass Filter)24と、アナログ-ディジタル変換部(以下、「AD変換部」と呼称する。)25とを備えている。 Returning to FIG. 1, for example, as shown in FIG. 3, the light receiving processing unit 20 includes a first light receiving unit 21, an amplifying unit 22, a high pass filter 23, and a low pass filter (Low Pass Filter). 24 and an analog-digital converter (hereinafter referred to as “AD converter”) 25.
 第1受光部21は、干渉計11で得られた被測定光の干渉光を受光して光電変換することによって、被測定光の干渉光における光強度に応じた電気信号を出力する回路である。本実施形態のFT型分光計Dは、例えば、波長1200nm以上の赤外域の光、より具体的には、波長1200nm以上から2500nm以下までの赤外域の光を測定対象とする仕様であるために、第1受光部21は、このような赤外域の光を受光可能な例えばInGaAsフォトダイオードおよびその周辺回路を備えて構成される赤外線センサ等である。第1受光部21は、受光結果を増幅部22へ出力する。 The first light receiving unit 21 is a circuit that outputs an electric signal corresponding to the light intensity in the interference light of the measurement light by receiving and photoelectrically converting the interference light of the measurement light obtained by the interferometer 11. . The FT spectrometer D of the present embodiment is, for example, a specification whose measurement object is light in the infrared region with a wavelength of 1200 nm or more, more specifically, light in the infrared region with a wavelength of 1200 nm or more to 2500 nm or less. The first light receiving unit 21 is, for example, an infrared sensor configured to include such an InGaAs photodiode and its peripheral circuit that can receive such infrared light. The first light receiving unit 21 outputs the light reception result to the amplification unit 22.
 増幅部22は、第1受光部21の出力(増幅結果)を予め設定された所定の増幅率で増幅する回路であり、例えばオペアンプなどの増幅器とその周辺回路を備えて構成される。増幅部22は、その増幅結果をハイパスフィルタ23へ出力する。 The amplifying unit 22 is a circuit that amplifies the output (amplification result) of the first light receiving unit 21 with a predetermined amplification factor, and includes an amplifier such as an operational amplifier and its peripheral circuits. The amplification unit 22 outputs the amplification result to the high pass filter 23.
 ハイパスフィルタ23は、所定の遮断周波数以上の周波数の信号を通過させ、低域のノイズをカットするための回路であり、濾波結果をローパスフィルタ24へ出力する。ローパスフィルタ24は、所定の遮断周波数以下の周波数の信号を通過させ、高域のノイズをカットするための回路であり、濾波結果をAD変換部25へ出力する。これらハイパスフィルタ23およびローパスフィルタ24は、ノイズをカットするために、所望の周波数帯域のみを通過させるバンドパスフィルタを構成している。 The high-pass filter 23 is a circuit for passing a signal having a frequency equal to or higher than a predetermined cutoff frequency and cutting low-frequency noise, and outputs the filtered result to the low-pass filter 24. The low-pass filter 24 is a circuit for passing a signal having a frequency equal to or lower than a predetermined cutoff frequency and cutting high-frequency noise, and outputs the filtered result to the AD conversion unit 25. The high-pass filter 23 and the low-pass filter 24 constitute a band-pass filter that passes only a desired frequency band in order to cut noise.
 AD変換部25は、これら増幅部22、ハイパスフィルタ23およびローパスフィルタ24を介して入力された第1受光部21の出力をアナログ信号からディジタル信号へ変換(AD変換)する回路である。このAD変換のタイミング(サンプリングタイミング)は、後述のゼロクロス検出部37から入力されたゼロクロスタイミングで実行される。AD変換部25は、その変換結果のディジタル信号を制御演算部41へ出力する。 The AD conversion unit 25 is a circuit that converts the output of the first light receiving unit 21 input via the amplification unit 22, the high pass filter 23, and the low pass filter 24 from an analog signal to a digital signal (AD conversion). The AD conversion timing (sampling timing) is executed at the zero cross timing input from the zero cross detector 37 described later. The AD conversion unit 25 outputs a digital signal as a result of the conversion to the control calculation unit 41.
 また、タイミング発生部30は、例えば、位置測定用光源31と、第2受光部36と、ゼロクロス検出部37とを備えている。そして、タイミング発生部30は、この位置測定用光源31から放射されたレーザ光の干渉光を干渉計11で得るために、図2に示すように、コリメータレンズ32と、光合波器33と、光分波器34と、集光レンズ35とをさらに備えている。 Further, the timing generation unit 30 includes, for example, a position measurement light source 31, a second light receiving unit 36, and a zero cross detection unit 37. Then, in order to obtain the interference light of the laser light emitted from the position measuring light source 31 with the interferometer 11, the timing generation unit 30 has a collimator lens 32, an optical multiplexer 33, as shown in FIG. An optical demultiplexer 34 and a condenser lens 35 are further provided.
 位置測定用光源31は、単色レーザ光を放射する光源装置であり、例えば波長680nmの赤色レーザ光を発光する半導体レーザを備える。図2において、コリメータレンズ32および光合波器33は、位置測定用光源31から放射されたレーザ光を平行光で干渉計11へ入射させるための入射光学系である。光合波器33は、例えばレーザ光を反射するとともに被測定光を透過するダイクロイックミラー等であり、その法線が移動鏡115の法線(光軸)に対し45度で交差するように、コリメータレンズ111と半透鏡112との間に配置される。コリメータレンズ32は、例えば両凸のレンズであり、このように配置された光合波器33に対し45度の入射角で位置測定用光源31から放射されたレーザ光が入射されるように、適宜な位置に配置される。そして、光分波器34および集光レンズ35は、干渉計11で生じた前記レーザ光の干渉光を干渉計11から取り出すための射出光学系である。光分波器34は、例えばレーザ光の干渉光を反射するとともに被測定光の干渉光を透過するダイクロイックミラー等であり、その法線が固定鏡114の法線(光軸)に対し45度で交差するように、半透鏡112と集光レンズ116との間に配置される。集光レンズ35は、例えば両凸のレンズであり、このように配置された光分波器34において45度の射出角で射出されるレーザ光の干渉光を集光して第2受光部36へ入射させる。 The position measuring light source 31 is a light source device that emits monochromatic laser light, and includes, for example, a semiconductor laser that emits red laser light having a wavelength of 680 nm. In FIG. 2, a collimator lens 32 and an optical multiplexer 33 are incident optical systems for causing the laser light emitted from the position measuring light source 31 to enter the interferometer 11 as parallel light. The optical multiplexer 33 is, for example, a dichroic mirror that reflects laser light and transmits measured light, and a collimator so that the normal line intersects the normal line (optical axis) of the movable mirror 115 at 45 degrees. It is disposed between the lens 111 and the semi-transparent mirror 112. The collimator lens 32 is, for example, a biconvex lens, and the laser beam emitted from the position measuring light source 31 is incident on the optical multiplexer 33 arranged in this manner at an incident angle of 45 degrees as appropriate. It is arranged in the position. The optical demultiplexer 34 and the condensing lens 35 are emission optical systems for taking out the interference light of the laser light generated by the interferometer 11 from the interferometer 11. The optical demultiplexer 34 is, for example, a dichroic mirror that reflects the interference light of the laser light and transmits the interference light of the light to be measured, and its normal line is 45 degrees with respect to the normal line (optical axis) of the fixed mirror 114. Are arranged between the semi-transparent mirror 112 and the condenser lens 116 so as to intersect each other. The condensing lens 35 is, for example, a biconvex lens, and condenses the interference light of the laser beam emitted at an emission angle of 45 degrees in the optical demultiplexer 34 arranged in this manner, thereby the second light receiving unit 36. To enter.
 このようにコリメータレンズ32、光合波器33、光分波器34および集光レンズ35の各光学素子が配置されると、位置測定用光源31から放射された単色のレーザ光は、コリメータレンズ32で平行光とされ、その光路が光合波器33のダイクロイックミラー33で約90度曲げられて、干渉計11の光軸(移動鏡115の鏡面における法線方向)に沿って進行するようになる。したがって、このレーザ光は、被測定光と同様に、干渉計11内を進行し、干渉計11でその干渉光を生じさせる。そして、このレーザ光の干渉光は、光分波器34のダイクロイックミラー34で約90度曲げられて、干渉計11から外部に取り出され、集光レンズ35で集光されて第2受光部36で受光される。 When the optical elements such as the collimator lens 32, the optical multiplexer 33, the optical demultiplexer 34, and the condenser lens 35 are arranged in this way, the monochromatic laser light emitted from the position measuring light source 31 is converted into the collimator lens 32. The optical path is bent by about 90 degrees by the dichroic mirror 33 of the optical multiplexer 33 and travels along the optical axis of the interferometer 11 (normal direction on the mirror surface of the movable mirror 115). . Therefore, this laser light travels in the interferometer 11 as with the light to be measured, and the interferometer 11 generates the interference light. Then, the interference light of this laser light is bent by about 90 degrees by the dichroic mirror 34 of the optical demultiplexer 34, taken out from the interferometer 11, collected by the condenser lens 35, and condensed by the second light receiving unit 36. Is received.
 図1に戻って、第2受光部36は、干渉計11で得られたレーザ光の干渉光を受光して光電変換することによって、レーザ光の干渉光の光強度に応じた電気信号を出力する回路である。第2受光部36は、例えばシリコンフォトダイオード(SPD)およびその周辺回路を備えて構成される受光センサ等である。第2受光部36は、レーザ光の干渉光の光強度に応じた電気信号をゼロクロス検出部37へ出力する。 Returning to FIG. 1, the second light receiving unit 36 receives the interference light of the laser light obtained by the interferometer 11 and photoelectrically converts it, thereby outputting an electric signal corresponding to the light intensity of the interference light of the laser light. Circuit. The second light receiving unit 36 is, for example, a light receiving sensor including a silicon photodiode (SPD) and its peripheral circuit. The second light receiving unit 36 outputs an electrical signal corresponding to the light intensity of the interference light of the laser light to the zero cross detection unit 37.
 ゼロクロス検出部37は、第2受光部36から入力された、レーザ光の干渉光の光強度に応じた電気信号がゼロとなるタイミング(ゼロクロスタイミング)を検出する回路である。ゼロクロスタイミングは、前記電気信号が所定のゼロとなる時間軸上の位置である。干渉計11の移動鏡115が光軸方向に移動している場合に、半透鏡112から固定鏡114を介して再び半透鏡に戻ったレーザ光の位相に対し、半透鏡112から移動鏡115を介して再び半透鏡に戻ったレーザ光の位相がずれるので、レーザ光の干渉光は、その移動量に応じて正弦波状に強弱する。そして、干渉計11の移動鏡115がレーザ光の波長の1/2の長さだけ移動すると、半透鏡112から移動鏡115を介して再び半透鏡に戻ったレーザ光の位相は、この移動の前後において、2πずれる。このため、レーザ光の干渉光は、例えば、図4に示すように、移動鏡115の移動に従って正弦波状に強弱を繰り返すことになる。ゼロクロス検出部37は、この正弦波状に強弱を繰り返す前記電気信号のゼロクロスを検出している。ゼロクロス検出部37は、この検出したゼロクロスのタイミングをAD変換部23へ出力し、AD変換部23は、このゼロクロスのタイミングで、第1受光部21から入力された、被測定光の干渉光の光強度に応じた電気信号をサンプリングしてAD変換する。 The zero cross detection unit 37 is a circuit that detects a timing (zero cross timing) at which the electric signal corresponding to the light intensity of the interference light of the laser beam input from the second light receiving unit 36 becomes zero. The zero cross timing is a position on the time axis at which the electric signal becomes a predetermined zero. When the movable mirror 115 of the interferometer 11 is moved in the optical axis direction, the movable mirror 115 is moved from the semi-transparent mirror 112 to the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror via the fixed mirror 114. Since the phase of the laser light that has returned to the semi-transparent mirror is shifted again, the interference light of the laser light becomes strong and weak in a sine wave shape according to the amount of movement. When the movable mirror 115 of the interferometer 11 moves by a length that is ½ of the wavelength of the laser light, the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the movable mirror 115 is There is a 2π shift before and after. For this reason, for example, as shown in FIG. 4, the interference light of the laser light repeatedly increases and decreases in a sine wave shape as the moving mirror 115 moves. The zero cross detector 37 detects the zero cross of the electrical signal that repeats the strength in a sine wave form. The zero-cross detection unit 37 outputs the detected zero-cross timing to the AD conversion unit 23, and the AD conversion unit 23 outputs the interference light of the measured light input from the first light receiving unit 21 at the zero-cross timing. An electrical signal corresponding to the light intensity is sampled and AD converted.
 移動鏡動作検出部200は、移動鏡115の振幅を求めるために移動鏡115の1回の走査を検出するべく、移動鏡115の動きを検出するセンサー装置である。図2に示す例では、移動鏡動作検出部200は、検出センサーとしてフォトリフレクターを備えている。このフォトリフレクターは、移動鏡115の裏面に光を照射する発光素子と、移動鏡115の裏面で反射した光を受光する受光素子とを備え、移動鏡115の動きに従って変化する反射光の光量を検出することによって移動鏡115の動きを検出するものであり、このフォトリフレクターは、移動鏡115の動きに同期した信号を出力する。このため、フォトリフレクターの出力の1周期が移動鏡115の1往復に相当し、フォトリフレクターの出力から、移動鏡115の1回の走査が検出される。 The moving mirror operation detection unit 200 is a sensor device that detects the movement of the moving mirror 115 in order to detect one scan of the moving mirror 115 in order to obtain the amplitude of the moving mirror 115. In the example illustrated in FIG. 2, the moving mirror operation detection unit 200 includes a photo reflector as a detection sensor. This photoreflector includes a light emitting element that irradiates light on the back surface of the movable mirror 115 and a light receiving element that receives light reflected on the back surface of the movable mirror 115, and the amount of reflected light that changes according to the movement of the movable mirror 115. The movement of the movable mirror 115 is detected by detection, and this photo reflector outputs a signal synchronized with the movement of the movable mirror 115. Therefore, one cycle of the output of the photo reflector corresponds to one reciprocation of the movable mirror 115, and one scan of the movable mirror 115 is detected from the output of the photo reflector.
 図1に戻って、制御演算部41は、被測定光のスペクトルを求めるべく、FT型分光計Dの各部を当該各部の機能に応じてそれぞれ制御するものである。制御演算部41は、例えば、CPU(Central Processing Unit)、このCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えたマイクロコンピュータによって構成される。なお、制御演算部41は、AD変換部23から出力されるデータ等を記憶するために、例えばハードディスク等の比較的大容量の記憶装置をさらに備えてもよい。そして、制御演算部41には、プログラムを実行することによって、機能的に、サンプリングデータ記憶部411、センターバースト位置算出部412、積算インターフェログラム算出部413、スペクトル算出部414、移動鏡振幅記憶部415および振幅変動算出部416が構成される。 Returning to FIG. 1, the control calculation unit 41 controls each part of the FT spectrometer D according to the function of each part in order to obtain the spectrum of the light to be measured. The control calculation unit 41 is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Erasable Programmable Read Only) that stores various programs executed by the CPU and data necessary for the execution in advance. A non-volatile memory element such as Memory), a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and a microcomputer including a peripheral circuit thereof. The control calculation unit 41 may further include a relatively large capacity storage device such as a hard disk, for example, in order to store data output from the AD conversion unit 23. Then, the control calculation unit 41 is functionally executed by executing a program, such as a sampling data storage unit 411, a center burst position calculation unit 412, an integrated interferogram calculation unit 413, a spectrum calculation unit 414, and a moving mirror amplitude storage. The unit 415 and the amplitude fluctuation calculation unit 416 are configured.
 サンプリングデータ記憶部411は、AD変換部23から出力された、被測定光の干渉光に関する測定データを記憶するものである。この測定データは、上述したように、被測定光の干渉光における光強度に応じた電気信号を、ゼロクロス検出部37で検出したゼロクロスのタイミングで、AD変換部23によってサンプリングすることによって得られる。 The sampling data storage unit 411 stores measurement data related to the interference light of the light to be measured output from the AD conversion unit 23. As described above, the measurement data is obtained by sampling the electrical signal corresponding to the light intensity in the interference light of the light to be measured by the AD conversion unit 23 at the zero cross timing detected by the zero cross detection unit 37.
 センターバースト位置算出部412は、サンプリングデータ記憶部411に記憶された測定データから、公知の常套手法によってセンターバーストの位置を求めるものである。 The center burst position calculation unit 412 obtains the position of the center burst from the measurement data stored in the sampling data storage unit 411 by a known conventional method.
 積算インターフェログラム算出部413は、被測定光を連続的に複数回測定することによって得られた複数のインターフェログラムを、センターバースト位置算出部412によって求められた各センターバースト位置で位置合わせを行いつつ、積算することによって積算インターフェログラムを求めるものである。 The integrated interferogram calculation unit 413 aligns a plurality of interferograms obtained by continuously measuring the measured light at a plurality of times at each center burst position obtained by the center burst position calculation unit 412. While performing, the integrated interferogram is obtained by integrating.
 スペクトル算出部414は、積算インターフェログラム算出部413でインターフェログラムを複数積算することによって得られた積算インターフェログラムをフーリエ変換することによってスペクトルを求めるものである。 The spectrum calculation unit 414 obtains a spectrum by Fourier-transforming an integrated interferogram obtained by integrating a plurality of interferograms by the integrated interferogram calculating unit 413.
 移動鏡振幅記憶部415および振幅変動算出部416については、後述する。 The moving mirror amplitude storage unit 415 and the amplitude fluctuation calculation unit 416 will be described later.
 入力部42は、例えば、試料SMの測定開始を指示するコマンド等の各種コマンド、および、例えば測定対象の試料SMにおける識別子の入力やフーリエ変換の際に用いられる窓関数の選択入力等のスペクトルを測定する上で必要な各種データをFT型分光計Dに入力する機器であり、例えば、キーボードやマウス等である。出力部43は、入力部42から入力されたコマンドやデータ、および、FT型分光計Dによって測定された被測定光のスペクトルを出力する機器であり、例えばCRTディスプレイ、LCD、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。 The input unit 42, for example, various commands such as a command for instructing the measurement start of the sample SM, and a spectrum such as an input of an identifier in the sample SM to be measured and a selection input of a window function used for Fourier transform, for example. A device that inputs various data necessary for measurement to the FT spectrometer D, such as a keyboard and a mouse. The output unit 43 is a device that outputs the command and data input from the input unit 42 and the spectrum of the light to be measured measured by the FT spectrometer D. For example, the output unit 43 is a CRT display, LCD, organic EL display, and plasma. A display device such as a display, or a printing device such as a printer.
 次に、本実施形態の動作について説明する。図7は、実施形態のフーリエ変換型分光計において、一例として、実測した被測定光の干渉光の波形(インターフェログラム)を示す図である。図7の横軸は、第1光路と第2光路との間の光路差xであり、その縦軸は、インターフェログラムの振幅Fm(x)である。図8は、インターフェログラムと窓関数との関係を示す図である。図8の横軸は、第1光路と第2光路との間の光路差xであり、その縦軸は、振幅である。実線は、インターフェログラムであり、破線は、窓関数である。 Next, the operation of this embodiment will be described. FIG. 7 is a diagram illustrating a waveform (interferogram) of actually measured interference light of the measured light in the Fourier transform spectrometer according to the embodiment. The horizontal axis in FIG. 7 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude Fm (x) of the interferogram. FIG. 8 is a diagram showing the relationship between the interferogram and the window function. The horizontal axis in FIG. 8 is the optical path difference x between the first optical path and the second optical path, and the vertical axis is the amplitude. A solid line is an interferogram, and a broken line is a window function.
 このような構成のFT型分光計Dでは、測定対象の試料SMの測定を行う場合、まず、試料SMがFT型分光計Dにセットされ、測定が開始される。測定が開始されると、測定光光源51は、測定光を放射し、試料SMへ例えば45度の入射角で測定光を照射する。そして、試料SMで反射した測定光の反射光が被測定光として0度方向から測定され、干渉計11に入射される。 In the FT spectrometer D having such a configuration, when measuring the sample SM to be measured, the sample SM is first set in the FT spectrometer D, and measurement is started. When the measurement is started, the measurement light source 51 emits measurement light and irradiates the sample SM with the measurement light at an incident angle of 45 degrees, for example. Then, the reflected light of the measurement light reflected by the sample SM is measured from the 0 degree direction as light to be measured, and is incident on the interferometer 11.
 この干渉計11に入射された被測定光は、干渉計11で被測定光の干渉光となって受光処理部20の第1受光部21で受光される。より具体的には、被測定光は、コリメータレンズ111で平行光とされ、光合波器33を介して半透鏡112で反射および透過することで第1および第2被測定光に分岐される。半透鏡112で反射することによって分岐した第1被測定光は、位相補償板113を介して固定鏡114へ入射し、固定鏡114で反射し、来た光路を逆に辿って再び半透鏡112に戻る。一方、半透鏡112を通過することによって分岐した第2被測定光は、移動鏡115へ入射し、移動鏡115で反射し、来た光路を逆に辿って再び半透鏡112に戻る。これら固定鏡114で反射された第1被測定光および移動鏡115で反射された第2被測定光は、半透鏡112で互いに合流して干渉する。この被測定光の干渉光は、干渉計11から第1受光部21へ射出される。第1受光部21は、この入射された被測定光の干渉光を光電変換し、前記被測定光の干渉光における光強度に応じた電気信号を増幅部22へ出力する。増幅部22は、所定の増幅率で前記被測定光の干渉光に応じた前記電気信号を増幅し、AD変換部23へ出力する。 The light to be measured incident on the interferometer 11 is received by the first light receiving unit 21 of the light receiving processing unit 20 as interference light of the light to be measured by the interferometer 11. More specifically, the light to be measured is converted into parallel light by the collimator lens 111, and is reflected and transmitted by the semi-transparent mirror 112 through the optical multiplexer 33, thereby being branched into the first and second light to be measured. The first light to be measured branched by being reflected by the semi-transparent mirror 112 is incident on the fixed mirror 114 via the phase compensation plate 113, reflected by the fixed mirror 114, and traces the optical path that has come in reverse, and again the semi-transparent mirror 112. Return to. On the other hand, the second light to be measured branched by passing through the semi-transparent mirror 112 is incident on the movable mirror 115, reflected by the movable mirror 115, and returns to the semi-transparent mirror 112 by tracing back the optical path that has come. The first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other. The interference light of the light to be measured is emitted from the interferometer 11 to the first light receiving unit 21. The first light receiving unit 21 photoelectrically converts the incident interference light of the measurement light, and outputs an electrical signal corresponding to the light intensity in the interference light of the measurement light to the amplification unit 22. The amplifying unit 22 amplifies the electric signal corresponding to the interference light of the light to be measured with a predetermined amplification factor, and outputs it to the AD converting unit 23.
 一方、FT型分光計Dは、位置測定用光源31から放射された単色のレーザ光も取り込む。このレーザ光は、光合波器33を介して干渉計11に入射され、上述と同様に干渉計11で干渉し、レーザ光の干渉光となって光分波器34を介して第2受光部36で受光される。第2受光部36は、この入射されたレーザ光の干渉光を光電変換し、前記レーザ光の干渉光における光強度に応じた電気信号をゼロクロス検出部37へ出力する。ゼロクロス検出部37は、前記レーザ光の干渉光に応じた前記電気信号がゼロとなるタイミングをゼロクロスタイミングとして検出し、このゼロクロスタイミングをサンプリングタイミング(AD変換タイミング)としてAD変換部23へ出力する。 On the other hand, the FT spectrometer D also captures monochromatic laser light emitted from the position measurement light source 31. This laser light is incident on the interferometer 11 via the optical multiplexer 33, interferes with the interferometer 11 in the same manner as described above, becomes interference light of the laser light, and passes through the optical demultiplexer 34 to the second light receiving unit. Light is received at 36. The second light receiving unit 36 photoelectrically converts the incident interference light of the laser beam, and outputs an electrical signal corresponding to the light intensity in the interference light of the laser beam to the zero cross detection unit 37. The zero cross detection unit 37 detects a timing at which the electric signal corresponding to the interference light of the laser beam becomes zero as a zero cross timing, and outputs the zero cross timing to the AD conversion unit 23 as a sampling timing (AD conversion timing).
 このような被測定光およびレーザ光がそれぞれ干渉計11に取り込まれている間に、干渉計11の移動鏡115は、共振振動によって制御演算部41の制御に従って光軸方向に沿って移動されている。 While such measured light and laser light are respectively taken into the interferometer 11, the movable mirror 115 of the interferometer 11 is moved along the optical axis direction according to the control of the control calculation unit 41 by resonance vibration. Yes.
 AD変換部23は、増幅部22から出力された、前記被測定光の干渉光における光強度に応じた電気信号を、ゼロクロス検出部37から入力されたゼロクロスタイミングでサンプリングしてアナログ信号からディジタル信号へAD変換し、このAD変換したディジタル信号の前記電気信号を制御演算部41へ出力する。 The AD conversion unit 23 samples the electrical signal output from the amplification unit 22 according to the light intensity in the interference light of the light to be measured at the zero cross timing input from the zero cross detection unit 37, and converts the electrical signal from an analog signal to a digital signal. AD conversion is performed, and the electric signal of the digital signal subjected to the AD conversion is output to the control calculation unit 41.
 このように動作することによって、被測定光のインターフェログラムにおける測定データがAD変換部23から制御演算部41へ出力され、この測定データがサンプリングデータ記憶部411に記憶される。このように測定される被測定光のインターフェログラムの一例が図7に示されている。そして、SN比を改善し、良好な精度の結果を得るために、このような被測定光のインターフェログラムが移動鏡115の往復に合わせて連続的に複数回、同様に、測定され、これら各インターフェログラムの各測定データがサンプリングデータ記憶部411にそれぞれ記憶される。移動鏡115が1往復すると、1回の走査が終了し、往路および復路のそれぞれで1個ずつのインターフェログラムの測定データが得られる。つまり、1個のインターフェログラムは、一方端の最大振幅位置から振動中心(光路差0)を経て他方端の最大振幅位置までのデータである。 By operating in this way, measurement data in the interferogram of the light to be measured is output from the AD conversion unit 23 to the control calculation unit 41, and this measurement data is stored in the sampling data storage unit 411. An example of the interferogram of the light to be measured thus measured is shown in FIG. Then, in order to improve the S / N ratio and obtain a result with good accuracy, the interferogram of such light to be measured is measured in a similar manner continuously several times in accordance with the reciprocation of the movable mirror 115, and these Each measurement data of each interferogram is stored in the sampling data storage unit 411. When the movable mirror 115 reciprocates once, one scan is completed, and one interferogram measurement data is obtained for each of the forward path and the backward path. That is, one interferogram is data from the maximum amplitude position at one end to the maximum amplitude position at the other end via the vibration center (optical path difference 0).
 次に、センターバースト位置算出部412は、サンプリングデータ記憶部411に記憶された各インターフェログラムの各測定データのそれぞれについて、被測定光のインターフェログラムにおけるセンターバーストの位置を求める。 Next, the center burst position calculation unit 412 obtains the position of the center burst in the interferogram of the measured light for each measurement data of each interferogram stored in the sampling data storage unit 411.
 次に、積算インターフェログラム算出部413は、複数回測定することによって得られた、被測定光の複数のインターフェログラムを、往路および復路のそれぞれで、センターバースト位置算出部412によって求められた各センターバースト位置で位置合わせを行いつつ、積算することによって、被測定光に対する積算インターフェログラムを求める。 Next, the integrated interferogram calculation unit 413 obtains a plurality of interferograms of the measured light obtained by measuring a plurality of times by the center burst position calculation unit 412 in each of the forward path and the return path. An integrated interferogram for the measured light is obtained by performing integration while performing alignment at each center burst position.
 次に、スペクトル算出部414は、積算インターフェログラム算出部413によって求められた前記往路および復路のそれぞれでの積算インターフェログラムをフーリエ変換することによって、被測定光のスペクトルを求める。そして、スペクトル算出部414は、これら往路および復路のそれぞれに対して求めたスペクトルの平均を求めることによって、測定結果として出力部43に出力される最終的な被測定光のスペクトルを求める。 Next, the spectrum calculation unit 414 obtains the spectrum of the light to be measured by Fourier-transforming the accumulated interferogram in each of the forward path and the return path obtained by the accumulated interferogram calculation unit 413. Then, the spectrum calculation unit 414 obtains the spectrum of the final measured light output to the output unit 43 as the measurement result by obtaining the average of the obtained spectra for each of the forward path and the return path.
 このスペクトルの算出について、より具体的に説明すると、まず、m回目の測定でのインターフェログラムF(x)は、光路差をxとし、波数をνとし、波数νのスペクトル振幅をB(ν)とし、光路差0の位置をXとし、波数νの光路差0の位置における位相をφ(ν)とする場合に、式1で表される。なお、mは、m番目の測定による測定結果であることを表す。 The calculation of this spectrum will be described more specifically. First, the interferogram F m (x i ) in the m-th measurement has an optical path difference x i , a wave number ν j , and a wave number ν j spectrum. When the amplitude is B (ν j ), the position of the optical path difference 0 is X 0, and the phase at the position of the optical path difference 0 of the wave number ν j is φ (ν j ), it is expressed by Expression 1. Note that m represents the measurement result of the mth measurement.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 したがって、積算インターフェログラムF(x)は、式2で表される。 Therefore, the integrated interferogram F (x i ) is expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このように積算インターフェログラムが積算インターフェログラム算出部413で求められると、スペクトル算出部414は、積算インターフェログラムを例えば高速フーリエ変換(FFT)することによって被測定光のスペクトルを求める。 Thus, when the integrated interferogram is obtained by the integrated interferogram calculating unit 413, the spectrum calculating unit 414 obtains the spectrum of the light to be measured by, for example, fast Fourier transform (FFT) of the integrated interferogram.
 より具体的には、高速フーリエ変換する場合には、サイドローブの発生を低減するために、図8に示すように、光路差0(センターバーストの位置)を中心に左右対称な窓関数Awindow(x)が掛け合わされてから(式3)、高速フーリエ変換が行われ、被測定光のスペクトルの振幅|Bwindow(ν)|が求められる(式4)。 More specifically, in the case of fast Fourier transform, in order to reduce the occurrence of side lobes, as shown in FIG. 8, a window function A window that is symmetric about the optical path difference 0 (center burst position) is used. After multiplying (x i ) (Equation 3), fast Fourier transform is performed, and the amplitude | B windowj ) | of the spectrum of the measured light is obtained (Equation 4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記窓関数Awindow(x)は、適宜な種々の関数を挙げることができるが、例えば、式5-1ないし式5-3で表される関数である。式5-1は、Hanning Window(ハニング窓)関数と呼ばれ、式5-2は、Hamming Window(ハミング窓)関数と呼ばれ、式5-3は、Blackman Window(ブラックマン窓)関数と呼ばれる。 Examples of the window function A window (x i ) can include various appropriate functions. For example, the window functions A window (x i ) are functions represented by Expression 5-1 to Expression 5-3. Equation 5-1 is called the Hanning Window function, Equation 5-2 is called the Hamming Window function, and Equation 5-3 is called the Blackman Window function. .
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上述のように、スペクトルが求められると、制御演算部41は、この求めたスペクトルを出力部43へ出力する。 As described above, when the spectrum is obtained, the control calculation unit 41 outputs the obtained spectrum to the output unit 43.
 ここで、このような被測定光のスペクトルの測定において、上述したように、移動鏡115の共振周波数に近い周波数の外部振動がFT型分光計Dに加わると、いわゆるうねりが生じ、受光処理部20の増幅部22が周波数特性を持つために、スペクトルに誤差が生じる。 Here, in the measurement of the spectrum of the light to be measured, as described above, when external vibration having a frequency close to the resonance frequency of the movable mirror 115 is applied to the FT spectrometer D, so-called undulation occurs, and the light receiving processing unit Since the 20 amplification units 22 have frequency characteristics, an error occurs in the spectrum.
 図9は、実施形態のフーリエ変換型分光計における受光処理部の増幅部の周波数特性を示す図である。図9Aは、全体図であり、図9Bは、その一部拡大図である。図9Aおよび図9Bの横軸は、kHz単位で表す周波数であり、その縦軸は、増幅率(ゲイン)である。図10は、受光処理部における増幅部の周波数特性とインターフェログラムに含まれる信号の周波数帯域との関係を示す模式図である。図10の横軸は、周波数であり、その縦軸は、増幅率(ゲイン)である。図11は、干渉計における移動鏡の各振幅とその振幅での各インターフェログラムに基づいて得られるスペクトルの強度比との関係を示す図である。図12は、移動鏡の振幅が5500(1回のインターフェログラムの測定(1回の走査)におけるサンプリング回数、以下同じ)である場合を中心に、その前後の振幅で測定したスペクトルを平均したスペクトルの強度比を示す図である。図11および図12の各横軸は、nm単位で表す波長であり、その各縦軸は、移動鏡の振幅が5500である場合のスペクトルに対する各振幅のスペクトル比(始動鏡の振幅が5500である場合のスペクトルで各振幅でのスペクトルを規格化したもの)である。 FIG. 9 is a diagram illustrating frequency characteristics of the amplification unit of the light receiving processing unit in the Fourier transform spectrometer according to the embodiment. FIG. 9A is an overall view, and FIG. 9B is a partially enlarged view thereof. The horizontal axis in FIGS. 9A and 9B is the frequency expressed in kHz, and the vertical axis is the amplification factor (gain). FIG. 10 is a schematic diagram showing the relationship between the frequency characteristic of the amplification unit in the light receiving processing unit and the frequency band of the signal included in the interferogram. The horizontal axis in FIG. 10 is the frequency, and the vertical axis is the amplification factor (gain). FIG. 11 is a diagram showing the relationship between each amplitude of the movable mirror in the interferometer and the intensity ratio of the spectrum obtained based on each interferogram at that amplitude. FIG. 12 shows an average of spectra measured at amplitudes before and after the case where the amplitude of the moving mirror is 5500 (the number of sampling in one interferogram measurement (one scan), the same applies hereinafter). It is a figure which shows the intensity ratio of a spectrum. Each horizontal axis in FIGS. 11 and 12 is a wavelength expressed in nm units, and each vertical axis represents a spectral ratio of each amplitude to a spectrum when the amplitude of the moving mirror is 5500 (the amplitude of the starting mirror is 5500). The spectrum in each amplitude is normalized with respect to the spectrum at each amplitude).
 より具体的には、増幅部22は、図9に示すように、その増幅率が周波数0(ゼロ)から周波数の増加に従って徐々に低下し(図9B参照)、その後、より急激に低下する周波数特性を持っている。 More specifically, as shown in FIG. 9, the amplifying unit 22 has a frequency at which the amplification factor gradually decreases from the frequency 0 (zero) as the frequency increases (see FIG. 9B), and then decreases more rapidly. Has characteristics.
 その一方で、移動鏡115は、共振駆動されるため、駆動周波数は、一定である。よって、移動鏡115が共振駆動されている間では、移動鏡115が振動によって1往復にかかる時間は、振幅によらず一定である。このため、移動鏡115にうねりが生じ、振幅が変動すると、移動鏡115の速度が変わり、インターフェログラムに含まれる信号の周波数帯域が変動する。例えば、外部振動が無くうねりが生じていない場合に共振している移動鏡115の振幅を目標振幅とすると、図10に示すように、外部振動によってうねりが生じて前記目標振幅より小さな振幅で共振している移動鏡115によって得られるインターフェログラムに含まれる信号の周波数帯域BNsは、移動鏡115の速度が遅くなるため、前記目標振幅で共振している移動鏡115によって得られるインターフェログラム(以下、「目標振幅のインターフェログラム」と略記する。)に含まれる信号の周波数帯域BN0より、低周波側に変動する。一方、外部振動によってうねりが生じて前記目標振幅より大きな振幅で共振している移動鏡115によって得られるインターフェログラムに含まれる信号の周波数帯域BNwは、移動鏡115の速度が速くなるため、前記目標振幅のインターフェログラムに含まれる信号の周波数帯域BN0より、高周波側に変動する。 On the other hand, since the movable mirror 115 is resonantly driven, the driving frequency is constant. Therefore, while the movable mirror 115 is driven to resonate, the time required for the movable mirror 115 to reciprocate once by vibration is constant regardless of the amplitude. For this reason, when the undulation occurs in the movable mirror 115 and the amplitude varies, the speed of the movable mirror 115 changes, and the frequency band of the signal included in the interferogram varies. For example, if the amplitude of the moving mirror 115 that is resonating when there is no external vibration and no undulation is set as the target amplitude, as shown in FIG. 10, the undulation is generated by the external vibration and resonance occurs at an amplitude smaller than the target amplitude. In the frequency band BNs of the signal included in the interferogram obtained by the moving mirror 115, the speed of the moving mirror 115 decreases, so that the interferogram obtained by the moving mirror 115 resonating at the target amplitude ( Hereinafter, it is abbreviated as “interferogram of target amplitude”. On the other hand, the frequency band BNw of the signal included in the interferogram obtained by the moving mirror 115 that is swelled by external vibration and resonates with an amplitude larger than the target amplitude increases the speed of the moving mirror 115. It fluctuates to the high frequency side from the frequency band BN0 of the signal included in the interferogram of the target amplitude.
 このように周波数帯域BNが変動すると、増幅部22における増幅率の周波数特性により、図10に示すように、前記目標振幅より小さな振幅で共振している移動鏡115によって得られるインターフェログラムに含まれる信号は、前記目標振幅のインターフェログラムに含まれる信号の増幅率より、大きな増幅率で増幅されることになる。一方、前記目標振幅より大きな振幅で共振している移動鏡115によって得られるインターフェログラムに含まれる信号は、前記目標振幅のインターフェログラムに含まれる信号の増幅率より、小さな増幅率で増幅されることになる。 If the frequency band BN fluctuates in this way, it is included in the interferogram obtained by the movable mirror 115 that resonates at an amplitude smaller than the target amplitude, as shown in FIG. The signal to be transmitted is amplified with a larger amplification factor than the amplification factor of the signal included in the interferogram of the target amplitude. On the other hand, the signal included in the interferogram obtained by the movable mirror 115 that resonates with an amplitude larger than the target amplitude is amplified with a smaller amplification factor than the amplification factor of the signal included in the target amplitude interferogram. Will be.
 このように、うねりによって移動鏡115の振幅が変動すると、インターフェログラムに含まれる信号を増幅部22で増幅する際の増幅率が変動する。この結果、インターフェログラムのフーリエ変換によって求められるスペクトルの強度が変わってしまい、スペクトルに誤差が生じることになる。 As described above, when the amplitude of the movable mirror 115 fluctuates due to the undulation, the amplification factor when the signal included in the interferogram is amplified by the amplification unit 22 fluctuates. As a result, the intensity of the spectrum obtained by the Fourier transform of the interferogram changes and an error occurs in the spectrum.
 なお、インターフェログラムに含まれる信号とは、インターフェログラムのフーリエ変換によって被測定光のスペクトルとして取り出される信号である。 Note that the signal included in the interferogram is a signal extracted as a spectrum of the light to be measured by Fourier transform of the interferogram.
 そこで、前記目標振幅のインターフェログラムからフーリエ変換によって求められるスペクトル(以下、「基準スペクトル」と略記する。)を基準として、目標振幅の前後の大きさの振幅で共振している移動鏡115によって得られるインターフェログラムからフーリエ変換によって求められるスペクトルがシミュレート(数値実験)された。例えば、目標振幅がカウント値5500である場合に、振幅がカウント値4000、4500、5000、6000、6500、7000である場合の各インターフェログラムからフーリエ変換によって各スペクトルが数値計算された。その比が図11に示されている。なお、前記カウント値を長さに換算するためには、(カウント値)×(位置測定用光源31の波長;680nm)/4)の式が用いられ、例えばカウント値5500は、0.935mmである。 Therefore, with a spectrum obtained by Fourier transform from the interferogram of the target amplitude (hereinafter abbreviated as “reference spectrum”) as a reference, the movable mirror 115 resonates at an amplitude of the magnitude before and after the target amplitude. A spectrum obtained by Fourier transform from the obtained interferogram was simulated (numerical experiment). For example, when the target amplitude is the count value 5500, each spectrum is numerically calculated by Fourier transform from each interferogram when the amplitude is the count value 4000, 4500, 5000, 6000, 6500, 7000. The ratio is shown in FIG. In order to convert the count value into a length, an equation of (count value) × (wavelength of position measurement light source 31; 680 nm) / 4) is used. For example, the count value 5500 is 0.935 mm. is there.
 図11において、「4000」の実線は、基準スペクトルB5500(λ)に対する振幅4000のスペクトルB4000(λ)の比r(λ)であり、「4500」の実線は、基準スペクトルB5500(λ)に対する振幅4500のスペクトルB4500(λ)の比r(λ)であり、「5000」の実線は、基準スペクトルB5500(λ)に対する振幅5000のスペクトルB5000(λ)の比r(λ)であり、「5500」の実線は、基準スペクトルB5500(λ)に対する振幅5500のスペクトルB5500(λ)(すなわち基準スペクトル)の比r(λ)であり、「6000」の実線は、基準スペクトルB5500(λ)に対する振幅6000のスペクトルB6000(λ)の比r(λ)であり、「6500」の実線は、基準スペクトルB5500(λ)に対する振幅6500のスペクトルB6500(λ)の比r(λ)であり、そして、「7000」の実線は、基準スペクトルB5500(λ)に対する振幅7000のスペクトルB7000(λ)の比r(λ)である。これら各比r(λ)~r(λ)の各式が以下に纏めて示されている。 In FIG. 11, the solid line “4000” is the ratio r 0 (λ) of the spectrum B 4000 (λ) having an amplitude of 4000 to the reference spectrum B 5500 (λ), and the solid line “4500” is the reference spectrum B 5500 ( The ratio r 1 (λ) of the spectrum B 4500 (λ) with the amplitude 4500 to λ), and the solid line “5000” is the ratio r 2 of the spectrum B 5000 (λ) with the amplitude 5000 to the reference spectrum B 5500 (λ). (Λ), and the solid line “5500” is the ratio r 3 (λ) of the spectrum B 5500 (λ) (ie, the reference spectrum) having the amplitude 5500 to the reference spectrum B 5500 (λ), and the solid line “6000” the spectrum B 6000 of the amplitude 6000 to the reference spectrum B 5500 (λ) (λ) is the ratio r 4 of (lambda), "6 The solid line 00 "is a spectrum B 6500 of the amplitude 6500 to the reference spectrum B 5500 (λ) (λ) ratio r 5 of (lambda), and, the solid line" 7000 "is the reference spectrum B 5500 (lambda) This is the ratio r 6 (λ) of the spectrum B 7000 (λ) having an amplitude of 7000. Each expression of these ratios r 0 (λ) to r 6 (λ) is summarized below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図11から分かるように、比r(λ)ないし比r(λ)は、比r(λ)を中心に略対称に上下に分かれている。すなわち、比r(λ)ないし比r(λ)は、比r(λ)より大きく、一方、比r(λ)ないし比r(λ)は、比r(λ)より小さい。 As can be seen from FIG. 11, the ratios r 0 (λ) to r 6 (λ) are divided into upper and lower portions approximately symmetrically about the ratio r 3 (λ). That is, the ratio r 0 (λ) to ratio r 2 (λ) is greater than the ratio r 3 (λ), while the ratio r 4 (λ) to ratio r 6 (λ) is greater than the ratio r 3 (λ). small.
 このことより、目標振幅を中心に前後の振幅でのスペクトルが平均され、この平均されたスペクトルと、基準スペクトルとの関係がシミュレートされ、その結果が図12に示されている。 From this, the spectrum at the amplitudes before and after the target amplitude is averaged, and the relationship between the averaged spectrum and the reference spectrum is simulated, and the result is shown in FIG.
 図12において、「5000」の実線は、基準スペクトルの平均<r(λ)>、すなわち、比r(λ)そのものであり、「5000-6000」の実線は、振幅5000でのスペクトルと目標振幅5500でのスペクトルと振幅6000でのスペクトルとの平均<r(λ)>であり、「4500-6500」の実線は、振幅4500でのスペクトルと振幅5000でのスペクトルと目標振幅5500のスペクトルと振幅6000でのスペクトルと振幅6500でのスペクトルとの平均<r(λ)>であり、そして、「4000-7000」の実線は、振幅4000でのスペクトルと振幅4500でのスペクトルと振幅5000でのスペクトルと目標振幅5500のスペクトルと振幅6000でのスペクトルと振幅6500でのスペクトルと振幅7000でのスペクトルとの平均<r(λ)>である。 In FIG. 12, the solid line “5000” is the average <r 0 (λ)> of the reference spectrum, that is, the ratio r 3 (λ) itself, and the solid line “5000-6000” is the spectrum at the amplitude 5000. The average <r 1 (λ)> of the spectrum at the target amplitude 5500 and the spectrum at the amplitude 6000, and the solid line “4500-6500” indicates that the spectrum at the amplitude 4500, the spectrum at the amplitude 5000, and the target amplitude 5500 The average of the spectrum and the spectrum at amplitude 6000 and the spectrum at amplitude 6500 <r 2 (λ)>, and the solid line “4000-7000” is the spectrum at amplitude 4000 and the spectrum and amplitude at amplitude 4500 The spectrum at 5000, the spectrum at target amplitude 5500, the spectrum at amplitude 6000, and the spectrum at amplitude 6500. It is the average <r 3 (λ)> between the spectrum at the spectrum and the amplitude at 7000.
 すなわち、平均<r(λ)>は、目標振幅でのスペクトル(基準スペクトル)と目標振幅を中心に前後の各0個の振幅での各スペクトルとの平均であり(言い換えれば、上記のように、比r(λ)そのもの)、平均<r(λ)>は、目標振幅でのスペクトル(基準スペクトル)と目標振幅を中心に前後の各1個の振幅での各スペクトルとの平均であり、平均<r(λ)>は、目標振幅でのスペクトル(基準スペクトル)と目標振幅を中心に前後の各2個の振幅での各スペクトルとの平均であり、そして、平均<r(λ)>は、目標振幅でのスペクトル(基準スペクトル)と目標振幅を中心に前後の各3個の振幅での各スペクトルとの平均である。これら各平均<r(λ)>~<r(λ)>の各式が以下に纏めて示されている。 That is, the average <r 0 (λ)> is the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at the zero amplitude before and after the target amplitude (in other words, as described above) In addition, the ratio r 3 (λ) itself) and the average <r 1 (λ)> are the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at one amplitude before and after the target amplitude. The average <r 2 (λ)> is the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at the two amplitudes before and after the target amplitude, and the average <r 3 (λ)> is the average of the spectrum at the target amplitude (reference spectrum) and each spectrum at the three amplitudes before and after the target amplitude. Each expression of these averages <r 0 (λ)> to <r 3 (λ)> is summarized below.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この図12を見ると分かるように、目標振幅でのスペクトルに、移動鏡115の目標振幅を中心にその前後の振幅でのスペクトルを加算して平均することによって、この平均結果のスペクトルは、目標振幅でのスペクトルに近づき、スペクトル強度の再現性が向上している。 As can be seen from FIG. 12, by adding the spectrum at the amplitude before and after the target amplitude of the moving mirror 115 to the spectrum at the target amplitude and averaging the spectrum, the spectrum of this average result is The reproducibility of the spectral intensity is improved by approaching the spectrum in amplitude.
 このため、上述の本実施形態のFT型分光計Dでは、連続的に複数個測定されるインターフェログラムの測定時間(総測定時間、総走査時間)は、移動鏡115の振幅変動周期の整数倍となるように、設定されている。すなわち、連続的に複数個測定されるインターフェログラムの測定時間が移動鏡115の振幅変動周期の整数倍ではない場合には、連続的に複数個測定されるインターフェログラムの測定時間の設定に応じて、積算インターフェログラムを求める際に、移動鏡115の振幅が大きな場合のインターフェログラムが積算インターフェログラムに多く含まれることになったり、逆に、移動鏡115の振幅が小さな場合のインターフェログラムが積算インターフェログラムに多く含まれることになったりする。つまり、インターフェログラムの測定時間がうねりの大きな時点で終わっている場合には、積算インターフェログラムを求める際に、相対的に小さな増幅率で増幅されるインターフェログラムを多く含んで積算されることになり、その積算インターフェログラムをフーリエ変換によって求めたスペクトルの強度は、真の値よりも小さな値になる。一方、インターフェログラムの測定時間がうねりの小さな時点で終わっている場合には、積算インターフェログラムを求める際に、相対的に大きな増幅率で増幅されるインターフェログラムを多く含んで積算されることになり、その積算インターフェログラムをフーリエ変換によって求めたスペクトルの強度は、真の値よりも大きな値になる。そこで、上述のように、インターフェログラムの測定時間が移動鏡115の振幅変動周期の整数倍に設定されると、積算インターフェログラムを求める際に、うねりの大きな時点で測定されたインターフェログラムとうねりの小さな時点で測定されたインターフェログラムとを略均等に含むことになるから、互いに打ち消すように働き、図12で説明したように、この積算インターフェログラムは、外部振動等のノイズの影響を低減した、真の結果により近い積算インターフェログラムになっている。したがって、このような積算インターフェログラムをフーリエ変換によって求めたスペクトルの強度は、より真の値に近い値となり、その測定精度が向上し、その再現性が向上する。 For this reason, in the above-described FT spectrometer D of the present embodiment, the measurement time (total measurement time, total scan time) of the interferogram that is continuously measured is an integer of the amplitude fluctuation period of the movable mirror 115. It is set to be doubled. That is, when the measurement time of a plurality of interferograms measured continuously is not an integral multiple of the amplitude fluctuation period of the movable mirror 115, the measurement time of the interferogram measured continuously is set. Accordingly, when the integrated interferogram is obtained, the interferogram when the amplitude of the movable mirror 115 is large is included in the accumulated interferogram, or conversely, when the amplitude of the movable mirror 115 is small. Many interferograms are included in the integrated interferogram. In other words, when the measurement time of the interferogram ends at a time when the undulation is large, when the integrated interferogram is obtained, the interferogram is accumulated including many interferograms that are amplified with a relatively small amplification factor. In other words, the intensity of the spectrum obtained by Fourier transform of the integrated interferogram is smaller than the true value. On the other hand, when the measurement time of the interferogram ends at a point when the undulation is small, when the interferogram is obtained, the interferogram is accumulated including many interferograms that are amplified with a relatively large amplification factor. In other words, the intensity of the spectrum obtained by Fourier transform of the integrated interferogram becomes a value larger than the true value. Therefore, as described above, when the measurement time of the interferogram is set to an integral multiple of the amplitude fluctuation period of the movable mirror 115, the interferogram measured at the time when the swell is large when obtaining the integrated interferogram. The interferograms measured at the time when the undulation is small are almost evenly included, so that they work to cancel each other, and as described with reference to FIG. Integrated interferogram closer to true results with reduced impact. Therefore, the intensity of the spectrum obtained by Fourier transform of such an integrated interferogram becomes a value closer to the true value, the measurement accuracy is improved, and the reproducibility is improved.
 より具体的には、制御演算部41は、図1に示すように、移動鏡振幅記憶部415と、振幅変動算出部416とを備え、振幅変動算出部416は、振幅変動周期の整数倍の時間で、干渉計11によって被測定光のインターフェログラムを連続的に複数個測定することによって得られた複数のインターフェログラムの測定データをサンプリングデータ記憶部411に記憶させる。 More specifically, as shown in FIG. 1, the control calculation unit 41 includes a movable mirror amplitude storage unit 415 and an amplitude variation calculation unit 416, and the amplitude variation calculation unit 416 is an integral multiple of the amplitude variation period. The sampling data storage unit 411 stores measurement data of a plurality of interferograms obtained by measuring a plurality of interferograms of the light to be measured continuously by the interferometer 11 over time.
 例えば、ユーザーによって設定される測定時間をTmeasとし、移動鏡115の走査周期(=共振駆動周波数の逆数)をTscanとすると、移動鏡115の振幅に変動がない場合には、デフォルトRepeatNum0として、(Tmeas/Tscan)回数の往路および復路のそれぞれでインターフェログラムが測定されて、記憶され、これらインターフェログラムを積算インターフェログラム算出部413は、往路および復路のそれぞれで個別に積算する。測定時間は、所望の積算回数に応じて適宜に設定される。そして、移動鏡115の振幅に変動がある場合には、インターフェログラムの測定回数RepeatNumは、移動鏡115の振幅変動周期△Iの整数倍であって、前記デフォルトの回数以上に設定され、次式FCによって表される。
RepeatNum
=round(ceil(RepeatNum0/△I)×△I)   ・・・(FC)
ここで、round(z)は、zを四捨五入する関数であり、ceil(z)は、zをzの直近の整数に切り上る関数である。
For example, if the measurement time set by the user is Tmeas and the scanning period of the moving mirror 115 (= reciprocal of the resonance driving frequency) is Tscan, if there is no change in the amplitude of the moving mirror 115, the default RepeatNum0 is ( Interferograms are measured and stored in each of the outbound and return paths of the number of times Tmeas / Tscan), and the integrated interferogram calculation unit 413 individually accumulates these interferograms in each of the outbound and inbound paths. The measurement time is appropriately set according to the desired number of integrations. When the amplitude of the movable mirror 115 varies, the number of interferogram measurements RepeatNum is an integral multiple of the amplitude variation period ΔI of the movable mirror 115 and is set to be equal to or greater than the default number. It is represented by the formula FC.
RepeatNum
= Round (ceil (RepeatNum0 / ΔI) × ΔI) (FC)
Here, round (z) is a function that rounds off z, and ceil (z) is a function that rounds z up to the nearest integer of z.
 移動鏡振幅記憶部415は、連続的に実行される複数の走査(複数のインターフェログラムの測定)のそれぞれにおける移動鏡115の各振幅をそれぞれ記憶するものである。したがって、移動鏡振幅記憶部415は、1回の走査(移動鏡115の1往復、往路および復路でのインターフェログラムの測定)における移動鏡115の振幅を記憶する記憶領域を複数備えており、そして、本実施形態では、移動鏡振幅記憶部415は、例えば、図15に示すように、各走査における移動鏡115の各振幅を先頭アドレスの記憶領域から最終アドレスの記憶領域へ順に記憶し、最終アドレスの記憶領域に振幅を記憶すると、先頭アドレスの記憶領域に戻って再び先頭アドレスの記憶領域から最終アドレスの記憶領域へ順に記憶するサーキュラーバッファ回路である。このため、サーキュラーバッファ回路の移動鏡振幅記憶部415には、最新の振幅のデータから、サーキュラーバッファ回路のサイズ(記憶領域の個数)まで遡った過去の振幅のデータが記憶される。 The moving mirror amplitude storage unit 415 stores each amplitude of the moving mirror 115 in each of a plurality of scans (measurement of a plurality of interferograms) executed continuously. Therefore, the movable mirror amplitude storage unit 415 includes a plurality of storage areas for storing the amplitude of the movable mirror 115 in one scan (measurement of the interferogram in one round trip of the movable mirror 115, the forward path and the return path), In this embodiment, the movable mirror amplitude storage unit 415 sequentially stores the amplitudes of the movable mirror 115 in each scan from the storage area of the first address to the storage area of the final address, for example, as shown in FIG. When the amplitude is stored in the storage area of the final address, the circular buffer circuit returns to the storage area of the top address and stores the amplitude again in order from the storage area of the top address to the storage area of the final address. Therefore, the moving mirror amplitude storage unit 415 of the circular buffer circuit stores past amplitude data that has been traced back to the size of the circular buffer circuit (the number of storage areas) from the latest amplitude data.
 振幅変動算出部416は、1回の走査における移動鏡115の振幅を求め、この求めた移動鏡115の振幅を移動鏡振幅記憶部415に記憶させ、そして、移動鏡振幅記憶部415に記憶された移動鏡115の前記振幅から、移動鏡115の振幅に変動が有るか否かを判定し、この判定の結果、移動鏡115の振幅に変動がある判定された場合には、前記振幅の変動周期を求めるものである。このように振幅変動算出部416は、振幅算出部および振幅変動周期算出部の一例であり、さらに、移動鏡115の振幅の変動の有無を判定する振幅変動判定部としても機能し、この振幅変動周期判定部の一例でもある。 The amplitude fluctuation calculation unit 416 obtains the amplitude of the movable mirror 115 in one scan, stores the obtained amplitude of the movable mirror 115 in the movable mirror amplitude storage unit 415, and stores it in the movable mirror amplitude storage unit 415. From the amplitude of the movable mirror 115, it is determined whether or not there is a variation in the amplitude of the movable mirror 115. If it is determined that there is a variation in the amplitude of the movable mirror 115 as a result of the determination, the variation in the amplitude is determined. The period is obtained. As described above, the amplitude fluctuation calculation unit 416 is an example of the amplitude calculation unit and the amplitude fluctuation period calculation unit, and further functions as an amplitude fluctuation determination unit that determines whether or not the amplitude of the movable mirror 115 fluctuates. It is also an example of a period determination unit.
 この1回の走査における移動鏡115の振幅を検出し、この検出した移動鏡115の振幅を移動鏡振幅記憶部415に記憶させる動作は、例えば、走査終了後に、走査ごとに実行される。また、前記判定の結果、移動鏡115の振幅に変動があると判定されない場合には、前記振幅の変動周期は、求められない。この場合には、振幅変動算出部416は、ユーザーが設定した測定時間で、干渉計11によって被測定光のインターフェログラムを連続的に複数個測定することによって得られた複数のインターフェログラムの測定データをサンプリングデータ記憶部411に記憶させる。 The operation of detecting the amplitude of the movable mirror 115 in this one scan and storing the detected amplitude of the movable mirror 115 in the movable mirror amplitude storage unit 415 is executed for each scan after the scan is completed, for example. If it is not determined that the amplitude of the movable mirror 115 is varied as a result of the determination, the variation period of the amplitude cannot be obtained. In this case, the amplitude fluctuation calculation unit 416 calculates a plurality of interferograms obtained by continuously measuring a plurality of interferograms of the light to be measured by the interferometer 11 during the measurement time set by the user. The measurement data is stored in the sampling data storage unit 411.
 より具体的には、移動鏡115の振幅の検出では、振幅変動算出部416は、移動鏡動作検出部200によって検出された移動鏡115の1回の走査における往路および復路の期間(移動鏡115の1往復の期間)に、AD変換部25から出力される測定データの個数(言い換えれば、ゼロクロス検出部37から出力されるゼロクロスタイミングの個数)をカウント(計数)し、このカウント値を移動鏡振幅記憶部415に記憶する。上述したように、移動鏡115は、共振駆動されているので、振幅が変動しても1往復にかかる時間は、同じ(一定)である。したがって、振幅変動算出部416は、走査ごとに、1回の走査における往路開始から復路終了までの時間の間にAD変換部25から出力される測定データの個数(ゼロクロス検出部37から出力されるゼロクロスタイミングの個数)をそれぞれカウント(計数)し、各カウント値をそれぞれ移動鏡振幅記憶部415に記憶する。そして、上述したように、サンプリングタイミングは、ゼロクロスタイミングであり、サンプリング間隔は、位置測定用光源31のレーザ光の波長で決まるので、(カウント値)×(位置測定用光源31の波長;680nm)/4)の前記式によって移動鏡115の振幅が実長で求められる。 More specifically, in detecting the amplitude of the movable mirror 115, the amplitude fluctuation calculating unit 416 performs the forward and return periods (moving mirror 115) in one scan of the movable mirror 115 detected by the movable mirror operation detecting unit 200. 1), the number of measurement data output from the AD conversion unit 25 (in other words, the number of zero cross timings output from the zero cross detection unit 37) is counted. Store in the amplitude storage unit 415. As described above, since the movable mirror 115 is driven to resonate, the time required for one reciprocation is the same (constant) even if the amplitude varies. Accordingly, the amplitude fluctuation calculation unit 416 counts the number of measurement data output from the AD conversion unit 25 (output from the zero cross detection unit 37 during the time from the start of the forward path to the end of the return path in one scan. The number of zero cross timings) is counted, and each count value is stored in the movable mirror amplitude storage unit 415. As described above, the sampling timing is zero-cross timing, and the sampling interval is determined by the wavelength of the laser light of the position measurement light source 31. Therefore, (count value) × (wavelength of the position measurement light source 31; 680 nm). / 4), the amplitude of the movable mirror 115 is obtained in actual length.
 また、移動鏡115の振幅変動の有無の判定では、より具体的には、移動鏡115の前記目標振幅をMirrorAmpTargetとした場合に、振幅変動算出部416は、前記検出した移動鏡115の振幅が、前記目標振幅MirrorAmpTargetを中心とした所定の範囲±△N内にあるか否かによって前記有無を判定する。前記検出した移動鏡115の振幅が、前記目標振幅MirrorAmpTargetを中心とした所定の範囲±△N内にある場合には、移動鏡115の振幅に変動はないと判定され、一方、前記検出した移動鏡115の振幅が、前記目標振幅MirrorAmpTargetを中心とした所定の範囲±△N内にない場合には、移動鏡115の振幅に変動があると判定される。言い換えれば、振幅変動算出部416は、前記検出した移動鏡115の振幅が、下限値の目標振幅MirrorAmpTarget-△N以上、上限値の目標振幅MirrorAmpTarget+△N以下であるか否かによって前記有無を判定する。前記検出した移動鏡115の振幅が、前記下限値以上であって前記上限値以下である場合には、移動鏡115の振幅に変動はないと判定され、一方、前記検出した移動鏡115の振幅が、前記下限値未満である場合、および、前記上限値を越えている場合のいずれかである場合には、移動鏡115の振幅に変動があると判定される。 Further, in the determination of the presence or absence of amplitude fluctuation of the movable mirror 115, more specifically, when the target amplitude of the movable mirror 115 is MirrorAmpTarget, the amplitude fluctuation calculation unit 416 determines that the detected amplitude of the movable mirror 115 is The presence / absence is determined based on whether the target amplitude MirrorAmpTarget is within a predetermined range ± ΔN. If the detected amplitude of the movable mirror 115 is within a predetermined range ± ΔN centered on the target amplitude MirrorAmpTarget, it is determined that the amplitude of the movable mirror 115 does not vary, while the detected movement When the amplitude of the mirror 115 is not within a predetermined range ± ΔN centering on the target amplitude MirrorAmpTarget, it is determined that the amplitude of the movable mirror 115 is varied. In other words, the amplitude fluctuation calculation unit 416 determines the presence / absence based on whether or not the detected amplitude of the moving mirror 115 is not less than the lower limit target amplitude MirrorAmpTarget-ΔN and not more than the upper limit target amplitude MirrorAmpTarget + ΔN. To do. When the detected amplitude of the movable mirror 115 is not less than the lower limit value and not more than the upper limit value, it is determined that there is no variation in the amplitude of the movable mirror 115, while the detected amplitude of the movable mirror 115 is Is less than the lower limit value or exceeds the upper limit value, it is determined that there is a variation in the amplitude of the movable mirror 115.
 なお、前記△Nは、FT型分光計Dの仕様により決定されるスペクトルの許容誤差に応じて適宜に設定され、例えば、目標振幅MirrorAmpTarget=5500(カウント値)である場合には、△N=100に設定されてよい。 The ΔN is appropriately set according to the spectrum tolerance determined by the specifications of the FT spectrometer D. For example, when the target amplitude MirrorAmpTarget = 5500 (count value), ΔN = 100 may be set.
 そして、移動鏡115の振幅変動周期の検出では、より具体的には、次の第1態様または第2態様の算出方法によって、振幅変動算出部416は、移動鏡振幅記憶部415に記憶された移動鏡115の前記振幅から、その振幅変動の周期(うねりの周期)を求める。 In the detection of the amplitude fluctuation period of the movable mirror 115, more specifically, the amplitude fluctuation calculation unit 416 is stored in the movable mirror amplitude storage unit 415 by the calculation method of the following first aspect or second aspect. From the amplitude of the movable mirror 115, the amplitude fluctuation period (swell period) is obtained.
 図13は、移動鏡における振動周期の第1態様の算出方法を説明するための図である。図14は、移動鏡における振動周期の第2態様の算出方法を説明するための図である。図13および図14の各横軸は、移動鏡の走査回数であり、その各縦軸は、移動鏡の振幅である。 FIG. 13 is a diagram for explaining a calculation method of the first mode of the vibration period in the movable mirror. FIG. 14 is a diagram for explaining a calculation method of the second mode of the vibration period in the movable mirror. Each horizontal axis in FIGS. 13 and 14 represents the number of scans of the movable mirror, and each vertical axis represents the amplitude of the movable mirror.
 まず、第1態様の算出方法について説明する。移動鏡115の前記目標振幅がMirrorAmpTargetとされ、i回目の走査(測定)における移動鏡115の振幅がMirrorAmp(i)とされ、移動鏡振幅記憶部415の前記記憶領域の個数がImaxとされる。振幅変動算出部416は、振幅MirrorAmp(i)を最新のデータを示すi=0から最も過去のデータを示すi=Imax-1まで、順に、移動鏡振幅記憶部415の記憶領域を検索し、振幅変動算出部416は、最初に、目標振幅MirrorAmpTargetと交差する振幅MirrorAmp(i)を見つけ出す。例えば、図13に示すように、振幅変動算出部416は、目標振幅MirrorAmpTargetより小さい振幅の状態から、前記検索によって、最初に、目標振幅MirrorAmpTargetを越える振幅MirrorAmp(I1)を見つけ出す。振幅変動算出部416は、この最初に交差する位置をI01とする。振幅変動算出部416は、さらに、順に移動鏡振幅記憶部415の記憶領域を検索し、振幅変動算出部416は、次に最初の交差の仕方(最初の交差態様)と同じ仕方(同じ交差態様)で目標振幅MirrorAmpTargetと交差する振幅MirrorAmp(I2)を見つけ出す。すなわち、前記例では、振幅MirrorAmp(I1)は、目標振幅MirrorAmpTargetより小さい振幅の状態から、目標振幅MirrorAmpTargetを越える態様で交差したデータであったので、振幅変動算出部416は、次に、目標振幅MirrorAmpTargetより小さい振幅の状態から、目標振幅MirrorAmpTargetを越える振幅MirrorAmp(i)を振幅MirrorAmp(I2)として見つけ出す。振幅変動算出部416は、この次に交差する位置をI02とする。 First, the calculation method of the first aspect will be described. The target amplitude of the movable mirror 115 is set to MirrorAmpTarget, the amplitude of the movable mirror 115 in the i-th scanning (measurement) is set to MirrorAmp (i), and the number of storage areas of the movable mirror amplitude storage unit 415 is set to Imax. . The amplitude fluctuation calculation unit 416 searches the storage area of the moving mirror amplitude storage unit 415 in order from the amplitude MirrorAmp (i) from i = 0 indicating the latest data to i = Imax-1 indicating the past data, The amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (i) that intersects the target amplitude MirrorAmpTarget. For example, as shown in FIG. 13, the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (I1) exceeding the target amplitude MirrorAmpTarget by the search from a state of an amplitude smaller than the target amplitude MirrorAmpTarget. The amplitude fluctuation calculation unit 416 sets the first intersecting position as I01. The amplitude fluctuation calculation unit 416 further searches the storage area of the movable mirror amplitude storage unit 415 in order, and the amplitude fluctuation calculation unit 416 performs the same method (the same crossing mode) as the first crossing method (the first crossing mode) next. ) To find the amplitude MirrorAmp (I2) that intersects the target amplitude MirrorAmpTarget. In other words, in the above example, the amplitude MirrorAmp (I1) is data that intersects in a manner exceeding the target amplitude MirrorAmpTarget from a state where the amplitude is smaller than the target amplitude MirrorAmpTarget. From the state of the amplitude smaller than MirrorAmpTarget, the amplitude MirrorAmp (i) exceeding the target amplitude MirrorAmpTarget is found as the amplitude MirrorAmp (I2). The amplitude fluctuation calculation unit 416 sets the next intersecting position as I02.
 この位置I01は、振幅MirrorAmp(I1-1)と振幅MirrorAmp(I1)との間にあり、直線補間の次式8-1によって求められる。同様に、この位置I02は、振幅MirrorAmp(I2-1)と振幅MirrorAmp(I2)との間にあり、直線補間の次式8-2によって求められる。 The position I01 is between the amplitude MirrorAmp (I1-1) and the amplitude MirrorAmp (I1), and is obtained by the following equation 8-1 of linear interpolation. Similarly, the position I02 is between the amplitude MirrorAmp (I2-1) and the amplitude MirrorAmp (I2), and is obtained by the following linear interpolation 8-2.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 そして、振幅変動算出部416は、これら求めた位置I01および位置I02から、abs(I02-I01)として移動鏡115の振幅変動周期△Iを求める。なお、abs(x)は、xの絶対値を求める絶対値関数である。 Then, the amplitude fluctuation calculation unit 416 obtains the amplitude fluctuation period ΔI of the movable mirror 115 as abs (I02-I01) from the obtained position I01 and position I02. Note that abs (x) is an absolute value function for obtaining the absolute value of x.
 なお、上述の図13に示す例では、目標振幅MirrorAmpTargetより小さい振幅の状態から、目標振幅MirrorAmpTargetを越える振幅MirrorAmp(i)が見つけられたが、逆に、目標振幅MirrorAmpTargetより大きい振幅の状態から、目標振幅MirrorAmpTargetを下回る振幅MirrorAmp(i)が見つけられてもよく、同様に、振幅変動周期が求められる。 In the example shown in FIG. 13, the amplitude MirrorAmp (i) exceeding the target amplitude MirrorAmpTarget is found from the state of the amplitude smaller than the target amplitude MirrorAmpTarget. Conversely, from the state of the amplitude larger than the target amplitude MirrorAmpTarget, An amplitude MirrorAmp (i) below the target amplitude MirrorAmpTarget may be found and similarly the amplitude variation period is determined.
 次に、第2態様の算出方法について説明する。第1態様の算出方法は、振幅変動周期を直接的に求める算出方法であったが、第2態様の算出方法は、振幅変動周期の半分を求め、これを2倍することによって、振幅変動周期を求めるものである。このように算出することによって、移動鏡振幅記憶部415が同じ容量(移動鏡振幅記憶部415の前記記憶領域の個数が同じ)である場合に、第1態様の算出方法に較べて、第2態様の算出方法は、より長周期の振幅変動周期を検出することができる。すなわち、第2態様の算出方法は、第1態様の算出方法で算出可能な周期より2倍長い周期を持つ振幅変動周期を検出することができる。 Next, the calculation method of the second aspect will be described. The calculation method according to the first aspect is a calculation method that directly obtains the amplitude fluctuation period. However, the calculation method according to the second aspect obtains half of the amplitude fluctuation period and doubles it to obtain the amplitude fluctuation period. Is what you want. By calculating in this way, when the moving mirror amplitude storage unit 415 has the same capacity (the number of the storage areas of the moving mirror amplitude storage unit 415 is the same), the second method compared to the calculation method of the first mode. The aspect calculation method can detect a longer amplitude fluctuation period. That is, the calculation method of the second aspect can detect an amplitude fluctuation period having a period twice as long as the period that can be calculated by the calculation method of the first aspect.
 この第2態様の算出方法では、振幅変動算出部416は、振幅MirrorAmp(i)を最新のデータを示すi=0から最も過去のデータを示すi=Imax-1まで、順に、移動鏡振幅記憶部415の記憶領域を検索し、振幅変動算出部416は、最初に、目標振幅MirrorAmpTargetと交差する振幅MirrorAmp(i)を見つけ出す。例えば、図14Aに示すように、振幅変動算出部416は、目標振幅MirrorAmpTargetより小さい振幅の状態から、前記検索によって、最初に、目標振幅MirrorAmpTargetを越える振幅MirrorAmp(I1)を見つけ出す。振幅変動算出部416は、この最初に交差する位置をI01とする。振幅変動算出部416は、さらに、順に移動鏡振幅記憶部415の記憶領域を検索し、振幅変動算出部416は、次に最初の交差の仕方(最初の交差態様)とは逆の仕方(逆の交差態様)で目標振幅MirrorAmpTargetと交差する振幅MirrorAmp(I2)を見つけ出す。すなわち、前記図14Aに示す例では、振幅MirrorAmp(I1)は、目標振幅MirrorAmpTargetより小さい振幅の状態から、目標振幅MirrorAmpTargetを越える態様で交差したデータであったので、振幅変動算出部416は、次に、目標振幅MirrorAmpTargetより大きい振幅の状態から、目標振幅MirrorAmpTargetを下回る振幅MirrorAmp(i)を振幅MirrorAmp(I2)として見つけ出す。振幅変動算出部416は、この次に交差する位置をI02とする。 In the calculation method of the second aspect, the amplitude fluctuation calculation unit 416 sequentially stores the amplitude MirrorAmp (i) from i = 0 indicating the latest data to i = Imax−1 indicating the past data in order. The storage area of the unit 415 is searched, and the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (i) that intersects the target amplitude MirrorAmpTarget. For example, as shown in FIG. 14A, the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (I1) exceeding the target amplitude MirrorAmpTarget by the search from a state of an amplitude smaller than the target amplitude MirrorAmpTarget. The amplitude fluctuation calculation unit 416 sets the first intersecting position as I01. The amplitude fluctuation calculation unit 416 further searches the storage area of the movable mirror amplitude storage unit 415 in order, and the amplitude fluctuation calculation unit 416 then reverses the method of the first crossing (first crossing mode) (reverse) The amplitude MirrorAmp (I2) that intersects with the target amplitude MirrorAmpTarget is found. That is, in the example shown in FIG. 14A, the amplitude MirrorAmp (I1) is data that intersects in a manner that exceeds the target amplitude MirrorAmpTarget from a state where the amplitude is smaller than the target amplitude MirrorAmpTarget. Then, an amplitude MirrorAmp (i) lower than the target amplitude MirrorAmpTarget is found as an amplitude MirrorAmp (I2) from the state of the amplitude larger than the target amplitude MirrorAmpTarget. The amplitude fluctuation calculation unit 416 sets the next intersecting position as I02.
 また例えば、例えば、図14Bに示すように、振幅変動算出部416は、目標振幅MirrorAmpTargetより大きい振幅の状態から、前記検索によって、最初に、目標振幅MirrorAmpTargetを下回る振幅MirrorAmp(I2)を見つけ出す。振幅変動算出部416は、この最初に交差する位置をI02とする。振幅変動算出部416は、さらに、順に移動鏡振幅記憶部415の記憶領域を検索し、振幅変動算出部416は、次に最初の交差の仕方(最初の交差態様)とは逆の仕方(逆の交差態様)で目標振幅MirrorAmpTargetと交差する振幅MirrorAmp(I1)を見つけ出す。すなわち、この図14Bに示す例では、振幅MirrorAmp(I2)は、目標振幅MirrorAmpTargetより大きい振幅の状態から、目標振幅MirrorAmpTargetを下回る態様で交差したデータであったので、振幅変動算出部416は、次に、目標振幅MirrorAmpTargetより小さい振幅の状態から、目標振幅MirrorAmpTargetを越える振幅MirrorAmp(i)を振幅MirrorAmp(I1)として見つけ出す。振幅変動算出部416は、この次に交差する位置をI01とする。 For example, as shown in FIG. 14B, for example, the amplitude fluctuation calculation unit 416 first finds an amplitude MirrorAmp (I2) lower than the target amplitude MirrorAmpTarget by the search from a state of an amplitude larger than the target amplitude MirrorAmpTarget. The amplitude fluctuation calculation unit 416 sets the first intersecting position as I02. The amplitude fluctuation calculation unit 416 further searches the storage area of the movable mirror amplitude storage unit 415 in order, and the amplitude fluctuation calculation unit 416 then reverses the method of the first crossing (first crossing mode) (reverse) The amplitude MirrorAmp (I1) that intersects the target amplitude MirrorAmpTarget is found. That is, in the example shown in FIG. 14B, the amplitude MirrorAmp (I2) is data that intersects in a manner that is lower than the target amplitude MirrorAmpTarget from a state where the amplitude is larger than the target amplitude MirrorAmpTarget. Then, from the state of the amplitude smaller than the target amplitude MirrorAmpTarget, the amplitude MirrorAmp (i) exceeding the target amplitude MirrorAmpTarget is found as the amplitude MirrorAmp (I1). The amplitude fluctuation calculation unit 416 sets the next intersecting position as I01.
 この位置I01は、振幅MirrorAmp(I1-1)と振幅MirrorAmp(I1)との間にあり、直線補間の次式9-1によって求められる。同様に、この位置I02は、振幅MirrorAmp(I2-1)と振幅MirrorAmp(I2)との間にあり、直線補間の次式9-2によって求められる。 The position I01 is between the amplitude MirrorAmp (I1-1) and the amplitude MirrorAmp (I1), and is obtained by the following equation 9-1 of linear interpolation. Similarly, the position I02 is between the amplitude MirrorAmp (I2-1) and the amplitude MirrorAmp (I2), and is obtained by the following linear interpolation 9-2.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 そして、振幅変動算出部416は、これら求めた位置I01および位置I02から、2×abs(I02-I01)として移動鏡115の振幅変動周期△Iを求める。 Then, the amplitude fluctuation calculation unit 416 obtains the amplitude fluctuation period ΔI of the movable mirror 115 as 2 × abs (I02−I01) from the obtained position I01 and position I02.
 このような動作によって振幅変動算出部416は、移動鏡115の振幅変動周期を求めることができる。 With this operation, the amplitude fluctuation calculation unit 416 can obtain the amplitude fluctuation period of the movable mirror 115.
 このように本実施形態のFT型分光計Dおよびこれに実装されたFD型分光方法では、上述のように、連続的に複数個測定されるインターフェログラムの測定時間が移動鏡115の振幅の変動周期に基づく時間に設定されるので、移動鏡115の振幅の変動周期が考慮される。したがって、このようなFT型分光計Dおよび該方法は、前記うねりを生じるような共振周波数に近い周波数の外部振動が加わった場合でも、より正確な測定結果を得ることができる。 As described above, in the FT spectrometer D of this embodiment and the FD spectrometer method mounted thereon, as described above, the measurement time of the interferogram that is continuously measured is the amplitude of the movable mirror 115. Since the time is set based on the fluctuation cycle, the fluctuation cycle of the amplitude of the movable mirror 115 is taken into consideration. Therefore, such an FT spectrometer D and the method can obtain a more accurate measurement result even when an external vibration having a frequency close to the resonance frequency causing the swell is applied.
 また、本実施形態のFT型分光計Dおよび該方法では、連続的に複数個測定されるインターフェログラムの測定時間が移動鏡115の振幅変動周期の整数倍の時間に設定されるので、インターフェロフラムを積算する場合に、移動鏡115の振幅が相対的に小さい場合に得られたインターフェログラムも、移動鏡115の振幅が相対的に大きい場合に得られたインターフェログラムも、略均等に、積算されたインターフェログラムに含まれる。したがって、このようなFT型分光計Dおよび該方法は、真のインターフェログラムにより近いインターフェログラムを得ることができ、より正確な測定結果を得ることができる。 Further, in the FT spectrometer D and the method of the present embodiment, the measurement time of the interferograms that are continuously measured is set to a time that is an integral multiple of the amplitude fluctuation period of the movable mirror 115. When integrating the ferroframs, the interferogram obtained when the amplitude of the movable mirror 115 is relatively small and the interferogram obtained when the amplitude of the movable mirror 115 is relatively large are substantially equal. Are included in the accumulated interferogram. Therefore, such an FT spectrometer D and the method can obtain an interferogram closer to the true interferogram, and can obtain a more accurate measurement result.
 また、本実施形態のFT型分光計Dおよび該方法では、移動鏡115の振幅に変動がないと判定された場合には、通常の演算処理でスペクトルが求められ、移動鏡115の振幅に変動があると判定された場合にのみ、連続的に複数個測定されるインターフェログラムの測定時間が前記振幅変動周期の整数倍の時間に設定される。したがって、このようなFT型分光計Dおよび該方法は、外部振動の影響を除去する必要の無い場合に、通常の測定では必要とされない、連続的に複数個測定されるインターフェログラムの測定時間を移動鏡115の振幅の変動周期に基づく時間に設定する等の外部振動の影響の除去処理を省略することができるから、全体として処理負荷の軽減や測定時間の短縮化を図ることができる。 Further, in the FT spectrometer D and the method according to the present embodiment, when it is determined that the amplitude of the moving mirror 115 does not vary, a spectrum is obtained by a normal calculation process, and the amplitude of the moving mirror 115 varies. Only when it is determined that there is an interferogram, the measurement time of an interferogram that is continuously measured is set to a time that is an integral multiple of the amplitude variation period. Therefore, such an FT spectrometer D and the method do not require the influence of external vibration, and the measurement time of the interferogram that is continuously measured is not required in the normal measurement. Since it is possible to omit the process of removing the influence of external vibration such as setting the time based on the fluctuation cycle of the amplitude of the movable mirror 115, the processing load and the measurement time can be reduced as a whole.
 なお、本実施形態では、ゼロクロス検出部37、移動鏡動作検出部200、移動鏡振幅記憶部415および振幅変動算出部416は、光路差形成光学素子の振幅の変動周期を検出する第1検出部(振幅変動周期検出部)の一例に相当し、ゼロクロス検出部37、移動鏡動作検出部200および振幅変動算出部416は、光路差形成光学素子の振幅を求める振幅算出部の一例に相当し、移動鏡振幅記憶部415は、振幅算出部で求めた振幅を記憶する振幅記憶部の一例に相当し、振幅変動算出部416は、振幅記憶部に記憶された振幅から、振幅の変動周期を求める振幅変動周期算出部の一例に相当している。 In the present embodiment, the zero-cross detection unit 37, the movable mirror operation detection unit 200, the movable mirror amplitude storage unit 415, and the amplitude variation calculation unit 416 are a first detection unit that detects the amplitude variation period of the optical path difference forming optical element. The zero cross detector 37, the moving mirror operation detector 200, and the amplitude fluctuation calculator 416 correspond to an example of an (amplitude fluctuation period detector), and correspond to an example of an amplitude calculator that calculates the amplitude of the optical path difference forming optical element. The movable mirror amplitude storage unit 415 corresponds to an example of an amplitude storage unit that stores the amplitude obtained by the amplitude calculation unit, and the amplitude variation calculation unit 416 obtains an amplitude variation period from the amplitude stored in the amplitude storage unit. This corresponds to an example of an amplitude fluctuation period calculation unit.
 また、本実施形態では、受光処理部20、タイミング発生部30および制御演算部41のサンプリングデータ記憶部411は、第1検出部(振幅変動周期検出部)で検出した振幅の変動周期に基づく時間で、干渉計11によって所定光のインターフェログラムを連続的に複数個測定するインターフェログラム測定部の一例に相当し、センターバースト位置算出部412、積算インターフェログラム算出部413およびスペクトル算出部414は、前記インターフェログラム測定部で測定した複数のインターフェログラムに基づいて、フーリエ変換を用いてスペクトルを求めるスペクトル処理部の一例に相当している。 In the present embodiment, the light reception processing unit 20, the timing generation unit 30, and the sampling data storage unit 411 of the control calculation unit 41 are time based on the amplitude variation period detected by the first detection unit (amplitude variation period detection unit). The interferometer 11 corresponds to an example of an interferogram measuring unit that continuously measures a plurality of interferograms of predetermined light, and includes a center burst position calculating unit 412, an integrated interferogram calculating unit 413, and a spectrum calculating unit 414. Corresponds to an example of a spectrum processing unit that obtains a spectrum using Fourier transform based on a plurality of interferograms measured by the interferogram measuring unit.
 なお、本実施形態では、波長1200nm~2500nmを測定するFT型分光計Dであるが、FT型分光計Dは、近赤外域の光を測定する装置であってもよく、また、FT型分光計Dは、赤外域の光を測定する装置であってもよく、また、FT型分光計Dは、近赤外域から赤外域までの光を測定する装置であってもよい。 In the present embodiment, the FT spectrometer D measures wavelengths from 1200 nm to 2500 nm. However, the FT spectrometer D may be a device that measures light in the near infrared region, and may also be an FT spectrometer. The meter D may be a device that measures light in the infrared region, and the FT spectrometer D may be a device that measures light from the near infrared region to the infrared region.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるフーリエ変換型分光計は、所定光が入射され、前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子を備え、前記複数の光学素子には、光軸方向に往復振動することによって前記2個の光路間に光路差を生じさせる光路差形成光学素子が含まれる干渉計と、前記光路差形成光学素子の振幅の変動周期を検出する第1検出部(例えば振幅変動周期検出部)と、前記第1検出部で検出した前記振幅の変動周期に基づく時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定するインターフェログラム測定部と、前記インターフェログラム測定部で測定した複数のインターフェログラムに基づいて、フーリエ変換を用いてスペクトルを求めるスペクトル処理部とを備える。 A Fourier transform spectrometer according to one aspect includes a plurality of optical elements that receive predetermined light and form two optical paths between an incident position of the predetermined light and an interference position. Includes an interferometer including an optical path difference forming optical element that generates an optical path difference between the two optical paths by reciprocatingly oscillating in the optical axis direction, and a first detecting period of amplitude fluctuation of the optical path difference forming optical element. A plurality of interferograms of the predetermined light are continuously measured by the interferometer at a time based on the amplitude variation period detected by one detection unit (for example, an amplitude variation period detection unit) and the first detection unit. An interferogram measuring unit; and a spectrum processing unit that obtains a spectrum using Fourier transform based on a plurality of interferograms measured by the interferogram measuring unit. .
 このようなフーリエ変換型分光計では、連続的に複数個測定されるインターフェログラムの測定時間が光路差形成光学素子の振幅の変動周期に基づく時間に設定されるので、光路差形成光学素子の振幅の変動周期が考慮される。したがって、このようなフーリエ変換型分光計は、前記うねりを生じるような共振周波数に近い周波数の外部振動が加わった場合でも、より正確な測定結果を得ることができる。 In such a Fourier transform spectrometer, the measurement time of a plurality of interferograms that are continuously measured is set to a time based on the amplitude variation period of the optical path difference forming optical element. The amplitude variation period is taken into account. Accordingly, such a Fourier transform spectrometer can obtain a more accurate measurement result even when external vibration having a frequency close to the resonance frequency that causes the swell is applied.
 また、他の一態様では、上述のフーリエ変換型分光計において、前記インターフェログラム測定部は、前記第1検出部で検出した前記振幅の変動周期の整数倍の時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定する。 According to another aspect, in the Fourier transform spectrometer described above, the interferogram measurement unit is a time that is an integral multiple of the fluctuation period of the amplitude detected by the first detection unit. A plurality of interferograms of predetermined light are continuously measured.
 このようなフーリエ変換型分光計では、連続的に複数個測定されるインターフェログラムの測定時間が前記第1検出部で検出した前記振幅の変動周期に対する整数倍の時間に設定されるので、インターフェロフラムを積算する場合に、光路差形成光学素子の振幅が相対的に小さい場合に得られたインターフェログラムも、光路差形成光学素子の振幅が相対的に大きい場合に得られたインターフェログラムも、略均等に、積算されたインターフェログラムに含まれる。したがって、このようなフーリエ変換型分光計は、真のインターフェログラムにより近いインターフェログラムを得ることができ、より正確な測定結果を得ることができる。 In such a Fourier transform spectrometer, the measurement time of a plurality of interferograms that are continuously measured is set to a time that is an integral multiple of the amplitude fluctuation period detected by the first detector. When integrating the ferroframs, the interferogram obtained when the optical path difference forming optical element has a relatively small amplitude is also the interferogram obtained when the optical path difference forming optical element has a relatively large amplitude. Are also included in the integrated interferogram approximately evenly. Accordingly, such a Fourier transform spectrometer can obtain an interferogram closer to the true interferogram, and can obtain a more accurate measurement result.
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記第1検出部の検出結果に基づいて、前記光路差形成光学素子の振幅の変動の有無を判定する振幅変動判定部をさらに備え、前記インターフェログラム測定部は、前記振幅変動判定部によって前記光路差形成光学素子の振幅の変動が有ると判定された場合にのみ、前記振幅変動周期の整数倍の時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定する。 According to another aspect, in the above-described Fourier transform spectrometer, an amplitude variation determination unit that determines presence / absence of variation in the amplitude of the optical path difference forming optical element based on a detection result of the first detection unit. The interferogram measuring unit further includes the interference in a time that is an integral multiple of the amplitude variation period only when the amplitude variation determination unit determines that there is a variation in the amplitude of the optical path difference forming optical element. A plurality of interferograms of the predetermined light are continuously measured by a meter.
 このようなフーリエ変換型分光計では、光路差形成光学素子の振幅に変動がないと判定された場合には、通常の演算処理でスペクトルが求められ、光路差形成光学素子の振幅に変動があると判定された場合にのみ、連続的に複数個測定されるインターフェログラムの測定時間が前記第1検出部で検出した前記振幅の変動周期の整数倍の時間に設定される。したがって、このようなフーリエ変換分光計は、外部振動の影響を除去する必要の無い場合に、通常の測定では必要とされない、連続的に複数個測定されるインターフェログラムの測定時間を光路差形成光学素子の振幅の変動周期に基づく時間に設定する等の外部振動の影響の除去処理を省略することができるから、全体として処理負荷の軽減や測定時間の短縮化を図ることができる。 In such a Fourier transform spectrometer, when it is determined that there is no fluctuation in the amplitude of the optical path difference forming optical element, a spectrum is obtained by a normal calculation process, and there is a fluctuation in the amplitude of the optical path difference forming optical element. Only when it is determined that the measurement time of the interferograms that are continuously measured is set to a time that is an integral multiple of the amplitude fluctuation period detected by the first detector. Therefore, such a Fourier transform spectrometer does not require the removal of the influence of external vibration, and it is not necessary for normal measurement. Since the process of removing the influence of external vibration such as setting the time based on the fluctuation cycle of the amplitude of the optical element can be omitted, the processing load can be reduced as a whole and the measurement time can be shortened.
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記第1検出部は、前記光路差形成光学素子の振幅を求める振幅算出部と、前記振幅算出部で求めた前記振幅を記憶する振幅記憶部と、前記振幅記憶部に記憶された前記振幅から、前記振幅の変動周期を求める振幅変動周期算出部とを備える。 According to another aspect, in the above-described Fourier transform spectrometer, the first detection unit includes an amplitude calculation unit that calculates an amplitude of the optical path difference forming optical element, and the amplitude calculated by the amplitude calculation unit. An amplitude storage unit that stores the amplitude, and an amplitude variation period calculation unit that obtains the variation period of the amplitude from the amplitude stored in the amplitude storage unit.
 この構成によれば、第1検出部が振幅算出部、振幅記憶部および振幅変動周期算出部で構成されたフーリエ変換型分光計が提供される。 According to this configuration, there is provided a Fourier transform spectrometer in which the first detection unit includes an amplitude calculation unit, an amplitude storage unit, and an amplitude variation period calculation unit.
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記所定光は、測定対象として入射される近赤外域および/または赤外域の光である。 In another aspect, in the above-described Fourier transform spectrometer, the predetermined light is near-infrared and / or infrared light incident as a measurement target.
 この構成によれば、近赤外域の光、赤外域の光および近赤外域から赤外域までの光のうちのいずれかの光を測定可能なフーリエ変換型分光計が提供される。 According to this configuration, a Fourier transform spectrometer capable of measuring any of light in the near infrared region, light in the infrared region, and light from the near infrared region to the infrared region is provided.
 ここで、近赤外域は、波長700nm~2500nmであり、赤外域は、波長2500nm~4000nmである。また、Aおよび/またはBは、AおよびBのうちの少なくとも一方を意味する。 Here, the near infrared region has a wavelength of 700 nm to 2500 nm, and the infrared region has a wavelength of 2500 nm to 4000 nm. A and / or B means at least one of A and B.
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記光路差形成光学素子は、互いに対向して平行配置される第1および第2板バネから成る平行板バネ構造により構成された駆動部と、前記第1および第2板バネの一方の主外面上に形成された反射面とを備え、前記光路差は、前記駆動部の共振駆動により、前記反射面が光軸に沿って平行に移動することによって生じる。 In another aspect, in the above-described Fourier transform spectrometer, the optical path difference forming optical element is configured by a parallel leaf spring structure including first and second leaf springs arranged in parallel to face each other. And a reflection surface formed on one main outer surface of the first and second leaf springs, and the optical path difference is determined by the resonance drive of the drive unit so that the reflection surface is along the optical axis. Caused by moving in parallel.
 これによれば、平行板バネ構造の駆動部を備えたフーリエ変換型分光計が提供される。 According to this, a Fourier transform type spectrometer provided with a drive unit having a parallel leaf spring structure is provided.
 そして、他の一態様にかかるフーリエ変換型分光方法は、所定光を、前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子を備え、前記複数の光学素子には、光軸方向に移動することによって前記2個の光路間に光路差を生じさせる光路差形成光学素子が含まれる干渉計に入射させる入射工程と、前記光路差形成光学素子の振幅の変動周期を検出する振幅変動周期検出工程と、前記振幅変動周期検出工程で検出した前記振幅の変動周期に基づく時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定するインターフェログラム測定工程と、前記インターフェログラム測定工程で測定したインターフェログラムに基づいて、フーリエ変換を用いてスペクトルを求めるスペクトル処理工程とを備える。 The Fourier transform type spectroscopic method according to another aspect includes a plurality of optical elements that form two optical paths of predetermined light between an incident position of the predetermined light and an interference position. The element includes an incident step of entering an interferometer including an optical path difference forming optical element that generates an optical path difference between the two optical paths by moving in the optical axis direction, and an amplitude of the optical path difference forming optical element. A plurality of interferograms of the predetermined light are continuously measured by the interferometer at a time based on an amplitude fluctuation period detection step for detecting a fluctuation period and the amplitude fluctuation period detected in the amplitude fluctuation period detection step. Based on the interferogram measurement step and the interferogram measured in the interferogram measurement step, a spectrum processing for obtaining a spectrum using Fourier transform. And a step.
 このようなフーリエ変換型分光方法では、連続的に複数個測定されるインターフェログラムの測定時間が光路差形成光学素子の振幅の変動周期に基づく時間で設定されるので、光路差形成光学素子の振幅の変動周期が考慮される。したがって、このようなフーリエ変換型分光方法は、前記うねりを生じるような共振周波数に近い周波数の外部振動が加わった場合でも、より正確な測定結果を得ることができる。 In such a Fourier transform type spectroscopic method, the measurement time of a plurality of interferograms that are continuously measured is set as the time based on the fluctuation period of the amplitude of the optical path difference forming optical element. The amplitude variation period is taken into account. Therefore, such a Fourier transform type spectroscopic method can obtain a more accurate measurement result even when an external vibration having a frequency close to the resonance frequency causing the swell is applied.
 この出願は、2012年5月29日に出願された日本国特許出願特願2012-122224を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-122224 filed on May 29, 2012, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and fully described above with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Accordingly, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、フーリエ変換型分光計およびフーリエ変換型分光方法を提供することができる。 According to the present invention, a Fourier transform spectrometer and a Fourier transform spectrometer can be provided.

Claims (7)

  1.  所定光が入射され、前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子を備え、前記複数の光学素子には、光軸方向に往復振動することによって前記2個の光路間に光路差を生じさせる光路差形成光学素子が含まれる干渉計と、
     前記光路差形成光学素子の振幅の変動周期を検出する第1検出部と、
     前記第1検出部で検出した前記振幅の変動周期に基づく時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定するインターフェログラム測定部と、
     前記インターフェログラム測定部で測定した複数のインターフェログラムに基づいて、フーリエ変換を用いてスペクトルを求めるスペクトル処理部とを備えること
     を特徴とするフーリエ変換型分光計。
    A plurality of optical elements that form two optical paths between the incident position of the predetermined light and the interference position, and the plurality of optical elements are reciprocally oscillated in the optical axis direction. An interferometer including an optical path difference forming optical element that generates an optical path difference between the two optical paths;
    A first detector for detecting a fluctuation period of the amplitude of the optical path difference forming optical element;
    An interferogram measuring unit that continuously measures a plurality of interferograms of the predetermined light by the interferometer at a time based on the fluctuation period of the amplitude detected by the first detecting unit;
    A Fourier transform spectrometer, comprising: a spectrum processing unit that obtains a spectrum using Fourier transform based on a plurality of interferograms measured by the interferogram measuring unit.
  2.  前記インターフェログラム測定部は、前記第1検出部で検出した前記振幅の変動周期の整数倍の時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定すること
     を特徴とする請求項1に記載のフーリエ変換型分光計。
    The interferogram measuring unit continuously measures a plurality of interferograms of the predetermined light by the interferometer for a time that is an integral multiple of the amplitude fluctuation period detected by the first detecting unit. The Fourier transform spectrometer according to claim 1.
  3.  前記第1検出部の検出結果に基づいて、前記光路差形成光学素子の振幅の変動の有無を判定する振幅変動判定部をさらに備え、
     前記インターフェログラム測定部は、前記振幅変動判定部によって前記光路差形成光学素子の振幅の変動が有ると判定された場合にのみ、前記振幅変動周期の整数倍の時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定すること
     を特徴とする請求項2に記載のフーリエ変換型分光計。
    An amplitude variation determination unit that determines whether or not there is a variation in the amplitude of the optical path difference forming optical element based on the detection result of the first detection unit;
    The interferogram measurement unit is configured to detect the amplitude variation of the optical path difference forming optical element by the amplitude variation determination unit only when the interferometer uses the interferometer for a time that is an integral multiple of the amplitude variation period. The Fourier transform spectrometer according to claim 2, wherein a plurality of interferograms of predetermined light are continuously measured.
  4.  前記第1検出部は、
     前記光路差形成光学素子の振幅を求める振幅算出部と、
     前記振幅算出部で求めた前記振幅を記憶する振幅記憶部と、
     前記振幅記憶部に記憶された前記振幅から、前記振幅の変動周期を求める振幅変動周期算出部とを備えること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載のフーリエ変換型分光計。
    The first detection unit includes:
    An amplitude calculation unit for obtaining the amplitude of the optical path difference forming optical element;
    An amplitude storage unit for storing the amplitude obtained by the amplitude calculation unit;
    The Fourier transform type according to any one of claims 1 to 3, further comprising: an amplitude variation period calculation unit that obtains a variation period of the amplitude from the amplitude stored in the amplitude storage unit. Spectrometer.
  5.  前記所定光は、測定対象として入射される近赤外域および/または赤外域の光であること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載のフーリエ変換型分光計。
    The Fourier transform spectrometer according to any one of claims 1 to 4, wherein the predetermined light is near-infrared and / or infrared light incident as a measurement target.
  6.  前記光路差形成光学素子は、
     互いに対向して平行配置される第1および第2板バネから成る平行板バネ構造により構成された駆動部と、
     前記第1および第2板バネの一方の主外面上に形成された反射面とを備え、
     前記光路差は、前記駆動部の共振駆動により、前記反射面が光軸に沿って平行に移動することによって生じること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載のフーリエ変換型分光計。
    The optical path difference forming optical element is:
    A drive unit configured by a parallel leaf spring structure composed of first and second leaf springs arranged in parallel to face each other;
    A reflective surface formed on one main outer surface of the first and second leaf springs,
    5. The Fourier according to claim 1, wherein the optical path difference is generated when the reflecting surface moves in parallel along an optical axis by resonance driving of the driving unit. Conversion spectrometer.
  7.  所定光を、前記所定光の入射位置から干渉位置までの間に2個の光路を形成する複数の光学素子を備え、前記複数の光学素子には、光軸方向に移動することによって前記2個の光路間に光路差を生じさせる光路差形成光学素子が含まれる干渉計に入射させる入射工程と、
     前記光路差形成光学素子の振幅の変動周期を検出する振幅変動周期検出工程と、
     前記振幅変動周期検出工程で検出した前記振幅の変動周期に基づく時間で、前記干渉計によって前記所定光のインターフェログラムを連続的に複数個測定するインターフェログラム測定工程と、
     前記インターフェログラム測定工程で測定したインターフェログラムに基づいて、フーリエ変換を用いてスペクトルを求めるスペクトル処理工程とを備えること
     を特徴とするフーリエ変換型分光方法。
    A plurality of optical elements that form two optical paths between predetermined light incident positions and interference positions are provided, and the plurality of optical elements are moved in the optical axis direction to move the two light elements. An incident step of entering an interferometer including an optical path difference forming optical element that generates an optical path difference between the optical paths of
    An amplitude fluctuation period detecting step of detecting an amplitude fluctuation period of the optical path difference forming optical element;
    An interferogram measuring step of continuously measuring a plurality of interferograms of the predetermined light by the interferometer at a time based on the amplitude fluctuation cycle detected in the amplitude fluctuation cycle detection step;
    A spectrum processing step of obtaining a spectrum using Fourier transform based on the interferogram measured in the interferogram measurement step. A Fourier transform type spectroscopic method, comprising:
PCT/JP2013/002882 2012-05-29 2013-04-30 Fourier transform spectrometer and fourier transform spectroscopic method WO2013179572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518248A JP5915737B2 (en) 2012-05-29 2013-04-30 Fourier transform spectrometer and Fourier transform spectroscopic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-122224 2012-05-29
JP2012122224 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013179572A1 true WO2013179572A1 (en) 2013-12-05

Family

ID=49672803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002882 WO2013179572A1 (en) 2012-05-29 2013-04-30 Fourier transform spectrometer and fourier transform spectroscopic method

Country Status (2)

Country Link
JP (1) JP5915737B2 (en)
WO (1) WO2013179572A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330287A (en) * 2019-01-25 2021-08-31 横河电机株式会社 Fourier spectral analysis device
CN116297284A (en) * 2023-05-18 2023-06-23 杭州泽天春来科技有限公司 Fourier infrared spectrometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063495B (en) * 2021-02-25 2022-08-12 上海卫星工程研究所 Interference pattern sub-sampling level alignment method and system of Fourier transform spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148330A (en) * 1984-12-21 1986-07-07 Shimadzu Corp Fourier transform type spectrophotometer
JPH0227226A (en) * 1988-07-18 1990-01-30 Fuji Electric Co Ltd Data processing system for fourier transform spectroscope
JP2003014543A (en) * 2001-07-04 2003-01-15 Shimadzu Corp Fourier transform infrared spectrophotometer
JP2011080854A (en) * 2009-10-07 2011-04-21 Konica Minolta Holdings Inc Fourier transform spectroscope
WO2012164810A1 (en) * 2011-05-31 2012-12-06 コニカミノルタオプティクス株式会社 Fourier transform spectrometer and fourier transform spectroscopy method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148330A (en) * 1984-12-21 1986-07-07 Shimadzu Corp Fourier transform type spectrophotometer
JPH0227226A (en) * 1988-07-18 1990-01-30 Fuji Electric Co Ltd Data processing system for fourier transform spectroscope
JP2003014543A (en) * 2001-07-04 2003-01-15 Shimadzu Corp Fourier transform infrared spectrophotometer
JP2011080854A (en) * 2009-10-07 2011-04-21 Konica Minolta Holdings Inc Fourier transform spectroscope
WO2012164810A1 (en) * 2011-05-31 2012-12-06 コニカミノルタオプティクス株式会社 Fourier transform spectrometer and fourier transform spectroscopy method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330287A (en) * 2019-01-25 2021-08-31 横河电机株式会社 Fourier spectral analysis device
EP3916366A4 (en) * 2019-01-25 2023-02-15 Yokogawa Electric Corporation Fourier spectroscopic analyzer
US11774285B2 (en) 2019-01-25 2023-10-03 Yokogawa Electric Corporation Fourier spectroscopic analyzer
CN113330287B (en) * 2019-01-25 2024-07-30 横河电机株式会社 Fourier spectroscopic analyzer
CN116297284A (en) * 2023-05-18 2023-06-23 杭州泽天春来科技有限公司 Fourier infrared spectrometer
CN116297284B (en) * 2023-05-18 2023-08-11 杭州泽天春来科技有限公司 Fourier infrared spectrometer

Also Published As

Publication number Publication date
JPWO2013179572A1 (en) 2016-01-18
JP5915737B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
US9442014B2 (en) Fourier transform spectrometer and fourier transform spectroscopic method
CN102834764B (en) A kind of technology of the mirror position determined in optical interdferometer
US7301643B2 (en) Arrangement for building a miniaturized fourier transform interferometer for optical radiation according to the michelson principle or a principle derived therefrom
JP2007040994A (en) Interference measuring system
KR101566383B1 (en) Reflection-type Interference Apparatus using Optical Fibers for Measuring Geometrical Thickness and Refractive index
US10119862B2 (en) Spectrum measuring device, spectroscopic device, and spectroscopic system
JP2008503732A (en) Lamella grating interferometer based on silicon technology
JP5915737B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
WO2017135357A1 (en) Optical module
CN108917913B (en) Microstructure modal analysis acoustic excitation frequency domain optical coherence tomography detection device and method
CN105103030A (en) Self calibration for mirror positioning in optical MEMS interferometers
WO2014199888A1 (en) Fourier transform spectrometer and spectroscopy and fourier transform spectrometer timing generation device
JP5891955B2 (en) Timing generation apparatus for Fourier transform spectrometer and method, Fourier transform spectrometer and method
JP5974929B2 (en) Stray light correction method and Fourier transform type spectroscopic device using the same
EP3390991B1 (en) Self calibration for mirror positioning in optical mems interferometers
JP5846202B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
CN117471703A (en) Optical device and spectrum device
JP2024022043A (en) Optical device and spectroscopic device
JP5737386B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
JP2018009909A (en) Fourier transform type spectrometer
WO2014112027A1 (en) Fourier transform spectrometer
JP2012184967A (en) Wavelength scanning interferometer
JP2006300661A (en) Interferometer and fourier spectral device
JP5835101B2 (en) Fourier transform spectrometer, Fourier transform spectroscopic method, and attachment for Fourier transform spectrometer
JP2003287403A (en) Shape measuring apparatus using heterodyne interferometer, method of adjusting optical path length of the shape measuring apparatus using the heterodyne interferometer, and method of measuring shape using the heterodyne interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796375

Country of ref document: EP

Kind code of ref document: A1