WO2013177859A1 - 零功耗待机电路 - Google Patents

零功耗待机电路 Download PDF

Info

Publication number
WO2013177859A1
WO2013177859A1 PCT/CN2012/078947 CN2012078947W WO2013177859A1 WO 2013177859 A1 WO2013177859 A1 WO 2013177859A1 CN 2012078947 W CN2012078947 W CN 2012078947W WO 2013177859 A1 WO2013177859 A1 WO 2013177859A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
standby
zero
remote control
power source
Prior art date
Application number
PCT/CN2012/078947
Other languages
English (en)
French (fr)
Inventor
高宽志
王清金
曲泰元
Original Assignee
青岛海信信芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信信芯科技有限公司 filed Critical 青岛海信信芯科技有限公司
Publication of WO2013177859A1 publication Critical patent/WO2013177859A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of standby circuits, and more particularly to a standby circuit that has no power loss during standby and does not use a mechanical power switch.
  • the method realizes the alternating current zero power consumption on the surface, it consumes the chemical energy of the battery during standby. And need to charge the battery during work, increase the power consumption during work, and the life of the whole machine is affected by the life of the battery, and the failed battery is more polluted by the environment.
  • the power supply of the super capacitor is zero-power standby, although it is not realized by the battery, it cannot be completely remotely activated. After the power consumption of the capacitor is exhausted, it needs to be manually started, not in the true sense. Standby.
  • the present invention provides a zero-power standby circuit, which enables electrical equipment to have no power loss during standby, saves energy, and does not require a mechanical power switch, and can be remotely turned on at any time.
  • the present invention provides a zero-power standby circuit disposed between an AC power supply and a load circuit.
  • the zero-power standby circuit includes: a first power-on and power-on/off execution unit, a relay, and receiving the alternating current power source to cause the relay to be closed, thereby conducting an electrical circuit between the alternating current power source and the load circuit; and an optocoupler having a primary side and a secondary side The primary side is connected to the first power on and on/off execution unit; and a standby control unit is connected to the secondary side of the optocoupler, and the standby control unit receives a first remote control signal. And controlling the photocoupler to open to release the relay, thereby disconnecting the electrical circuit between the AC power source and the load circuit.
  • the present invention further provides another zero-power standby circuit disposed between an AC power supply and a load circuit, wherein the zero-power standby circuit includes: a first power-on and power-on/off execution unit, and a first photoelectric device a coupler and a silicon controlled rectifier, and the said silicon controlled rectifier is turned on by receiving the alternating current power supply, thereby conducting an electrical circuit between the alternating current power source and the load circuit; and a second photoelectric coupling , having a primary side and a secondary side, the primary side of the second photocoupler being coupled to the first power on and on/off execution unit; and a standby control unit coupled to the second optical coupling
  • the standby control unit receives a first remote control signal, and controls the second photocoupler to be disconnected to disconnect the first photocoupler from the silicon controlled rectifier. An electrical circuit between the AC power source and the load circuit is opened.
  • the zero-power standby circuit of the present invention uses the energy stored in the super capacitor to connect the power supply between the AC power source and the load circuit to the single-chip microcomputer and the remote control receiving head when the power is off, thereby being in standby mode. It does not consume AC energy or the chemical energy of the battery, and has zero power consumption. It meets the design requirements of energy saving and environmental protection of household appliances.
  • the remote control receiving head receives the remote control signal that needs to be turned on
  • the output port of the single chip microcomputer outputs a high level control signal
  • the photocoupler supplies power to the control terminal of the transistor switch, and the transistor switch is turned on.
  • the zero-power standby circuit of the present invention is in any It can be turned on remotely at any time, which is quite convenient.
  • FIGS. 1A and 1B are schematic diagrams showing a zero-power standby circuit according to a first embodiment of the present invention.
  • FIGS. 2A and 2B are schematic diagrams showing a zero-power standby circuit according to a second embodiment of the present invention.
  • 3A and 3B are schematic diagrams showing a zero-power standby circuit according to a third embodiment of the present invention.
  • FIG. 1A and FIG. 1B are schematic diagrams of a zero-power standby circuit according to a first embodiment of the present invention.
  • the zero-power standby circuit of the first embodiment of the present invention includes a first-time power-on and power-on/off execution unit 10 and a standby control unit 20.
  • the circuit of Fig. 1A and the circuit of Fig. 1B are connected to nodes ND1, ND2, ND3 and ND4.
  • the first boot and power on/off execution unit 10 includes a rectifier diode VD800, a current limiting resistor R801, a current limiting resistor R802, a current limiting resistor R803, a filter capacitor C800, a relay line JK800A, a transistor switch V801, and a starter.
  • Capacitor C801, pull-down resistor R809 and Zener diode VZ800 are Specifically, the first end of the whole fuse F800 is connected to the power source, the second end of the whole fuse F800 is connected to the first end of the varistor RV800, and the second end of the varistor RV800 is connected to the power source.
  • the positive terminal of the rectifier diode VD800 is connected to the first end of the varistor RV800 and the first end of the double-pole switch JK800B of the relay, and the negative terminal of the rectifier diode VD800 is connected to the first end of the filter capacitor C800, and the current limiting resistor R801 One end is connected to the first end of the current limiting resistor R802.
  • the second end of the filter capacitor C800 is connected to the second end of the varistor RV800.
  • the second end of the resistor R801 is connected to the first end of the relay KJK800A, the second end of the relay ⁇ JK800A is connected to the first end of the transistor switch V801, and the second end of the transistor switch V801 is connected to the filter capacitor C800 At the second end, the control terminal of the transistor switch V801 is connected to the first terminal of the pull-down resistor R809, and the second terminal of the pull-down resistor R809 is connected to the second terminal of the transistor switch V801.
  • the second end of the current limiting resistor R802 is connected to the first end of the current limiting resistor R803 and the first end of the starting capacitor C801, and the second end of the starting capacitor C801 is connected to the first end of the pull-down resistor R809.
  • the second end of the current limiting resistor R803 is connected to the photocoupler PHO800.
  • the negative terminal of the Zener diode VZ800 is connected to the photocoupler PHO800, and the positive terminal of the Zener diode VZ800 is connected to the second end of the pull-down resistor R809.
  • the two-pole switch of the relay is connected to the node ND1 at the second end of the JK800B.
  • the optocoupler PHO800 is connected to nodes ND2 and ND3, respectively.
  • the double-pole switch of the relay The first end of the JK800C is connected to the positive terminal of the Zener diode VZ800, and the second end of the relay of the JK800C is connected to the node ND4.
  • the standby control unit 20 includes a single chip IC801, a remote control receiving head IC802, bias resistors R804, R806, R807, R808, a driving transistor V800, a blocking diode VD801, a VD802, a super capacitor C802, a C803, and Current limiting resistor R800.
  • the first end of the bias resistor R804 is connected to the node ND2, and the second end of the bias resistor R804 is connected to the microcontroller IC801 and the power supply 5 volts.
  • the first end of the bias resistor R806 is coupled to the first end of the bias resistor R804, and the second end of the bias resistor R806 is coupled to the node ND3.
  • the first end of the driving transistor V800 is connected to the second end of the bias resistor R806, the second end of the driving transistor V800 is connected to the ground end, and the control end of the driving transistor V800 is connected to the first end of the biasing resistor R808 and the bias resistor At the first end of R807, the first end of the bias resistor R808 is connected to the ground.
  • the second end of the bias resistor R807 is connected to the output port 1/01 of the microcontroller IC801, and the negative terminal of the blocking diode VD801 is connected to the second end of the bias resistor R804 and the first end of the remote receiving head IC802.
  • the second end of the remote control receiving head IC802 is connected to the single chip IC801, and the third end of the remote receiving head IC802 is connected to the ground end.
  • the positive terminal of the blocking diode VD801 is connected to the first end of the current limiting resistor R800, the first end of the super capacitor C802 and the first end of the detecting resistor R805, and the second end of the detecting resistor R805 is connected to the single chip IC801. .
  • the second end of the super capacitor C802 is connected to the super capacitor C803 At the first end, the second end of the super capacitor C803 is connected to the ground.
  • the second end of the current limiting resistor R800 is connected to the negative terminal of the blocking diode VD802, and the positive terminal of the blocking diode VD802 is connected to the power supply of 5 volts.
  • the nodes ND1 and ND4 are respectively connected to a load circuit (not shown).
  • the voltage drop across the current limiting resistor R801 provides a voltage (eg, gate) voltage to the transistor switch V801 to
  • the transistor switch V801 is turned on, the relay JK is pulled (that is, the relay's double-pole switch JK800B is connected to the relay's double-pole switch JK800C), the AC power is supplied to the whole machine, and the 5V voltage of the whole machine DC power output is blocked.
  • the diode VD802, the current limiting resistor R800 is limited to charge the super capacitor C802 and the super capacitor C803, and the power supply to the single chip IC801 via the blocking diode VD801.
  • the energy stored by the super capacitor C802 and the super capacitor C803 is the standby microcontroller IC801 and remote control receiving.
  • the head IC802 is powered.
  • the supercapacitor C802 and the supercapacitor C803 are charged by the whole DC power supply, so that the electrical circuit between the AC power supply and the load circuit is the single chip IC801 and the remote control receiving head IC802 that are powered when disconnected. Due to its low current consumption, it can be powered for more than 24 hours.
  • the supercapacitor C802 is charged with the supercapacitor C803, and after a period of time (for example, after 5 minutes), it is restored to zero standby. It is worth noting that after the power is turned on, the whole machine does not necessarily work, and its working state is controlled by the output port 1/01 of the single chip IC801.
  • the zero-power standby circuit of the present invention does not need to be provided with a mechanical power switch, and can be applied to an electrical device that is thin and light in size and size.
  • FIG. 2A and FIG. 2B it is a schematic diagram of a zero-power standby circuit according to a second embodiment of the present invention.
  • the circuit of Fig. 2A and the circuit of Fig. 2B are connected to nodes ND1, ND2, ND3 and ND4.
  • the connection relationship of some circuit components is the same as that in the first embodiment, and details are not described below.
  • the difference between the second embodiment and the first embodiment is that the first booting and switching machine execution unit 12 of the second embodiment uses a thyristor controlled photocoupler PHO801. Since this type of optocoupler PHO801 can only rely on current zero crossing or inverse correlation, diode VD804 and capacitor C804 are added.
  • the photocoupler PHO801 when the single chip IC801 sends a power-on signal, the photocoupler PHO801 is turned on at the primary side, and the secondary side is turned on in the positive half cycle to turn on the transistor switch V801 and charge the capacitor C 804, and the relay JK is turned on.
  • the capacitor C 804 is charged; when the standby signal is sent by the single chip IC801, the transistor switch V 801 is turned off after two AC half cycles, and the relay JK is disconnected from the AC power supply and enters a zero power standby state.
  • FIG. 3A and FIG. 3B are schematic diagrams of a zero-power standby circuit according to a third embodiment of the present invention, wherein the circuit of FIG. 3A and the circuit of FIG. 3B are connected through nodes ND1, ND2, ND3 and ND4.
  • the photocoupler PHO801 and the silicon controlled rectifier TR800 are used instead of the coil and mechanical contacts of the relay JK801 of the second embodiment, and the silicon controlled rectifier TR800 is a bidirectional thyristor. As shown in FIG.
  • the zero-power standby circuit of the present invention does not consume AC power or the chemical energy of the battery during standby, and has zero power consumption, satisfies the current design requirements of energy saving and environmental protection of household appliances, and does not need to set a power switch. It can be applied to electrical equipments that are light and thin for the size and size of the casing. In addition, the zero-power standby circuit of the present invention can be powered on at any time by remote control, which is quite convenient to use.
  • the zero-power standby circuit of the present invention does not consume AC power or the chemical energy of the battery during standby, and has zero power consumption, satisfies the current design requirements of energy saving and environmental protection of household appliances, and does not need to be provided with a power switch, and is also applicable.
  • the zero-power standby circuit of the present invention can be turned on by remote control at any time, which is quite convenient to use.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)

Abstract

一种零功耗待机电路,设置于一交流电源与一负载电路之间,所述的零功耗待机电路包含有:一首次开机和开关机执行单元(10),设置有一继电器(JK800A,JK800B,JK800C),并通过接收所述的交流电源使所述的继电器(JK800A,JK800B,JK800C)吸合,从而导通所述的交流电源与负载电路之间的电性回路;一光电耦合器(PH0800),具有一原边与一副边,所述的原边连接于该首次开机和开关机执行单元(10);及一待机控制单元(20),连接于所述的光电耦合器(PH0800)的副边,所述的待机控制单元(20)接收一第一遥控讯号,并控制所述的光电耦合器(PH0800)断开以使所述的继电器(JK800A,JK800B,JK800C)释放,从而断开所述的交流电源与负载电路之间的电性回路。

Description

零功耗待机电路 技术领域
本发明涉及一种待机电路技术领域, 特别是涉及一种待机时无功率损耗 并且无采用机械式电源开关的待机电路。
背景技术
随着全球气候日益变暖, 节能减排已经成为各国政府工作的重中之重, 特别是和日常生活息息相关的家电行业,更是被推到风口浪尖。在欧美市场, 低功耗已经与安规、 EMI—起成为电子产品销往这个市场的通行证,高效率、 低功耗已经成为家电产品在研发过程中必须考虑的重要因素之一。 另外, 随 着电器设备的体积朝向薄型化的趋势, 比如 LED超薄电视的机械厚度已不 适合再设计机械式的电源开关。
在目前提出的零功耗的待机电路的现有技术中, 有一种实现家电零功耗 的方法, 其方法虽然表面上实现里待机的交流零功耗, 但是待机时却消耗了 电池的化学能, 并且工作时需要给蓄电池充电, 增加了工作时的功耗, 并且 整机寿命受电池的寿命影响, 失效的电池对环境污染较大。 在另一种由超级 电容实现供电的家电零功耗待机的现有技术中, 其虽然不用电池实现了, 但 是不能完全遥控启动, 电容的电能消耗完后, 需要手动才能启动, 不是真正 意义上的待机。
因此, 如何实现电器设备的真正零功耗待机, 并且不用电源开关, 以及 在任何时刻都可以遥控开机, 是本发明所要解决的一项主要问题。 发明内容
为解决上述问题, 本发明提供一种零功耗待机电路, 使电器设备在待机 时无功率损耗, 节约能源, 并且无需采用机械式电源开关, 以及在任何时刻 都可以遥控开机。 为达上述优点, 本发明提供一种零功耗待机电路, 设置于一交流电源与 一负载电路之间, 所述的零功耗待机电路包含有: 一首次开机和开关机执行 单元, 设置有一继电器, 并透过接收所述的交流电源使所述的继电器吸合, 从而导通所述的交流电源与负载电路之间的电性回路; 一光电耦合器, 具有 一原边与一副边, 所述的原边连接于所述的首次开机和开关机执行单元; 及 一待机控制单元, 连接于所述的光电耦合器的副边, 所述的待机控制单元接 收一第一遥控讯号, 并控制所述的光电耦合器断开以使所述的继电器释放, 从而断开所述的交流电源与负载电路之间的电性回路。
本发明还提供另一种零功耗待机电路, 设置于一交流电源与一负载电路 之间, 所述的零功耗待机电路包含有: 一首次开机和开关机执行单元, 设置 有一第一光电耦合器与一硅控整流器, 并透过接收所述的交流电源使所述的 硅控整流器导通, 从而导通所述的交流电源与负载电路之间的电性回路; 一 第二光电耦合器, 具有一原边与一副边, 所述的第二光电耦合器的原边连接 于所述的首次开机和开关机执行单元; 及一待机控制单元, 连接于所述的第 二光电耦合器的副边, 所述的待机控制单元接收一第一遥控讯号, 并控制所 述的第二光电耦合器断开, 以使所述的第一光电耦合器与硅控整流器断开, 从而断开所述的交流电源与负载电路之间的电性回路。
相对于现有技术, 本发明的零功耗待机电路利用超级电容存储的能量于 交流电源与负载电路之间的电性回路为断开时供电给的单片机与遥控接收 头, 藉此于待机时不消耗交流电能或电池的化学能, 完全零功耗, 满足了目 前家用电器设备节能环保的设计要求。 在待机的过程中, 当遥控接收头接到 需要开机的遥控讯号时, 单片机的输出端口输出高电平的控制讯号, 光电耦 合器为导通给晶体管开关的控制端供电, 而晶体管开关导通带动继电器吸 合, 整机上电开始工作, 藉此无需设置机械式电源开关, 也可适用于对于机 壳体积与尺寸要求轻薄的电器设备中, 另外, 本发明的零功耗待机电路在任 何时刻都可以通过遥控方式开机, 相当具使用便利性。
为让本发明的上述和其它目的、 特征和优点能更明显易懂, 下文特举较 佳实施例, 并配合所附图式, 作详细说明如下。 附图概述
图 1A和图 1B为本发明实施例一的零功耗待机电路的示意图。
图 2A和图 2B为本发明实施例二的零功耗待机电路的示意图。
图 3A和图 3B为本发明实施例三的零功耗待机电路的示意图。
本发明的较佳实施方式 以下结合附图及较佳实施例, 对依据本发明提出的零功耗待机电路其具体结 构、 特征及功效, 详细说明如后。
有关本发明的前述及其他技术内容、 特点及功效, 在以下配合参考图式 的较佳实施例详细说明中将可清楚的呈现。 通过具体实施方式的说明, 当可 解, 然而所附图式仅是提供参考与说明之用, 并非用来对本发明加以限制。
实施例一
请同时参见图 1A与图 1B, 其为本发明实施例一的零功耗待机电路的示 意图。 本发明实施例一的零功耗待机电路包括有首次开机和开关机执行单元 10与待机控制单元 20。 如图 1A与图 1B所示, 其中图 1A的电路与图 1B的 电路透过节点 ND1、 ND2、 ND3与 ND4相连接。
如图 1A所示,首次开机和开关机执行单元 10包括有整流二极管 VD800、 限流电阻 R801、 限流电阻 R802、 限流电阻 R803、 滤波电容 C800、 继电器 的线圏 JK800A、 晶体管开关 V801、 启动电容 C801、 下拉电阻 R809与稳压 二极管 VZ800。 具体地说, 整机熔断器 F800的第一端连接至电源, 整机熔 断器 F800的第二端连接至压敏电阻 RV800的第一端,压敏电阻 RV800的第 二端连接至电源。 整流二极管 VD800的正极端连接至压敏电阻 RV800的第 一端与继电器的双刀开关 JK800B的第一端,整流二极管 VD800的负极端连 接至滤波电容 C800的第一端、 限流电阻 R801的第一端与限流电阻 R802的 第一端。 滤波电容 C800的第二端连接至压敏电阻 RV800的第二端。 限流电 阻 R801 的第二端连接至继电器的线圏 JK800A 的第一端, 继电器的线圏 JK800A的第二端连接至晶体管开关 V801的第一端, 晶体管开关 V801的第 二端连接至滤波电容 C800的第二端,晶体管开关 V801的控制端连接至下拉 电阻 R809的第一端, 下拉电阻 R809的第二端连接至晶体管开关 V801的第 二端。
如图 1A所示, 限流电阻 R802的第二端连接至限流电阻 R803的第一端 与启动电容 C801的第一端, 启动电容 C801的第二端连接至下拉电阻 R809 的第一端。限流电阻 R803的第二端连接至光电耦合器 PHO800。稳压二极管 VZ800的负极端连接至光电耦合器 PHO800,稳压二极管 VZ800的正极端连 接至下拉电阻 R809的第二端。 继电器的双刀开关 JK800B的第二端连接至 节点 ND1。 光电耦合器 PHO800分别连接至节点 ND2、 ND3。 继电器的双刀 开关 JK800C的第一端连接至稳压二极管 VZ800的正极端, 继电器的双刀开 关 JK800C的第二端连接至节点 ND4。
接下来, 如图 1B所示, 待机控制单元 20包括有单片机 IC801、 遥控接 收头 IC802、 偏置电阻 R804、 R806、 R807、 R808、 驱动三极管 V800、 阻挡 二极管 VD801、 VD802、超级电容 C802、 C803与限流电阻 R800。具体地说, 偏置电阻 R804的第一端连接至节点 ND2, 偏置电阻 R804的第二端连接至 单片机 IC801与电源 5伏特。 偏置电阻 R806的第一端连接至偏置电阻 R804 的第一端, 偏置电阻 R806的第二端连接至节点 ND3。 驱动三极管 V800的 第一端连接至偏置电阻 R806的第二端,驱动三极管 V800的第二端连接至接 地端,驱动三极管 V800的控制端连接至偏置电阻 R808的第一端与偏置电阻 R807的第一端, 偏置电阻 R808的第一端连接至接地端。 偏置电阻 R807的 第二端连接至单片机 IC801的输出端口 1/01 , 阻挡二极管 VD801的负极端 连接至偏置电阻 R804的第二端与遥控接收头 IC802的第一端。 遥控接收头 IC802的第二端连接至单片机 IC801 , 遥控接收头 IC802的第三端连接至接 地端。
如图 1B所示, 阻挡二极管 VD801的正极端连接至限流电阻 R800的第 一端、 超级电容 C802的第一端与检测电阻 R805的第一端, 检测电阻 R805 的第二端连接至单片机 IC801。超级电容 C802的第二端连接至超级电容 C803 的第一端,超级电容 C803的第二端连接至接地端。 限流电阻 R800的第二端 连接至阻挡二极管 VD802的负极端, 阻挡二极管 VD802的正极端连接至电 源 5伏特。 另外, 节点 ND1与 ND4分别连接至负载电路 (图中未示)。
以下说明本发明实施例的零功耗待机电路的工作原理:
(1)首次上电: 超级电容 C802与超级电容 C803没电, 当插上电源插头 时, 以接收交流电源。 所述的交流电源经过整流二极管 VD800 整流后经限 流电阻 R802,下拉电阻 R809给启动电容 C801充电, 限流电阻 R801上的电 压降给晶体管开关 V801提供控制端 (例如,栅极)电压,以使晶体管开关 V801 导通, 继电器 JK吸合 (即继电器的双刀开关 JK800B 与继电器的双刀开关 JK800C 为接上), 交流电源提供给整机供电, 并且整机直流电源输出的 5V 电压经过阻挡二极管 VD802, 限流电阻 R800限流后给超级电容 C802与超 级电容 C803充电, 同时经阻挡二极管 VD801给单片机 IC801供电。
值得注意的是, 电源启动后,整机并不工作,其工作状态受单片机 IC801 的端口控制)。 约 5分钟后, 超级电容 C802与超级电容 C803充电完成, 同 时启动电容 C801也充电完成,此时整机如果需要在待机状态,单片机 IC801 输出端口 1/01为低电位, 光电耦合器 PHO800为截止, 继电器 JK释放 (即继 电器的双刀开关 JK800B与继电器的双刀开关 JK800C为断开), 整机功耗为 零, 此时超级电容 C802与超级电容 C803存储的能量为待机单片机 IC801 和遥控接收头 IC802供电。换言之,超级电容 C802与超级电容 C803由整机 直流电源充电, 以于交流电源与负载电路之间的电性回路为断开时供电给的 单片机 IC801与遥控接收头 IC802。 由于其消耗电流很小, 可以供电 24小时 以上。
(2)在待机的过程中, 当遥控接收头 IC802接到需要开机的遥控讯号时, 单片机 IC801的输出端口 1/01输出高电平的控制讯号, 光电耦合器 PHO800 为导通, 限流电阻 R802与限流电阻 R803通过光耦给晶体管开关 V801的控 制端供电,而晶体管开关 V801导通带动继电器 JK吸合,整机上电开始工作。
(3)整机工作过程中, 当遥控接收头 IC802接到需要待机的遥控讯号时, 单片机 IC801的输出端口 1/01输出低电平的控制讯号, 光电耦合器 PHO800 为截止, 晶体管开关 V801为截止, 继电器 JK释放, 整机进入零待机状态。 (4)当长时间 (例如, 大于 24小时)待机, 超级电容 C802与超级电容 C803上的电压逐渐降低到 3V时, 单片机 IC801检测到此电压, 输出开机信 号, 继电器 JK吸合, 启动电源给超级电容 C802与超级电容 C803充电, 于 一段时间后 (例如, 5分钟后), 重新恢复到零待机。 值得注意的是, 电源启动 后, 整机并不一定工作, 其工作状态受单片机 IC801的输出端口 1/01控制。
(5 )当长时间拔下电源插头或市电掉电超过 24小时, 超级电容 C802与 超级电容 C803上的电力几乎完全放掉,再次上电时则自动重复 (1)中的过程。 因此, 本发明的零功耗待机电路无需设置机械式电源开关, 可适用于对于机 壳体积与尺寸要求轻薄的电器设备中。
实施例二
请一并参见图 2A与图 2B,其为本发明实施例二的零功耗待机电路的示 意图。 其中图 2A的电路与图 2B的电路透过节点 ND1、 ND2、 ND3与 ND4 相连接。 如图 2A与图 2B所示, 部分电路组件的连接关系同实施例一, 以下 不再赘述。 实施例二与实施例一的差别在于: 实施例二的首次开机和开关机 执行单元 12中改用可控硅控制的光电耦合器 PHO801。由于此类光电耦合器 PHO801 只能靠电流过零或反相关断, 所以增加了二极管 VD804 和电容 C804。
如图 2A与图 2B所示, 当单片机 IC801发出开机信号后, 光电耦合器 PHO801原边导通, 副边在正半周导通使晶体管开关 V801导通并给电容 C 804充电,继电器 JK吸合接通后级交流电源; 当交流电源过零时光电耦合器 PHO801副边可控硅自然关断, 负半周晶体管开关 V801靠电容 C804存储的 电压维持开通; 下一个正半周时可控硅再次导通并给电容 C 804充电; 当单 片机 IC801发出待机信号后,在经过两个交流半周后晶体管开关 V 801关断, 继电器 JK断开交流电源, 进入零功耗待机状态。
实施例三
请一并参见图 3A与图 3B,其为本发明实施例三的零功耗待机电路的示 意图, 其中图 3A的电路与图 3B的电路透过节点 ND1、 ND2、 ND3与 ND4 相连接。实施例三采用光电耦合器 PHO801和硅控整流器 TR800代替实施二 中的继电器 JK801的线圏和机械触点, 而硅控整流器 TR800是双向可控硅。 如图 3A所示, 当光电耦合器 PHO801原边的光电二极管导通时, 副边 的可控硅导通并触发硅控整流器 TR800为导通, 过零时自然关断, 负半周期 同样, 当光电耦合器 PHO801原边二极管截止时, 硅控整流器 TR800截止, 交流电源被阻断, 实现零待机。
综上所述, 本发明的零功耗待机电路于待机时不消耗交流电能或电池的 化学能, 完全零功耗, 满足了目前家用电器设备节能环保的设计要求, 并且 无需设置电源开关, 亦可适用于对于机壳体积与尺寸要求轻薄的电器设备 中, 另外, 本发明的零功耗待机电路于任何时刻都可以透过遥控方式开机, 相当具使用便利性。
以上所述, 仅是本发明的实施例而已, 并非对本发明作任何形式上的限 制, 虽然本发明已以实施例揭露如上, 然而并非用以限定本发明, 任何熟悉 本专业的技术人员, 在不脱离本发明技术方案范围内, 当可利用上述揭示的 技术内容做出些许更动或修饰为等同变化的等效实施例, 但凡是未脱离本发 改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。
工业实用性 本发明的零功耗待机电路于待机时不消耗交流电能或电池的化学能, 完 全零功耗, 满足了目前家用电器设备节能环保的设计要求, 并且无需设置电 源开关, 亦可适用于对于机壳体积与尺寸要求轻薄的电器设备中, 另外, 本 发明的零功耗待机电路于任何时刻都可以透过遥控方式开机, 相当具使用便 利性。

Claims

权 利 要 求 书
1. 一种零功耗待机电路, 设置于一交流电源与一负载电路之间, 其特征 在于: 所述的零功耗待机电路包含有:
首次开机和开关机执行单元, 设置有一继电器, 并通过接收所述的交流 电源使所述的继电器吸合, 从而导通所述的交流电源与负载电路之间的电性 回路;
一光电耦合器, 具有一原边与一副边, 所述的原边连接于所述的首次开 机和开关机执行单元; 及
一待机控制单元, 连接于所述的光电耦合器的副边, 所述的待机控制单 元接收一第一遥控讯号, 并控制所述的光电耦合器断开以使所述的继电器释 放, 从而断开所述的交流电源与负载电路之间的电性回路。
2. 根据权利要求 1所述的零功耗待机电路, 其特征在于: 所述的待机控 制单元接收一第二遥控讯号, 并控制所述的光电耦合器导通以使所述的继电 器吸合, 从而导通所述的交流电源与负载之间的电性回路。
3. 根据权利要求 1所述的零功耗待机电路, 其特征在于: 所述的首次开 机和开关机执行单元包含有一整流二极管, 所述的整流二极管的正极端连接 至所述的交流电源, 所述的整流二极管的负极端连接至所述的继电器, 一晶 体管开关的第一端连接至所述的继电器, 所述的晶体管开关的第二端连接至 所述的交流电源, 所述的晶体管开关的控制端连接至所述的光电耦合器的原 边。
4. 根据权利要求 1所述的零功耗待机电路, 其特征在于: 所述的待机控 制单元包含有一连接至一单片机的直流电源, 一驱动三极管的第一端连接至 所述的直流电源与所述的光电耦合器的副边, 所述的驱动三极管的第二端连 接至接地端, 所述的驱动三极管的控制端接收所述的单片机所输出的控制讯 号, 一接收所述的第一遥控讯号与所述的第二遥控讯号的遥控接收头, 所述 的遥控接收头还连接至所述的单片机, 以及至少一个超级电容连接于所述的 直流电源、 单片机与遥控接收头。
5. 根据权利要求 4所述的零功耗待机电路, 其特征在于: 所述的至少一 个超级电容由所述的直流电源充电, 以于所述的交流电源与负载电路之间的 电性回路为断开时供电给所述的单片机与遥控接收头。
6. 根据权利要求 1所述的零功耗待机电路, 其特征在于: 所述的光电耦 合器为可控硅控制的光电耦合器。
7. 一种零功耗待机电路, 设置于一交流电源与一负载电路之间, 其特征 在于: 所述的零功耗待机电路包含有:
一首次开机和开关机执行单元, 设置有一第一光电耦合器与一硅控整流 器, 并通过接收所述的交流电源使所述的硅控整流器导通, 从而导通所述的 交流电源与负载电路之间的电性回路;
一第二光电耦合器, 具有一原边与一副边, 所述的第二光电耦合器的原 边连接于所述的首次开机和开关机执行单元; 及
一待机控制单元, 连接于所述的第二光电耦合器的副边, 所述的待机控 制单元接收一第一遥控讯号, 并控制所述的第二光电耦合器断开, 以使所述 的第一光电耦合器与硅控整流器断开, 从而断开所述的交流电源与负载电路 之间的电性回路。
8. 根据权利要求 7所述的零功耗待机电路, 其特征在于: 所述的待机控 制单元接收一第二遥控讯号, 并控制所述的第二光电耦合器导通, 以使所述 的第一光电耦合器与硅控整流器导通, 从而导通所述的交流电源与负载电路 之间的电性回路。
9. 根据权利要求 7所述的零功耗待机电路, 其特征在于: 所述的待机控 制单元包含有一连接至一单片机的直流电源, 一驱动三极管的第一端连接至 所述的直流电源与所述的光电耦合器的副边, 所述的驱动三极管的第二端连 接至接地端, 所述的驱动三极管的控制端接收所述的单片机所输出的控制讯 号, 一接收所述的第一遥控讯号与所述的第二遥控讯号的遥控接收头, 所述 的遥控接收头还连接至所述的单片机, 以及至少一个超级电容连接于所述的 直流电源、 单片机与遥控接收头。
10. 根据权利要求 9所述的零功耗待机电路, 其特征在于: 所述的至少 一个超级电容由所述的直流电源充电, 以于所述的交流电源与负载电路之间 的电性回路为断开时供电给所述的单片机与遥控接收头。
PCT/CN2012/078947 2012-05-31 2012-07-20 零功耗待机电路 WO2013177859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210175176.1A CN102662345B (zh) 2012-05-31 2012-05-31 零功耗待机电路
CN201210175176.1 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013177859A1 true WO2013177859A1 (zh) 2013-12-05

Family

ID=46771851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078947 WO2013177859A1 (zh) 2012-05-31 2012-07-20 零功耗待机电路

Country Status (2)

Country Link
CN (1) CN102662345B (zh)
WO (1) WO2013177859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415932A (zh) * 2020-11-24 2021-02-26 海光信息技术股份有限公司 电路模块及其驱动方法、电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401298A (zh) * 2013-08-21 2013-11-20 梁德新 一种电池及其控制电路
CN104869443A (zh) * 2014-02-22 2015-08-26 贺杰 一种带电视遥控待机插座且防雷击电视机的机顶盒
CN103888697B (zh) * 2014-02-28 2017-10-20 六安市同心畅能电子科技有限公司 电视机待机零功耗固态继电器
CN104883613B (zh) * 2015-03-17 2018-04-20 四川长虹电器股份有限公司 一种通过网络终端设备唤醒电视的方法
CN104702258B (zh) * 2015-03-23 2017-09-26 曲保章 具有可控功能的上电开机电源开关
CN111457600A (zh) * 2020-03-06 2020-07-28 六安市同心畅能电子科技有限公司 一种强排式燃气热水器零功耗待机电路
CN114415580B (zh) * 2022-03-31 2022-06-14 南京全宁电器有限公司 一种无弧分断交流电路的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327251A (ja) * 1997-05-26 1998-12-08 Fujikura Ltd 光通話装置
CN101557160A (zh) * 2009-05-15 2009-10-14 张强胜 逆变电源超低功耗待机电路
CN101635513A (zh) * 2008-07-23 2010-01-27 深圳Tcl新技术有限公司 一种待机电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200448796Y1 (ko) * 2008-01-23 2010-05-24 상도전기통신 주식회사 단위세대를 위한 상용/비상 전원 자동 공급기
CN101256394B (zh) * 2008-03-26 2010-06-09 广州蓝朝电子科技有限公司 一种准零功耗的待机控制装置
JP5315986B2 (ja) * 2008-12-26 2013-10-16 ヤマハ株式会社 電源回路および電源システム
CN201918935U (zh) * 2010-09-02 2011-08-03 常州市凯迪电器有限公司 零功耗待机开关控制装置
CN201926886U (zh) * 2010-12-01 2011-08-10 海信(北京)电器有限公司 脉冲阀待机零功耗控制电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327251A (ja) * 1997-05-26 1998-12-08 Fujikura Ltd 光通話装置
CN101635513A (zh) * 2008-07-23 2010-01-27 深圳Tcl新技术有限公司 一种待机电路
CN101557160A (zh) * 2009-05-15 2009-10-14 张强胜 逆变电源超低功耗待机电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415932A (zh) * 2020-11-24 2021-02-26 海光信息技术股份有限公司 电路模块及其驱动方法、电子设备
CN112415932B (zh) * 2020-11-24 2023-04-25 海光信息技术股份有限公司 电路模块及其驱动方法、电子设备

Also Published As

Publication number Publication date
CN102662345A (zh) 2012-09-12
CN102662345B (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2013177859A1 (zh) 零功耗待机电路
WO2017084528A1 (zh) 一种能自动断电的节能充电器
CN101426114B (zh) 零功耗待机的电视机及其实现方法
CN101639675B (zh) 高效节能开关电路
CN201522626U (zh) 高效节能开关电路
WO2007087756A1 (fr) Alimentation électrique commutée par condensateur possédant une fonction d'attente économe en consommation de courant
WO2021000436A1 (zh) 无线控制模组、无线墙壁开关、用电设备及系统
WO2012028016A1 (zh) 待机零功耗开关控制系统
US8531058B2 (en) Electrical appliance
US8314516B2 (en) Self-reactivating electrical appliance
CN102183899B (zh) 零功耗待机电路
WO2008119997A1 (en) Power saving circuit
WO2013159569A1 (zh) 一种延时断电电路及延时断电插座
CN201956899U (zh) 一种特殊的加速启机电路及采用该电路的led驱动电路
TWI361525B (en) Ac adapter and the controlling method thereof
CN202975669U (zh) 一种低待机功耗控制电路
CN201315389Y (zh) 节能插座
CN207489241U (zh) 一种电器设备及其零功耗待机电路
CN201490896U (zh) 静态零功耗安全节能转换装置
CN201307902Y (zh) 零功耗待机的电视机
WO2010130160A1 (zh) 一种干衣机单相交流电机控制电路
CN2598226Y (zh) 遥控电器机内全关机控制电路
CN102566461B (zh) 一种智能电源控制装置及其工作方法
CN205564671U (zh) 断路器的电动操作机构的功耗控制电路
CN218351861U (zh) 节能控制插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877725

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06-07-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12877725

Country of ref document: EP

Kind code of ref document: A1