WO2013176363A1 - Method for preparing nanocomposite comprising tin-based multiphase nanostructure and amorphous carbon, and cathode active material containing same - Google Patents

Method for preparing nanocomposite comprising tin-based multiphase nanostructure and amorphous carbon, and cathode active material containing same Download PDF

Info

Publication number
WO2013176363A1
WO2013176363A1 PCT/KR2012/011355 KR2012011355W WO2013176363A1 WO 2013176363 A1 WO2013176363 A1 WO 2013176363A1 KR 2012011355 W KR2012011355 W KR 2012011355W WO 2013176363 A1 WO2013176363 A1 WO 2013176363A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
bacteria
amorphous carbon
nanocomposite
transition metal
Prior art date
Application number
PCT/KR2012/011355
Other languages
French (fr)
Korean (ko)
Inventor
김동완
심현우
임아현
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2013176363A1 publication Critical patent/WO2013176363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a nanocomposite composed of polyphase nanostructures and amorphous carbon based on a tin element, and a negative electrode active material comprising the same.
  • Batteries a device that converts chemical energy into electrical energy, are classified into primary cells, secondary batteries, fuel cells, and solar cells, depending on the types and characteristics of basic materials.
  • the secondary battery can be recharged and used several times when discharged.
  • primary batteries although they have large capacities such as alkali batteries, mercury batteries, and manganese batteries, they are limited in terms of primary batteries and are not recycled and thus not environmentally friendly.
  • Recyclable secondary batteries such as cadmium batteries, nickel metal hybrid batteries, lithium metal batteries, and lithium ion batteries are not only energy efficient and environmentally friendly due to their higher voltage than primary batteries, but also have a low energy density and have many technical advantages. Unlike constraints, secondary batteries have high capacity and high energy density and are currently commercialized in various industrial fields.
  • lithium ion secondary batteries among the various secondary batteries have attracted great attention in recent years due to applications ranging from small to medium and large.
  • the lithium ion secondary battery is largely composed of a positive electrode and a negative electrode, an electrolyte and a separator, and utilizes electrical energy generated by a redox reaction when lithium ions are inserted / desorbed between the positive electrode and the negative electrode. That is, based on the principle that lithium ions and electrons carrying charge reciprocate between the positive electrode and the negative electrode, during discharge, the lithium ions and electrons move to the positive electrode and are inserted into the negative electrode active material, and when charged, they are detached from the negative electrode active material. Thus, the process of being inserted into the positive electrode active material is repeated.
  • High performance of lithium-ion secondary batteries is closely related to the development of electrode active materials and improvement of physical properties, which are key factors.
  • innovative ideas and advanced nanotechnology are appropriate to avoid development of simple materials and process technologies. Fusion is necessary. That is, in order for a lithium ion battery to have a large capacity and excellent cycle stability, an anode and a cathode active material to be used must have an appropriate crystal structure and excellent electrical properties to react with lithium. In addition, there should be no side-reaction between the active material and the electrolyte, and the volume change of the active material lattice generated during charging and discharging should be small.
  • the negative electrode active material based on the insertion / desorption reaction of the lithium ion of the carbon-based material is the core in the negative electrode material field of the lithium ion secondary battery technology.
  • the capacity commercialized with a small theoretical capacity (372 mAh / g) is basically smaller than this. Therefore, in recent years, studies on new anode active materials to replace carbon-based materials and researches for improving performance of anode active materials having nanostructures have been actively conducted, and many research cases have been reported.
  • CuO which expresses its capacity through a reaction (alloying reaction) using Si, Ge, Sn, etc., which forms an alloy with lithium, or a conversion reaction between metal / metal oxides, rather than a conventional insertion / desorption process
  • transition metal oxides such as CoO, Fe 2 O 3 , NiO, MnO 2, etc.
  • Such a negative electrode active material may be made by preparing a material having a nanostructure rather than a conventional micro-sized bulk material, which may react with lithium due to the high specific surface area, which is one of the biggest features of the nanostructure. This is because it can exhibit the characteristics as an improved negative electrode active material based on the advantage that the number of sites, the diffusion movement distance of lithium ions can be shortened.
  • attempts have been made to achieve high performance of lithium-ion secondary batteries using the advantages of each nanostructure by preparing nanocomposites through complexing of nanostructures, as well as simple application of a negative electrode active material using nanostructures.
  • the preparation of the negative electrode active material for the high performance of the lithium ion secondary battery is to improve the electrical conductivity through nano-structured or nano-composite material capable of realizing high capacity characteristics, small volume change between reaction with lithium, interparticle
  • nanostructures of various compositions as well as to manufacture various forms of nanostructures in a simple process.
  • the preparation of a negative electrode active material through nanostructure of elements such as Sn, Ge, and Si, which realizes high capacity characteristics through an alloy reaction with lithium is considered to be important as a negative electrode active material material capable of achieving high performance of a lithium ion secondary battery.
  • the problem of rapid capacity reduction due to large volume change, low electrical conductivity, and the like should be considered together, and the complexion with other nanomaterials of the nanostructure having the alloy reaction with lithium is also considered. Need to be.
  • the nanostructures have a variety of properties depending on the shape produced, there is also a need for a manufacturing method that can easily control the shape of the nanostructures during synthesis.
  • the present inventors have developed a negative electrode active material consisting of nanocomposites composed of high carbon element-based nanostructures and amorphous carbons that can provide enhanced electrical conductivity through application of bacterial templates as a medium and through thermochemical reduction. .
  • the present invention is not only a simple manufacturing process in the production of the nanocomposite, but also easy to mass production of bacteria as a medium, the tube shape through a simple thermochemical reduction in the hydrogen atmosphere of the complex consisting of bacteria / tin oxide It is an object of the present invention to provide a method for producing a nanostructure consisting of a multi-phase tin element having a nanostructure and an amorphous carbon.
  • It provides a method for producing a nanostructure / amorphous carbon nanocomposite based transition metal element comprising a.
  • the present invention provides a tube-shaped nanocomposite composed of a transition-phase element-based multi-phase nanostructures and amorphous carbon derived from bacteria attached to the bacterial surface due to the thermochemical reduction of the nanocomposites. do.
  • the present invention provides a negative electrode active material for a secondary battery comprising the nanocomposite.
  • the present invention provides a secondary battery employing a negative electrode including the negative electrode active material.
  • Tube-shaped nanocomposites can be prepared that are complexed with amorphous carbon derived from bacteria.
  • the present invention can be easily obtained through simple thermochemical reduction and easy to mass production based on the bacteria / tin oxide complex which can be easily obtained at low temperature by applying bacteria as a template.
  • the manufacturing method of the present invention has the advantage of economical and time-saving effect because the manufacturing process is simple.
  • the production method of the present invention has the advantage of obtaining a tubular nanocomposite composed of a multiphase low-dimensional nanostructure and amorphous carbon in one manufacturing process.
  • the nanocomposites composed of multiphase nanostructures and amorphous carbon based on the tin element presented in the present invention have a simple and economical manufacturing process and are easy to obtain a large amount of intermediate bacteria / tin oxides. With the advantage of being able to produce, various applications are possible across industries such as lithium secondary batteries, electric double layer super capacitors, and similar super capacitors.
  • Figure 1 is a schematic diagram showing a tube-shaped nanocomposite manufacturing process consisting of amorphous carbon / tin element-based multi-phase nanostructures prepared through the use of the bacterial template and tin precursor presented in the present invention.
  • FESEM field emission scanning electron microscope
  • Figure 3 is a transmission electron microscopy (TEM) picture of the composite consisting of bacteria / tin oxide (SnO2) prepared by the intermediate medium in the present invention ((a) transmission electron micrograph, (b) high resolution Transmission electron micrograph].
  • TEM transmission electron microscopy
  • Figure 4 is an X-ray Diffraction patterns (XRD) of the composite consisting of bacteria / tin oxide (SnO2) prepared in the intermediate medium in the present invention.
  • XRD X-ray Diffraction patterns
  • FIG. 5 is a result of a thermogravimetry analyzer (TGA) of a complex composed of bacteria / tin oxide (SnO 2) prepared as an intermediate medium in the present invention.
  • TGA thermogravimetry analyzer
  • Figure 6 is a field emission scanning electron micrograph showing the shape of the tube-shaped nanocomposite consisting of the amorphous carbon / tin element-based multiphase nanostructures of the present invention.
  • FIG. 7 is a transmission electron micrograph showing a shape of a tube-shaped nanocomposite composed of the amorphous carbon / tin element-based multiphase nanostructure of the present invention, a high resolution transmission electron micrograph, and a selected area electron diffraction (SAED) pattern photograph. .
  • SAED selected area electron diffraction
  • FIG. 8 is an X-ray powder diffraction pattern of a tube-shaped nanocomposite composed of the amorphous carbon / tin element based multiphase nanostructures of the present invention.
  • Example 9 is a scanning electron micrograph showing the shape of the nanocomposite prepared according to Examples 2 to 4 of the present invention ((a) Example 2, (b) Example 3, (c) Example 4).
  • Example 10 is a field emission scanning electron micrograph showing the shape of the nanocomposite prepared according to Example 5 of the present invention.
  • Example 12 is a field emission scanning electron microscope, a transmission electron microscope, and a high resolution transmission electron micrograph of a nanocomposite shape prepared according to Example 8 of the present invention ((a) field emission scanning electron micrograph, (b) transmission electron Micrograph, (c) high resolution transmission electron micrograph].
  • Example 13 is a scanning electron micrograph showing the shape of the nanocomposite prepared according to Example 10 of the present invention.
  • Example 14 is a cycle-shaped nanocomposite composed of amorphous carbon / tin element-based multi-phase nanostructures prepared in the present invention and various current density changes of the negative electrode active materials prepared using the powders of Example 8 and Comparative Example 1 This is a result of comparing the measured dose change curves.
  • It provides a method for producing a nanostructure / amorphous carbon nanocomposite based transition metal element comprising a.
  • the present invention provides a tube-shaped nanocomposite composed of a transition-phase element-based multi-phase nanostructures and amorphous carbon derived from bacteria attached to the bacterial surface due to the thermochemical reduction of the nanocomposites. do.
  • the present invention provides a negative electrode active material for a secondary battery comprising the nanocomposite.
  • the present invention provides a secondary battery employing a negative electrode including the negative electrode active material.
  • It provides a method for producing a transition metal-based nanostructure / amorphous carbon nanocomposite comprising a.
  • the transition metal used in the present invention is not particularly limited, and Cu, Co, Fe, Ni, Mn, Ti, which are the four periodic elements on the periodic table, and Y, Zr, Nb, Mo, Tc, Ru, and Rh, which are the five periodic elements on the periodic table.
  • Pd, Ag, Cd, In, Sn, Sb, Te and the like can be used. More preferably, it is a 5 period element, Most preferably, it is Sn.
  • the present invention binds tin element-based oxide nanostructures capable of realizing high capacity properties to the Bacillus bacterial surface and thermochemically reduces the obtained bacteria / tin oxide complexes under hydrogen atmosphere, thereby removing from bacteria with high capacity properties.
  • the present invention relates to a method of manufacturing a nanocomposite that can mitigate volume change during reaction with lithium through a tube shape by providing high electrical conductivity by induced amorphous carbon.
  • the present invention provides a method for preparing a bacterial / tin oxide complex which is an intermediate step; And obtaining a final nanocomposite through thermochemical reduction of the obtained composite.
  • the bacterium / tin oxide composite obtained in the intermediate step has the advantage of increasing the yield of tin oxide nanostructures that are combined with the simple synthesis, low temperature, and increase of bacteria used as a template. This gives the possibility of mass production of the nanocomposites finally obtained.
  • Such a process for synthesizing a bacterial / tin oxide complex is similarly made by the inventors, focusing on incorporating a transition metal oxide on the surface of the Bacillus bacterium, which has been previously patented [Korean Patent Application, Application No. 10-2009-0011628]. Can lose.
  • tin precursor solution in which tin precursor is dissolved in deionized water to the solution of step 1 and stiring at 20 to 30 ° C. for 0.5 to 2 hours to uniformly disperse bacteria and tin precursors;
  • It relates to a method for producing a nanocomposite consisting of a multi-phase nanostructure / amorphous carbon based on a tin element comprising a.
  • the tin precursor used in the present invention is not particularly limited according to the number of divalent and tetravalent oxidized numbers, and examples thereof include nitrate, chloride, acetate, and the like.
  • Synthesis of the bacterial / tin oxide complex is carried out by hydrazine (N 2 H 4 ⁇ H 2 O) using tin ions of cations attached to the bacterial surface as a reducing agent through electrostatic attraction in solution. It can be obtained on the basis of a liquid phase synthesis method, which is used to reduce and simultaneously oxidize. In general, the liquid phase synthesis method is not excellent in crystallinity, but the crystalline material can be obtained at a low temperature according to the synthesis method, and there is an advantage that particles of uniform and small size can be obtained.
  • the synthesis process of the bacterial / tin oxide composite presented in the present invention is a simple process, it is possible to obtain a nano powder consisting of uniformly sized tin oxide nanostructures with crystallinity at room temperature (20 ⁇ 30 °C) It has the advantage that mass production is possible.
  • FIG. 1 A series of synthesis methods used to prepare the nano-composite composed of the tin phase-based polyphase nanostructure and amorphous carbon according to the present invention is well illustrated in FIG. 1, and a detailed description based on FIG. 1 is as follows.
  • the concentration control of the bacterial template solution may be performed through the optical absorbance (Optical Density, OD) measured at 600 nm wavelength using an UV spectrometer, the concentration of the bacterial template applied in the present invention is 600 nm It is preferable to use the thing of the range whose optical absorbance is 1.0-2.0 in wavelength.
  • optical absorbance Optical Density, OD
  • the tin precursor While maintaining the bacteria dispersion solution in the proper concentration range while stirring at room temperature, the tin precursor is added to deionized water to prepare a tin chloride precursor in the range of 10 to 100 mM, and dissolve so that the tin precursor is sufficiently dispersed during the stirring process. After that, the tin precursor solution, which has been dissolved, is slowly added to the bacterial dispersion solution that is being stirred at room temperature while the stirring is maintained. At this time, when the tin precursor solution is rapidly added, the transition metal precursor of the cation may not be adhered evenly to the surface of the dispersed bacteria, and thereafter, it may be reduced or reduced in the aqueous solution by the reducing agent of hydrazine. Partial reflux in the course of spontaneous oxidation at may make it difficult to achieve agglomerate and a well-shaped single rod shape between the bacteria, so it is preferable to add slowly using a burette if possible.
  • a sufficient sterling time of 0.5 to 2 hours is maintained at 20 to 30 ° C. to allow sufficient adhesion and even distribution and dispersion between the tin precursor of the cation and the bacteria.
  • hydrazine which can act as a reducing agent, is added to deionized water to prepare a hydrazine solution in the range of 10 to 1000 mM and the sterling process is performed. Dissolve to ensure sufficient dispersion. Thereafter, the hydrazine solution, which has been dissolved, is slowly added to the mixed solution being stirred at room temperature in the state where the sterling is maintained. At this time, the amount of about 10 ml per minute is added using a burette as in the case of adding the tin precursor solution.
  • the mixed solution added to the reducing agent hydrazine is refluxed for 10 to 15 hours while continuously stirring at 20 °C to 30 °C, after which the supernatant and the precipitate is separated by centrifugation, the supernatant is removed and The precipitate is washed with deionized water and acetone (acetone). At this time, the precipitate is a state in which the tin oxide is evenly distributed and attached to the bacterial surface. Thereafter, the obtained precipitate is subjected to a drying process in a vacuum oven.
  • the vacuum drying proceeded in the present invention was carried out at a temperature of 60 ⁇ 70 °C, pressure range of 10 -2 to 10 -3 torr for 6 to 8 hours.
  • the shape of the bacteria / tin oxide composite powder obtained after the vacuum drying is 500 ⁇ 800 nm in diameter, 1 ⁇ 2 ⁇ m Bacillus bacteria surface of 2 ⁇ 5 nm evenly surrounded by tin oxide nanostructures, oxide nanostructures Has a very uniform and fine particle size distribution.
  • the shape of the prepared bacterial / tin oxide complex can be observed through field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). 2, 3].
  • FESEM field emission scanning electron microscopy
  • TEM transmission electron microscopy
  • the phase type and crystal structure of the synthesis result of the prepared bacterial / tin oxide complex can be confirmed using X-ray diffraction patterns (XRD) [FIG. 4].
  • XRD X-ray diffraction patterns
  • the synthesized bacterial / tin oxide composite powder shows the same X-ray diffraction pattern as SnO 2 (JCPDS card No. 41-1445).
  • Figure 5 shows the quantitative characteristics of the tin oxide bound to the bacterial / tin oxide complex synthesized by thermal gravimetric analysis (TGA).
  • the synthesized bacteria / tin oxide complex is prepared through the thermochemical reduction under a hydrogen atmosphere to prepare a tubular nanocomposite consisting of tin-based multi-phase nanostructures and amorphous carbon derived from bacteria.
  • the advanced thermochemical reduction process is maintained for 12 hours after reaching 400 °C at a temperature rising rate of 10 °C per minute under a hydrogen atmosphere, if the conditions of the gas atmosphere, temperature, time does not satisfy the desired tin base Since it is impossible to obtain a tube-shaped nanocomposite composed of polyphase nanostructures and amorphous carbon, it is preferable to comply with the conditions.
  • the shape of the final powder obtained after the thermochemical reduction process can be observed through field emission scanning electron microscopy and transmission electron microscopy, and it can be seen that the diameter is reduced by 100 to 200 nm compared to the bacterial / tin oxide composite shown after vacuum drying. 6 and 7. Moreover, according to FIG. 7, it can be seen through the high resolution transmission electron micrograph that after the thermochemical reduction, multiphase nanostructures based on tin elements were formed. In addition, according to FIG. 8, the phase and crystal structures of the resultant obtained after thermodynamic reduction were confirmed by using an X-ray diffraction pattern [FIG. 8].
  • tube-shaped nanocomposites composed of microstructured nanostructures and amorphous carbon based on tin element through bacteria / tin oxides and thermochemical reduction are electrochemical devices, more specifically lithium-ion in the art. It can be used for secondary batteries, electric double layer super capacitors and the like.
  • the present invention provides a nanocomposite powder composed of a multi-phase tin element-based nanostructure / amorphous carbon in a tubular shape obtained through thermochemical reduction, as well as the intermediate complex composed of the bacteria / tin oxide.
  • an electrode for a lithium battery was separately prepared and a half cell was constructed to evaluate electrochemical properties.
  • the lithium ion secondary battery exhibits better electrochemical performance as the number of lithium charges that can react per unit molecular weight of the negative electrode active material used, and the particle aggregation phenomenon during charging and discharging are limited.
  • the inert powder and the conductive additive and binder composed of the bacteria / tin oxide prepared as the intermediate step or the tubular tin element based polyphase nanostructure / amorphous carbon obtained after thermochemical reduction are finally obtained.
  • Lithium metal is used as a negative electrode, and the prepared electrode is used as an anode.
  • An electrolyte and a separator are inserted between two electrodes to complete a half cell.
  • the manufactured battery was evaluated for charging and discharging cycles while varying the current density flowing in the voltage range of 0.01 to 3.0V.
  • electrochemical characteristics were measured only for powders subjected to thermochemical reduction at 400 ° C., and electrochemical characteristics were also obtained for bacteria / tin oxides prepared in an intermediate step as a control and powders subjected to thermochemical reduction at 500 ° C. Were measured and compared with each other.
  • the powder of the tin element-based multiphase nanostructure / amorphous carbon proposed in the present invention exhibits a higher capacity than the measured results of the controls, and has a high current. Higher capacity also showed better stability in density.
  • 5 ⁇ l were taken from the stock solution of Bacillus subtilis, which was stored frozen, and then inoculated into a test tube containing 5 ml LB liquid medium (Luria-Bertani, LB broth) and rotating at 200 rpm at 37 ° C. Were initially cultured in an incubator. After 10 to 12 hours from the initial incubation, 500 ⁇ l was collected from the culture solution and passaged in 5 Erlenmeyer flasks each containing 200 ml of liquid medium. Bacteria culture 5 hours after subculture were centrifuged at 12,000 rpm for 20 minutes to separate bacteria and supernatant. The sunk bacteria separated from the supernatant were washed twice with deionized water and centrifuged.
  • LB liquid medium Lia-Bertani, LB broth
  • the precipitate is deposited in the state that the tin oxide is evenly distributed on the surface of the Bacillus bacteria, the synthesized precipitate was vacuum dried for 6 hours under the temperature of 60 °C, pressure condition of 10 -2 torr, intermediate step Bacteria / tin oxide complexes were prepared.
  • the prepared bacteria / tin oxide composite was subjected to thermochemical reduction under a hydrogen atmosphere.
  • 0.2 to 0.3 g of the prepared bacteria / tin oxide composite powder was weighed and subjected to thermochemical reduction in a tubular high temperature electric furnace.
  • a purge process is performed by flowing argon gas at a flow rate of 100 sccm for 30 minutes while the vacuum pump is operated.
  • hydrogen gas was flowed at a flow rate of 40 sccm for 30 minutes to create a reducing atmosphere.
  • a thermochemical reduction process was performed at 400 ° C. for 12 hours.
  • Synthesis method is the same as in Example 1, but after fixing the concentration of the tin chloride precursor in Table 1 to 10 mM, to change the concentration of N 2 H 4 ⁇ H 2 O reducing agent to 100, 500, 1000 mM, respectively.
  • the bacterial / tin oxide complexes thus obtained as intermediate steps of the present invention were prepared.
  • 9 shows scanning electron micrographs of the bacterial / tin oxide complexes prepared according to the conditions of Examples 2, 3, and 4, respectively.
  • Synthesis method is the same as in Example 1, but obtained by the intermediate step of the present invention with the concentration of the tin chloride precursors shown in Table 1 to 100 mM, the concentration of the N 2 H 4 ⁇ H 2 O reducing agent to 100 mM
  • the resulting bacterial / tin oxide complex was prepared.
  • Field emission scanning electron micrographs of the bacterial / tin oxide complexes prepared according to Example 5 are shown in FIG. 10.
  • thermochemical Nanocomposites consisting of amorphous carbon and multiphase nanostructures based on tin elements with final tube shapes obtained through reduction cannot be prepared. Therefore, suitable forms of bacterial / tin oxide composite intermediate stage mediators should be prepared through the above examples.
  • thermochemical reduction processes in order to produce a nanocomposite having a tube shape which is the final form of the present invention between the thermochemical reduction processes through the above embodiments, and consisting of polyphase nanostructures and amorphous carbon on the basis of tin element, the temperature between the thermochemical reduction processes, Conditions such as time and mood must be adequately set.
  • the shape of the nanocomposite prepared in Example 8 is shown in FIG. 12 using a field emission scanning electron microscope, a transmission electron microscope, and a high resolution transmission electron microscope.
  • the nanostructures based on amorphous carbon and tin elements derived from bacteria after the thermochemical reduction process are not evenly distributed, but a recrystallized reduction to tin metal due to a high reduction temperature is achieved. It can be seen that the increase significantly. These results later showed lower capacity characteristics in composites with tin-based multiphase nanostructures in secondary battery tests with lithium.
  • the synthesis was carried out in the same manner as in Example 1, except that the precipitate in the intermediate step was obtained without using a bacterial template as described in Table 1 below.
  • a scanning micrograph of the obtained precipitate is shown in FIG. 13, and when the bacterial template identified in FIG. 13 is not applied, it is not formed on a template of tin oxide obtained in an intermediate step, and thus a desired rod shape cannot be obtained.
  • the nanocomposite consisting of amorphous carbon and multiphase nanostructures based on tin element having the final tube shape of the present invention cannot be produced.
  • Example 2 In order to compare and analyze the secondary battery characteristics of the tubular nanocomposite consisting of the tin element-based polyphase nanostructure and amorphous carbon prepared in Example 1, the same synthesis as in Example 1 as a control as shown in Table 2 below. Secondary battery characteristics were compared by using the nanopowder prepared in Example 8 and the intermediate bacteria / tin oxide complex which was performed by the method but did not undergo the thermochemical reduction process.
  • the negative electrode active material of the anode active material of the tube-shaped nanocomposite composed of the tin element-based polyphase nanostructure and amorphous carbon prepared in Example 1 and the nanopowder prepared in Comparative Example 1 and the powder prepared in Example 8 In order to compare and evaluate as an active material, the capacity of the half battery was measured after producing an electrode.
  • nano-powder negative electrode active material prepared in Example 1 was weighed to have a mass ratio of 70: 15: 15 and graphite (MMM Cabon) and a binder, Kynar 2801 (PVdF-HFP), and then inert. It was prepared in the form of a slurry by dissolving in N-methyl- pitolidon (NMP), an organic solvent. Thereafter, the slurry was applied to a copper foil as a current collector, dried in a vacuum oven at 100 ° C. for 4 hours to volatilize an organic solvent, and then pressed into a circular shape having a diameter of 1 cm.
  • NMP N-methyl- pitolidon
  • the nano powders prepared in Comparative Examples 1 and 8 were also weighed 0.5 to 1 mg as a negative electrode active material, and the mass ratio of graphite as a conductive agent and Kynar 2801 as a binder was 70:15:15, and then inert. It was dissolved in organic solvent to form a slurry. The subsequent process is the same as the manufacturing process of the electrode presented through the sample of Example 1.
  • the electrodes prepared in (a) as lithium metal ions as the cathode and the anode An electrolyte and a separator (Celgard 2400) were inserted between the two, and a half cell of a Swagelok type was configured.
  • the electrolyte used was a material in which LiPF6 was dissolved in a solution in which a volume ratio of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate, DMC) was 1: 1. All procedures of the half cell preparation presented above were carried out in a glove box filled with argon, an inert gas.
  • the manufactured half-slave type half cell uses a charge / discharge cycler (WBCS 3000, WonA Tech., Korea) to change the voltage to 0.03 mV / sec between 0.01 and 3.0 V voltages and is in a positive static mode.
  • the current density was 78 mA / g, 157 mA / g, 235 mA / g, 392 mA / g, and the current density was changed to galvanostatic mode.
  • the electrochemical characteristics were evaluated by changing the current density while performing 10 cycle charge / discharge tests.
  • the graph analyzed according to the constant current method is shown in FIG. 14.
  • the bacteria / tin oxide (SnO 2) obtained in the intermediate step of the present invention.
  • Sn amorphous carbon / single-phase tin metal
  • Table 3 shows the discharge capacity when 10 charge and discharge cycle tests were performed at each current density in the secondary battery characteristics evaluation of the powders prepared in Examples 1, 9 and Comparative Example 1. .
  • Table 3 is a negative electrode using the powders prepared in Example 8 and Comparative Example 1 is the negative electrode active material of the tube-shaped nanocomposite composed of the amorphous carbon / tin element-based multi-phase nanostructures prepared in Example 1 of the present invention It has much higher capacity characteristics than active materials, and shows cycle stability with high capacity characteristics even at high current densities. From this, the material of the tube-shaped nanocomposite composed of amorphous carbon / tin element-based multiphase nanostructures raised in the present invention can achieve high capacity due to low dimensional nanostructures composed of polyphase tin elements.
  • the present invention is directed to polyphase tin oxides having a 0-dimensional shape and tin metal and bacteria by thermochemically reducing the powder of bacteria / tin oxide obtained by directly binding tin oxide to the Bacillus bacterial surface in a hydrogen atmosphere.
  • the present invention relates to a tube-shaped nanocomposite complexed with amorphous carbon.
  • Bacteria are used as a template for low capacity and low output (low capacity for high current density), which have been pointed out as a disadvantage in the conventional negative electrode active material for lithium secondary batteries, and the capacity greatly decreases due to large volume change when reacting with lithium.
  • it is possible to solve the problem by manufacturing a tubular nanocomposite composed of amorphous carbon / tin element based multi-dimensional low dimensional nanostructures, which are manufactured through thermochemical reduction by combining tin oxide, which can realize high capacity, with the bacterial surface. Do.
  • thermochemical reduction process is simple, economical, and it is possible not only to obtain various types of complexes depending on the shape of the bacterium template used, but also to facilitate low-temperature synthesis and synthesis of intermediate media. Because of the ease of production, it is expected to be practically applicable not only to lithium secondary batteries but also to electric double layer super capacitors.

Abstract

The present invention relates to a tubular nanocomposite comprising: multiphase tin oxides having a zero-dimensional shape through a thermochemical reduction of a bacteria/tin oxide powder, obtained by directly binding tin oxide onto the surface of bacteria of the Bacillus genus, in an hydrogen atmosphere; and a complex of amorphous carbon derived from tin metals and bacteria. It is possible to resolve a low capacity and a low output (a low capacity at a high current density), and a large decrease in capacity with cycling due to a large change in volume during a reaction with lithium, which have been indicated as the shortcomings of a conventional cathode active material for a lithium secondary battery, by preparing a tubular nanocomposite comprising amorphous carbon/tin element-based multiphase low-dimensional nanostructures to be prepared by utilizing bacterial as a template, binding tin oxide capable of implementing a high capacity onto the surface of the bacteria, and thermochemically reducing the same. The thermochemical reduction of the present invention has a simple and economical preparation process, enables preparation of various shapes of a composite according to the shape of a bacteria template to be used, and facilitates low temperature synthesis, intermediate synthesis, and mass production. Thus, the present invention is expected to have practical applicability to the lithium secondary battery field and the electrical double-layer capacitor field.

Description

주석 기반 다상 나노 구조체 및 비정질 카본의 나노 복합체 제조방법 및 이를 포함하는 음극활물질Method for preparing nanocomposite of tin-based polyphase nanostructure and amorphous carbon and anode active material comprising the same
본 발명은 주석 원소를 기반으로 하는 다상의 나노구조체들 및 비정질 카본으로 이루어진 나노복합체 제조방법 및 이를 포함하는 음극활물질에 관한 것이다.The present invention relates to a method for producing a nanocomposite composed of polyphase nanostructures and amorphous carbon based on a tin element, and a negative electrode active material comprising the same.
최근 전자산업, 이동통신을 포함한 각종 정보통신 등 커뮤니케이션 산업의 급속한 발전과 더불어 전자기기의 경박단소화 요구에 부응하여, 휴대전화, 노트북, PDA, 디지털카메라, 캠코더 등 휴대용 전자제품이 널리 보급되고 있으며, 이에 이들 기기의 구동 전원인 전지의 개발에 대해서도 관심이 지속적으로 높아지고 있다. In recent years, in response to the rapid development of the communication industry such as the electronics industry and various information and communication including mobile communication, in response to the demand for thin and short electronic devices, portable electronic products such as mobile phones, laptops, PDAs, digital cameras, camcorders, etc. are widely used. Therefore, interest in the development of a battery that is a driving power source for these devices is continuously increasing.
특히, 순수 전기차나 하이브리드 차량과 같은 전기자동차의 개발에 따라 고성능, 대용량, 고밀도 및 고출력, 고안정성을 갖는 전지의 개발에 큰 관심이 집중되고 있으며, 빠른 충ㆍ방전 속도 특성을 갖는 전지의 개발 또한 커다란 이슈로 자리 잡고 있다.Particularly, according to the development of electric vehicles such as pure electric vehicles or hybrid vehicles, great attention has been focused on the development of batteries having high performance, large capacity, high density, high output and high stability, and also development of batteries having fast charge and discharge characteristics. It is a big issue.
화학에너지를 전기에너지를 바꾸는 장치인 전지는 기본 구성 재료의 종류와 특징에 따라 일차전지, 이차전지, 연료전지, 그리고 태양전지 등으로 구분된다.Batteries, a device that converts chemical energy into electrical energy, are classified into primary cells, secondary batteries, fuel cells, and solar cells, depending on the types and characteristics of basic materials.
이 중, 이차전지는 일회 사용이 가능한 1차 전지와는 달리, 방전이 되면 다시 충전하여 여러 회의 사용이 가능하다. 흔히 많이 사용하는 일차전지의 경우에, 알칼리전지, 수은전지, 망간전지 등과 같이 큰 용량을 지님에도 불구하고 일차전지가 갖는 한계로서 재활용이 불가능하고 이로 인해 환경 친화적이지 않은 반면에, 납축전지, 니켈 카드뮴전지, 니켈 메탈 하이브리드전지, 리튬 금속전지, 리튬이온전지 등과 같이 재활용이 가능한 이차전지는 일차전지보다 전압이 높아 에너지 효율적이고 환경 친화적일 뿐만 아니라, 연료전지처럼 저 에너지 밀도를 가지고 아직 많은 기술적인 제약이 존재하는 것과 달리, 이차전지는 고용량, 고 에너지 밀도를 가지면서 현재 각종 산업 분야에서 상용화되고 있다.Among these, unlike the primary battery that can be used once, the secondary battery can be recharged and used several times when discharged. In the case of commonly used primary batteries, although they have large capacities such as alkali batteries, mercury batteries, and manganese batteries, they are limited in terms of primary batteries and are not recycled and thus not environmentally friendly. Recyclable secondary batteries such as cadmium batteries, nickel metal hybrid batteries, lithium metal batteries, and lithium ion batteries are not only energy efficient and environmentally friendly due to their higher voltage than primary batteries, but also have a low energy density and have many technical advantages. Unlike constraints, secondary batteries have high capacity and high energy density and are currently commercialized in various industrial fields.
현재까지 다양한 이차전지 중 리튬이온 이차전지는 소형에서부터 중ㆍ대형에 이르는 적용으로 최근 들어 크게 주목 받고 있다.To date, lithium ion secondary batteries among the various secondary batteries have attracted great attention in recent years due to applications ranging from small to medium and large.
이러한 리튬이온 이차전지는 양극과 음극, 전해질 및 분리막으로 크게 구성되어 있으며, 리튬 이온이 양극과 음극 사이에서 삽입/탈리될 때 산화환원 반응에 의해 발생되는 전기에너지를 이용하게 된다. 즉, 전하를 운반하는 리튬이온과 전자가 양극과 음극을 왕복 이동하는 원리를 기본으로 하여, 방전시에는 리튬이온과 전자가 양극으로 이동하여 음극활물질에 삽입되고, 충전시에는 이들이 음극활물질로부터 탈리되어 양극활물질에 삽입되는 일련의 과정을 반복하게 된다.The lithium ion secondary battery is largely composed of a positive electrode and a negative electrode, an electrolyte and a separator, and utilizes electrical energy generated by a redox reaction when lithium ions are inserted / desorbed between the positive electrode and the negative electrode. That is, based on the principle that lithium ions and electrons carrying charge reciprocate between the positive electrode and the negative electrode, during discharge, the lithium ions and electrons move to the positive electrode and are inserted into the negative electrode active material, and when charged, they are detached from the negative electrode active material. Thus, the process of being inserted into the positive electrode active material is repeated.
근래 들어, 이러한 리튬이온 이차전지를 이용한 중ㆍ대형급의 활용이 가속화됨에 따라, 리튬이온 이차전지의 고성능화가 무엇보다도 중요하게 요구되고 있다.In recent years, as the utilization of the medium-large class using such a lithium ion secondary battery is accelerated, the high performance of a lithium ion secondary battery is required more than anything.
리튬이온 이차전지의 고성능화는 핵심 요소인 전극활물질의 개발 및 물성 향상과 밀접한 연관을 갖고 있으며, 특히 리튬이온 이차전지 전극활물질의 경우 단순한 물질 및 공정 기술 개발을 지양하는 혁신적인 아이디어와 첨단 나노기술의 적절한 융합이 필요하다. 즉, 리튬이온 전지가 큰 용량과 우수한 사이클 안정성을 갖기 위해서는 사용되는 음극 및 양극활물질이 리튬과 반응하기에 적절한 결정 구조를 갖고 전기적 성질이 뛰어나야 한다. 또한 활물질과 전해질 간의 부차 반응(side-reaction)이 없고 충ㆍ방전시 발생하는 활물질 격자의 부피 변화가 작아야 한다.High performance of lithium-ion secondary batteries is closely related to the development of electrode active materials and improvement of physical properties, which are key factors.In particular, in the case of lithium ion secondary battery electrode active materials, innovative ideas and advanced nanotechnology are appropriate to avoid development of simple materials and process technologies. Fusion is necessary. That is, in order for a lithium ion battery to have a large capacity and excellent cycle stability, an anode and a cathode active material to be used must have an appropriate crystal structure and excellent electrical properties to react with lithium. In addition, there should be no side-reaction between the active material and the electrolyte, and the volume change of the active material lattice generated during charging and discharging should be small.
특히 음극활물질의 경우 지금까지도 탄소계 물질의 리튬이온의 삽입/탈리 반응을 기반으로 한 음극활물질이 리튬이온 이차전지 기술의 음극 소재 분야에 있어 핵심을 이루며 아직까지 상용화되고 있는 제품에는 이의 활용이 이루어지고 있으나, 상기 탄소계 음극활물질의 경우 기본적으로 적은 이론 용량(372 mAh/g)과 함께 상용화된 용량은 이보다도 작은 것으로 알려져 있다. 따라서 근래 들어 탄소계 재료를 대체할 신규의 음극활물질에 관한 연구 및 나노구조를 갖는 음극활물질의 성능 향상을 위한 연구들이 활발히 진행되고 있으며, 많은 연구 사례들이 보고되고 있다. 대표적으로 리튬과 합금을 형성하는 Si, Ge, Sn 등을 이용한 반응(alloying reaction)이나 기존의 삽입/탈리 과정이 아닌 금속/금속 산화물 사이의 전환반응(conversion reaction)을 통해 용량을 발현하는 CuO, CoO, Fe2O3, NiO, MnO2 등과 같은 전이금속 산화물에 대한 연구들이 주목받고 있다 [W. J. Weydanz et al., J. Power Sources 237 (1999) 81; P. Poizot et al., Nature 407 (2000) 496].In particular, in the case of the negative electrode active material, the negative electrode active material based on the insertion / desorption reaction of the lithium ion of the carbon-based material is the core in the negative electrode material field of the lithium ion secondary battery technology. However, in the case of the carbon-based negative electrode active material, it is known that the capacity commercialized with a small theoretical capacity (372 mAh / g) is basically smaller than this. Therefore, in recent years, studies on new anode active materials to replace carbon-based materials and researches for improving performance of anode active materials having nanostructures have been actively conducted, and many research cases have been reported. Representatively CuO, which expresses its capacity through a reaction (alloying reaction) using Si, Ge, Sn, etc., which forms an alloy with lithium, or a conversion reaction between metal / metal oxides, rather than a conventional insertion / desorption process, Attention has been paid to transition metal oxides such as CoO, Fe 2 O 3 , NiO, MnO 2, etc. [WJ Weydanz et al., J. Power Sources 237 (1999) 81; P. Poizot et al., Nature 407 (2000) 496].
하지만, 이러한 음극활물질들의 경우, 충ㆍ방전시 이루어지는 수백 퍼센트의 부피 변화, 입자간의 응집, 낮은 전기전도도 등의 해결해야할 문제들이 여전히 남아 있는 실정이다. However, in the case of such negative electrode active materials, there are still problems to be solved, such as hundreds of percent change in volume during charging and discharging, aggregation between particles, and low electrical conductivity.
따라서 상기의 문제들을 해결하려는 많은 연구들이 이루어지고 있는 바, 높은 용량을 지니면서도 리튬이온과의 충ㆍ방전간 부피 변화가 적고 향상된 전기전도도를 부여할 수 있는 음극활물질의 제조가 더욱더 요구된다. 이러한 음극활물질은 종래의 마이크로 크기의 벌크한 물질이 아닌 나노구조를 갖는 물질 제조를 통해 이루어질 수 있으며, 이는 나노구조가 갖는 가장 큰 특징 중의 하나인 높은 비표면적으로 인하여, 리튬과 반응할 수 있는 반응 사이트가 많아지고, 리튬이온의 확산 이동 거리가 짧아질 수 있는 장점 등을 바탕으로 향상된 음극활물질로서의 특성을 보일 수 있기 때문이다. 특히, 근래에는 나노구조체를 이용한 음극활물질의 단순한 적용뿐 아니라, 나노구조체들의 복합화를 통한 나노복합체를 제조함으로써 나노구조체 각각의 장점을 활용하여 리튬이온 이차전지의 고성능화를 이루려는 시도들이 보고되고 있다.Therefore, many studies have been made to solve the above problems, and there is a need for the production of a negative electrode active material having a high capacity but having a small change in volume between charge and discharge with lithium ions and which can give improved electrical conductivity. Such a negative electrode active material may be made by preparing a material having a nanostructure rather than a conventional micro-sized bulk material, which may react with lithium due to the high specific surface area, which is one of the biggest features of the nanostructure. This is because it can exhibit the characteristics as an improved negative electrode active material based on the advantage that the number of sites, the diffusion movement distance of lithium ions can be shortened. In particular, in recent years, attempts have been made to achieve high performance of lithium-ion secondary batteries using the advantages of each nanostructure by preparing nanocomposites through complexing of nanostructures, as well as simple application of a negative electrode active material using nanostructures.
상술한 바와 같이, 리튬이온 이차전지의 고성능화를 위한 음극활물질의 제조는 고용량의 특성을 구현할 수 있는 재료의 나노구조화와 또는 나노복합화를 통한 전기전도도 향상, 리튬과의 반응간 작은 부피 변화, 입자간 응집 억제 등을 해결할 수 있는 방향으로 진행되어야 하는 바, 다양한 조성들의 나노구조화, 복합화와 더불어 여러 형태의 나노구조체들을 간단한 공정으로 제조하는 것이 필요하다. 특히, 리튬과의 합금 반응을 통해 고용량의 특성을 구현하는 Sn, Ge, Si과 같은 원소들의 나노구조화를 통한 음극활물질 제조는 리튬이온 이차전지의 고성능화를 이룰 수 있는 음극활물질 재료로서 중요하게 고려될 수 있다. 하지만, 상기 언급한 것처럼, 큰 부피 변화에 따른 급격한 용량 감소, 낮은 전기전도도 등의 문제 해결을 같이 고려해야 하는 바, 상기 리튬과의 합금 반응을 갖는 나노구조체의 다른 나노재료들과의 복합화 또한 함께 고려될 필요가 있다.As described above, the preparation of the negative electrode active material for the high performance of the lithium ion secondary battery is to improve the electrical conductivity through nano-structured or nano-composite material capable of realizing high capacity characteristics, small volume change between reaction with lithium, interparticle In order to solve the aggregation inhibition, etc., it is necessary to manufacture nanostructures of various compositions, as well as to manufacture various forms of nanostructures in a simple process. In particular, the preparation of a negative electrode active material through nanostructure of elements such as Sn, Ge, and Si, which realizes high capacity characteristics through an alloy reaction with lithium, is considered to be important as a negative electrode active material material capable of achieving high performance of a lithium ion secondary battery. Can be. However, as mentioned above, the problem of rapid capacity reduction due to large volume change, low electrical conductivity, and the like should be considered together, and the complexion with other nanomaterials of the nanostructure having the alloy reaction with lithium is also considered. Need to be.
또한, 나노구조의 특성상 제조된 형상에 따라 다양한 특성을 갖기 때문에 합성 진행간 나노구조의 형상을 용이하게 조절할 수 있는 제조 방법 또한 요구된다.In addition, since the nanostructures have a variety of properties depending on the shape produced, there is also a need for a manufacturing method that can easily control the shape of the nanostructures during synthesis.
이에 본 발명자들은 박테리아 템플릿을 매개체로 적용하고 열화학적 환원을 통해, 높은 용량을 갖는 주석 원소 기반의 나노구조체들과 향상된 전기전도도들 제공할 수 있는 비정질 카본으로 이루어진 나노복합체로 구성된 음극활물질을 개발하였다.The present inventors have developed a negative electrode active material consisting of nanocomposites composed of high carbon element-based nanostructures and amorphous carbons that can provide enhanced electrical conductivity through application of bacterial templates as a medium and through thermochemical reduction. .
또한, 본 발명은 상기 나노복합체를 제조하는데 있어서 그 제조 과정이 단순할 뿐만 아니라 대량생산이 용이한 박테리아를 매개체로 하고, 박테리아/주석 산화물로 이루어진 복합체의 수소 분위기에서 간단한 열화학적 환원을 통해 튜브 형상을 갖는 다상의 주석 원소로 이루어진 나노구조체와 비정질 카본으로 구성된 나노복합체의 제조방법을 제공하는 데 그 목적이 있다.In addition, the present invention is not only a simple manufacturing process in the production of the nanocomposite, but also easy to mass production of bacteria as a medium, the tube shape through a simple thermochemical reduction in the hydrogen atmosphere of the complex consisting of bacteria / tin oxide It is an object of the present invention to provide a method for producing a nanostructure consisting of a multi-phase tin element having a nanostructure and an amorphous carbon.
또한, 상기 제조된 나노복합체의 용도를 제공하는데 또 다른 목적이 있다.In addition, there is another object to provide a use of the prepared nanocomposites.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
본 발명의 일 양태에 따르면, 본 발명은According to one aspect of the present invention,
1) 표면에 음이온을 띠는 박테리아를 배양 후 박테리아의 농도를 탈이온수로 조절하여 박테리아 분산 용액을 제조하는 단계;1) preparing a bacterial dispersion solution by culturing bacteria having anion on the surface and adjusting the concentration of bacteria with deionized water;
2) 전이금속 전구체를 탈이온수에 용해시킨 주석 전구체 용액을 상기 1)의 용액에 첨가하면서 20 ~ 30 ℃에서 0.5 ~ 2 시간 동안 스터링(stirring)하여 바실러스 박테리아와 전이금속 전구체가 균일하게 분산되도록 하는 단계;2) Stirring at 20 to 30 ° C. for 0.5 to 2 hours while adding a tin precursor solution in which the transition metal precursor is dissolved in deionized water to the solution of 1) to uniformly disperse the Bacillus bacteria and the transition metal precursor. step;
3) 하이드라진(N2H4ㆍH2O)을 탈이온수에 용해시킨 용액을 상기 2)의 용액에 첨가하면서 환류시켜 상기 박테리아 표면에 전이금속 산화물이 고르게 부착되도록 유도하는 단계; 3) refluxing while adding a solution of hydrazine (N 2 H 4 .H 2 O) in deionized water to the solution of 2) to induce transition metal oxide to adhere evenly to the bacterial surface;
4) 상기 3)의 환류 용액을 원심분리 후 세척하여 석출물을 수득하는 단계;4) centrifuging and washing the reflux solution of 3) to obtain a precipitate;
5) 상기 석출물을 진공 건조하여 박테리아/전이금속 산화물 복합체 분말을 수득하는 단계; 및5) vacuum drying the precipitate to obtain a bacterial / transition metal oxide composite powder; And
6) 상기 수득된 복합체 분말을 열화학적 환원 시키는 단계;6) thermochemically reducing the obtained composite powder;
를 포함하는 전이금속 원소 기반의 나노구조체/비정질 카본 나노복합체의 제조방법을 제공한다.It provides a method for producing a nanostructure / amorphous carbon nanocomposite based transition metal element comprising a.
본 발명의 다른 양태에 따르면, 본 발명은 상기 나노복합체의 열화학적 환원으로 인해 박테리아 표면에 부착된 전이금속 원소 기반의 다상의 나노구조체 및 박테리아로부터 유도된 비정질 카본으로 이루어진 튜브 형상의 나노복합체를 제공한다.According to another aspect of the present invention, the present invention provides a tube-shaped nanocomposite composed of a transition-phase element-based multi-phase nanostructures and amorphous carbon derived from bacteria attached to the bacterial surface due to the thermochemical reduction of the nanocomposites. do.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 나노복합체를 포함하는 이차 전지용 음극활물질을 제공한다.According to another aspect of the invention, the present invention provides a negative electrode active material for a secondary battery comprising the nanocomposite.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 음극활물질을 포함하는 음극을 채용한 이차 전지를 제공한다.According to another aspect of the invention, the present invention provides a secondary battery employing a negative electrode including the negative electrode active material.
본원 발명의 특징 및 이점을 요약하면 다음과 같다.The features and advantages of the present invention are summarized as follows.
(i) 본 발명에서 제시된 바실러스 박테리아 표면에 주석 산화물을 직접적으로 결합시켜 획득된 박테리아/주석 산화물의 분말을 수소 분위기 하에서 열화학적 환원시키는 것에 의해 0 차원 형상을 갖는 다상의 주석 산화물들 및 주석 금속과 박테리아로부터 유도된 비정질 카본과의 복합화를 이루는 튜브 형상의 나노복합체를 제작할 수 있다. (i) polyphase tin oxides and tin metals having a 0-dimensional shape by thermochemically reducing the powder of bacteria / tin oxides obtained by directly bonding tin oxides to the Bacillus bacterial surface of the present invention; Tube-shaped nanocomposites can be prepared that are complexed with amorphous carbon derived from bacteria.
(ii) 본 발명은 박테리아를 템플릿으로 적용하여 저온에서 손쉽게 획득 가능한 박테리아/주석 산화물 복합체를 바탕으로, 간단한 열화학적 환원을 통해 손쉽게 얻을 수 있고, 대량생산이 용이하다. (ii) The present invention can be easily obtained through simple thermochemical reduction and easy to mass production based on the bacteria / tin oxide complex which can be easily obtained at low temperature by applying bacteria as a template.
(iii) 본 발명의 제조 방법은 제조 공정이 단순하기 때문에 경제적이고 시간 절약 효과의 장점을 갖는다. (iii) The manufacturing method of the present invention has the advantage of economical and time-saving effect because the manufacturing process is simple.
(iv) 본 발명의 제조 방법은 한 번의 제조 공정으로 다상의 저차원 나노구조체와 비정질 카본으로 이루어진 튜브 형상의 나노복합체를 얻을 수 있는 강점이 있다. (iv) The production method of the present invention has the advantage of obtaining a tubular nanocomposite composed of a multiphase low-dimensional nanostructure and amorphous carbon in one manufacturing process.
(v) 전기화학적인 특성 측면에선 주석 금속 및 다상의 주석 산화물들이 갖는 고용량의 특성과 박테리아로부터 유도된 비정질 카본의 고 전기전도성 부여 및 튜브 형상의 구조로 인한 리튬과의 합금반응 시 큰 부피 변화를 완충 작용할 수 있는 장점에 따른 고출력의 특성을 지닌다. (v) In terms of electrochemical properties, high volume characteristics of tin metals and polyphase tin oxides, high electroconductivity of amorphous carbon derived from bacteria, and large volume change in alloy reaction with lithium due to the tubular structure It has the characteristics of high power according to the advantage that can act as a buffer.
(vi) 본 발명에서 제시한 주석 원소를 기반으로 한 다상의 나노구조체들 및 비정질 카본으로 이루어진 나노복합체는 제조 공정이 단순하고 경제적이며, 중간 단계인 박테리아/주석 산화물의 대량 획득이 용이하기 때문에 대량생산이 가능하다는 장점을 바탕으로 리튬 이차전지, 전기 이중층 슈퍼 커패시터, 유사 슈퍼 커패시터 등 산업 전반에 걸쳐 다양한 응용이 가능하다.(vi) The nanocomposites composed of multiphase nanostructures and amorphous carbon based on the tin element presented in the present invention have a simple and economical manufacturing process and are easy to obtain a large amount of intermediate bacteria / tin oxides. With the advantage of being able to produce, various applications are possible across industries such as lithium secondary batteries, electric double layer super capacitors, and similar super capacitors.
도 1은 본 발명에서 제시한 박테리아 템플릿 및 주석 전구체의 사용을 통해 제조되는 비정질 카본/주석 원소 기반 다상의 나노구조체들로 이루어진 튜브 형상의 나노복합체 제조 과정을 나타낸 모식도이다.Figure 1 is a schematic diagram showing a tube-shaped nanocomposite manufacturing process consisting of amorphous carbon / tin element-based multi-phase nanostructures prepared through the use of the bacterial template and tin precursor presented in the present invention.
도 2는 본 발명에서 중간 단계의 매개체로 제조되는 박테리아/주석 산화물 (SnO2)로 이루어진 복합체의 전계방출 주사 전자현미경(Field Emission Scanning Electron Microscopy, FESEM) 사진이다[(a) 저 배율 사진, (b) 고 배율 사진]2 is a field emission scanning electron microscope (FESEM) photograph of a complex composed of bacteria / tin oxide (SnO 2) prepared as an intermediate medium in the present invention [(a) low magnification photograph, (b High magnification pictures]
도 3은 본 발명에서 중간 단계의 매개체로 제조되는 박테리아/주석 산화물 (SnO2)로 이루어진 복합체의 투과 전자현미경(Transmission Electron Microscopy, TEM)사진이다[(a) 투과 전자현미경 사진, (b) 고 해상도 투과 전자현미경 사진].Figure 3 is a transmission electron microscopy (TEM) picture of the composite consisting of bacteria / tin oxide (SnO2) prepared by the intermediate medium in the present invention ((a) transmission electron micrograph, (b) high resolution Transmission electron micrograph].
도 4는 본 발명에서 중간 단계의 매개체로 제조되는 박테리아/주석 산화물 (SnO2)로 이루어진 복합체의 X-선 분말 회절 패턴(X-ray Diffraction patterns, XRD)이다.Figure 4 is an X-ray Diffraction patterns (XRD) of the composite consisting of bacteria / tin oxide (SnO2) prepared in the intermediate medium in the present invention.
도 5는 본 발명에서 중간 단계의 매개체로 제조되는 박테리아/주석 산화물 (SnO2)로 이루어진 복합체의 열 중량분석(Thermogravimetry Analyzer, TGA) 결과이다.FIG. 5 is a result of a thermogravimetry analyzer (TGA) of a complex composed of bacteria / tin oxide (SnO 2) prepared as an intermediate medium in the present invention.
도 6은 본 발명의 비정질 카본/주석 원소 기반 다상의 나노구조체로 이루어진 튜브 형상의 나노복합체의 형상을 나타내는 전계방출 주사 전자 현미경 사진들이다.Figure 6 is a field emission scanning electron micrograph showing the shape of the tube-shaped nanocomposite consisting of the amorphous carbon / tin element-based multiphase nanostructures of the present invention.
도 7은 본 발명의 비정질 카본/주석 원소 기반 다상의 나노구조체로 이루어진 튜브 형상의 나노복합체의 형상을 나타내는 투과 전자현미경 사진 및, 고 해상도 투과 전자현미경 사진, SAED (selected area electron diffraction) 패턴 사진이다.7 is a transmission electron micrograph showing a shape of a tube-shaped nanocomposite composed of the amorphous carbon / tin element-based multiphase nanostructure of the present invention, a high resolution transmission electron micrograph, and a selected area electron diffraction (SAED) pattern photograph. .
도 8은 본 발명의 비정질 카본/주석 원소 기반 다상의 나노구조체로 이루어진 튜브 형상의 나노복합체의 X-선 분말 회절 패턴이다.8 is an X-ray powder diffraction pattern of a tube-shaped nanocomposite composed of the amorphous carbon / tin element based multiphase nanostructures of the present invention.
도 9는 본 발명의 실시예 2 ~ 4에 따른 제조된 나노복합체 형상을 나타내는 주사 전자현미경 사진들이다[(a) 실시예 2, (b) 실시예 3, (c) 실시예 4].9 is a scanning electron micrograph showing the shape of the nanocomposite prepared according to Examples 2 to 4 of the present invention ((a) Example 2, (b) Example 3, (c) Example 4).
도 10은 본 발명의 실시예 5에 따라 제조된 나노복합체의 형상을 나타내는 전계방출 주사 전자현미경 사진이다.10 is a field emission scanning electron micrograph showing the shape of the nanocomposite prepared according to Example 5 of the present invention.
도 11은 본 발명의 실시예 6 ~ 9에 따라 제조된 나노복합체들의 X-선 분말 회절 패턴들이다.11 are X-ray powder diffraction patterns of nanocomposites prepared according to Examples 6 to 9 of the present invention.
도 12는 본 발명의 실시예 8에 따라 제조된 나노복합체 형상의 전계방출 주사 전자현미경 및 투과 전자현미경, 고 해상도 투과 전자현미경 사진이다[(a) 전계방출 주사 전자현미경 사진, (b) 투과 전자현미경 사진, (c) 고 해상도 투과 전자현미경 사진].12 is a field emission scanning electron microscope, a transmission electron microscope, and a high resolution transmission electron micrograph of a nanocomposite shape prepared according to Example 8 of the present invention ((a) field emission scanning electron micrograph, (b) transmission electron Micrograph, (c) high resolution transmission electron micrograph].
도 13은 본 발명의 실시예 10에 따라 제조된 나노복합체의 형상을 나타내는 주사 전자현미경 사진이다.13 is a scanning electron micrograph showing the shape of the nanocomposite prepared according to Example 10 of the present invention.
도 14는 본 발명에서 제조된 비정질 카본/주석 원소 기반 다상의 나노구조체로 이루어진 튜브 형상의 나노복합체 및 실시예 8과 비교예 1의 분말들을 이용해 제작된 음극활물질들의 다양한 전류밀도 변화에서 사이클에 따라 측정된 용량 변화 곡선을 비교한 결과이다.14 is a cycle-shaped nanocomposite composed of amorphous carbon / tin element-based multi-phase nanostructures prepared in the present invention and various current density changes of the negative electrode active materials prepared using the powders of Example 8 and Comparative Example 1 This is a result of comparing the measured dose change curves.
본 발명의 일 양태에 따르면, 본 발명은According to one aspect of the present invention,
1) 표면에 음이온을 띠는 박테리아를 배양 후 박테리아의 농도를 탈이온수로 조절하여 박테리아 분산 용액을 제조하는 단계;1) preparing a bacterial dispersion solution by culturing bacteria having anion on the surface and adjusting the concentration of bacteria with deionized water;
2) 전이금속 전구체를 탈이온수에 용해시킨 주석 전구체 용액을 상기 1)의 용액에 첨가하면서 20 ~ 30 ℃에서 0.5 ~ 2 시간 동안 스터링(stirring)하여 바실러스 박테리아와 전이금속 전구체가 균일하게 분산되도록 하는 단계;2) Stirring at 20 to 30 ° C. for 0.5 to 2 hours while adding a tin precursor solution in which the transition metal precursor is dissolved in deionized water to the solution of 1) to uniformly disperse the Bacillus bacteria and the transition metal precursor. step;
3) 하이드라진(N2H4ㆍH2O)을 탈이온수에 용해시킨 용액을 상기 2)의 용액에 첨가하면서 환류시켜 상기 박테리아 표면에 전이금속 산화물이 고르게 부착되도록 유도하는 단계; 3) refluxing while adding a solution of hydrazine (N 2 H 4 .H 2 O) in deionized water to the solution of 2) to induce transition metal oxide to adhere evenly to the bacterial surface;
4) 상기 3)의 환류 용액을 원심분리 후 세척하여 석출물을 수득하는 단계;4) centrifuging and washing the reflux solution of 3) to obtain a precipitate;
5) 상기 석출물을 진공 건조하여 박테리아/전이금속 산화물 복합체 분말을 수득하는 단계; 및5) vacuum drying the precipitate to obtain a bacterial / transition metal oxide composite powder; And
6) 상기 수득된 복합체 분말을 열화학적 환원 시키는 단계;6) thermochemically reducing the obtained composite powder;
를 포함하는 전이금속 원소 기반의 나노구조체/비정질 카본 나노복합체의 제조방법을 제공한다.It provides a method for producing a nanostructure / amorphous carbon nanocomposite based transition metal element comprising a.
본 발명의 다른 양태에 따르면, 본 발명은 상기 나노복합체의 열화학적 환원으로 인해 박테리아 표면에 부착된 전이금속 원소 기반의 다상의 나노구조체 및 박테리아로부터 유도된 비정질 카본으로 이루어진 튜브 형상의 나노복합체를 제공한다.According to another aspect of the present invention, the present invention provides a tube-shaped nanocomposite composed of a transition-phase element-based multi-phase nanostructures and amorphous carbon derived from bacteria attached to the bacterial surface due to the thermochemical reduction of the nanocomposites. do.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 나노복합체를 포함하는 이차 전지용 음극활물질을 제공한다.According to another aspect of the invention, the present invention provides a negative electrode active material for a secondary battery comprising the nanocomposite.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 음극활물질을 포함하는 음극을 채용한 이차 전지를 제공한다.According to another aspect of the invention, the present invention provides a secondary battery employing a negative electrode including the negative electrode active material.
이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
본 발명의 일 양태에 따르면, 본 발명은According to one aspect of the present invention,
1) 표면에 음이온을 띠는 박테리아를 배양 후 박테리아의 농도를 탈이온수로 조절하여 박테리아 분산 용액을 제조하는 단계;1) preparing a bacterial dispersion solution by culturing bacteria having anion on the surface and adjusting the concentration of bacteria with deionized water;
2) 전이금속 전구체를 탈이온수에 용해시킨 주석 전구체 용액을 상기 1)의 용액에 첨가하면서 20 ~ 30 ℃에서 0.5 ~ 2 시간 동안 스터링(stirring)하여 바실러스 박테리아와 전이금속 전구체가 균일하게 분산되도록 하는 단계;2) Stirring at 20 to 30 ° C. for 0.5 to 2 hours while adding a tin precursor solution in which the transition metal precursor is dissolved in deionized water to the solution of 1) to uniformly disperse the Bacillus bacteria and the transition metal precursor. step;
3) 하이드라진(N2H4ㆍH2O)를 탈이온수에 용해시킨 용액을 상기 2)의 용액에 첨가하면서 환류시켜 상기 박테리아 표면에 전이금속 산화물이 고르게 부착되도록 유도하는 단계; 3) refluxing while adding a solution of hydrazine (N 2 H 4 .H 2 O) in deionized water to the solution of 2) to induce transition metal oxide to adhere evenly to the bacterial surface;
4) 상기 3)의 환류 용액을 원심분리 후 세척하여 석출물을 수득하는 단계;4) centrifuging and washing the reflux solution of 3) to obtain a precipitate;
5) 상기 석출물을 진공 건조하여 박테리아/전이금속 산화물 복합체 분말을 수득하는 단계; 및5) vacuum drying the precipitate to obtain a bacterial / transition metal oxide composite powder; And
6) 상기 수득된 복합체 분말을 열화학적 환원 시키는 단계;6) thermochemically reducing the obtained composite powder;
를 포함하는 전이금속 기반의 나노구조체/비정질 카본 나노복합체의 제조방법을 제공한다. It provides a method for producing a transition metal-based nanostructure / amorphous carbon nanocomposite comprising a.
본 발명에서 사용되는 전이금속은 특별히 제한은 없으며, 주기율표 상의 4주기 원소인 Cu, Co, Fe, Ni, Mn, Ti와 주기율표 상의 5주기 원소인 Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te 등을 사용할 수 있다. 보다 바람직하게는 5주기 원소이며, 가장 바람직하게는 Sn이다.The transition metal used in the present invention is not particularly limited, and Cu, Co, Fe, Ni, Mn, Ti, which are the four periodic elements on the periodic table, and Y, Zr, Nb, Mo, Tc, Ru, and Rh, which are the five periodic elements on the periodic table. , Pd, Ag, Cd, In, Sn, Sb, Te and the like can be used. More preferably, it is a 5 period element, Most preferably, it is Sn.
본 발명은 고 용량의 특성을 구현할 수 있는 주석 원소 기반의 산화물 나노구조체를 바실러스 박테리아 표면에 결합시키고, 획득된 박테리아/주석 산화물 복합체를 수소 분위기 하에서 열화학적 환원시켜, 고 용량의 특성과 함께 박테리아로부터 유도된 비정질 카본에 의한 고 전기전도도 부여로 고 출력의 특성 및 튜브 형상을 통한 리튬과의 반응 시 부피 변화를 완화할 수 있는 나노복합체의 제조방법에 관한 것이다.The present invention binds tin element-based oxide nanostructures capable of realizing high capacity properties to the Bacillus bacterial surface and thermochemically reduces the obtained bacteria / tin oxide complexes under hydrogen atmosphere, thereby removing from bacteria with high capacity properties. The present invention relates to a method of manufacturing a nanocomposite that can mitigate volume change during reaction with lithium through a tube shape by providing high electrical conductivity by induced amorphous carbon.
구체적으로, 본 발명은 중간 단계인 박테리아/주석 산화물 복합체를 수득하는 단계; 및 수득된 복합체의 열화학적 환원을 통한 최종 나노복합체를 획득하는 단계로 나눌 수 있다. 상기 중간 단계로 획득되는 박테리아/주석 산화물 복합체는 합성 공정이 단순하고, 저온에서 이루어지며, 템플릿으로 사용되는 박테리아의 증대에 따라 결합되는 주석 산화물 나노구조체의 수득율을 증대 시킬 수 있는 이점이 있으며, 결과적으로 최종 획득되는 나노복합체의 대량생산의 가능성을 제공한다. 이와 같은 박테리아/주석 산화물 복합체의 합성 공정은, 본 발명자들이 이전에 특허 출원한 바실러스 박테리아 표면에 전이금속 산화물을 결합시키는 것에 착안하여 [국내특허출원, 출원번호: 10-2009-0011628] 유사하게 이루어 질 수 있다.Specifically, the present invention provides a method for preparing a bacterial / tin oxide complex which is an intermediate step; And obtaining a final nanocomposite through thermochemical reduction of the obtained composite. The bacterium / tin oxide composite obtained in the intermediate step has the advantage of increasing the yield of tin oxide nanostructures that are combined with the simple synthesis, low temperature, and increase of bacteria used as a template. This gives the possibility of mass production of the nanocomposites finally obtained. Such a process for synthesizing a bacterial / tin oxide complex is similarly made by the inventors, focusing on incorporating a transition metal oxide on the surface of the Bacillus bacterium, which has been previously patented [Korean Patent Application, Application No. 10-2009-0011628]. Can lose.
상세히 설명하면, 바실러스 박테리아를 배양 후 박테리아의 농도를 탈이온수로 조절하여 박테리아 분산 용액을 제조하는 1 단계;In detail, step 1 of culturing Bacillus bacteria to control the concentration of bacteria with deionized water to prepare a bacterial dispersion solution;
주석 전구체를 탈이온수에 용해시킨 주석 전구체 용액을 상기 1 단계의 용액에 첨가하면서 20 ~ 30 ℃에서 0.5 ~ 2 시간 동안 스터링(stirring)하여 박테리아와 주석 전구체가 균일하게 분산되도록 하는 2 단계;Adding a tin precursor solution in which tin precursor is dissolved in deionized water to the solution of step 1 and stiring at 20 to 30 ° C. for 0.5 to 2 hours to uniformly disperse bacteria and tin precursors;
하이드라진(N2H4ㆍH2O)를 탈이온수에 용해시킨 용액을 상기 2 단계의 용액에 첨가하면서 환류시켜 박테리아 표면에 주석 산화물이 고르게 부착되도록 유도하는 3 단계; Adding a solution in which hydrazine (N 2 H 4 .H 2 O) is dissolved in deionized water to reflux while adding to the solution in step 2 to induce tin oxide to adhere evenly to the bacterial surface;
상기 환류 용액을 원심분리 후 세척하여 석출물을 수득하는 4 단계;Centrifuging and washing the reflux solution to obtain a precipitate;
상기 석출물을 진공 건조하여 박테리아/주석 산화물 복합체를 제조하는 5 단계; 및Vacuum drying the precipitate to prepare a bacterial / tin oxide complex; And
상기 수득된 복합체 분말을 400℃의 수소 분위기 하에서 12 시간 동안 열화학적 환원 시키는 6 단계;6 steps of thermally reducing the obtained composite powder in a hydrogen atmosphere at 400 ° C. for 12 hours;
를 포함하여 이루어진 주석 원소 기반의 다상의 나노구조체/비정질 카본으로 이루어진 나노복합체의 제조방법에 관한 것이다.It relates to a method for producing a nanocomposite consisting of a multi-phase nanostructure / amorphous carbon based on a tin element comprising a.
본 발명에서 사용되는 주석 전구체는 산화가 수가 2가 및 4가에 따른 특별한 제한은 없으며, 통상적으로 사용되는 질산염, 염화물, 초산염 등을 들 수 있다. The tin precursor used in the present invention is not particularly limited according to the number of divalent and tetravalent oxidized numbers, and examples thereof include nitrate, chloride, acetate, and the like.
본 발명에서 제시한 중간 단계인 박테리아/주석 산화물 복합체의 합성은 용액 내에서 정전기적 인력을 통해 박테리아 표면에 부착된 양이온의 주석 이온을 환원제로 쓰인 하이드라진드(N2H4ㆍH2O)를 사용하여 환원시키고 동시에 산화 과정이 이루어지는 액상 합성법을 기반으로 얻을 수 있다. 일반적으로, 액상 합성법은 결정성이 우수하지는 않지만 합성방법에 따라 저온에서 결정질 물질을 얻을 수 있으며, 균일하고 작은 크기의 입자를 얻을 수 있다는 장점이 있다.Synthesis of the bacterial / tin oxide complex, an intermediate step presented in the present invention, is carried out by hydrazine (N 2 H 4 ㆍ H 2 O) using tin ions of cations attached to the bacterial surface as a reducing agent through electrostatic attraction in solution. It can be obtained on the basis of a liquid phase synthesis method, which is used to reduce and simultaneously oxidize. In general, the liquid phase synthesis method is not excellent in crystallinity, but the crystalline material can be obtained at a low temperature according to the synthesis method, and there is an advantage that particles of uniform and small size can be obtained.
뿐만 아니라, 본 발명에서 제시된 박테리아/주석 산화물 복합체의 합성 공정은 그 과정이 단순하고, 상온(20 ~ 30 ℃)에서 결정성을 지닌 균일한 크기의 주석 산화물 나노구조체들로 이루어진 나노 분말을 얻을 수 있으며, 대량생산이 가능하다는 이점이 있다.In addition, the synthesis process of the bacterial / tin oxide composite presented in the present invention is a simple process, it is possible to obtain a nano powder consisting of uniformly sized tin oxide nanostructures with crystallinity at room temperature (20 ~ 30 ℃) It has the advantage that mass production is possible.
본 발명에 따른 주석 원소 기반의 다상의 나노구조체 및 비정질 카본으로 이루어진 나노복합체를 제조하기 위하여 사용된 일련의 합성 방식은 도 1에 잘 나타나 있고, 도 1에 의거한 구제적인 설명은 다음과 같다.A series of synthesis methods used to prepare the nano-composite composed of the tin phase-based polyphase nanostructure and amorphous carbon according to the present invention is well illustrated in FIG. 1, and a detailed description based on FIG. 1 is as follows.
먼저, 템플릿으로 사용되는 바실러스 박테리아를 준비하기 위해 냉동 보관되어있는 바실러스 박테리아의 보존액으로부터 일부 채취하여 10 ~ 12 시간의 초기 배양과 액체 배지가 들어있는 삼각 플라스크에서 계대 배양을 수행한다. 이 후, 원심분리 및 세척 과정을 진행하고 탈이온수를 첨가하면서 박테리아가 분산된 희석용액의 적정 농도를 맞추고 상온에서 스터링을 진행한다. 상기 원심분리를 통한 박테리아를 수집하는 것에서, 계대 배양 후 5 시간 미만의 상태에서 원심분리를 수행하면 수집되는 박테리아 양이 적고 이로 인해 중간 단계로 획득되는 박테리아/주석 산화물 복합체의 양이 적게 되므로, 상기 원심분리는 5 시간 이상의 계대 배양 후 수행하는 것이 바람직하다. 이는 박테리아 성장 곡선에서 성장기의 끝부분 부근에 도달했을 때라고 할 수 있다.First, in order to prepare Bacillus bacteria to be used as a template, a portion of the preservation of the frozen Bacillus bacteria is collected and subjected to subculture in an Erlenmeyer flask containing 10-12 hours of initial culture and liquid medium. Thereafter, centrifugation and washing are carried out, while deionized water is added to adjust the proper concentration of the dilute solution in which bacteria are dispersed, and sterling is performed at room temperature. In collecting the bacteria through the centrifugation, if the centrifugation is performed in a state of less than 5 hours after subculture, the amount of bacteria to be collected is small, and thus the amount of bacteria / tin oxide complex obtained in an intermediate step is reduced. Centrifugation is preferably performed after passage for at least 5 hours. This is when the bacterial growth curve reaches the end of the growth phase.
또한, 상기 박테리아 템플릿 용액의 농도 조절은 자외선 분광계(UV spectrometer)를 이용한 600 ㎚ 파장에서 측정된 광학 흡광도(Optical Density, O.D.)를 통해 수행 될 수 있으며, 본 발명에서 적용된 박테리아 템플릿의 농도는 600 ㎚ 파장에서 광학 흡광도가 1.0 ~ 2.0의 범위의 것을 사용하는 것이 바람직하다.In addition, the concentration control of the bacterial template solution may be performed through the optical absorbance (Optical Density, OD) measured at 600 nm wavelength using an UV spectrometer, the concentration of the bacterial template applied in the present invention is 600 nm It is preferable to use the thing of the range whose optical absorbance is 1.0-2.0 in wavelength.
적정 농도 범위로 맞춰진 박테리아 분산용액이 상온에서 스터링되면서 유지되는 동안, 주석 전구체를 탈이온수에 넣어 10 ~ 100 mM 범위의 염화 주석 전구체를 제조하고 스터링 과정을 진행하면서 주석 전구체가 충분히 분산되도록 용해시킨다. 이 후, 용해 과정을 마친 주석 전구체 용액을 상온에서 스터링되고 있는 박테리아 분산용액에 스터링이 유지되는 상태에서 천천히 첨가한다. 이때, 주석 전구체 용액을 급격히 첨가하게 되면, 분산되어 있는 박테리아의 표면에 양이온의 전이금속 전구체가 고른 분포로 부착이 되지 않는 경우가 발생할 수 있을 뿐만 아니라, 이 후 하이드라진의 환원제에 의해 환원, 수용액 내에서 자발 산화되는 과정에서 부분적인 환류로 인해 박테리아 간의 응집 및 제대로 된 단일 막대 모양의 형상을 얻기 어려울 수 있으므로, 가급적 뷰렛을 이용해 천천히 첨가하는 것이 바람직하다.While maintaining the bacteria dispersion solution in the proper concentration range while stirring at room temperature, the tin precursor is added to deionized water to prepare a tin chloride precursor in the range of 10 to 100 mM, and dissolve so that the tin precursor is sufficiently dispersed during the stirring process. After that, the tin precursor solution, which has been dissolved, is slowly added to the bacterial dispersion solution that is being stirred at room temperature while the stirring is maintained. At this time, when the tin precursor solution is rapidly added, the transition metal precursor of the cation may not be adhered evenly to the surface of the dispersed bacteria, and thereafter, it may be reduced or reduced in the aqueous solution by the reducing agent of hydrazine. Partial reflux in the course of spontaneous oxidation at may make it difficult to achieve agglomerate and a well-shaped single rod shape between the bacteria, so it is preferable to add slowly using a burette if possible.
그런 다음, 양이온의 주석 전구체와 박테리아 간의 충분한 부착과 고른 분포 및 분산이 이루어질 수 있도록 20 ~ 30 ℃에서 0.5 ~ 2 시간의 충분한 스터링 시간을 유지시킨다.Then, a sufficient sterling time of 0.5 to 2 hours is maintained at 20 to 30 ° C. to allow sufficient adhesion and even distribution and dispersion between the tin precursor of the cation and the bacteria.
상기 박테리아 템플릿과 주석 전구체의 혼합 용액이 20 ~ 30 ℃에서 0.5 ~ 2 시간 스터링되고 있는 동안, 환원제로 작용할 수 있는 하이드라진을 탈이온수에 넣어 10 ~ 1000 mM 범위의 하이드라진 용액을 제조하고 스터링 과정을 진행하면서 충분히 분산되도록 용해시킨다. 이 후, 용해 과정을 마친 하이드라진 용액을 상온에서 스터링되고 있는 상기의 혼합 용액에 스터링이 유지되는 상태에서 천천히 첨가한다. 이때, 역시 상기 주석 전구체 용액을 첨가했을 때처럼 뷰렛을 이용해 분당 10 ml 정도의 양이 첨가되는 속도로 첨가한다.While the mixed solution of the bacterial template and the tin precursor is stirred at 20 to 30 ° C. for 0.5 to 2 hours, hydrazine, which can act as a reducing agent, is added to deionized water to prepare a hydrazine solution in the range of 10 to 1000 mM and the sterling process is performed. Dissolve to ensure sufficient dispersion. Thereafter, the hydrazine solution, which has been dissolved, is slowly added to the mixed solution being stirred at room temperature in the state where the sterling is maintained. At this time, the amount of about 10 ml per minute is added using a burette as in the case of adding the tin precursor solution.
그런 다음, 용액 내에서 하이드라진의 고른 분산으로 박테리아 표면에 부착된 양이온의 주석 전구체가 주석 산화물로 고르게 분포될 수 있도록 충분한 스터링을 유지하는 것이 바람직하다.It is then desirable to maintain sufficient sterling so that evenly dispersing the hydrazine in the solution distributes the tin precursor of the cation attached to the bacterial surface evenly as tin oxide.
환원제인 하이드라진까지 첨가된 상기의 혼합 용액을 20 ℃ ~ 30 ℃에서 계속 스터링을 해주면서 10 ~ 15 시간 동안 환류시키고, 이 후 원심분리를 통해 상등액과 침전물을 분리한 뒤, 상등액을 제거하고 아랫부분의 침전물은 탈이온수와 아세톤(acetone)을 사용하여 세척 과정을 수행한다. 이때, 석출된 침전물은 박테리아 표면에 주석 산화물이 고르게 분포되어 부착되어있는 상태이다. 이 후, 수득된 석출물은 진공 오븐 내에서 건조 과정을 수행하게 된다.The mixed solution added to the reducing agent hydrazine is refluxed for 10 to 15 hours while continuously stirring at 20 ℃ to 30 ℃, after which the supernatant and the precipitate is separated by centrifugation, the supernatant is removed and The precipitate is washed with deionized water and acetone (acetone). At this time, the precipitate is a state in which the tin oxide is evenly distributed and attached to the bacterial surface. Thereafter, the obtained precipitate is subjected to a drying process in a vacuum oven.
본 발명에서 진행된 상기 진공 건조는 6 ~ 8 시간 동안 60 ~ 70 ℃의 온도, 10-2 ~ 10-3 torr의 압력 범위에서 수행되었다.The vacuum drying proceeded in the present invention was carried out at a temperature of 60 ~ 70 ℃, pressure range of 10 -2 to 10 -3 torr for 6 to 8 hours.
상기 진공 건조 후 얻은 박테리아/주석 산화물 복합체 분말의 형상은 지름이 500 ~ 800 ㎚이고, 길이가 1 ~ 2 ㎛인 바실러스 박테리아 표면을 2 ~ 5 ㎚의 주석 산화물 나노구조체들이 고르게 둘러싸고 있으며, 산화물 나노구조체의 입자 크기는 매우 균일하고 미세한 입도 분포를 가진다.The shape of the bacteria / tin oxide composite powder obtained after the vacuum drying is 500 ~ 800 nm in diameter, 1 ~ 2 ㎛ Bacillus bacteria surface of 2 ~ 5 nm evenly surrounded by tin oxide nanostructures, oxide nanostructures Has a very uniform and fine particle size distribution.
본 발명의 중간 단계로써 상기 제조된 박테리아/주석 산화물 복합체의 형상은 전계방출 주사 전자현미경(Field Emission Scanning Electron Microscopy, FESEM) 및 투과 전자현미경(Transmission Electron Microscopy, TEM)사진을 통해 관찰이 가능하다[도 2, 도 3]. 또한, 제조된 박테리아/주석 산화물 복합체의 합성 결과물의 상(phase) 종류와 결정 구조는 X선 회절 패턴(X-ray Diffraction patterns, XRD)을 이용하여 확인할 수 있다[도 4]. 도 4에 의하면, 합성된 박테리아/주석 산화물 복합체 분말은 SnO2(JCPDS card No. 41-1445)와 동일한 X선 회절 패턴을 보인다. 또한, 도 5에 의하면 열 중량 분석(Thermogravimetry Analyzer, TGA)을 통해 합성된 박테리아/주석 산화물 복합체에 결합된 주석 산화물의 정량적 특성을 나타낸다.As an intermediate step of the present invention, the shape of the prepared bacterial / tin oxide complex can be observed through field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). 2, 3]. In addition, the phase type and crystal structure of the synthesis result of the prepared bacterial / tin oxide complex can be confirmed using X-ray diffraction patterns (XRD) [FIG. 4]. According to FIG. 4, the synthesized bacterial / tin oxide composite powder shows the same X-ray diffraction pattern as SnO 2 (JCPDS card No. 41-1445). In addition, Figure 5 shows the quantitative characteristics of the tin oxide bound to the bacterial / tin oxide complex synthesized by thermal gravimetric analysis (TGA).
다음으로, 상기 합성된 박테리아/주석 산화물 복합체는 수소 분위기 하에서 열화학적 환원을 통해 주석 기반의 다상의 나노구조체들과 박테리아로부터 유도된 비정질 카본으로 이루어진 튜브형의 나노복합체를 제조하게 된다. 또한, 상기 진행된 열화학적 환원 공정은 수소 분위기 하에서, 분당 10 ℃의 승온 속도로 400 ℃에 도달한 후 12 시간 동안 유지하는 바, 이때의 기체 분위기, 온도, 시간의 조건을 만족시키지 못하면 원하는 주석 기반 다상의 나노구조체들과 비정질 카본으로 이루어진 튜브 형상의 나노복합체를 얻을 수 없으므로 조건을 따르는 것이 바람직하다.Next, the synthesized bacteria / tin oxide complex is prepared through the thermochemical reduction under a hydrogen atmosphere to prepare a tubular nanocomposite consisting of tin-based multi-phase nanostructures and amorphous carbon derived from bacteria. In addition, the advanced thermochemical reduction process is maintained for 12 hours after reaching 400 ℃ at a temperature rising rate of 10 ℃ per minute under a hydrogen atmosphere, if the conditions of the gas atmosphere, temperature, time does not satisfy the desired tin base Since it is impossible to obtain a tube-shaped nanocomposite composed of polyphase nanostructures and amorphous carbon, it is preferable to comply with the conditions.
상기 열화학적 환원 과정 후 얻은 최종 분말의 형상은 전계방출 주사 전자현미경 및 투과 전자현미경 사진을 통해 관찰이 가능하며, 진공 건조 후 보인 박테리아/주석 산화물 복합체에 비해 지름이 100 ~ 200 ㎚ 줄어든 것을 확인할 수 있다[도 6, 도 7]. 더욱이, 도 7에 의하면 고 해상도 투과 전자현미경 사진을 통해, 열화학적 환원 후 주석 원소 기반의 다상의 나노구조체들이 형성된 것을 확인할 수 있다. 또한, 도 8에 의하면 열역학적 환원 후 획득된 결과물의 상과 결정 구조들은 X선 회절 패턴을 이용하여 확인되었다[도 8].The shape of the final powder obtained after the thermochemical reduction process can be observed through field emission scanning electron microscopy and transmission electron microscopy, and it can be seen that the diameter is reduced by 100 to 200 nm compared to the bacterial / tin oxide composite shown after vacuum drying. 6 and 7. Moreover, according to FIG. 7, it can be seen through the high resolution transmission electron micrograph that after the thermochemical reduction, multiphase nanostructures based on tin elements were formed. In addition, according to FIG. 8, the phase and crystal structures of the resultant obtained after thermodynamic reduction were confirmed by using an X-ray diffraction pattern [FIG. 8].
한편, 이와 같은 중간 단계의 매개체로써 박테리아/주석 산화물 및 열화학적 환원을 통한 주석 원소 기반 다상의 나노구조체와 비정질 카본으로 이루어진 튜브 형상의 나노복합체를 당 분야에서는 전기화학 소자, 더욱 상세하게는 리튬이온 이차전지, 전기 이중층 슈퍼 커패시터 등에 사용할 수 있다.On the other hand, as a medium of such intermediate stages, tube-shaped nanocomposites composed of microstructured nanostructures and amorphous carbon based on tin element through bacteria / tin oxides and thermochemical reduction are electrochemical devices, more specifically lithium-ion in the art. It can be used for secondary batteries, electric double layer super capacitors and the like.
따라서 본 발명은 상기 박테리아/주석 산화물로 이루어진 중간 단계의 복합체뿐 아니라, 열화학적 환원을 통해 획득되는 튜브 형상의 다상의 주석 원소 기반 나노구조체/비정질 카본으로 구성되어 있는 나노복합체 분말을 리튬 이차 전지의 음극활물질로서의 가능성을 판단하기 위하여 리튬 전지용 전극을 따로 제작하고 반쪽 전지를 구성하여 전기 화학적인 특성을 평가하였다. 상기 리튬이온 이차전지는, 사용되는 음극활물질의 단위 분자량 당 반응할 수 있는 리튬 전하의 수가 클수록, 충ㆍ방전 시 입자 응집 현상이 제한될수록 더욱 우수한 전기 화학적인 성능을 보인다.Therefore, the present invention provides a nanocomposite powder composed of a multi-phase tin element-based nanostructure / amorphous carbon in a tubular shape obtained through thermochemical reduction, as well as the intermediate complex composed of the bacteria / tin oxide. In order to determine the potential as a negative electrode active material, an electrode for a lithium battery was separately prepared and a half cell was constructed to evaluate electrochemical properties. The lithium ion secondary battery exhibits better electrochemical performance as the number of lithium charges that can react per unit molecular weight of the negative electrode active material used, and the particle aggregation phenomenon during charging and discharging are limited.
먼저, 상기 중간 단계로써 제조되는 박테리아/주석 산화물 혹은 열화학적 환원 후 최종 획득되는 튜브 형상의 주석 원소 기반 다상의 나노구조체/비정질 카본으로 구성된 분말 및 도전제(conductive additive)와 결합제(binder)를 불활성 유기 용매에 녹인 후, 초음파 처리 및 기계적인 혼합을 이용하여 균일하게 섞이도록 한다. 이 후, 상기 혼합물을 슬러리 상태로 구리 집전체(current collector)에 얇게 도포하여 전극을 제조한다.First, the inert powder and the conductive additive and binder composed of the bacteria / tin oxide prepared as the intermediate step or the tubular tin element based polyphase nanostructure / amorphous carbon obtained after thermochemical reduction are finally obtained. After dissolving in organic solvent, mix uniformly by sonication and mechanical mixing. Thereafter, the mixture is thinly coated on a copper current collector in a slurry state to prepare an electrode.
리튬 금속을 음극으로, 상기 제조된 전극을 양극으로 하여, 두 전극 사이에 전해질과 분리막을 넣고 반쪽 전지를 완성한다. 상기 제조된 전지는 0.01 ~ 3.0 V 사이의 전압 영역에서 흘려주는 전류 밀도를 바꿔가며 충ㆍ방전 사이클 평가를 수행하였다.Lithium metal is used as a negative electrode, and the prepared electrode is used as an anode. An electrolyte and a separator are inserted between two electrodes to complete a half cell. The manufactured battery was evaluated for charging and discharging cycles while varying the current density flowing in the voltage range of 0.01 to 3.0V.
상기 제조된 분말 중, 400 ℃에서 열화학적 환원 처리된 분말에 한해서 전기화학적 특성을 측정하였으며, 대조군으로 중간 단계로 제조되는 박테리아/주석 산화물 및 500 ℃에서 열화학적 환원 처리된 분말에 관해서도 전기화학적 특성을 측정하여 각각을 비교하였다.Among the powders prepared above, electrochemical characteristics were measured only for powders subjected to thermochemical reduction at 400 ° C., and electrochemical characteristics were also obtained for bacteria / tin oxides prepared in an intermediate step as a control and powders subjected to thermochemical reduction at 500 ° C. Were measured and compared with each other.
상기 제시된 순서에 의해 전극을 제조하고 특성을 측정한 결과, 본 발명에서 제안된 주석 원소 기반 다상의 나노구조체/비정질 카본으로 이루어진 분말의 경우에서 대조군들의 측정된 결과보다 고용량의 특성을 나타내며, 높은 전류 밀도에서도 고용량의 특성으로 보다 좋은 안정성을 나타냈다.As a result of manufacturing the electrode and measuring the properties according to the above-described sequence, the powder of the tin element-based multiphase nanostructure / amorphous carbon proposed in the present invention exhibits a higher capacity than the measured results of the controls, and has a high current. Higher capacity also showed better stability in density.
이하, 본 발명을 실시예를 통하여 구체적으로 설명하겠는 바, 다음 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the following Examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following Examples.
1. 실시 예Example
(1) 실시 예 1(1) Example 1
냉동 보관되어있는 바실러스 섭틸러스 박테리아(Bacillus subtilis)의 보존액으로부터 5 ㎕을 채취한 후, 5 ㎖ LB 액체 배지(Luria-Bertani, LB broth)가 들어있는 시험관에 접종하고 37 ℃에서 200 rpm으로 회전하는 인큐베이터에서 초기 배양하였다. 초기 배양으로부터 10 ~ 12 시간이 지난 후, 배양액으로부터 500 ㎕ 씩을 채취하여 200 ㎖의 액체 배지가 들어있는 5 개의 삼각 플라스크에 각각 계대 배양하였다. 계대 배양으로부터 5 시간이 지난 박테리아 배양액을 12,000 rpm에서 20 분간 원심분리를 수행하고 박테리아와 상등액을 분리하였다. 상등액과 분리된 가라앉은 박테리아는 탈이온수를 이용하여 2 번 세척 및 원심분리 과정을 수행하였다. 이 후, 1 ℓ 이상의 탈이온수를 첨가하면서 자외선 분광계를 이용하여 600 ㎚ 파장에서 광학 흡광도 측정을 통해 박테리아의 농도를 1.0 (= 1 × 108 cells/㎖)로 맞추었다. 상기 박테리아가 분산된 용액을 상온에서 스터링되는 동안, 사용된 염화 금속 물질 중 하나인 SnCl4ㆍ5H2O의 몰 농도가 각각 10 mM이 되게끔 칭량하여 각각을 탈이온수 400 ㎖에 녹인 후 상온에서 30 분 동안 스터링하였다. 상기 용액을 30 분 동안 스터링을 한 후, 상온에서 스터링이 유지되며 박테리아가 분산되어있었던 용액에 (분당 10 ml 정도의 양이 첨가되는 속도로) 첨가하였다. 이 후, 주석 전구체 및 박테리아가 고르게 분산되도록 상온에서 1 시간 동안 스터링을 유지하였다. 상기 혼합물이 유지되는 동안, 환원제로 쓰인 N2H4ㆍH2O의 몰 농도가 각각 10 mM이 되게끔 칭량하여 각각을 탈이온수 200 ㎖에 녹인 후 상온에서 30 분 동안 스터링하였다.5 μl were taken from the stock solution of Bacillus subtilis, which was stored frozen, and then inoculated into a test tube containing 5 ml LB liquid medium (Luria-Bertani, LB broth) and rotating at 200 rpm at 37 ° C. Were initially cultured in an incubator. After 10 to 12 hours from the initial incubation, 500 μl was collected from the culture solution and passaged in 5 Erlenmeyer flasks each containing 200 ml of liquid medium. Bacteria culture 5 hours after subculture were centrifuged at 12,000 rpm for 20 minutes to separate bacteria and supernatant. The sunk bacteria separated from the supernatant were washed twice with deionized water and centrifuged. Thereafter, the concentration of bacteria was adjusted to 1.0 (= 1 × 10 8 cells / ml) by optical absorbance measurement at 600 nm wavelength using an ultraviolet spectrometer while adding 1 L or more of deionized water. While the solution in which the bacteria were dispersed was stirred at room temperature, the molar concentration of SnCl 4 ㆍ 5H 2 O, one of the metal chloride materials used, was measured to be 10 mM each, and each was dissolved in 400 ml of deionized water, and then stored at room temperature. Stir for 30 minutes. The solution was stirred for 30 minutes and then added to the solution at which the stirring was maintained at room temperature and bacteria were dispersed (at a rate of about 10 ml per minute). Thereafter, sterling was maintained at room temperature for 1 hour so that the tin precursor and bacteria were evenly dispersed. While maintaining the mixture, the molar concentration of N 2 H 4 .H 2 O used as a reducing agent was weighed to 10 mM each, and each was dissolved in 200 ml of deionized water and then stirred at room temperature for 30 minutes.
상온에서 1 시간 동안의 분산과정을 거친 혼합물에 상기 N2H4ㆍH2O가 30 분간 스터링된 용액을 각각 200 ㎖씩 천천히 넣었다. 이 후, 25 ℃에서 12 시간 동안 환류시키고, 이 후 10,000 rpm에서 20 분간의 원심분리를 통해 상등액과 침전물을 분리한 뒤, 상등액을 제거하고 아랫부분의 침전물은 탈이온수와 아세톤(acetone)을 사용하여 3 ~ 4 회의 세척 과정을 수행하였다. 이때, 석출된 침전물은 바실러스 박테리아 표면에 주석 산화물이 고르게 분포되어 부착되어있는 상태이며, 합성된 석출물을 60 ℃의 온도, 10-2 torr의 압력 조건 하에서 6 시간 동안 진공 건조를 실시한 바, 중간 단계의 박테리아/주석 산화물 복합체를 제조하였다.To the mixture, which had been dispersed for 1 hour at room temperature, 200 ml of the N2H4.H2O-terminated solution for 30 minutes was slowly added thereto. Thereafter, the mixture was refluxed at 25 ° C. for 12 hours, after which the supernatant and the precipitate were separated by centrifugation at 10,000 rpm for 20 minutes, and then the supernatant was removed and the precipitate at the bottom was deionized water and acetone. 3 to 4 washes were performed. At this time, the precipitate is deposited in the state that the tin oxide is evenly distributed on the surface of the Bacillus bacteria, the synthesized precipitate was vacuum dried for 6 hours under the temperature of 60 ℃, pressure condition of 10 -2 torr, intermediate step Bacteria / tin oxide complexes were prepared.
이 후, 제조된 박테리아/주석 산화물 복합체를 수소 분위기 하에서 열화학적 환원을 실시하였는바, 먼저 제조된 박테리아/주석 산화물 복합체 분말을 0.2 ~ 0.3 g을 칭량하고, 이를 튜브형 고온 전기로 안에서 열화학적 환원을 시행하였다. 튜브형 고온 전기로의 열처리를 수행하기 전 완전한 환원 분위기를 유지하는 상태에서 열처리를 진행하기 위해, 진공 펌프를 작동 시킨 상태에서 아르곤 가스를 100 sccm의 유량으로 30 분간 흘려보내 퍼지(purge) 과정을 진행하고 이 후 30 분간 40 sccm의 유량으로 수소 가스를 흘려보내 환원 분위기를 만들었다. 이 후 400 ℃에서 12 시간의 열화학적 환원 공정을 진행하였으며, 이 때, 진공 펌프는 작동을 하지 않고, 수소 가스만 계속적으로 40 sccm의 유량으로 흘려주는 상태로 진행하였으며, 승온 속도는 10 ℃/min로 진행하였다. 12 시간의 열화학적 환원이 진행된 이후 최종 튜브 형상의 주석 원소 기반 다상의 나노구조체와 박테리아로부터 유도된 비정질 카본으로 이루어진 나노복합체 분말을 얻을 수 있었다.Subsequently, the prepared bacteria / tin oxide composite was subjected to thermochemical reduction under a hydrogen atmosphere. First, 0.2 to 0.3 g of the prepared bacteria / tin oxide composite powder was weighed and subjected to thermochemical reduction in a tubular high temperature electric furnace. Was implemented. In order to proceed with heat treatment in a fully reducing atmosphere before performing heat treatment of the tubular high temperature electric furnace, a purge process is performed by flowing argon gas at a flow rate of 100 sccm for 30 minutes while the vacuum pump is operated. Thereafter, hydrogen gas was flowed at a flow rate of 40 sccm for 30 minutes to create a reducing atmosphere. Thereafter, a thermochemical reduction process was performed at 400 ° C. for 12 hours. At this time, the vacuum pump was not operated, and only hydrogen gas was continuously flowed at a flow rate of 40 sccm. The temperature rising rate was 10 ° C. / Proceed to min. After 12 hours of thermochemical reduction, a nanocomposite powder consisting of the nanotubes based on tin element based multiphase nanostructures and amorphous carbon derived from bacteria was obtained.
(2) 실시 예 2 ~ 4(2) Examples 2-4
상기 실시예 1과 합성 방법은 동일하되, 다음 표 1에 기재된 염화주석 전구체의 농도를 10 mM로 고정한 후, N2H4ㆍH2O 환원제의 농도를 각각 100, 500, 1000 mM로 변하는 것에 따라 본 발명의 중간 단계로써 획득되는 박테리아/주석 산화물 복합체를 제조하였다. 도 9에 의하면, 각각의 실시예 2, 3, 4의 조건에 따라 제조된 박테리아/주석 산화물 복합체의 주사 전자현미경 사진을 나타내었다.Synthesis method is the same as in Example 1, but after fixing the concentration of the tin chloride precursor in Table 1 to 10 mM, to change the concentration of N 2 H 4 · H 2 O reducing agent to 100, 500, 1000 mM, respectively The bacterial / tin oxide complexes thus obtained as intermediate steps of the present invention were prepared. 9 shows scanning electron micrographs of the bacterial / tin oxide complexes prepared according to the conditions of Examples 2, 3, and 4, respectively.
(3) 실시 예 5(3) Example 5
상기 실시예 1과 합성 방법은 동일하되, 다음 표 1에 기재된 염화주석 전구체의 농도를 100 mM로 하고, N2H4ㆍH2O 환원제의 농도를 100 mM로 하여 본 발명의 중간 단계로써 획득되는 박테리아/주석 산화물 복합체를 제조하였다. 실시예 5에 따라 제조된 박테리아/주석 산화물 복합체의 전계방출 주사 전자현미경 사진을 도 10에 나타내었다.Synthesis method is the same as in Example 1, but obtained by the intermediate step of the present invention with the concentration of the tin chloride precursors shown in Table 1 to 100 mM, the concentration of the N 2 H 4 · H 2 O reducing agent to 100 mM The resulting bacterial / tin oxide complex was prepared. Field emission scanning electron micrographs of the bacterial / tin oxide complexes prepared according to Example 5 are shown in FIG. 10.
상기, 실시예 2 ~ 5를 통해 예상할 수 있는 것처럼, 본 발명의 중간 단계 합성물인 박테리아/주석 산화물 복합체가 박테리아 템플릿의 막대 형상을 유지하지 못하고 또한 주석 산화물이 형성되지 않을 경우, 이 후의 열화학적 환원을 통해 획득되는 최종 튜브 형상을 갖는 주석 원소 기반의 다상의 나노구조체 및 비정질 카본으로 이루어진 나노복합체는 제조될 수 없다. 따라서, 상기 실시예들을 통한 알맞은 형태의 박테리아/주석 산화물 복합체 중간 단계 매개체를 제조해야만 한다.As can be expected from Examples 2 to 5 above, when the intermediate compound of the present invention, the bacterial / tin oxide complex, does not retain the rod shape of the bacterial template and no tin oxide is formed, subsequent thermochemical Nanocomposites consisting of amorphous carbon and multiphase nanostructures based on tin elements with final tube shapes obtained through reduction cannot be prepared. Therefore, suitable forms of bacterial / tin oxide composite intermediate stage mediators should be prepared through the above examples.
(4) 실시 예 6 ~ 9(4) Examples 6-9
상기 실시예 1과 동일한 합성 방법으로 수행되었으되, 최종 열화학적 환원 처리 공정간 다음 표 1에 기재된 것처럼 처리 온도를 달리하거나 혹은 아르곤으로의 열처리 분위기를 달리하면서, 본 발명의 최종 수득물인 주석 원소 기반 다상의 나노구조체 및 비정질 카본으로 이루어진 나노복합체를 제조하고자 하였다. It was carried out by the same synthesis method as Example 1, but the final element of the present invention, the tin element-based polyphase of the final product of the present invention, while varying the treatment temperature or the heat treatment atmosphere to argon as shown in Table 1 between the final thermochemical reduction treatment process To prepare a nanocomposite consisting of nanostructures and amorphous carbon.
이하, 상기 실시예 6 ~ 9 조건에 따른 최종 획득된 분말의 결정 상들은 X선 회절 분석을 통해 확인되었으며, 이를 도 11에 비교하여 나타내었다.Hereinafter, the crystalline phases of the powders finally obtained according to the conditions of Examples 6 to 9 were confirmed by X-ray diffraction analysis, which are shown in comparison with FIG. 11.
도 11에 의하면, 실시예 6 ~ 9의 조건을 통해 최종 제조된 분말의 경우, 실시예 1을 통해 획득된 X선 회절 분석 결과처럼 주석 원소 기반의 다상의 나노구조체들이 합성된 것이 아니라, 단일상의 주석 산화물 (SnO2) 혹은 주석 금속 (metallic tin, Sn)으로 제조됨을 확인할 수 있다. 따라서, 상기 실시예들을 통한 열화학적 환원 공정간 본 발명의 최종 형태인 튜브 형태를 가지며, 주석 원소 기반으로 다상의 나노구조체들과 비정질 카본으로 이루어진 나노복합체를 제조하기 위해서는 열화학적 환원 공정간 온도, 시간, 분위기 등의 조건들이 알맞게 갖추어 져야만 한다. 특히, 상기 실시예 8을 통해 제조된 나노복합체의 형상을 전계방출 주사 전자현미경 및 투과 전자현미경, 고 해상도 투과 전자현미경을 이용하여 도 12에 나타내었다. 도 12에서 보이는 것처럼, 열화학적 환원 공정 후 박테리아로부터 유도된 비정질 카본과 주석 원소 기반으로 이루어진 나노구조체들이 고르게 분포되어 있는 것이 아니라, 높은 환원 온도로 인한 주석 금속으로 재결정된 환원이 이루어지며, 크기 또한 크게 증가한 것을 확인할 수 있다. 이러한 결과는 이 후 리튬과의 이차전지 테스트에서 주석 원소 기반의 다상의 나노구조체들을 갖는 복합체들보다 낮은 용량 특성을 나타내었다.According to FIG. 11, in the case of the final powder prepared under the conditions of Examples 6 to 9, tin phase-based multiphase nanostructures were not synthesized, as in the X-ray diffraction analysis obtained through Example 1, but a single phase It can be seen that it is made of tin oxide (SnO 2 ) or tin metal (metallic tin, Sn). Therefore, in order to produce a nanocomposite having a tube shape which is the final form of the present invention between the thermochemical reduction processes through the above embodiments, and consisting of polyphase nanostructures and amorphous carbon on the basis of tin element, the temperature between the thermochemical reduction processes, Conditions such as time and mood must be adequately set. In particular, the shape of the nanocomposite prepared in Example 8 is shown in FIG. 12 using a field emission scanning electron microscope, a transmission electron microscope, and a high resolution transmission electron microscope. As shown in FIG. 12, the nanostructures based on amorphous carbon and tin elements derived from bacteria after the thermochemical reduction process are not evenly distributed, but a recrystallized reduction to tin metal due to a high reduction temperature is achieved. It can be seen that the increase significantly. These results later showed lower capacity characteristics in composites with tin-based multiphase nanostructures in secondary battery tests with lithium.
(5) 실시 예 10(5) Example 10
상기 실시예 1과 동일한 합성 방법으로 수행되었으되, 다음 표 1에 기재된 것처럼 박테리아 템플릿을 사용하지 않고 중간 단계의 석출물을 획득하였다. 또한 획득된 석물출의 주사 현미경 사진을 도 13에 나타냈으며, 도 13에서 확인할 수 있는 박테리아 템플릿을 적용하지 않은 경우 중간 단계로 수득되는 주석 산화물의 템플릿 위로 형성되지 않아 원하는 막대 형상을 얻을 수 없게 되며, 이는 본 발명의 최종 튜브 형상을 갖는 주석 원소 기반의 다상의 나노구조체 및 비정질 카본으로 이루어진 나노복합체는 제조될 수 없음을 의미한다.The synthesis was carried out in the same manner as in Example 1, except that the precipitate in the intermediate step was obtained without using a bacterial template as described in Table 1 below. In addition, a scanning micrograph of the obtained precipitate is shown in FIG. 13, and when the bacterial template identified in FIG. 13 is not applied, it is not formed on a template of tin oxide obtained in an intermediate step, and thus a desired rod shape cannot be obtained. This means that the nanocomposite consisting of amorphous carbon and multiphase nanostructures based on tin element having the final tube shape of the present invention cannot be produced.
표 1
Figure PCTKR2012011355-appb-T000001
Table 1
Figure PCTKR2012011355-appb-T000001
2. 비교 예 12. Comparative Example 1
상기 실시예 1을 통해 제조되는 주석 원소 기반 다상의 나노구조체 및 비정질 카본으로 이루어진 튜브 형상의 나노복합체의 이차전지 특성을 비교, 분석하기 위하여, 다음 표 2에 제시된 것처럼 대조군으로써 실시예 1과 동일한 합성 방법으로 수행되었으되, 열화학적 환원 공정을 진행하지 않은 중간 단계의 박테리아/주석 산화물 복합체 및 실시예 8를 통해 제조되는 나노 분말을 이용하여 이차전지 특성을 비교하였다.In order to compare and analyze the secondary battery characteristics of the tubular nanocomposite consisting of the tin element-based polyphase nanostructure and amorphous carbon prepared in Example 1, the same synthesis as in Example 1 as a control as shown in Table 2 below. Secondary battery characteristics were compared by using the nanopowder prepared in Example 8 and the intermediate bacteria / tin oxide complex which was performed by the method but did not undergo the thermochemical reduction process.
표 2
Figure PCTKR2012011355-appb-T000002
TABLE 2
Figure PCTKR2012011355-appb-T000002
3. 시험 예 13. Test Example 1
상기 실시예 1을 통해 제조되는 주석 원소 기반 다상의 나노구조체 및 비정질 카본으로 이루어진 튜브 형상의 나노복합체의 음극활물질과 비교예 1에서 제조된 나노 분말 및 실시예 8를 통해 제조되는 분말의 이차전지용 음극활물질로서의 비교, 평가하기 위하여 전극을 제조한 후 반쪽 전지의 용량을 측정하였다.The negative electrode active material of the anode active material of the tube-shaped nanocomposite composed of the tin element-based polyphase nanostructure and amorphous carbon prepared in Example 1 and the nanopowder prepared in Comparative Example 1 and the powder prepared in Example 8 In order to compare and evaluate as an active material, the capacity of the half battery was measured after producing an electrode.
(a)(a) 전극 제조Electrode manufacturing
상기 실시예 1에서 제조된 나노 분말 음극활물질 0.5 ~ 1 ㎎을, 도전제인 흑연(MMM Cabon)과 결합제인 Kynar 2801(PVdF- HFP)과 질량비가 70 : 15 : 15가 되도록 칭량한 후, 불활성의 유기 용매인 N-메틸-피톨리돈(NMP)에 용해시켜 슬러리 형태로 제조하였다. 이 후, 상기 슬러리를 집전체인 구리 호일에 도포시켜 100 ℃의 진공 오븐에서 4 시간 건조하여 유기 용매를 휘발시킨 후, 프레싱(pressing)하여 직경이 1 ㎝인 원 형태로 펀칭하였다.0.5 to 1 mg of the nano-powder negative electrode active material prepared in Example 1 was weighed to have a mass ratio of 70: 15: 15 and graphite (MMM Cabon) and a binder, Kynar 2801 (PVdF-HFP), and then inert. It was prepared in the form of a slurry by dissolving in N-methyl- pitolidon (NMP), an organic solvent. Thereafter, the slurry was applied to a copper foil as a current collector, dried in a vacuum oven at 100 ° C. for 4 hours to volatilize an organic solvent, and then pressed into a circular shape having a diameter of 1 cm.
또한, 대조군으로 상기 비교예 1과 실시예 8에서 만들어진 나노 분말 역시 음극활물질로서 0.5 ~ 1 ㎎을, 도전제인 흑연과 결합제인 상기 Kynar 2801의 질량비를 70 : 15 : 15가 되도록 칭량한 후, 불활성 유기 용매에 녹여 슬러리 형태로 만들었다. 이 후 과정은 상기 실시예 1의 샘플을 통해 제시된 전극의 제조 과정과 동일하다.In addition, as a control, the nano powders prepared in Comparative Examples 1 and 8 were also weighed 0.5 to 1 mg as a negative electrode active material, and the mass ratio of graphite as a conductive agent and Kynar 2801 as a binder was 70:15:15, and then inert. It was dissolved in organic solvent to form a slurry. The subsequent process is the same as the manufacturing process of the electrode presented through the sample of Example 1.
(b)(b) 전기화학적 특성 평가용 반쪽 전지 제작 및 측정Fabrication and measurement of half cell for evaluation of electrochemical properties
본 발명에서 제조된 주석 원소 기반 다상의 나노구조체 및 비정질 카본으로 구성되어 있는 튜브 형상의 나노복합체의 전기화학적 특성을 알아보기 위하여, 음극으로 리튬 금속 이온, 양극으로 상기 (a)에서 제조된 전극들 및 둘 사이에 전해질과 분리막(Celgard 2400)을 넣고 스와즐락(Swagelok) 타입(type)의 반쪽 전지를 구성하였다. 사용된 전해질은 에틸렌 카보네이트(Ethylene carbonate, EC)와 디메틸 카보네이트(Dimethyl carbonate, DMC)의 부피비가 1 : 1로 섞여 있는 용액에 LiPF6이 용해된 물질을 사용하였다. 상기 제시된 반쪽 전지 제조의 모든 과정은 비활성 기체인 아르곤으로 채워져 있는 글로브 박스(Glove box) 안에서 수행하였다.In order to examine the electrochemical properties of the nanostructures of the tube-shaped nanocomposites composed of the tin-based multiphase nanostructures and amorphous carbon prepared in the present invention, the electrodes prepared in (a) as lithium metal ions as the cathode and the anode An electrolyte and a separator (Celgard 2400) were inserted between the two, and a half cell of a Swagelok type was configured. The electrolyte used was a material in which LiPF6 was dissolved in a solution in which a volume ratio of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate, DMC) was 1: 1. All procedures of the half cell preparation presented above were carried out in a glove box filled with argon, an inert gas.
상기 제조된 스와즐락 타입의 반쪽 전지는 충ㆍ방전 싸이클러(WBCS 3000, WonA Tech., Korea)를 이용하여 0.01 ~ 3.0 V 전압 사이에서 0.03 ㎷/sec로 전압을 바꿔가며 정전압 방식(Potentialstatic mode)의 측정 및 전류 밀도를 바꿔가며 정전류 방식(Galvanostatic mode)으로 실행되었고, 이때의 전류 밀도는 각각 78 mA/g, 157 mA/g, 235 mA/g, 392 mA/g이고, 각각의 전류 밀도에서 10 번의 사이클 충ㆍ방전 테스트를 수행하면서 전류 밀도를 변경하여, 전기화학적 특성 평가를 실시하였다. The manufactured half-slave type half cell uses a charge / discharge cycler (WBCS 3000, WonA Tech., Korea) to change the voltage to 0.03 ㎷ / sec between 0.01 and 3.0 V voltages and is in a positive static mode. The current density was 78 mA / g, 157 mA / g, 235 mA / g, 392 mA / g, and the current density was changed to galvanostatic mode. The electrochemical characteristics were evaluated by changing the current density while performing 10 cycle charge / discharge tests.
정전류 방식의 측정에 따라 분석된 그래프는 도 14에 잘 나타내었다. 이것들의 비교를 통해 본 발명에서 제시한 주석 원소 기반 다상의 나노구조체 및 비정질 카본으로 이루어진 튜브 형상의 나노복합체로 제조된 음극활물질의 경우, 본 발명의 중간 단계로 획득된 박테리아/주석 산화물 (SnO2)로 구성된 복합체 또는 상기 실시예 8을 통해 제조되는 비정질 카본/단일상의 주석 금속 (metallic tin, Sn)으로 이루어진 나노복합체들의 경우보다, 높은 전류 밀도에서도 고용량의 특성을 구현하면서 우수한 사이클 특성을 나타내는 것을 알 수 있다.The graph analyzed according to the constant current method is shown in FIG. 14. In the case of the anode active material prepared from the tin element-based polyphase nanostructure and amorphous carbon composite tubular nanocomposites presented in the present invention, the bacteria / tin oxide (SnO 2) obtained in the intermediate step of the present invention. Compared to the composite consisting of or nanocomposites made of amorphous carbon / single-phase tin metal (Sn) (metallic tin, Sn) prepared through Example 8, it is found that exhibits excellent cycle characteristics while achieving high capacity characteristics even at high current density Can be.
다음 표 3은 상기 실시예 1과 실시예 9 및 비교예 1을 통해 제조된 분말들의 이차전지 특성 평가에서, 각각의 전류 밀도에서 10번의 충ㆍ방전 사이클 테스트를 수행했을 때의 방전 용량을 나타낸 것이다.The following Table 3 shows the discharge capacity when 10 charge and discharge cycle tests were performed at each current density in the secondary battery characteristics evaluation of the powders prepared in Examples 1, 9 and Comparative Example 1. .
표 3
Figure PCTKR2012011355-appb-T000003
TABLE 3
Figure PCTKR2012011355-appb-T000003
상기 표 3은 본 발명의 실시예 1에서 제조된 비정질 카본/주석 원소 기반 다상의 나노구조체들로 이루어진 튜브 형상의 나노복합체의 음극활물질이 실시예 8 및 비교예 1을 통해 제조된 분말들을 이용한 음극활물질들에 비해서 훨씬 우수한 고용량의 특성을 지니고, 높은 전류 밀도에서도 고용량의 특성과 함께 사이클 안정성을 보여준다. 이로부터 본 발명에서 제기된 비정질 카본/주석 원소 기반 다상의 나노구조체들로 이루어진 튜브 형상의 나노복합체의 물질은, 다상의 주석 원소들로 이루어진 저차원 나노구조체들로 인한 고용량의 특성을 이룰 수 있을 뿐 아니라, 박테리아로부터 유도된 비정질 카본과의 복합화를 통한 향상된 전기전도도를 부여할 수 있는 것으로 인하여, 높은 전류 밀도에서도 상대적으로 고용량의 특성을 구현하며, 튜브 형상의 특징으로, 리튬과의 반응 시에 작은 부피 변화로 인하여 고용량을 유지하며 사이클 안정성 또한 향상될 수 있음을 알 수 있다.Table 3 is a negative electrode using the powders prepared in Example 8 and Comparative Example 1 is the negative electrode active material of the tube-shaped nanocomposite composed of the amorphous carbon / tin element-based multi-phase nanostructures prepared in Example 1 of the present invention It has much higher capacity characteristics than active materials, and shows cycle stability with high capacity characteristics even at high current densities. From this, the material of the tube-shaped nanocomposite composed of amorphous carbon / tin element-based multiphase nanostructures raised in the present invention can achieve high capacity due to low dimensional nanostructures composed of polyphase tin elements. In addition, due to the fact that it can give improved electrical conductivity through complexing with amorphous carbon derived from bacteria, it realizes relatively high capacity even at high current density, and has a tubular characteristic, It can be seen that small volume changes can maintain high capacity and also improve cycle stability.
본 발명은 바실러스 박테리아 표면에 주석 산화물을 직접적으로 결합시켜 획득된 박테리아/주석 산화물의 분말을 수소 분위기 하에서 열화학적 환원시키는 것에 의해 0 차원 형상을 갖는 다상의 주석 산화물들 및 주석 금속과 박테리아로부터 유도된 비정질 카본과의 복합화를 이루는 튜브 형상의 나노복합체에 관한 것이다.The present invention is directed to polyphase tin oxides having a 0-dimensional shape and tin metal and bacteria by thermochemically reducing the powder of bacteria / tin oxide obtained by directly binding tin oxide to the Bacillus bacterial surface in a hydrogen atmosphere. The present invention relates to a tube-shaped nanocomposite complexed with amorphous carbon.
종래의 리튬 이차전지용 음극활물질에서 단점으로 지적되어온 저 용량 및 저 출력 (높은 전류 밀도에 낮은 용량), 리튬과 반응 시 큰 부피 변화로 인해 사이클에 따른 용량이 크게 감소되는 특성을 박테리아를 템플릿으로 사용하고, 고용량의 특성 구현이 가능한 주석 산화물을 박테리아 표면과 결합하여 이들의 열화학적 환원을 통해 제작되는 비정질 카본/주석 원소 기반 다상의 저차원 나노구조체들로 이루어진 튜브 형상의 나노복합체 제조를 통해 해결 가능하다. Bacteria are used as a template for low capacity and low output (low capacity for high current density), which have been pointed out as a disadvantage in the conventional negative electrode active material for lithium secondary batteries, and the capacity greatly decreases due to large volume change when reacting with lithium. In addition, it is possible to solve the problem by manufacturing a tubular nanocomposite composed of amorphous carbon / tin element based multi-dimensional low dimensional nanostructures, which are manufactured through thermochemical reduction by combining tin oxide, which can realize high capacity, with the bacterial surface. Do.
본 발명에서의 열화학적 환원 공정은 그 제조 과정이 단순하고, 경제적이며, 사용되는 박테림아 템플릿의 형상에 따라 다양한 형태의 복합체 수득이 가능할 뿐 아니라, 저온 합성 및 중간 매개체의 합성이 용이하고 대량생산이 용이하기 때문에 리튬 이차전지뿐만 아니라, 전기 이중층 슈퍼 커패시터 분야로의 실질적 응용이 가능하리라 기대된다.In the present invention, the thermochemical reduction process is simple, economical, and it is possible not only to obtain various types of complexes depending on the shape of the bacterium template used, but also to facilitate low-temperature synthesis and synthesis of intermediate media. Because of the ease of production, it is expected to be practically applicable not only to lithium secondary batteries but also to electric double layer super capacitors.

Claims (16)

1) 표면에 음이온을 띠는 박테리아를 배양 후 박테리아의 농도를 탈이온수로 조절하여 박테리아 분산 용액을 제조하는 단계;1) preparing a bacterial dispersion solution by culturing bacteria having anion on the surface and adjusting the concentration of bacteria with deionized water;
2) 전이금속 전구체를 탈이온수에 용해시킨 주석 전구체 용액을 상기 1)의 용액에 첨가하면서 20 ~ 30 ℃에서 0.5 ~ 2 시간 동안 스터링(stirring)하여 바실러스 박테리아와 전이금속 전구체가 균일하게 분산되도록 하는 단계;2) Stirring at 20 to 30 ° C. for 0.5 to 2 hours while adding a tin precursor solution in which the transition metal precursor is dissolved in deionized water to the solution of 1) to uniformly disperse the Bacillus bacteria and the transition metal precursor. step;
3) 하이드라진(N2H4ㆍH2O)를 탈이온수에 용해시킨 용액을 상기 2)의 용액에 첨가하면서 환류시켜 상기 박테리아 표면에 전이금속 산화물이 고르게 부착되도록 유도하는 단계; 3) refluxing while adding a solution of hydrazine (N 2 H 4 .H 2 O) in deionized water to the solution of 2) to induce transition metal oxide to adhere evenly to the bacterial surface;
4) 상기 3)의 환류 용액을 원심분리 후 세척하여 석출물을 수득하는 단계;4) centrifuging and washing the reflux solution of 3) to obtain a precipitate;
5) 상기 석출물을 진공 건조하여 박테리아/전이금속 산화물 복합체 분말을 수득하는 단계; 및5) vacuum drying the precipitate to obtain a bacterial / transition metal oxide composite powder; And
6) 상기 수득된 복합체 분말을 열화학적 환원 시키는 단계;6) thermochemically reducing the obtained composite powder;
를 포함하는 전이금속 기반의 나노구조체/비정질 카본 나노복합체의 제조방법.Method for producing a transition metal based nanostructure / amorphous carbon nanocomposite comprising a.
청구항 1에 있어서, 상기 표면에 음전하를 나타내는 박테리아는 바실러스 섭틸리스인 것을 특징으로 하는 나노구조체/비정질 카본 나노복합체의 제조방법.The method of claim 1, wherein the bacterium that exhibits a negative charge on the surface is Bacillus subtilis.
청구항 1에 있어서, 상기 단계 1)의 박테리아 농도는 자외선 분광계 측정을 통해 600 nm 파장에서 광학 흡광도가 1.0 - 2.0인 것을 특징으로 하는 나노구조체/비정질 카본 나노복합체의 제조방법.The method according to claim 1, wherein the bacteria concentration of step 1) is a method for producing a nanostructure / amorphous carbon nanocomposite, characterized in that the optical absorbance of 1.0-2.0 at 600 nm wavelength through an ultraviolet spectrometer measurement.
청구항 1에 있어서, 상기 전이금속 전구체는 주석인 것을 특징으로 하는 나노구조체/비정질 카본 나노복합체의 제조방법.The method according to claim 1, wherein the transition metal precursor is a method for producing a nanostructure / amorphous carbon nanocomposite, characterized in that the tin.
청구항 4에 있어서, 상기 주석은 1-200 mM의 농도인 것을 특징으로 하는 제조방법. The method of claim 4, wherein the tin is at a concentration of 1-200 mM.
청구항 1에 있어서, 상기 하이드라진은 10 - 1000 mM의 농도인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the hydrazine is at a concentration of 10-1000 mM.
청구항 1에 있어서, 상기 환류는 20 30 ℃에서 10 - 15 시간 동안 수행하는 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the reflux is performed at 20 30 ° C. for 10-15 hours.
청구항 1에 있어서, 상기 진공 건조는 60 70 ℃의 온도, 10-2 - 10-3 torr 압력 하에서 수행하는 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the vacuum-dried at a temperature of 60 70 ℃, 10 -2 - production method characterized in that it carried out in the 10 -3 torr pressure.
청구항 1에 있어서, 상기 단계 6)의 열화학적 환원 단계는 350-500 ℃의 온도의 수소 분위기 하에서 5-24 시간 동안 유지하는 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the thermochemical reduction step of step 6) is maintained for 5 to 24 hours in a hydrogen atmosphere at a temperature of 350-500 ℃.
청구항 9에 있어서, 상기 온도는 400 ℃인 것을 특징으로 하고, 분당 10 ℃의 승온 속도로 도달시키고 10-15 시간 동안 열화학적 환원 단계를 수행하는 것을 특징으로 하는 제조 방법.The process according to claim 9, wherein the temperature is 400 ° C., characterized in that it is reached at a temperature increase rate of 10 ° C. per minute and the thermochemical reduction step is carried out for 10-15 hours.
청구항 1에 있어서, 상기 단계 5)의 진공 건조하여 박테리아/전이금속(주석) 산화물 복합체 분말은 지름이 500 - 800 nm이고 길이가 1 - 2 ㎛인 박테리아 표면에 2-5 nm의 주석 산화물 나노 구조체가 접착되어 있는 것을 특징으로 하는 제조 방법.2. The tin oxide nanostructure of 2-5 nm according to claim 1, wherein the bacteria / transition metal (tin) oxide composite powder is vacuum-dried in step 5) on a bacterial surface having a diameter of 500 to 800 nm and a length of 1 to 2 μm. Is bonded to a manufacturing method.
청구항 1 내지 11 중 어느 한 항의 방법을 제조 방법을 통해 제조한 전이금속 기반의 나노구조체/비정질 카본 나노복합체.A transition metal based nanostructure / amorphous carbon nanocomposite prepared by the method of any one of claims 1 to 11.
청구항 12에 있어서, 상기 전이금속은 주석인 것을 특징으로 하는 나노복합체.The nanocomposite of claim 12, wherein the transition metal is tin.
청구항 12에 있어서, 상기 전이금속 기반의 나노구조체/비정질 카본 나노복합체는 상기 나노복합체의 열화학적 환원으로 인해 박테리아 표면에 부착된 주석 원소 기반의 다상의 나노구조체 및 박테리아로부터 유도된 비정질 카본으로 이루어진 튜브 형상의 나노복합체인 것을 특징으로 하는 나노 복합체.The tube of claim 12, wherein the transition metal-based nanostructure / amorphous carbon nanocomposite is a tube composed of microcrystalline nanostructures based on tin element attached to the surface of bacteria and amorphous carbon derived from bacteria due to thermochemical reduction of the nanocomposite. Nanocomposite, characterized in that the nanocomposite of the shape.
청구항 12의 전이금속 기반의 나노구조체/비정질 카본 나노복합체를 포함하는 리튬 이차 전지의 음극활물질.The negative electrode active material of a lithium secondary battery comprising the transition metal-based nanostructure / amorphous carbon nanocomposite of claim 12.
청구항 15의 전이금속 기반의 나노구조체/비정질 카본 나노복합체를 포함하는 리튬 이차 전지의 음극활물질을 포함하는 리튬 이차 전지.A lithium secondary battery comprising a negative electrode active material of a lithium secondary battery comprising a transition metal-based nanostructure / amorphous carbon nanocomposite of claim 15.
PCT/KR2012/011355 2012-05-22 2012-12-24 Method for preparing nanocomposite comprising tin-based multiphase nanostructure and amorphous carbon, and cathode active material containing same WO2013176363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0054458 2012-05-22
KR1020120054458A KR101340523B1 (en) 2012-05-22 2012-05-22 Method for Multiphasic Tin-based Nano Structures/Amorphous Carbon Nano Composite and Anode Active Materials Comprising the Same

Publications (1)

Publication Number Publication Date
WO2013176363A1 true WO2013176363A1 (en) 2013-11-28

Family

ID=49624016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011355 WO2013176363A1 (en) 2012-05-22 2012-12-24 Method for preparing nanocomposite comprising tin-based multiphase nanostructure and amorphous carbon, and cathode active material containing same

Country Status (2)

Country Link
KR (1) KR101340523B1 (en)
WO (1) WO2013176363A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224115A (en) * 2018-03-02 2019-09-10 华南理工大学 A kind of lithium ion battery negative material and the preparation method and application thereof
WO2019197992A1 (en) * 2018-04-09 2019-10-17 King Abdullah University Of Science And Technology Bacteria-based catalysts and method of making
US20200318062A1 (en) * 2019-04-02 2020-10-08 Acon-Holding Inc. Composite shell particle, biological material, and method of manufacturing composite shell particle
CN113292064A (en) * 2021-07-07 2021-08-24 湖南大学 Preparation method of sodium ion battery negative electrode material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070017319A (en) * 2004-01-05 2007-02-09 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Inorganic nanowires
KR20090105786A (en) * 2008-04-02 2009-10-07 삼성전자주식회사 A lithium-transition metal complex compounds having hierarchical structure, a method for preparing the same and a lithium battery comprising an electrode comprising the same
KR20100092324A (en) * 2009-02-12 2010-08-20 한국과학기술연구원 Bacteria/transition metal oxides organic-inorganic composite and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070017319A (en) * 2004-01-05 2007-02-09 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Inorganic nanowires
KR20090105786A (en) * 2008-04-02 2009-10-07 삼성전자주식회사 A lithium-transition metal complex compounds having hierarchical structure, a method for preparing the same and a lithium battery comprising an electrode comprising the same
KR20100092324A (en) * 2009-02-12 2010-08-20 한국과학기술연구원 Bacteria/transition metal oxides organic-inorganic composite and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYU, JUNG KI ET AL.: "Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries", ADV. MATER., vol. 22, 2010, pages 5537 - 5541 *
SHIM, HYUN-WOO ET AL.: "Synthesis of Manganese Oxide Nanostructures Using Bacterial Soft Template", CRYSTENGCOMM, vol. 13, 2011, pages 6747 - 6752 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224115A (en) * 2018-03-02 2019-09-10 华南理工大学 A kind of lithium ion battery negative material and the preparation method and application thereof
WO2019197992A1 (en) * 2018-04-09 2019-10-17 King Abdullah University Of Science And Technology Bacteria-based catalysts and method of making
US20200318062A1 (en) * 2019-04-02 2020-10-08 Acon-Holding Inc. Composite shell particle, biological material, and method of manufacturing composite shell particle
US10876093B2 (en) * 2019-04-02 2020-12-29 Acon-Holding Inc. Composite shell particle, biological material, and method of manufacturing composite shell particle
CN113292064A (en) * 2021-07-07 2021-08-24 湖南大学 Preparation method of sodium ion battery negative electrode material
CN113292064B (en) * 2021-07-07 2021-09-17 湖南大学 Preparation method of sodium ion battery negative electrode material

Also Published As

Publication number Publication date
KR101340523B1 (en) 2013-12-11
KR20130130553A (en) 2013-12-02

Similar Documents

Publication Publication Date Title
CN107369825B (en) Nitrogen-doped carbon-coated manganese oxide lithium ion battery composite negative electrode material and preparation method and application thereof
Xia et al. Fe3O4/carbon core–shell nanotubes as promising anode materials for lithium-ion batteries
CN104659358B (en) Preparation method of hollow nickel cobaltate nano polyhedron
Ren et al. Preparation of carbon-encapsulated ZnO tetrahedron as an anode material for ultralong cycle life performance lithium-ion batteries
US9281518B2 (en) Metal nanoparticles synthesized via a novel reagent and application to electrochemical devices
Zhang et al. NiO-Co3O4 nanoplate composite as efficient anode in Li-ion battery
Wang et al. High electrochemical performances of α-MoO3@ MnO2 core-shell nanorods as lithium-ion battery anodes
Wang et al. Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries
US9761904B2 (en) Electrodes and electrochemical cells employing metal nanoparticles synthesized via a novel reagent
KR101442318B1 (en) Anode active material for lithium secondary battery using silicon-carbon core-shell and manufacturing method thereof
Fu et al. Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries
KR101142534B1 (en) Process for producing si-based nanocomposite anode material for lithium secondary battery and lithium secondary battery including the same
CN111129475B (en) Preparation method of molybdenum dioxide/carbon/silicon dioxide nanospheres and negative electrode material of lithium ion battery
WO2013176363A1 (en) Method for preparing nanocomposite comprising tin-based multiphase nanostructure and amorphous carbon, and cathode active material containing same
CN107293743A (en) A kind of sodium-ion battery positive material of Fe-laden acid nickel porous nanotube and preparation method thereof
JP2010184853A (en) Organic-inorganic composite comprising bacterium and transition metal oxide and method for manufacturing the same
CN110336012A (en) A kind of chalcogenide composite material and preparation method and application that carbon is compound
Wan et al. Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries
Xu et al. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries
Edfouf et al. Nanostructured Ni3. 5Sn4 intermetallic compound: An efficient buffering material for Si-containing composite anodes in lithium ion batteries
Zan et al. SnO2/Fe2O3 hybrid nanofibers as high performance anodes for lithium-ion batteries
WO2022080762A1 (en) Silicon nanocomposite structure powder for negative electrode material, and method for manufacturing same
Mukherjee et al. An electrochemical and structural study of highly uniform tin oxide nanowires fabricated by a novel, scalable solvoplasma technique as anode material for sodium ion batteries
CN108649200B (en) Preparation method of LaTi21O38 CoTiO3 Mn3O4 composite nanowire
CN106654181A (en) Tin oxide-based negative electrode material and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877486

Country of ref document: EP

Kind code of ref document: A1