WO2013176032A1 - Ammonia treatment system - Google Patents

Ammonia treatment system Download PDF

Info

Publication number
WO2013176032A1
WO2013176032A1 PCT/JP2013/063663 JP2013063663W WO2013176032A1 WO 2013176032 A1 WO2013176032 A1 WO 2013176032A1 JP 2013063663 W JP2013063663 W JP 2013063663W WO 2013176032 A1 WO2013176032 A1 WO 2013176032A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
water
concentration
measuring
amount
Prior art date
Application number
PCT/JP2013/063663
Other languages
French (fr)
Japanese (ja)
Inventor
水谷 洋
達也 松村
浅野 昌道
鵜飼 展行
竹内 和久
勇作 那須
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to SG11201407526RA priority Critical patent/SG11201407526RA/en
Priority to CN201380025991.2A priority patent/CN104379512B/en
Priority to KR1020147032409A priority patent/KR101757525B1/en
Publication of WO2013176032A1 publication Critical patent/WO2013176032A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an ammonia treatment system, and more particularly to an ammonia treatment system that electrolyzes ammonia contained in blow water that is drainage from boiler equipment.
  • hydrazine used to remove oxygen that causes corrosion in thermal power plants has been evaluated as a "chemical substance with recognized mutagenicity".
  • Adoption of water treatment without agents and oxygen scavengers is in progress.
  • an oxygen scavenger that does not use hydrazine ammonia with a high hydrogen ion index (pH) (for example, pH 7 to pH 9) is known.
  • pH hydrogen ion index
  • wastewater from the plant can be reduced in the future. It is assumed that the ammonia concentration becomes high (see, for example, Non-Patent Document 1).
  • reduction of nitrogen is also required by the drainage regulations, and an immediate response is desired.
  • Patent Document 1 describes an ammonia treatment system for decomposing ammonia by electrolyzing waste water discharged from a power plant, and determining the end point of electrolysis from the residual chlorine concentration.
  • an ammonia treatment system that decomposes ammonia by chlorine treatment using a chemical such as sodium hypochlorite is also known.
  • the present invention provides an ammonia treatment system provided in a boiler facility, which can appropriately perform an electrolysis treatment of ammonia even when the fluctuation of boiler drainage is large.
  • an ammonia treatment system includes: boiler equipment for heat recovery; ammonia injection means for injecting ammonia into a water supply system in the boiler equipment; and the water supply system or the boiler equipment.
  • Ammonia concentration measuring means for measuring the ammonia concentration of blow water
  • a flow rate measuring means for measuring the amount of blow water
  • a receiving tank for receiving the blow water
  • an aqueous sodium chloride solution as a chloride ion source introduced into the receiving tank
  • a chloride ion supplying means an electrolytic cell for electrolyzing the treated water composed of the blow water and the sodium chloride aqueous solution
  • a control device for controlling a current and a treatment time during the electrolysis.
  • the control device calculates a required chlorine amount based on the ammonia concentration and the amount of blow water, and controls a current amount during electrolysis.
  • the electrolysis is controlled based on the feed water system of the boiler facility or the ammonia concentration of the blow water and the amount of the blow water. For this reason, even when the fluctuation
  • the ammonia treatment system may have a residual chlorine measuring means for measuring the residual chlorine concentration of the treated water during electrolysis, and the control device may determine the end point of electrolysis according to the residual chlorine concentration.
  • the drainage standard of the discharged ammonia concentration can be more accurately controlled by using the residual chlorine concentration as an indicator of the end of electrolysis.
  • the ammonia treatment system has a chloride ion concentration measuring means for measuring a chloride ion concentration of the treated water, and the control device is configured so that the chloride ion concentration is equal to or higher than a predetermined concentration.
  • the amount of introduction may be controlled. According to the said structure, the chloride ion required for electrolysis can be ensured stably.
  • a concentrating device for concentrating ammonia contained in at least a part of the treated water may be provided between the receiving tank and the electrolytic cell.
  • the required chlorine is reduced by concentrating the ammonia introduced into the electrolytic cell by the concentrator, so that the supply amount of chloride ions as a raw material can be reduced.
  • an ammonia treatment system includes: boiler equipment for heat recovery; ammonia injection means for injecting ammonia into a water supply system in the boiler equipment; and the water supply system or the boiler equipment.
  • Ammonia concentration measuring means for measuring the ammonia concentration of blow water
  • a flow rate measuring means for measuring the amount of water in the blow water
  • a chloride ion supply means for introducing a sodium chloride aqueous solution as a chloride ion source
  • An electrolyzer that electrolyzes water, a mixing tank that receives the blow water and the treated water from the electrolyzer, and a control device that controls the current and the treatment time during the electrolysis.
  • the control device calculates a required chlorine amount based on the ammonia concentration and the amount of blow water, and controls a current amount during electrolysis.
  • electrolysis is controlled based on the ammonia density
  • the ammonia treatment system may have a residual chlorine measuring means for measuring the residual chlorine concentration of the treated water during electrolysis, and the control device may determine the end point of electrolysis according to the residual chlorine concentration.
  • the ammonia treatment system has a chloride ion concentration measuring means for measuring a chloride ion concentration of the treated water, and the control device is configured so that the chloride ion concentration is equal to or higher than a predetermined concentration.
  • the amount of introduction may be controlled.
  • a desalinator provided on the downstream side of the mixing tank, and a concentrated water reuse pipe for supplying a part of the concentrated water concentrated by the desalter as a chloride ion source to the electrolytic cell And may be provided.
  • the supply cost of chloride ions can be reduced by the configuration in which the chloride ions supplied to the electrolytic cell are recovered and supplied from the desalting apparatus.
  • electrolysis is controlled based on the feedwater system of the boiler facility or the ammonia concentration of blow water and the amount of blow water. For this reason, even when the fluctuation
  • FIG. 1 is a detailed system diagram of an ammonia treatment system according to a first embodiment of the present invention. It is a detailed systematic diagram of the ammonia processing system which concerns on 2nd embodiment of this invention. It is a detailed systematic diagram of the ammonia processing system which concerns on 3rd embodiment of this invention. It is a detailed systematic diagram of the ammonia processing system which concerns on 4th embodiment of this invention. It is a detailed systematic diagram of the ammonia processing system which concerns on 5th embodiment of this invention. It is a detailed systematic diagram of the ammonia processing system which concerns on 6th embodiment of this invention.
  • an ammonia treatment system 1 is provided in a combined cycle power plant 2 having an exhaust heat recovery boiler 3.
  • the combined cycle power plant 2 is driven by the rotational driving force of the gas turbine 4, the exhaust heat recovery boiler 3 to which the exhaust gas from the gas turbine 4 is sent, the steam turbine 5, and the gas turbine 4 and the steam turbine 5 to generate power.
  • an ammonia treatment system 1 that performs a treatment of blow water discharged from the exhaust heat recovery boiler 3.
  • the exhaust heat recovery boiler 3 is provided with a high pressure heating unit 6, an intermediate pressure heating unit 7, and a low pressure heating unit 8.
  • steam is generated via the high-pressure heating unit 6, the intermediate-pressure heating unit 7, and the low-pressure heating unit 8, and the generated steam is sent to the steam turbine 5 so as to work on the steam turbine 5. It has become.
  • Exhaust gas from the steam turbine 5 is condensed and condensed in a condenser 9, and is introduced into an exhaust heat recovery boiler 3 by a condensate pump 10. Condensate condensed in the condenser 9 is sent to the exhaust heat recovery boiler 3 through the water supply line 11.
  • the high pressure heating unit 6 includes a high pressure superheater 13, a high pressure drum 14, a high pressure evaporator 15, and a high pressure economizer 16.
  • the water in the high-pressure drum 14 is superheated and circulated in a high-pressure evaporator 15 disposed in the exhaust heat recovery boiler 3 to generate high-pressure steam in the high-pressure drum 14.
  • the high-pressure steam generated in the high-pressure drum 14 is superheated by the high-pressure superheater 13 disposed in the exhaust heat recovery boiler 3 and introduced into the steam turbine 5.
  • the intermediate pressure heating unit 7 includes an intermediate pressure superheater 17, an intermediate pressure drum 18, an intermediate pressure evaporator 19, and an intermediate pressure economizer 20.
  • the water in the intermediate pressure drum 18 is superheated and circulated in an intermediate pressure evaporator 19 disposed in the exhaust heat recovery boiler 3 to generate intermediate pressure steam in the intermediate pressure drum 18.
  • the intermediate pressure steam generated in the intermediate pressure drum 18 is introduced into the reheater 21 through the intermediate pressure superheater 17, reheated by the reheater 21, and introduced into the steam turbine 5.
  • the steam from the intermediate pressure superheater 17 is introduced to the gas turbine 4 side for cooling the high temperature portion (combustor, blades, etc.) of the gas turbine 4.
  • the low pressure heating unit 8 includes a low pressure superheater 23, a low pressure drum 24, a low pressure evaporator 25, and a low pressure economizer 26. Water in the low-pressure drum 24 is superheated and circulated in a low-pressure evaporator 25 disposed in the exhaust heat recovery boiler 3 to generate low-pressure steam in the low-pressure drum 24. The low pressure steam generated in the low pressure drum 24 is introduced into the steam turbine 5 through the low pressure superheater 23.
  • Condensate 27 from the condenser 9 is supplied to the low pressure drum 24 through a deaerator 28 and a low pressure economizer 26.
  • a water supply line 29 connected to the high pressure drum 14 and the intermediate pressure drum 18 is provided on the outlet side of the low pressure economizer 26. From the water supply line 29, water is supplied to the high pressure drum 14 via the high pressure water supply pump 30, and water is supplied to the intermediate pressure drum 18 via the intermediate pressure water supply pump 31. That is, water is supplied to the low-pressure drum 24, the intermediate-pressure drum 18 and the high-pressure drum 14 in parallel.
  • the low pressure drum 24 is a drum of the low pressure side unit.
  • the intermediate pressure drum 18 and the high pressure drum 14 are drums of the high pressure side unit.
  • a circulation pump 32 that circulates water supplied from the low-pressure economizer 26 is provided in a line between the water supply line 11 and the water supply line 29.
  • each device in the exhaust heat recovery boiler 3 is an example, and the number and arrangement of the economizers and superheaters are appropriately changed depending on the performance of the gas turbine 4 and the like.
  • a water supply line 11 serving as a water supply system is provided with ammonia injection means 34 for injecting ammonia as a pH adjusting agent.
  • ammonia injection means 34 for injecting ammonia as a pH adjusting agent.
  • a predetermined amount of ammonia is injected from the ammonia injection means 34 into the feed water for pH adjustment so that the pH of the feed water in the low-pressure drum 24 is 9.0 or more and the ammonia concentration is 0.5 ppm or more.
  • the pH of the feed water in the low-pressure drum 24 is set to 9.0 or more.
  • the pressure of the feed water in the low-pressure drum 24 is lower than the pressure of the feed water in the high-pressure drum 14 and the intermediate-pressure drum 18, and ammonia is more likely to evaporate and is easier to mix on the gas phase side (lower in the liquid phase). Since the distribution ratio between the gas phase and the liquid phase is high, the pH of the feed water in the low-pressure drum 24 is set to 9.0 or higher so that the pH of the feed water in the high-pressure drum 14 and the intermediate-pressure drum 18 is 9.0. Can also be high.
  • a plurality of ammonia concentration measuring devices 47, 48, and 49 for measuring the ammonia concentration of the feed water are installed on the water supply line 11 on the outlet side of the condenser 9.
  • the ammonia concentration measuring device 47 is installed on the water supply line 11 and between the condensate pump 10 and the ammonia injection means 34.
  • the ammonia concentration measuring device 48 is installed between the ammonia injection means 34 and the deaerator 28.
  • the ammonia concentration measuring device 49 is installed between the deaerator 28 and the low pressure economizer 26.
  • a blow line 35 is branched from the condenser 9 and the condensate pump 10 on the water supply line 11.
  • the blow line 35 is a line for discharging blow water which is ammonia-containing waste water generated in the combined cycle power plant 2 including the exhaust heat recovery boiler 3.
  • the blow line 35 is provided with a flow rate measuring device 53 for measuring the amount of blow water.
  • the amount of blow water measured by the flow rate measuring device 53 is transmitted to the control device 41.
  • the ammonia treatment system 1 is connected to the blow line 35.
  • the ammonia treatment system 1 includes a receiving tank 36 in which blow water is stored and seawater is introduced, an electrolytic treatment device 37, and a control device 41.
  • the electrolytic treatment apparatus 37 includes a circulation adjustment tank 38 into which treated water consisting of blow water and seawater flowing out from the receiving tank 36 is introduced, an electrolytic tank 39 into which adjustment liquid from the circulation adjustment tank 38 is introduced, and an electrolytic treatment liquid.
  • a circulation pump 40 for circulating the electrolyte, and the electrolytic treatment liquid treated in the electrolytic bath 39 is circulated to the circulation adjusting bath 38.
  • a seawater introduction line 42 (chloride ion supply means) for introducing seawater (chloride ion concentration: about 18,000 mg / liter) as a chloride ion source is connected to the receiving tank 36.
  • the seawater introduction line 42 is provided with a seawater pump 46.
  • the seawater pump 46 is configured to be controllable by the control device 41.
  • the liquid introduced through the seawater introduction line 42 is not limited to seawater as long as the liquid contains chloride ions.
  • a configuration in which an aqueous sodium chloride solution is introduced from the seawater introduction line 42 may be adopted. In this way, by introducing the sodium chloride aqueous solution, it is possible to cope with facilities where seawater intake is difficult.
  • the circulation adjusting tank 38 includes a pH measuring device 43 that measures the pH of the treated water, a temperature measuring device 51 that measures the temperature of the treated water, and a chloride ion concentration measurement that measures the chloride ion concentration of the treated water.
  • a device 44 is provided.
  • the electrolytic cell 39 has at least a pair of electrodes immersed in the treatment liquid in the electrolytic cell 39 and a DC power supply device 45 connected to the electrodes. By applying a DC voltage between these electrodes by a DC power supply device 45, the treatment liquid in the tank is electrolyzed.
  • the electrolytic cell 39 is provided with a residual chlorine measuring device 52 that measures the concentration of residual chlorine in the electrolytic cell 39.
  • the residual chlorine measuring device 52 is connected to the control device 41.
  • blow water containing ammonia is introduced into the receiving tank 36, and seawater containing sodium chloride is introduced into the stored blow water via the seawater introduction line 42.
  • treated water comprising blow water and seawater and containing chloride ions is supplied to the electrolytic treatment apparatus 37 at a predetermined rate.
  • the treated water is supplied to the circulation adjusting tank 38 of the electrolytic treatment apparatus 37 and then supplied to the electrolytic tank 39.
  • a predetermined voltage is applied between the electrodes in the electrolytic cell 39, and a current is supplied so as to obtain a predetermined current density.
  • chlorine (Cl 2 ) is generated by the electrode reaction of Formula (1). appear. Cl ⁇ ⁇ Cl 2 + 2e ⁇ (1)
  • Cl 2 generated in the treatment liquid in the tank generates hypochlorous acid (HClO) by the solution reaction of formula (2).
  • the control device 41 controls the DC power supply device 45 on the basis of the ammonia concentration measured by the ammonia concentration measuring devices 47, 48, and 49 and the amount of blow water measured by the flow rate measuring device 53 to control the electrolytic treatment device 37.
  • the current value and processing time are controlled. That is, the control device 41 performs the ammonia treatment in the ammonia treatment system 1 with high accuracy by controlling the current of the power supply device so that the concentration of hypochlorous acid is adapted to the amount of blow water and the ammonia concentration. Can do.
  • the ammonia concentration measuring device may be installed in one place, and in that case, the installation location of the ammonia concentration measuring device 47 closer to the condenser 9 is given priority.
  • the treatment time of the electrolytic treatment by the electrolytic treatment device 37 is controlled by the control device 41 on the basis of the concentration of residual chlorine measured by the residual chlorine measuring device 52 in addition to the ammonia concentration. Released. Specifically, the control device 41 determines whether the concentration of residual chlorine is equal to or higher than a set value. Then, based on a test performed in advance, a residual chlorine concentration at which it can be determined that the ammonia concentration has become a predetermined value or less is set, and when the residual chlorine concentration reaches a set value, the electrolysis is stopped. The treated water is discharged through a residual chlorinator (not shown). That is, in the electrolysis treatment time set according to the ammonia concentration, even when the ammonia concentration does not fall appropriately, the treatment time is extended until the ammonia concentration becomes a predetermined value or less.
  • the amount of seawater is controlled according to the measured value of the pH measuring device 43. That is, the control device 41 adjusts the amount of seawater by controlling the seawater pump 46 based on the input from the pH measuring device 43 so that the pH of the treated water in the circulation adjusting tank 38 becomes pH 7 to pH 9. Similarly, the amount of seawater is controlled according to the measured value of the temperature measuring device 51. That is, the control device 41 controls the seawater pump 46 to adjust the amount of seawater so that the temperature of the treated water is 20 ° C. to 50 ° C. Similarly, the amount of seawater is controlled based on the measured value of the chloride ion concentration measuring device 44. That is, the control device 41 adjusts the amount of seawater by controlling the seawater pump 46 so that the chloride ion concentration of the treated water becomes 2,000 mg / liter or more.
  • the electrolysis is controlled based on the feed water system of the exhaust heat recovery boiler 3 or the ammonia concentration of blow water and the amount of blow water.
  • emitted can be controlled more correctly by making the density
  • the amount of seawater introduced is adjusted so that the chloride ion concentration of the treated water is 2,000 mg / liter or more, chloride ions necessary for electrolysis can be secured stably.
  • FIG. 3 is a detailed system diagram of the ammonia treatment system according to the present embodiment.
  • differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
  • the ammonia treatment system 1 ⁇ / b> B of the present embodiment is connected to the electrolytic treatment apparatus 37 ⁇ / b> B and the blow line 35, a receiving tank 36 in which blow water is stored, and a process that flows out of the receiving tank 36. It comprises a mixing tank 55 into which water and treated water from the electrolytic treatment device 37B are introduced, and a control device 41.
  • a seawater introduction line 70 for introducing seawater as a chloride ion source is connected to the receiving tank 36.
  • the seawater introduction line 70 is provided with a seawater pump 71.
  • the seawater pump 71 is configured to be controllable by the control device 41.
  • the receiving tank 36 is provided with a temperature measuring device 72 for measuring the temperature of blow water.
  • the electrolytic treatment apparatus 37B includes a circulation adjustment tank 38B into which seawater is introduced, an electrolytic tank 39 into which the adjustment liquid from the circulation adjustment tank 38B is introduced, and a circulation pump 40 for circulating the electrolytic treatment liquid.
  • the electrolytic treatment apparatus 37B is configured to circulate the electrolytic treatment liquid treated in the electrolytic bath 39 to the circulation adjustment bath 38B.
  • the seawater introduction line 42B for introducing seawater as a chloride ion source is connected to the circulation adjustment tank 38B.
  • the seawater introduction line 42 ⁇ / b> B is provided with a seawater pump 46, and the seawater pump 46 can be controlled by the control device 41.
  • the circulation adjusting tank 38B includes a pH measuring device 43 that measures the pH of the treated water, a temperature measuring device 51 that measures the temperature of the treated water, and a chloride ion concentration measurement that measures the chloride ion concentration of the treated water.
  • a device 44 is provided.
  • seawater containing sodium chloride is directly introduced into the circulation adjustment tank 38B of the electrolytic treatment apparatus 37B to generate hypochlorous acid (HClO).
  • HCVO hypochlorous acid
  • Treated water containing hypochlorous acid is introduced into a mixing tank 55 in which blow water is stored, and ammonia and hypochlorous acid present in the blow water undergo a solution reaction to be decomposed into nitrogen gas (N 2 ).
  • N 2 nitrogen gas
  • the control device 41 controls the seawater pump 71 to adjust the amount of seawater so that the temperature of the treated water in the receiving tank 36 is 50 ° C. or less.
  • seawater with a high chloride ion concentration is introduced into the electrolytic cell, so that the current density can be increased, and the electrolytic treatment apparatus 37B can be made compact. Can be planned.
  • FIG. 4 is a detailed system diagram of the ammonia treatment system according to this embodiment.
  • differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
  • a concentrator 60 that concentrates ammonia contained in part or all of the treated water is provided between the receiving tank 36 and the electrolytic treatment device 37. Yes. That is, ammonia contained in the treated water discharged from the receiving tank 36 is concentrated by the concentrating device 60 and then introduced into the electrolytic processing device 37.
  • the concentration device 60 a device using a reverse osmosis membrane, electrodialysis, capacitor desalting, ion exchange resin, and water softener can be employed.
  • the ammonia introduced into the electrolytic treatment device 37 is concentrated by the concentration device 60, so that the required chlorine (refer to the formula (2)) is reduced.
  • the supply amount of ions can be reduced. That is, since chloride ions can be efficiently used in the electrolytic cell 39, the supply amount from the outside can be reduced.
  • FIG. 5 is a detailed system diagram of the ammonia treatment system according to the present embodiment.
  • the difference from the above-described third embodiment will be mainly described, and the description of the same parts will be omitted.
  • wastewater having a low ammonia concentration generated during concentration of ammonia in the concentration device 60 is mixed with treated water discharged from the electrolytic treatment device 37. That is, the concentration device 60 of the present embodiment is provided with a drain pipe 61 that discharges waste water having a low ammonia concentration. Waste water discharged from the drain pipe 61 is mixed with treated water discharged from the electrolytic treatment apparatus 37.
  • the wastewater having a low ammonia concentration produced by the concentrator 60 is mixed with the treated water discharged from the electrolytic treatment device 37, whereby the ammonia concentration of the discharged treated water is reduced to a predetermined concentration or less. Can keep.
  • FIG. 6 is a detailed system diagram of the ammonia treatment system according to the present embodiment.
  • the difference from the above-described third embodiment will be mainly described, and the description of the same parts will be omitted.
  • the treated water of the electrolytic treatment device 37 is circulated between the receiving tank 36 and the concentration device 60. That is, the ammonia treatment system 1E of this embodiment returns the electrolyzed and ammonia-treated treated water to the front of the concentrating device 60 via the treated water circulation pipe 62, and circulates and uses sodium chloride.
  • chloride ions can be recycled, and no external supply is required.
  • FIG. 7 is a detailed system diagram of the ammonia treatment system according to the present embodiment.
  • differences from the second embodiment described above will be mainly described, and description of similar parts will be omitted.
  • a desalinator 63 for concentrating salt is provided on the downstream side of the mixing tank 55, and a part of the concentrated water concentrated by the desalter 63 is electrolyzed. It supplies to the processing apparatus 37B as a chloride ion source.
  • the desalting apparatus 63 and the electrolytic treatment apparatus 37 ⁇ / b> B are connected by a concentrated water reuse pipe 64.
  • emitted from the desalination apparatus 63 is discharged
  • the desalting device 63 a device using a reverse osmosis membrane, electrodialysis, capacitor desalting, ion exchange resin, water softener, or the like can be used.
  • the supply of chloride ions can be reduced by recovering and supplying chloride ions supplied to the electrolytic treatment apparatus 37B from the desalting apparatus 63.
  • FIG. 8 is a detailed system diagram of the ammonia treatment system according to the present embodiment.
  • the difference from the above-described sixth embodiment will be mainly described, and the description of the same parts will be omitted.
  • an SS separation device 65 that separates SS (floating matter) of treated water is provided on the upstream side of the mixing tank 55 on the blow line 35. That is, the ammonia treatment system 1G of the present embodiment is configured to supply the mixing tank 55 after the SS separation of the treated water containing ammonia introduced through the blow line 35 is performed.
  • SS separator 65 an apparatus using a strainer, a microfiltration membrane (MF) module, an ultrafiltration membrane (UF) module, a sand filtration, a sedimentation basin, a liquid cyclone, or the like can be employed.
  • MF microfiltration membrane
  • UF ultrafiltration membrane
  • the SS separation reduces the inflow of SS into the electrolytic treatment device 37B and the desalination device 63, and the risk of damage to the electrolytic treatment device 37B and the desalination device 63 can be reduced.
  • FIG. 9 is a detailed system diagram of the ammonia treatment system according to this embodiment.
  • the difference from the above-described sixth embodiment will be mainly described, and the description of the same parts will be omitted.
  • a cooler 66 for cooling the treated water is provided on the upstream side of the mixing tank 55 on the blow line 35.
  • the risk of damage to the electrolytic treatment apparatus 37B and the desalination apparatus 63 can be reduced by cooling (for example, 50 ° C.) the high-temperature (for example, 80 ° C.) treated water by the cooler 66. .
  • FIG. 10 is a detailed system diagram of the ammonia treatment system according to this embodiment.
  • the difference from the above-described sixth embodiment will be mainly described, and the description of the same parts will be omitted.
  • the ammonia treatment system 1J of the present embodiment is provided with a Cl removal device 67 for removing residual chlorine (Cl 2 , ClO ⁇ ) between the mixing tank 55 and the desalting device 63.
  • a Cl removal device 67 for removing residual chlorine (Cl 2 , ClO ⁇ ) between the mixing tank 55 and the desalting device 63.
  • the Cl removing device 67 a device using activated carbon, air aeration, reducing agent supply, or the like can be employed.
  • the reducing agent sodium thiosulfate (Na 2 S 2 O 3 ), sodium hydrogen sulfite (NaHSO 3 ), sodium sulfite (Na 2 SO 3 ) and the like can be employed.
  • the residual chlorine is reduced and decomposed into chloride ions by the Cl removing device 67, so that residual chlorine in the treated water flowing into the desalting device 63 is blocked. Can prevent damage.
  • FIG. 11 is a detailed system diagram of the ammonia treatment system according to the present embodiment.
  • the differences from the above-described ninth embodiment will be mainly described, and description of similar parts will be omitted.
  • the residual chlorine measuring device 68 is provided downstream of the Cl removal device 67 (upstream of the desalting device 63) of the ammonia treatment system 1J of the ninth embodiment.
  • the Cl removing device 67 is controlled according to the residual chlorine concentration measured by the residual chlorine measuring device 68.
  • a bypass that bypasses the treated water discharged from the Cl removal device 67 to the concentrated water reuse pipe 64 on the downstream side of the desalination device 63.
  • a pipe 69 is provided.
  • the treated water discharged from the Cl removal device 67 is introduced into either the desalting device 63 or the bypass pipe 69 according to a command from the control device 41. This switching is performed by a valve (not shown).
  • the control device 41 monitors the residual chlorine concentration of the treated water discharged from the mixing tank 55 by the residual chlorine measuring device 68 and operates the Cl removal device 67 so that the residual chlorine concentration is not detected. Specifically, the amount of reducing agent / activated carbon added and the amount of air aeration are controlled.
  • the flow path to the desalting apparatus 63 is shut off by a valve, the treated water is introduced into the bypass flow path 69, and bypassed to the concentrated water reuse pipe 64.
  • the removal rate of residual chlorine by the Cl removal device 67 can be improved.
  • the ammonia concentration is measured by the ammonia concentration measuring device provided in the water supply line 11, but the ammonia concentration may be measured by the blow line 35. .
  • the means for measuring the concentration of ammonia is not limited to the measurement by the ammonia concentration measuring device, but may be configured to be estimated from the amount of ammonia injected from the ammonia injection means and the amount of blow water in the water supply system.
  • electrolysis is controlled based on the feedwater system of the boiler facility or the ammonia concentration of blow water and the amount of blow water. For this reason, even when the fluctuation

Abstract

An ammonia treatment system comprises: a boiler facility for collecting heat; an ammonia injection means for injecting ammonia into a water supply system arranged in the boiler facility; an ammonia concentration measurement means for measuring the concentration of ammonia in blow water coming from the water supply system or the boiler facility; a flow volume measurement means for measuring the volume of the blow water; a receiving vessel for receiving the blow water therein; a chloride ion supply means for introducing an aqueous sodium chloride solution as a chloride ion source into the receiving vessel; an electrolysis vessel for electrolyzing a treated aqueous solution comprising the blow water and the aqueous sodium chloride solution; and a control device for controlling an electric current to be applied in the electrolysis and a treatment time period. In the control device, the necessary chloride amount is calculated on the basis of the concentration of ammonia and the volume of the blow water to control the amount of an electric current to be applied in the electrolysis.

Description

アンモニア処理システムAmmonia treatment system
 本発明は、アンモニア処理システムに係り、特にボイラ設備からの排水であるブロー水に含まれるアンモニアを電気分解処理するアンモニア処理システムに関する。
 本願は、2012年5月25日に出願された日本国特許出願第2012-119933号、及び2013年1月23日に出願された日本国特許出願第2013-010251号に対し優先権を主張し、その内容をここに援用する。
The present invention relates to an ammonia treatment system, and more particularly to an ammonia treatment system that electrolyzes ammonia contained in blow water that is drainage from boiler equipment.
This application claims priority to Japanese Patent Application No. 2012-119933 filed on May 25, 2012 and Japanese Patent Application No. 2013-010251 filed on January 23, 2013. , The contents of which are incorporated herein.
 例えば火力発電プラントにおいて、腐食の要因となる酸素を除去するために使用されているヒドラジンは、「変異原性が認められた化学物質」と評価されていることから、近年はより安全な脱酸素剤や、脱酸素剤不使用の水処理の採用が進行している。
 ヒドラジンを用いない脱酸素剤としては、水素イオン指数(pH)の値を大きくした(例えばpH7~pH9)アンモニアが知られているが、脱酸素剤としてアンモニアを用いることにより今後プラントからの排水のアンモニア濃度が高くなることが想定されている(例えば非特許文献1参照)。一方、排水規制により窒素の低減も求められており、早急な対応が望まれている。
For example, hydrazine used to remove oxygen that causes corrosion in thermal power plants has been evaluated as a "chemical substance with recognized mutagenicity". Adoption of water treatment without agents and oxygen scavengers is in progress.
As an oxygen scavenger that does not use hydrazine, ammonia with a high hydrogen ion index (pH) (for example, pH 7 to pH 9) is known. However, by using ammonia as the oxygen scavenger, wastewater from the plant can be reduced in the future. It is assumed that the ammonia concentration becomes high (see, for example, Non-Patent Document 1). On the other hand, reduction of nitrogen is also required by the drainage regulations, and an immediate response is desired.
 特許文献1には、発電プラントから排出される排水を電気分解することによりアンモニアを分解するアンモニア処理システムであって、残留塩素濃度から電気分解の終了点を決定するシステムが記載されている。
 また、次亜塩素酸ナトリウムなどの薬品を用い、塩素処理によってアンモニアを分解するアンモニア処理システムも知られている。
Patent Document 1 describes an ammonia treatment system for decomposing ammonia by electrolyzing waste water discharged from a power plant, and determining the end point of electrolysis from the residual chlorine concentration.
In addition, an ammonia treatment system that decomposes ammonia by chlorine treatment using a chemical such as sodium hypochlorite is also known.
日本国特許第4518826号公報Japanese Patent No. 4518826
 しかしながら、例えばボイラ設備からの排水を処理する場合、排水の水量やアンモニア濃度の変動が大きく、例えばブロー水の水量が多い起動時においては、電解処理が間に合わないという問題があった。
 また、次亜塩素酸ナトリウムなどの薬品によるアンモニア分解の場合、強アルカリの酸化剤である次亜塩素酸ナトリウムタンク等を設置するスペースが必要となり、既存の設備の中に組み入れることが難しかった。
However, for example, when waste water from a boiler facility is treated, there is a problem that the amount of waste water and ammonia concentration vary greatly, and, for example, at the time of start-up where the amount of blow water is large, electrolytic treatment is not in time.
In addition, in the case of ammonia decomposition using chemicals such as sodium hypochlorite, a space for installing a sodium hypochlorite tank or the like, which is a strong alkali oxidizing agent, is required, and it has been difficult to incorporate it into existing facilities.
 この発明は、ボイラ設備に設けられるアンモニア処理システムであって、ボイラ排水の変動が大きい場合においても、適切にアンモニアの電気分解処理を行うことができるアンモニア処理システムを提供する。 The present invention provides an ammonia treatment system provided in a boiler facility, which can appropriately perform an electrolysis treatment of ammonia even when the fluctuation of boiler drainage is large.
 本発明の第1の態様によれば、アンモニア処理システムは、熱回収をするボイラ設備と、前記ボイラ設備内の給水系統にアンモニアを注入するアンモニア注入手段と、前記給水系統又は前記ボイラ設備からのブロー水のアンモニア濃度を測定するアンモニア濃度測定手段と、前記ブロー水の水量を測定する流量測定手段と、前記ブロー水を受け入れる受入槽と、前記受入槽に塩化物イオン源として塩化ナトリウム水溶液を導入する塩化物イオン供給手段と、前記ブロー水と前記塩化ナトリウム水溶液とからなる処理水を電気分解する電解槽と、前記電気分解の際の電流、及び処理時間を制御する制御装置と、を有する。前記制御装置は、前記アンモニア濃度及び前記ブロー水の水量に基づいて必要塩素量を算出し、電気分解の際の電流量を制御する。 According to the first aspect of the present invention, an ammonia treatment system includes: boiler equipment for heat recovery; ammonia injection means for injecting ammonia into a water supply system in the boiler equipment; and the water supply system or the boiler equipment. Ammonia concentration measuring means for measuring the ammonia concentration of blow water, a flow rate measuring means for measuring the amount of blow water, a receiving tank for receiving the blow water, and an aqueous sodium chloride solution as a chloride ion source introduced into the receiving tank A chloride ion supplying means, an electrolytic cell for electrolyzing the treated water composed of the blow water and the sodium chloride aqueous solution, and a control device for controlling a current and a treatment time during the electrolysis. The control device calculates a required chlorine amount based on the ammonia concentration and the amount of blow water, and controls a current amount during electrolysis.
 上記構成によれば、ボイラ設備の給水系統又はブロー水のアンモニア濃度及びブロー水の水量に基づいて電気分解が制御される。このため、ボイラ排水の変動が大きい場合においてもアンモニア濃度の排水基準を満足することができる。 According to the above configuration, the electrolysis is controlled based on the feed water system of the boiler facility or the ammonia concentration of the blow water and the amount of the blow water. For this reason, even when the fluctuation | variation of boiler waste_water | drain is large, the waste_water | drain standard of ammonia concentration can be satisfied.
 上記アンモニア処理システムにおいて、前記処理水の残留塩素濃度を電気分解中に測定する残留塩素測定手段を有し、前記制御装置は、前記残留塩素濃度によって電気分解の終了点を決定してもよい。 The ammonia treatment system may have a residual chlorine measuring means for measuring the residual chlorine concentration of the treated water during electrolysis, and the control device may determine the end point of electrolysis according to the residual chlorine concentration.
 上記構成によれば、残留塩素濃度を電気分解の終了の指標とすることによって、排出されるアンモニア濃度の排水基準をより正確に制御することができる。 According to the above configuration, the drainage standard of the discharged ammonia concentration can be more accurately controlled by using the residual chlorine concentration as an indicator of the end of electrolysis.
 上記アンモニア処理システムにおいて、前記処理水の塩化物イオン濃度を測定する塩化物イオン濃度測定手段を有し、前記制御装置は、前記塩化物イオン濃度が所定濃度以上となるように、前記塩化ナトリウム水溶液の導入量を制御してもよい。
 上記構成によれば、電気分解に必要な塩化物イオンを安定して確保することができる。
The ammonia treatment system has a chloride ion concentration measuring means for measuring a chloride ion concentration of the treated water, and the control device is configured so that the chloride ion concentration is equal to or higher than a predetermined concentration. The amount of introduction may be controlled.
According to the said structure, the chloride ion required for electrolysis can be ensured stably.
 上記アンモニア処理システムにおいて、前記受入槽と電解槽との間に処理水の少なくとも一部に含まれるアンモニアを濃縮する濃縮装置を設けてもよい。 In the ammonia treatment system, a concentrating device for concentrating ammonia contained in at least a part of the treated water may be provided between the receiving tank and the electrolytic cell.
 上記構成によれば、電解槽に導入されるアンモニアが濃縮装置によって濃縮されることによって、必要とされる塩素が低減されるため、原料となる塩化物イオンの供給量を低減することができる。 According to the above configuration, the required chlorine is reduced by concentrating the ammonia introduced into the electrolytic cell by the concentrator, so that the supply amount of chloride ions as a raw material can be reduced.
 本発明の第2の態様によれば、アンモニア処理システムは、熱回収をするボイラ設備と、前記ボイラ設備内の給水系統にアンモニアを注入するアンモニア注入手段と、前記給水系統又は前記ボイラ設備からのブロー水のアンモニア濃度を測定するアンモニア濃度測定手段と、前記ブロー水の水量を測定する流量測定手段と、塩化物イオン源として塩化ナトリウム水溶液を導入する塩化物イオン供給手段を備え、前記塩化ナトリウム水溶液を電気分解する電解槽と、前記ブロー水を受け入れるとともに、前記電解槽からの処理水を受け入れる混合槽と、前記電気分解の際の電流、及び処理時間を制御する制御装置と、を有する。前記制御装置は、前記アンモニア濃度及び前記ブロー水の水量に基づいて必要塩素量を算出し、電気分解の際の電流量を制御する。 According to the second aspect of the present invention, an ammonia treatment system includes: boiler equipment for heat recovery; ammonia injection means for injecting ammonia into a water supply system in the boiler equipment; and the water supply system or the boiler equipment. Ammonia concentration measuring means for measuring the ammonia concentration of blow water, a flow rate measuring means for measuring the amount of water in the blow water, and a chloride ion supply means for introducing a sodium chloride aqueous solution as a chloride ion source, An electrolyzer that electrolyzes water, a mixing tank that receives the blow water and the treated water from the electrolyzer, and a control device that controls the current and the treatment time during the electrolysis. The control device calculates a required chlorine amount based on the ammonia concentration and the amount of blow water, and controls a current amount during electrolysis.
 上記構成によれば、ボイラ設備の給水系統又はブロー水のアンモニア濃度及びブロー水の水量に基づいて電気分解が制御される。このため、ボイラ排水の変動が大きい場合においてもアンモニア濃度の排水基準を満足することができる。
 また、塩化物イオン濃度が高い状態で塩化ナトリウム水溶液が電解槽に導入されるため、電流密度を増大させることができる。
According to the said structure, electrolysis is controlled based on the ammonia density | concentration of blower water supply system or blow water, and the amount of blow water. For this reason, even when the fluctuation | variation of boiler waste_water | drain is large, the waste_water | drain standard of ammonia concentration can be satisfied.
Further, since the sodium chloride aqueous solution is introduced into the electrolytic cell in a state where the chloride ion concentration is high, the current density can be increased.
 上記アンモニア処理システムにおいて、前記処理水の残留塩素濃度を電気分解中に測定する残留塩素測定手段を有し、前記制御装置は、前記残留塩素濃度によって電気分解の終了点を決定してもよい。 The ammonia treatment system may have a residual chlorine measuring means for measuring the residual chlorine concentration of the treated water during electrolysis, and the control device may determine the end point of electrolysis according to the residual chlorine concentration.
 上記アンモニア処理システムにおいて、前記処理水の塩化物イオン濃度を測定する塩化物イオン濃度測定手段を有し、前記制御装置は、前記塩化物イオン濃度が所定濃度以上となるように、前記塩化ナトリウム水溶液の導入量を制御してもよい。 The ammonia treatment system has a chloride ion concentration measuring means for measuring a chloride ion concentration of the treated water, and the control device is configured so that the chloride ion concentration is equal to or higher than a predetermined concentration. The amount of introduction may be controlled.
 上記アンモニア処理システムにおいて、前記混合槽の下流側に設けられた脱塩装置と、前記脱塩装置によって濃縮された濃縮水の一部を電解槽に塩化物イオン源として供給する濃縮水再利用配管と、を備えてもよい。 In the ammonia treatment system, a desalinator provided on the downstream side of the mixing tank, and a concentrated water reuse pipe for supplying a part of the concentrated water concentrated by the desalter as a chloride ion source to the electrolytic cell And may be provided.
 上記構成によれば、電解槽に供給する塩化物イオンを脱塩装置から回収して供給する構成としたことによって、塩化物イオンの供給コストを低減することができる。 According to the above configuration, the supply cost of chloride ions can be reduced by the configuration in which the chloride ions supplied to the electrolytic cell are recovered and supplied from the desalting apparatus.
 上記したアンモニア処理システムによれば、ボイラ設備の給水系統又はブロー水のアンモニア濃度及びブロー水の水量に基づいて電気分解が制御される。このため、ボイラ排水の変動が大きい場合においてもアンモニア濃度の排水基準を満足することができる。 According to the above-described ammonia treatment system, electrolysis is controlled based on the feedwater system of the boiler facility or the ammonia concentration of blow water and the amount of blow water. For this reason, even when the fluctuation | variation of boiler waste_water | drain is large, the waste_water | drain standard of ammonia concentration can be satisfied.
本発明の第一実施形態に係るアンモニア処理システムを備えたコンバインドサイクル発電プラントの全体系統図である。It is a whole system diagram of a combined cycle power plant provided with an ammonia treatment system concerning a first embodiment of the present invention. 本発明の第一実施形態に係るアンモニア処理システムの詳細系統図である。1 is a detailed system diagram of an ammonia treatment system according to a first embodiment of the present invention. 本発明の第二実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 6th embodiment of this invention. 本発明の第七実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 7th embodiment of this invention. 本発明の第八実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 8th embodiment of this invention. 本発明の第九実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 9th embodiment of this invention. 本発明の第十実施形態に係るアンモニア処理システムの詳細系統図である。It is a detailed systematic diagram of the ammonia processing system which concerns on 10th embodiment of this invention.
(第一実施形態)
 以下、本発明の第一実施形態について図面を参照して詳細に説明する。
 図1に示すように、本実施形態のアンモニア処理システム1は、排熱回収ボイラ3を備えたコンバインドサイクル発電プラント2に設けられたものである。コンバインドサイクル発電プラント2は、ガスタービン4と、ガスタービン4からの排気ガスが送られる排熱回収ボイラ3と、蒸気タービン5と、ガスタービン4と蒸気タービン5の回転駆動力により駆動されて発電する発電機(図示せず)と、排熱回収ボイラ3から排出されるブロー水の処理を行うアンモニア処理システム1と、を有している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, an ammonia treatment system 1 according to this embodiment is provided in a combined cycle power plant 2 having an exhaust heat recovery boiler 3. The combined cycle power plant 2 is driven by the rotational driving force of the gas turbine 4, the exhaust heat recovery boiler 3 to which the exhaust gas from the gas turbine 4 is sent, the steam turbine 5, and the gas turbine 4 and the steam turbine 5 to generate power. And an ammonia treatment system 1 that performs a treatment of blow water discharged from the exhaust heat recovery boiler 3.
 排熱回収ボイラ3には、高圧加熱ユニット6、中圧加熱ユニット7、及び低圧加熱ユニット8が備えられている。排熱回収ボイラ3内では高圧加熱ユニット6、中圧加熱ユニット7、及び低圧加熱ユニット8を介して蒸気を発生させ、発生した蒸気を蒸気タービン5に送って蒸気タービン5で仕事をするようになっている。蒸気タービン5の排気は復水器9で凝縮されて復水され、復水ポンプ10により排熱回収ボイラ3に導入される。復水器9で凝縮された復水は、給水ライン11を介して排熱回収ボイラ3に送られる。 The exhaust heat recovery boiler 3 is provided with a high pressure heating unit 6, an intermediate pressure heating unit 7, and a low pressure heating unit 8. In the exhaust heat recovery boiler 3, steam is generated via the high-pressure heating unit 6, the intermediate-pressure heating unit 7, and the low-pressure heating unit 8, and the generated steam is sent to the steam turbine 5 so as to work on the steam turbine 5. It has become. Exhaust gas from the steam turbine 5 is condensed and condensed in a condenser 9, and is introduced into an exhaust heat recovery boiler 3 by a condensate pump 10. Condensate condensed in the condenser 9 is sent to the exhaust heat recovery boiler 3 through the water supply line 11.
 高圧加熱ユニット6は、高圧過熱器13、高圧ドラム14、高圧蒸発器15、及び高圧節炭器16を有している。高圧ドラム14の水は排熱回収ボイラ3内に配された高圧蒸発器15で過熱循環され、高圧ドラム14内で高圧蒸気を発生する。高圧ドラム14で発生した高圧蒸気は排熱回収ボイラ3内に配された高圧過熱器13で過熱されて蒸気タービン5に導入される。 The high pressure heating unit 6 includes a high pressure superheater 13, a high pressure drum 14, a high pressure evaporator 15, and a high pressure economizer 16. The water in the high-pressure drum 14 is superheated and circulated in a high-pressure evaporator 15 disposed in the exhaust heat recovery boiler 3 to generate high-pressure steam in the high-pressure drum 14. The high-pressure steam generated in the high-pressure drum 14 is superheated by the high-pressure superheater 13 disposed in the exhaust heat recovery boiler 3 and introduced into the steam turbine 5.
 中圧加熱ユニット7は、中圧過熱器17、中圧ドラム18、中圧蒸発器19及び中圧節炭器20を有している。中圧ドラム18の水は排熱回収ボイラ3内に配された中圧蒸発器19で過熱循環され、中圧ドラム18内で中圧蒸気を発生する。中圧ドラム18で発生した中圧蒸気は中圧過熱器17を通って再熱器21に導入され、再熱器21で再熱されて蒸気タービン5に導入される。中圧過熱器17からの蒸気はガスタービン4の高温部(燃焼器や翼等)の冷却用としてガスタービン4側に導入される。 The intermediate pressure heating unit 7 includes an intermediate pressure superheater 17, an intermediate pressure drum 18, an intermediate pressure evaporator 19, and an intermediate pressure economizer 20. The water in the intermediate pressure drum 18 is superheated and circulated in an intermediate pressure evaporator 19 disposed in the exhaust heat recovery boiler 3 to generate intermediate pressure steam in the intermediate pressure drum 18. The intermediate pressure steam generated in the intermediate pressure drum 18 is introduced into the reheater 21 through the intermediate pressure superheater 17, reheated by the reheater 21, and introduced into the steam turbine 5. The steam from the intermediate pressure superheater 17 is introduced to the gas turbine 4 side for cooling the high temperature portion (combustor, blades, etc.) of the gas turbine 4.
 低圧加熱ユニット8は、低圧過熱器23、低圧ドラム24、低圧蒸発器25、及び低圧節炭器26を有している。低圧ドラム24の水は排熱回収ボイラ3内に配された低圧蒸発器25で過熱循環され、低圧ドラム24内で低圧蒸気を発生する。低圧ドラム24で発生した低圧蒸気は低圧過熱器23を通って蒸気タービン5に導入される。 The low pressure heating unit 8 includes a low pressure superheater 23, a low pressure drum 24, a low pressure evaporator 25, and a low pressure economizer 26. Water in the low-pressure drum 24 is superheated and circulated in a low-pressure evaporator 25 disposed in the exhaust heat recovery boiler 3 to generate low-pressure steam in the low-pressure drum 24. The low pressure steam generated in the low pressure drum 24 is introduced into the steam turbine 5 through the low pressure superheater 23.
 低圧ドラム24には、復水器9からの復水27が脱気器28及び低圧節炭器26を介して給水される。低圧節炭器26の出口側には高圧ドラム14及び中圧ドラム18につながる給水ライン29が設けられる。給水ライン29からは、高圧給水ポンプ30を介して高圧ドラム14に給水が行われ、中圧給水ポンプ31を介して中圧ドラム18に給水が行われる。即ち、低圧ドラム24及び中圧ドラム18及び高圧ドラム14に並行に給水が行われる。低圧ドラム24が低圧側ユニットのドラムとされる。中圧ドラム18及び高圧ドラム14が高圧側ユニットのドラムとされる。
 なお、給水ライン11と給水ライン29との間のラインには、低圧節炭器26からの給水を循環する循環ポンプ32が設けられている。
Condensate 27 from the condenser 9 is supplied to the low pressure drum 24 through a deaerator 28 and a low pressure economizer 26. A water supply line 29 connected to the high pressure drum 14 and the intermediate pressure drum 18 is provided on the outlet side of the low pressure economizer 26. From the water supply line 29, water is supplied to the high pressure drum 14 via the high pressure water supply pump 30, and water is supplied to the intermediate pressure drum 18 via the intermediate pressure water supply pump 31. That is, water is supplied to the low-pressure drum 24, the intermediate-pressure drum 18 and the high-pressure drum 14 in parallel. The low pressure drum 24 is a drum of the low pressure side unit. The intermediate pressure drum 18 and the high pressure drum 14 are drums of the high pressure side unit.
A circulation pump 32 that circulates water supplied from the low-pressure economizer 26 is provided in a line between the water supply line 11 and the water supply line 29.
 また、脱気器28の入口側で復水27の一部が復水器9に戻され、給水ライン11から分岐して脱気器28側に一部の水が戻される。排熱回収ボイラ3内の各機器の配置は一例であり、節炭器や過熱器の台数や配置はガスタービン4の性能等により適宜変更される。 Further, a part of the condensate 27 is returned to the condenser 9 on the inlet side of the deaerator 28, and a part of the water is returned to the deaerator 28 side by branching from the water supply line 11. The arrangement of each device in the exhaust heat recovery boiler 3 is an example, and the number and arrangement of the economizers and superheaters are appropriately changed depending on the performance of the gas turbine 4 and the like.
 給水系統である給水ライン11にはpH調整剤のアンモニアを注入するアンモニア注入手段34が設けられている。アンモニア注入手段34からはpH調整用として給水に所定量のアンモニアが注入され、低圧ドラム24内の給水のpHを9.0以上としていると共にアンモニア濃度を0.5ppm以上となるようにしている。 A water supply line 11 serving as a water supply system is provided with ammonia injection means 34 for injecting ammonia as a pH adjusting agent. A predetermined amount of ammonia is injected from the ammonia injection means 34 into the feed water for pH adjustment so that the pH of the feed water in the low-pressure drum 24 is 9.0 or more and the ammonia concentration is 0.5 ppm or more.
 一般に、給水のpHが9.0を下回ると流れによるエロージョン・コロージョン(腐食・浸食)の発生が懸念される。このため、低圧ドラム24内の給水のpHを9.0以上としている。低圧ドラム24内の給水の圧力は高圧ドラム14及び中圧ドラム18の給水の圧力よりも低く、アンモニアは蒸発しやすく圧力が低い程気相側に混合しやすい(液相に混合しにくい)ので、即ち、気相と液相との分配率の値が高いので、低圧ドラム24内の給水のpHを9.0以上とすることで高圧ドラム14及び中圧ドラム18の給水のpHを9.0よりも高い値にすることができる。 Generally, if the pH of the feed water is less than 9.0, there is a concern that erosion and corrosion (corrosion and erosion) due to flow may occur. For this reason, the pH of the feed water in the low-pressure drum 24 is set to 9.0 or more. The pressure of the feed water in the low-pressure drum 24 is lower than the pressure of the feed water in the high-pressure drum 14 and the intermediate-pressure drum 18, and ammonia is more likely to evaporate and is easier to mix on the gas phase side (lower in the liquid phase). Since the distribution ratio between the gas phase and the liquid phase is high, the pH of the feed water in the low-pressure drum 24 is set to 9.0 or higher so that the pH of the feed water in the high-pressure drum 14 and the intermediate-pressure drum 18 is 9.0. Can also be high.
 また、復水器9の出口側の給水ライン11上には、給水のアンモニア濃度を測定するための複数のアンモニア濃度測定装置47,48,49が設置されている。具体的には、アンモニア濃度測定装置47は、給水ライン11上であって、復水ポンプ10とアンモニア注入手段34との間に設置されている。アンモニア濃度測定装置48は、アンモニア注入手段34と脱気器28との間に設置されている。アンモニア濃度測定装置49は、脱気器28と低圧節炭器26との間に設置されている。 Also, a plurality of ammonia concentration measuring devices 47, 48, and 49 for measuring the ammonia concentration of the feed water are installed on the water supply line 11 on the outlet side of the condenser 9. Specifically, the ammonia concentration measuring device 47 is installed on the water supply line 11 and between the condensate pump 10 and the ammonia injection means 34. The ammonia concentration measuring device 48 is installed between the ammonia injection means 34 and the deaerator 28. The ammonia concentration measuring device 49 is installed between the deaerator 28 and the low pressure economizer 26.
 給水ライン11上であって、復水器9と復水ポンプ10との間からは、ブローライン35が分岐している。ブローライン35は、排熱回収ボイラ3を含むコンバインドサイクル発電プラント2において発生するアンモニア含有廃水であるブロー水を排出するためのラインである。 A blow line 35 is branched from the condenser 9 and the condensate pump 10 on the water supply line 11. The blow line 35 is a line for discharging blow water which is ammonia-containing waste water generated in the combined cycle power plant 2 including the exhaust heat recovery boiler 3.
 また、ブローライン35には、ブロー水の水量を測定する流量測定装置53が設けられている。流量測定装置53にて測定されたブロー水の水量は制御装置41に送信される。 The blow line 35 is provided with a flow rate measuring device 53 for measuring the amount of blow water. The amount of blow water measured by the flow rate measuring device 53 is transmitted to the control device 41.
 アンモニア処理システム1はブローライン35に接続されている。アンモニア処理システム1は、ブロー水が貯留されるとともに、海水が導入される受入槽36と、電解処理装置37と、制御装置41から構成されている。
 電解処理装置37は、受入槽36から流出するブロー水と海水からなる処理水が導入される循環調整槽38と、循環調整槽38からの調整液が導入される電解槽39と、電解処理液を循環させるための循環ポンプ40と、を備え、電解槽39内にて処理された電解処理液を循環調整槽38に循環させる構成となっている。
The ammonia treatment system 1 is connected to the blow line 35. The ammonia treatment system 1 includes a receiving tank 36 in which blow water is stored and seawater is introduced, an electrolytic treatment device 37, and a control device 41.
The electrolytic treatment apparatus 37 includes a circulation adjustment tank 38 into which treated water consisting of blow water and seawater flowing out from the receiving tank 36 is introduced, an electrolytic tank 39 into which adjustment liquid from the circulation adjustment tank 38 is introduced, and an electrolytic treatment liquid. And a circulation pump 40 for circulating the electrolyte, and the electrolytic treatment liquid treated in the electrolytic bath 39 is circulated to the circulation adjusting bath 38.
 図2に示すように、受入槽36には、塩化物イオン源として海水(塩化物イオン濃度:約18,000mg/リットル)を導入するための海水導入ライン42(塩化物イオン供給手段)が接続されている。海水導入ライン42には海水ポンプ46が設けられている。この海水ポンプ46は、制御装置41によって制御可能に構成されている。 As shown in FIG. 2, a seawater introduction line 42 (chloride ion supply means) for introducing seawater (chloride ion concentration: about 18,000 mg / liter) as a chloride ion source is connected to the receiving tank 36. Has been. The seawater introduction line 42 is provided with a seawater pump 46. The seawater pump 46 is configured to be controllable by the control device 41.
 なお、海水導入ライン42を介して導入される液体は、塩化物イオンを含む液体であればよく海水に限ることはない。例えば塩化ナトリウム水溶液を海水導入ライン42から導入する構成としてもよい。このように、塩化ナトリウム水溶液を導入することによって、海水取水が困難な施設にも対応可能となる。 Note that the liquid introduced through the seawater introduction line 42 is not limited to seawater as long as the liquid contains chloride ions. For example, a configuration in which an aqueous sodium chloride solution is introduced from the seawater introduction line 42 may be adopted. In this way, by introducing the sodium chloride aqueous solution, it is possible to cope with facilities where seawater intake is difficult.
 また、循環調整槽38には、処理水のpHを測定するpH測定装置43と、処理水の温度を測定する温度測定装置51と、処理水の塩化物イオン濃度を測定する塩化物イオン濃度測定装置44と、が設けられている。 The circulation adjusting tank 38 includes a pH measuring device 43 that measures the pH of the treated water, a temperature measuring device 51 that measures the temperature of the treated water, and a chloride ion concentration measurement that measures the chloride ion concentration of the treated water. A device 44 is provided.
 電解槽39は、電解槽39内の処理液中に浸漬された少なくとも一対の電極と、この電極に接続された直流電源装置45と、を有する。これらの電極間に、直流電源装置45により直流電圧を印加することにより槽内の処理液の電気分解を行う。
 また、電解槽39には、電解槽39内の残留塩素の濃度を測定する残留塩素測定装置52が設けられている。残留塩素測定装置52は、制御装置41と接続されている。
The electrolytic cell 39 has at least a pair of electrodes immersed in the treatment liquid in the electrolytic cell 39 and a DC power supply device 45 connected to the electrodes. By applying a DC voltage between these electrodes by a DC power supply device 45, the treatment liquid in the tank is electrolyzed.
The electrolytic cell 39 is provided with a residual chlorine measuring device 52 that measures the concentration of residual chlorine in the electrolytic cell 39. The residual chlorine measuring device 52 is connected to the control device 41.
 次に、本実施形態のアンモニア処理システム1の作用について説明する。
 まず、受入槽36にアンモニアを含有するブロー水が導入され、貯留されたブロー水に海水導入ライン42を介して塩化ナトリウムを含有する海水が導入される。
Next, the operation of the ammonia processing system 1 of the present embodiment will be described.
First, blow water containing ammonia is introduced into the receiving tank 36, and seawater containing sodium chloride is introduced into the stored blow water via the seawater introduction line 42.
 次いで、ブロー水と海水とからなり、塩化物イオンを含む処理水は、電解処理装置37に所定速度で供給される。
 ここで、処理水は、電解処理装置37の循環調整槽38に供給され、次いで、電解槽39に供給される。電解槽39では、電解槽39内の電極間に所定電圧を印加され、所定の電流密度となるように電流が供給されて、陽極では、式(1)の電極反応により塩素(Cl)が発生する。
  Cl → Cl+2e ・・・ (1)
Next, treated water comprising blow water and seawater and containing chloride ions is supplied to the electrolytic treatment apparatus 37 at a predetermined rate.
Here, the treated water is supplied to the circulation adjusting tank 38 of the electrolytic treatment apparatus 37 and then supplied to the electrolytic tank 39. In the electrolytic cell 39, a predetermined voltage is applied between the electrodes in the electrolytic cell 39, and a current is supplied so as to obtain a predetermined current density. At the anode, chlorine (Cl 2 ) is generated by the electrode reaction of Formula (1). appear.
Cl → Cl 2 + 2e (1)
 さらに、槽内の処理液中に発生したClは、式(2)の溶液反応により次亜塩素酸(HClO)を生成する。
  Cl+HO → HClO+H+Cl ・・・ (2)
Further, Cl 2 generated in the treatment liquid in the tank generates hypochlorous acid (HClO) by the solution reaction of formula (2).
Cl 2 + H 2 O → HClO + H + + Cl (2)
 処理水中にアンモニアが存在すると、次亜塩素酸と溶液反応して、式(3)、式(4)により、クロロアミン(NHCl,NHCl)を生じる。
  NH+HClO → NHCl+HO ・・・ (3)
  NHCl+HClO → NHCl+HO ・・・ (4)
When ammonia is present in the treated water, it undergoes a solution reaction with hypochlorous acid to produce chloroamine (NH 2 Cl, NHCl 2 ) according to formulas (3) and (4).
NH 3 + HClO → NH 2 Cl + H 2 O (3)
NH 2 Cl + HClO → NHCl 2 + H 2 O (4)
 さらに、上記式(3)及び式(4)にて生成したクロロアミンは、式(5)の溶液反応によって窒素ガス(N)まで分解される。
  NHCl+NHCl → N+3H+3Cl ・・・ (5)
Furthermore, the chloroamine produced in the above formulas (3) and (4) is decomposed to nitrogen gas (N 2 ) by the solution reaction of formula (5).
NH 2 Cl + NHCl 2 → N 2 + 3H + + 3Cl (5)
 制御装置41は、アンモニア濃度測定装置47,48,49で測定されるアンモニア濃度、及び流量測定装置53で測定されるブロー水の水量に基づいて直流電源装置45を制御して電解処理装置37の電流値、及び処理時間を制御する。即ち、制御装置41は、ブロー水の水量及びアンモニア濃度に適応する次亜塩素酸濃度になるように電源装置の電流を制御することにより、アンモニア処理システム1でのアンモニア処理を高精度で行うことができる。
 なお、アンモニア濃度測定装置は、一ヶ所に設置する構成としてもよく、その場合は、より復水器9に近いアンモニア濃度測定装置47の設置場所が優先される。
The control device 41 controls the DC power supply device 45 on the basis of the ammonia concentration measured by the ammonia concentration measuring devices 47, 48, and 49 and the amount of blow water measured by the flow rate measuring device 53 to control the electrolytic treatment device 37. The current value and processing time are controlled. That is, the control device 41 performs the ammonia treatment in the ammonia treatment system 1 with high accuracy by controlling the current of the power supply device so that the concentration of hypochlorous acid is adapted to the amount of blow water and the ammonia concentration. Can do.
The ammonia concentration measuring device may be installed in one place, and in that case, the installation location of the ammonia concentration measuring device 47 closer to the condenser 9 is given priority.
 電解処理装置37による電解処理の処理時間は、アンモニア濃度に加えて、残留塩素測定装置52によって測定される残留塩素の濃度に基づいて制御装置41によって制御され、処理が終了すると処理水は適宜まとめて放出される。
 具体的には、制御装置41は、残留塩素の濃度が設定値以上かどうか判断する。そして、事前に行うテストに基づきアンモニア濃度が所定値以下となったと判断できる残留塩素の濃度を設定し、その残留塩素の濃度の設定値に達した場合に電気分解を止める。処理水は、図示しない残留塩素処理器を介して放出される。
 即ち、アンモニア濃度によって設定された電気分解の処理時間では、アンモニア濃度が適切に低下しなかった場合においても、アンモニア濃度が所定値以下となるまで処理時間が延長される。
The treatment time of the electrolytic treatment by the electrolytic treatment device 37 is controlled by the control device 41 on the basis of the concentration of residual chlorine measured by the residual chlorine measuring device 52 in addition to the ammonia concentration. Released.
Specifically, the control device 41 determines whether the concentration of residual chlorine is equal to or higher than a set value. Then, based on a test performed in advance, a residual chlorine concentration at which it can be determined that the ammonia concentration has become a predetermined value or less is set, and when the residual chlorine concentration reaches a set value, the electrolysis is stopped. The treated water is discharged through a residual chlorinator (not shown).
That is, in the electrolysis treatment time set according to the ammonia concentration, even when the ammonia concentration does not fall appropriately, the treatment time is extended until the ammonia concentration becomes a predetermined value or less.
 また、海水の量は、pH測定装置43の測定値に応じて制御される。即ち、制御装置41は、pH測定装置43からの入力に基づき、循環調整槽38内の処理水のpHがpH7~pH9となるように海水ポンプ46を制御して海水の量を調整する。
 同様に、海水の量は、温度測定装置51の測定値に応じて制御される。即ち、制御装置41は、処理水の温度が20℃~50℃となるように、海水ポンプ46を制御して、海水の量を調整する。
 同様に、海水の量は、塩化物イオン濃度測定装置44の測定値に基づいて制御される。
 即ち、制御装置41は、処理水の塩化物イオン濃度が2,000mg/リットル以上となるように海水ポンプ46を制御して海水の量を調整する。
The amount of seawater is controlled according to the measured value of the pH measuring device 43. That is, the control device 41 adjusts the amount of seawater by controlling the seawater pump 46 based on the input from the pH measuring device 43 so that the pH of the treated water in the circulation adjusting tank 38 becomes pH 7 to pH 9.
Similarly, the amount of seawater is controlled according to the measured value of the temperature measuring device 51. That is, the control device 41 controls the seawater pump 46 to adjust the amount of seawater so that the temperature of the treated water is 20 ° C. to 50 ° C.
Similarly, the amount of seawater is controlled based on the measured value of the chloride ion concentration measuring device 44.
That is, the control device 41 adjusts the amount of seawater by controlling the seawater pump 46 so that the chloride ion concentration of the treated water becomes 2,000 mg / liter or more.
 上記実施形態によれば、排熱回収ボイラ3の給水系統又はブロー水のアンモニア濃度及びブロー水の水量に基づいて電気分解が制御される。これにより、ボイラ排水の変動が大きい場合においてもアンモニア濃度の排水基準を満足することができる。 According to the above embodiment, the electrolysis is controlled based on the feed water system of the exhaust heat recovery boiler 3 or the ammonia concentration of blow water and the amount of blow water. Thereby, even when the fluctuation | variation of boiler waste_water | drain is large, the waste_water | drain standard of ammonia concentration can be satisfied.
 また、残留塩素の濃度を電気分解の終了の指標とすることによって、排出されるアンモニア濃度をより正確に制御することができる。
 また、処理水の塩化物イオン濃度が2,000mg/リットル以上となるように海水の導入量が調整されているため、電気分解に必要な塩化物イオンを安定して確保することができる。
Moreover, the ammonia concentration discharged | emitted can be controlled more correctly by making the density | concentration of a residual chlorine into the parameter | index of completion | finish of electrolysis.
In addition, since the amount of seawater introduced is adjusted so that the chloride ion concentration of the treated water is 2,000 mg / liter or more, chloride ions necessary for electrolysis can be secured stably.
 また、電解処理装置37内の処理水のpHが、pH7~pH9となるように海水の導入量が調整されているため、塩素ガス、トリクロラミンの発生を抑制でき、アンモニアの分解を効率的に進めることができる。 Further, since the introduction amount of seawater is adjusted so that the pH of the treated water in the electrolytic treatment apparatus 37 is pH 7 to pH 9, generation of chlorine gas and trichloramine can be suppressed, and decomposition of ammonia is efficiently performed. Can proceed.
 また、処理水の温度が高温となると発生した塩素が揮発し易くなるが、処理水の温度が20℃~50℃となるように海水の導入量が調整されているため、塩素の揮発によるアンモニア除去性能の低下を防止することができる。
 さらに、次亜塩素酸ナトリウムタンク等を設置するスペースが必要ないため、既存の設備の中に組み入れることが容易となる。
In addition, when the temperature of the treated water is high, the generated chlorine is likely to volatilize, but the amount of seawater introduced is adjusted so that the temperature of the treated water is 20 ° C to 50 ° C. Reduction in removal performance can be prevented.
Furthermore, since a space for installing a sodium hypochlorite tank or the like is not required, it can be easily incorporated into existing facilities.
(第二実施形態)
 以下、本発明の第二実施形態について図面を参照して詳細に説明する。
 図3は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Second embodiment)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a detailed system diagram of the ammonia treatment system according to the present embodiment. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
 図3に示すように、本実施形態のアンモニア処理システム1Bは、電解処理装置37Bと、ブローライン35に接続されており、ブロー水が貯留される受入槽36と、受入槽36から流出する処理水と電解処理装置37Bからの処理水が導入される混合槽55と、制御装置41から構成されている。
 受入槽36には、塩化物イオン源として海水を導入するための海水導入ライン70が接続されている。海水導入ライン70には海水ポンプ71が設けられている。この海水ポンプ71は、制御装置41によって制御可能に構成されている。さらに、受入槽36には、ブロー水の温度を測定する温度測定装置72が設けられている。
As shown in FIG. 3, the ammonia treatment system 1 </ b> B of the present embodiment is connected to the electrolytic treatment apparatus 37 </ b> B and the blow line 35, a receiving tank 36 in which blow water is stored, and a process that flows out of the receiving tank 36. It comprises a mixing tank 55 into which water and treated water from the electrolytic treatment device 37B are introduced, and a control device 41.
A seawater introduction line 70 for introducing seawater as a chloride ion source is connected to the receiving tank 36. The seawater introduction line 70 is provided with a seawater pump 71. The seawater pump 71 is configured to be controllable by the control device 41. Further, the receiving tank 36 is provided with a temperature measuring device 72 for measuring the temperature of blow water.
 電解処理装置37Bは、海水が導入される循環調整槽38Bと、循環調整槽38Bからの調整液が導入される電解槽39と、電解処理液を循環させるための循環ポンプ40と、を備える。電解処理装置37Bは、電解槽39内にて処理された電解処理液を循環調整槽38Bに循環させる構成となっている。 The electrolytic treatment apparatus 37B includes a circulation adjustment tank 38B into which seawater is introduced, an electrolytic tank 39 into which the adjustment liquid from the circulation adjustment tank 38B is introduced, and a circulation pump 40 for circulating the electrolytic treatment liquid. The electrolytic treatment apparatus 37B is configured to circulate the electrolytic treatment liquid treated in the electrolytic bath 39 to the circulation adjustment bath 38B.
 循環調整槽38Bには、塩化物イオン源として海水を導入するための海水導入ライン42Bが接続されている。海水導入ライン42Bには海水ポンプ46が設けられており、この海水ポンプ46は、制御装置41によって制御可能とされている。 The seawater introduction line 42B for introducing seawater as a chloride ion source is connected to the circulation adjustment tank 38B. The seawater introduction line 42 </ b> B is provided with a seawater pump 46, and the seawater pump 46 can be controlled by the control device 41.
 また、循環調整槽38Bには、処理水のpHを測定するpH測定装置43と、処理水の温度を測定する温度測定装置51と、処理水の塩化物イオン濃度を測定する塩化物イオン濃度測定装置44と、が設けられている。 The circulation adjusting tank 38B includes a pH measuring device 43 that measures the pH of the treated water, a temperature measuring device 51 that measures the temperature of the treated water, and a chloride ion concentration measurement that measures the chloride ion concentration of the treated water. A device 44 is provided.
 次に、本実施形態のアンモニア処理システム1Bの作用について説明する。
 塩化ナトリウムを含有する海水は、電解処理装置37Bの循環調整槽38Bに直接導入され、次亜塩素酸(HClO)を生成する。次亜塩素酸を含む処理水は、ブロー水が貯留された混合槽55に導入され、ブロー水中に存在するアンモニアと次亜塩素酸とが溶液反応して、窒素ガス(N)まで分解される。
 また、受入槽36に導入される海水の量は、温度測定装置72の測定値に応じて制御される。制御装置41は、受入槽36内の処理水の温度が50℃以下となるように、海水ポンプ71を制御して、海水の量を調整する。
Next, the effect | action of the ammonia processing system 1B of this embodiment is demonstrated.
Seawater containing sodium chloride is directly introduced into the circulation adjustment tank 38B of the electrolytic treatment apparatus 37B to generate hypochlorous acid (HClO). Treated water containing hypochlorous acid is introduced into a mixing tank 55 in which blow water is stored, and ammonia and hypochlorous acid present in the blow water undergo a solution reaction to be decomposed into nitrogen gas (N 2 ). The
Further, the amount of seawater introduced into the receiving tank 36 is controlled according to the measured value of the temperature measuring device 72. The control device 41 controls the seawater pump 71 to adjust the amount of seawater so that the temperature of the treated water in the receiving tank 36 is 50 ° C. or less.
 上記実施形態によれば、第一実施形態の効果に加えて、塩化物イオン濃度が高い海水が電解槽に導入されるため、電流密度を増大させることができ、電解処理装置37Bのコンパクト化を図ることができる。 According to the above embodiment, in addition to the effects of the first embodiment, seawater with a high chloride ion concentration is introduced into the electrolytic cell, so that the current density can be increased, and the electrolytic treatment apparatus 37B can be made compact. Can be planned.
(第三実施形態)
 以下、本発明の第三実施形態について図面を参照して詳細に説明する。
 図4は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 4 is a detailed system diagram of the ammonia treatment system according to this embodiment. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
 図4に示すように、本実施形態のアンモニア処理システム1Cでは、受入槽36と電解処理装置37との間に処理水の一部または全部に含まれるアンモニアを濃縮する濃縮装置60が設けられている。即ち、受入槽36から排出された処理水に含まれるアンモニアは、濃縮装置60によって濃縮された後、電解処理装置37に導入される。濃縮装置60としては、逆浸透膜、電気透析、キャパシタ脱塩、イオン交換樹脂、軟水器を用いた装置を採用することができる。 As shown in FIG. 4, in the ammonia treatment system 1 </ b> C of the present embodiment, a concentrator 60 that concentrates ammonia contained in part or all of the treated water is provided between the receiving tank 36 and the electrolytic treatment device 37. Yes. That is, ammonia contained in the treated water discharged from the receiving tank 36 is concentrated by the concentrating device 60 and then introduced into the electrolytic processing device 37. As the concentration device 60, a device using a reverse osmosis membrane, electrodialysis, capacitor desalting, ion exchange resin, and water softener can be employed.
 上記実施形態によれば、電解処理装置37に導入されるアンモニアが濃縮装置60によって濃縮されることによって、必要とされる塩素(式(2)参照)が低減されるため、原料となる塩化物イオンの供給量を低減することができる。即ち、塩化物イオンを電解槽39内で効率的に利用できるため、外部からの供給量を低減することができる。 According to the above embodiment, the ammonia introduced into the electrolytic treatment device 37 is concentrated by the concentration device 60, so that the required chlorine (refer to the formula (2)) is reduced. The supply amount of ions can be reduced. That is, since chloride ions can be efficiently used in the electrolytic cell 39, the supply amount from the outside can be reduced.
(第四実施形態)
 以下、本発明の第四実施形態について図面を参照して詳細に説明する。
 図5は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第三実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Fourth embodiment)
Hereinafter, a fourth embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 5 is a detailed system diagram of the ammonia treatment system according to the present embodiment. In this embodiment, the difference from the above-described third embodiment will be mainly described, and the description of the same parts will be omitted.
 図5に示すように、本実施形態のアンモニア処理システム1Dでは、濃縮装置60におけるアンモニアの濃縮時に生成されるアンモニア濃度の低い排水を、電解処理装置37より放流される処理水に混合する。即ち、本実施形態の濃縮装置60には、アンモニア濃度の低い排水を排出する排水管61が設けられている。この排水管61から排出される排水が電解処理装置37より放流される処理水に混合される。 As shown in FIG. 5, in the ammonia treatment system 1 </ b> D of the present embodiment, wastewater having a low ammonia concentration generated during concentration of ammonia in the concentration device 60 is mixed with treated water discharged from the electrolytic treatment device 37. That is, the concentration device 60 of the present embodiment is provided with a drain pipe 61 that discharges waste water having a low ammonia concentration. Waste water discharged from the drain pipe 61 is mixed with treated water discharged from the electrolytic treatment apparatus 37.
 上記実施形態によれば、濃縮装置60にて生成されるアンモニア濃度の低い排水を電解処理装置37より放流される処理水と混合させることによって、放流される処理水のアンモニア濃度を所定濃度以下に保つことができる。 According to the above embodiment, the wastewater having a low ammonia concentration produced by the concentrator 60 is mixed with the treated water discharged from the electrolytic treatment device 37, whereby the ammonia concentration of the discharged treated water is reduced to a predetermined concentration or less. Can keep.
(第五実施形態)
 以下、本発明の第五実施形態について図面を参照して詳細に説明する。
 図6は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第三実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Fifth embodiment)
Hereinafter, a fifth embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 6 is a detailed system diagram of the ammonia treatment system according to the present embodiment. In this embodiment, the difference from the above-described third embodiment will be mainly described, and the description of the same parts will be omitted.
 図6に示すように、本実施形態のアンモニア処理システム1Eでは、電解処理装置37の処理水を受入槽36と濃縮装置60との間に循環させる。即ち、本実施形態のアンモニア処理システム1Eは、電解し、アンモニア処理された処理水を処理水循環配管62を介して濃縮装置60の前に戻し、塩化ナトリウムを循環利用している。 As shown in FIG. 6, in the ammonia treatment system 1E of the present embodiment, the treated water of the electrolytic treatment device 37 is circulated between the receiving tank 36 and the concentration device 60. That is, the ammonia treatment system 1E of this embodiment returns the electrolyzed and ammonia-treated treated water to the front of the concentrating device 60 via the treated water circulation pipe 62, and circulates and uses sodium chloride.
 上記実施形態によれば、塩化物イオンのリサイクルが可能となり、外部からの供給が不要となる。 According to the above embodiment, chloride ions can be recycled, and no external supply is required.
(第六実施形態)
 以下、本発明の第六実施形態について図面を参照して詳細に説明する。
 図7は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第二実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Sixth embodiment)
Hereinafter, a sixth embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 7 is a detailed system diagram of the ammonia treatment system according to the present embodiment. In the present embodiment, differences from the second embodiment described above will be mainly described, and description of similar parts will be omitted.
 図7に示すように、本実施形態のアンモニア処理システム1Fでは、混合槽55の下流側に塩分を濃縮する脱塩装置63を設け、脱塩装置63によって濃縮された濃縮水の一部を電解処理装置37Bに塩化物イオン源として供給する。脱塩装置63と電解処理装置37Bとは、濃縮水再利用配管64によって接続されている。
 また、脱塩装置63から排出される処理水は、放流水として排出するか、ボイラ給水、工業用水、雑用水として再利用する。
 脱塩装置63としては、逆浸透膜、電気透析、キャパシタ脱塩、イオン交換樹脂、軟水器などを用いた装置を採用することができる。
As shown in FIG. 7, in the ammonia processing system 1 </ b> F of the present embodiment, a desalinator 63 for concentrating salt is provided on the downstream side of the mixing tank 55, and a part of the concentrated water concentrated by the desalter 63 is electrolyzed. It supplies to the processing apparatus 37B as a chloride ion source. The desalting apparatus 63 and the electrolytic treatment apparatus 37 </ b> B are connected by a concentrated water reuse pipe 64.
Moreover, the treated water discharged | emitted from the desalination apparatus 63 is discharged | emitted as discharge water, or reused as boiler feed water, industrial water, and miscellaneous water.
As the desalting device 63, a device using a reverse osmosis membrane, electrodialysis, capacitor desalting, ion exchange resin, water softener, or the like can be used.
 上記実施形態によれば、電解処理装置37Bに供給する塩化物イオンを脱塩装置63から回収して供給する構成としたことによって、塩化物イオンの供給コストを低減することができる。 According to the above-described embodiment, the supply of chloride ions can be reduced by recovering and supplying chloride ions supplied to the electrolytic treatment apparatus 37B from the desalting apparatus 63.
(第七実施形態)
 以下、本発明の第七実施形態について図面を参照して詳細に説明する。
 図8は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第六実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Seventh embodiment)
Hereinafter, a seventh embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 8 is a detailed system diagram of the ammonia treatment system according to the present embodiment. In this embodiment, the difference from the above-described sixth embodiment will be mainly described, and the description of the same parts will be omitted.
 図8に示すように、本実施形態のアンモニア処理システム1Gでは、ブローライン35上の混合槽55の上流側に処理水のSS(浮遊物質)を分離するSS分離装置65が設けられている。即ち、本実施形態のアンモニア処理システム1Gは、ブローライン35を介して導入されるアンモニアを含む処理水をSS分離した後に混合槽55供給する構成となっている。 As shown in FIG. 8, in the ammonia processing system 1G of the present embodiment, an SS separation device 65 that separates SS (floating matter) of treated water is provided on the upstream side of the mixing tank 55 on the blow line 35. That is, the ammonia treatment system 1G of the present embodiment is configured to supply the mixing tank 55 after the SS separation of the treated water containing ammonia introduced through the blow line 35 is performed.
 SS分離装置65としては、ストレーナー、精密ろ過膜(MF)モジュール、限外ろ過膜(UF)モジュール、砂ろ過、沈殿池、液体サイクロンなどを用いた装置を採用することができる。 As the SS separator 65, an apparatus using a strainer, a microfiltration membrane (MF) module, an ultrafiltration membrane (UF) module, a sand filtration, a sedimentation basin, a liquid cyclone, or the like can be employed.
 上記実施形態によれば、SS分離により、電解処理装置37B、脱塩装置63へのSS分流入が低減し、電解処理装置37B、脱塩装置63の損傷のリスクを低減することができる。 According to the above embodiment, the SS separation reduces the inflow of SS into the electrolytic treatment device 37B and the desalination device 63, and the risk of damage to the electrolytic treatment device 37B and the desalination device 63 can be reduced.
(第八実施形態)
 以下、本発明の第八実施形態について図面を参照して詳細に説明する。
 図9は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第六実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Eighth embodiment)
Hereinafter, an eighth embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 9 is a detailed system diagram of the ammonia treatment system according to this embodiment. In this embodiment, the difference from the above-described sixth embodiment will be mainly described, and the description of the same parts will be omitted.
 図9に示すように、本実施形態のアンモニア処理システム1Hでは、ブローライン35上の混合槽55の上流側に処理水を冷却する冷却器66が設けられている。 As shown in FIG. 9, in the ammonia treatment system 1H of the present embodiment, a cooler 66 for cooling the treated water is provided on the upstream side of the mixing tank 55 on the blow line 35.
 上記実施形態によれば、冷却器66により高温(例えば80℃)の処理水が冷却(例えば50℃)されることによって、電解処理装置37B、脱塩装置63の損傷リスクを低減することができる。 According to the above embodiment, the risk of damage to the electrolytic treatment apparatus 37B and the desalination apparatus 63 can be reduced by cooling (for example, 50 ° C.) the high-temperature (for example, 80 ° C.) treated water by the cooler 66. .
(第九実施形態)
 以下、本発明の第九実施形態について図面を参照して詳細に説明する。
 図10は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第六実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Ninth embodiment)
Hereinafter, a ninth embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 10 is a detailed system diagram of the ammonia treatment system according to this embodiment. In this embodiment, the difference from the above-described sixth embodiment will be mainly described, and the description of the same parts will be omitted.
 図10に示すように、本実施形態のアンモニア処理システム1Jには、混合槽55と脱塩装置63との間に残留塩素(Cl、ClO)を除去するCl除去装置67が設けられている。
 Cl除去装置67としては、活性炭、空気曝気、還元剤供給などを利用した装置を採用することができる。還元剤としては、チオ硫酸ナトリウム(Na)、亜硫酸水素ナトリウム(NaHSO)、亜硫酸ナトリウム(NaSO)などを採用することができる。
As shown in FIG. 10, the ammonia treatment system 1J of the present embodiment is provided with a Cl removal device 67 for removing residual chlorine (Cl 2 , ClO ) between the mixing tank 55 and the desalting device 63. Yes.
As the Cl removing device 67, a device using activated carbon, air aeration, reducing agent supply, or the like can be employed. As the reducing agent, sodium thiosulfate (Na 2 S 2 O 3 ), sodium hydrogen sulfite (NaHSO 3 ), sodium sulfite (Na 2 SO 3 ) and the like can be employed.
 上記実施形態によれば、Cl除去装置67によって、残留塩素が還元され塩化物イオンに分解されることによって、脱塩装置63に流入する処理水の残留塩素が阻止されるため、脱塩装置63の損傷を防止することができる。 According to the above embodiment, the residual chlorine is reduced and decomposed into chloride ions by the Cl removing device 67, so that residual chlorine in the treated water flowing into the desalting device 63 is blocked. Can prevent damage.
(第十実施形態)
 以下、本発明の第十実施形態について図面を参照して詳細に説明する。
 図11は、本実施形態に係るアンモニア処理システムの詳細系統図である。なお、本実施形態では、上述した第九実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
(Tenth embodiment)
Hereinafter, a tenth embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 11 is a detailed system diagram of the ammonia treatment system according to the present embodiment. In the present embodiment, the differences from the above-described ninth embodiment will be mainly described, and description of similar parts will be omitted.
 図11に示すように、本実施形態のアンモニア処理システム1Kでは、第九実施形態のアンモニア処理システム1JのCl除去装置67の下流側(脱塩装置63の上流側)に残留塩素測定装置68を設け、この残留塩素測定装置68によって測定された残留塩素濃度に応じてCl除去装置67を制御する。
 また、Cl除去装置67の下流側(脱塩装置63の上流側)には、Cl除去装置67から排出される処理水を脱塩装置63の下流側の濃縮水再利用配管64にバイパスさせるバイパス配管69が設けられている。Cl除去装置67から排出される処理水は、制御装置41の指令によって脱塩装置63とバイパス配管69のいずれかに導入される。この切替えは、図示しないバルブによってなされる。
As shown in FIG. 11, in the ammonia treatment system 1K of the present embodiment, the residual chlorine measuring device 68 is provided downstream of the Cl removal device 67 (upstream of the desalting device 63) of the ammonia treatment system 1J of the ninth embodiment. The Cl removing device 67 is controlled according to the residual chlorine concentration measured by the residual chlorine measuring device 68.
Further, on the downstream side of the Cl removal device 67 (upstream side of the desalination device 63), a bypass that bypasses the treated water discharged from the Cl removal device 67 to the concentrated water reuse pipe 64 on the downstream side of the desalination device 63. A pipe 69 is provided. The treated water discharged from the Cl removal device 67 is introduced into either the desalting device 63 or the bypass pipe 69 according to a command from the control device 41. This switching is performed by a valve (not shown).
 本実施形態のアンモニア処理システム1Jの具体的な制御方法を説明する。制御装置41は、残留塩素測定装置68にて混合槽55より排出される処理水の残留塩素濃度を監視し、残留塩素濃度が非検出となるようにCl除去装置67を運転する。具体的には、還元剤・活性炭の添加量、空気曝気量を制御する。
 残留塩素濃度が検出された場合、脱塩装置63への流路をバルブで遮断し、バイパス流路69に処理水を導入し、濃縮水再利用配管64へバイパスする。
A specific control method of the ammonia treatment system 1J of the present embodiment will be described. The control device 41 monitors the residual chlorine concentration of the treated water discharged from the mixing tank 55 by the residual chlorine measuring device 68 and operates the Cl removal device 67 so that the residual chlorine concentration is not detected. Specifically, the amount of reducing agent / activated carbon added and the amount of air aeration are controlled.
When the residual chlorine concentration is detected, the flow path to the desalting apparatus 63 is shut off by a valve, the treated water is introduced into the bypass flow path 69, and bypassed to the concentrated water reuse pipe 64.
 上記実施形態によれば、Cl除去装置67による残留塩素の除去率を向上させることができる。 According to the above embodiment, the removal rate of residual chlorine by the Cl removal device 67 can be improved.
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。例えば、以上で説明した各実施形態では、アンモニア濃度は、給水ライン11に設けられたアンモニア濃度測定装置で測定する構成としたが、ブローライン35においてブロー水のアンモニア濃度を測定する構成としてもよい。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in each embodiment described above, the ammonia concentration is measured by the ammonia concentration measuring device provided in the water supply line 11, but the ammonia concentration may be measured by the blow line 35. .
 また、アンモニアの濃度を測定する手段としては、アンモニア濃度測定装置による測定に限らず、アンモニア注入手段からのアンモニアの注入量と給水系統のブロー水の水量とから推測する構成としてもよい。 Further, the means for measuring the concentration of ammonia is not limited to the measurement by the ammonia concentration measuring device, but may be configured to be estimated from the amount of ammonia injected from the ammonia injection means and the amount of blow water in the water supply system.
 上記したアンモニア処理システムによれば、ボイラ設備の給水系統又はブロー水のアンモニア濃度及びブロー水の水量に基づいて電気分解が制御される。このため、ボイラ排水の変動が大きい場合においてもアンモニア濃度の排水基準を満足することができる。 According to the above-described ammonia treatment system, electrolysis is controlled based on the feedwater system of the boiler facility or the ammonia concentration of blow water and the amount of blow water. For this reason, even when the fluctuation | variation of boiler waste_water | drain is large, the waste_water | drain standard of ammonia concentration can be satisfied.
 1   アンモニア処理システム
 2   コンバインドサイクル発電プラント
 3   排熱回収ボイラ(ボイラ設備)
 11  給水ライン(給水系統)
 34  アンモニア注入手段
 35  ブローライン
 36  受入槽
 37  電解処理装置
 38  循環調整槽
 39  電解槽
 41  制御装置
 42,42B  海水導入ライン(塩化物イオン供給手段)
 44  塩化物イオン濃度測定装置(塩化物イオン濃度測定手段)
 45  直流電源装置
 46  海水ポンプ
 47  アンモニア濃度測定装置(アンモニア濃度測定手段)
 48  アンモニア濃度測定装置(アンモニア濃度測定手段)
 49  アンモニア濃度測定装置(アンモニア濃度測定手段)
 52  残留塩素測定装置(残留塩素測定手段)
 53  流量測定装置(流量測定手段)
 55  混合槽
 60  濃縮装置
 63  脱塩装置
 64  濃縮水再利用配管
1 Ammonia treatment system 2 Combined cycle power plant 3 Waste heat recovery boiler (boiler equipment)
11 Water supply line (water supply system)
34 Ammonia injection means 35 Blow line 36 Receiving tank 37 Electrolytic treatment apparatus 38 Circulation adjustment tank 39 Electrolytic tank 41 Control apparatus 42, 42B Seawater introduction line (chloride ion supply means)
44 Chloride ion concentration measuring device (chloride ion concentration measuring means)
45 DC power supply 46 Seawater pump 47 Ammonia concentration measuring device (ammonia concentration measuring means)
48 Ammonia concentration measuring device (Ammonia concentration measuring means)
49 Ammonia concentration measuring device (ammonia concentration measuring means)
52 Residual chlorine measuring device (Residual chlorine measuring means)
53 Flow rate measuring device (flow rate measuring means)
55 Mixing tank 60 Concentrator 63 Desalinator 64 Concentrated water reuse pipe

Claims (8)

  1.  熱回収をするボイラ設備と、
     前記ボイラ設備内の給水系統にアンモニアを注入するアンモニア注入手段と、
     前記給水系統又は前記ボイラ設備からのブロー水のアンモニア濃度を測定するアンモニア濃度測定手段と、
     前記ブロー水の水量を測定する流量測定手段と、
     前記ブロー水を受け入れる受入槽と、
     前記受入槽に塩化物イオン源として塩化ナトリウム水溶液を導入する塩化物イオン供給手段と、
     前記ブロー水と前記塩化ナトリウム水溶液とからなる処理水を電気分解する電解槽と、
     前記電気分解の際の電流、及び処理時間を制御する制御装置と、を有し、
     前記制御装置は、前記アンモニア濃度及び前記ブロー水の水量に基づいて必要塩素量を算出し、電気分解の際の電流量を制御する
     アンモニア処理システム。
    Boiler equipment for heat recovery;
    Ammonia injection means for injecting ammonia into the water supply system in the boiler facility;
    Ammonia concentration measuring means for measuring ammonia concentration of blow water from the water supply system or the boiler facility;
    Flow rate measuring means for measuring the amount of blow water,
    A receiving tank for receiving the blow water;
    Chloride ion supply means for introducing a sodium chloride aqueous solution as a chloride ion source into the receiving tank;
    An electrolytic cell for electrolyzing the treated water comprising the blow water and the sodium chloride aqueous solution;
    A controller for controlling the current during the electrolysis and the processing time,
    The control device calculates a necessary chlorine amount based on the ammonia concentration and the amount of blow water, and controls the amount of current during electrolysis.
  2.  前記処理水の残留塩素濃度を電気分解中に測定する残留塩素測定手段を有し、
     前記制御装置は、前記残留塩素濃度によって電気分解の終了点を決定する請求項1に記載のアンモニア処理システム。
    Having residual chlorine measuring means for measuring the residual chlorine concentration of the treated water during electrolysis,
    The ammonia processing system according to claim 1, wherein the control device determines an end point of electrolysis based on the residual chlorine concentration.
  3.  前記処理水の塩化物イオン濃度を測定する塩化物イオン濃度測定手段を有し、
     前記制御装置は、前記塩化物イオン濃度が所定濃度以上となるように、前記塩化ナトリウム水溶液の導入量を制御する請求項1又は請求項2に記載のアンモニア処理システム。
    Having a chloride ion concentration measuring means for measuring the chloride ion concentration of the treated water;
    The ammonia processing system according to claim 1 or 2, wherein the control device controls an introduction amount of the sodium chloride aqueous solution so that the chloride ion concentration is equal to or higher than a predetermined concentration.
  4.  前記受入槽と電解槽との間に処理水の少なくとも一部に含まれるアンモニアを濃縮する濃縮装置を設けた請求項1から請求項3のいずれか一項に記載のアンモニア処理システム。 The ammonia treatment system according to any one of claims 1 to 3, wherein a concentrating device for concentrating ammonia contained in at least a part of the treated water is provided between the receiving tank and the electrolytic cell.
  5.  熱回収をするボイラ設備と、
     前記ボイラ設備内の給水系統にアンモニアを注入するアンモニア注入手段と、
     前記給水系統又は前記ボイラ設備からのブロー水のアンモニア濃度を測定するアンモニア濃度測定手段と、
     前記ブロー水の水量を測定する流量測定手段と、
     塩化物イオン源として塩化ナトリウム水溶液を導入する塩化物イオン供給手段を備え、前記塩化ナトリウム水溶液を電気分解する電解槽と、
     前記ブロー水を受け入れるとともに、前記電解槽からの処理水を受け入れる混合槽と、
     前記電気分解の際の電流、及び処理時間を制御する制御装置と、を有し、
     前記制御装置は、前記アンモニア濃度及び前記ブロー水の水量に基づいて必要塩素量を算出し、電気分解の際の電流量を制御する
     アンモニア処理システム。
    Boiler equipment for heat recovery;
    Ammonia injection means for injecting ammonia into the water supply system in the boiler facility;
    Ammonia concentration measuring means for measuring ammonia concentration of blow water from the water supply system or the boiler facility;
    Flow rate measuring means for measuring the amount of blow water,
    An electrolytic cell comprising a chloride ion supply means for introducing a sodium chloride aqueous solution as a chloride ion source, and electrolyzing the sodium chloride aqueous solution;
    A mixing tank that receives the blow water and receives treated water from the electrolytic cell;
    A controller for controlling the current during the electrolysis and the processing time,
    The control device calculates a necessary chlorine amount based on the ammonia concentration and the amount of blow water, and controls the amount of current during electrolysis.
  6.  前記処理水の残留塩素濃度を電気分解中に測定する残留塩素測定手段を有し、
     前記制御装置は、前記残留塩素濃度によって電気分解の終了点を決定する請求項5に記載のアンモニア処理システム。
    Having residual chlorine measuring means for measuring the residual chlorine concentration of the treated water during electrolysis,
    The ammonia processing system according to claim 5, wherein the controller determines an end point of electrolysis based on the residual chlorine concentration.
  7.  前記処理水の塩化物イオン濃度を測定する塩化物イオン濃度測定手段を有し、
     前記制御装置は、前記塩化物イオン濃度が所定濃度以上となるように、前記塩化ナトリウム水溶液の導入量を制御する請求項5又は請求項6に記載のアンモニア処理システム。
    Having a chloride ion concentration measuring means for measuring the chloride ion concentration of the treated water;
    The ammonia processing system according to claim 5 or 6, wherein the control device controls an introduction amount of the sodium chloride aqueous solution so that the chloride ion concentration is equal to or higher than a predetermined concentration.
  8.  前記混合槽の下流側に設けられた脱塩装置と、
     前記脱塩装置によって濃縮された濃縮水の一部を電解槽に塩化物イオン源として供給する濃縮水再利用配管と、を備える請求項5から請求項7のいずれか一項に記載のアンモニア処理システム。
    A desalting apparatus provided on the downstream side of the mixing tank;
    The ammonia treatment according to any one of claims 5 to 7, further comprising: a concentrated water reuse pipe that supplies a part of the concentrated water concentrated by the desalting apparatus to the electrolytic cell as a chloride ion source. system.
PCT/JP2013/063663 2012-05-25 2013-05-16 Ammonia treatment system WO2013176032A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201407526RA SG11201407526RA (en) 2012-05-25 2013-05-16 Ammonia treatment system
CN201380025991.2A CN104379512B (en) 2012-05-25 2013-05-16 ammonia treatment system
KR1020147032409A KR101757525B1 (en) 2012-05-25 2013-05-16 Ammonia treatment system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012119933 2012-05-25
JP2012-119933 2012-05-25
JP2013-010251 2013-01-23
JP2013010251A JP6191070B2 (en) 2012-05-25 2013-01-23 Ammonia treatment system

Publications (1)

Publication Number Publication Date
WO2013176032A1 true WO2013176032A1 (en) 2013-11-28

Family

ID=49623726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063663 WO2013176032A1 (en) 2012-05-25 2013-05-16 Ammonia treatment system

Country Status (5)

Country Link
JP (1) JP6191070B2 (en)
KR (1) KR101757525B1 (en)
CN (1) CN104379512B (en)
SG (1) SG11201407526RA (en)
WO (1) WO2013176032A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076225A1 (en) * 2014-11-10 2016-05-19 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system
TWI574921B (en) * 2014-11-26 2017-03-21 三菱重工環境 化學工程股份有限公司 Ammonia treatment system
CN107001077A (en) * 2014-10-10 2017-08-01 Xogen科技有限公司 system and method for the oxidation of ammonia
US11421329B2 (en) * 2018-09-07 2022-08-23 Mitsubishi Heavy Industries, Ltd. Hydrogen production system
US11857939B2 (en) 2020-09-04 2024-01-02 Buckman Laboratories International, Inc. Predictive systems and methods for proactive intervention in chemical processes

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700735B1 (en) * 2014-08-28 2015-04-15 株式会社日立パワーソリューションズ Water treatment apparatus and control method for water treatment apparatus
CN107208880A (en) * 2015-01-23 2017-09-26 西门子公司 Raw water preheating in power generating equipment
WO2016167271A1 (en) * 2015-04-17 2016-10-20 三菱重工環境・化学エンジニアリング株式会社 Hypochlorous acid supply device and boiler waste-water treatment method
JP6383989B2 (en) * 2015-04-17 2018-09-05 三菱重工環境・化学エンジニアリング株式会社 Hypochlorous acid supply device
KR101997846B1 (en) 2018-10-08 2019-07-08 웅진코웨이엔텍 주식회사 Ammonia removal system and method using membrane contactor
CN110078178A (en) * 2019-05-10 2019-08-02 浙江浙能嘉华发电有限公司 A kind of strong ammonia wastewater cyclic electrolysis treatment process and equipment
CN110204017B (en) * 2019-05-16 2023-08-22 浙江浙能技术研究院有限公司 Electrolytic treatment system and method for adjusting pH value of ammonia-containing wastewater
KR102155238B1 (en) 2019-09-25 2020-09-11 코웨이엔텍 주식회사 Ammonia removal system and method using membrane contactor for sewage reuse
KR102108512B1 (en) 2019-09-25 2020-05-08 코웨이엔텍 주식회사 Ammonia removal system and method using membrane contactor
CN113003786B (en) * 2021-03-26 2022-04-01 马鞍山钢铁股份有限公司 Combined treatment process for industrial gas dust removal water of CCPP unit
JP6940713B1 (en) * 2021-05-18 2021-09-29 三菱重工環境・化学エンジニアリング株式会社 Hydrogen production system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852478A (en) * 1994-08-11 1996-02-27 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP2004122032A (en) * 2002-10-03 2004-04-22 Bio Carrier Technology:Kk Water purifying treatment system
JP2005103374A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Water treatment apparatus
JP2005218904A (en) * 2004-02-03 2005-08-18 Sanyo Electric Co Ltd Water treatment apparatus
JP2005288358A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Electrolytic wastewater treatment system, electrolytic control device, electrolytic wastewater treatment method, program and storage medium
JP2007160230A (en) * 2005-12-14 2007-06-28 Mitsubishi Heavy Ind Ltd Water treatment system
JP2007252965A (en) * 2006-03-20 2007-10-04 Sanyo Electric Co Ltd Apparatus for treating waste water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153980B2 (en) 2001-09-27 2013-02-27 パナソニック環境エンジニアリング株式会社 Ammonia recovery equipment
JP2004267967A (en) * 2003-03-11 2004-09-30 Sanyo Electric Co Ltd Water treatment apparatus
JP4671743B2 (en) * 2005-04-15 2011-04-20 三菱重工環境・化学エンジニアリング株式会社 Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP2006326423A (en) * 2005-05-24 2006-12-07 Sanyo Electric Co Ltd Water treatment method and water treatment apparatus
JP2008105012A (en) 2006-09-27 2008-05-08 Kobelco Eco-Solutions Co Ltd Treatment method and treatment apparatus of ammonia nitrogen-containing drainage
JP4982425B2 (en) 2008-05-09 2012-07-25 株式会社東芝 Water treatment method and water treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852478A (en) * 1994-08-11 1996-02-27 Mitsubishi Heavy Ind Ltd Treatment of waste water
JP2004122032A (en) * 2002-10-03 2004-04-22 Bio Carrier Technology:Kk Water purifying treatment system
JP2005103374A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Water treatment apparatus
JP2005218904A (en) * 2004-02-03 2005-08-18 Sanyo Electric Co Ltd Water treatment apparatus
JP2005288358A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Electrolytic wastewater treatment system, electrolytic control device, electrolytic wastewater treatment method, program and storage medium
JP2007160230A (en) * 2005-12-14 2007-06-28 Mitsubishi Heavy Ind Ltd Water treatment system
JP2007252965A (en) * 2006-03-20 2007-10-04 Sanyo Electric Co Ltd Apparatus for treating waste water

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001077A (en) * 2014-10-10 2017-08-01 Xogen科技有限公司 system and method for the oxidation of ammonia
US10995021B2 (en) 2014-10-10 2021-05-04 Xogen Technologies Inc. System for oxidation of ammonia
US10689271B2 (en) 2014-10-10 2020-06-23 Xogen Technologies Inc. System and method for oxidation of ammonia
EP3204334A4 (en) * 2014-10-10 2018-03-28 Xogen Technologies Inc. System and method for oxidation of ammonia
KR20170061711A (en) * 2014-11-10 2017-06-05 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Electrolysis system
CN107108280A (en) * 2014-11-10 2017-08-29 三菱重工环境·化学工程株式会社 Electrolysis system
WO2016076225A1 (en) * 2014-11-10 2016-05-19 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system
KR101967077B1 (en) * 2014-11-10 2019-04-08 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Electrolysis system
CN107108280B (en) * 2014-11-10 2020-11-06 三菱重工环境·化学工程株式会社 Electrolysis system
JP2016087582A (en) * 2014-11-10 2016-05-23 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system
CN107001076A (en) * 2014-11-26 2017-08-01 三菱重工环境·化学工程株式会社 ammonia treatment system
TWI574921B (en) * 2014-11-26 2017-03-21 三菱重工環境 化學工程股份有限公司 Ammonia treatment system
US11421329B2 (en) * 2018-09-07 2022-08-23 Mitsubishi Heavy Industries, Ltd. Hydrogen production system
US11802344B2 (en) 2018-09-07 2023-10-31 Mitsubishi Heavy Industries, Ltd. System and method for hydrogen production using a control unit controlling an adjustment device
US11857939B2 (en) 2020-09-04 2024-01-02 Buckman Laboratories International, Inc. Predictive systems and methods for proactive intervention in chemical processes

Also Published As

Publication number Publication date
CN104379512B (en) 2017-06-13
KR101757525B1 (en) 2017-07-12
CN104379512A (en) 2015-02-25
SG11201407526RA (en) 2015-03-30
JP2014000563A (en) 2014-01-09
JP6191070B2 (en) 2017-09-06
KR20150013551A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6191070B2 (en) Ammonia treatment system
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
KR102207458B1 (en) A fresh water system capable of producing hydrogen gas
KR101269948B1 (en) Apparatus and method for nitrogen wastewater treatment
JP6331145B2 (en) Ammonia treatment system
US10266430B2 (en) Process and system for removing ammonium from wastewater
RU2731392C2 (en) Methods of removing chloride from waste water of fertilizer production
JP2004108240A (en) Power generation plant and power generation method
KR102328974B1 (en) A fresh water system capable of producing hydrogen gas
JP2008178845A5 (en)
JP2008178845A (en) Electrolyzed hypochlorous water production apparatus
KR20210137984A (en) Method and apparatus for treating organic matter and calcium-containing water
KR101967077B1 (en) Electrolysis system
JP2003290775A (en) Method and apparatus for treating desalted waste water
KR101544197B1 (en) A exhaust gas treatment system
JP5913087B2 (en) Wastewater treatment system
WO2021090583A1 (en) Water treatment system and water treatment method
US20230220564A1 (en) Sodium hypochlorite producing system
JP2012196630A (en) Treatment equipment and treatment method of acid liquid
RU2793787C2 (en) Method for removing pollutants from wastewater from industrial production and a system for implementing such method
CN112437754B (en) Method for removing contaminants from wastewater from an industrial plant and system for implementing such a method
JP7354744B2 (en) Wastewater utilization system
CA2941617C (en) Process and system for removing ammonium from wastewater
CN107531518B (en) Hypochlorous acid supply device
KR101350789B1 (en) Electric energy reduction method by measuring residual chlorine in electrochemical treatment system for salty waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147032409

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794097

Country of ref document: EP

Kind code of ref document: A1