WO2013175664A1 - Steam pressure measurement device for boiler and steam amount measurement device for boiler - Google Patents

Steam pressure measurement device for boiler and steam amount measurement device for boiler Download PDF

Info

Publication number
WO2013175664A1
WO2013175664A1 PCT/JP2012/081806 JP2012081806W WO2013175664A1 WO 2013175664 A1 WO2013175664 A1 WO 2013175664A1 JP 2012081806 W JP2012081806 W JP 2012081806W WO 2013175664 A1 WO2013175664 A1 WO 2013175664A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
boiler
pressure
amount
temperature
Prior art date
Application number
PCT/JP2012/081806
Other languages
French (fr)
Japanese (ja)
Inventor
記章 長井
善範 金塚
田中 收
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2013175664A1 publication Critical patent/WO2013175664A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/002Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by thermal means, e.g. hypsometer

Definitions

  • This invention relates to a steam pressure measuring device for a boiler and a steam amount measuring device for a boiler that measure the steam pressure without using a pressure measuring means that directly measures the pressure.
  • Patent Document 1 a simple steam amount measuring method for measuring a steam amount without using a steam flow meter is known in Patent Document 1 and Patent Document 2.
  • Patent Document 2 a simple steam amount measuring method for measuring a steam amount without using a steam flow meter.
  • the problem to be solved by the present invention is to easily measure the steam pressure without attaching a pressure measuring means for directly detecting the steam pressure.
  • the invention of Claim 1 is a steam pressure measuring device of the boiler which measures the saturated steam pressure of a steam boiler, Comprising: Steam flow of the said steam boiler A temperature sensor that is mounted in contact with an outer surface of a portion in a phase equilibrium state of the road and measures the outer surface temperature, and the temperature sensor is set so that the amount of heat released from the mounting portion of the temperature sensor can be ignored. And a controller for calculating a saturated steam pressure in the steam channel based on a measured value of the temperature sensor.
  • the invention according to claim 2 comprises the vapor pressure measuring device according to claim 1, and continuously calculates the steam amount X without using a steam flow meter using the saturated steam pressure in the steam flow path. It features a steam volume measuring device.
  • FIG. 1 is a schematic configuration diagram of the embodiment
  • FIG. 2 is a flowchart for explaining a control program of the embodiment
  • FIG. 3 is a flowchart for explaining another control program of the embodiment. is there.
  • the steam amount measuring device 1 of this embodiment is a device that measures a steam amount X (steam flow rate of the steam outflow passage 3A as a steam passage) of a steam boiler (hereinafter simply referred to as a boiler) 2.
  • the steam amount measuring device 1 of the present invention is a steam pressure gauge side device 1A that calculates a saturated steam pressure (hereinafter referred to as a steam pressure unless otherwise specified) using a temperature sensor without using a pressure measuring means.
  • a steam pressure gauge side device 1A that calculates a saturated steam pressure (hereinafter referred to as a steam pressure unless otherwise specified) using a temperature sensor without using a pressure measuring means.
  • the steam amount measuring device 1 calculates the steam amount X based on the steam pressure measured by the steam pressure gauge side device 1A
  • the present invention is not characterized by the configuration for calculating the steam amount X. Therefore, the calculation configuration of the steam amount X of the present invention is not limited to the calculation configuration of the steam amount X described below.
  • the steam pressure measuring device 1A is mounted in close contact with the outer surface (which can be referred to as an outer surface) 4A of the phase equilibrium portion 4 in the phase equilibrium state of the steam outlet passage 3A of the boiler 2, and the temperature (outer surface) of the outer surface 4A.
  • the temperature sensor 5 for measuring the temperature (Two) and the temperature sensor 5 so that the heat radiation amount Qloss from the mounting portion of the temperature sensor 5 (including the first temperature sensor 5A and the second temperature sensor 5B described later) is negligible.
  • a controller 7 for calculating the steam pressure in the steam outflow passage 3A estimated based on the measured value of the temperature sensor 5. As shown in FIGS.
  • the first temperature sensor 5 ⁇ / b> A and the second temperature sensor 5 ⁇ / b> B are each about 10 times the pipe thickness on the outer surface of the steam outlet path 3 ⁇ / b> A and the steam outlet path 3 ⁇ / b> B (or the steam header 21). Along with it, the tip temperature sensing part is closely attached.
  • “being in a phase equilibrium state” means that changes in pressure, flow velocity, etc. are slow and pressure and temperature are in a thermodynamic equilibrium state.
  • the relation between the pressure and temperature in the phase equilibrium state of water and steam is presented with a high-precision approximate expression based on the steam table data.
  • the following 1) to 4) greatly affect the saturated steam pressure calculation and the steam flow rate calculation.
  • the portion 4 of the vertical steam pipe 10 on the outlet side of the drum 9 connected to the outlet side of the can body 8 of the boiler 2 or the outlet side of the steam header 21 described later can be used as the portion 4 where the phase equilibrium is easily maintained.
  • the steam pipe 10 (or the steam header 21) can be used as the portion 4 where the phase equilibrium is easily maintained.
  • the “value that can ignore the amount of heat released from the temperature sensor mounting portion” is determined by the relative size of the error component described above. Therefore, when all other error factors are eliminated, it can be said that it can be suppressed to a sufficient value by heat insulation as described later. However, when similar error components are present, consideration must be given to reducing those error components to 1/2 and 1/3.
  • a temperature sensor such as a thermocouple, or a high-precision temperature measurement device may be selected.
  • the boiler 2 is preferably a boiler having a large amount of water, for example, a large water tube / furnace smoke tube boiler.
  • the reason why a boiler with a large amount of water is preferred is as follows.
  • the thermal time constant of a steam pipe is generally about several seconds, so a boiler with a large amount of water in the boiler has a thermal time constant of several minutes or more, but this is not a problem, but a small once-through boiler has a few tens of seconds.
  • the thermal time constant is small, which is about the same as the delay in tube wall measurement.
  • the heat dissipation amount Qloss can be calculated as follows.
  • a difference (Tvs ⁇ Ta) between the pipe steam temperature Tvs and the outside air temperature Ta is defined as a temperature difference ⁇ T.
  • Qloss is calculated by the following equation 1.
  • Qloss K ⁇ So ⁇ ⁇ T ... Equation 1
  • the diameter of the steam pipe 10 is large, and the difference between the outer diameter of the heat insulating material 6 (the diameter of the heat insulating material 6 wound in a cylindrical shape outside the steam pipe 10) and the diameter of the steam pipe 10 is the diameter of the steam pipe 10. It is assumed that the value divided by is about several percent.
  • the heat resistance between the outer surface of the heat insulating material 6 and the outside air temperature is 1 / ha, the heat resistance of the heat insulating material 6 is 1 / (k / ⁇ ) ins, and the heat resistance of the steel pipe 10 is similarly 1 / (k / ⁇ ).
  • K 1 W / m 2 K
  • steam pipe 10 k 53 W / m 2 K
  • 100A steel pipe thickness ⁇ 0.0045 m
  • the temperature measurement wall or the thickness of the tube 10 is reduced with respect to the first temperature sensor 5A (and the second temperature sensor 5B) in consideration of heat loss suppression in the tube axis direction.
  • the heat insulation material 6 made of glass wool with a thickness of 50 mm or more is kept warm for a radius circle or tube length equivalent area of about 15 times or more.
  • the first temperature sensor 5A is shown, but the second temperature sensor 5B is similarly insulated.
  • the steam amount measuring device 1 includes a differential pressure detecting means 11 that calculates a differential pressure ⁇ P based on the steam pressure measured by the steam pressure measuring device 1A, an original data measuring means 12, and a controller that controls the measurement of the steam amount X. 7.
  • the differential pressure detecting means 11 is separated from the first temperature sensor 5A and the first temperature sensor 5A for measuring the temperature (first temperature Two1) of the outer surface 4A (first detection position) of the phase equilibrium portion 4 of the steam pipe 10.
  • a second temperature sensor 5B that measures the temperature (second temperature Two2) of the outer surface 4A at the position (second detection position), and the vapor pressure (first pressure P1) obtained from the first temperature Two1 and the first
  • a differential pressure ⁇ P between the vapor pressure (second pressure P2) obtained from the two temperatures Two2 is measured.
  • the original data measuring means 12 is a measuring means for calculating the reference steam amount X0, and in this embodiment, the first temperature sensor 5A, the second temperature sensor 5B, and the exhaust gas flow velocity M in the exhaust gas passage 13 are measured.
  • a feed water thermometer 18 to be measured is included.
  • these measuring means those already installed in the boiler 2 are used as needed without being newly provided.
  • the controller 7 inputs signals from the respective measuring instruments of the first temperature sensor 5A, the second temperature sensor 5B, and the original data measuring means 12, and measures the vapor amount measured based on a previously stored control procedure (control program).
  • X is configured to be output to the display 19. An example of the control procedure is shown in FIGS.
  • the control procedure by the controller 7 includes a pressure loss coefficient calculation procedure shown in FIG. 3 and a steam amount calculation / output procedure (in other words, a steam amount measurement procedure) shown in FIG.
  • the pressure loss coefficient calculation procedure corresponds to a calculation source data input step for inputting calculation source data (signal from each measuring instrument of the original data measuring means 12) and a differential pressure ⁇ P (first temperature Two1 by the first temperature sensor 5A).
  • a differential pressure input step of inputting a first pressure P1 to be performed and a first pressure detection pressure P2 corresponding to the second temperature Two2 by the second temperature sensor 5B), and a reference steam amount X0 is obtained from the calculation source data.
  • the steam amount calculation / output procedure is based on the pressure loss calculation formula (formula 6) from the pressure difference ⁇ P input in the differential pressure input step and the pressure loss coefficient J calculated in the coefficient calculation step. And a steam amount output step for outputting the calculated steam amount X to the display 19 as a measured value.
  • FIG. 1 is a steam header for connecting steam outflow passages 3B, 3B,... For distributing steam to a plurality of steam use loads (not shown), and reference numeral 23 is combustion to the burner 22.
  • the reference numeral 24 is a fuel flow path to the burner 22, and the reference numeral 25 is a water supply path to the can body 8.
  • symbol 26 in FIG. 2 is a normal heat insulating material which covers the steam pipe 10.
  • the calculation of the pressure loss coefficient J is performed when the pressure of the can body 8 is stable. Specifically, the measurer operating the steam amount measuring device 1 observes the output with an existing pressure gauge (not shown) in the boiler 2 and the pressure fluctuation range is ⁇ 5% or less continuously for 5 minutes.
  • the pressure loss coefficient J is calculated by turning on the coefficient calculation switch (not shown). Of course, the determination of stability and the operation of the coefficient calculation switch can be automatically performed.
  • step S2 the controller 7 takes in signals from each measuring device of the original data measuring means 12 in step S ⁇ b> 1 (hereinafter, step SN is simply referred to as SN).
  • step SN is simply referred to as SN.
  • step S2 the differential pressure ⁇ P is calculated and input.
  • the differential pressure ⁇ P is calculated by converting into the saturated steam pressure, assuming that the detected temperatures of the first temperature sensor 5A and the second temperature sensor 5B are equal to the saturated steam temperature.
  • the reference steam amount X0 is calculated by Equation 7 from the average value of the values sampled from the measurement data for the past 5 minutes of the original data measuring means 12.
  • X0 ( ⁇ ⁇ HL ⁇ N) / (h1-h2) Equation 7
  • X0 Reference steam volume (kg / h)
  • Boiler efficiency (%)
  • HL Lower fuel heating value (MJ / m 3 N)
  • N Fuel flow rate (m 3 N / h)
  • h1 Saturation Steam enthalpy (MJ / kg)
  • h2 Water supply enthalpy (MJ / kg)
  • the fuel flow rate N is calculated from the following equation 8.
  • N Y1 / ⁇ G0 + Gw + (m ⁇ 1) ⁇ A0 ⁇ .
  • Y1 Standard exhaust gas flow rate (m 3 N / h), (G0 + Gw + (m ⁇ 1) ⁇ A0): Actual wet exhaust gas amount (m 3 N / m 3 N, fuel)
  • G0 Theoretical dry exhaust gas volume (m 3 N / m 3 N, fuel)
  • Qw Water vapor generated by combustion and water vapor due to water in the fuel (m 3 N / kg)
  • G0 + Gw Theoretical exhaust gas volume (m 3 N / m 3 N, fuel)
  • A0 Theoretical air volume (m 3 N / m 3 N, fuel)
  • m Air ratio
  • the exhaust gas actual flow rate Y2 is calculated from the following equation 10.
  • Y2 M x S x 3600 Equation 10
  • M Exhaust gas flow velocity (m / s) measured by the exhaust gas velocity meter 14
  • S Cross sectional area of the exhaust gas flow path (m 2 )
  • the reference steam amount X0 can be calculated from the exhaust gas flow velocity M obtained from the measurement signal from the exhaust gas velocity meter 14.
  • the steam pressure gauge side device 1A can easily calculate the differential pressure ⁇ P using the detected temperatures of the first temperature sensor 5A and the second temperature sensor 5B. Further, even in a boiler 2 that does not include a fuel flow meter in the fuel flow path 20, the pressure loss coefficient J is simply calculated from the calculation source data of the differential pressure ⁇ P measured by the steam pressure gauge side device 1A and the reference steam amount X0. be able to. In addition, after calculating the pressure loss coefficient J, the steam amount X is calculated regardless of the heat input / output heat amount and fuel property value of the boiler. Therefore, even if the heat input / output heat amount and fuel property value of the boiler change, the steam amount X is relatively accurate. Can be calculated. This effect is particularly remarkable when coal, biofuel, or the like whose fuel properties are unstable is used as the fuel for the boiler, or when the control fluctuation of the boiler is large.
  • the present invention is not limited to the steam amount measuring apparatus 1 of the above embodiment, and various modifications can be made.
  • a known steam quantity measuring apparatus that simply calculates the steam quantity X without using a steam flow meter and requires a steam pressure measurement by a steam pressure measuring means that directly measures the steam pressure
  • the vapor pressure can be calculated by the temperature sensor without using the pressure measuring means.
  • the thing of patent document 2 can be mentioned, for example.
  • the steam amount measuring device described in Patent Document 2 measures the total pressure and static pressure in the exhaust gas flow path 13 of the boiler 2, and measures the exhaust gas flow velocity in the exhaust gas flow path 13 from the difference between the total pressure and the static pressure.
  • An exhaust gas velocity meter (not shown) using a Pitot tube and an exhaust gas thermometer 16 for measuring the temperature of combustion exhaust gas are provided, and the fuel usage of the boiler 2 is determined by the values measured by these measuring devices and the intrinsic values of the boiler 2.
  • the vapor amount X is calculated by calculation and the fuel consumption amount calculated by calculation is used.
  • Patent Document 1 a method for obtaining the reference steam amount X0 from the fuel flow rate N that is the calculation source data and obtaining the heat input amount Q from the obtained heat input amount Q is known from Patent Document 1 or the like. Therefore, as described in Patent Document 1, the steam amount measuring apparatus 1 of the above embodiment measures the fuel flow rate N with a fuel flow meter provided in the fuel supply path of the boiler, and calculates and measures the following equation. can do.
  • the fuel of patent document 1 is a liquid fuel.
  • Heat input Q Fuel flow rate N x Fuel specific gravity x Fuel lower heating value
  • Reference steam quantity X0 Heat input Q x Boiler efficiency ⁇ Increase in enthalpy
  • the steam amount measuring apparatus 1 uses this to measure the maximum steam usage by the steam usage load of the boiler 2 and / or the trend measurement of the temporal variation of the steam usage. Can be used as

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

The purpose of the present invention is to easily measure steam pressure, without attaching a pressure measurement means that directly detects steam pressure. A boiler steam pressure measurement device that measures the saturated vapor pressure of a steam boiler (2) and comprises: temperature sensors (5A, 5B) mounted in contact with an outer surface (4A) of a section (4) in a phase equilibrium state with steam flow paths (3A, 3B) in the steam boiler (2); a heat-insulating material (6) that covers the temperature sensors (5A, 5B) such that the heat discharge amount from the attachment section of the temperature sensors (5A, 5B) is a negligible value; and a controller (7) that calculates the saturated vapor pressure inside the steam flow paths (3A, 3B) on the basis of the measurement values for the temperature sensors (5A, 5B).

Description

ボイラの蒸気圧力計測装置およびボイラの蒸気量計測装置Boiler steam pressure measuring device and boiler steam amount measuring device
 この発明は、圧力を直接計測する圧力計測手段を用いることなく蒸気圧力を計測するボイラの蒸気圧力計測装置およびボイラの蒸気量計測装置に関するものである。本願は、2012年5月23日に日本に出願された特願2012-117157号に基づき優先権を主張し、その内容をここに援用する。 This invention relates to a steam pressure measuring device for a boiler and a steam amount measuring device for a boiler that measure the steam pressure without using a pressure measuring means that directly measures the pressure. This application claims priority based on Japanese Patent Application No. 2012-117157 for which it applied to Japan on May 23, 2012, and uses the content here.
 従来、蒸気流量計を用いることなく蒸気量を計測する簡易蒸気量計測方法は、特許文献1や特許文献2にて知られている。しかしながら、これらの従来装置では、圧力を直接計測する圧力計測手段によるボイラの蒸気圧力の計測が必要である。 Conventionally, a simple steam amount measuring method for measuring a steam amount without using a steam flow meter is known in Patent Document 1 and Patent Document 2. However, in these conventional apparatuses, it is necessary to measure the steam pressure of the boiler by the pressure measuring means that directly measures the pressure.
特許第2737753号公報Japanese Patent No. 2737753 特開2010-139207号公報JP 2010-139207 A
 これらの従来装置において、既設の蒸気ボイラの蒸気圧力を計測するには、蒸気配管などに穴を開け、圧力計測手段を取り付けなければならない。圧力計測手段を取り付けるためには、蒸気ボイラの運転を停止しなければならない。 In these conventional devices, in order to measure the steam pressure of the existing steam boiler, a hole must be made in the steam pipe and a pressure measuring means must be attached. In order to install the pressure measuring means, the operation of the steam boiler must be stopped.
 この発明が解決しようとする課題は、蒸気圧力を直接検出する圧力計測手段を取り付けることなく、簡易に蒸気圧力を計測することである。 The problem to be solved by the present invention is to easily measure the steam pressure without attaching a pressure measuring means for directly detecting the steam pressure.
 この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、蒸気ボイラの飽和蒸気圧力を計測するボイラの蒸気圧力測装置であって、前記蒸気ボイラの蒸気流路の相平衡状態にある部分の外面に接触して装着され、前記外面温度を計測する温度センサと、前記温度センサの装着部からの放熱量を無視しうる値とするように前記温度センサを覆う断熱材と、前記温度センサの計測値に基づき前記蒸気流路内の飽和蒸気圧力を算出する制御器とを備えることを特徴としている。 This invention was made in order to solve the said subject, The invention of Claim 1 is a steam pressure measuring device of the boiler which measures the saturated steam pressure of a steam boiler, Comprising: Steam flow of the said steam boiler A temperature sensor that is mounted in contact with an outer surface of a portion in a phase equilibrium state of the road and measures the outer surface temperature, and the temperature sensor is set so that the amount of heat released from the mounting portion of the temperature sensor can be ignored. And a controller for calculating a saturated steam pressure in the steam channel based on a measured value of the temperature sensor.
 請求項1に記載の発明によれば、圧力計測手段を取り付けることなく、簡易に飽和蒸気圧力を計測することができる。 According to the first aspect of the present invention, it is possible to easily measure the saturated steam pressure without attaching a pressure measuring means.
 請求項2に記載の発明は、請求項1に記載の蒸気圧力計測装置を備え、前記蒸気流路内の飽和蒸気圧力を用いて蒸気流量計を用いることなく蒸気量Xを連続的に算出する蒸気量計測装置を特徴としている。 The invention according to claim 2 comprises the vapor pressure measuring device according to claim 1, and continuously calculates the steam amount X without using a steam flow meter using the saturated steam pressure in the steam flow path. It features a steam volume measuring device.
 請求項2に記載の発明によれば、蒸気流量計を用いることなく、請求項1に記載の発明による効果に加えて、簡易に蒸気量を計測することができる。 According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, it is possible to easily measure the amount of steam without using a steam flow meter.
 この発明によれば、蒸気圧力を直接検出する圧力計測手段を取り付けることなく、簡易に蒸気圧力を計測することができる。 According to the present invention, it is possible to easily measure the steam pressure without attaching a pressure measuring means for directly detecting the steam pressure.
この発明を実施した蒸気量計測装置の実施形態の概略構成図である。It is a schematic block diagram of embodiment of the vapor | steam amount measuring apparatus which implemented this invention. 同実施形態の温度センサの取付け状態を模式的に説明する断面図である。It is sectional drawing which illustrates typically the attachment state of the temperature sensor of the embodiment. 同実施形態の制御プログラムを説明するフローチャート図である。It is a flowchart figure explaining the control program of the embodiment. 同実施形態の他の制御プログラムを説明するフローチャート図である。It is a flowchart figure explaining the other control program of the embodiment.
 この発明の蒸気量計測装置1の実施形態を図面に従い説明する。図1は、同実施形態の概略構成図であり、図2は、同実施形態の制御プログラムを説明するフローチャート図であり、図3は、同実施形態の他の制御プログラムを説明するフローチャート図である。 An embodiment of the vapor amount measuring apparatus 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the embodiment, FIG. 2 is a flowchart for explaining a control program of the embodiment, and FIG. 3 is a flowchart for explaining another control program of the embodiment. is there.
<実施形態の構成>
 この実施形態の蒸気量計測装置1は、蒸気ボイラ(以下、単にボイラと称する。)2の蒸気量X(蒸気流路としての蒸気流出路3Aの蒸気流量)を計測する装置である。この発明の蒸気量計測装置1は、圧力計測手段を用いることなく、温度センサを用いて飽和蒸気圧力(以下、特に断らない限り、蒸気圧力と称する。)を算出する蒸気圧力計側装置1Aを含んでいるところに特徴がある。蒸気量計測装置1は、蒸気圧力計側装置1Aにより計測された蒸気圧力に基づき蒸気量Xを算出するが、この発明は、この蒸気量Xの算出構成に特徴を有するものではない。よって、この発明の蒸気量Xの算出構成は、以下に説明する蒸気量Xの算出構成に限定されないものである。
<Configuration of Embodiment>
The steam amount measuring device 1 of this embodiment is a device that measures a steam amount X (steam flow rate of the steam outflow passage 3A as a steam passage) of a steam boiler (hereinafter simply referred to as a boiler) 2. The steam amount measuring device 1 of the present invention is a steam pressure gauge side device 1A that calculates a saturated steam pressure (hereinafter referred to as a steam pressure unless otherwise specified) using a temperature sensor without using a pressure measuring means. There is a feature in including. Although the steam amount measuring device 1 calculates the steam amount X based on the steam pressure measured by the steam pressure gauge side device 1A, the present invention is not characterized by the configuration for calculating the steam amount X. Therefore, the calculation configuration of the steam amount X of the present invention is not limited to the calculation configuration of the steam amount X described below.
 蒸気圧力計測装置1Aは、ボイラ2の蒸気流出路3Aの相平衡状態にある相平衡部4の外面(外表面と称することができる。)4Aに密着して装着され、外面4Aの温度(外面温度)Twoを計測する温度センサ5と、温度センサ5(後記第一温度センサ5Aおよび第二温度センサ5Bを含む)の装着部からの放熱量Qlossを無視しうる値とするように温度センサ5を覆う断熱材6と、温度センサ5の計測値に基づき推定した蒸気流出路3A内の蒸気圧力を算出する制御器7とを備えている。第一温度センサ5Aおよび第二温度センサ5Bは、図1および図2に示すように、蒸気流出路3A,後記蒸気流出路3B(または蒸気ヘッダ21)の外面にそれぞれ管厚さの10倍程度沿わせて先端感温部を密着して装着されている。 The steam pressure measuring device 1A is mounted in close contact with the outer surface (which can be referred to as an outer surface) 4A of the phase equilibrium portion 4 in the phase equilibrium state of the steam outlet passage 3A of the boiler 2, and the temperature (outer surface) of the outer surface 4A. The temperature sensor 5 for measuring the temperature (Two) and the temperature sensor 5 so that the heat radiation amount Qloss from the mounting portion of the temperature sensor 5 (including the first temperature sensor 5A and the second temperature sensor 5B described later) is negligible. And a controller 7 for calculating the steam pressure in the steam outflow passage 3A estimated based on the measured value of the temperature sensor 5. As shown in FIGS. 1 and 2, the first temperature sensor 5 </ b> A and the second temperature sensor 5 </ b> B are each about 10 times the pipe thickness on the outer surface of the steam outlet path 3 </ b> A and the steam outlet path 3 </ b> B (or the steam header 21). Along with it, the tip temperature sensing part is closely attached.
 ここで、「相平衡状態にある」とは、圧力・流速などの変化が緩かで圧力と温度が熱力学的平衡状態を保っていることをいう。水と水蒸気の相平衡状態における圧力と温度の関係は蒸気表データを基に高精度の近似式が提示されている。しかしながら、この発明の管壁温度実測値から真の飽和蒸気温度Tvsを間接的に求める方法では、結果的にはつぎの1)~4)が飽和蒸気圧力計算および蒸気流量計算に大きく影響する。
 1)温度計測部の放熱による温度低下
 2)計測系(センサ本体、センサ取り付け方法、センサ温度計測機器の電気的な精度(増幅回路、分解能、ゼロ点補償など)の誤差成分
 3)介在物体(管壁など)による温度応答の遅れ(特に、2点間の飽和温度の温度差から差圧を求める場合に問題となる)
 4)発生蒸気量の変化
Here, “being in a phase equilibrium state” means that changes in pressure, flow velocity, etc. are slow and pressure and temperature are in a thermodynamic equilibrium state. The relation between the pressure and temperature in the phase equilibrium state of water and steam is presented with a high-precision approximate expression based on the steam table data. However, in the method of indirectly obtaining the true saturated steam temperature Tvs from the measured tube wall temperature according to the present invention, as a result, the following 1) to 4) greatly affect the saturated steam pressure calculation and the steam flow rate calculation.
1) Temperature drop due to heat radiation of temperature measurement unit 2) Error component of measurement system (sensor body, sensor mounting method, sensor temperature measurement device electrical accuracy (amplifier circuit, resolution, zero point compensation, etc.) 3) Intervening object ( Temperature response delay due to pipe wall etc. (especially when finding differential pressure from temperature difference of saturation temperature between two points)
4) Change in the amount of generated steam
 相平衡状態を保ちやすい部位4として、たとえばボイラ2の缶体8の出口側に接続されるドラム9出口側の垂直の蒸気管10の基部50~100mm程度の部分や後記蒸気ヘッダ21の出口側の蒸気管10(または蒸気ヘッダ21)とする。 For example, the portion 4 of the vertical steam pipe 10 on the outlet side of the drum 9 connected to the outlet side of the can body 8 of the boiler 2 or the outlet side of the steam header 21 described later can be used as the portion 4 where the phase equilibrium is easily maintained. The steam pipe 10 (or the steam header 21).
 1)の誤差影響について、「温度センサの装着部からの放熱量を無視しうる値」は、前述の誤差成分の相対的な大きさで決まる。よって、他の全ての誤差要因をなくした場合には、後述のような断熱施工によって十分な値に抑えることが可能であると言える。しかしながら、同様の誤差成分が介在する場合にはそれらの誤差成分を1/2、1/3と小さくする配慮が必要となる。 Regarding the error influence of 1), the “value that can ignore the amount of heat released from the temperature sensor mounting portion” is determined by the relative size of the error component described above. Therefore, when all other error factors are eliminated, it can be said that it can be suppressed to a sufficient value by heat insulation as described later. However, when similar error components are present, consideration must be given to reducing those error components to 1/2 and 1/3.
 2)の計測系の精度については、適切な取り付け方法、熱電対などの温度センサ、高精度温度計測機器を選択すればよい。 (2) For the accuracy of the measurement system, an appropriate mounting method, a temperature sensor such as a thermocouple, or a high-precision temperature measurement device may be selected.
 3)の介在物による温度計測遅れの影響を少なくなするためには、ボイラ2は、好ましくは、保有水量が大きいボイラで、たとえば大型の水管・炉筒煙管ボイラなどを対象とする。保有水量が大きいボイラが好ましいのは、つぎの理由による。蒸気管の熱的時定数は一般的には数秒程度なので、ボイラ保有水量が大きいボイラでは数分以上の熱的時定数持っており問題にはならないが、小型の貫流ボイラでは数十秒程度と熱的時定数が小さく、管壁計測での遅れと同程度になり問題となる。 In order to reduce the influence of temperature measurement delay due to inclusions in 3), the boiler 2 is preferably a boiler having a large amount of water, for example, a large water tube / furnace smoke tube boiler. The reason why a boiler with a large amount of water is preferred is as follows. The thermal time constant of a steam pipe is generally about several seconds, so a boiler with a large amount of water in the boiler has a thermal time constant of several minutes or more, but this is not a problem, but a small once-through boiler has a few tens of seconds. The thermal time constant is small, which is about the same as the delay in tube wall measurement.
 4)の発生蒸気量の変化については、燃焼制御における比例燃焼ではないON-OFF、3位置制御のボイラでは、蒸気発生量の変化が急峻であり、その蒸気-水が流動する系(計測部)の熱的非平衡状態、つまり蒸気相が飽和温度に対して、場合によっては数℃程度の増加や減少を生じる。よって、比例燃焼などのON-OFF変動が少ないボイラが望ましい。 Regarding the change in the amount of steam generated in 4), in the ON-OFF, which is not proportional combustion in the combustion control, in the three-position control boiler, the steam generation amount changes sharply, and the steam-water flows (measurement unit) ) Thermal non-equilibrium state, that is, the vapor phase increases or decreases by several degrees C. depending on the case. Therefore, a boiler with less ON-OFF fluctuation such as proportional combustion is desirable.
 つぎに、「温度センサ5の装着部からの放熱量を無視しうる値」についてさらに説明する。放熱量Qlossは、限りなく零に近づけことが望ましいが、実際には零とすることができない。以下に、放熱量Qlossを無視し得る値にできることを説明する。 Next, “a value at which the amount of heat released from the mounting portion of the temperature sensor 5 can be ignored” will be further described. Although it is desirable that the heat dissipation amount Qloss is as close to zero as possible, it cannot actually be zero. Hereinafter, it will be described that the heat dissipation amount Qloss can be made a negligible value.
 放熱量Qlossは、つぎのようにして算出できる。
 管内蒸気温度Tvsと外気温度Taとの差(Tvs-Ta)を温度差ΔTとする。外気-保温表面の熱抵抗、断熱材の熱抵抗、蒸気管(鋼管)10の熱伝導熱抵抗、送気管内面の凝縮・流動熱抵抗、それぞれの全熱抵抗を合計した値の逆数が熱貫流率KW/m2Kとなる。保温材外面Som2を基準面とすると、Qlossは、次式1で計算される。
 Qloss=K×So×ΔT・・・式1
The heat dissipation amount Qloss can be calculated as follows.
A difference (Tvs−Ta) between the pipe steam temperature Tvs and the outside air temperature Ta is defined as a temperature difference ΔT. The reciprocal of the sum of the total heat resistance of the outside air and heat insulation surface, the heat resistance of the insulation, the heat conduction heat resistance of the steam pipe (steel pipe) 10, the condensation / flow heat resistance of the inner surface of the air pipe, The rate is KW / m 2 K. When the heat insulating material outer surface Som 2 is a reference surface, Qloss is calculated by the following equation 1.
Qloss = K × So × ΔT ... Equation 1
 今、蒸気管10の口径が大きく、断熱材6の外径(蒸気管10の外側に円筒状に巻かれた断熱材6の径)と蒸気管10の口径との差を蒸気管10の口径で除した値が数%程度であるとする。断熱材6の外表面と外気温度との熱抵抗を1/haとし、断熱材6の熱抵抗を1/(k/δ)insとし、鋼管10の熱抵抗を同様に1/(k/δ)tubeとし、蒸気管10内面の熱抵抗を1/hcとすると、全熱抵抗1/Kはその総和であるので、次式2のようになる。
 1/K=1/ha+(δ/k)ins+(δ/k)tube+1/hc・・・式2
Now, the diameter of the steam pipe 10 is large, and the difference between the outer diameter of the heat insulating material 6 (the diameter of the heat insulating material 6 wound in a cylindrical shape outside the steam pipe 10) and the diameter of the steam pipe 10 is the diameter of the steam pipe 10. It is assumed that the value divided by is about several percent. The heat resistance between the outer surface of the heat insulating material 6 and the outside air temperature is 1 / ha, the heat resistance of the heat insulating material 6 is 1 / (k / δ) ins, and the heat resistance of the steel pipe 10 is similarly 1 / (k / δ). ) If tube is set and the thermal resistance of the inner surface of the steam pipe 10 is 1 / hc, the total thermal resistance 1 / K is the sum thereof, so that the following equation 2 is obtained.
1 / K = 1 / ha + (δ / k) ins + (δ / k) tube + 1 / hc ・ ・ ・ Equation 2
 式1、式2から、
 管内蒸気温度Tvsと外気温度Taの差ΔTによる放熱量Qlossで表現すると、
  Qloss/So=K×ΔT・・・式3
 また、管内蒸気温度Tvsと管の外表面温度Twoの差による放熱量Qlossで表現すると、
  Qloss/So=1/{1/(k/δ)tube+1/hc}×(Tvs-Two)・・・式4
From Equation 1 and Equation 2,
Expressed in terms of heat dissipation Qloss due to the difference ΔT between the steam temperature Tvs in the pipe and the outside air temperature Ta,
Qloss / So = K × ΔT ... Equation 3
Also, when expressed in terms of heat dissipation Qloss due to the difference between the steam temperature Tvs in the tube and the outer surface temperature Two of the tube,
Qloss / So = 1 / {1 / (k / δ) tube + 1 / hc} × (Tvs−Two) Equation 4
 計測する管外表面温度と管内蒸気温度の温度差(Tvs-Two)をゼロとするには、式4の関係から放熱量をゼロとしたいが、実際上有限値なので、
 式3および式4から、
 (Tvs-Two)=K×{1/(k/δ)tube+1/hc}×ΔT・・・式5
 式5から判るように、右辺をできるだけ小さくすることになる。
In order to make the temperature difference (Tvs-Two) between the tube outer surface temperature and the tube steam temperature to be measured zero, we want to set the heat dissipation to zero from the relationship of Equation 4, but since it is actually a finite value,
From Equation 3 and Equation 4,
(Tvs−Two) = K × {1 / (k / δ) tube + 1 / hc} × ΔT Equation 5
As can be seen from Equation 5, the right side is made as small as possible.
 適切な断熱施工を行えば、K=1W/m2K程度になり、蒸気管10のk=53W/m2K、100A鋼管の管厚さδ=0.0045m、および管内hc=5800W/m2K程度なので、
 K×{1/(k/δ)tube+1/hc}≒0.0003程度になる。
 したがって、冬期(外気5℃)運転の2MPa高圧ボイラでは
 Tvs-Two=ΔT×0.0003=210℃×0.0003=0.063℃
 よって、1箇所の点の飽和温度の温度差(Tvs-Two)の許される値は、2点間の飽和温度の温度差から差圧を求める場合、2点間の差圧に相当する飽和温度の差1.5~3℃に対する精度5%=0.075~0.15℃ 以下に抑えることができる。なお、前記の飽和温度の差1.5~3℃は、負荷蒸気圧力0.5MPa~1.6MPaにおける最大流量時の蒸気管差圧(ボイラとスチームヘッダ間の差圧)の推定最小値ΔP=0.05MPaの場合に相当する温度差である。
With proper insulation construction, K = 1 W / m 2 K, steam pipe 10 k = 53 W / m 2 K, 100A steel pipe thickness δ = 0.0045 m, and pipe hc = 5800 W / m 2 Since it is about K,
K × {1 / (k / δ) tube + 1 / hc} ≈0.0003
Therefore, Tvs-Two = ΔT × 0.0003 = 210 ℃ × 0.0003 = 0.063 ℃ in a 2MPa high-pressure boiler operating in winter (outside air 5 ℃)
Therefore, the allowable value of the temperature difference (Tvs-Two) of the saturation temperature at one point is the saturation temperature corresponding to the pressure difference between the two points when the pressure difference is calculated from the temperature difference between the saturation temperatures of the two points. The accuracy for the difference of 1.5 to 3 ° C is 5% = 0.075 to 0.15 ° C or less. Note that the saturation temperature difference of 1.5 to 3 ° C is the estimated minimum value ΔP = 0.05 MPa for the steam pipe differential pressure (differential pressure between the boiler and the steam header) at the maximum flow rate when the load steam pressure is 0.5 MPa to 1.6 MPa. This is the temperature difference corresponding to the case.
 このように、断熱材6により適切な保温施工をすれば、Tvs≒Twoとなり放熱量Qlossを無視し得る。この実施形態では図2に示すように、第一温度センサ5A(および第二温度センサ5B)に対して、管軸方向の熱損失抑制も配慮して、温度計測壁あるいは管10の厚さのおよそ15倍以上の半径円あるいは管長さ相当面積の範囲を、厚さ50mm以上のグラスウールからなる断熱材6で保温施工している。なお、図では第一温度センサ5Aのみ示しているが、第二温度センサ5Bも同様に保温施工される。 In this way, if appropriate heat insulation is performed with the heat insulating material 6, Tvs≈Two and the heat dissipation Qloss can be ignored. In this embodiment, as shown in FIG. 2, the temperature measurement wall or the thickness of the tube 10 is reduced with respect to the first temperature sensor 5A (and the second temperature sensor 5B) in consideration of heat loss suppression in the tube axis direction. The heat insulation material 6 made of glass wool with a thickness of 50 mm or more is kept warm for a radius circle or tube length equivalent area of about 15 times or more. In the figure, only the first temperature sensor 5A is shown, but the second temperature sensor 5B is similarly insulated.
 つぎに、蒸気量計測装置1による蒸気量Xの算出の構成について説明する。蒸気量計測装置1は、蒸気圧力計測装置1Aにより計測された蒸気圧力に基づき差圧ΔPを算出する差圧検出手段11と、元データ計測手段12と、蒸気量Xの計測を制御する制御器7とを含んで構成されている。 Next, a configuration for calculating the steam amount X by the steam amount measuring device 1 will be described. The steam amount measuring device 1 includes a differential pressure detecting means 11 that calculates a differential pressure ΔP based on the steam pressure measured by the steam pressure measuring device 1A, an original data measuring means 12, and a controller that controls the measurement of the steam amount X. 7.
 差圧検出手段11は、蒸気管10の相平衡部4の外面4A(第一検出位置)の温度(第一温度Two1)を計測する第一温度センサ5Aと、第一温度センサ5Aから離間した位置(第二検出位置)の外面4Aの温度(第二温度Two2)を計測する第二温度センサ5Bとを含んで構成され、第一温度Two1から求めた蒸気圧力(第一圧力P1)と第二温度Two2から求めた蒸気圧力(第二圧力P2)との間の差圧ΔPを計測する。 The differential pressure detecting means 11 is separated from the first temperature sensor 5A and the first temperature sensor 5A for measuring the temperature (first temperature Two1) of the outer surface 4A (first detection position) of the phase equilibrium portion 4 of the steam pipe 10. A second temperature sensor 5B that measures the temperature (second temperature Two2) of the outer surface 4A at the position (second detection position), and the vapor pressure (first pressure P1) obtained from the first temperature Two1 and the first A differential pressure ΔP between the vapor pressure (second pressure P2) obtained from the two temperatures Two2 is measured.
 元データ計測手段12は、基準蒸気量X0の算出元データの計測手段であり、この実施形態では、第一温度センサ5A,第二温度センサ5Bと、排ガス流路13内の排ガス流速Mを計測する排ガス流速計14と、排ガス中の酸素濃度を計測する排ガス酸素濃度計15と、排ガスの温度を計測する排ガス温度計16と、給気温度を計測する給気温度計17と、給水温度を計測する給水温度計18とを含んで構成されている。なお、これら計測手段のうちで、ボイラ2に既設のものは、新たに設けることなく必要に応じて利用する。 The original data measuring means 12 is a measuring means for calculating the reference steam amount X0, and in this embodiment, the first temperature sensor 5A, the second temperature sensor 5B, and the exhaust gas flow velocity M in the exhaust gas passage 13 are measured. An exhaust gas velocity meter 14, an exhaust gas oxygen concentration meter 15 that measures the oxygen concentration in the exhaust gas, an exhaust gas thermometer 16 that measures the temperature of the exhaust gas, an air supply thermometer 17 that measures the supply air temperature, and a water supply temperature A feed water thermometer 18 to be measured is included. Of these measuring means, those already installed in the boiler 2 are used as needed without being newly provided.
 制御器7は、第一温度センサ5A,第二温度センサ5B,元データ計測手段12の各計測計からの信号を入力して、予め記憶した制御手順(制御プログラム)に基づき、計測した蒸気量Xを表示器19へ出力するように構成されている。制御手順の一例を図3,4に示す。 The controller 7 inputs signals from the respective measuring instruments of the first temperature sensor 5A, the second temperature sensor 5B, and the original data measuring means 12, and measures the vapor amount measured based on a previously stored control procedure (control program). X is configured to be output to the display 19. An example of the control procedure is shown in FIGS.
 制御器7による制御手順は、図3に示す圧力損失係数算出手順と、図4に示す蒸気量算出・出力手順(蒸気量計測手順と言い換えることができる。)とを含んでいる。圧力損失係数算出手順は、算出元データ(元データ計測手段12の各計測計からの信号)を入力する算出元データ入力ステップと、差圧ΔP(第一温度センサ5Aによる第一温度Two1に対応する第一圧力P1と、第二温度センサ5Bによる第二温度Two2に対応する第一圧力検出圧P2との差)を入力する差圧入力ステップと、前記算出元データから基準蒸気量X0を求める基準蒸気量算出ステップと、基準蒸気量X0を求めたときの差圧ΔPから下式6の圧力損失計算式に基づき算出した蒸気量Xと基準蒸気量X0とが等しいとして圧力損失係数Jを算出する係数算出ステップとを含んで構成されている。
 ΔP=J×X2÷ρ・・・・・・式6
 但し、ρは、P1から求めた蒸気比重量
The control procedure by the controller 7 includes a pressure loss coefficient calculation procedure shown in FIG. 3 and a steam amount calculation / output procedure (in other words, a steam amount measurement procedure) shown in FIG. The pressure loss coefficient calculation procedure corresponds to a calculation source data input step for inputting calculation source data (signal from each measuring instrument of the original data measuring means 12) and a differential pressure ΔP (first temperature Two1 by the first temperature sensor 5A). A differential pressure input step of inputting a first pressure P1 to be performed and a first pressure detection pressure P2 corresponding to the second temperature Two2 by the second temperature sensor 5B), and a reference steam amount X0 is obtained from the calculation source data. Calculate the pressure loss coefficient J from the difference between the reference steam amount calculation step and the pressure difference ΔP when the reference steam amount X0 is determined, and the steam amount X calculated based on the pressure loss calculation formula (6) below is equal to the reference steam amount X0. And a coefficient calculating step.
ΔP = J × X 2 ÷ ρ ・ ・ ・ ・ ・ ・ Formula 6
Where ρ is the steam specific weight determined from P1
 また、蒸気量算出・出力手順は、差圧入力ステップで入力した差圧ΔPと係数算出ステップで算出した圧力損失係数Jとから圧力損失計算式(式6)に基づき、蒸気量Xを連続的に算出する蒸気量算出ステップと、算出した蒸気量Xを計測値として表示器19へ出力する蒸気量出力ステップとを含んでいる。 In addition, the steam amount calculation / output procedure is based on the pressure loss calculation formula (formula 6) from the pressure difference ΔP input in the differential pressure input step and the pressure loss coefficient J calculated in the coefficient calculation step. And a steam amount output step for outputting the calculated steam amount X to the display 19 as a measured value.
 なお、図1における符号21は、複数の蒸気使用負荷(図示省略)へ蒸気を分配する蒸気流出路3B,3B,・・・を接続するスチームヘッダであり、符号23は、バーナ22への燃焼用空気流路であり、符号24は、バーナ22への燃料流路であり、符号25は、缶体8への給水路である。また、図2における符号26は、蒸気管10を覆う通常の断熱材である。 1 is a steam header for connecting steam outflow passages 3B, 3B,... For distributing steam to a plurality of steam use loads (not shown), and reference numeral 23 is combustion to the burner 22. The reference numeral 24 is a fuel flow path to the burner 22, and the reference numeral 25 is a water supply path to the can body 8. Moreover, the code | symbol 26 in FIG. 2 is a normal heat insulating material which covers the steam pipe 10. FIG.
<実施形態の動作>
 つぎに、実施形態の動作を図面に基づき説明する。今、既設のボイラ2の蒸気量Xを、蒸気量計測装置1を用いて計測するものとする。まず、ボイラ2の運転停止状態において、図1に示すように、第一温度センサ5A,第二温度センサ5B,排ガス流速計14,排ガス酸素濃度計15,排ガス温度計16,給気温度計17,給水温度計18を取り付ける。第一温度センサ5A,第二温度センサ5Bは、図2に示すように、蒸気管10の外面4Aに密着させて取り付け、外表面を断熱材6で保温施工する。この状態で、ボイラ2の運転を開始するとともに、蒸気量計測装置1の起動スイッチ(図示省略)をONして計測を開始する。
<Operation of Embodiment>
Next, the operation of the embodiment will be described with reference to the drawings. Now, it is assumed that the steam amount X of the existing boiler 2 is measured using the steam amount measuring device 1. First, in the operation stop state of the boiler 2, as shown in FIG. 1, the first temperature sensor 5A, the second temperature sensor 5B, the exhaust gas velocity meter 14, the exhaust gas oxygen concentration meter 15, the exhaust gas thermometer 16, the supply air thermometer 17 , A feed water thermometer 18 is attached. As shown in FIG. 2, the first temperature sensor 5 </ b> A and the second temperature sensor 5 </ b> B are attached in close contact with the outer surface 4 </ b> A of the steam pipe 10, and the outer surface is heat-insulated with the heat insulating material 6. In this state, the operation of the boiler 2 is started, and the start switch (not shown) of the steam amount measuring device 1 is turned on to start measurement.
(圧力損失係数Jの算出)
 まず、圧力損失係数Jの算出について説明する。この圧力損失係数Jの算出は、缶体8の圧力が安定しているときに行われる。具体的には、蒸気量計測装置1を操作する計測者が、ボイラ2に既設の圧力計(図示省略)にて出力を観測し、5分間連続して圧力の変動幅±数%以下の場合に安定と判定して、係数算出スイッチ(図示省略)をONすることで、圧力損失係数Jの算出が行われる。勿論、安定の判定および係数算出スイッチの操作は、自動的に行うように構成できる。
(Calculation of pressure loss coefficient J)
First, calculation of the pressure loss coefficient J will be described. The calculation of the pressure loss coefficient J is performed when the pressure of the can body 8 is stable. Specifically, the measurer operating the steam amount measuring device 1 observes the output with an existing pressure gauge (not shown) in the boiler 2 and the pressure fluctuation range is ± 5% or less continuously for 5 minutes. The pressure loss coefficient J is calculated by turning on the coefficient calculation switch (not shown). Of course, the determination of stability and the operation of the coefficient calculation switch can be automatically performed.
 図3を参照して説明するに、制御器7は、ステップS1(以下、ステップSNを単にSNという。)にて、元データ計測手段12の各計測機器からの信号を取り込む。ついで、S2では、差圧ΔPを算出し入力する。差圧ΔPは、第一温度センサ5A,第二温度センサ5Bの検出温度を飽和蒸気温度に等しいとして、飽和蒸気圧力に換算して算出する。 As will be described with reference to FIG. 3, the controller 7 takes in signals from each measuring device of the original data measuring means 12 in step S <b> 1 (hereinafter, step SN is simply referred to as SN). Next, in S2, the differential pressure ΔP is calculated and input. The differential pressure ΔP is calculated by converting into the saturated steam pressure, assuming that the detected temperatures of the first temperature sensor 5A and the second temperature sensor 5B are equal to the saturated steam temperature.
 ついで、S3では、元データ計測手段12の過去5分間の計測データからサンプリングした値の平均値から式7により基準蒸気量X0を算出する。なお、ここでは、気体燃料の場合を示している。
 X0=(η×HL×N)/(h1-h2)・・・・・式7
 但し、X0:基準蒸気量(kg/h),η:ボイラ効率(%),HL:燃料低位発熱量(MJ/m3N),N:燃料流量(m3N/h),h1:飽和蒸気のエンタルピー(MJ/kg),h2:給水のエンタルピー(MJ/kg)
Next, in S3, the reference steam amount X0 is calculated by Equation 7 from the average value of the values sampled from the measurement data for the past 5 minutes of the original data measuring means 12. Here, the case of gaseous fuel is shown.
X0 = (η × HL × N) / (h1-h2) Equation 7
However, X0: Reference steam volume (kg / h), η: Boiler efficiency (%), HL: Lower fuel heating value (MJ / m 3 N), N: Fuel flow rate (m 3 N / h), h1: Saturation Steam enthalpy (MJ / kg), h2: Water supply enthalpy (MJ / kg)
 燃料流量Nは、次式8から算出される。
 N=Y1/{G0+Gw+(m-1)×A0}・・・・式8
  但し、Y1:排ガス標準流量(m3N/h),
    (G0+Gw+(m-1)×A0):実際湿り排ガス量(m3N/m3N,fuel)
    G0:理論乾き排ガス量(m3N/m3N,fuel)
    Qw:燃焼によって生じる水蒸気及び燃料中の水分による水蒸気量(m3N/kg)
    (G0+Gw):理論排ガス量(m3N/m3N,fuel)
    A0:理論空気量(m3N/m3N,fuel)
    m:空気比
The fuel flow rate N is calculated from the following equation 8.
N = Y1 / {G0 + Gw + (m−1) × A0}.
Y1: Standard exhaust gas flow rate (m 3 N / h),
(G0 + Gw + (m−1) × A0): Actual wet exhaust gas amount (m 3 N / m 3 N, fuel)
G0: Theoretical dry exhaust gas volume (m 3 N / m 3 N, fuel)
Qw: Water vapor generated by combustion and water vapor due to water in the fuel (m 3 N / kg)
(G0 + Gw): Theoretical exhaust gas volume (m 3 N / m 3 N, fuel)
A0: Theoretical air volume (m 3 N / m 3 N, fuel)
m: Air ratio
 排ガス標準流量Y1は、次式9から算出される。
 Y1=Y2×273/(273+T1)・・・・・式9
 但し、Y2:排ガス実流量(m3/h),T1:排ガス温度計16で計測した排ガス温度(K)
The exhaust gas standard flow rate Y1 is calculated from the following equation 9.
Y1 = Y2 × 273 / (273 + T1) Equation 9
Y2: Exhaust gas actual flow rate (m 3 / h), T1: Exhaust gas temperature (K) measured by the exhaust gas thermometer 16
 排ガス実流量Y2は、次式10から算出される。
 Y2=M×S×3600・・・・・式10
 但し、M:排ガス流速計14で計測した排ガス流速(m/s),S:排ガス流路の断面積(m2
 結局、基準蒸気量X0は、排ガス流速計14による計測信号から求めた排ガス流速Mから算出することができる。
The exhaust gas actual flow rate Y2 is calculated from the following equation 10.
Y2 = M x S x 3600 Equation 10
However, M: Exhaust gas flow velocity (m / s) measured by the exhaust gas velocity meter 14, S: Cross sectional area of the exhaust gas flow path (m 2 )
Eventually, the reference steam amount X0 can be calculated from the exhaust gas flow velocity M obtained from the measurement signal from the exhaust gas velocity meter 14.
 ついで、S4では、S3で算出した基準蒸気量X0と、基準蒸気量X0を算出したときの差圧ΔPから得られる蒸気量X(式6で求める)とが等しい、すなわち、X0=Xとして、圧力損失係数Jを算出する。圧力損失係数J以外は、値を求めているので、X0=Xから圧力損失係数Jを算出することができる。 Next, in S4, the reference steam amount X0 calculated in S3 is equal to the steam amount X (determined by Equation 6) obtained from the differential pressure ΔP when the reference steam amount X0 is calculated, that is, X0 = X. The pressure loss coefficient J is calculated. Since values other than the pressure loss coefficient J are obtained, the pressure loss coefficient J can be calculated from X0 = X.
(蒸気量算出・出力)
 つぎに、蒸気量算出・出力手順、すなわち蒸気量計測手順について説明する。図4を参照して説明するに、S5で、式6に、S4で算出した圧力算出係数Jと連続的に計測する差圧ΔPを代入することにより、蒸気量Xを連続的に算出する。S6では、算出した蒸気量Xを表示器19に出力する。
(Steam calculation / output)
Next, a vapor amount calculation / output procedure, that is, a vapor amount measurement procedure will be described. As will be described with reference to FIG. 4, in S5, the steam amount X is continuously calculated by substituting the pressure calculation coefficient J calculated in S4 and the differential pressure ΔP continuously measured in Equation 6 into S6. In S <b> 6, the calculated vapor amount X is output to the display 19.
 以上の実施形態によれば、蒸気圧力計側装置1Aは、第一温度センサ5Aおよび第二温度センサ5Bの検出温度を用いて、差圧ΔPを簡易に算出することができる。また、燃料流路20に燃料流量計を備えていないボイラ2でも、蒸気圧力計側装置1Aにより計測された差圧ΔPと基準蒸気量X0の算出元データから圧力損失係数Jを簡易に算出することができる。また、圧力損失係数Jの算出後は、ボイラの入出熱量や燃料物性値に関係なく蒸気量Xを算出するので、ボイラの入出熱量や燃料物性値が変化しても蒸気量Xを比較的正確に算出することができる。この効果は、ボイラの燃料として、燃料性状が不安定な石炭やバイオ燃料などを使用している場合、あるいはボイラの制御変動が大きい場合に特に顕著である。 According to the above embodiment, the steam pressure gauge side device 1A can easily calculate the differential pressure ΔP using the detected temperatures of the first temperature sensor 5A and the second temperature sensor 5B. Further, even in a boiler 2 that does not include a fuel flow meter in the fuel flow path 20, the pressure loss coefficient J is simply calculated from the calculation source data of the differential pressure ΔP measured by the steam pressure gauge side device 1A and the reference steam amount X0. be able to. In addition, after calculating the pressure loss coefficient J, the steam amount X is calculated regardless of the heat input / output heat amount and fuel property value of the boiler. Therefore, even if the heat input / output heat amount and fuel property value of the boiler change, the steam amount X is relatively accurate. Can be calculated. This effect is particularly remarkable when coal, biofuel, or the like whose fuel properties are unstable is used as the fuel for the boiler, or when the control fluctuation of the boiler is large.
 この発明は、前記実施形態の蒸気量計測装置1に限定されるものではなく、種々変更可能である。たとえば、蒸気流量計を用いないで、簡易に蒸気量Xを算出するものであって、蒸気圧力を直接計測する蒸気圧力計測手段による蒸気圧力の計測が必要な公知の蒸気量計測装置において、蒸気圧力計測手段を用いることなく、温度センサにより蒸気圧力を算出するように構成することができる。前記の公知の蒸気量計測装置としては、たとえば特許文献2に記載のものを挙げることができる。この特許文献2に記載の蒸気量計測装置は、ボイラ2の排ガス流路13内の全圧と静圧を測定し、全圧と静圧の差から排ガス流路13内の排ガス流速を測定するピトー管による排ガス流速計(図示省略)と、燃焼排ガスの温度を測定する排ガス温度計16を設け、これら測定装置にて測定した値と、ボイラ2が持つ固有値により、ボイラ2の燃料使用量を演算により算出し、演算で求めた燃料使用量を用いて蒸気量Xを算出するようにしている。 The present invention is not limited to the steam amount measuring apparatus 1 of the above embodiment, and various modifications can be made. For example, in a known steam quantity measuring apparatus that simply calculates the steam quantity X without using a steam flow meter and requires a steam pressure measurement by a steam pressure measuring means that directly measures the steam pressure, The vapor pressure can be calculated by the temperature sensor without using the pressure measuring means. As said well-known vapor | steam measuring device, the thing of patent document 2 can be mentioned, for example. The steam amount measuring device described in Patent Document 2 measures the total pressure and static pressure in the exhaust gas flow path 13 of the boiler 2, and measures the exhaust gas flow velocity in the exhaust gas flow path 13 from the difference between the total pressure and the static pressure. An exhaust gas velocity meter (not shown) using a Pitot tube and an exhaust gas thermometer 16 for measuring the temperature of combustion exhaust gas are provided, and the fuel usage of the boiler 2 is determined by the values measured by these measuring devices and the intrinsic values of the boiler 2. The vapor amount X is calculated by calculation and the fuel consumption amount calculated by calculation is used.
 また、基準蒸気量X0は、前記算出元データである燃料流量Nから入熱量Qを求め、求めた入熱量Qから求める方法は、特許文献1などで知られている。よって、前記実施形態の蒸気量計測装置1は、この特許文献1に記載のように、前記ボイラの燃料供給路に備える燃料流量計により燃料流量Nを計測して、次式で算出して計測することができる。なお、特許文献1の燃料は液体燃料である。
 入熱量Q=燃料流量N×燃料比重×燃料低位発熱量
 基準蒸気量X0=入熱量Q×ボイラ効率÷エンタルピー増加分
Further, a method for obtaining the reference steam amount X0 from the fuel flow rate N that is the calculation source data and obtaining the heat input amount Q from the obtained heat input amount Q is known from Patent Document 1 or the like. Therefore, as described in Patent Document 1, the steam amount measuring apparatus 1 of the above embodiment measures the fuel flow rate N with a fuel flow meter provided in the fuel supply path of the boiler, and calculates and measures the following equation. can do. In addition, the fuel of patent document 1 is a liquid fuel.
Heat input Q = Fuel flow rate N x Fuel specific gravity x Fuel lower heating value Reference steam quantity X0 = Heat input Q x Boiler efficiency ÷ Increase in enthalpy
 前記の実施形態の蒸気量計測装置1は、これを用いて、ボイラ2の蒸気使用負荷による最大蒸気使用量の測定および/または蒸気使用量の時間的変動の傾向測定を行うボイラの負荷分析装置として用いることができる。 The steam amount measuring apparatus 1 according to the above-described embodiment uses this to measure the maximum steam usage by the steam usage load of the boiler 2 and / or the trend measurement of the temporal variation of the steam usage. Can be used as
 1        蒸気量計測装置
 1A       蒸気圧力計測装置
 2        蒸気ボイラ(ボイラ)
 3A,3B    蒸気流出路
 4        相平衡部
 5A,5B    温度センサ
 6        断熱材
 7        制御器
1 Steam volume measuring device 1A Steam pressure measuring device 2 Steam boiler (boiler)
3A, 3B Steam outflow path 4 Phase equilibrium part 5A, 5B Temperature sensor 6 Heat insulating material 7 Controller

Claims (2)

  1.  蒸気ボイラの飽和蒸気圧力を計測するボイラの蒸気圧力測装置であって、
     前記蒸気ボイラの蒸気流路の相平衡状態にある部分の外面に接触して装着され、前記外面温度を計測する温度センサと、
     前記温度センサの装着部からの放熱量を無視しうる値とするように前記温度センサを覆う断熱材と、
     前記温度センサの計測値に基づき前記蒸気流路内の飽和蒸気圧力を算出する制御器とを備える
     ことを特徴とするボイラの蒸気圧力計測装置。
    A steam pressure measuring device for a boiler that measures a saturated steam pressure of a steam boiler,
    A temperature sensor that is mounted in contact with an outer surface of a portion in a phase equilibrium state of the steam flow path of the steam boiler, and measures the outer surface temperature;
    A heat insulating material that covers the temperature sensor so that the amount of heat released from the mounting portion of the temperature sensor can be ignored;
    A steam pressure measuring device for a boiler, comprising: a controller that calculates a saturated steam pressure in the steam channel based on a measured value of the temperature sensor.
  2.  請求項1に記載の蒸気圧力計測装置を備え、前記蒸気流路内の飽和蒸気圧力を用いて蒸気流量計を用いることなく蒸気量Xを連続的に算出することを特徴とするボイラの蒸気量計測装置。 A steam amount of a boiler comprising the steam pressure measuring device according to claim 1, wherein the steam amount X is continuously calculated using a saturated steam pressure in the steam flow path without using a steam flow meter. Measuring device.
PCT/JP2012/081806 2012-05-23 2012-12-07 Steam pressure measurement device for boiler and steam amount measurement device for boiler WO2013175664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-117157 2012-05-23
JP2012117157A JP2013242120A (en) 2012-05-23 2012-05-23 Steam pressure measurement device for boiler and steam amount measurement device for boiler

Publications (1)

Publication Number Publication Date
WO2013175664A1 true WO2013175664A1 (en) 2013-11-28

Family

ID=49623382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081806 WO2013175664A1 (en) 2012-05-23 2012-12-07 Steam pressure measurement device for boiler and steam amount measurement device for boiler

Country Status (2)

Country Link
JP (1) JP2013242120A (en)
WO (1) WO2013175664A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052945A (en) * 2016-05-11 2016-10-26 浙江大学 Solution configuration method used for vapor pressure measurement and vapor pressure measurement method
US10809142B2 (en) 2018-03-26 2020-10-20 Honeywell International Inc. Steam physical property measurement using guided wave radar
CN113029423A (en) * 2021-02-26 2021-06-25 重庆国际复合材料股份有限公司 Kiln pressure monitoring system for glass fiber kiln forming area

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371533B2 (en) * 2020-02-28 2023-10-31 三浦工業株式会社 Boiler efficiency calculation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224369A (en) * 2007-03-12 2008-09-25 Toshinori Kanemitsu Pressure control method for gas phase part in container, and controller therefor
JP2010139207A (en) * 2008-12-15 2010-06-24 Samson Co Ltd Steam generation amount calculating method for boiler
JP2012057805A (en) * 2010-09-03 2012-03-22 Samson Co Ltd Steam boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224369A (en) * 2007-03-12 2008-09-25 Toshinori Kanemitsu Pressure control method for gas phase part in container, and controller therefor
JP2010139207A (en) * 2008-12-15 2010-06-24 Samson Co Ltd Steam generation amount calculating method for boiler
JP2012057805A (en) * 2010-09-03 2012-03-22 Samson Co Ltd Steam boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052945A (en) * 2016-05-11 2016-10-26 浙江大学 Solution configuration method used for vapor pressure measurement and vapor pressure measurement method
US10809142B2 (en) 2018-03-26 2020-10-20 Honeywell International Inc. Steam physical property measurement using guided wave radar
CN113029423A (en) * 2021-02-26 2021-06-25 重庆国际复合材料股份有限公司 Kiln pressure monitoring system for glass fiber kiln forming area

Also Published As

Publication number Publication date
JP2013242120A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
KR101303653B1 (en) Compensation for thermal siphoning in mass flow controllers
WO2013175664A1 (en) Steam pressure measurement device for boiler and steam amount measurement device for boiler
KR102017769B1 (en) Boiler steam amount measuring method, boiler load analyzing method, boiler steam amount measuring apparatus, and boiler load analyzing apparatus
TWI554755B (en) A hygrometer and a constant temperature and humidity tank with the hygrometer
CN107003168B (en) Liquid level gauge and liquid raw material vaporizing and supplying device
JP6229521B2 (en) Flow velocity measuring method and flow velocity measuring system
EP3153854B1 (en) Determination of volumetric flow rate of a gas in a gas flow
JP2010139207A (en) Steam generation amount calculating method for boiler
US20040089066A1 (en) Device for measuring gas flow-rate particularly for burners
JP2012083206A (en) Dew point meter, hygrometer, dew point derivation apparatus, humidity derivation apparatus, dew point measuring method and humidity measuring method
JP6500585B2 (en) Measurement system and method
JP4393302B2 (en) Method and apparatus for measuring calorific value of liquefied natural gas
JP5575579B2 (en) Steam dryness measuring device
JP6097197B2 (en) Calorimeter and calorie measuring method
KR102088790B1 (en) Method for Correcting of Gas Amount of Gas Boiler
JP6166149B2 (en) Calorimeter and calorie measuring method
KR101889161B1 (en) Thermal type mass flow meter
CN107462296B (en) Gas flowmeter
JP2016173128A (en) Positioner
JP6531476B2 (en) Wetness measurement system and method
JP3719802B2 (en) Multipoint flow meter
JP2014149274A (en) Control device and control program
JP2016200409A (en) Steam flow rate measuring system and method
JP2649434B2 (en) Burner monitoring method and device
JP6533097B2 (en) Gas heater and flow rate measuring method for gas heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877203

Country of ref document: EP

Kind code of ref document: A1