WO2013175549A1 - Light source unit and head-up display - Google Patents

Light source unit and head-up display Download PDF

Info

Publication number
WO2013175549A1
WO2013175549A1 PCT/JP2012/062928 JP2012062928W WO2013175549A1 WO 2013175549 A1 WO2013175549 A1 WO 2013175549A1 JP 2012062928 W JP2012062928 W JP 2012062928W WO 2013175549 A1 WO2013175549 A1 WO 2013175549A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens array
light source
light
microlens
source unit
Prior art date
Application number
PCT/JP2012/062928
Other languages
French (fr)
Japanese (ja)
Inventor
祥夫 棚橋
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/062928 priority Critical patent/WO2013175549A1/en
Priority to JP2014516534A priority patent/JP5837685B2/en
Publication of WO2013175549A1 publication Critical patent/WO2013175549A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0147Head-up displays characterised by optical features comprising a device modifying the resolution of the displayed image

Definitions

  • the present invention relates to a technical field using a microlens array.
  • Non-Patent Document 1 in a head-up display in which an intermediate image is generated on two microlens arrays by a laser projector, the front microlens array and the rear microlens array are separated by a focal length.
  • a transmissive screen has been proposed in which the lens contours are aligned and face each other.
  • the front microlens array and the rear microlens array are arranged to face each other at least apart from the focal length of the microlens array, and the apex direction and the rear stage of the lens contour in the front microlens array are arranged.
  • a transmissive screen has been proposed in which the lens contour is shifted from the apex direction.
  • Patent Document 2 describes a technique related to the present invention.
  • Non-Patent Document 1 In the configuration described in Non-Patent Document 1 described above, it is necessary to strictly adjust the positions of the two microlens arrays, which tends to require time and effort for screen creation. On the other hand, in the configuration described in Patent Document 1, since it is not necessary to strictly adjust the positions of the two microlens arrays, a screen can be created easily and at low cost. However, in the configuration described in Patent Document 1, since light corresponding to one pixel overlaps with an adjacent pixel at the time of incidence on the subsequent microlens array, spots emitted from the subsequent microlens are adjacent to each other. There was a tendency to overlap. This is known as a cause of deterioration in resolution called crosstalk (see, for example, Patent Document 2).
  • An object of the present invention is to provide a light source unit and a head-up display capable of appropriately improving the resolution of an image in a configuration using a microlens array.
  • the light source unit includes a light source that emits light, a diaphragm unit that narrows a spot diameter of the light emitted from the light source, and a first light that is narrowed by the diaphragm unit.
  • a head-up display includes the light source unit according to any one of the first to ninth aspects, and an image formed by the light source unit is visually recognized as a virtual image from the position of the user's eyes. It is characterized by making it.
  • the figure for demonstrating the problem of the optical element which concerns on a comparative example is shown.
  • the figure for demonstrating the relationship between an incident spot diameter and exit pupil distribution is shown.
  • the figure for demonstrating the reason it is difficult to narrow down an incident spot small is shown.
  • the schematic block diagram of the optical element which concerns on a present Example is shown.
  • the ray trace result by the optical element which concerns on a present Example is shown.
  • An example of a simulation result when a microlens array having a sufficiently long focal length is used is shown.
  • 1 shows a configuration of an image display device to which an optical element according to an embodiment is applied.
  • the schematic block diagram of the optical element which concerns on the modification 1 is shown.
  • the schematic block diagram of the optical element which concerns on the modification 2 is shown.
  • the schematic block diagram of the microlens array which concerns on the modification 4 is shown.
  • the light source unit includes a light source that emits light, a diaphragm unit that narrows a spot diameter of the light emitted from the light source, and a first micro that receives the light that is narrowed by the diaphragm unit.
  • the light source unit narrows down the spot diameter of the light emitted from the light source by the diaphragm means, causes the light narrowed down by the diaphragm means to enter the first microlens array, and causes the light emitted from the first microlens array to enter the first microlens array. 2. Enter the microlens array. Thereby, since the spot of the light emitted from the second microlens array can be reduced, it is possible to appropriately improve the resolution of the image.
  • the diaphragm means narrows the spot diameter of the light emitted from the light source to the same size as the interval between the microlenses arranged in the first microlens array. Light is incident on the first microlens array. As a result, it is possible to appropriately reduce the influence of luminance unevenness and improve the image resolution.
  • a microlens array can be preferably used as the diaphragm means.
  • the distance between the microlenses arranged in the microlens array of the diaphragm means is configured to be approximately the same as the spot diameter of the light emitted from the light source.
  • the aperture means and the first microlens array are integrally configured as one optical element, and the aperture means is formed on one surface of the optical element, The first microlens array is formed on the other surface of the optical element. Accordingly, it is ensured that the spot diameter of the light incident on the first microlens array becomes a desired value, so that it is possible to save the trouble of assembly adjustment. In addition, the manufacturing cost can be reduced.
  • the first microlens array and the second microlens array are integrally configured as one optical element, and the first microlens array is formed on one surface of the optical element.
  • a lens array is formed, and the second microlens array is formed on the other surface of the optical element.
  • the first microlens array and the second microlens array are separated from each other by a distance longer than the focal length of the microlenses arranged in the first microlens array. Yes. Thereby, the accuracy required when the first microlens array and the second microlens array are arranged to face each other can be reduced.
  • the interval between the microlenses arranged in the first microlens array is approximately the same as the interval between the microlenses arranged in the second microlens array.
  • the interval between the microlenses arranged in the first microlens array is smaller than the spot diameter of the light emitted from the light source.
  • the light source unit described above can be suitably applied to a head-up display that allows an image to be viewed as a virtual image from the position of the user's eyes.
  • FIG. 1 is a diagram for explaining problems of the optical element 11x according to the comparative example.
  • FIG. 1A and FIG. 1B are diagrams illustrating a schematic configuration of an optical element 11x according to a comparative example.
  • FIG. 1A is a cross-sectional view of the optical element 11x taken along a plane perpendicular to the traveling direction of light emitted from a light source (not shown).
  • a cross-sectional view showing an enlarged part of the optical element 11x is shown.
  • the optical element 11x according to the comparative example includes microlens arrays MLA1 and MLA2 in which a plurality of microlenses ML1 and ML2 are arranged.
  • Light emitted from a light source (not shown) that emits light for displaying an image is incident on the microlens array MLA1, and light emitted from the microlens array MLA1 is incident on the microlens array MLA2.
  • the microlens arrays MLA1 and MLA2 function as so-called transmission screens.
  • the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surfaces on which the microlenses ML1 and ML2 are formed face each other.
  • the microlens arrays MLA1 and MLA2 are arranged to face each other at a position separated by at least a distance longer than the focal length of the microlens ML1.
  • the microlens array MLA1 and the microlens array MLA2 are opposed to each other with a distance longer than twice the focal length of the microlens ML1.
  • FIG. 1B is a plan view of the microlens arrays MLA1 and MLA2. Specifically, a plan view showing an enlarged part of the microlens arrays MLA1 and MLA2 observed from the direction along the light traveling direction is shown. As shown in FIG. 1B, the microlenses ML1 and ML2 are configured with a regular hexagonal lens outline in a plan view. Further, the lens pitch P1 of the microlens ML1 arranged in the microlens array MLA1 and the lens pitch P2 of the microlens ML2 arranged in the microlens array MLA2 are approximately the same (P1 ⁇ P2).
  • the microlens arrays MLA1 and MLA2 are arranged so that the regular hexagonal shapes that are the lens contours of the microlenses ML1 and ML2 are rotated by 30 degrees. That is, a regular hexagonal vertex direction that is the lens contour of the microlens ML1 arranged in the microlens array MLA1 and a regular hexagonal vertex direction that is the lens contour of the microlens ML2 arranged in the microlens array MLA2. The angle difference is 30 degrees.
  • the vertex direction is defined by the direction from the center point (center of gravity) of the regular hexagon that is the lens contour toward each vertex of the regular hexagon (the same applies hereinafter).
  • the lens pitches P1 and P2 are, in other words, the distance between adjacent microlenses ML1 and ML2 arranged in the microlens array MLA1 and the microlens array MLA2, and the center of gravity of the adjacent microlenses ML1 and ML2 This corresponds to the interval (that is, the distance between the centers).
  • Such a definition of the lens pitch shall be applied similarly in the following.
  • the spot diameter SP1 of light emitted from the light source (corresponding to the spot diameter of light corresponding to one pixel) is larger than the lens pitch P1 of the microlens ML1 arranged in the microlens array MLA1 (SP1). > P1). That is, in the comparative example, light corresponding to one pixel is incident on the plurality of microlenses ML1.
  • incident spot a spot of light corresponding to one pixel emitted from the light source
  • incident spot diameter the diameter of the incident spot
  • the incident spot diameter is defined as the diameter of a circle in which the intensity of incident light is a predetermined value (for example, half the maximum value) (hereinafter the same).
  • FIG. 1C shows a ray tracing result by the optical element 11x according to the comparative example.
  • a plurality of microlenses ML1 and ML2 arranged in the microlens arrays MLA1 and MLA2 are shown in an overlapping manner.
  • a ray tracing result for light corresponding to one pixel is shown.
  • the ray tracing result is obtained by simulation or the like.
  • the spot diameter SP2 of the light emitted from the microlens array MLA2 is the spot diameter SP1 of the light incident on the microlens array MLA1 (that is, the incident spot diameter).
  • SP2> SP1 the spot diameter of the light incident on the microlens array MLA1
  • the spot diameter of the exit spot is referred to as an “eject spot diameter”.
  • microlens array MLA1 in which microlenses ML1 configured with regular hexagonal lens contours in a plan view are arranged in a grid is taken as an example.
  • FIG. 2A shows a case where an incident spot diameter SP11 that is about twice the lens pitch P1 of the microlens array MLA1 is used (SP11 ⁇ 2 ⁇ P1).
  • the incident spot diameter SP11 is represented by a broken line, and the circumference indicated by the broken line represents a portion where the intensity of the incident light becomes a half value of the maximum value (the same applies to FIG. 2C).
  • FIG. 2B shows the intensity distribution of the exit pupil when the incident spot diameter SP11 as shown in FIG. 2A is used.
  • the intensity distribution of the exit pupil is a distribution formed on the surface of the microlens array MLA2 by the light from the microlens array MLA1 (the same applies to FIG. 2D). As shown in FIG.
  • FIG. 2C shows a diagram in the case of using an incident spot diameter SP12 that is approximately the same as the lens pitch P1 of the microlens array MLA1 (SP12 ⁇ P1).
  • FIG. 2 (d) shows the intensity distribution of the exit pupil when the incident spot diameter SP12 as shown in FIG. 2 (c) is used.
  • FIG. 2D when the incident spot diameter SP11 is approximately the same as the lens pitch P1 of the microlens array MLA1, it can be seen that the intensity distribution of the exit pupil is dense. In this case, an image with little unevenness is observed.
  • FIG. 3 illustrates a configuration in which the light emitted from the light source is scanned on the microlens array MLA1 (screen) by the MEMS mirror 10.
  • FIG. 3A shows a case where the MEMS mirror 10 and the microlens array MLA1 are separated from each other.
  • reference symbol SP51 indicates an incident spot at the center of the image
  • reference symbols SP52 and SP53 indicate incident spots at the periphery of the image.
  • the spot incident on the microlens array MLA1 is determined by the NA (numerical aperture) of the collimator lens 93 disposed between the light source and the MEMS mirror 10.
  • the NA of the collimator lens 93 has to be lowered, and it can be seen that it is difficult to narrow the incident spot.
  • FIG. 3B shows a case where the MEMS mirror 10 and the microlens array MLA1 are close to a certain extent.
  • the symbol SP61 indicates the incident spot at the center of the image
  • the symbols SP62 and SP63 indicate the incident spot at the periphery of the image.
  • the incident spot can be narrowed at the center of the image, but the incident spot cannot be narrowed around the image. This is because when the MEMS mirror 10 is brought close to the microlens array MLA1, it is necessary to increase the scan angle in order to generate an intermediate image of the same size, and a lens is formed on a planar substrate having a realistic shape.
  • the microlens array MLA1 defocusing due to a large difference in distance from the MEMS mirror 10 between the image central portion and the image peripheral portion and spot elongation due to an increase in the incident angle at the image peripheral portion occur. It is.
  • the light further narrowed down the spot diameter of the light emitted from the light source is made incident on the microlens array MLA1.
  • a microlens array different from the microlens arrays MLA1 and MLA2 is arranged on the light incident side with respect to the microlens array MLA1, and the light from the light source is emitted by such a microlens array. Is made incident on the microlens array MLA1.
  • light whose aperture spot diameter is narrowed down to the same size as the lens pitch P1 of the microlens array MLA1 is incident on the microlens array MLA1.
  • FIG. 4 is a diagram illustrating a schematic configuration of the optical element 11 according to the present embodiment.
  • FIG. 4A shows a cross-sectional view of the optical element 11 taken along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). Further, a cross-sectional view showing a part of the optical element 11 in an enlarged manner is shown.
  • FIG. 4B is a plan view of the microlens arrays MLA1, MLA2, and ML3 included in the optical element 11. Specifically, a plan view is shown in which a part of the microlens arrays MLA1, MLA2, and ML3 is enlarged and observed from the direction along the light traveling direction.
  • the optical element 11 according to the present example is a microlens disposed on the light incident side with respect to the microlens array MLA1. It further has an array MLA3. Light emitted from a light source (not shown) that emits light for displaying an image is incident on the microlens array MLA3, and light emitted from the microlens array MLA3 is incident on the microlens array MLA1. The light emitted from the microlens array MLA1 is incident on the microlens array MLA2.
  • the microlens array MLA3 is an example of the “aperture means” in the present invention
  • the microlens array MLA1 is an example of the “first microlens array” in the present invention
  • the microlens array MLA2 is the “second microlens” in the present invention.
  • a component that includes at least a light source (not shown) and the microlens arrays MLA1 to MLA3 corresponds to an example of a “light source unit” according to the present invention.
  • the microlens array MLA3 is configured as a plano-convex lens array, and a plurality of microlenses ML3 are formed on a surface on which light from a light source is incident.
  • the microlens array MLA3 is configured such that the lens pitch P3 of the microlens ML3 is approximately the same as the spot diameter SP1 (that is, the incident spot diameter) of light corresponding to one pixel emitted from the light source (P3 ⁇ SP1). ).
  • the microlens ML3 is configured with a regular hexagonal lens contour in plan view.
  • the microlens array MLA1 is disposed so as to face the microlens array MLA3.
  • the microlens array MLA3 is disposed within the focal depth range of the microlens array MLA3.
  • Light having a spot diameter SP3 that has been narrowed down by the microlens array MLA3 is incident on the microlens array MLA1.
  • the spot diameter SP3 is about the same size as the lens pitch P1 of the microlens array MLA1 (SP3 ⁇ P1). That is, the microlens array MLA3 causes the light, which has been narrowed down to the spot diameter SP3 having the same size as the lens pitch P1, to enter the microlens array MLA1.
  • the microlens array MLA2 is disposed to face the microlens array MLA1, and is disposed at a position separated by at least a distance longer than the focal length of the microlens ML1. Specifically, the microlens array MLA1 and the microlens array MLA2 are opposed to each other with a distance longer than twice the focal length of the microlens ML1. Further, the lens pitch P1 of the microlens ML1 arranged in the microlens array MLA1 and the lens pitch P2 of the microlens ML2 arranged in the microlens array MLA2 are configured to be approximately the same (P1 ⁇ P2). ).
  • microlenses ML1 and ML2 are configured with regular hexagonal lens contours in plan view.
  • microlens arrays MLA1 and MLA2 are arranged so that the regular hexagonal shapes that are the lens contours of the microlenses ML1 and ML2 are rotated by 30 degrees relative to each other.
  • FIG. 5 shows a ray tracing result by the optical element 11 according to the present embodiment.
  • the microlens arrays MLA1 and MLA2 are illustrated (the microlens array MLA3 is not illustrated), and a plurality of microlenses ML1 and ML2 arranged in the microlens arrays MLA1 and MLA2 are illustrated. It is shown repeatedly.
  • a ray tracing result for light corresponding to one pixel is shown.
  • the spot diameter SP1 that is, the incident spot diameter
  • the ray tracing result is obtained by simulation or the like.
  • the spot diameter SP4 (that is, the emission spot diameter) of the light emitted from the microlens array MLA2 is approximately the same as the incident spot diameter SP1.
  • the emission spot diameter SP4 can be reduced to the same size as the incident spot diameter SP1, which is the spot diameter of the light incident on the foremost microlens array MLA3.
  • This is considered to be because the light that has been narrowed down to the spot diameter SP3 having the same size as the lens pitch P1 by the microlens array MLA3 is incident on the microlens array MLA1.
  • the exit spot diameter SP4 can be made substantially equal to the incident spot diameter SP1, the resolution of the image can be improved.
  • the same microlens arrays MLA1 and MLA2 as in the comparative example are used, it is not necessary to strictly adjust the positions of the microlens arrays MLA1 and MLA2. Therefore, according to the present embodiment, the resolution of the image can be improved without increasing the difficulty of position adjustment.
  • the incident spot diameter SP1 is narrowed to the same degree as the lens pitch P1 of the microlens array MLA1 by the microlens array MLA3.
  • the present embodiment as described above can be used without narrowing the incident spot diameter SP1 to the same size as the lens pitch P1.
  • the effect is obtained. That is, even when the incident spot diameter SP1 is narrowed down to a size slightly larger than the lens pitch P1, or when the incident spot diameter SP1 is narrowed down to a size slightly smaller than the lens pitch P1, the effect of this embodiment can be obtained. It is done.
  • a size for narrowing the incident spot diameter SP1 by the microlens array MLA3 can be determined based on an allowable resolution or the like.
  • the lens pitch P3 of the microlens array MLA3 is approximately the same as the incident spot diameter SP1.
  • the lens pitch P3 is preferably configured to be the same as the incident spot diameter SP1, but the lens pitch P3 may not be configured to be the same as the incident spot diameter SP1.
  • the lens pitch P3 may be configured to be slightly longer than the incident spot diameter SP1, or the lens pitch P3 may be configured to be slightly shorter than the incident spot diameter SP1.
  • the lens pitch P1 of the microlens array MLA1 and the lens pitch P2 of the microlens array MLA2 are approximately the same. Although it is preferable to configure the lens pitch P1 and the lens pitch P2 to be the same, the lens pitch P1 and the lens pitch P2 may not be configured to be completely the same. However, when the lens pitch P1 and the lens pitch P2 are configured to be the same, the microlens array MLA1 and the microlens array MLA2 can be manufactured using the same mold or the like. Can be manufactured.
  • the focal length is sufficiently long so that the spot diameter SP3 (see FIG. 4 and the like) formed by the light incident on the microlens array MLA1 does not vary greatly depending on the scan angle of the MEMS mirror 10. It is preferable to use a lens having a deep microlens ML3. That is, a microlens having a sufficiently long focal length and a deep focal depth so that the spot size (spot size determined by wave optics) by light incident on the microlens array MLA1 is approximately the same at the image center and the image periphery. It is preferable to use an array MLA3.
  • FIG. 6 shows an example of a simulation result when the microlens array MLA3 having a sufficiently long focal length and a deep focal depth is used.
  • the interval between the MEMS mirror 10 and the microlens array MLA3 is “100 (mm)”
  • the interval between the microlens array MLA3 and the microlens array MLA1 is “21 (mm)”
  • the focal length is “19.
  • An example is shown in which a microlens array MLA3 having a central thickness of “1 (mm)” and a lens pitch P3 of “100 ( ⁇ m)” is used. It is assumed that the incident spot diameter SP1 is about “100 ( ⁇ m)”.
  • FIG. 6A shows a diagram when the scan angle is 0 degrees
  • FIG. 6B shows a diagram when the scan angle is 2 degrees
  • FIG. 6C shows the scan
  • FIG. 6D shows a diagram when the angle is 8 degrees
  • FIG. 6D shows a diagram when the scan angle is 14 degrees.
  • the arrows presented in the lower graphs in FIGS. 6A to 6D represent the lens pitch P1 of the microlens array MLA1.
  • the lens pitch P1 is about “40 ( ⁇ m)”.
  • spots of approximately the same size are formed on the microlens array MLA1 at the center of the image and the periphery of the image, and the half width is approximately the same as the lens pitch P1 of the microlens array MLA1. It turns out that it is. Therefore, it can be said that it is preferable to use the microlens array MLA3 having the characteristics illustrated in FIG.
  • FIG. 7 shows a configuration of the image display device 1 to which the optical element 11 according to the present embodiment is applied.
  • the image display device 1 includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS control unit 8, and a laser light source unit 9.
  • the image display device 1 is applied to, for example, a head-up display.
  • the head-up display is a device that visually recognizes an image as a virtual image from the position of the eyes of a user (for example, a vehicle driver).
  • the image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
  • the video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information Sc input from the MEMS mirror 10, and is ASIC (Application Specific Integrated). Circuit).
  • the video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
  • the synchronization / image separation unit 31 separates the image data displayed on the screen as the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4.
  • the bit data conversion unit 32 reads the image data written in the frame memory 4 and converts it into bit data.
  • the light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
  • the timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32.
  • the timing controller 34 also controls the operation timing of the MEMS control unit 8 described later.
  • the image data separated by the synchronization / image separation unit 31 is written.
  • the ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
  • the laser driver ASIC 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 described later, and is configured as an ASIC.
  • the laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73.
  • the red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33.
  • the blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33.
  • the green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
  • the MEMS control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34.
  • the MEMS control unit 8 includes a servo circuit 81 and a driver circuit 82.
  • the servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller.
  • the driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
  • the laser light source unit 9 emits laser light to the MEMS mirror 10 based on the drive signal output from the laser driver ASIC 7.
  • the MEMS mirror 10 as a scanning unit reflects the laser beam emitted from the laser light source unit 9 toward the optical element 11. In this way, the MEMS mirror 10 forms an image to be displayed on the optical element 11. Further, the MEMS mirror 10 moves so as to scan on the optical element 11 under the control of the MEMS control unit 8 in order to display the image input to the image signal input unit 2, and the scanning position information at that time (For example, information such as a mirror angle) is output to the video ASIC 3.
  • the optical element 11 receives the laser light emitted from the MEMS mirror 10 and emits the laser light through the microlens arrays MLA3, MLA1, and MLA3 as described above.
  • the image display device 1 displays an image corresponding to the light emitted from the optical element 11 such as the light reflected by the reflecting mirror (not shown) or the light enlarged by the magnifying element (not shown). It is made visible as a virtual image from the eye position (eye point).
  • the laser light source unit 9 includes a case 91, a wavelength selective element 92, a collimator lens 93, a red laser LD1, a blue laser LD2, a green laser LD3, a monitor light receiving element (hereinafter simply referred to as “light receiving element”). 50).
  • the case 91 is formed in a substantially box shape with resin or the like.
  • the case 91 is provided with a hole penetrating into the case 91 and a CAN attachment portion 91a having a concave cross section, and a surface perpendicular to the CAN attachment portion 91a. A hole penetrating inward is formed, and a collimator mounting portion 91b having a concave cross section is formed.
  • the wavelength-selective element 92 as a synthesis element is configured by, for example, a trichromatic prism, and is provided with a reflective surface 92a and a reflective surface 92b.
  • the reflection surface 92a transmits the laser light emitted from the red laser LD1 toward the collimator lens 93, and reflects the laser light emitted from the blue laser LD2 toward the collimator lens 93.
  • the reflecting surface 92b transmits most of the laser light emitted from the red laser LD1 and the blue laser LD2 toward the collimator lens 93 and reflects a part thereof toward the light receiving element 50.
  • the reflection surface 92 b reflects most of the laser light emitted from the green laser LD 3 toward the collimator lens 93 and transmits part of the laser light toward the light receiving element 50. In this way, the emitted light from each laser is superimposed and incident on the collimator lens 93 and the light receiving element 50.
  • the wavelength selective element 92 is provided in the vicinity of the collimator mounting portion 91b in the case 91.
  • the collimator lens 93 emits the laser beam incident from the wavelength selective element 92 to the MEMS mirror 10 as parallel light.
  • the collimator lens 93 is fixed to the collimator mounting portion 91b of the case 91 with a UV adhesive or the like. That is, the collimator lens 93 is provided after the synthesis element.
  • the red laser LD1 as a laser light source emits red laser light.
  • the red laser LD1 is fixed at a position that is coaxial with the wavelength selective element 92 and the collimator lens 93 in the case 91 while the semiconductor laser light source is in the chip state or the chip is mounted on a submount or the like. ing.
  • Blue laser LD2 as a laser light source emits blue laser light.
  • the blue laser LD2 is fixed at a position where the emitted laser light can be reflected toward the collimator lens 93 by the reflecting surface 92a while the semiconductor laser light source is in the chip state or the chip is mounted on the submount or the like. ing.
  • the positions of the red laser LD1 and the blue laser LD2 may be switched.
  • the green laser LD3 as a laser light source is attached to the CAN package or attached to the frame package, and emits green laser light.
  • the green laser LD 3 has a semiconductor laser light source chip B that generates green laser light in a CAN package, and is fixed to a CAN mounting portion 91 a of the case 91.
  • the light receiving element 50 receives a part of the laser light emitted from each laser light source.
  • the light receiving element 50 is a photoelectric conversion element such as a photodetector, and supplies a detection signal Sd, which is an electrical signal corresponding to the amount of incident laser light, to the laser driver ASIC 7.
  • a detection signal Sd which is an electrical signal corresponding to the amount of incident laser light
  • the laser driver ASIC 7 adjusts the power of the red laser LD1, the blue laser LD2, and the green laser LD3 according to the detection signal Sd.
  • the laser driver ASIC 7 operates only the red laser driving circuit 71, supplies a driving current to the red laser LD1, and emits red laser light from the red laser LD1. A part of the red laser light is received by the light receiving element 50, and a detection signal Sd corresponding to the amount of light is fed back to the laser driver ASIC7.
  • the laser driver ASIC 7 adjusts the drive current supplied from the red laser drive circuit 71 to the red laser LD1 so that the light amount indicated by the detection signal Sd is an appropriate light amount. In this way, power adjustment is performed.
  • the power adjustment of the blue laser LD2 and the power adjustment of the green laser LD3 are similarly performed.
  • the above-described configuration unit including at least the laser light source unit 9 and the optical element 11 corresponds to an example of the “light source unit” according to the present invention.
  • FIG. 8 is a diagram illustrating a schematic configuration of the optical element 11a according to the first modification.
  • FIG. 8 shows a cross-sectional view of the optical element 11a cut along a plane perpendicular to the traveling direction of light emitted from a light source (not shown).
  • a cross-sectional view showing an enlarged part of the optical element 11a is shown.
  • the optical element 11a according to the modification 1 is different from the optical element 11 according to the example in that it has a microlens array MLA3a instead of the microlens array MLA3.
  • a microlens array MLA3a instead of the microlens array MLA3.
  • a plurality of microlenses ML3 are formed on a surface on which light is incident.
  • the surface on which light is incident A plurality of microlenses ML3 are formed on the opposite surface.
  • Such a microlens array MLA3a also functions in the same manner as the microlens array MLA3 according to the embodiment.
  • FIG. 9 is a diagram illustrating a schematic configuration of an optical element 11b according to Modification 2.
  • FIG. 9 shows a cross-sectional view of the optical element 11b cut along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). Further, a cross-sectional view showing an enlarged part of the optical element 11b is shown.
  • the optical element 11b according to the modification 2 is different from the optical element 11 according to the embodiment in that it has one microlens array MLA4 instead of the microlens array MLA3 and the microlens array MLA1.
  • the microlens array MLA4 according to the modified example 2 has a microlens ML3 similar to the microlens array MLA3 according to the embodiment formed on one surface, and the other surface according to the embodiment.
  • a microlens ML1 similar to the microlens array MLA1 is formed. That is, in the modification 2, the microlens array MLA3 and the microlens array MLA1 according to the embodiment are integrally formed.
  • the spot diameter of the light incident on the microlens ML1 at the subsequent stage is a desired value, so that it is possible to save the labor of assembly adjustment. it can.
  • Modification 3 In the above-described embodiment, the microlens array MLA3 in which the microlens ML3 is formed only on one surface is shown, but the microlens array MLA3 in which the microlens ML3 is formed on both surfaces may be used. In the above-described embodiment, only one microlens array MLA3 is used, but a plurality of microlens arrays MLA3 may be used.
  • Modification 4 relates to another example of the configuration of the microlens array MLA1 and the microlens array MLA2.
  • FIG. 10 is a diagram showing a schematic configuration of microlens arrays MLA1 and MLA2 according to Modification 4.
  • FIGS. 10A to 10D are cross-sectional views taken along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). Moreover, sectional drawing which expanded and represented a part of component was shown.
  • FIG. 10A shows microlens arrays MLA1 and MLA2 according to a first example of the fourth modification.
  • the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surface of the microlens array MLA1 where the microlens ML1 is not formed faces the surface of the microlens array MLA2 where the microlens ML2 is formed. Yes.
  • FIG. 10B shows microlens arrays MLA1 and MLA2 according to a second example of the fourth modification.
  • the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surface of the microlens array MLA1 on which the microlens ML1 is formed and the surface of the microlens array MLA2 on which the microlens ML2 is not formed face each other. Yes.
  • FIG. 10C shows microlens arrays MLA1 and MLA2 according to a third example of the fourth modification.
  • the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surface of the microlens array MLA1 in which the microlens ML1 is not formed faces the surface of the microlens array MLA2 in which the microlens ML2 is not formed. ing.
  • FIG. 10D shows a microlens array MLA5 according to a fourth example of the fourth modification.
  • a microlens ML1 similar to the microlens array MLA1 is formed on one surface
  • a microlens ML2 similar to the microlens array MLA2 is formed on the other surface.
  • the microlens array MLA5 and the microlens array MLA2 described above are integrally formed. According to such a microlens array MLA5, it is only necessary to create one component on which the microlenses MLA1 and MLA2 are formed, so that the manufacturing cost can be further reduced.
  • the present invention is applied to a microlens array composed of microlenses having a regular hexagonal lens outline in plan view.
  • the present invention is a microlens having variously shaped lens outlines.
  • the present invention can be applied to a microlens array composed of lenses.
  • the present invention can be applied to a microlens array composed of microlenses having a lens contour such as a hexagonal shape (not a regular hexagonal shape), a rectangular shape, a square shape, or a circular shape.
  • the present invention can be used for image display devices such as a head-up display, a head-mounted display, and a laser projector.

Abstract

A light source unit is characterized by including a light source unit for emitting light; a stop means for narrowing the spot diameter of the light emitted from the light source; a first microlens array to which the light narrowed by the stop means is incident; and a second microlens array to which the light emitted from the first microlens array is incident. Thereby, the spot of the light emitted from the second microlens array may be reduced in size so that the resolution of an image may be suitably improved.

Description

光源ユニット及びヘッドアップディスプレイLight source unit and head-up display
 本発明は、マイクロレンズアレイを用いた技術分野に関する。 The present invention relates to a technical field using a microlens array.
 従来から、ヘッドアップディスプレイやレーザプロジェクタなどに、マイクロレンズアレイを用いた透過型スクリーンを適用する技術が提案されている。例えば、非特許文献1には、レーザプロジェクタによって2枚のマイクロレンズアレイに中間像を生成する方式のヘッドアップディスプレイにおいて、前段のマイクロレンズアレイと後段のマイクロレンズアレイとを焦点距離だけ離間させると共にレンズの輪郭を合わせて対向配置した透過型スクリーンが提案されている。また、特許文献1には、前段のマイクロレンズアレイと後段のマイクロレンズアレイとをマイクロレンズアレイの焦点距離よりも少なくとも離して対向配置すると共に、前段のマイクロレンズアレイにおけるレンズ輪郭の頂点方向と後段のマイクロレンズアレイにおけるレンズ輪郭の頂点方向とをずらして構成した透過型スクリーンが提案されている。その他にも、本発明に関連する技術が特許文献2に記載されている。 Conventionally, a technique for applying a transmission screen using a microlens array to a head-up display or a laser projector has been proposed. For example, in Non-Patent Document 1, in a head-up display in which an intermediate image is generated on two microlens arrays by a laser projector, the front microlens array and the rear microlens array are separated by a focal length. A transmissive screen has been proposed in which the lens contours are aligned and face each other. In Patent Document 1, the front microlens array and the rear microlens array are arranged to face each other at least apart from the focal length of the microlens array, and the apex direction and the rear stage of the lens contour in the front microlens array are arranged. In this microlens array, a transmissive screen has been proposed in which the lens contour is shifted from the apex direction. In addition, Patent Document 2 describes a technique related to the present invention.
特許4769912号公報Japanese Patent No. 4769912 特開平10-170860号公報JP-A-10-170860
 上記した非特許文献1に記載された構成では、2枚のマイクロレンズアレイを厳密に位置調整する必要があり、スクリーンの作成に手間やコストがかかる傾向にあった。これに対して、特許文献1に記載された構成では、2枚のマイクロレンズアレイを厳密に位置調整する必要がないため、容易且つ低コストでスクリーンを作成することができる。しかしながら、特許文献1に記載された構成では、後段のマイクロレンズアレイに入射する時点で1画素に相当する光が隣接する画素と重なるため、後段のマイクロレンズから射出されるスポットが隣接する画素同士で重なり合う傾向にあった。これは、クロストークと呼ばれる解像度が劣化する原因として知られている(例えば特許文献2参照)。 In the configuration described in Non-Patent Document 1 described above, it is necessary to strictly adjust the positions of the two microlens arrays, which tends to require time and effort for screen creation. On the other hand, in the configuration described in Patent Document 1, since it is not necessary to strictly adjust the positions of the two microlens arrays, a screen can be created easily and at low cost. However, in the configuration described in Patent Document 1, since light corresponding to one pixel overlaps with an adjacent pixel at the time of incidence on the subsequent microlens array, spots emitted from the subsequent microlens are adjacent to each other. There was a tendency to overlap. This is known as a cause of deterioration in resolution called crosstalk (see, for example, Patent Document 2).
 本発明が解決しようとする課題は上記のようなものが例として挙げられる。本発明は、マイクロレンズアレイを用いた構成において、画像の解像度を適切に向上させることが可能な光源ユニット及びヘッドアップディスプレイを提供することを課題とする。 Examples of the problem to be solved by the present invention include the above. An object of the present invention is to provide a light source unit and a head-up display capable of appropriately improving the resolution of an image in a configuration using a microlens array.
 請求項1に記載の発明では、光源ユニットは、光を出射する光源と、前記光源から出射された光のスポット径を絞り込む絞り手段と、前記絞り手段によって絞り込まれた光が入射される第1マイクロレンズアレイと、前記第1マイクロレンズアレイから出射された光が入射される第2マイクロレンズアレイと、を備えることを特徴とする。 In the first aspect of the invention, the light source unit includes a light source that emits light, a diaphragm unit that narrows a spot diameter of the light emitted from the light source, and a first light that is narrowed by the diaphragm unit. A microlens array; and a second microlens array into which the light emitted from the first microlens array is incident.
 請求項10に記載の発明では、ヘッドアップディスプレイは、請求項1乃至9のいずれか一項に記載の光源ユニットを備え、前記光源ユニットによって形成された画像をユーザの目の位置から虚像として視認させることを特徴とする。 According to a tenth aspect of the present invention, a head-up display includes the light source unit according to any one of the first to ninth aspects, and an image formed by the light source unit is visually recognized as a virtual image from the position of the user's eyes. It is characterized by making it.
比較例に係る光学素子の問題点を説明するための図を示す。The figure for demonstrating the problem of the optical element which concerns on a comparative example is shown. 入射スポット径と射出瞳分布との関係を説明するための図を示す。The figure for demonstrating the relationship between an incident spot diameter and exit pupil distribution is shown. 入射スポットを小さく絞ることが困難である理由を説明するための図を示す。The figure for demonstrating the reason it is difficult to narrow down an incident spot small is shown. 本実施例に係る光学素子の概略構成図を示す。The schematic block diagram of the optical element which concerns on a present Example is shown. 本実施例に係る光学素子による光線追跡結果を示す。The ray trace result by the optical element which concerns on a present Example is shown. 焦点距離が十分に長いマイクロレンズアレイを用いた場合のシミュレーション結果例を示す。An example of a simulation result when a microlens array having a sufficiently long focal length is used is shown. 本実施例に係る光学素子が適用された画像表示装置の構成を示す。1 shows a configuration of an image display device to which an optical element according to an embodiment is applied. 変形例1に係る光学素子の概略構成図を示す。The schematic block diagram of the optical element which concerns on the modification 1 is shown. 変形例2に係る光学素子の概略構成図を示す。The schematic block diagram of the optical element which concerns on the modification 2 is shown. 変形例4に係るマイクロレンズアレイの概略構成図を示す。The schematic block diagram of the microlens array which concerns on the modification 4 is shown.
 本発明の1つの観点では、光源ユニットは、光を出射する光源と、前記光源から出射された光のスポット径を絞り込む絞り手段と、前記絞り手段によって絞り込まれた光が入射される第1マイクロレンズアレイと、前記第1マイクロレンズアレイから出射された光が入射される第2マイクロレンズアレイと、を備える。 In one aspect of the present invention, the light source unit includes a light source that emits light, a diaphragm unit that narrows a spot diameter of the light emitted from the light source, and a first micro that receives the light that is narrowed by the diaphragm unit. A lens array; and a second microlens array into which the light emitted from the first microlens array is incident.
 上記の光源ユニットは、光源から出射された光のスポット径を絞り手段によって絞り込み、絞り手段によって絞り込まれた光を第1マイクロレンズアレイに入射させ、第1マイクロレンズアレイから出射された光を第2マイクロレンズアレイに入射させる。これにより、第2マイクロレンズアレイから出射される光のスポットを小さくすることができるため、画像の解像度を適切に向上させることが可能となる。 The light source unit narrows down the spot diameter of the light emitted from the light source by the diaphragm means, causes the light narrowed down by the diaphragm means to enter the first microlens array, and causes the light emitted from the first microlens array to enter the first microlens array. 2. Enter the microlens array. Thereby, since the spot of the light emitted from the second microlens array can be reduced, it is possible to appropriately improve the resolution of the image.
 上記の光源ユニットの一態様では、前記絞り手段は、前記光源から出射された光のスポット径を、前記第1マイクロレンズアレイに配列されたマイクロレンズ同士の間隔と同程度の大きさに絞り込んだ光を、前記第1マイクロレンズアレイに入射させる。これにより、輝度むらの影響を適切に軽減し、画像の解像度を向上させることが可能となる。 In one aspect of the above light source unit, the diaphragm means narrows the spot diameter of the light emitted from the light source to the same size as the interval between the microlenses arranged in the first microlens array. Light is incident on the first microlens array. As a result, it is possible to appropriately reduce the influence of luminance unevenness and improve the image resolution.
 上記の光源ユニットにおいて好適には、前記絞り手段として、マイクロレンズアレイを用いることができる。また好ましくは、前記絞り手段の前記マイクロレンズアレイに配列されたマイクロレンズ同士の間隔は、前記光源から出射された光のスポット径と同程度に構成されている。 In the above light source unit, a microlens array can be preferably used as the diaphragm means. Preferably, the distance between the microlenses arranged in the microlens array of the diaphragm means is configured to be approximately the same as the spot diameter of the light emitted from the light source.
 上記の光源ユニットの他の一態様では、前記絞り手段と前記第1マイクロレンズアレイとは一の光学素子として一体に構成されており、当該光学素子の一方の面に前記絞り手段が形成され、当該光学素子の他方の面に前記第1マイクロレンズアレイが形成されている。これにより、第1マイクロレンズアレイに入射される光のスポット径が所望の値になることが保証されるため、組立て調整の手間を省くことができる。また、製造コストを低減することができる。 In another aspect of the light source unit, the aperture means and the first microlens array are integrally configured as one optical element, and the aperture means is formed on one surface of the optical element, The first microlens array is formed on the other surface of the optical element. Accordingly, it is ensured that the spot diameter of the light incident on the first microlens array becomes a desired value, so that it is possible to save the trouble of assembly adjustment. In addition, the manufacturing cost can be reduced.
 上記の光源ユニットの他の一態様では、前記第1マイクロレンズアレイと前記第2マイクロレンズアレイとは一の光学素子として一体に構成されており、当該光学素子の一方の面に前記第1マイクロレンズアレイが形成され、当該光学素子の他方の面に前記第2マイクロレンズアレイが形成されている。これにより、製造コストを低減することができる。 In another aspect of the light source unit, the first microlens array and the second microlens array are integrally configured as one optical element, and the first microlens array is formed on one surface of the optical element. A lens array is formed, and the second microlens array is formed on the other surface of the optical element. Thereby, manufacturing cost can be reduced.
 上記の光源ユニットの他の一態様では、前記第1マイクロレンズアレイと前記第2マイクロレンズアレイとは、前記第1マイクロレンズアレイに配列されたマイクロレンズの焦点距離よりも長い距離だけ離間している。これにより、第1マイクロレンズアレイと第2マイクロレンズアレイとを対向配置する際に要する精度を下げることができる。 In another aspect of the light source unit, the first microlens array and the second microlens array are separated from each other by a distance longer than the focal length of the microlenses arranged in the first microlens array. Yes. Thereby, the accuracy required when the first microlens array and the second microlens array are arranged to face each other can be reduced.
 上記の光源ユニットにおいて好適には、前記第1マイクロレンズアレイに配列されたマイクロレンズ同士の間隔と、前記第2マイクロレンズアレイに配列されたマイクロレンズ同士の間隔とは、同程度である。 In the above light source unit, preferably, the interval between the microlenses arranged in the first microlens array is approximately the same as the interval between the microlenses arranged in the second microlens array.
 また、上記の光源ユニットにおいて好適には、前記第1マイクロレンズアレイに配列されたマイクロレンズ同士の間隔は、前記光源から出射された光のスポット径よりも小さい。 In the above light source unit, preferably, the interval between the microlenses arranged in the first microlens array is smaller than the spot diameter of the light emitted from the light source.
 上記した光源ユニットは、画像をユーザの目の位置から虚像として視認させるヘッドアップディスプレイに好適に適用することができる。 The light source unit described above can be suitably applied to a head-up display that allows an image to be viewed as a virtual image from the position of the user's eyes.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [比較例などの問題点]
 まず、本実施例の内容を説明する前に、上述した特許文献1に記載された構成(以下では「比較例」と呼ぶ。)の問題点について説明する。
[Problems such as comparative examples]
First, before describing the contents of the present embodiment, problems of the configuration described in Patent Document 1 (hereinafter referred to as “comparative example”) will be described.
 図1は、比較例に係る光学素子11xの問題点を説明するための図を示している。図1(a)及び図1(b)は、比較例に係る光学素子11xの概略構成を示す図である。図1(a)は、図示しない光源から出射された光の進行方向に垂直な面にて光学素子11xを切断した断面図を示している。また、光学素子11xの一部分を拡大して表した断面図を示している。 FIG. 1 is a diagram for explaining problems of the optical element 11x according to the comparative example. FIG. 1A and FIG. 1B are diagrams illustrating a schematic configuration of an optical element 11x according to a comparative example. FIG. 1A is a cross-sectional view of the optical element 11x taken along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). In addition, a cross-sectional view showing an enlarged part of the optical element 11x is shown.
 図1(a)に示すように、比較例に係る光学素子11xは、それぞれ複数のマイクロレンズML1、ML2が配列されたマイクロレンズアレイMLA1、MLA2を有する。マイクロレンズアレイMLA1には、画像を表示するための光を照射する光源(不図示)から出射された光が入射され、マイクロレンズアレイMLA2には、マイクロレンズアレイMLA1から出射された光が入射される。マイクロレンズアレイMLA1、MLA2は、いわゆる透過型スクリーンとして機能する。 As shown in FIG. 1A, the optical element 11x according to the comparative example includes microlens arrays MLA1 and MLA2 in which a plurality of microlenses ML1 and ML2 are arranged. Light emitted from a light source (not shown) that emits light for displaying an image is incident on the microlens array MLA1, and light emitted from the microlens array MLA1 is incident on the microlens array MLA2. The The microlens arrays MLA1 and MLA2 function as so-called transmission screens.
 また、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1、ML2が形成された面が向き合うように対向配置されている。この場合、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1の焦点距離よりも少なくとも長い距離だけ離間した位置に対向配置されている。具体的には、マイクロレンズアレイMLA1とマイクロレンズアレイMLA2とは、マイクロレンズML1の焦点距離の2倍よりも長い距離だけ離間して対向配置されている。 Further, the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surfaces on which the microlenses ML1 and ML2 are formed face each other. In this case, the microlens arrays MLA1 and MLA2 are arranged to face each other at a position separated by at least a distance longer than the focal length of the microlens ML1. Specifically, the microlens array MLA1 and the microlens array MLA2 are opposed to each other with a distance longer than twice the focal length of the microlens ML1.
 図1(b)は、マイクロレンズアレイMLA1、MLA2の平面図を示す。具体的には、光の進行方向に沿った方向から観察した、マイクロレンズアレイMLA1、MLA2の一部分を拡大して表した平面図を示している。図1(b)に示すように、マイクロレンズML1、ML2は、平面視において正六角形状のレンズ輪郭で構成されている。また、マイクロレンズアレイMLA1に配列されたマイクロレンズML1のレンズピッチP1と、マイクロレンズアレイMLA2に配列されたマイクロレンズML2のレンズピッチP2とは、同程度となっている(P1≒P2)。更に、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1、ML2のレンズ輪郭である正六角形状が互いに30度だけ回転した関係になるように配置されている。つまり、マイクロレンズアレイMLA1に配列されたマイクロレンズML1のレンズ輪郭である正六角形状の頂点方向と、マイクロレンズアレイMLA2に配列されたマイクロレンズML2のレンズ輪郭である正六角形状の頂点方向との角度差が30度に構成されている。なお、当該頂点方向は、レンズ輪郭である正六角形の中心点(重心)から、正六角形の各頂点へ向かう方向により規定される(以下同様とする)。 FIG. 1B is a plan view of the microlens arrays MLA1 and MLA2. Specifically, a plan view showing an enlarged part of the microlens arrays MLA1 and MLA2 observed from the direction along the light traveling direction is shown. As shown in FIG. 1B, the microlenses ML1 and ML2 are configured with a regular hexagonal lens outline in a plan view. Further, the lens pitch P1 of the microlens ML1 arranged in the microlens array MLA1 and the lens pitch P2 of the microlens ML2 arranged in the microlens array MLA2 are approximately the same (P1≈P2). Furthermore, the microlens arrays MLA1 and MLA2 are arranged so that the regular hexagonal shapes that are the lens contours of the microlenses ML1 and ML2 are rotated by 30 degrees. That is, a regular hexagonal vertex direction that is the lens contour of the microlens ML1 arranged in the microlens array MLA1 and a regular hexagonal vertex direction that is the lens contour of the microlens ML2 arranged in the microlens array MLA2. The angle difference is 30 degrees. The vertex direction is defined by the direction from the center point (center of gravity) of the regular hexagon that is the lens contour toward each vertex of the regular hexagon (the same applies hereinafter).
 なお、レンズピッチレンズピッチP1、P2は、言い換えるとマイクロレンズアレイMLA1及びマイクロレンズアレイMLA2に配列された隣接するマイクロレンズML1、ML2同士の間隔であり、隣接するマイクロレンズML1、ML2の重心同士の間隔(つまり中心同士の距離)に相当する。このようなレンズピッチの定義は、以下でも同様に適用されるものとする。 The lens pitches P1 and P2 are, in other words, the distance between adjacent microlenses ML1 and ML2 arranged in the microlens array MLA1 and the microlens array MLA2, and the center of gravity of the adjacent microlenses ML1 and ML2 This corresponds to the interval (that is, the distance between the centers). Such a definition of the lens pitch shall be applied similarly in the following.
 比較例では、光源から出射される光のスポット径SP1(1画素に相当する光のスポット径に相当する)は、マイクロレンズアレイMLA1に配列されたマイクロレンズML1のレンズピッチP1よりも大きい(SP1>P1)。つまり、比較例では、1画素に相当する光が、複数のマイクロレンズML1に入射される。 In the comparative example, the spot diameter SP1 of light emitted from the light source (corresponding to the spot diameter of light corresponding to one pixel) is larger than the lens pitch P1 of the microlens ML1 arranged in the microlens array MLA1 (SP1). > P1). That is, in the comparative example, light corresponding to one pixel is incident on the plurality of microlenses ML1.
 以下では、光源から出射される1画素に相当する光のスポットを「入射スポット」と呼び、入射スポットの径を「入射スポット径」と呼ぶ。入射スポット径は、入射光の強度が所定値(例えば最大値の半値)となる円の直径と定義される(以下同様とする)。 Hereinafter, a spot of light corresponding to one pixel emitted from the light source is referred to as an “incident spot”, and the diameter of the incident spot is referred to as an “incident spot diameter”. The incident spot diameter is defined as the diameter of a circle in which the intensity of incident light is a predetermined value (for example, half the maximum value) (hereinafter the same).
 図1(c)は、比較例に係る光学素子11xによる光線追跡結果を示している。図1(c)では、マイクロレンズアレイMLA1、MLA2に配列された複数のマイクロレンズML1、ML2を重ねて示している。また、ここでは、1画素に相当する光についての光線追跡結果を示している。なお、光線追跡結果はシミュレーションなどにより求められる。 FIG. 1C shows a ray tracing result by the optical element 11x according to the comparative example. In FIG. 1C, a plurality of microlenses ML1 and ML2 arranged in the microlens arrays MLA1 and MLA2 are shown in an overlapping manner. In addition, here, a ray tracing result for light corresponding to one pixel is shown. The ray tracing result is obtained by simulation or the like.
 図1(c)に示すように、比較例に係る構成では、マイクロレンズアレイMLA2から出射される光のスポット径SP2が、マイクロレンズアレイMLA1に入射する光のスポット径SP1(つまり入射スポット径)よりも大きいことがわかる(SP2>SP1)。これは、マイクロレンズアレイMLA1とマイクロレンズアレイMLA2がMLA1の焦点距離の2倍より大きく離間して対向配置されているためである。なお、以下では、マイクロレンズアレイMLA2から出射される光のスポットを「射出スポット」と呼び、射出スポットの径を「射出スポット径」と呼ぶ。 As shown in FIG. 1C, in the configuration according to the comparative example, the spot diameter SP2 of the light emitted from the microlens array MLA2 is the spot diameter SP1 of the light incident on the microlens array MLA1 (that is, the incident spot diameter). (SP2> SP1). This is because the microlens array MLA1 and the microlens array MLA2 are opposed to each other with a distance larger than twice the focal length of the MLA1. Hereinafter, the spot of light emitted from the microlens array MLA2 is referred to as an “eject spot”, and the diameter of the exit spot is referred to as an “eject spot diameter”.
 このように比較例に係る構成では、後段のマイクロレンズアレイMLA2に入射する時点で1画素に相当する光が隣接する画素と重なるため、マイクロレンズアレイMLA2から射出されるスポット(つまり射出スポット)が隣接する画素同士で重なり合ってしまう。そのため、解像度が劣化するクロストークが発生する傾向にある。なお、このようなクロストークは、マイクロレンズアレイMLA1のレンズピッチP1を小さくすることで、その影響を軽減することができる。 As described above, in the configuration according to the comparative example, since light corresponding to one pixel overlaps with an adjacent pixel at the time of incidence on the subsequent microlens array MLA2, a spot emitted from the microlens array MLA2 (that is, an emission spot) Adjacent pixels overlap each other. For this reason, there is a tendency for crosstalk in which the resolution is degraded. Such crosstalk can be reduced by reducing the lens pitch P1 of the microlens array MLA1.
 次に、図2を参照して、入射スポット径と射出瞳分布との関係について説明する。ここでは、平面視において正六角形状のレンズ輪郭で構成されたマイクロレンズML1が格子状に配列されたマイクロレンズアレイMLA1を例に挙げる。 Next, the relationship between the incident spot diameter and the exit pupil distribution will be described with reference to FIG. Here, a microlens array MLA1 in which microlenses ML1 configured with regular hexagonal lens contours in a plan view are arranged in a grid is taken as an example.
 図2(a)は、マイクロレンズアレイMLA1のレンズピッチP1の2倍程度の入射スポット径SP11を用いた場合の図を示している(SP11≒2×P1)。図2(a)では、入射スポット径SP11を破線で表しており、この破線で示す円周は、入射光の強度が最大値の半値となる箇所を表している(図2(c)でも同様とする)。図2(b)は、図2(a)に示すような入射スポット径SP11を用いた場合の、射出瞳の強度分布を示している。射出瞳の強度分布は、マイクロレンズアレイMLA1からの光によってマイクロレンズアレイMLA2の表面上に形成される分布である(図2(d)でも同様とする)。図2(b)に示すように、入射スポット径SP11がマイクロレンズアレイMLA1のレンズピッチP1よりもかなり大きい場合には、射出瞳の強度分布において明るい点の並びが疎になっていることがわかる。この場合には、観測される像のむらが大きくなる傾向にある。 FIG. 2A shows a case where an incident spot diameter SP11 that is about twice the lens pitch P1 of the microlens array MLA1 is used (SP11≈2 × P1). In FIG. 2A, the incident spot diameter SP11 is represented by a broken line, and the circumference indicated by the broken line represents a portion where the intensity of the incident light becomes a half value of the maximum value (the same applies to FIG. 2C). And). FIG. 2B shows the intensity distribution of the exit pupil when the incident spot diameter SP11 as shown in FIG. 2A is used. The intensity distribution of the exit pupil is a distribution formed on the surface of the microlens array MLA2 by the light from the microlens array MLA1 (the same applies to FIG. 2D). As shown in FIG. 2B, when the incident spot diameter SP11 is considerably larger than the lens pitch P1 of the microlens array MLA1, it can be seen that the arrangement of bright spots is sparse in the intensity distribution of the exit pupil. . In this case, the unevenness of the observed image tends to increase.
 図2(c)は、マイクロレンズアレイMLA1のレンズピッチP1と同程度である入射スポット径SP12を用いた場合の図を示している(SP12≒P1)。図2(d)は、図2(c)に示すような入射スポット径SP12を用いた場合の、射出瞳の強度分布を示している。図2(d)に示すように、入射スポット径SP11がマイクロレンズアレイMLA1のレンズピッチP1と同程度である場合には、射出瞳の強度分布が密になっていることがわかる。この場合には、むらの少ない像が観測される。 FIG. 2C shows a diagram in the case of using an incident spot diameter SP12 that is approximately the same as the lens pitch P1 of the microlens array MLA1 (SP12≈P1). FIG. 2 (d) shows the intensity distribution of the exit pupil when the incident spot diameter SP12 as shown in FIG. 2 (c) is used. As shown in FIG. 2D, when the incident spot diameter SP11 is approximately the same as the lens pitch P1 of the microlens array MLA1, it can be seen that the intensity distribution of the exit pupil is dense. In this case, an image with little unevenness is observed.
 以上のことから、マイクロレンズアレイMLA1のレンズピッチP1を小さくすることでクロストークの影響を軽減できるものの、入射スポット径がマイクロレンズアレイMLA1のレンズピッチP1よりもかなり大きいと、マイクロレンズアレイMLA1の射出瞳の輝度むらが大きくなると言える。これに対して、入射スポット径がマイクロレンズアレイMLA1のレンズピッチP1と同程度であれば、輝度むらが僅かになると言える。したがって、マイクロレンズアレイMLA1のレンズピッチP1を小さくすると共に、そのようなレンズピッチP1と同程度まで入射スポット径を絞り込めば、輝度むらの影響を軽減し解像度を上げることができるものと考えられる。 From the above, although the influence of crosstalk can be reduced by reducing the lens pitch P1 of the microlens array MLA1, if the incident spot diameter is considerably larger than the lens pitch P1 of the microlens array MLA1, It can be said that the brightness unevenness of the exit pupil increases. On the other hand, if the incident spot diameter is approximately the same as the lens pitch P1 of the microlens array MLA1, it can be said that the luminance unevenness is small. Therefore, if the lens pitch P1 of the microlens array MLA1 is reduced and the incident spot diameter is narrowed to the same extent as the lens pitch P1, it is considered that the influence of luminance unevenness can be reduced and the resolution can be increased. .
 しかしながら、光源から出射された光をMEMSミラーで走査して画像を表示させるような装置(例えばレーザプロジェクタ)では、入射スポットを小さく絞ることは困難である。この理由について、図3を参照して具体的に説明する。 However, in an apparatus (for example, a laser projector) that scans light emitted from a light source with a MEMS mirror and displays an image, it is difficult to narrow the incident spot. The reason will be specifically described with reference to FIG.
 図3は、光源から出射された光をMEMSミラー10によってマイクロレンズアレイMLA1(スクリーン)上を走査させる構成について図示している。図3(a)は、MEMSミラー10とマイクロレンズアレイMLA1とが離れている場合を示している。図3(a)では、符号SP51は画像中心での入射スポットを示しており、符号SP52、SP53は画像周辺での入射スポットを示している。マイクロレンズアレイMLA1に入射するスポットは光源とMEMSミラー10との間に配置されたコリメータレンズ93のNA(開口数)によって決定される。MEMSミラー10とマイクロレンズアレイMLA1とが離れている場合には、コリメータレンズ93のNAを低くしなければならないため、入射スポットを絞るのが難しいことがわかる。 FIG. 3 illustrates a configuration in which the light emitted from the light source is scanned on the microlens array MLA1 (screen) by the MEMS mirror 10. FIG. 3A shows a case where the MEMS mirror 10 and the microlens array MLA1 are separated from each other. In FIG. 3A, reference symbol SP51 indicates an incident spot at the center of the image, and reference symbols SP52 and SP53 indicate incident spots at the periphery of the image. The spot incident on the microlens array MLA1 is determined by the NA (numerical aperture) of the collimator lens 93 disposed between the light source and the MEMS mirror 10. When the MEMS mirror 10 and the microlens array MLA1 are separated from each other, the NA of the collimator lens 93 has to be lowered, and it can be seen that it is difficult to narrow the incident spot.
 図3(b)は、MEMSミラー10とマイクロレンズアレイMLA1とがある程度近い場合を示している。図3(b)では、符号SP61は画像中心での入射スポットを示しており、符号SP62、SP63は画像周辺での入射スポットを示している。図3(b)のように、画像中心では入射スポットを絞れるが、画像周辺では入射スポットを絞れない。これは、MEMSミラー10をマイクロレンズアレイMLA1に近付けると、同じ大きさの中間像を生成するためにはスキャン角度を大きくする必要があり、現実的な形状である平面基板にレンズが形成されたマイクロレンズアレイMLA1においては、画像中心部と画像周辺部とでMEMSミラー10からの距離の差が大きいことによるデフォーカスと、画像周辺部で入射角度が大きくなることによるスポットの伸びとが生じるためである。 FIG. 3B shows a case where the MEMS mirror 10 and the microlens array MLA1 are close to a certain extent. In FIG. 3B, the symbol SP61 indicates the incident spot at the center of the image, and the symbols SP62 and SP63 indicate the incident spot at the periphery of the image. As shown in FIG. 3B, the incident spot can be narrowed at the center of the image, but the incident spot cannot be narrowed around the image. This is because when the MEMS mirror 10 is brought close to the microlens array MLA1, it is necessary to increase the scan angle in order to generate an intermediate image of the same size, and a lens is formed on a planar substrate having a realistic shape. In the microlens array MLA1, defocusing due to a large difference in distance from the MEMS mirror 10 between the image central portion and the image peripheral portion and spot elongation due to an increase in the incident angle at the image peripheral portion occur. It is.
 以上のことから、光をMEMSミラー10で走査して画像を表示させるような装置では、入射スポットを小さく絞ることは困難であると言える。なお、MEMSミラー10とマイクロレンズアレイMLA1が離れている場合でも口径の大きなコリメータレンズ93を用いればNAを大きく取る事は可能だが、実際にはMEMSミラー10のサイズの制約からMEMSミラー10で光が蹴られてしまう。また、NAを大きくするためにMEMSミラー10をマイクロレンズアレイMLA1に近付けると、図3(b)で示したような現象が生じる。 From the above, it can be said that it is difficult to narrow the incident spot small in an apparatus that displays an image by scanning light with the MEMS mirror 10. Even if the MEMS mirror 10 and the microlens array MLA1 are separated from each other, it is possible to increase the NA by using the collimator lens 93 having a large aperture. Will be kicked. Further, when the MEMS mirror 10 is brought close to the microlens array MLA1 in order to increase the NA, the phenomenon shown in FIG. 3B occurs.
 [本実施例の構成]
 本実施例では、上記で説明したような内容を受けて、光源から出射された光のスポット径をさらに絞り込んだ光を、マイクロレンズアレイMLA1に入射させる。具体的には、本実施例では、マイクロレンズアレイMLA1、MLA2とは別のマイクロレンズアレイを、マイクロレンズアレイMLA1よりも光の入射側に配置し、そのようなマイクロレンズアレイによって光源からの光を絞り込んだ光を、マイクロレンズアレイMLA1に入射させる。この場合、入射スポット径をマイクロレンズアレイMLA1のレンズピッチP1と同程度の大きさにまで絞り込んだ光を、マイクロレンズアレイMLA1に入射させる。
[Configuration of this embodiment]
In the present embodiment, in response to the contents described above, the light further narrowed down the spot diameter of the light emitted from the light source is made incident on the microlens array MLA1. Specifically, in this embodiment, a microlens array different from the microlens arrays MLA1 and MLA2 is arranged on the light incident side with respect to the microlens array MLA1, and the light from the light source is emitted by such a microlens array. Is made incident on the microlens array MLA1. In this case, light whose aperture spot diameter is narrowed down to the same size as the lens pitch P1 of the microlens array MLA1 is incident on the microlens array MLA1.
 図4は、本実施例に係る光学素子11の概略構成を示す図である。図4(a)は、図示しない光源から出射された光の進行方向に垂直な面にて光学素子11を切断した断面図を示している。また、光学素子11の一部分を拡大して表した断面図を示している。また、図4(b)は、光学素子11が有するマイクロレンズアレイMLA1、MLA2、ML3の平面図を示す。具体的には、光の進行方向に沿った方向から観察した、マイクロレンズアレイMLA1、MLA2、ML3の一部分を拡大して表した平面図を示している。 FIG. 4 is a diagram illustrating a schematic configuration of the optical element 11 according to the present embodiment. FIG. 4A shows a cross-sectional view of the optical element 11 taken along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). Further, a cross-sectional view showing a part of the optical element 11 in an enlarged manner is shown. FIG. 4B is a plan view of the microlens arrays MLA1, MLA2, and ML3 included in the optical element 11. Specifically, a plan view is shown in which a part of the microlens arrays MLA1, MLA2, and ML3 is enlarged and observed from the direction along the light traveling direction.
 図4(a)及び(b)に示すように、本実施例に係る光学素子11は、比較例に係る光学素子11xと異なり、マイクロレンズアレイMLA1よりも光の入射側に配置されたマイクロレンズアレイMLA3を更に有する。マイクロレンズアレイMLA3には、画像を表示するための光を照射する光源(不図示)から出射された光が入射され、マイクロレンズアレイMLA1には、マイクロレンズアレイMLA3から出射された光が入射され、マイクロレンズアレイMLA2には、マイクロレンズアレイMLA1から出射された光が入射される。 As shown in FIGS. 4A and 4B, unlike the optical element 11x according to the comparative example, the optical element 11 according to the present example is a microlens disposed on the light incident side with respect to the microlens array MLA1. It further has an array MLA3. Light emitted from a light source (not shown) that emits light for displaying an image is incident on the microlens array MLA3, and light emitted from the microlens array MLA3 is incident on the microlens array MLA1. The light emitted from the microlens array MLA1 is incident on the microlens array MLA2.
 マイクロレンズアレイMLA3は本発明における「絞り手段」の一例であり、マイクロレンズアレイMLA1は本発明における「第1マイクロレンズアレイ」の一例であり、マイクロレンズアレイMLA2は本発明における「第2マイクロレンズアレイ」の一例である。また、図示しない光源と、マイクロレンズアレイMLA1~MLA3とを少なくとも具備して構成される構成部は、本発明に係る「光源ユニット」の一例に相当する。 The microlens array MLA3 is an example of the “aperture means” in the present invention, the microlens array MLA1 is an example of the “first microlens array” in the present invention, and the microlens array MLA2 is the “second microlens” in the present invention. An example of an “array”. In addition, a component that includes at least a light source (not shown) and the microlens arrays MLA1 to MLA3 corresponds to an example of a “light source unit” according to the present invention.
 マイクロレンズアレイMLA3は、平凸レンズアレイとして構成されており、光源からの光が入射する面に複数のマイクロレンズML3が形成されている。また、マイクロレンズアレイMLA3は、マイクロレンズML3のレンズピッチP3が、光源から出射される1画素に相当する光のスポット径SP1(つまり入射スポット径)と同程度に構成されている(P3≒SP1)。更に、マイクロレンズML3は、平面視において正六角形状のレンズ輪郭で構成されている。 The microlens array MLA3 is configured as a plano-convex lens array, and a plurality of microlenses ML3 are formed on a surface on which light from a light source is incident. The microlens array MLA3 is configured such that the lens pitch P3 of the microlens ML3 is approximately the same as the spot diameter SP1 (that is, the incident spot diameter) of light corresponding to one pixel emitted from the light source (P3≈SP1). ). Furthermore, the microlens ML3 is configured with a regular hexagonal lens contour in plan view.
 マイクロレンズアレイMLA1は、マイクロレンズアレイMLA3と対向配置されており、例えばマイクロレンズアレイMLA3の焦点深度の範囲内に配置されている。マイクロレンズアレイMLA1には、マイクロレンズアレイMLA3によって絞り込まれた、スポット径SP3を有する光が入射される。このスポット径SP3は、マイクロレンズアレイMLA1のレンズピッチP1と同程度の大きさである(SP3≒P1)。つまり、マイクロレンズアレイMLA3は、入射スポット径SP1をレンズピッチP1と同程度の大きさであるスポット径SP3にまで絞り込んだ光を、マイクロレンズアレイMLA1に入射させる。 The microlens array MLA1 is disposed so as to face the microlens array MLA3. For example, the microlens array MLA3 is disposed within the focal depth range of the microlens array MLA3. Light having a spot diameter SP3 that has been narrowed down by the microlens array MLA3 is incident on the microlens array MLA1. The spot diameter SP3 is about the same size as the lens pitch P1 of the microlens array MLA1 (SP3≈P1). That is, the microlens array MLA3 causes the light, which has been narrowed down to the spot diameter SP3 having the same size as the lens pitch P1, to enter the microlens array MLA1.
 マイクロレンズアレイMLA2は、マイクロレンズアレイMLA1と対向配置されており、マイクロレンズML1の焦点距離よりも少なくとも長い距離だけ離間した位置に配置されている。具体的には、マイクロレンズアレイMLA1とマイクロレンズアレイMLA2とは、マイクロレンズML1の焦点距離の2倍よりも長い距離だけ離間して対向配置されている。また、マイクロレンズアレイMLA1に配列されたマイクロレンズML1のレンズピッチP1と、マイクロレンズアレイMLA2に配列されたマイクロレンズML2のレンズピッチP2とが同程度になるように構成されている(P1≒P2)。更に、マイクロレンズML1、ML2は、平面視において正六角形状のレンズ輪郭で構成されている。加えて、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1、ML2のレンズ輪郭である正六角形状が互いに30度だけ回転した関係になるように配置されている。 The microlens array MLA2 is disposed to face the microlens array MLA1, and is disposed at a position separated by at least a distance longer than the focal length of the microlens ML1. Specifically, the microlens array MLA1 and the microlens array MLA2 are opposed to each other with a distance longer than twice the focal length of the microlens ML1. Further, the lens pitch P1 of the microlens ML1 arranged in the microlens array MLA1 and the lens pitch P2 of the microlens ML2 arranged in the microlens array MLA2 are configured to be approximately the same (P1≈P2). ). Further, the microlenses ML1 and ML2 are configured with regular hexagonal lens contours in plan view. In addition, the microlens arrays MLA1 and MLA2 are arranged so that the regular hexagonal shapes that are the lens contours of the microlenses ML1 and ML2 are rotated by 30 degrees relative to each other.
 図5は、本実施例に係る光学素子11による光線追跡結果を示している。図5では、説明の便宜上、マイクロレンズアレイMLA1、MLA2のみを図示しており(マイクロレンズアレイMLA3は図示していない)、マイクロレンズアレイMLA1、MLA2に配列された複数のマイクロレンズML1、ML2を重ねて示している。また、ここでは、1画素に相当する光についての光線追跡結果を示している。加えて、図5の左下に、参考のために、光源から出射された1画素に相当する光のスポット径SP1(つまり入射スポット径)を示している。なお、光線追跡結果はシミュレーションなどにより求められる。 FIG. 5 shows a ray tracing result by the optical element 11 according to the present embodiment. In FIG. 5, for convenience of explanation, only the microlens arrays MLA1 and MLA2 are illustrated (the microlens array MLA3 is not illustrated), and a plurality of microlenses ML1 and ML2 arranged in the microlens arrays MLA1 and MLA2 are illustrated. It is shown repeatedly. In addition, here, a ray tracing result for light corresponding to one pixel is shown. In addition, the spot diameter SP1 (that is, the incident spot diameter) of light corresponding to one pixel emitted from the light source is shown in the lower left of FIG. 5 for reference. The ray tracing result is obtained by simulation or the like.
 図5に示すように、本実施例に係る構成によれば、マイクロレンズアレイMLA2から出射される光のスポット径SP4(つまり射出スポット径)が、入射スポット径SP1と同程度になっていることがわかる。つまり、本実施例に係る構成によれば、最前段のマイクロレンズアレイMLA3に入射される光のスポット径である入射スポット径SP1と同程度の大きさまで、射出スポット径SP4を縮小できていることがわかる。これは、マイクロレンズアレイMLA3によって、入射スポット径SP1をレンズピッチP1と同程度の大きさであるスポット径SP3にまで絞り込んだ光を、マイクロレンズアレイMLA1に入射させたためであると考えられる。 As shown in FIG. 5, according to the configuration of the present embodiment, the spot diameter SP4 (that is, the emission spot diameter) of the light emitted from the microlens array MLA2 is approximately the same as the incident spot diameter SP1. I understand. That is, according to the configuration according to the present embodiment, the emission spot diameter SP4 can be reduced to the same size as the incident spot diameter SP1, which is the spot diameter of the light incident on the foremost microlens array MLA3. I understand. This is considered to be because the light that has been narrowed down to the spot diameter SP3 having the same size as the lens pitch P1 by the microlens array MLA3 is incident on the microlens array MLA1.
 以上説明した本実施例によれば、射出スポット径SP4を入射スポット径SP1と同程度にすることができるため、画像の解像度を向上させることができる。また、本実施例では、比較例と同様のマイクロレンズアレイMLA1、MLA2を用いているため、マイクロレンズアレイMLA1、MLA2を厳密に位置調整する必要もない。したがって、本実施例によれば、位置調整の難易度を上げることなく、画像の解像度を向上させることができる。 According to the present embodiment described above, since the exit spot diameter SP4 can be made substantially equal to the incident spot diameter SP1, the resolution of the image can be improved. In the present embodiment, since the same microlens arrays MLA1 and MLA2 as in the comparative example are used, it is not necessary to strictly adjust the positions of the microlens arrays MLA1 and MLA2. Therefore, according to the present embodiment, the resolution of the image can be improved without increasing the difficulty of position adjustment.
 なお、上記では、マイクロレンズアレイMLA3によって、入射スポット径SP1をマイクロレンズアレイMLA1のレンズピッチP1と同程度に絞り込むことを述べた。入射スポット径SP1をレンズピッチP1と同一のサイズにまで絞り込むことが好適であるが、入射スポット径SP1をレンズピッチP1と完全に同一のサイズにまで絞り込まなくても、上記したような本実施例の効果が得られる。つまり、入射スポット径SP1をレンズピッチP1よりも若干大きなサイズにまで絞り込んだ場合や、入射スポット径SP1をレンズピッチP1よりも若干小さなサイズにまで絞り込んだ場合にも、本実施例の効果が得られる。例えば、許容される解像度などに基づいて、マイクロレンズアレイMLA3によって入射スポット径SP1を絞り込むサイズを決めることができる。 In the above description, it has been described that the incident spot diameter SP1 is narrowed to the same degree as the lens pitch P1 of the microlens array MLA1 by the microlens array MLA3. Although it is preferable to narrow the incident spot diameter SP1 to the same size as the lens pitch P1, the present embodiment as described above can be used without narrowing the incident spot diameter SP1 to the same size as the lens pitch P1. The effect is obtained. That is, even when the incident spot diameter SP1 is narrowed down to a size slightly larger than the lens pitch P1, or when the incident spot diameter SP1 is narrowed down to a size slightly smaller than the lens pitch P1, the effect of this embodiment can be obtained. It is done. For example, a size for narrowing the incident spot diameter SP1 by the microlens array MLA3 can be determined based on an allowable resolution or the like.
 また、上記では、マイクロレンズアレイMLA3のレンズピッチP3が、入射スポット径SP1と同程度であることを述べた。レンズピッチP3を入射スポット径SP1と同一に構成することが好適であるが、レンズピッチP3を入射スポット径SP1と完全に同一に構成しなくても構わない。レンズピッチP3を入射スポット径SP1よりも若干長く構成しても良いし、レンズピッチP3を入射スポット径SP1よりも若干短く構成しても良い。 In the above description, it has been described that the lens pitch P3 of the microlens array MLA3 is approximately the same as the incident spot diameter SP1. The lens pitch P3 is preferably configured to be the same as the incident spot diameter SP1, but the lens pitch P3 may not be configured to be the same as the incident spot diameter SP1. The lens pitch P3 may be configured to be slightly longer than the incident spot diameter SP1, or the lens pitch P3 may be configured to be slightly shorter than the incident spot diameter SP1.
 また、上記では、マイクロレンズアレイMLA1のレンズピッチP1とマイクロレンズアレイMLA2のレンズピッチP2とを同程度にすることを述べた。レンズピッチP1とレンズピッチP2とを同一に構成することが好適であるが、レンズピッチP1とレンズピッチP2とを完全に同一に構成しなくても構わない。但し、レンズピッチP1とレンズピッチP2とを同一に構成する場合には、同一の金型などを用いてマイクロレンズアレイMLA1及びマイクロレンズアレイMLA2を製造することができるため、これらを容易且つ低コストで製造することが可能となる。 In the above description, it has been described that the lens pitch P1 of the microlens array MLA1 and the lens pitch P2 of the microlens array MLA2 are approximately the same. Although it is preferable to configure the lens pitch P1 and the lens pitch P2 to be the same, the lens pitch P1 and the lens pitch P2 may not be configured to be completely the same. However, when the lens pitch P1 and the lens pitch P2 are configured to be the same, the microlens array MLA1 and the microlens array MLA2 can be manufactured using the same mold or the like. Can be manufactured.
 [好適な設計例]
 次に、上記したマイクロレンズアレイMLA3の好適な設計例について説明する。マイクロレンズアレイMLA3としては、マイクロレンズアレイMLA1に入射する光によって形成されるスポット径SP3(図4など参照)がMEMSミラー10のスキャン角度によって大きく変わらないような、焦点距離が十分に長く焦点深度が深いマイクロレンズML3を有するものを用いることが好適である。つまり、マイクロレンズアレイMLA1に入射する光によるスポットサイズ(波動光学的に求めたスポットサイズ)が画像中心と画像周辺とで同程度となるように、焦点距離が十分に長く焦点深度が深いマイクロレンズアレイMLA3を用いることが好適である。
[Preferred design example]
Next, a preferred design example of the above-described microlens array MLA3 will be described. As the microlens array MLA3, the focal length is sufficiently long so that the spot diameter SP3 (see FIG. 4 and the like) formed by the light incident on the microlens array MLA1 does not vary greatly depending on the scan angle of the MEMS mirror 10. It is preferable to use a lens having a deep microlens ML3. That is, a microlens having a sufficiently long focal length and a deep focal depth so that the spot size (spot size determined by wave optics) by light incident on the microlens array MLA1 is approximately the same at the image center and the image periphery. It is preferable to use an array MLA3.
 図6は、焦点距離が十分に長く焦点深度が深いマイクロレンズアレイMLA3を用いた場合のシミュレーション結果例を示している。ここでは、MEMSミラー10とマイクロレンズアレイMLA3との間隔を「100(mm)」とし、マイクロレンズアレイMLA3とマイクロレンズアレイMLA1との間隔を「21(mm)」とし、焦点距離が「19.5(mm)」で、中心厚みが「1(mm)」で、レンズピッチP3が「100(μm)」であるマイクロレンズアレイMLA3を用いた場合を例示する。なお、入射スポット径SP1は「100(μm)」程度であるものとする。 FIG. 6 shows an example of a simulation result when the microlens array MLA3 having a sufficiently long focal length and a deep focal depth is used. Here, the interval between the MEMS mirror 10 and the microlens array MLA3 is “100 (mm)”, the interval between the microlens array MLA3 and the microlens array MLA1 is “21 (mm)”, and the focal length is “19. An example is shown in which a microlens array MLA3 having a central thickness of “1 (mm)” and a lens pitch P3 of “100 (μm)” is used. It is assumed that the incident spot diameter SP1 is about “100 (μm)”.
 図6(a)~(d)は、それぞれ、上側に、MEMSミラー10からマイクロレンズアレイMLA2までの光線追跡結果の上面図を示しており、下側に、マイクロレンズアレイMLA1に入射する光の強度分布を示している。具体的には、図6(a)はスキャン角度が0度である場合の図を示し、図6(b)はスキャン角度が2度である場合の図を示し、図6(c)はスキャン角度が8度である場合の図を示し、図6(d)はスキャン角度が14度である場合の図を示している。また、図6(a)~(d)において下側のグラフ中に提示した矢印は、マイクロレンズアレイMLA1のレンズピッチP1を表している。例えば、レンズピッチP1は「40(μm)」程度である。 6 (a) to 6 (d) each show a top view of a ray tracing result from the MEMS mirror 10 to the microlens array MLA2 on the upper side, and the light incident on the microlens array MLA1 on the lower side. The intensity distribution is shown. Specifically, FIG. 6A shows a diagram when the scan angle is 0 degrees, FIG. 6B shows a diagram when the scan angle is 2 degrees, and FIG. 6C shows the scan. FIG. 6D shows a diagram when the angle is 8 degrees, and FIG. 6D shows a diagram when the scan angle is 14 degrees. In addition, the arrows presented in the lower graphs in FIGS. 6A to 6D represent the lens pitch P1 of the microlens array MLA1. For example, the lens pitch P1 is about “40 (μm)”.
 図6(a)~(d)より、画像中心と画像周辺とで概ね同等サイズのスポットがマイクロレンズアレイMLA1上に形成されており、その半値幅がマイクロレンズアレイMLA1のレンズピッチP1と同程度となっていることがわかる。したがって、図6において例示したような特性を有するマイクロレンズアレイMLA3を用いることが好適であると言える。 6A to 6D, spots of approximately the same size are formed on the microlens array MLA1 at the center of the image and the periphery of the image, and the half width is approximately the same as the lens pitch P1 of the microlens array MLA1. It turns out that it is. Therefore, it can be said that it is preferable to use the microlens array MLA3 having the characteristics illustrated in FIG.
 [好適な適用例]
 次に、図7を参照して、上記した本実施例に係る光学素子11の好適な適用例について説明する。
[Preferred application example]
Next, a preferred application example of the optical element 11 according to this embodiment will be described with reference to FIG.
 図7は、本実施例に係る光学素子11が適用された画像表示装置1の構成を示す。図7に示すように、画像表示装置1は、画像信号入力部2と、ビデオASIC3と、フレームメモリ4と、ROM5と、RAM6と、レーザドライバASIC7と、MEMS制御部8と、レーザ光源ユニット9と、MEMSミラー10と、光学素子11と、を備える。 FIG. 7 shows a configuration of the image display device 1 to which the optical element 11 according to the present embodiment is applied. As shown in FIG. 7, the image display device 1 includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS control unit 8, and a laser light source unit 9. A MEMS mirror 10 and an optical element 11.
 画像表示装置1は、例えばヘッドアップディスプレイに適用される。ヘッドアップディスプレイは、画像をユーザ(例えば車両の運転者)の目の位置から虚像として視認させる装置である。 The image display device 1 is applied to, for example, a head-up display. The head-up display is a device that visually recognizes an image as a virtual image from the position of the eyes of a user (for example, a vehicle driver).
 画像信号入力部2は、外部から入力される画像信号を受信してビデオASIC3に出力する。 The image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
 ビデオASIC3は、画像信号入力部2から入力される画像信号及びMEMSミラー10から入力される走査位置情報Scに基づいてレーザドライバASIC7やMEMS制御部8を制御するブロックであり、ASIC(Application Specific Integrated Circuit)として構成されている。ビデオASIC3は、同期/画像分離部31と、ビットデータ変換部32と、発光パターン変換部33と、タイミングコントローラ34と、を備える。 The video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information Sc input from the MEMS mirror 10, and is ASIC (Application Specific Integrated). Circuit). The video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
 同期/画像分離部31は、画像信号入力部2から入力された画像信号から、画像表示部であるスクリーンに表示される画像データと同期信号とを分離し、画像データをフレームメモリ4へ書き込む。 The synchronization / image separation unit 31 separates the image data displayed on the screen as the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4.
 ビットデータ変換部32は、フレームメモリ4に書き込まれた画像データを読み出してビットデータに変換する。 The bit data conversion unit 32 reads the image data written in the frame memory 4 and converts it into bit data.
 発光パターン変換部33は、ビットデータ変換部32で変換されたビットデータを、各レーザの発光パターンを表す信号に変換する。 The light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
 タイミングコントローラ34は、同期/画像分離部31、ビットデータ変換部32の動作タイミングを制御する。また、タイミングコントローラ34は、後述するMEMS制御部8の動作タイミングも制御する。 The timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32. The timing controller 34 also controls the operation timing of the MEMS control unit 8 described later.
 フレームメモリ4には、同期/画像分離部31により分離された画像データが書き込まれる。ROM5は、ビデオASIC3が動作するための制御プログラムやデータなどを記憶している。RAM6には、ビデオASIC3が動作する際のワークメモリとして、各種データが逐次読み書きされる。 In the frame memory 4, the image data separated by the synchronization / image separation unit 31 is written. The ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
 レーザドライバASIC7は、後述するレーザ光源ユニット9に設けられるレーザダイオードを駆動する信号を生成するブロックであり、ASICとして構成されている。レーザドライバASIC7は、赤色レーザ駆動回路71と、青色レーザ駆動回路72と、緑色レーザ駆動回路73と、を備える。 The laser driver ASIC 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 described later, and is configured as an ASIC. The laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73.
 赤色レーザ駆動回路71は、発光パターン変換部33が出力する信号に基づき、赤色レーザLD1を駆動する。青色レーザ駆動回路72は、発光パターン変換部33が出力する信号に基づき、青色レーザLD2を駆動する。緑色レーザ駆動回路73は、発光パターン変換部33が出力する信号に基づき、緑色レーザLD3を駆動する。 The red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33. The blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33. The green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
 MEMS制御部8は、タイミングコントローラ34が出力する信号に基づきMEMSミラー10を制御する。MEMS制御部8は、サーボ回路81と、ドライバ回路82と、を備える。 The MEMS control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34. The MEMS control unit 8 includes a servo circuit 81 and a driver circuit 82.
 サーボ回路81は、タイミングコントローラからの信号に基づき、MEMSミラー10の動作を制御する。 The servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller.
 ドライバ回路82は、サーボ回路81が出力するMEMSミラー10の制御信号を所定レベルに増幅して出力する。 The driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
 レーザ光源ユニット9は、レーザドライバASIC7から出力される駆動信号に基づいて、レーザ光をMEMSミラー10へ出射する。 The laser light source unit 9 emits laser light to the MEMS mirror 10 based on the drive signal output from the laser driver ASIC 7.
 走査手段としてのMEMSミラー10は、レーザ光源ユニット9から出射されたレーザ光を光学素子11に向けて反射する。こうすることで、MEMSミラー10は、光学素子11上に表示すべき画像を形成する。また、MEMSミラー10は、画像信号入力部2に入力された画像を表示するためにMEMS制御部8の制御により光学素子11上を走査(スキャン)するように移動し、その際の走査位置情報(例えばミラーの角度などの情報)をビデオASIC3へ出力する。 The MEMS mirror 10 as a scanning unit reflects the laser beam emitted from the laser light source unit 9 toward the optical element 11. In this way, the MEMS mirror 10 forms an image to be displayed on the optical element 11. Further, the MEMS mirror 10 moves so as to scan on the optical element 11 under the control of the MEMS control unit 8 in order to display the image input to the image signal input unit 2, and the scanning position information at that time (For example, information such as a mirror angle) is output to the video ASIC 3.
 光学素子11は、MEMSミラー10から出射されたレーザ光が入射され、当該レーザ光を上記したようなマイクロレンズアレイMLA3、MLA1、MLA3を介して出射する。画像表示装置1は、このような光学素子11から出射された光を、反射ミラー(不図示)で反射させた光や拡大素子(不図示)で拡大させた光などに対応する画像を、ユーザの目の位置(アイポイント)から虚像として視認させる。 The optical element 11 receives the laser light emitted from the MEMS mirror 10 and emits the laser light through the microlens arrays MLA3, MLA1, and MLA3 as described above. The image display device 1 displays an image corresponding to the light emitted from the optical element 11 such as the light reflected by the reflecting mirror (not shown) or the light enlarged by the magnifying element (not shown). It is made visible as a virtual image from the eye position (eye point).
 次に、レーザ光源ユニット9の詳細な構成を説明する。レーザ光源ユニット9は、ケース91と、波長選択性素子92と、コリメータレンズ93と、赤色レーザLD1と、青色レーザLD2と、緑色レーザLD3と、モニタ用受光素子(以下、単に「受光素子」と呼ぶ。)50と、を備える。 Next, the detailed configuration of the laser light source unit 9 will be described. The laser light source unit 9 includes a case 91, a wavelength selective element 92, a collimator lens 93, a red laser LD1, a blue laser LD2, a green laser LD3, a monitor light receiving element (hereinafter simply referred to as “light receiving element”). 50).
 ケース91は、樹脂などにより略箱状に形成される。ケース91には、緑色レーザLD3を取り付けるために、ケース91内へ貫通する孔が設けられているとともに断面が凹状のCAN取付部91aと、CAN取付部91aと直交する面に設けられ、ケース91内へ貫通する孔が設けられているとともに断面が凹状のコリメータ取付部91bと、が形成されている。 The case 91 is formed in a substantially box shape with resin or the like. In order to attach the green laser LD3, the case 91 is provided with a hole penetrating into the case 91 and a CAN attachment portion 91a having a concave cross section, and a surface perpendicular to the CAN attachment portion 91a. A hole penetrating inward is formed, and a collimator mounting portion 91b having a concave cross section is formed.
 合成素子としての波長選択性素子92は、例えばトリクロイックプリズムにより構成され、反射面92aと反射面92bが設けられている。反射面92aは、赤色レーザLD1から出射されたレーザ光をコリメータレンズ93へ向かって透過させ、青色レーザLD2から出射されたレーザ光をコリメータレンズ93へ向かって反射させる。反射面92bは、赤色レーザLD1および青色レーザLD2から出射されたレーザ光の大部分をコリメータレンズ93へ向かって透過させ、その一部を受光素子50へ向かって反射させる。また、反射面92bは、緑色レーザLD3から出射されたレーザ光の大部分をコリメータレンズ93へ向かって反射させ、その一部を受光素子50へ向かって透過させる。こうして、各レーザからの出射光が重ね合わされて、コリメータレンズ93および受光素子50に入射される。なお、波長選択性素子92は、ケース91内のコリメータ取付部91bの近傍に設けられている。 The wavelength-selective element 92 as a synthesis element is configured by, for example, a trichromatic prism, and is provided with a reflective surface 92a and a reflective surface 92b. The reflection surface 92a transmits the laser light emitted from the red laser LD1 toward the collimator lens 93, and reflects the laser light emitted from the blue laser LD2 toward the collimator lens 93. The reflecting surface 92b transmits most of the laser light emitted from the red laser LD1 and the blue laser LD2 toward the collimator lens 93 and reflects a part thereof toward the light receiving element 50. The reflection surface 92 b reflects most of the laser light emitted from the green laser LD 3 toward the collimator lens 93 and transmits part of the laser light toward the light receiving element 50. In this way, the emitted light from each laser is superimposed and incident on the collimator lens 93 and the light receiving element 50. The wavelength selective element 92 is provided in the vicinity of the collimator mounting portion 91b in the case 91.
 コリメータレンズ93は、波長選択性素子92から入射したレーザ光を平行光にしてMEMSミラー10へ出射する。コリメータレンズ93は、ケース91のコリメータ取付部91bに、UV系接着剤などで固定される。即ち、合成素子の後段にコリメータレンズ93が設けられている。 The collimator lens 93 emits the laser beam incident from the wavelength selective element 92 to the MEMS mirror 10 as parallel light. The collimator lens 93 is fixed to the collimator mounting portion 91b of the case 91 with a UV adhesive or the like. That is, the collimator lens 93 is provided after the synthesis element.
 レーザ光源としての赤色レーザLD1は、赤色のレーザ光を出射する。赤色レーザLD1は、半導体レーザ光源がチップ状態のまま、又は、チップがサブマウントなどに載置された状態で、ケース91内の波長選択性素子92及びコリメータレンズ93と同軸となる位置に固定されている。 The red laser LD1 as a laser light source emits red laser light. The red laser LD1 is fixed at a position that is coaxial with the wavelength selective element 92 and the collimator lens 93 in the case 91 while the semiconductor laser light source is in the chip state or the chip is mounted on a submount or the like. ing.
 レーザ光源としての青色レーザLD2は、青色のレーザ光を出射する。青色レーザLD2は、半導体レーザ光源がチップ状態のまま、又は、チップがサブマウントなどに載置された状態で、出射したレーザ光が反射面92aによってコリメータレンズ93へ向かって反射できる位置に固定されている。この赤色レーザLD1と青色レーザLD2の位置は入れ替わってもよい。 Blue laser LD2 as a laser light source emits blue laser light. The blue laser LD2 is fixed at a position where the emitted laser light can be reflected toward the collimator lens 93 by the reflecting surface 92a while the semiconductor laser light source is in the chip state or the chip is mounted on the submount or the like. ing. The positions of the red laser LD1 and the blue laser LD2 may be switched.
 レーザ光源としての緑色レーザLD3は、CANパッケージに取り付けられた状態又はフレームパッケージに取り付けられた状態であり、緑色のレーザ光を出射する。緑色レーザLD3は、CANパッケージ内に緑色のレーザ光を発生する半導体レーザ光源チップBが取り付けられており、ケース91のCAN取付部91aに固定されている。 The green laser LD3 as a laser light source is attached to the CAN package or attached to the frame package, and emits green laser light. The green laser LD 3 has a semiconductor laser light source chip B that generates green laser light in a CAN package, and is fixed to a CAN mounting portion 91 a of the case 91.
 受光素子50は、各レーザ光源から出射されたレーザ光の一部を受光する。受光素子50は、フォトディテクタなどの光電変換素子であり、入射したレーザ光の光量に応じた電気信号である検出信号SdをレーザドライバASIC7へ供給する。実際には、パワー調整時には、赤色レーザ光、青色レーザ光及び緑色レーザ光のうちの1つが順に受光素子50へ入射され、受光素子50は、そのレーザ光の光量に対応する検出信号Sdを出力する。レーザドライバASIC7は、検出信号Sdに応じて、赤色レーザLD1、青色レーザLD2及び緑色レーザLD3のパワー調整を行う。 The light receiving element 50 receives a part of the laser light emitted from each laser light source. The light receiving element 50 is a photoelectric conversion element such as a photodetector, and supplies a detection signal Sd, which is an electrical signal corresponding to the amount of incident laser light, to the laser driver ASIC 7. Actually, at the time of power adjustment, one of red laser light, blue laser light, and green laser light is sequentially incident on the light receiving element 50, and the light receiving element 50 outputs a detection signal Sd corresponding to the amount of the laser light. To do. The laser driver ASIC 7 adjusts the power of the red laser LD1, the blue laser LD2, and the green laser LD3 according to the detection signal Sd.
 例えば、赤色レーザLD1のパワー調整を行う場合、レーザドライバASIC7は赤色レーザ駆動回路71のみを動作させ、赤色レーザLD1へ駆動電流を供給して赤色レーザLD1から赤色レーザ光を出射させる。この赤色レーザ光の一部は受光素子50により受光され、その光量に応じた検出信号SdがレーザドライバASIC7へフィードバックされる。レーザドライバASIC7は、検出信号Sdが示す光量が適正な光量となるように、赤色レーザ駆動回路71から赤色レーザLD1へ供給される駆動電流を調整する。こうして、パワー調整がなされる。青色レーザLD2のパワー調整及び緑色レーザLD3のパワー調整も同様に行われる。 For example, when the power of the red laser LD1 is adjusted, the laser driver ASIC 7 operates only the red laser driving circuit 71, supplies a driving current to the red laser LD1, and emits red laser light from the red laser LD1. A part of the red laser light is received by the light receiving element 50, and a detection signal Sd corresponding to the amount of light is fed back to the laser driver ASIC7. The laser driver ASIC 7 adjusts the drive current supplied from the red laser drive circuit 71 to the red laser LD1 so that the light amount indicated by the detection signal Sd is an appropriate light amount. In this way, power adjustment is performed. The power adjustment of the blue laser LD2 and the power adjustment of the green laser LD3 are similarly performed.
 なお、上記したようなレーザ光源ユニット9と光学素子11とを少なくとも具備して構成される構成部は、本発明に係る「光源ユニット」の一例に相当する。 In addition, the above-described configuration unit including at least the laser light source unit 9 and the optical element 11 corresponds to an example of the “light source unit” according to the present invention.
 [変形例]
 以下では、上記した実施例の変形例について説明する。なお、上記した実施例と同様の構成については、実施例で示した符号と同一の符号を付し、その説明を適宜省略する。また、特に説明しない構成については、実施例と同様であるものとする。
[Modification]
Hereinafter, modifications of the above-described embodiment will be described. In addition, about the structure similar to the above-mentioned Example, the code | symbol same as the code | symbol shown in the Example is attached | subjected, and the description is abbreviate | omitted suitably. Further, a configuration that is not particularly described is the same as that of the embodiment.
 (変形例1)
 図8は、変形例1に係る光学素子11aの概略構成を示す図である。図8は、図示しない光源から出射された光の進行方向に垂直な面にて光学素子11aを切断した断面図を示している。また、光学素子11aの一部分を拡大して表した断面図を示している。
(Modification 1)
FIG. 8 is a diagram illustrating a schematic configuration of the optical element 11a according to the first modification. FIG. 8 shows a cross-sectional view of the optical element 11a cut along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). In addition, a cross-sectional view showing an enlarged part of the optical element 11a is shown.
 図8に示すように、変形例1に係る光学素子11aは、マイクロレンズアレイMLA3の代わりにマイクロレンズアレイMLA3aを有する点で、実施例に係る光学素子11と異なる。具体的には、実施例に係るマイクロレンズアレイMLA3では、光が入射する面に複数のマイクロレンズML3が形成されていたが、変形例1に係るマイクロレンズアレイMLA3aでは、光が入射する面と反対側の面に複数のマイクロレンズML3が形成されている。このようなマイクロレンズアレイMLA3aも、実施例に係るマイクロレンズアレイMLA3と同様に機能する。 As shown in FIG. 8, the optical element 11a according to the modification 1 is different from the optical element 11 according to the example in that it has a microlens array MLA3a instead of the microlens array MLA3. Specifically, in the microlens array MLA3 according to the embodiment, a plurality of microlenses ML3 are formed on a surface on which light is incident. However, in the microlens array MLA3a according to the first modification, the surface on which light is incident A plurality of microlenses ML3 are formed on the opposite surface. Such a microlens array MLA3a also functions in the same manner as the microlens array MLA3 according to the embodiment.
 (変形例2)
 図9は、変形例2に係る光学素子11bの概略構成を示す図である。図9は、図示しない光源から出射された光の進行方向に垂直な面にて光学素子11bを切断した断面図を示している。また、光学素子11bの一部分を拡大して表した断面図を示している。
(Modification 2)
FIG. 9 is a diagram illustrating a schematic configuration of an optical element 11b according to Modification 2. FIG. 9 shows a cross-sectional view of the optical element 11b cut along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). Further, a cross-sectional view showing an enlarged part of the optical element 11b is shown.
 図9に示すように、変形例2に係る光学素子11bは、マイクロレンズアレイMLA3及びマイクロレンズアレイMLA1の代わりに、1つのマイクロレンズアレイMLA4を有する点で、実施例に係る光学素子11と異なる。具体的には、変形例2に係るマイクロレンズアレイMLA4は、一方の面に、実施例に係るマイクロレンズアレイMLA3と同様のマイクロレンズML3が形成されており、他方の面に、実施例に係るマイクロレンズアレイMLA1と同様のマイクロレンズML1が形成されている。つまり、変形例2では、実施例に係るマイクロレンズアレイMLA3とマイクロレンズアレイMLA1とが一体に形成されている。 As shown in FIG. 9, the optical element 11b according to the modification 2 is different from the optical element 11 according to the embodiment in that it has one microlens array MLA4 instead of the microlens array MLA3 and the microlens array MLA1. . Specifically, the microlens array MLA4 according to the modified example 2 has a microlens ML3 similar to the microlens array MLA3 according to the embodiment formed on one surface, and the other surface according to the embodiment. A microlens ML1 similar to the microlens array MLA1 is formed. That is, in the modification 2, the microlens array MLA3 and the microlens array MLA1 according to the embodiment are integrally formed.
 このような変形例2に係るマイクロレンズアレイMLA4によれば、後段のマイクロレンズML1に入射される光のスポット径が所望の値になることが保証されるため、組立て調整の手間を省くことができる。 According to the microlens array MLA4 according to the second modified example, it is ensured that the spot diameter of the light incident on the microlens ML1 at the subsequent stage is a desired value, so that it is possible to save the labor of assembly adjustment. it can.
 (変形例3)
 上記した実施例では、片側の面にのみマイクロレンズML3が形成されたマイクロレンズアレイMLA3を示したが、両側の面にマイクロレンズML3が形成されたマイクロレンズアレイMLA3を用いても良い。また、上記した実施例では、1つのマイクロレンズアレイMLA3のみを用いていたが、複数のマイクロレンズアレイMLA3を用いても良い。
(Modification 3)
In the above-described embodiment, the microlens array MLA3 in which the microlens ML3 is formed only on one surface is shown, but the microlens array MLA3 in which the microlens ML3 is formed on both surfaces may be used. In the above-described embodiment, only one microlens array MLA3 is used, but a plurality of microlens arrays MLA3 may be used.
 (変形例4)
 変形例4は、マイクロレンズアレイMLA1及びマイクロレンズアレイMLA2の構成についての他の例に関する。
(Modification 4)
Modification 4 relates to another example of the configuration of the microlens array MLA1 and the microlens array MLA2.
 図10は、変形例4に係るマイクロレンズアレイMLA1、MLA2の概略構成を示す図である。図10(a)~(d)は、それぞれ、図示しない光源から出射された光の進行方向に垂直な面にて切断した断面図を示している。また、構成要素の一部分を拡大して表した断面図を示している。 FIG. 10 is a diagram showing a schematic configuration of microlens arrays MLA1 and MLA2 according to Modification 4. FIGS. 10A to 10D are cross-sectional views taken along a plane perpendicular to the traveling direction of light emitted from a light source (not shown). Moreover, sectional drawing which expanded and represented a part of component was shown.
 図10(a)は、変形例4の第1の例に係るマイクロレンズアレイMLA1、MLA2を示している。この例では、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1が形成されていないマイクロレンズアレイMLA1の面と、マイクロレンズML2が形成されたマイクロレンズアレイMLA2の面とが向き合うように対向配置されている。 FIG. 10A shows microlens arrays MLA1 and MLA2 according to a first example of the fourth modification. In this example, the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surface of the microlens array MLA1 where the microlens ML1 is not formed faces the surface of the microlens array MLA2 where the microlens ML2 is formed. Yes.
 図10(b)は、変形例4の第2の例に係るマイクロレンズアレイMLA1、MLA2を示している。この例では、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1が形成されたマイクロレンズアレイMLA1の面と、マイクロレンズML2が形成されていないマイクロレンズアレイMLA2の面とが向き合うように対向配置されている。 FIG. 10B shows microlens arrays MLA1 and MLA2 according to a second example of the fourth modification. In this example, the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surface of the microlens array MLA1 on which the microlens ML1 is formed and the surface of the microlens array MLA2 on which the microlens ML2 is not formed face each other. Yes.
 図10(c)は、変形例4の第3の例に係るマイクロレンズアレイMLA1、MLA2を示している。この例では、マイクロレンズアレイMLA1、MLA2は、マイクロレンズML1が形成されていないマイクロレンズアレイMLA1の面と、マイクロレンズML2が形成されていないマイクロレンズアレイMLA2の面とが向き合うように対向配置されている。 FIG. 10C shows microlens arrays MLA1 and MLA2 according to a third example of the fourth modification. In this example, the microlens arrays MLA1 and MLA2 are arranged to face each other so that the surface of the microlens array MLA1 in which the microlens ML1 is not formed faces the surface of the microlens array MLA2 in which the microlens ML2 is not formed. ing.
 図10(d)は、変形例4の第4の例に係るマイクロレンズアレイMLA5を示している。第4の例に係るマイクロレンズアレイMLA5は、一方の面に、マイクロレンズアレイMLA1と同様のマイクロレンズML1が形成されており、他方の面に、マイクロレンズアレイMLA2と同様のマイクロレンズML2が形成されている。つまり、マイクロレンズアレイMLA5は、上記したマイクロレンズアレイMLA1とマイクロレンズアレイMLA2とが一体に形成されている。このようなマイクロレンズアレイMLA5によれば、マイクロレンズMLA1、MLA2が形成された1枚の構成要素のみを作成すれば良いため、製造コストをより低減することが可能となる。 FIG. 10D shows a microlens array MLA5 according to a fourth example of the fourth modification. In the microlens array MLA5 according to the fourth example, a microlens ML1 similar to the microlens array MLA1 is formed on one surface, and a microlens ML2 similar to the microlens array MLA2 is formed on the other surface. Has been. That is, in the microlens array MLA5, the microlens array MLA1 and the microlens array MLA2 described above are integrally formed. According to such a microlens array MLA5, it is only necessary to create one component on which the microlenses MLA1 and MLA2 are formed, so that the manufacturing cost can be further reduced.
 (変形例5)
 上記では、本発明を、平面視において正六角形状のレンズ輪郭を有するマイクロレンズにて構成されたマイクロレンズアレイに適用する例を示したが、本発明は、種々の形状のレンズ輪郭を有するマイクロレンズにて構成されたマイクロレンズアレイに適用することができる。例えば、本発明は、六角形状(正六角形状でないもの)や、長方形状や、正方形状や、円形などのレンズ輪郭を有するマイクロレンズにて構成されたマイクロレンズアレイに適用することができる。
(Modification 5)
In the above, an example in which the present invention is applied to a microlens array composed of microlenses having a regular hexagonal lens outline in plan view has been shown. However, the present invention is a microlens having variously shaped lens outlines. The present invention can be applied to a microlens array composed of lenses. For example, the present invention can be applied to a microlens array composed of microlenses having a lens contour such as a hexagonal shape (not a regular hexagonal shape), a rectangular shape, a square shape, or a circular shape.
 (変形例6)
 上記では本発明をヘッドアップディスプレイに適用する例を示したが、本発明の適用はこれに限定はされない。本発明は、ヘッドアップディスプレイ以外にも、レーザプロジェクタやヘッドマウントディスプレイに適用することができる。
(Modification 6)
Although the example which applies this invention to a head-up display was shown above, application of this invention is not limited to this. The present invention can be applied to laser projectors and head mounted displays in addition to head-up displays.
 本発明は、ヘッドアップディスプレイやヘッドマウントディスプレイやレーザプロジェクタなどの画像表示装置に利用することができる。 The present invention can be used for image display devices such as a head-up display, a head-mounted display, and a laser projector.
 1 画像表示装置
 10 MEMSミラー
 11、11a、11b 光学素子
 MLA1、MLA2、MLA3 マイクロレンズアレイ
 ML1、ML2、ML3 マイクロレンズ
DESCRIPTION OF SYMBOLS 1 Image display apparatus 10 MEMS mirror 11, 11a, 11b Optical element MLA1, MLA2, MLA3 Micro lens array ML1, ML2, ML3 Micro lens

Claims (10)

  1.  光を出射する光源と、
     前記光源から出射された光のスポット径を絞り込む絞り手段と、
     前記絞り手段によって絞り込まれた光が入射される第1マイクロレンズアレイと、
     前記第1マイクロレンズアレイから出射された光が入射される第2マイクロレンズアレイと、
     を備えることを特徴とする光源ユニット。
    A light source that emits light;
    A diaphragm means for narrowing the spot diameter of the light emitted from the light source;
    A first microlens array on which light narrowed down by the diaphragm means is incident;
    A second microlens array on which light emitted from the first microlens array is incident;
    A light source unit comprising:
  2.  前記絞り手段は、前記光源から出射された光のスポット径を、前記第1マイクロレンズアレイに配列されたマイクロレンズ同士の間隔と同程度の大きさに絞り込んだ光を、前記第1マイクロレンズアレイに入射させることを特徴とする請求項1に記載の光源ユニット。 The diaphragm means reduces the spot diameter of the light emitted from the light source to the same size as the interval between the microlenses arranged in the first microlens array. The light source unit according to claim 1, wherein the light source unit is incident on the light source unit.
  3.  前記絞り手段は、マイクロレンズアレイであることを特徴とする請求項1又は2に記載の光源ユニット。 3. The light source unit according to claim 1, wherein the aperture means is a microlens array.
  4.  前記絞り手段の前記マイクロレンズアレイに配列されたマイクロレンズ同士の間隔は、前記光源から出射された光のスポット径と同程度に構成されていることを特徴とする請求項3に記載の光源ユニット。 4. The light source unit according to claim 3, wherein an interval between the microlenses arranged in the microlens array of the diaphragm unit is configured to be approximately equal to a spot diameter of light emitted from the light source. .
  5.  前記絞り手段と前記第1マイクロレンズアレイとは一の光学素子として一体に構成されており、当該光学素子の一方の面に前記絞り手段が形成され、当該光学素子の他方の面に前記第1マイクロレンズアレイが形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の光源ユニット。 The aperture means and the first microlens array are integrally formed as one optical element, the aperture means is formed on one surface of the optical element, and the first surface is formed on the other surface of the optical element. The light source unit according to any one of claims 1 to 4, wherein a microlens array is formed.
  6.  前記第1マイクロレンズアレイと前記第2マイクロレンズアレイとは一の光学素子として一体に構成されており、当該光学素子の一方の面に前記第1マイクロレンズアレイが形成され、当該光学素子の他方の面に前記第2マイクロレンズアレイが形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の光源ユニット。 The first microlens array and the second microlens array are integrally configured as one optical element, the first microlens array is formed on one surface of the optical element, and the other of the optical elements The light source unit according to claim 1, wherein the second microlens array is formed on the surface of the light source unit.
  7.  前記第1マイクロレンズアレイと前記第2マイクロレンズアレイとは、前記第1マイクロレンズアレイに配列されたマイクロレンズの焦点距離よりも長い距離だけ離間していることを特徴とする請求項1乃至6のいずれか一項に記載の光源ユニット。 The first microlens array and the second microlens array are separated from each other by a distance longer than a focal length of microlenses arranged in the first microlens array. The light source unit according to any one of the above.
  8.  前記第1マイクロレンズアレイに配列されたマイクロレンズ同士の間隔と、前記第2マイクロレンズアレイに配列されたマイクロレンズ同士の間隔とは、同程度であることを特徴とする請求項1乃至7のいずれか一項に記載の光源ユニット。 8. The interval between the microlenses arranged in the first microlens array and the interval between the microlenses arranged in the second microlens array are approximately the same. The light source unit according to any one of claims.
  9.  前記第1マイクロレンズアレイに配列されたマイクロレンズ同士の間隔は、前記光源から出射された光のスポット径よりも小さいことを特徴とする請求項1乃至8のいずれか一項に記載の光源ユニット。 The light source unit according to claim 1, wherein an interval between the microlenses arranged in the first microlens array is smaller than a spot diameter of light emitted from the light source. .
  10.  請求項1乃至9のいずれか一項に記載の光源ユニットを備え、前記光源ユニットによって形成された画像をユーザの目の位置から虚像として視認させることを特徴とするヘッドアップディスプレイ。 A head-up display comprising the light source unit according to any one of claims 1 to 9, wherein an image formed by the light source unit is visually recognized as a virtual image from a position of a user's eyes.
PCT/JP2012/062928 2012-05-21 2012-05-21 Light source unit and head-up display WO2013175549A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/062928 WO2013175549A1 (en) 2012-05-21 2012-05-21 Light source unit and head-up display
JP2014516534A JP5837685B2 (en) 2012-05-21 2012-05-21 Light source unit and head-up display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062928 WO2013175549A1 (en) 2012-05-21 2012-05-21 Light source unit and head-up display

Publications (1)

Publication Number Publication Date
WO2013175549A1 true WO2013175549A1 (en) 2013-11-28

Family

ID=49623282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062928 WO2013175549A1 (en) 2012-05-21 2012-05-21 Light source unit and head-up display

Country Status (2)

Country Link
JP (1) JP5837685B2 (en)
WO (1) WO2013175549A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031479A (en) * 2014-07-29 2016-03-07 日本精機株式会社 Head-up display device
EP3109688A4 (en) * 2014-02-21 2017-09-27 Pioneer Corporation Optical element and heads-up display
DE112020000721T5 (en) 2019-02-08 2021-11-04 Sony Group Corporation DISPLAY DEVICE AND HEAD-MOUNT DISPLAY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523369A (en) * 2004-02-04 2007-08-16 マイクロビジョン,インク. Scanning beam head-up display apparatus and related systems and methods
US20090128901A1 (en) * 2007-10-09 2009-05-21 Tilleman Michael M Pupil scan apparatus
US20090231719A1 (en) * 2008-03-11 2009-09-17 Microvision, Inc. Eyebox Shaping Through Virtual Vignetting
JP4769912B1 (en) * 2011-02-28 2011-09-07 パイオニア株式会社 Optical element, head-up display, and optical element manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523369A (en) * 2004-02-04 2007-08-16 マイクロビジョン,インク. Scanning beam head-up display apparatus and related systems and methods
US20090128901A1 (en) * 2007-10-09 2009-05-21 Tilleman Michael M Pupil scan apparatus
US20090231719A1 (en) * 2008-03-11 2009-09-17 Microvision, Inc. Eyebox Shaping Through Virtual Vignetting
JP4769912B1 (en) * 2011-02-28 2011-09-07 パイオニア株式会社 Optical element, head-up display, and optical element manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATA AKATAY ET AL.: "Design and optimization of microlens array based high resolution beam steering system", OPTICS EXPRESS, vol. 15, no. 8, 16 April 2007 (2007-04-16), pages 4523 - 4529 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109688A4 (en) * 2014-02-21 2017-09-27 Pioneer Corporation Optical element and heads-up display
JP2016031479A (en) * 2014-07-29 2016-03-07 日本精機株式会社 Head-up display device
DE112020000721T5 (en) 2019-02-08 2021-11-04 Sony Group Corporation DISPLAY DEVICE AND HEAD-MOUNT DISPLAY

Also Published As

Publication number Publication date
JPWO2013175549A1 (en) 2016-01-12
JP5837685B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP4769912B1 (en) Optical element, head-up display, and optical element manufacturing method
JP5112556B2 (en) Light source unit and head-up display
JP5021850B1 (en) Light source unit and head-up display
JP5149446B2 (en) Light source unit and head-up display
WO2013153655A1 (en) Optical element, head-up display and light source unit
JP4954346B1 (en) Head-up display
US20170351090A1 (en) Head-up display device
US10861373B2 (en) Reducing peak current usage in light emitting diode array
TWI778097B (en) An apparatus for compensation of defective microled and method thereof
JP5048154B1 (en) Image display device
WO2013024539A1 (en) Virtual image display device
WO2012073330A1 (en) Laser light source unit and image display device
JP5837685B2 (en) Light source unit and head-up display
JP2012226301A (en) Light source unit and headup display
JP6455802B2 (en) Image display device, object device, transmission screen and screen
JP2015225216A (en) Image display device
WO2014045340A1 (en) Optical element, light source unit, and headup display
KR101479104B1 (en) Instrument cluster for vehicle
WO2015125283A1 (en) Optical element and heads-up display
JP2012226302A (en) Light source unit and headup display
WO2014045341A1 (en) Optical element, light source unit, and headup display
JP2015219389A (en) Virtual image display device and image forming element
WO2015097759A1 (en) Optical element and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877291

Country of ref document: EP

Kind code of ref document: A1