WO2013174923A1 - Procédé de simulation d'un ensemble d'éléments, programme d'ordinateur associé - Google Patents
Procédé de simulation d'un ensemble d'éléments, programme d'ordinateur associé Download PDFInfo
- Publication number
- WO2013174923A1 WO2013174923A1 PCT/EP2013/060622 EP2013060622W WO2013174923A1 WO 2013174923 A1 WO2013174923 A1 WO 2013174923A1 EP 2013060622 W EP2013060622 W EP 2013060622W WO 2013174923 A1 WO2013174923 A1 WO 2013174923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elements
- simulation
- instant
- value
- current
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000004590 computer program Methods 0.000 title claims description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 41
- 239000013598 vector Substances 0.000 claims abstract description 28
- 238000005381 potential energy Methods 0.000 claims abstract description 14
- 238000004088 simulation Methods 0.000 claims description 139
- 230000003993 interaction Effects 0.000 claims description 79
- 238000004364 calculation method Methods 0.000 claims description 23
- 230000008901 benefit Effects 0.000 claims description 12
- 239000002245 particle Substances 0.000 description 201
- 230000003044 adaptive effect Effects 0.000 description 35
- 230000006870 function Effects 0.000 description 22
- 230000006399 behavior Effects 0.000 description 9
- 230000010354 integration Effects 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000004510 Lennard-Jones potential Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- IYLGZMTXKJYONK-ACLXAEORSA-N (12s,15r)-15-hydroxy-11,16-dioxo-15,20-dihydrosenecionan-12-yl acetate Chemical compound O1C(=O)[C@](CC)(O)C[C@@H](C)[C@](C)(OC(C)=O)C(=O)OCC2=CCN3[C@H]2[C@H]1CC3 IYLGZMTXKJYONK-ACLXAEORSA-N 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012900 molecular simulation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- IYLGZMTXKJYONK-UHFFFAOYSA-N ruwenine Natural products O1C(=O)C(CC)(O)CC(C)C(C)(OC(C)=O)C(=O)OCC2=CCN3C2C1CC3 IYLGZMTXKJYONK-UHFFFAOYSA-N 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
Definitions
- the potential energy in cases is for example equal to the [or is a function of] the potential of interactions V (q) between the elements whose interaction forces can be derived, q being a vector indicating the positions of the elements (in a more general case the potential of interactions can be also dependent on the moments of the elements),
- the simulation of a set of elements makes it possible to study the behavior of such a set and to analyze its properties: displacements in terms successive positions and moments of elements, correlations of displacements between elements, changes of structure, increases and decreases of interactions between elements, configurations adopted on average, evolutions of associated energies, etc.
- the elements may represent mechanical bodies, for example celestial or fluid, particles such as atoms or molecules, for example proteins, fluids, etc.
- a common way of simulating a set of elements is to consider the Hamiltonian of the set, and to derive motion equations.
- WO 2009/007550 describes for example a simulation technique of a set of elements.
- the present invention aims to propose a new solution to reduce these problems.
- the invention proposes a method for simulating a set of elements of the aforementioned type, implemented by computer and characterized in that said method comprises a step according to which, when the moment vector p takes certain determined values relating to at least one element, assigning a zero value to at least one diagonal term of the matrix M "1 relative to said element.
- the invention makes it possible to reduce the volume and, consequently, the calculation time required for the determination of the potential energy, the interaction potential, the interaction forces, the positions and / or the moments of the elements.
- the method of simulating a set of elements according to the invention further comprises one or more of the following features:
- said method comprises a step according to which, for at least one of said elements, if a parameter representative of the kinetic energy of said element has a value lower than a first strictly positive threshold, a zero value is assigned to at least one diagonal term of the matrix M "1 relating to said element;
- it comprises a step of determining the values of at least one information, at successive simulation instants on the basis of said Hamiltonian, said step taking advantage of the fact that the values of the information relating to a k-tuple of elements , with k integer greater than or equal to 2, for which a zero value has been assigned to the diagonal terms of the matrix M "1 at a previous simulation instant, are therefore unchanged between at least said previous simulation instant and the instant simulation method, and calculating a value of the information relating to a given element, at a current simulation time by implementing the following steps when zero values have not been assigned to the diagonal terms of the matrix for each element of a k-tuple of elements to which said given element belongs:
- a current list of pairs of elements separated by a distance less than a given threshold is set at a current simulation instant, and compared to a previous list of pairs of elements separated by a smaller distance.
- the value of information relating to a given element, at a current simulation instant is calculated on the basis of the pairs comprising said given element by implementing the following steps :
- the value of the information relating to said given element at a current simulation instant is determined by adding, to the work value, the values of the information relating to said given element and associated with the other element of the pairs considered if the considered pair is present only in the current list or if the vector connecting said element to the other element of the pair has varied between the previous simulation instant and the current simulation instant;
- a current list of k-tuples of elements satisfying certain conditions, with k greater than or equal to two, is set at a current simulation instant, and compared to a previous list of k-tuples elements satisfying said conditions at a previous simulation time,
- determining the value of the information relating to said element at the current simulation instant by adding, to the temporary value, the values of the information relating to said element and associated with said k-tuples at the current simulation instant, when said -uplets are present only in the current list or when the information associated with said k-tuplets has changed between the previous simulation instant and the current simulation instant (for example when relative positions of the k elements in the k-tuple have changed);
- the space for locating the elements is partitioned into cells and each element, at each preceding simulation instant and a current simulation instant, is associated with a membership cell according to determined positional coordinates at said instant of simulation, and according to which, for the first elements such that the terms of the matrix M "1 relating to said first elements have not been assigned to a zero value at a current simulation time, the following steps are implemented:
- the membership cell of the first elements is determined at the previous simulation instant
- the second elements located at the preceding simulation instant at a distance less than a given threshold of said first element are determined. ; calculating a work value by subtracting from the value of information relating to said first element and determined at the previous simulation time, the values of said information relating to said first element and associated with said second elements;
- the new membership cell of the first elements is determined at the current simulation instant
- the third elements located at the current simulation instant at a distance less than a given threshold of said unit are determined; first element;
- the information relating to said element comprises the potential energy of said element and / or the interaction force applied to said element;
- step of determination of information I comprises, at certain instants of simulation, a step of determination of information I, said step advantageously taking advantage of the fact that this information I is unchanged and does not need to be determined again when it has been determined to a previous simulation instant and that a zero value has been assigned to a corresponding set of diagonal terms of the matrix M "1 between at least said previous simulation instant and the current simulation instant (" corresponding set diagonal terms "diagonal terms that influence the value of information I, ie information I does not change when these terms are nil);
- the present invention proposes a computer program for simulating a system of elements, comprising software instructions for implementing the steps of a method according to one of claims 1 to 12 when a program execution by calculation means.
- FIG. 1 represents a device embodying an embodiment of the invention
- FIG. 3 is a flowchart of the steps of a method in one embodiment of the invention.
- FIG. 4 illustrates an embodiment of step 103
- FIG. 5 illustrates another embodiment of step 103
- FIG. 6 represents trajectory simulations of a particle connected to a fixed point, in phase space (p, q), at constant Hamiltonian.
- H (p, q) p ⁇ T .M - 1 .p + V (q), where p is a vector indicative of the time of the particles, q a vector indicating the position of the particles, M "1 a diagonal matrix depending on the masses of these particles.
- V (q) is the interaction potential between the N particles; it is a function of their position and it will be considered as independent of moments.
- Hamiltonian Hamiltonian adaptive H A a so-called Hamiltonian Hamiltonian adaptive H A is defined, thus:
- H A (p, q) - p. ⁇ I> (p, q) .p + V (q), where ⁇ (/ ?, ⁇ ?), Diagonal matrix
- 3N * 3N called inverse matrix of adaptive mass, replaces M "1 and depends on the vector p, and possibly the vector q.
- adaptive motion equations defining p and q which are the derivatives of the vectors p and q with respect to time t.
- p and q are the derivatives of the vectors p and q with respect to time t.
- the value of the Hamiltonian (adaptive according to the invention or standard) is constant in time
- the adaptive equations of motion are: __aH __ay _j_ ⁇ fà (p, g)
- the invention therefore consists in "freezing” the particles, by assigning them an infinite “pseudo-mass", when their kinetic energy passes under a certain value, the amount of movement of these particles not being fixed.
- the function p i is a function including as variable the moment (in the particular case considered as an example, it is not therefore dependent on the position
- the function p i may be a function, depending on the moment of the particle a, (and possibly of its position) other than the kinetic energy of course.
- a particle is frozen whose moment (or torque including the moment and the position) takes predetermined values (discrete values or ranges of values).
- the matrix ⁇ > (p, q) specifies how, and when, degrees of freedom in position of one or more particles are activated or deactivated during the simulation.
- the curves C1, C2, C3, C4 each correspond to a respective constant value of the adaptive Hamiltonian.
- the curve C1 corresponding to a Hamiltonian equal to 1.
- the circle D corresponding to a constant value equal to 1 of a standard Hamiltonian, ie non-adaptive.
- the area of the phase space where the particle is frozen is between the dotted lines B2 and B3 (it corresponds to a moment value in [-1, 1]).
- the area of the phase space between the lines B1 and B2 and between the dotted lines B3 and B4 corresponds to a transition zone between the free and frozen states of the particle.
- a computing device 1 shown in FIG. 1 is used to implement a simulation of a set E of N particles.
- This device 1 comprises a computer including in particular a memory 2 adapted to store software programs and calculated parameter values successively described below (values of the matrix coefficients ⁇ , global interaction forces, partial, interaction potential, positions, moments ...), a microprocessor 3 adapted to execute the software program instructions and in particular the program P described below, and a man / machine interface 4, comprising for example a keyboard and a screen, respectively to enter instructions of a user and to display information for the user, for example curves such as that illustrated in Figure 6.
- a computer including in particular a memory 2 adapted to store software programs and calculated parameter values successively described below (values of the matrix coefficients ⁇ , global interaction forces, partial, interaction potential, positions, moments ...), a microprocessor 3 adapted to execute the software program instructions and in particular the program P described below, and a man / machine interface 4, comprising for example a keyboard and a screen, respectively to enter instructions of a user and to display information for the user, for example curves such as that illustrated in Figure 6.
- the memory 2 comprises the program P simulating the behavior of the set E of particles of the NVE type.
- the program P comprises software instructions which, when executed on the microprocessor 3, are adapted to perform the following steps, with reference to FIG.
- the steps 101, 101 b, 102, 103 are intended for the determination of the updated values respectively of the moment, the position and the global interaction force relative to each of the particles a ,.
- the present value of other characteristic parameters of the behavior of the particles, at the moment h n + 1 can also be calculated, for example the current value of the potential energy of the system E, the value of the autocorrelation between particle velocities.
- a first technique comprises the following steps.
- a current list of the pairs of particles is drawn up, such that the distance between the particles of each pair at initialization is less than a threshold dO (when the distance between two particles is greater than dO, the interaction between these two particles is neglected) and the interaction force f ij 0 of the particle a, on the particle a, of each pair present in the current list is further evaluated, according to the distance separating them and according to the simulated force field, and stored.
- dO when the distance between two particles is greater than dO, the interaction between these two particles is neglected
- an element e ij Q also stored in memory 2, having the identifier of each of the two particles a ,, a, of the pair, the coordinates of the vector r 0 ! joining the two particles and starting from the particle a ,, and the interaction force f ij 0 exerted by the particle a, on the particle a, (which is equal to - f ji 0 , f jifi being the force of interaction exerted by the particle a, on the particle a).
- step 103 During each iteration of step 103, the steps below are then implemented, with reference to FIG. 4.
- a 103_a1 step is assigned as a starting value for the strength of overall interaction f i n + l exerted on each particle, the value of the force f in overall interaction calculated in the previous iteration.
- a current list L a n + 1 of the pairs of interacting particles is drawn up, ie these are the pairs of particles such that the distance between the particles of each pair considered at computation time h n + i is below the threshold dO.
- a step 103_c1 the current list of pairs L n + 1 is compared with the previous year list L pairs, ie made in the previous iteration (the n th iteration).
- n is associated an element e ij n having the identifier of each of the two particles a ,, a, of the pair, the coordinates of the vector r n l ⁇ joining the two particles and starting from the particle a ,, calculated according to positions determined during the previous iteration for the particles a ,, a, and the value of the interaction force f ij n exerted by the particle a, on the particle a, (which is equal to - f ji n , f ji n being the interaction force exerted by the particle a, on the particle a,).
- the interaction force f ij n + 1 exerted by the particle a, on the particle a is calculated, according to their respective position in particular; it is saved in memory in the element e ij n + l .
- the invention by freezing particle positions, generates an increased number of pairs for which the vector between two particles, and therefore the interaction force between these two particles, remain unchanged.
- step 103 make it possible not to recalculate all the components of the global interaction forces by taking advantage of the characteristics of a method according to the invention.
- a second embodiment of step 103 makes it possible to exploit the advantages conferred by the invention without using a comparison of the lists of pairs of particles in interaction with the current iteration with respect to the previous iteration, but using a three-dimensional grid (if particle motion is considered in three-dimensional space, if the particles move in a plane, a two-dimensional grid may be sufficient).
- an initial grid is created, considering a parallelepiped comprising all the particles and subdividing it into cells, for example cubic cells whose size of one side is greater than or equal to dO .
- each particle a ,, i 1 to N, is assigned to the cell to which it belongs, depending on the position of the particle at the initialization step.
- This force is equal to - f i , where Q is the interaction force exerted by the particle a, on the particle a ,.
- the neighboring cells considered are the immediately adjacent cells, ie those which have at least one side in common with the given cell; in other embodiments, the neighboring cells considered are those located at r cells of distances of a cell immediately adjacent to the given cell.
- a 103_a2 step is assigned as a starting value for the strength of overall interaction f i n + l exerted on each particle a ,, the value of the global interaction force calculated in the previous iteration in f .
- a step 103_b2 for all the particles a, for which p i> n + 1 ⁇ 1 (ie the particles not considered as frozen), the particles a are determined, verifying the following conditions:
- these particles a were located at the preceding iteration (n) in the cell in which the particle a, was positioned at the preceding iteration n, or the cells which are close to it (26 cells considered at maximum);
- these particles a were at the previous iteration n at a distance from the particle a, less than dO;
- composition of the grid so far considered is therefore that corresponding to the positions updated at the previous iteration (iteration n).
- a step 103_c2 the composition of the grid is updated, by determining the current membership cells of all the particles a, for which p i> n + 1 ⁇ 1 (ie the particles not considered as fixed), according to the positions q i n + i of these particles corresponding to the iteration n + 1.
- a step 103_d2 for all the particles a, for which p i> n + 1 ⁇ 1 (ie the particles not considered as frozen), the particles a are determined, satisfying the following conditions:
- these particles a are situated at the current iteration (n + 1) in the cell in which the particle a, is positioned at the current iteration, or the cells which are close to it (26 cells considered at maximum);
- these particles a are at the current iteration (n + 1) at a distance from the particle a, less than dO;
- composition of the grid considered here is therefore that corresponding to the positions updated at the current iteration (iteration n + 1).
- this second technique exploits the fact of having fixed some of the particles by not recalculating the interaction forces between frozen particles. It performs the subtraction of the forces corresponding to the old positions and the addition of those corresponding to the new positions. It does not involve the long process of listing and comparing pairs of each list. On the other hand, the volume of the interaction forces between two particles to be calculated is greater than that to be achieved in the first technique.
- the invention also makes it possible to reduce the corresponding calculation load when the calculation of the potential involves interaction forces between k particles, k being strictly greater than 2.
- the current interaction potential is calculated from the interaction potential determined in the previous simulation step, advantageously taking advantage of the fact that the interaction force between k particles is unchanged between the step of current simulation and the previous step (and therefore not to recalculate) when the k particles are frozen particles. Then the total forces exerted on the particles are subtracted from the forces calculated in the previous step which are related to kuplets of particles comprising particles that have moved between the preceding simulation step and the current step. To the total forces exerted on the particles thus obtained, the current forces relating to the kuplets of particles having particles which have moved, according to their new positions, are calculated and added to the total forces exerted on the particles thus obtained.
- Similar operations can be implemented to update the potential energy of the system, considering the potential energy as the sum of the potential energies between at most k particles. Similar operations can also be implemented to update values or data structures that depend on the positions of at most k particles, for k any integer greater than or equal to 1.
- the information to be calculated comprises the center of gravity of the particles in question, which changes over time, but that it is desired to determine only every 10 steps. simulation time. If the terms of the inverse adaptive mass matrix corresponding to these first 5 particles have been set to zero between the time when the center of gravity was last determined and the current time, then the particles do not have moved, and it is not necessary to update the center of gravity.
- the invention provides a method and a device for accelerating the computation of object set simulations.
- the use of the adaptive Hamiltonian allows, during the simulation, to activate or deactivate degrees of freedom, in position, objects verifying certain criteria. The volume of calculations necessary to update the forces or potential energy relative to these objects can thus be reduced.
- pH A (q t , p t ) is the gradient of the adaptive Hamiltonian with respect to the variable P;
- V q H A (q t , p t ) is the gradient of the adaptive Hamiltonian with respect to the variable q.
- the calculation of a time step can be performed as follows: a half-step of time for the Langevin part of the equations, a time step for the part Hamiltonian equations and again a half-step of time for the Langevin part of the equations.
- ⁇ G k ⁇ is a sequence of independent Gaussian random vectors identically distributed with a zero mean and a covariance equal to the Identity matrix.
- a program similar to the program P described above is adapted to put steps similar to the steps 101, 102, 103, replacing, in these steps, the taking into account of the equations (3) specific to the NVE case, by those of the equations (5) specific to the NVT case, for updating the values of p n and q n on the basis of the adaptive Hamiltonian H A according to the invention.
- Mean values can furthermore be calculated during simulation in an NVT set, using adaptive simulation (ie using an adaptive Hamiltonian) according to the invention, so as to determine the values that would have been calculated by performing the simulation with a Classical Hamiltonian.
- the average values obtained using an adaptive Hamiltonian are equal to those obtained with the standard Hamiltonian, which is advantageous.
- the movement of a particle was frozen in all the dimensions of the displacement space considered.
- the motion of a particle is fixed on only 1 or some of the displacement axes, which may be useful for studying certain types of motion.
- the position of the particle is frozen when its kinetic energy is below a threshold.
- a particle is frozen for at least one simulation time step, when its moment p takes certain determined values (discrete values, or one or more ranges of values), or even when a pair comprising the moment p and the position q takes certain fixed values.
- the position of groups of particles is frozen.
- q is the vector of the coordinates of the particle a. at the last step of the adaptive simulation
- q ⁇ is the coordinate vector of the same particle at the last step of the reference simulation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13725145.0A EP2856361A1 (fr) | 2012-05-25 | 2013-05-23 | Procédé de simulation d'un ensemble d'éléments, programme d'ordinateur associé |
RU2014146944A RU2014146944A (ru) | 2012-05-25 | 2013-05-23 | Способ моделирования совокупности элементов и компьютерная программа, применяемая при его осуществлении |
KR1020147036027A KR102082777B1 (ko) | 2012-05-25 | 2013-05-23 | 엘리먼트들의 세트를 시뮬레이팅하기 위한 방법 및 연관된 컴퓨터 프로그램 |
US14/402,116 US20150134310A1 (en) | 2012-05-25 | 2013-05-23 | Method for Simulating a Set of Elements, and Associated Computer Program |
CN201380038556.3A CN104508667B (zh) | 2012-05-25 | 2013-05-23 | 用于模拟一组元件的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1254838 | 2012-05-25 | ||
FR1254838A FR2991081A1 (fr) | 2012-05-25 | 2012-05-25 | Procede de simulation d'un ensemble d'elements, programme d'ordinateur associe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013174923A1 true WO2013174923A1 (fr) | 2013-11-28 |
Family
ID=46963807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/060622 WO2013174923A1 (fr) | 2012-05-25 | 2013-05-23 | Procédé de simulation d'un ensemble d'éléments, programme d'ordinateur associé |
Country Status (7)
Country | Link |
---|---|
US (1) | US20150134310A1 (fr) |
EP (1) | EP2856361A1 (fr) |
KR (1) | KR102082777B1 (fr) |
CN (1) | CN104508667B (fr) |
FR (1) | FR2991081A1 (fr) |
RU (1) | RU2014146944A (fr) |
WO (1) | WO2013174923A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112052516B (zh) * | 2020-08-13 | 2021-11-23 | 中国人民解放军军事科学院国防科技创新研究院 | 基于序列摆放的组件布局随机采样方法 |
CN113371231B (zh) * | 2021-06-25 | 2022-03-08 | 四川大学 | 一种带约束的航天器姿态控制方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009007550A2 (fr) | 2007-06-20 | 2009-01-15 | Inria Institut National De Recherche En Informatique Et En Automatique | Dispositif informatique pour la simulation d'un ensemble d'objets en interaction et procédé correspondant |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04192008A (ja) * | 1990-11-27 | 1992-07-10 | Pentel Kk | 多関節ロボット旋回制御方式 |
JP4192008B2 (ja) * | 2003-02-18 | 2008-12-03 | 株式会社渡辺商行 | 気化器及び気化器の洗浄方法並びに気化器を用いた装置 |
-
2012
- 2012-05-25 FR FR1254838A patent/FR2991081A1/fr active Pending
-
2013
- 2013-05-23 EP EP13725145.0A patent/EP2856361A1/fr not_active Withdrawn
- 2013-05-23 KR KR1020147036027A patent/KR102082777B1/ko active IP Right Grant
- 2013-05-23 WO PCT/EP2013/060622 patent/WO2013174923A1/fr active Application Filing
- 2013-05-23 US US14/402,116 patent/US20150134310A1/en not_active Abandoned
- 2013-05-23 CN CN201380038556.3A patent/CN104508667B/zh active Active
- 2013-05-23 RU RU2014146944A patent/RU2014146944A/ru unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009007550A2 (fr) | 2007-06-20 | 2009-01-15 | Inria Institut National De Recherche En Informatique Et En Automatique | Dispositif informatique pour la simulation d'un ensemble d'objets en interaction et procédé correspondant |
Non-Patent Citations (3)
Title |
---|
BENNETT ET AL: "Mass tensor molecular dynamics", JOURNAL OF COMPUTATIONAL PHYSICS, LONDON, GB, vol. 19, no. 3, 1 November 1975 (1975-11-01), pages 267 - 279, XP024751538, ISSN: 0021-9991, [retrieved on 19751101], DOI: 10.1016/0021-9991(75)90077-7 * |
HAIRER E.; LUBICH C.; WANNER G: "Geometric numerical integration : structure preserving algorithms for ordinary differential equations", vol. 31, 2006, SPRINGLER VERLAG |
PLECHAC P ET AL: "Implicit mass-matrix penalization of Hamiltonian dynamics with application to exact sampling of stiff systems", MULTISCALE MODELING & SIMULATION, SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, US, vol. 8, no. 2, 1 January 2009 (2009-01-01), pages 498 - 539, XP009167383, ISSN: 1540-3459 * |
Also Published As
Publication number | Publication date |
---|---|
FR2991081A1 (fr) | 2013-11-29 |
RU2014146944A (ru) | 2016-06-10 |
US20150134310A1 (en) | 2015-05-14 |
CN104508667B (zh) | 2018-09-14 |
KR102082777B1 (ko) | 2020-02-28 |
EP2856361A1 (fr) | 2015-04-08 |
CN104508667A (zh) | 2015-04-08 |
KR20150013880A (ko) | 2015-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3052891A1 (fr) | Procede d'estimation du facteur d'intensite des contraintes et procede de calcul de duree de vie associe | |
FR2994451A1 (fr) | Procede hybride de non-appariement local pour la simulation d'ecoulements multiphasiques dans les milieux fractures heterogenes | |
WO2011007058A1 (fr) | Simulation d'un agrégat évolutif du monde réel, notamment pour gestion de risque | |
EP3912099A1 (fr) | Mise à l'échelle de modèle composite pour réseaux neuronaux | |
Arnaiz-González et al. | MR-DIS: democratic instance selection for big data by MapReduce | |
Ahmad Suhaimi et al. | Integrated species distribution models: A comparison of approaches under different data quality scenarios | |
FR2911976A1 (fr) | Procede de conception d'un systeme comprenant des composants materiels et logiciels | |
WO2013107819A1 (fr) | Procédé d'optimisation de traitement parallèle de données sur une plateforme matérielle. | |
EP2856361A1 (fr) | Procédé de simulation d'un ensemble d'éléments, programme d'ordinateur associé | |
CN111158901B (zh) | 计算图的优化方法、装置、计算机设备和存储介质 | |
CN106648883B (zh) | 基于fpga的动态可重构硬件加速方法及系统 | |
Badri et al. | Investigating the accuracy of test code size prediction using use case metrics and machine learning algorithms: An empirical study | |
Cheptsov | HPC in big data age: An evaluation report for java-based data-intensive applications implemented with Hadoop and OpenMPI | |
CN109408722A (zh) | 社区划分方法、装置、计算设备及存储介质 | |
WO2014037236A1 (fr) | Procédé de simulation d'un ensemble d'éléments | |
CN114461390A (zh) | 结合多维度分析和关键路径法的评估方法及相关装置 | |
Slavova | Parallel triangular solution in the out-of-core multifrontal approach for solving large sparse linear systems | |
Javadi et al. | Bandwidth modeling in large distributed systems for big data applications | |
WO2014053606A2 (fr) | Procédé de traitement de données définissant un élément dans un espace e de dimensions d, programme d'ordinateur associé | |
Lambert | On the Effect of Replication of Input Files on the Efficiency and the Robustness of a Set of Computations | |
WO2011131248A1 (fr) | Procédé et appareil de compression/décompression de données sans perte | |
FR3039677A1 (fr) | Procede de conception de pieces mecaniques, notamment d'aubes de turbomachine | |
WO2019129958A1 (fr) | Procede de stockage de donnees et procede d'execution d'application avec reduction du temps d'acces aux donnees stockees | |
CN116938769B (zh) | 流量异常检测方法、电子设备和计算机可读存储介质 | |
EP3224656B1 (fr) | Procede de determination d'un cube de proportion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13725145 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013725145 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14402116 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014146944 Country of ref document: RU Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147036027 Country of ref document: KR Kind code of ref document: A |