WO2013174901A1 - Couplage de turbopompe pour sels fondus - Google Patents

Couplage de turbopompe pour sels fondus Download PDF

Info

Publication number
WO2013174901A1
WO2013174901A1 PCT/EP2013/060577 EP2013060577W WO2013174901A1 WO 2013174901 A1 WO2013174901 A1 WO 2013174901A1 EP 2013060577 W EP2013060577 W EP 2013060577W WO 2013174901 A1 WO2013174901 A1 WO 2013174901A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
pump
molten salts
fluid
tower
Prior art date
Application number
PCT/EP2013/060577
Other languages
English (en)
Inventor
Alfred Dethier
Original Assignee
Cockerill Maintenance & Ingenierie S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP12169483.0A external-priority patent/EP2666976A1/fr
Priority claimed from BE201200356A external-priority patent/BE1020701A3/fr
Application filed by Cockerill Maintenance & Ingenierie S.A. filed Critical Cockerill Maintenance & Ingenierie S.A.
Priority to US14/403,844 priority Critical patent/US9803625B2/en
Priority to MX2014014319A priority patent/MX354292B/es
Priority to ES13727820.6T priority patent/ES2597738T3/es
Priority to MA37623A priority patent/MA37623B1/fr
Priority to EP13727820.6A priority patent/EP2855861B1/fr
Priority to AU2013265313A priority patent/AU2013265313B2/en
Publication of WO2013174901A1 publication Critical patent/WO2013174901A1/fr
Priority to TN2014000423A priority patent/TN2014000423A1/fr
Priority to ZA2014/08101A priority patent/ZA201408101B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/04Units comprising pumps and their driving means the pump being fluid driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to the field of solar thermal power plants.
  • the subject of the present application relates to solar concentrating power plant (CSP) plants of the solar tower type, using as heat transfer fluid molten salts and in which are used vertical pumps for the circulation and transfer of melted salts carried at high temperature.
  • CSP solar concentrating power plant
  • heliostats in the form of flat mirrors
  • the heliostats being arranged in such a way that the shadows created by the mirrors do not interfere with neighboring mirrors.
  • the solar receiver heated by concentrated incident solar rays will generate a hot fluid which will then be used at ground level to produce high pressure steam capable of driving a turbine and produce electricity.
  • the heated fluid at the top of the tower may be directly steam, or air, or a thermal oil. But it can also be a molten salt consisting of a mixture of two or three specific salts, or more, used as a heat transfer fluid.
  • a mixture of sodium nitrate (NaNOs) and potassium nitrate (KNO3) is often used, for example in a 60% / 40% ratio, forming a eutectic at atmospheric pressure having a reduced melting point. at 220 ° C and offering good chemical and thermal stability between melting temperature and 600 ° C.
  • a ternary mixture of salts comprising, besides the two aforementioned salts, lithium nitrate (L1NO3), it is even possible to obtain a eutectic having a melting point as low as 120 ° C.
  • a great advantage of this mixture of salts is its possibility of storage in large quantities at high temperature under atmospheric pressure, at a reduced cost. Storage allows the decoupling of solar energy uptake and electricity generation, regardless of sunlight and solar time, including overnight.
  • FIG. 1 schematically shows the principle of a tower-type concentrating solar power station 1.
  • the salt is kept liquid in a first insulated cold storage tank 2, at a temperature which is not lower than 260 ° C. .
  • Pumps 3 are necessary to bring the molten salt to the top of the tower 1 and given the large flow required and the high density of the salt, the power absorbed by the pumps is quite high, an amplitude of 4 MW for a central high power (typically 150 MW).
  • the salt is heated at 550 ° C. by concentrated solar heat as specified above via one or more exchangers 20, distributed for example according to four cavities consisting of thin-walled steel tubes. From there, the heated salt is returned to a second insulated hot storage tank 5.
  • FIG. shows also a detailed example, and not limited to the present invention, steam generator 7 according to the state of the art.
  • the molten salt circuit is referenced 17 and the water / steam circuit is referenced 18 in Figure 1.
  • the CSP tower plants have some disadvantages including the need to use very specific pumps, the design of salt exchangers melting / water-steaming and the need to monitor the relatively high temperatures of molten salts.
  • WO 2011/018814 discloses a process for locally pressurizing a first circuit in which a first heated fluid is circulated at a first pressure and supplying this first fluid to a heat exchanger for exchanging heat with a second fluid. circulating in a second circuit with a second pressure greater than the first pressure. Pressurizing means, such as a pump, is provided in the first circuit to increase the pressure of the first fluid upstream of the inlet into the exchanger to a pressure corresponding to that of the second fluid. On the return line of the first circuit is provided a pressure reducing means, such as a butterfly valve, to reduce the pressure of the first fluid downstream of the outlet of the exchanger.
  • Pressurizing means such as a pump
  • a hydraulic motor comprising a turbine or a centrifugal pump used as a turbine.
  • the hydraulic motor and the pressurizing pump are connected to the same variable speed electric motor in function on the same shaft.
  • the present invention aims to overcome the disadvantages of the state of the art.
  • the invention aims to reduce the power absorption of the delivery pumps of the heat transfer fluid at the top of the central tower or to compensate it by a power recovery at another location.
  • a first object of the present invention relates to a device comprising at least one vertical pump and at least one associated turbine, for transport, on a level difference, a heat transfer fluid carried at high temperature, the pump ensuring an upward movement of said fluid in a first section of a conduit from a first so-called cold reservoir and the turbine being actuated by said fluid during the downward return movement of said fluid in a second section of the conduit to a second said reservoir; characterized in that the device further comprises a mechanical coupling device of the turbine with the pump, said mechanical coupling device comprising a gearbox with a cardan coupling located on the turbine side, allowing the mechanical energy produced by the turbine to be reused for 1 actuation of the pump.
  • the device further comprises one or a suitable combination of the following characteristics:
  • the turbine is the same type as the pump but used in the opposite direction;
  • the pump or the turbine is of the type with vertical axis, mono- or multi-stage (multi) cellular with closed or semi-open radial impeller wheels;
  • the pump or turbine is located above the tank or is immersed body;
  • the pump and the turbine are designed to work with a mixture of molten salts selected from the group consisting of sodium nitrate, potassium nitrate and lithium nitrate;
  • the pump and the turbine are designed to operate with a mixture of molten salts whose pressures can be up to 60 bar;
  • the pump and the turbine are designed to operate with a mixture of molten salts whose temperature is between 100 and 600 ° C.
  • a second object of the present invention relates to a solar energy production plant comprising:
  • a plurality of heliostats disposed on the ground around a central concentration tower, said tower comprising at its peak at least one solar-heat exchanger;
  • the installation further comprises the device comprising at least one vertical pump and at least one associated turbine as described above.
  • the difference in level between the molten salt storage tanks and the exchangers at the top of the tower is at least 150 m.
  • FIG. 1 schematically shows a centrally central type CSP solar power plant, with circulation of molten salt and coupling to a conventional system of electricity production.
  • FIG. 2 shows a schematic view of the mechanical coupling system, according to the invention, between the pump for conveying the coolant towards the central tower and the turbine for recovering power at the return of the coolant towards the reservoir of storage.
  • the pumps 3 and the power recovery turbines 4 are mechanically coupled together in order to recover energy with the best possible efficiency.
  • the type of pump required for the application of molten salt according to the invention is specific.
  • the following characteristics for such pumps are:
  • the pump must be sized taking into account the following three parameters: its length (about 15 m for example), its variable speed and the high power required.
  • the power recovery turbines will be of the same design, possibly with specific impeller wheels. In principle, it is sufficient to operate the centrifugal pumps in the opposite direction to be in turbine mode.
  • the mechanical coupling pump-turbine is provided by a gearbox 21, with cardan coupling 41 on the turbine side to allow differential expansion between the pump 3 and the turbine 4.
  • the turbines 4 can not recover all the power consumed by the pumps, given the efficiency of the pumps and turbines, playing in opposite directions.
  • the compensation of the Power difference will be provided by electric pumps of the same type (not shown), also necessary to overcome the losses and also to start the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supercharger (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Rotary Pumps (AREA)

Abstract

Dispositif comprenant au moins une pompe verticale (3) et au moins une turbine associée (4), pour le transport, sur une différence de niveau, d'un fluide caloporteur porté à haute température, caractérisé en ce que le dispositif comprend un dispositif mécanique de couplage de la turbine (4) avec la pompe (3), comprenant une boîte à engrenages (21) avec un accouplement à cardans (41) situé côté turbine (4), permettant à l'énergie mécanique produite par la turbine (4) d'être réutilisée pour l'actionnement de la pompe (3).

Description

COUPLAGE DE TURBOPOMPE POUR SELS FONDUS Objet de l'invention
[0001] La présente invention se rapporte au domaine des centrales solaires thermiques. En particulier, l'objet de la présente demande se rapporte aux installations de production d'énergie à concentration solaire CSP (pour Concentrated Solar Power plant) , du type à récepteurs solaires en tour, utilisant comme fluide caloporteur des sels fondus et dans lesquelles sont utilisées des pompes verticales pour la circulation et le transfert des sels fondus portés à haute température.
Etat de la technique
[0002] Dans les CSP du type à tour centrale, un grand nombre d'héliostats (sous forme de miroirs plans) reflètent la lumière solaire vers un ou plusieurs récepteurs solaires, situés au sommet de la tour, les héliostats étant disposés de manière telle que les ombres créées par les miroirs n'interfèrent pas avec les miroirs voisins.
[0003] Le récepteur solaire, chauffé par les rayons solaires incidents concentrés va générer un fluide chaud qui sera ensuite utilisé au niveau du sol pour produire de la vapeur à haute pression capable d'entraîner une turbine et de produire de l'électricité.
[0004] Le fluide chauffé au sommet de la tour peut être directement de la vapeur, ou de l'air, ou une huile thermique. Mais il peut aussi être un sel fondu consistant en un mélange de deux ou trois sels spécifiques, ou plus, utilisé comme fluide de transfert thermique.
[0005] Par exemple, un mélange de nitrate de sodium (NaNOs) et de nitrate de potassium (KNO3) est souvent utilisé, par exemple selon un rapport 60%/40%, formant un eutectique à pression atmosphérique ayant une température de fusion réduite à 220°C et offrant une bonne stabilité chimique et thermique entre la température de fusion et 600°C. En utilisant un mélange ternaire de sels, comprenant, outre les deux sels précités, du nitrate de lithium (L1NO3) , on peut même obtenir un eutectique ayant une température de fusion aussi basse que 120°C.
[0006] Un grand avantage de ce mélange de sels est sa possibilité de stockage en grande quantité à haute température sous pression atmosphérique, à un coût réduit. Le stockage permet le découplage entre la captation de l'énergie du soleil et la production d'électricité, indépendamment de l'ensoleillement et de l'heure solaire, en ce compris pendant la nuit.
[0007] Le principe de fonctionnement d'une centrale CSP à cycle combiné est connu et décrit par exemple dans le document WO 2011/077248.
[0008] La figure 1 montre schématiquement le principe d'une centrale solaire à concentration du type tour 1. Le sel est maintenu liquide dans un premier réservoir de stockage froid isolé 2, à une température qui n'est pas inférieure à 260°C. Des pompes 3 sont nécessaires pour amener le sel fondu au sommet de la tour 1 et vu les grands débits requis ainsi que la haute densité du sel, la puissance absorbée par les pompes est assez élevée, d'une amplitude de 4 MW pour une centrale de grande puissance (typiquement 150 MW) . Au sommet de la tour, le sel est chauffé à 550°C par la chaleur solaire concentrée comme précisé ci-dessus via un ou plusieurs échangeurs 20, répartis par exemple selon quatre cavités, constitués de tubes en acier à paroi mince. De là, le sel chauffé est renvoyé vers un second réservoir de stockage chaud isolé 5. La capacité de ce réservoir dépend de la durée d'alimentation requise pour la turbine produisant l'électricité. Lorsque la production d'électricité par la centrale est requise, le sel chaud est envoyé par une pompe 6 vers un système conventionnel de génération de vapeur 7 pour produire de la vapeur surchauffée pour un générateur d'électricité 9 à turbine 8. La figure 1 montre en outre un exemple détaillé, et non limitatif pour la présente invention, de générateur de vapeur 7 selon l'état de la technique .
[0009] Le circuit de sel fondu est référencé 17 et le circuit d'eau/vapeur est référencé 18 sur la figure 1.
[0010] Des performances typiques pour une installation de 150 MW sont données dans le tableau 1.
[0011] Il est également connu que l'on pourrait utiliser dans ce type d' installation des turbines de récupération de puissance hydraulique 4 (HRPT pour Hydraulic Power Recovery Turbine) . Celles-ci peuvent être installées dans la ligne de retour du sel chauffé au réservoir de stockage, afin de récupérer l'énergie mécanique (gravifique) du sel descendant du sommet de la tour jusqu'au sol, la puissance récupérable ayant une amplitude typique de 3 MW pour la centrale précitée.
[0012] A côté d'un certain nombre d'avantages tels qu'une grande capacité de stockage de l'énergie sous pression atmosphérique, un faible coût du sel compatible avec le respect de l'environnement, une absence totale de risque au feu, une grande simplicité et des coûts réduits pour le récepteur solaire et des équipements associés en sommet de tour, les centrales CSP à tour présentent quelques désavantages dont la nécessité d'utiliser des pompes très spécifiques, la conception d' échangeurs sels fondus/eau-vapeur et la nécessité de surveiller les températures relativement élevées des sels fondus.
[0013] Le document WO 2011/018814 divulgue un procédé pour mettre sous pression localement un premier circuit dans lequel circule un premier fluide chauffé à une première pression et fournir ce premier fluide à un échangeur de chaleur pour échanger de la chaleur avec un second fluide circulant dans un deuxième circuit avec une seconde pression supérieure à la première pression. Un moyen de mise sous pression, tel qu'une pompe, est prévu dans le premier circuit pour augmenter la pression du premier fluide en amont de l'entrée dans l' échangeur jusqu'à une pression correspondant à celle du second fluide. Sur la ligne de retour du premier circuit est prévu un moyen réducteur de pression, tel qu'une vanne papillon, pour diminuer la pression du premier fluide en aval de la sortie de l' échangeur. En aval de la vanne papillon est inséré un moteur hydraulique comprenant une turbine ou une pompe centrifuge utilisée comme une turbine. Le moteur hydraulique et la pompe de mise sous pression sont reliés à un même moteur électrique à vitesse variable en fonction sur le même arbre. Ainsi, le moteur hydraulique actionné par le flux de fluide sous pression en retour à partir de 1' échangeur de chaleur non seulement abaisse la pression du fluide lui-même mais en outre fournit l'alimentation pour faire fonctionner la pompe de mise sous pression, ce qui réduit par conséquent l'apport d'énergie électrique externe . Buts de 1 ' invention
[0014] La présente invention vise à s'affranchir des inconvénients de l'état de la technique.
[0015] En particulier, l'invention a pour but de réduire l'absorption de puissance des pompes d'acheminement du fluide caloporteur au sommet de la tour centrale ou de compenser celle-ci par une récupération de puissance à un autre endroit. Principaux éléments caractéristiques de l'invention
[0016] Un premier objet de la présente invention se rapporte à un dispositif comprenant au moins une pompe verticale et au moins une turbine associée, pour le transport, sur une différence de niveau, d'un fluide caloporteur porté à haute température, la pompe assurant un mouvement ascendant dudit fluide dans une première section d'un conduit à partir d'un premier réservoir dit froid et la turbine étant actionnée par ledit fluide lors du mouvement de retour descendant dudit fluide dans une seconde section du conduit vers un second réservoir dit chaud, caractérisé en ce que le dispositif comprend en outre un dispositif mécanique de couplage de la turbine avec la pompe, ledit dispositif mécanique de couplage comprenant une boîte à engrenages avec un accouplement à cardans situé côté turbine, permettant à l'énergie mécanique produite par la turbine d'être réutilisée pour 1 ' actionnement de la pompe.
[0017] Selon des modes d'exécution préférés de l'invention, le dispositif comprend en outre une ou une combinaison adéquate des caractéristiques suivantes :
- la turbine est du même type que la pompe mais utilisée en sens inverse ;
- la pompe ou la turbine est du type à axe vertical, mono- ou multi-étagée (multi ) cellulaire avec roues à aubes radiales fermées ou semi-ouvertes ;
- la pompe ou la turbine est située au-dessus du réservoir ou est à corps immergé ;
- la pompe et la turbine sont conçues pour fonctionner avec un mélange de sels fondus sélectionnés parmi le groupe constitué par le nitrate de sodium, le nitrate de potassium et le nitrate de lithium ;
- la pompe et la turbine sont conçues pour fonctionner avec un mélange de sels fondus dont les pressions peuvent aller jusqu'à 60 bar ;
- la pompe et la turbine sont conçues pour fonctionner avec un mélange de sels fondus dont la température est comprise entre 100 et 600°C.
[0018] Un second objet de la présente invention se rapporte à une installation de production d'énergie à concentration solaire comprenant :
- une pluralité d'héliostats disposés au sol autour d'une tour centrale de concentration, ladite tour comprenant en son sommet au moins un échangeur thermo- solaire ;
- un premier circuit de transport de sels fondus à partir d'un premier réservoir de stockage dit froid vers ledit échangeur et retour vers un second réservoir de stockage dit chaud pour les sels fondus portés à haute température, ledit échangeur se trouvant au somment de la tour, c'est-à-dire à une hauteur supérieure à celle des réservoirs ;
- un second circuit de génération de vapeur par échange thermique avec le premier circuit en sels fondus et de production d'électricité via un système turbine/générateur ;
caractérisée en ce que l'installation comprend en outre le dispositif comprenant au moins une pompe verticale et au moins une turbine associée comme décrit ci-dessus.
[0019] Avantageusement, la différence de niveau entre les réservoirs de stockage en sels fondus et les échangeurs au sommet de la tour est d'au moins 150 m.
Brève description des figures [0020] Des exemples de réalisation suivant l'état de la technique et 1 ' invention sont décrits par la suite avec plus de détails à l'aide des figures annexées.
[0021] La figure 1, déjà mentionnée, montre schématiquement une centrale à concentration solaire CSP du type à tour centrale, avec circulation de sel fondu et couplage à un système conventionnel de production d' électricité .
[0022] La figure 2 montre une vue schématique du système de couplage mécanique, selon l'invention, entre la pompe d' acheminement du fluide caloporteur vers la tour centrale et la turbine de récupération de puissance au retour du fluide caloporteur vers le réservoir de stockage. Description de formes d'exécution préférées de l'invention
[0023] Selon une forme d'exécution préférée de la présente invention, les pompes 3 et les turbines de récupération de puissance 4 sont mécaniquement couplées ensemble afin de récupérer de l'énergie avec le meilleur rendement possible.
[0024] Le type de pompe nécessaire pour l'application en sel fondu selon l'invention est spécifique. On trouvera par exemple les caractéristiques suivantes pour de telles pompes :
- axe vertical ;
- construction mono- ou multi-étagée (multi) cellulaire avec roues fermées (ou semi-ouvertes) ;
- installation au-dessus du réservoir de sel, de préférence à corps immergé, afin de simplifier le drainage ;
- construction avec arbre en porte-à-faux possible si la profondeur d'immersion de la pompe, c'est-à-dire la distance entre la taque d'assise et la tubulure d'aspiration est suffisamment faible ; à défaut, nécessité de paliers intermédiaires sur la ligne d' arbre ;
- étanchéité d'arbre avec la plaque d'assise réalisée par un labyrinthe, avec retour par gravité des fuites vers le réservoir ;
- moteur électrique à fréquence variable ;
- utilisation de matériaux et d'une construction adéquats pour supporter les hautes températures des sels fondus, etc. Les matériaux utilisés seront par exemple résistants à la corrosion et à l'abrasion.
[0025] De telles pompes ont déjà été utilisées dans le domaine solaire à collecteurs paraboliques au sol mais avec des pressions de fluide relativement faibles.
[0026] La pompe doit être dimensionnée en tenant compte des trois paramètres suivants : sa longueur (environ 15 m par exemple) , sa vitesse variable et la forte puissance requise .
[0027] Avantageusement, selon l'invention, les turbines de récupération de puissance seront de la même conception, avec éventuellement des roues à aubes spécifiques. Il suffit en principe de faire fonctionner les pompes centrifuges en sens inverse pour se trouver en mode turbine. Le couplage mécanique pompe-turbine est assuré par une boîte à engrenages 21, avec accouplement à cardan 41 côté turbine afin de permettre les dilatations différentielles entre la pompe 3 et la turbine 4.
[0028] Dans l'état de l'art, on connaît uniquement des systèmes de couplage en ligne entre pompe horizontale et turbine, avec embrayage.
[0029] Bien sûr, les turbines 4 ne peuvent pas récupérer la totalité de la puissance consommée par les pompes, vu les rendements des pompes et des turbines, jouant en sens opposé .
[0030] Toujours selon l'invention, la compensation de la différence de puissance sera assurée par des pompes électriques de même type (non représentées), d'ailleurs nécessaires pour vaincre les pertes de charge et aussi pour démarrer le système.
Liste des repères
1 Tour à concentration solaire
2 Réservoir de sel froid
3 Pompe d'alimentation vers la tour
4 Turbine de récupération
5 Réservoir de sel chaud
6 Pompe de circulation vers le générateur de vapeur
7 Générateur de vapeur
8 Turbine ( s )
9 Générateur d'électricité
10 Condenseur
11 Désaérateur
12 Economiseur
13 Chaudière bouilloire
14 Surchauffeur
15 Resurchauffeur
16 Pompe de mélange
17 Circuit de sel fondu
18 Circuit eau/vapeur
20 Récepteurs solaires et échangeurs
21 Boîte à engrenages
41 Arbre à cardans
Figure imgf000012_0001
Tableau 1

Claims

REVENDICATIONS
1 . Dispositif comprenant au moins une pompe verticale (3) et au moins une turbine associée (4), pour le transport, sur une différence de niveau, d'un fluide caloporteur porté à haute température, la pompe (3) assurant un mouvement ascendant dudit fluide dans une première section d'un conduit (17) à partir d'un premier réservoir dit froid (2) et la turbine (4) étant actionnée par ledit fluide lors du mouvement de retour descendant dudit fluide dans une seconde section du conduit (17) vers un second réservoir dit chaud (5) , caractérisé en ce que le dispositif comprend en outre un dispositif mécanique de couplage de la turbine (4) avec la pompe (3), ledit dispositif mécanique de couplage comprenant une boîte à engrenages (21) avec un accouplement à cardans (41) situé côté turbine (4), permettant à l'énergie mécanique produite par la turbine (4) d'être réutilisée pour 1 ' actionnement de la pompe (3) .
2 . Dispositif selon la revendication 1, caractérisée en ce que la turbine (4) est du même type que la pompe (3) mais utilisée en sens inverse.
3 . Dispositif selon la revendication 2, caractérisée en ce que la pompe (3) ou la turbine (4) est du type à axe vertical, mono- ou multi-étagée (multi ) cellulaire avec roues à aubes radiales fermées ou semi-ouvertes .
4. Dispositif selon la revendication 3, caractérisée en ce que la pompe (3) ou la turbine (4) est située au-dessus du réservoir ou est à corps immergé.
5 . Dispositif selon la revendication 1, caractérisée en ce que la pompe (3) et la turbine (4) sont conçues pour fonctionner avec un mélange de sels fondus sélectionnés parmi le groupe constitué du nitrate de sodium, du nitrate de potassium et du nitrate de lithium.
6. Dispositif selon la revendication 1, caractérisée en ce que la pompe (3) et la turbine (4) sont conçues pour fonctionner avec un mélange de sels fondus dont les pressions peuvent aller jusqu'à 60 bar.
7. Dispositif selon la revendication 1, caractérisée en ce que la pompe (3) et la turbine (4) sont conçues pour fonctionner avec un mélange de sels fondus dont la température est comprise entre 100 et 600°C.
8. Installation de production d'énergie à concentration solaire comprenant :
- une pluralité d'héliostats disposés au sol autour d'une tour centrale (1) de concentration, ladite tour comprenant en son sommet au moins un échangeur thermo¬ solaire (20) ;
- un premier circuit (17) de transport de sels fondus à partir d'un premier réservoir de stockage dit froid (2) vers ledit échangeur (20) et retour vers un second réservoir de stockage dit chaud (5) pour les sels fondus portés à haute température, ledit échangeur
(20) se trouvant au sommet de la tour (1), c'est-à- dire à une hauteur supérieure à celle des réservoirs
(2, 5) ;
- un second circuit (18) de génération de vapeur par échange thermique avec le premier circuit (17) en sels fondus et de production d'électricité via un système turbine/générateur (7, 8, 9) ;
caractérisée en ce que l'installation comprend en outre le dispositif comprenant au moins une pompe verticale (3) et au moins une turbine associée (4) selon l'une quelconque des revendications précédentes.
PCT/EP2013/060577 2012-05-25 2013-05-23 Couplage de turbopompe pour sels fondus WO2013174901A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/403,844 US9803625B2 (en) 2012-05-25 2013-05-23 Coupling of a turbopump for molten salts
MX2014014319A MX354292B (es) 2012-05-25 2013-05-23 Acoplamiento de turbobomba para sales fundidas.
ES13727820.6T ES2597738T3 (es) 2012-05-25 2013-05-23 Conexión de turbobomba para sales fundidas
MA37623A MA37623B1 (fr) 2012-05-25 2013-05-23 Couplage de turbopompe pour sels fondus
EP13727820.6A EP2855861B1 (fr) 2012-05-25 2013-05-23 Couplage de turbopompe pour sels fondus
AU2013265313A AU2013265313B2 (en) 2012-05-25 2013-05-23 Coupling of a turbopump for molten salts
TN2014000423A TN2014000423A1 (fr) 2012-05-25 2014-10-08 Couplage de turbopompe pour sels fondus
ZA2014/08101A ZA201408101B (en) 2012-05-25 2014-11-05 Coupling of a turbopump for molten salts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP12169483.0A EP2666976A1 (fr) 2012-05-25 2012-05-25 Couplage de turbopompe pour sels fondus
BE201200356A BE1020701A3 (fr) 2012-05-25 2012-05-25 Couplage de turbopompe pour sels fondus.
BE2012/0356 2012-05-25
EP12169483.0 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013174901A1 true WO2013174901A1 (fr) 2013-11-28

Family

ID=48579016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/060577 WO2013174901A1 (fr) 2012-05-25 2013-05-23 Couplage de turbopompe pour sels fondus

Country Status (9)

Country Link
US (1) US9803625B2 (fr)
EP (1) EP2855861B1 (fr)
AU (1) AU2013265313B2 (fr)
CL (1) CL2014002835A1 (fr)
ES (1) ES2597738T3 (fr)
MX (1) MX354292B (fr)
TN (1) TN2014000423A1 (fr)
WO (1) WO2013174901A1 (fr)
ZA (1) ZA201408101B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2436646R1 (es) * 2012-06-29 2014-04-11 Sun To Market Solutions, S.L. Sistema de receptor central de torre.
EP3075969A1 (fr) * 2015-03-31 2016-10-05 Siemens Aktiengesellschaft Système et procédé de stockage d'énergie
CN108266791A (zh) * 2016-12-30 2018-07-10 百吉瑞(天津)新能源有限公司 一种熔盐储能和电锅炉互补供暖系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393447B (zh) * 2020-11-02 2022-07-26 浙江可胜技术股份有限公司 一种太阳能光热电站熔盐储存装置、储存系统及光热电站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449181A (en) * 2007-05-10 2008-11-12 Alstom Technology Ltd Solar hybrid combined cycle power plant
WO2011018814A2 (fr) 2009-08-12 2011-02-17 Turboden S.R.L. Procédé et système de mise sous pression localisée pour un circuit d'huile diathermique
WO2011077248A2 (fr) 2009-12-23 2011-06-30 Goebel, Olaf Génération d'énergie solaire à cycles combinés
WO2011121852A1 (fr) * 2010-03-31 2011-10-06 国立大学法人東京工業大学 Appareil de génération de vapeur et système d'alimentation en énergie l'utilisant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688990A (en) * 1983-08-30 1987-08-25 Borg-Warner Corporation Pump construction
JP3306749B2 (ja) * 1997-12-26 2002-07-24 国土交通省中部地方整備局長 立軸ポンプ
US6701711B1 (en) * 2002-11-11 2004-03-09 The Boeing Company Molten salt receiver cooling system
BRPI0605759A (pt) * 2006-12-15 2008-08-12 Weatherford Ind E Com Ltda freio auxiliar para cabeçotes de acionamento para bombas de cavidade progressiva
CN101240947B (zh) 2008-02-19 2010-12-08 上海工电能源科技有限公司 自适应太阳能集热熔盐接收器系统
WO2010083610A1 (fr) * 2009-01-23 2010-07-29 Ronald Hall Système à énergie éolienne pour réduire la consommation d'énergie d'une source d'énergie primaire
US8434509B2 (en) * 2009-11-13 2013-05-07 Eurotecnica Melamine Luxemburg Tank for containing liquids
CN202056843U (zh) 2011-01-30 2011-11-30 杭州锅炉集团股份有限公司 多塔式二元工质太阳能高温热发电系统
WO2013092145A1 (fr) * 2011-12-20 2013-06-27 Sulzer Pumpen Ag Équipement de récupération d'énergie ainsi que procédé de récupération d'énergie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449181A (en) * 2007-05-10 2008-11-12 Alstom Technology Ltd Solar hybrid combined cycle power plant
WO2011018814A2 (fr) 2009-08-12 2011-02-17 Turboden S.R.L. Procédé et système de mise sous pression localisée pour un circuit d'huile diathermique
WO2011077248A2 (fr) 2009-12-23 2011-06-30 Goebel, Olaf Génération d'énergie solaire à cycles combinés
WO2011121852A1 (fr) * 2010-03-31 2011-10-06 国立大学法人東京工業大学 Appareil de génération de vapeur et système d'alimentation en énergie l'utilisant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2436646R1 (es) * 2012-06-29 2014-04-11 Sun To Market Solutions, S.L. Sistema de receptor central de torre.
EP3075969A1 (fr) * 2015-03-31 2016-10-05 Siemens Aktiengesellschaft Système et procédé de stockage d'énergie
WO2016156177A1 (fr) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Système et procédé de stockage d'énergie
CN108266791A (zh) * 2016-12-30 2018-07-10 百吉瑞(天津)新能源有限公司 一种熔盐储能和电锅炉互补供暖系统

Also Published As

Publication number Publication date
EP2855861B1 (fr) 2016-07-13
AU2013265313A1 (en) 2014-11-27
TN2014000423A1 (fr) 2016-03-30
AU2013265313B2 (en) 2016-12-01
EP2855861A1 (fr) 2015-04-08
CL2014002835A1 (es) 2015-06-05
ZA201408101B (en) 2015-12-23
MX2014014319A (es) 2015-02-12
MX354292B (es) 2018-02-21
ES2597738T3 (es) 2017-01-20
US9803625B2 (en) 2017-10-31
US20150107245A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
EP2904220B1 (fr) Systeme de stockage thermique de vapeur
EP2201576B1 (fr) Reacteur nucleaire a refroidissement ameliore en situation d'accident
EP2952703B1 (fr) Dispositif de conversion d'énergie thermique en énergie mécanique
EP2096305A1 (fr) Installation de génération d'énergie électrique à partir d'énergie solaire
EP2855861B1 (fr) Couplage de turbopompe pour sels fondus
EP2873916B1 (fr) Procédé et dispositif pour prévenir l'assèchement dans une chaudière de centrale solaire à concentration de type tour
FR2901838A1 (fr) Methode et installation optimisees de recuperation assistee des bruts lourds par la technique de l'injection de vapeur utilisant l'energie solaire
BE1020701A3 (fr) Couplage de turbopompe pour sels fondus.
FR2999830B1 (fr) Element de traitement d'un rayonnement solaire ameliore ainsi qu'un suiveur solaire et une centrale solaire equipee d'un tel element
EP2004994A1 (fr) Production d electricite a partir d energies basses temperatures
FR3025593A1 (fr) La tour solaire hydroelectrique a concentration ponctuelle
EP2666976A1 (fr) Couplage de turbopompe pour sels fondus
CN108952866B (zh) 一种风浪互补式海洋温差发电系统
FR2973841A1 (fr) Installation de conversion d'energie thermique en energie electrique
FR2482205A1 (fr) Centrale de conversion thermodynamique utilisant le rayonnement solaire
JP2013040736A (ja) 発電設備および発電方法
WO2014113107A1 (fr) Agent de stockage thermique à base d'azote
WO2018109287A1 (fr) Station de production d'energies
WO2023222971A1 (fr) Système de génération de froid et de fourniture d'énergie électrique à partir de l'eau de mer et du soleil
FR3138168A1 (fr) Centrale Hydro-solaire-vapeur-électrique
CH651125A5 (fr) Procede pour l'utilisation de la chaleur contenue dans de l'eau servant de source de chaleur.
FR2927160A1 (fr) Procede et dispositif de chauffage et/ou de refroidissement utilisant l'eau des profondeurs sous-marines en tant que source froide ou source chaude
JP2005256699A (ja) エネルギー利用方法及びエネルギー利用システム
FR3090754A1 (fr) Une centrale électrique écologique qui fonctionne 24h sur 24
FR2494821A1 (en) Pump and mechanical to thermal energy converter - uses fluid medium to transmit energy mechanically and to generate heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13727820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014002835

Country of ref document: CL

REEP Request for entry into the european phase

Ref document number: 2013727820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013727820

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/014319

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14403844

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013265313

Country of ref document: AU

Date of ref document: 20130523

Kind code of ref document: A