WO2013174316A1 - 下电电路、直流组合电源系统及下电控制方法 - Google Patents

下电电路、直流组合电源系统及下电控制方法 Download PDF

Info

Publication number
WO2013174316A1
WO2013174316A1 PCT/CN2013/079736 CN2013079736W WO2013174316A1 WO 2013174316 A1 WO2013174316 A1 WO 2013174316A1 CN 2013079736 W CN2013079736 W CN 2013079736W WO 2013174316 A1 WO2013174316 A1 WO 2013174316A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
power
power supply
battery
bus
Prior art date
Application number
PCT/CN2013/079736
Other languages
English (en)
French (fr)
Inventor
叶家炬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013174316A1 publication Critical patent/WO2013174316A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • a DC combined power supply system generally consists of a DC power supply and a storage battery.
  • the DC power supply converts AC power or other energy into a stable DC power supply to the load and charges the battery.
  • the battery acts as a backup power supply, and supplies power to the load when the DC power supply stops working. Since the battery is over-discharged, the battery may be damaged. Therefore, the DC combined power supply system must design a battery over-discharge protection circuit to ensure that the battery does not suffer from over-discharge damage.
  • the battery over-discharge protection of DC power system generally adopts the circuit structure of hierarchical power-off.
  • the DC contactor KM1 is disconnected, cutting off all The power supply of the load is to protect the battery from damage due to overdischarge.
  • the advantage of using a normally closed contactor is that in the case of a normal operation of the power supply, the DC contactor is kept in the pull-in position and does not need to supply power to its control line package to save energy; once the control circuit fails, the contactor It will remain in the on position consistently and will not affect the power supply of the load; however, after disconnection, it is necessary to use the battery to supply power to its control line package to keep it in the off state, so too long time will also cause battery damage, and it is not conducive to Energy saving.
  • the second type uses two magnetically held DC contactors.
  • the DC contactor KM2 when the battery discharges to a certain voltage, the DC contactor KM2 is disconnected, the power supply of the secondary load is cut off, and the remaining power of the battery is used to ensure the important load.
  • the DC contactor KM1 When the battery voltage continues to drop to the end of discharge voltage, the DC contactor KM1 is disconnected, and the power supply of all loads is cut off to protect the battery from damage due to overdischarge.
  • the advantage of using a magnetically held contactor is that it does not need to power its control package to maintain its state, regardless of whether the contactor is in the closed or open state, so it is very beneficial for energy saving; however, the magnetically held contactor is broken. Re-switching on and off requires the control circuit to apply a positive pulse to its control line package.
  • the present invention provides a power-off circuit, a DC combined power supply system, and a power-off control method, to at least solve the problem that the power-off circuit in the related art cannot simultaneously have battery over-discharge protection energy saving and ensure system power supply reliability.
  • a power-down circuit comprising: a power-down control circuit configured to control opening and closing of a first contactor and a second contactor; the first contactor connected to An important load is connected between the battery and the first bus bar to the first bus bar, the first contactor is a magnetically held DC contactor, and the second contactor is connected between the first bus bar and the second bus bar.
  • the secondary load is connected to the second busbar, and the second contactor is a normally closed DC contactor.
  • the first contactor is configured to be disconnected according to the control of the power-off control circuit when the voltage value of the battery reaches a first preset value; and the second contactor, the voltage value of the battery When the second preset value is reached, the control of the power-off control circuit is turned off according to the above, wherein the second preset value is greater than the first preset value.
  • a DC combined power supply system comprising: any one of the above-mentioned power-off circuits, a battery, and a DC power supply.
  • the battery is connected to the first busbar of the direct current combined power supply system via the first contactor, the important load is connected to the first busbar; and the secondary load is connected to the second busbar of the direct current combined power supply system.
  • the second bus bar and the first bus bar are connected by the second contactor.
  • the DC power source is connected to the first bus bar.
  • a power-down control method comprising: cutting a first bus bar by controlling a disconnection of a first contactor by the power-down control circuit, wherein an important load is connected to the first bus bar
  • the first contactor is a magnetically held DC contactor
  • the second busbar is cut by controlling the disconnection of the second contactor by the power-down control circuit, wherein the secondary load is connected to the second busbar, the second The contactor is a normally closed DC contactor.
  • the opening and closing of the first contactor and the second contactor are controlled by a power-down control circuit, the second contactor being connected between the first bus bar and the second bus bar, and the secondary load being connected to
  • the second busbar disconnects the power supply of the secondary load to the secondary load when the second contactor is disconnected, the first contactor is connected between the battery and the first busbar, and the important load is connected to the first busbar
  • the second contactor For the normally closed DC contactor, the first contactor is a magnetically held DC contactor.
  • the battery can also be cut off.
  • the power supply of the contactor can achieve the purpose of energy saving; in addition, since the second contactor is a normally closed DC contactor, even if the control circuit fails In this case, when the DC power supply is restored, it can ensure that the important load and the secondary load can be supplied, thereby improving the power supply reliability of the system.
  • FIG. 1 is a schematic structural view of a first DC combined power supply system according to the related art
  • FIG. 2 is a schematic structural view of a second DC combined power supply system according to the related art
  • FIG. 3 is a schematic diagram of a second DC combined power supply system according to the related art
  • FIG. 4 is a schematic structural diagram of a DC-combined power supply system according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a power-off control method according to an embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the embodiment provides a power-off circuit. As shown in FIG.
  • the power-off circuit includes: a power-down control circuit 102, configured to control the opening and closing of the first contactor 104 and the second contactor 106;
  • the first contactor 104 is connected between the battery and the first bus bar, the important load is connected to the first bus bar, the first contactor is a magnetically held DC contactor, and the second contactor 106 is connected to the first Between the bus bar and the second bus bar, a secondary load is connected to the second bus bar, and the second contactor is a normally closed DC contactor.
  • the opening and closing of the first contactor and the second contactor are controlled by a power-down control circuit, the second contactor being connected between the first bus bar and the second bus bar, and the secondary load connection To the second busbar, when the second contactor is disconnected, the battery is cut off from the secondary load, the first contactor is connected between the battery and the first busbar, and the important load is connected to the first bus On the busbar, when the first contactor is disconnected, the power supply of the battery to the important load is cut off, so as to realize the hierarchical power-off of the important load and the secondary load on the battery, and the over-discharge protection of the battery is realized, the second contact The device is a normally closed DC contactor, and the first contactor is a magnetically held DC contactor.
  • the battery In the case of disconnecting the first contactor, in addition to cutting off the power supply of the battery to the important load, the battery can also be cut off.
  • the power supply of the two contactors can save energy; in addition, since the second contactor is a normally closed DC contactor, even if the control circuit fails A case where, when the output DC power is restored, can guarantee minor important load and load, thereby improving the reliability of the system power supply.
  • the first contactor 104 is configured to be disconnected according to the control of the power-off control circuit when the voltage value of the battery reaches the first preset value;
  • the second contactor 106 in the case that the voltage value of the battery reaches the second preset value, is turned off according to the control of the power-off control circuit, wherein the second preset value is greater than the first preset value. That is, the important load and the secondary load are powered off by dividing the first contactor 104 and the second contactor 106 respectively, and the first load is turned off again when the battery reaches the first preset value.
  • the contactor 104 can cut off the power supply of the battery to the second contactor 106 to further save power of the battery and better protect the battery from overdischarge.
  • the power-off circuit can be applied to various DC combined power systems that use a combination of a DC power source and a battery.
  • a DC combined power supply system is provided.
  • the DC combined power supply system includes: any one of the above-mentioned power-off circuits, a battery, and a DC power supply.
  • the system normally supplies power to the load, and both the first contactor 104 (magnetic holding contactor KM1) and the second contactor 106 (normally closed DC contactor KM2) remain on.
  • the system continues The battery continues to supply power to the load; when the battery discharges to a certain voltage (corresponding to the second preset value), the control circuit disconnects the second contactor 106 (normally closed contactor) to cut off the secondary load of the battery.
  • the power-off control circuit sends a reverse pulse to the first contactor 104 (magnetic retention contactor) to disconnect it to cut off
  • the battery supplies power to the important load (at this time, the battery has been cut off to supply power to the entire load), and at the same time, the battery is also cut off to supply power to the second contactor 106 (normally closed contactor).
  • the second contactor 106 (often The closed contactor is restored to the on state, and all DC contactors do not need to consume more power, which is equivalent to the first type of power-off circuit shown in FIG. 1 in the prior art.
  • the second contactor 106 (normally closed contactor) has been turned on, even if the power-off control circuit fails, after the DC power supply is restored, the power supply to the secondary load and the important load can be guaranteed at the same time, which is equivalent to The second power-down circuit shown in FIG. 2 in the prior art is more reliable.
  • a preferred connection structure of the DC combined power supply system is provided. As shown in FIG.
  • the battery is connected to the first bus of the DC combined power supply system through the first contactor 104, a negative pole of the important load is connected to the first busbar; the secondary load is connected to the second busbar of the DC combined power supply system, wherein the first busbar (corresponding to 1L-) and the second busbar (corresponding to 2L) -) connected by the second contactor 106 described above.
  • the DC power supply is connected to the above.
  • the first bus In the preferred embodiment, a power-down control method is provided. As shown in FIG.
  • the power-off control method includes step S502 value step S504.
  • Step S502 The first busbar is cut by controlling the disconnection of the first contactor by the power-off control circuit, wherein the important load is connected to the first busbar, and the first contactor is a magnetically held DC contactor;
  • Step S504 The second bus bar is cut by controlling the disconnection of the second contactor by the power-down control circuit, wherein the secondary load is connected to the second bus bar, and the second contactor is a normally-closed DC contactor.
  • the disconnection of the first contactor and the second contactor is controlled by a power-down control circuit, the second contactor is connected between the first busbar and the second busbar, and the secondary load is connected to the second busbar Upper, when the second contactor is disconnected, the battery is cut off from the secondary load, the first contactor is connected between the battery and the first bus, and the important load is connected to the first bus.
  • the power supply of the battery to the important load is cut off, so as to realize the stepping and discharging of the important load and the secondary load on the battery, and the overdischarge protection of the battery is realized, and the second contactor is normally closed.
  • the DC contactor, the first contactor is a magnetically held DC contactor, and in the case of disconnecting the first contactor, in addition to being able to cut off the battery to an important negative
  • the power supply can also cut off the power supply of the battery to the second contactor, so that energy saving can be achieved; in addition, since the second contactor is a normally closed DC contactor, even in the case of a failure of the control circuit, When the DC power supply resumes output, it can guarantee the power supply to the important load and the secondary load, thereby improving the power supply reliability of the system.
  • the disconnection of the first contactor is controlled by the power-off control circuit;
  • the disconnection of the second contactor is controlled by the power-off control circuit, wherein the second preset value is greater than the first preset value.
  • a preferred control method is provided, for example, as in the example of FIG. 4, in a preferred embodiment, the DC combined power supply system includes a DC.
  • the power supply DC, a control circuit Ctrl, and a battery battery example are taken as an example.
  • the DC combined power supply system takes a negative output as an example.
  • the DC negative bus of the DC combined power supply system is divided into two sections, that is, the busbar 1L- and the busbar 2L-, and the first segment of the negative busbar 1L- and the second segment of the negative busbar 2L- pass the normally closed contactor KM2 (corresponding to the above The second contactor 106) is connected, and the battery is connected to the first bus bar (1L-) of the DC combined power supply system through the magnetic holding contactor KM1 (corresponding to the first contactor 104), and the important load is connected to the above a bus line, the DC power source is connected to the first bus bar, and is connected in parallel between the first contactor 104 and the important load; the secondary load is connected to the second bus bar (2L-) of the DC combined power supply system.
  • the first bus bar and the second bus bar are connected by the second contactor 106. Because the DC combined power system is a negative output, the positive bus L+ is not segmented.
  • the normally closed DC contactor and the magnetically held contactor KM1 (corresponding to the first contactor 104 described above) are kept in an ON state, and no power is required, and the DC combined power supply system is normally operated. Load power supply; After the DC power supply has no output, the DC combined power supply system continues to supply power to all loads by the battery; when the battery discharges to a certain voltage (corresponding to the second preset value), the power-off control circuit opens the normally closed contactor.
  • the power-off control circuit In order to cut off the power supply of the secondary load to the secondary battery; when the battery is discharged to the discharge end voltage (corresponding to the first preset value mentioned above), the power-off control circuit sends a reverse pulse to the magnetically held contactor to cut off the battery pair The power supply of all the loads is also cut off, and the second contactor 106 (normally closed contactor) is also powered off. At this time, the second contactor 106 (normally closed contactor) is returned to the on state, and all the DC contactors are turned off. There is no need to consume more power, which is equivalent to the first type of power-off circuit shown in FIG. 1 in the prior art.
  • the opening and closing of the first contactor and the second contactor are controlled by the power-down control circuit, and the second contactor is connected to Between the first bus bar and the second bus bar, the secondary load is connected to the second bus bar, and when the second contactor is disconnected, the battery is cut off
  • the battery supplies power to the secondary load
  • the first contactor is connected between the battery and the first bus bar
  • the important load is connected to the first bus bar
  • the battery is cut off to the important load
  • the power supply is used to realize the stepping and discharging of the important load and the secondary load on the battery to realize the overdischarge protection of the battery.

Abstract

一种下电电路、直流组合电源系统及下电控制方法。该下电电路包括:下电控制电路,设置为控制第一接触器(KM1)和第二接触器(KM2)的断开与接通;第一接触器(KM1),连接至蓄电池和第一母线(1L)之间,重要负载连接至第一母线(1L)上,第一接触器(KM1)为磁保持式直流接触器;第二接触器(KM2),连接至第一母线(1L)和第二母线(2L)之间,次要负载连接至第二母线(2L)上,第二接触器(KM2)为常闭式直流接触器。该下电电路解决了因下电接触器需持续供电而导致不节能或因下电接触器的失效模式不确定而影响系统供电可靠性的问题。

Description

下电电路、 直流组合电源系统及下电控制方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种下电电路、 直流组合电源系统及下电 控制方法。 背景技术 直流组合电源系统一般由直流电源和蓄电池组成, 其中, 直流电源将交流电或其 它能源转换为稳定直流电给负载供电和给蓄电池充电, 蓄电池作为后备电源, 在直流 电源停止工作时给负载供电。 由于蓄电池过度放电会引起蓄电池的损坏, 所以直流组 合电源系统必须要设计蓄电池过放电保护电路, 以保证蓄电池不会出现过放电损坏。 直流电源系统的蓄电池过放电保护一般采用分级下电的电路结构, 目前的主要电 路结构形式有两种: 第一种采用两个常闭式直流接触器, 如图 1所示, 当蓄电池放电到一定电压时, 直流接触器 KM2 断开, 切断次要负载的供电, 利用蓄电池剩下的电能保证重要负载 的供电; 当蓄电池电压继续下降到放电终了电压时, 直流接触器 KM1 断开, 切断全 部负载的供电, 以保护蓄电池不会因过放电而损坏。 使用常闭接触器的好处是在电源 正常工作的情况下, 直流接触器保持在吸合位置的情况下, 并不需要对其控制线包进 行供电, 以节约能源; 一旦控制电路失效, 接触器会一致保持在接通位置, 不会影响 负载的供电; 但是, 断开后需要利用蓄电池给其控制线包供电, 以保持在断开状态, 所以时间过长也会导致电池损坏, 且不利于节能。 第二种采用两个磁保持式直流接触器, 如图 2所示, 当蓄电池放电到一定电压时, 直流接触器 KM2 断开, 切断次要负载的供电, 利用蓄电池剩下的电能保证重要负载 的供电; 当蓄电池电压继续下降到放电终了电压时, 直流接触器 KM1 断开, 切断全 部负载的供电, 以保护蓄电池不会因过放电而损坏。 使用磁保持式接触器的好处是无 论接触器在吸合或断开的状态, 都不需要对其控制线包进行供电以保持其状态, 所以 非常有利于节能; 但是, 磁保持式接触器断开后重新接通需要控制电路对其控制线包 施加一个正向脉冲, 一旦该控制电路失灵, 即使直流电源恢复输出后也无法对次要负 载进行供电。 针对相关技术中上述至少之一的问题, 目前尚未提出有效的解决方案。 发明内容 本发明提供了一种下电电路、 直流组合电源系统及下电控制方法, 以至少解决相 关技术中下电电路不能同时具备蓄电池过放电保护节能和保证系统供电可靠性的问 题。 根据本发明的一个方面, 提供了一种下电电路, 其包括: 下电控制电路, 设置为 控制第一接触器和第二接触器的断开与接通; 上述第一接触器, 连接至蓄电池和上述 第一母线之间, 重要负载连接至上述第一母线上, 上述第一接触器为磁保持式直流接 触器; 上述第二接触器, 连接至第一母线和第二母线之间, 次要负载连接至上述第二 母线上, 上述第二接触器为常闭式直流接触器。 优选地, 上述第一接触器, 设置为在上述蓄电池的电压值到达第一预设值的情况 下, 根据上述下电控制电路的控制断开; 上述第二接触器, 在上述蓄电池的电压值到 达第二预设值的情况下, 根据上述下电控制电路的控制断开, 其中, 上述第二预设值 大于上述第一预设值。 根据本发明的另一方面, 提供了一种直流组合电源系统, 其包括: 上述任意一种 下电电路、 蓄电池、 直流电源。 优选地,上述蓄电池通过上述第一接触器连接至直流组合电源系统的第一母线上, 上述重要负载连接至上述第一母线上; 上述次要负载连接至上述直流组合电源系统的 第二母线上, 其中, 上述第二母线和上述第一母线通过上述第二接触器连接。 优选地, 上述直流电源连接至上述第一母线上。 根据本发明的又一方面, 提供了一种下电控制方法, 其包括: 通过上述下电控制 电路控制第一接触器的断开来切断第一母线,其中, 重要负载连接至上述第一母线上, 上述第一接触器为磁保持式直流接触器; 通过下电控制电路控制第二接触器的断开来 切断第二母线, 其中, 次要负载连接至上述第二母线上, 上述第二接触器为常闭式直 流接触器。 优选地, 在上述蓄电池的电压值到达第一预设值的情况下, 通过上述下电控制电 路控制第一接触器的断开; 在上述蓄电池的电压值到达第二预设值的情况下, 通过上 述下电控制电路控制第二接触器的断开,其中, 上述第二预设值大于上述第一预设值。 优选地,上述蓄电池通过上述第一接触器连接至直流组合电源系统的第一母线上, 上述重要负载连接至上述第一母线上; 上述次要负载连接至上述直流组合电源系统的 第二母线上, 其中, 上述第一母线和上述第二母线通过上述第二接触器连接。 优选地, 上述直流电源连接至上述第一母线上。 在本发明中, 通过下电控制电路来控制第一接触器和第二接触器的断开与接通, 该第二接触器连接至第一母线和第二母线之间, 次要负载连接至上述第二母线上, 当 该第二接触器断开时, 切断蓄电池对次要负载的供电, 上述第一接触器连接至上述蓄 电池和上述第一母线之间, 重要负载连接至上述第一母线上, 当该第一接触器断开时, 切断蓄电池对重要负载的供电,以实现对蓄电池上的重要负载和次要负载的分级下电, 实现对蓄电池的过放电保护, 上述第二接触器为常闭式直流接触器, 上述第一接触器 为磁保持式直流接触器, 在断开第一接触器的情况下, 除了可以切断蓄电池对重要负 载的供电, 同时还可以切断蓄电池对第二接触器的供电, 以可以实现节能的目的; 此 夕卜, 由于第二接触器为常闭式直流接触器, 即使在控制电路失灵的情况下, 当直流电 源恢复输出后,可以保证能对重要负载和次要负载供电, 从而提高系统的供电可靠性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术的第一种直流组合电源系统的结构示意图; 图 2是根据相关技术的第二种直流组合电源系统的结构示意图; 图 3是根据本发明实施例的下电电路的结构框图; 图 4是根据本发明实施例的直流组合电源系统的结构示意图; 以及 图 5是根据本发明实施例的下电控制方法的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种下电电路,如图 3所示,该下电电路包括:下电控制电路 102, 设置为控制第一接触器 104和第二接触器 106的断开与接通; 第一接触器 104, 连接 至蓄电池和上述第一母线之间, 重要负载连接至上述第一母线上, 上述第一接触器为 磁保持式直流接触器; 第二接触器 106, 连接至第一母线和第二母线之间, 次要负载 连接至上述第二母线上, 上述第二接触器为常闭式直流接触器。 在上述实施例中, 通过下电控制电路来控制第一接触器和第二接触器的断开与接 通, 该第二接触器连接至第一母线和第二母线之间, 次要负载连接至上述第二母线上, 当该第二接触器断开时, 切断蓄电池对次要负载的供电, 上述第一接触器连接至上述 蓄电池和上述第一母线之间, 重要负载连接至上述第一母线上, 当该第一接触器断开 时, 切断蓄电池对重要负载的供电, 以实现对蓄电池上的重要负载和次要负载的分级 下电, 实现对蓄电池的过放电保护, 上述第二接触器为常闭式直流接触器, 上述第一 接触器为磁保持式直流接触器, 在断开第一接触器的情况下, 除了可以切断蓄电池对 重要负载的供电, 同时还可以切断蓄电池对第二接触器的供电, 以可以实现节能的目 的; 此外, 由于第二接触器为常闭式直流接触器, 即使在控制电路失灵的情况下, 当 直流电源恢复输出后, 可以保证能对重要负载和次要负载供电, 从而提高系统的供电 可靠性。 为了实现分级下电, 在本优选实施例中, 上述第一接触器 104, 设置为在上述蓄 电池的电压值到达第一预设值的情况下, 根据上述下电控制电路的控制断开; 上述第 二接触器 106, 在上述蓄电池的电压值到达第二预设值的情况下, 根据上述下电控制 电路的控制断开, 其中, 上述第二预设值大于上述第一预设值。 即通过分别断开上述 第一接触器 104和上述第二接触器 106以来实现分级对重要负载和次要负载进行下电, 此外, 当蓄电池达到第一预设值的情况下再断开第一接触器 104, 可以实现切断蓄电 池对第二接触器 106的供电, 以进一步节省蓄电池的电能, 更好地对蓄电池进行过放 电保护。 优选地, 上述下电电路可以适用于各种利用直流电源和蓄电池组合而成的直流组 合电源系统。 在本优选实施例中, 提供了一种直流组合电源系统, 如图 4所示, 该直流组合电 源系统包括: 上述任意一种下电电路、 蓄电池、 直流电源。 在上述优选实施例中, 在系统正常工作期间, 系统正常对负载供电, 第一接触器 104 (磁保持接触器 KM1 ) 和第二接触器 106 (常闭直流接触器 KM2) 都保持在接通 状态, 不需要耗费电能对其的控制线包进行供电; 当直流电源停止工作后, 该系统继 续由蓄电池对负载进行供电; 当蓄电池放电到一定电压(相当于上述第二预设值)时, 控制电路断开第二接触器 106 (常闭式接触器) 以切断蓄电池对次要负载的供电; 当 蓄电池放电至放电终了电压 (相当于上述第一预设值) 时, 下电控制电路发一个反向 脉冲给第一接触器 104 (磁保持式接触器) 使其断开, 以切断蓄电池对重要负载的供 电(此时已切断蓄电池对全部负载的供电),同时,也切断蓄电池对第二接触器 106 (常 闭式接触器) 进行供电, 此时, 第二接触器 106 (常闭接触器) 恢复为接通状态, 所 有直流接触器均不需要再耗费电能, 相当于现有技术中的如图 1所示的第一种下电电 路更加节能。 同时, 由于第二接触器 106 (常闭接触器) 已恢复接通, 即使下电控制 电路出现故障, 在直流电源恢复输出后, 还可以同时保证对次要负载和重要负载的供 电, 相当于现有技术中的如图 2所示的第二种下电电路更加可靠。 在本优选实施例中, 提供了一种优选的上述直流组合电源系统的连接结构, 如图 4所示, 上述蓄电池通过上述第一接触器 104连接至直流组合电源系统的第一母线上, 上述重要负载的负极连接至上述第一母线上; 上述次要负载连接至上述直流组合电源 系统的第二母线上, 其中, 上述第一母线(相当于 1L-)和上述第二母线(相当于 2L-) 通过上述第二接触器 106连接。 为了确保在下电控制电路出故障的情况下, 当直流电源恢复输出时可以保证同时 对重要负载和次要负载进行供电, 在本优选实施例中, 如图 4所示, 上述直流电源连 接至上述第一母线上。 在本优选实施例中, 提供了一种下电控制方法, 如图 5所示, 该下电控制方法包 括步骤 S502值步骤 S504。 步骤 S502:通过上述下电控制电路控制第一接触器的断开来切断第一母线,其中, 重要负载连接至上述第一母线上, 上述第一接触器为磁保持式直流接触器; 步骤 S504: 通过下电控制电路控制第二接触器的断开来切断第二母线, 其中, 次 要负载连接至上述第二母线上, 上述第二接触器为常闭式直流接触器。 通过上述步骤, 通过下电控制电路来控制第一接触器和第二接触器的断开, 该第 二接触器连接至第一母线和第二母线之间, 次要负载连接至上述第二母线上, 当该第 二接触器断开时, 切断蓄电池对次要负载的供电, 上述第一接触器连接至上述蓄电池 和上述第一母线之间, 重要负载连接至上述第一母线上, 当该第一接触器断开时, 切 断蓄电池对重要负载的供电, 以实现对蓄电池上的重要负载和次要负载的分级下电, 实现对蓄电池的过放电保护, 上述第二接触器为常闭式直流接触器, 上述第一接触器 为磁保持式直流接触器, 在断开第一接触器的情况下, 除了可以切断蓄电池对重要负 载的供电, 同时还可以切断蓄电池对第二接触器的供电, 以可以实现节能的目的; 此 夕卜, 由于第二接触器为常闭式直流接触器, 即使在控制电路失灵的情况下, 当直流电 源恢复输出后,可以保证能对重要负载和次要负载供电, 从而提高系统的供电可靠性。 为了实现分级下电, 在本优选实施例中, 在上述蓄电池的电压值到达第一预设值 的情况下, 通过上述下电控制电路控制第一接触器的断开; 在上述蓄电池的电压值到 达第二预设值的情况下, 通过上述下电控制电路控制第二接触器的断开, 其中, 上述 第二预设值大于上述第一预设值。 在实施上述下电控制方法的过程中, 在本优选实施例中, 提供了一种优选的控制 方法, 例如, 以如图 4为例, 在优选实施例中, 直流组合电源系统以包括一个直流电 源 DC, 一个控制电路 Ctrl, 一组电池 Battery为例, 该直流组合电源系统以负输出为 例。 该直流组合电源系统的直流负母线分为两段, 即母线 1L-和母线 2L -, 第一段负母 线 1L-和第二段负母线 2L-之间通过常闭接触器 KM2 (相当于上述第二接触器 106)连 接, 将上述蓄电池通过磁保持接触器 KM1 (相当于上述第一接触器 104) 连接至直流 组合电源系统的第一母线 (1L-)上, 上述重要负载连接至上述第一母线上, 上述直流 电源连接至上述第一母线上, 并联至上述第一接触器 104和上述重要负载之间; 上述 次要负载连接至上述直流组合电源系统的第二母线 (2L-)上, 其中, 上述第一母线和 上述第二母线通过上述第二接触器 106连接。 因为该直流组合电源系统为负输出, 正 母线 L+不分段。在直流组合电源系统正常工作期间, 常闭直流接触器和磁保持式接触 器 KM1 (相当于上述第一接触器 104) 都保持在接通状态, 不需要耗费电能, 直流组 合电源系统正常对所有负载供电; 直流电源无输出后, 直流组合电源系统继续由蓄电 池对所有负载进行供电; 当蓄电池放电到一定电压 (相当于上述第二预设值) 时, 下 电控制电路断开常闭接触器, 以切断蓄电池对次要负载的供电; 当蓄电池放电至放电 终了电压 (相当于上述第一预设值) 时, 下电控制电路发一个反向脉冲给磁保持式接 触器, 以切断蓄电池对全部负载的供电, 同时, 也切断蓄电池对第二接触器 106 (常 闭接触器) 进行供电, 此时, 第二接触器 106 (常闭接触器) 恢复为接通状态, 所有 直流接触器均不需要再耗费电能, 相当于现有技术中的如图 1所示的第一种下电电路 更加节能。 同时, 由于第二接触器 106 (常闭接触器) 已恢复接通, 即使下电控制电 路出现故障,在直流电源恢复输出后,还可以同时保证对次要负载和重要负载的供电, 相当于现有技术中的如图 2所示的第二种下电电路更加可靠。 从以上的描述中, 可以看出, 上述优选实施例实现了如下技术效果: 通过下电控 制电路来控制第一接触器和第二接触器的断开与接通, 该第二接触器连接至第一母线 和第二母线之间, 次要负载连接至上述第二母线上, 当该第二接触器断开时, 切断蓄 电池对次要负载的供电, 上述第一接触器连接至上述蓄电池和上述第一母线之间, 重 要负载连接至上述第一母线上, 当该第一接触器断开时, 切断蓄电池对重要负载的供 电, 以实现对蓄电池上的重要负载和次要负载的分级下电, 实现对蓄电池的过放电保 护, 上述第二接触器为常闭式直流接触器, 上述第一接触器为磁保持式直流接触器, 在断开第一接触器的情况下, 除了可以切断蓄电池对重要负载的供电, 同时还可以切 断蓄电池对第二接触器的供电, 以可以实现节能的目的; 此外, 由于第二接触器为常 闭式直流接触器, 即使在控制电路失灵的情况下, 当直流电源恢复输出后, 可以保证 能对重要负载和次要负载供电, 从而提高系统的供电可靠性。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种下电电路, 包括:
下电控制电路, 设置为控制第一接触器和第二接触器的断开与接通; 所述第一接触器, 连接至蓄电池和第一母线之间, 重要负载连接至所述第 一母线上, 所述第一接触器为磁保持式直流接触器;
所述第二接触器, 连接至第一母线和第二母线之间, 次要负载连接至所述 第二母线上, 所述第二接触器为常闭式直流接触器。
2. 根据权利要求 1所述的下电电路, 其中,
所述第一接触器,设置为在所述蓄电池的电压值到达第一预设值的情况下, 根据所述下电控制电路的控制断开;
所述第二接触器, 在所述蓄电池的电压值到达第二预设值的情况下, 根据 所述下电控制电路的控制断开, 其中, 所述第二预设值大于所述第一预设值。
3. 一种直流组合电源系统, 包括: 权利要求 1或 2所述的下电电路、 蓄电池、 直 流电源。
4. 根据权利要求 3所述的直流组合电源系统, 其中,
所述蓄电池通过所述第一接触器连接至直流组合电源系统的第一母线上, 所述重要负载连接至所述第一母线上;
所述次要负载连接至所述直流组合电源系统的第二母线上, 其中, 所述第 二母线和所述第一母线通过所述第二接触器连接。
5. 根据权利要求 4所述的直流组合电源系统, 其中, 所述直流电源连接至所述第一母线上。
6. 一种下电控制方法, 包括:
通过下电控制电路控制第一接触器的断开来切断第一母线, 其中, 重要负 载连接至所述第一母线上, 所述第一接触器为磁保持式直流接触器;
通过所述下电控制电路控制第二接触器的断开来切断第二母线, 其中, 次 要负载连接至所述第二母线上, 所述第二接触器为常闭式直流接触器。
7. 根据权利要求 6所述的方法, 其中,
在蓄电池的电压值到达第一预设值的情况下, 通过所述下电控制电路控制 第一接触器的断开;
在所述蓄电池的电压值到达第二预设值的情况下, 通过所述下电控制电路 控制第二接触器的断开, 其中, 所述第二预设值大于所述第一预设值。
8. 根据权利要求 7所述的方法, 其中, 所述蓄电池通过所述第一接触器连接至直流组合电源系统的第一母线上, 所述重要负载连接至所述第一母线上;
所述次要负载连接至所述直流组合电源系统的第二母线上, 其中, 所述第 一母线和所述第二母线通过所述第二接触器连接。
9. 根据权利要求 8所述的方法, 其中,
所述直流电源连接至所述第一母线上。
PCT/CN2013/079736 2012-10-08 2013-07-19 下电电路、直流组合电源系统及下电控制方法 WO2013174316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210377980.8A CN103715750B (zh) 2012-10-08 2012-10-08 下电电路、直流组合电源系统及下电控制方法
CN201210377980.8 2012-10-08

Publications (1)

Publication Number Publication Date
WO2013174316A1 true WO2013174316A1 (zh) 2013-11-28

Family

ID=49623167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079736 WO2013174316A1 (zh) 2012-10-08 2013-07-19 下电电路、直流组合电源系统及下电控制方法

Country Status (2)

Country Link
CN (1) CN103715750B (zh)
WO (1) WO2013174316A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
CN113037508B (zh) * 2019-12-24 2022-10-25 华为技术有限公司 一种下电控制电路以及下电控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057290A (ja) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd 車両用の電源装置
CN101826747A (zh) * 2010-03-19 2010-09-08 艾默生网络能源有限公司 一种通信电源电路
CN101854072A (zh) * 2010-05-11 2010-10-06 中达电通股份有限公司 一种直流接触器控制系统、控制方法及总控制系统
CN101989515A (zh) * 2009-07-30 2011-03-23 艾默生网络能源系统北美公司 磁保持接触器和通讯电源系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864221A (en) * 1997-07-29 1999-01-26 Trw Inc. Dedicated avionics standby power supply
CN2437531Y (zh) * 2000-07-14 2001-07-04 徐平 电动自行车蓄电池过放电保护器
JP2002162150A (ja) * 2000-11-24 2002-06-07 Sawafuji Electric Co Ltd 車載用冷蔵庫の電源装置
CN201113406Y (zh) * 2007-09-11 2008-09-10 邢建峰 一种电池保护电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057290A (ja) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd 車両用の電源装置
CN101989515A (zh) * 2009-07-30 2011-03-23 艾默生网络能源系统北美公司 磁保持接触器和通讯电源系统
CN101826747A (zh) * 2010-03-19 2010-09-08 艾默生网络能源有限公司 一种通信电源电路
CN101854072A (zh) * 2010-05-11 2010-10-06 中达电通股份有限公司 一种直流接触器控制系统、控制方法及总控制系统

Also Published As

Publication number Publication date
CN103715750B (zh) 2017-02-08
CN103715750A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
TWI765084B (zh) 電動汽車高壓下電方法
WO2020156229A1 (zh) 控制系统
CN102280924B (zh) 一种继电保护装置持续供电系统
EP2790292B1 (en) Temporary back-up power system and temporary back-up power method
WO2012097594A1 (zh) 一种直流电源的电池保护装置和方法
CN203352250U (zh) 双输入的不间断电源系统
TWI643425B (zh) 具低待機功耗之充電電源系統及其控制方法
US9748796B2 (en) Multi-port energy storage system and control method thereof
CN105656065A (zh) 一种储能控制系统及方法
CN102709116B (zh) 低压交流控制回路中交流接触器及控制方法
CN101162843A (zh) 复合式不间断供电电源
US9614400B2 (en) DC energy store systems and methods of operating the same
CN106300462B (zh) 电池下电电路
WO2013174316A1 (zh) 下电电路、直流组合电源系统及下电控制方法
CN103259327A (zh) 一种电力控制系统
CN103840543A (zh) 不间断供电冗余系统ups后备电池组的供电方法及装置
CN105490368B (zh) 一种ups的辅助电源冗余式供电电路和启停控制系统
CN103078354A (zh) 备用电池保护系统
CN203301212U (zh) 一种双重备用节约型直流供电系统
CN209982174U (zh) 并联型交流不间断电源
CN211183516U (zh) 一种配电终端电源系统
CN203434739U (zh) 智能型通信电源直流接触器组网系统
CN207968056U (zh) 一种应用2v蓄电池的ups电源装置
CN106130175A (zh) 一种ups电源以及带有断电保护的计算机
CN101989515A (zh) 磁保持接触器和通讯电源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793932

Country of ref document: EP

Kind code of ref document: A1