WO2013172428A1 - Imide-amide compound and method for producing same, grease thickener, and grease composition - Google Patents

Imide-amide compound and method for producing same, grease thickener, and grease composition Download PDF

Info

Publication number
WO2013172428A1
WO2013172428A1 PCT/JP2013/063713 JP2013063713W WO2013172428A1 WO 2013172428 A1 WO2013172428 A1 WO 2013172428A1 JP 2013063713 W JP2013063713 W JP 2013063713W WO 2013172428 A1 WO2013172428 A1 WO 2013172428A1
Authority
WO
WIPO (PCT)
Prior art keywords
imide
general formula
represented
monoisocyanate
amide compound
Prior art date
Application number
PCT/JP2013/063713
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 山口
実希 藤原
龍一 上野
設楽 裕治
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2013172428A1 publication Critical patent/WO2013172428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M115/00Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof
    • C10M115/08Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/0813Amides used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/06Instruments or other precision apparatus, e.g. damping fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to an imide-amide compound, a production method thereof, a thickener for grease, and a grease composition.
  • double-row angular contact ball bearings were mainly used for compressor pulleys and car air conditioner electromagnetic clutch bearings.
  • single-row bearings have been used to reduce the weight and cost of pulleys and electromagnetic clutches. Tend to use.
  • the PV value the product of the bearing surface pressure P and the sliding speed V representing the limit of the load capacity of the bearing is increased. Due to its small space volume, it tends to be used under conditions where the amount of grease filled is small and the amount of heat generated by the grease is large.
  • Patent Documents 1 to 5 disclose grease compositions using urea-based thickeners.
  • the heat resistant temperature of these urea greases is about 180 ° C.
  • fluorine greases are known as greases that can withstand higher temperatures.
  • Fluorine grease is a grease composition containing perfluoropolyether as a base oil and ethylene tetrafluoride as a thickener, but it is very expensive because it uses a special chemically synthesized base oil. A cheaper heat resistant grease is required.
  • Patent Documents 6 to 7 disclose a grease composition using an imide thickener as an example of a grease having high heat resistance.
  • JP 2004-359809 A JP 2003-342593 A JP 2010-073320 A JP 2009-197162 A JP 2008-231310 A JP 54-113605 A Japanese Unexamined Patent Publication No. 57-109896
  • the present invention provides an imide-amide compound represented by the following general formula (1). [Wherein, R and X each represent a monovalent organic group. ]
  • the imide-amide compound of the present invention preferably has a structure represented by the following general formula (2) or (3). [Wherein R 1 and R 2 represent a monovalent organic group, X 1 represents a divalent organic group, X 2 represents a monovalent organic group, and R 1 and R in formula (2) 2 may be the same or different. ]
  • the present invention provides an imidocarboxylic acid represented by the following general formula (6) by reacting a trimellitic anhydride represented by the following formula (4) with a monoamine represented by the following general formula (5).
  • the present invention also provides a thickener for grease containing the imide-amide compound of the present invention.
  • the present invention also provides a grease composition containing a lubricating base oil and the imide-amide compound of the present invention.
  • FIG. 2 is a graph showing an infrared absorption spectrum of an imide-amide compound obtained in Example 1.
  • FIG. 2 is a diagram showing an FD-MS spectrum of an imide-amide compound obtained in Example 1.
  • the imide-amide compound according to the first embodiment of the present invention has a structure represented by the following general formula (1). [Wherein, R and X each represent a monovalent organic group. ]
  • the imide-amide compound according to this embodiment include imide-amide compounds represented by the following general formula (2) or general formula (3).
  • the imide-amide compound represented by the general formula (1) has two imide groups and two amide groups.
  • the imide-amide compound represented by the general formula (2) has one imide group and one amide group. [Wherein R 1 and R 2 represent a monovalent organic group, X 1 represents a divalent organic group, X 2 represents a monovalent organic group, and R 1 and R in formula (2) 2 may be the same or different. ]
  • X 1 represents a divalent organic group, preferably a divalent residue obtained by removing two isocyanate groups from diisocyanate.
  • Diisocyanate is defined as a compound in which two isocyanate groups are added to an aliphatic, aromatic hydrocarbon or heterocyclic compound, or a derivative thereof.
  • diisocyanate monomers from which X 1 is derived there are the following or a mixture thereof, but the present invention is not limited to these.
  • aliphatic diisocyanate examples include diisocyanates having a saturated and / or unsaturated linear, branched, or alicyclic hydrocarbon group. Specifically, methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,5-dimethylhexamethylene diisocyanate, 3-methoxyhexamethylene diisocyanate, heptamethylene diisocyanate, 2,5- Dimethylheptamethylene diisocyanate, 3-methylheptamethylene diisocyanate, 4,4-dimethylheptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 5-methylnonamethylene diisocyanate, decamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 1 , 3-Bis (
  • Aromatic diisocyanates include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, 1,4-diisocyanatonaphthalene, 1, 5-diisocyanatonaphthalene, 1,8-diisocyanatonaphthalene, 2,6-diisocyanatonaphthalene, 2,7-diisocyanatonaphthalene, 1,8-diisocyanatoanthracene, 2,6-diisocyanato Anthracene, 2,7-diisocyanatoanthracene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 2,4-diisocyanato (m-xylene),
  • X 2 represents a monovalent organic group, preferably a monovalent residue obtained by removing one isocyanate group from monoisocyanate.
  • Monoisocyanates are defined as compounds in which one isocyanate group is added to an aliphatic, aromatic hydrocarbon or heterocyclic compound, or derivatives thereof.
  • monoisocyanate monomers that form the structure of X 2 there are the following or a mixture thereof, but the invention is not limited to these.
  • aliphatic monoisocyanate examples include linear or branched aliphatic monoisocyanates, alicyclic monoisocyanates, and aromatic monoisocyanates, and hydrocarbon residues having 6 to 20 carbon atoms, preferably 8 to 18 carbon atoms.
  • Linear or branched alkyl monoisocyanate, linear or branched alkenyl monoisocyanate, cycloalkyl monoisocyanate, alkylcycloalkyl monoisocyanate, aryl monoisocyanate, alkylaryl monoisocyanate, arylalkyl A monoisocyanate etc. are mentioned.
  • Specific examples include hexyl monoisocyanate, heptyl monoisocyanate, octyl monoisocyanate, nonyl monoisocyanate, decyl monoisocyanate, undecyl monoisocyanate, dodecyl monoisocyanate, tridecyl monoisocyanate, tetradecyl monoisocyanate, pentadecyl monoisocyanate, hexadecyl.
  • Linear or branched alkyl monoisocyanates such as monoisocyanate, heptadecyl monoisocyanate, octadecyl monoisocyanate, nonadecyl monoisocyanate, eicosyl monoisocyanate; cyclohexyl monoisocyanate; methylcyclohexyl monoisocyanate, dimethylcyclohexyl monoisocyanate, ethyl Cyclohexyl monoisocyanate, die L-cyclohexyl monoisocyanate, propylcyclohexyl monoisocyanate, isopropylcyclohexyl monoisocyanate, 1-methyl-3-propylcyclohexyl monoisocyanate, butylcyclohexyl monoisocyanate, amylcyclohexyl monoisocyanate, amylmethylcyclohexyl monoisocyanate, hexylcyclohexy
  • the former become monoisocyanate monomer X 2 made structure, in terms of lubricity and grease performance, straight-chain or branched aliphatic monoisocyanates are preferred.
  • the carbon number of the linear or branched aliphatic monoisocyanate is preferably 4 to 20, more preferably 8 to 20.
  • the aliphatic monoisocyanate may be either a linear or branched saturated aliphatic monoisocyanate or an unsaturated aliphatic monoisocyanate. However, since the aliphatic monoisocyanate is excellent in oxidative stability, the linear or branched saturated aliphatic monoisocyanate. Isocyanates are preferred.
  • alicyclic monoisocyanate is preferable from the viewpoint of heat resistance.
  • the carbon number of the alicyclic monoisocyanate is preferably 4 to 20, more preferably 4 to 10.
  • the alicyclic monoisocyanate may be either a saturated alicyclic monoisocyanate or an unsaturated alicyclic isocyanate, but a saturated alicyclic isocyanate is preferred because of excellent oxidation stability.
  • aromatic monoisocyanate is preferable from the viewpoint of lubricity and heat resistance.
  • the carbon number of the aromatic monoisocyanate is preferably 6 to 20, more preferably 8 to 20.
  • R 1 and R 2 each represent a monovalent organic group, preferably a monovalent residue obtained by removing one amino group from an aliphatic monoamine, alicyclic monoamine or aromatic monoamine.
  • Examples of the monoamine that is the base of the structure of R 1 and R 2 include, but are not limited to, the following monoamines or mixtures thereof.
  • Examples of monoamines include aliphatic amines, alicyclic amines, and aromatic amines, which have a hydrocarbon residue having 6 to 20 carbon atoms, preferably 8 to 18 carbon atoms, and are linear or branched alkyls. Examples include amines, linear or branched alkenylamines, cycloalkylamines, alkylcycloalkylamines, arylamines, alkylarylamines, arylalkylamines, and the like.
  • linear or branched aliphatic monoamines are preferable from the viewpoint of lubricity and grease performance.
  • the carbon number of the linear or branched aliphatic monoamine is preferably 4 to 20, more preferably 8 to 20.
  • the aliphatic monoamine may be either a saturated aliphatic monoamine or an unsaturated aliphatic monoamine, but is preferably a saturated aliphatic amine because of excellent oxidation stability.
  • alicyclic monoamines are preferable.
  • the carbon number of the alicyclic monoamine is preferably 4 to 20, more preferably 4 to 10.
  • the alicyclic monoamine may be either a saturated alicyclic monoamine or an unsaturated alicyclic monoamine, but is preferably a saturated alicyclic monoamine because of excellent oxidation stability.
  • a mixture of an aliphatic chain monoamine, an alicyclic monoamine, and an aromatic monoamine is preferable.
  • the method for producing an imide-amide compound according to the second embodiment of the present invention comprises the steps of reacting trimellitic anhydride represented by the following formula (4) with a monoamine represented by the following general formula (5).
  • the first step of obtaining an imide carboxylic acid represented by the general formula (6) and the imide carboxylic acid reacted with an isocyanate represented by the following general formula (7) are represented by the following general formula (1).
  • a second step of obtaining an imide-amide compound [Wherein, R and X each represent a monovalent organic group. ]
  • the second step in the present embodiment is preferably performed by reacting the imide carboxylic acid with a diisocyanate represented by the following general formula (8) or a monoisocyanate represented by the following general formula (9).
  • an imide-amide compound represented by the general formula (2) or (3) is obtained.
  • R 1 and R 2 represent a monovalent organic group
  • X 1 represents a divalent organic group
  • X 2 represents a monovalent organic group
  • R 1 and R in formula (2) 2 may be the same or different.
  • an imide-amide compound represented mainly by the general formula (2) is formed.
  • an imide carboxylic acid represented by the general formula (6) and a compound obtained by reacting only one of the two isocyanate groups of the diisocyanate (that is, an imide represented by the general formula (3)) -Amide compounds) can be formed.
  • a mixture of the imide-amide compound represented by the general formula (2) and the imide-amide compound represented by the general formula (3) may be used as it is.
  • an imide-amide compound represented by the general formula (2) obtained by isolating a by-product from the mixture may be used.
  • Specific examples and preferred examples of the diisocyanate represented by the general formula (8) are the same as the specific examples and preferred examples of the diisocyanate which is the base of the structure of X 1 in the first embodiment. Further, specific examples and preferred examples of monoisocyanates of the general formula (9) are the same as the specific examples and preferred examples of the underlying monoisocyanate X 2 becomes the structure of the first embodiment. Specific examples and preferred examples of monoamines represented by the general formula (5) (including R 1 and R 2 in the general formula (2) and a monoamine that is the basis of the structure R 1 in the general formula (2)) are also included. Examples are the same as the specific examples and preferred examples of the diisocyanate that is the base of the structure X 1 in the first embodiment.
  • the charging ratio of trimellitic anhydride represented by formula (4) and monoamine represented by general formula (5) is trimellitic anhydride represented by general formula (4).
  • the monoamine represented by the general formula (5) is preferably 0.8 to 1.2 mol, particularly 0.9 to 1.1 mol, per 1 mol.
  • the reaction temperature is preferably 100 to 350 ° C., particularly 130 to 260 ° C. By reacting at such a temperature, the reaction intermediate represented by the general formula (6) can be obtained in high yield by dehydration cyclization.
  • the reaction is preferably carried out at 0 ° C. to 100 ° C. initially, and then 100 to 350 ° C., particularly 130 to 260 ° C.
  • the reaction time is preferably 1 to 24 hours, particularly 4 to 12 hours.
  • the reaction of the trimellitic anhydride represented by the general formula (4) and the monoamine represented by the general formula (5) in the first step is performed without solvent, in a solvent, or in a lubricating base oil described later.
  • the solvent organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, toluene, or a mixed solvent of two or more of these can be used.
  • the reaction between the imide carboxylic acid represented by the general formula (6) and the diisocyanate represented by the general formula (8) or the monoasocyanate represented by the general formula (9) is carried out in a solvent.
  • a solvent organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, toluene, or a mixed solvent of two or more of these can be used.
  • organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, toluene, or a mixed solvent of two or more of these can be used.
  • a lubricating base oil it can be used as it is as a grease composition.
  • the usage-amount of the diisocyanate represented by General formula (8) in a 2nd process in particular is not restrict
  • the reaction temperature is preferably 80 to 200 ° C, particularly 130 to 180 ° C.
  • the reaction time is preferably 0.5 to 10 hours, particularly 1 to 4 hours.
  • the usage-amount of the monoisocyanate represented by General formula (9) in a 2nd process in particular is not restrict
  • the reaction temperature is preferably 80 to 200 ° C, particularly 130 to 180 ° C.
  • the reaction time is preferably 0.5 to 10 hours, particularly 1 to 4 hours.
  • the thickener for grease according to the third embodiment of the present invention contains an imide-amide compound represented by the general formula (1).
  • Specific examples and preferred examples of the imide-amide compound represented by the general formula (1) are the same as the specific examples and preferred examples of the imide-amide compound according to the first embodiment.
  • the grease thickener according to the present embodiment may contain a thickener component other than the imide-amide compound.
  • thickener components include soap-type thickener components such as metal soaps and composite metal soaps; non-soap-type thickener components such as benton, silica gel, urea compounds, urea / urethane compounds, urethane compounds, imide compounds, etc. Any thickener component can be used.
  • the soap-based thickener component include sodium soap, calcium soap, aluminum soap, lithium soap and the like.
  • urea compound, urea / urethane compound, and urethane compound examples include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof.
  • the imide-amide compound according to the first embodiment and the thickener for grease according to the third embodiment are excellent in heat resistance, so that they are used for constant speed gears, transmission gears, steel making equipment, It is particularly preferably used as a grease thickener for ball bearings and roller bearings.
  • the use temperature in these applications is preferably ⁇ 40 ° C. to 300 ° C., more preferably ⁇ 40 ° C. to 250 ° C.
  • the grease composition according to the fourth embodiment of the present invention contains a lubricating base oil and an imide-amide compound represented by the above general formula (1), and the content of the imide-amide compound is the grease composition. 2 to 50% by mass based on the total amount of the product.
  • the content of the imide-amide compound represented by the general formula (1) is 2% by mass or more, preferably 5% by mass or more based on the total amount of the grease composition. , 50% by mass or less, preferably 40% by mass or less. If the content of the imide-amide compound is less than 2% by mass, the effect as a thickener is small, so that it does not become a sufficient grease, and if it exceeds 50% by mass, it becomes too hard as a grease and sufficient lubrication Since performance cannot be demonstrated, it is not preferable respectively.
  • the lubricating base oil of the grease composition according to this embodiment includes mineral oil and / or synthetic oil.
  • Mineral oil can be obtained by a method commonly used in the oil refining industry's lubricating oil production process.
  • a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation can be desolvated, solvent extracted, Examples include those purified by one or more treatments such as hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment.
  • synthetic oils include poly- ⁇ -olefins such as polybutene, 1-octene oligomer, 1-decene oligomer or hydrides thereof; ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, Diesters such as di3-ethylhexyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate; alkyl naphthalenes; alkylbenzenes, polyoxyalkylene glycols; Polyphenyl ethers; dialkyl diphenyl ethers; silicone oils; or mixtures thereof.
  • poly- ⁇ -olefins such as polybutene, 1-o
  • synthetic oils are preferable, and polyol esters, polyphenyl ethers, alkyl diphenyl ethers, and alkyl naphthalenes are more preferable.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil is preferably 2 to 40 mm 2 / s, more preferably 3 to 20 mm 2 / s.
  • the viscosity index of the lubricating base oil is preferably 90 or higher, more preferably 100 or higher.
  • the grease composition according to the present embodiment other than the imide-amide compound represented by the above general formula (1), as necessary, in order to further improve the performance, as long as the properties are not impaired.
  • Thickeners other than the imide-amide compound represented by the general formula (1) include soap-type thickeners such as metal soaps and composite metal soaps; Benton, silica gel, urea compounds, urea / urethane compounds, urethanes Any thickeners such as non-soap thickeners such as compounds and imide compounds can be used.
  • the soap-based thickener include sodium soap, calcium soap, aluminum soap, lithium soap and the like.
  • Examples of the urea compound, urea / urethane compound, and urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof.
  • an imide-amide compound other than the imide-amide compound represented by the general formula (1) may be contained.
  • solid lubricants include graphite, carbon black, fluorinated graphite, polytetrafluoroethylene, molybdenum disulfide, antimony sulfide, and alkali (earth) metal borates.
  • extreme pressure agent examples include organic zinc compounds such as zinc dialkyldithiophosphate and zinc diaryldithiophosphate; sulfur-containing compounds such as dihydrocarbyl polysulfide, sulfide ester, thiazole compound and thiadiazole compound; phosphates and phosphites Etc.
  • antioxidants include phenol compounds such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-p-cresol; dialkyldiphenylamine, phenyl- ⁇ -naphthylamine, p- Examples thereof include amine compounds such as alkylphenyl- ⁇ -naphthylamine; sulfur compounds; phenothiazine compounds.
  • oily agents include amines such as laurylamine, myristylamine, palmitylamine, stearylamine, oleylamine; higher alcohols such as lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol; laurin Higher fatty acids such as acid, myristic acid, palmitic acid, stearic acid, oleic acid; fatty acid esters such as methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl oleate; laurylamide, myristylamide, Amides such as palmitylamide, stearylamide, oleylamide; oils and fats.
  • amines such as laurylamine, myristylamine, palmitylamine, stearylamine, oleylamine
  • higher alcohols such as lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol
  • rust inhibitor examples include metal soaps; partial alcohol esters such as sorbitan fatty acid esters; amines; phosphoric acid;
  • viscosity index improver examples include polymethacrylate, polyisobutylene, and polystyrene.
  • cleaning dispersant examples include sulfonate, salicylate, phenate, and the like.
  • the lubricant base oil contains the imide-amide compound represented by the general formula (1) or a thickener containing the imide-amide compound, and further necessary.
  • other additives may be mixed and the mixture stirred and then passed through a roll mill or the like.
  • the grease composition according to the fourth embodiment is excellent in heat resistance, it is used for constant speed gears, transmission gears, automobiles, steelmaking equipment, industrial machinery, precision machinery, ball bearings used at high temperatures. It is particularly preferably used as grease for roller bearings and the like.
  • the use temperature in these applications is preferably ⁇ 40 ° C. to 300 ° C., more preferably ⁇ 40 ° C. to 250 ° C.
  • Example 1 In 250 mL of NMP (N-methyl-2-pyrrolidone) solvent, 43.8 g of trimellitic anhydride represented by the following formula (4) and 42.3 g of dodecylamine represented by the following formula (10) The reaction was carried out at 25 ° C. for 4 hours while cooling. Subsequently, 250 mL of toluene was added, and the mixture was heated for 4 hours while being azeotropically dehydrated using a Dean-Stark apparatus at reflux temperature.
  • NMP N-methyl-2-pyrrolidone
  • the infrared absorption spectrum of imide-amide compound-1 (manufactured by JASCO Corporation, FT / IR-410) was measured by the KBr method. The result is shown in FIG. As shown in FIG. 1, about 1720 cm -1 and derived from cyclic imido group, absorption of about 1660 cm -1 derived from about 1780 cm -1, and an amide group is confirmed, about attributed to isocyanide groups of the reaction raw material Absorption at 2270 cm ⁇ 1 was not confirmed. From this result, it was confirmed that the obtained solid was an imide-amide compound.
  • imide-amide compound-1 was subjected to FD-MS measurement (JEOL Ltd. JMS-T100GC, ionization method: FD +, solvent: on-propylphenol). The result is shown in FIG. The peak attributed to the imide-amide compound represented by the general formula (14) was 97% with respect to the total ionic strength.
  • Examples 2 to 18 monoamines represented by the above formulas (10) to (12) or the following formulas (15) to (18) as monoamines represented by the general formula (4) are represented by the general formula (8).
  • imide compounds -2 to 18 were obtained as solids.
  • Examples 5 to 7, 14 and 16 use two types of monoamines, and after synthesizing each of the intermediates in the same manner as in Example 1, the molar ratio was 1: 1 and the two types of intermediates were combined.
  • the infrared absorption spectra were measured in the same manner as in Example 1.
  • imide-amide compounds-2 to 18 obtained in Examples 2 to 18 were subjected to FD-MS measurement in the same manner as in Example 1.
  • the imide-amide compounds contained are shown in Tables 1 to 6, respectively. Peaks attributed to imide-amide compounds (compounds represented by the following formulas (23) to (39)) were observed.
  • the intensity ratios of the contained imide-amide compounds to the total ion intensity observed in each example are shown in Tables 1 to 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)
  • Rolling Contact Bearings (AREA)
  • Indole Compounds (AREA)

Abstract

The invention provides an imide-amide compound represented by general formula (1). This imide-amide compound has excellent durability under high temperature, particularly when used as a thickener for grease. (In the formula, R and X each represent a monovalent organic group.)

Description

イミド-アミド化合物及びその製造方法、グリース用増ちょう剤並びにグリース組成物IMIDE-AMIDE COMPOUND AND METHOD FOR PRODUCING THE SAME, GREASE THINNER
 本発明は、イミド-アミド化合物及びその製造方法、グリース用増ちょう剤並びにグリース組成物に関する。 The present invention relates to an imide-amide compound, a production method thereof, a thickener for grease, and a grease composition.
 機械システムの高性能化、高出力化、高効率化、小型化にともない、軸受、歯車などの機械要素の使用環境が厳しくなり、これらに使用されるグリースにはより耐熱性の高いものが求められるようになっている。たとえば自動車においては、小型軽量化を目的としたFF(前輪駆動)化や車内の居住空間の拡大要望により、エンジンルーム空間の減少が進んでいる。エンジンルーム空間の減少には、エンジンルーム内の各部品の小型軽量化が必要とされ、上記の電装部品・エンジン補機においても一層の小型軽量化が進められている。一方、電装部品・エンジン補機にも高性能・高出力化が求められている。しかし、小型化による出力の低下は避けられないため、例えばオルタネータやカーエアコン用電磁クラッチでは高速化することにより出力の低下分を補っているが、これに伴いアイドラプーリも同様に高速化することになり、潤滑箇所で発熱が助長される。また、エンジン稼働時の静粛化を図るべくエンジンルームの密閉化が進められているが、この場合もエンジンルーム内の高温化が促進されることとなる。 As machine systems become more sophisticated, more powerful, more efficient, and smaller, the use environment of machine elements such as bearings and gears becomes severe, and the grease used in these needs to have higher heat resistance. It is supposed to be. For example, in an automobile, the engine room space is decreasing due to the demand for FF (front wheel drive) for the purpose of reducing the size and weight and the demand for expanding the living space in the vehicle. In order to reduce the engine room space, it is necessary to reduce the size and weight of each component in the engine room, and further reduction in size and weight is being promoted in the above-described electrical components and engine auxiliary machines. On the other hand, high performance and high output are also required for electrical components and engine accessories. However, output reduction due to miniaturization is inevitable, so for example, alternators and car air conditioner electromagnetic clutches compensate for the reduction in output by increasing the speed, but with this, the idler pulley is also increased in speed. And heat generation is promoted at the lubrication point. In addition, the engine room is being sealed in order to achieve quietness during engine operation, but in this case as well, the temperature increase in the engine room is promoted.
 さらに、コンプレッサー用プーリ、カーエアコン電磁クラッチ用軸受では、主に、複列アンギュラ玉軸受が使用されていたが、近時、プーリや電磁クラッチの軽量化や低コスト化のため、単列軸受を使用する傾向にある。複列アンギュラ玉軸受と使用条件を同じにして使用される単列玉軸受では、軸受の負荷容量の限界を表すPV値(軸受面圧Pとすべり速度Vとの積)が大きくなること、軸受空間容積が小さいことなどから、グリース封入量が少なく、グリースの発熱量が多い条件で使用される傾向にある。 Furthermore, double-row angular contact ball bearings were mainly used for compressor pulleys and car air conditioner electromagnetic clutch bearings. Recently, single-row bearings have been used to reduce the weight and cost of pulleys and electromagnetic clutches. Tend to use. In a single row ball bearing used under the same operating conditions as a double row angular contact ball bearing, the PV value (the product of the bearing surface pressure P and the sliding speed V) representing the limit of the load capacity of the bearing is increased. Due to its small space volume, it tends to be used under conditions where the amount of grease filled is small and the amount of heat generated by the grease is large.
 このように、電装部品やエンジン補機の使用条件は益々苛酷となっているため、これらの転がり軸受に適用されるグリースには、特に高温下での耐久性向上が必要となってきている。さらに近年では、より安価なコストパフォーマンスに優れるグリースが望まれている。 As described above, since the use conditions of electrical parts and engine accessories are becoming severer, the grease applied to these rolling bearings is required to be improved in durability particularly at high temperatures. Furthermore, in recent years, greases that are more inexpensive and excellent in cost performance have been desired.
 従来のグリースとして、特許文献1~5にはウレア系増ちょう剤を用いたグリース組成物が開示されている。これらウレア系グリースの耐熱温度は180℃程度であり、これより高温域に耐えうるグリースとしては、フッ素系グリースが知られている。フッ素系グリースは、パーフルオロポリエーテルを基油とし、四フッ化エチレンを増ちょう剤として配合したグリース組成物であるが、特殊な化学合成基油を用いていることから非常に高価であり、より安価な耐熱グリースが求められている。 As conventional greases, Patent Documents 1 to 5 disclose grease compositions using urea-based thickeners. The heat resistant temperature of these urea greases is about 180 ° C., and fluorine greases are known as greases that can withstand higher temperatures. Fluorine grease is a grease composition containing perfluoropolyether as a base oil and ethylene tetrafluoride as a thickener, but it is very expensive because it uses a special chemically synthesized base oil. A cheaper heat resistant grease is required.
 また、特許文献6~7には、耐熱性の高いグリースの一例として、イミド系増ちょう剤を用いたグリース組成物が開示されている。 Patent Documents 6 to 7 disclose a grease composition using an imide thickener as an example of a grease having high heat resistance.
特開2004-359809号公報JP 2004-359809 A 特開2003-342593号公報JP 2003-342593 A 特開2010-077320号公報JP 2010-073320 A 特開2009-197162号公報JP 2009-197162 A 特開2008-231310号公報JP 2008-231310 A 特開昭54-113605号公報JP 54-113605 A 特開昭57-109896号公報Japanese Unexamined Patent Publication No. 57-109896
 本発明の目的は、新規なイミド-アミド化合物及びその製造方法を提供すること、特にグリースの増ちょう剤として用いられたときに、高温下における耐久性に優れるイミド-アミド化合物およびその製造方法を提供することにある。また、本発明の他の目的は、そのイミド-アミド化合物を用いたグリース用増ちょう剤及びグリース組成物を提供することにある。 An object of the present invention is to provide a novel imide-amide compound and a method for producing the same, and particularly to provide an imide-amide compound having excellent durability at high temperatures when used as a thickener for grease and a method for producing the same. It is to provide. Another object of the present invention is to provide a thickener for grease and a grease composition using the imide-amide compound.
 本発明は、下記一般式(1)で表されるイミド-アミド化合物を提供する。
Figure JPOXMLDOC01-appb-C000009
[式中、R及びXはそれぞれ1価の有機基を示す。]
The present invention provides an imide-amide compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
[Wherein, R and X each represent a monovalent organic group. ]
 本発明のイミド-アミド化合物は、下記一般式(2)又は(3)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
[式中、R及びRは1価の有機基を示し、Xは2価の有機基を示し、Xは1価の有機基を示し、式(2)中のR及びRは同一でも異なっていてもよい。]
The imide-amide compound of the present invention preferably has a structure represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
[Wherein R 1 and R 2 represent a monovalent organic group, X 1 represents a divalent organic group, X 2 represents a monovalent organic group, and R 1 and R in formula (2) 2 may be the same or different. ]
 また、本発明は、下記式(4)で表されるトリメリット酸無水物と下記一般式(5)で表されるモノアミンとを反応させて下記一般式(6)で表されるイミドカルボン酸を得る第1の工程と、前記イミドカルボン酸と下記一般式(7)で表されるイソシアネートとを反応させて下記一般式(1)で表されるイミド-アミド化合物を得る第2の工程と、
を備えるイミド化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[式中、R及びXはそれぞれ1価の有機基を示す。]
Further, the present invention provides an imidocarboxylic acid represented by the following general formula (6) by reacting a trimellitic anhydride represented by the following formula (4) with a monoamine represented by the following general formula (5). A second step of obtaining an imide-amide compound represented by the following general formula (1) by reacting the imide carboxylic acid with an isocyanate represented by the following general formula (7): ,
The manufacturing method of an imide compound provided with this is provided.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[Wherein, R and X each represent a monovalent organic group. ]
 また、本発明は、上記本発明のイミド-アミド化合物を含有するグリース用増ちょう剤を提供する。 The present invention also provides a thickener for grease containing the imide-amide compound of the present invention.
 また、本発明は、潤滑油基油と、上記本発明のイミド-アミド化合物とを含有するグリース組成物を提供する。 The present invention also provides a grease composition containing a lubricating base oil and the imide-amide compound of the present invention.
 なお、本発明者らの検討によれば、上記特許文献1~7に開示されるようなウレア系増ちょう剤を用いたグリース組成物の場合、高温下で使用した場合など、使用環境によっては十分な耐久性が得られないことが判明した。これに対して、本発明のイミド-アミド化合物、グリース用増ちょう剤及びグリース組成物は、高温下で使用した場合にも十分な耐久性を発揮できるものであることを本発明者らは確認している。 According to the study by the present inventors, in the case of a grease composition using a urea-based thickener as disclosed in the above Patent Documents 1 to 7, depending on the use environment, such as when used at high temperatures. It was found that sufficient durability could not be obtained. In contrast, the present inventors have confirmed that the imide-amide compound, the thickener for grease and the grease composition of the present invention can exhibit sufficient durability even when used at high temperatures. is doing.
 以上の通り、本発明によれば、新規なイミド-アミド化合物、特にグリースの増ちょう剤として用いられたときに、高温下における耐久性に優れるイミド-アミド化合物及びその製造方法を提供することが可能となる。 As described above, according to the present invention, it is possible to provide a novel imide-amide compound, particularly an imide-amide compound having excellent durability at high temperatures when used as a thickener for grease, and a method for producing the same. It becomes possible.
実施例1で得られたイミド-アミド化合物の赤外吸収スペクトルを示す図である。2 is a graph showing an infrared absorption spectrum of an imide-amide compound obtained in Example 1. FIG. 実施例1で得られたイミド-アミド化合物のFD-MSスペクトルを示す図である。2 is a diagram showing an FD-MS spectrum of an imide-amide compound obtained in Example 1. FIG.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
[第1実施形態:イミド-アミド化合物]
 本発明の第1実施形態に係るイミド-アミド化合物は、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000017
[式中、R及びXはそれぞれ1価の有機基を示す。]
[First embodiment: imide-amide compound]
The imide-amide compound according to the first embodiment of the present invention has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000017
[Wherein, R and X each represent a monovalent organic group. ]
 本実施形態に係るイミド-アミド化合物の好ましい例としては、下記一般式(2)又は一般式(3)で表されるイミド-アミド化合物が挙げられる。一般式(1)で表されるイミド-アミド化合物はイミド基を2個有し、アミド基を2個有する。また、一般式(2)で表されるイミド-アミド化合物はイミド基を1個有し、アミド基を1個有する。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
[式中、R及びRは1価の有機基を示し、Xは2価の有機基を示し、Xは1価の有機基を示し、式(2)中のR及びRは同一でも異なっていてもよい。]
Preferable examples of the imide-amide compound according to this embodiment include imide-amide compounds represented by the following general formula (2) or general formula (3). The imide-amide compound represented by the general formula (1) has two imide groups and two amide groups. Further, the imide-amide compound represented by the general formula (2) has one imide group and one amide group.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
[Wherein R 1 and R 2 represent a monovalent organic group, X 1 represents a divalent organic group, X 2 represents a monovalent organic group, and R 1 and R in formula (2) 2 may be the same or different. ]
 Xは2価の有機基を示し、好ましくはジイソシアネートから2つのイソシアネート基を除いた2価の残基を示す。ジイソシアネートは、脂肪族、芳香族炭化水素または複素環化合物、若しくはこれらの誘導体に2つのイソシアネート基が付加された化合物として定義される。Xなる構造の元となるジイソシアネートモノマーの中には次のもの又はそれらの混合物があるが、これらに限定されるものではない。 X 1 represents a divalent organic group, preferably a divalent residue obtained by removing two isocyanate groups from diisocyanate. Diisocyanate is defined as a compound in which two isocyanate groups are added to an aliphatic, aromatic hydrocarbon or heterocyclic compound, or a derivative thereof. Among the diisocyanate monomers from which X 1 is derived, there are the following or a mixture thereof, but the present invention is not limited to these.
 脂肪族ジイソシアネートとしては、例えば飽和および又は不飽和の直鎖状、分岐鎖、又は脂環式の炭化水素基を有するジイソシアネートが挙げられる。具体的にはメチレンジイソシアネート、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,5-ジメチルヘキサメチレンジイソシアネート、3-メトキシヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、2,5-ジメチルヘプタメチレンジイソシアネート、3-メチルヘプタメチレンジイソシアネート、4,4-ジメチルヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、5-メチルノナメチレンジイソシアネート、デカメチレンジイソシアネート、1,4-ジイソシアナトシクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、4,4’-メチレンビス(シクロヘキシルイソシアネート)、4,4'-メチレンビス(2-メチルシクロヘキシルイソシアネート)、ビス(イソシアナトメチル)ノルボルナン、1,3-ジイソシアナトアダマンタン、イソホロンジイソシアネート、1,8-ジイソシアナトp-メンタンなどを挙げることができる。 Examples of the aliphatic diisocyanate include diisocyanates having a saturated and / or unsaturated linear, branched, or alicyclic hydrocarbon group. Specifically, methylene diisocyanate, ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,5-dimethylhexamethylene diisocyanate, 3-methoxyhexamethylene diisocyanate, heptamethylene diisocyanate, 2,5- Dimethylheptamethylene diisocyanate, 3-methylheptamethylene diisocyanate, 4,4-dimethylheptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 5-methylnonamethylene diisocyanate, decamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 1 , 3-Bis (isocyanatomethyl) cyclohexa 1,4-bis (isocyanatomethyl) cyclohexane, 4,4′-methylenebis (cyclohexyl isocyanate), 4,4′-methylenebis (2-methylcyclohexyl isocyanate), bis (isocyanatomethyl) norbornane, 1,3- Examples thereof include diisocyanatoadamantane, isophorone diisocyanate, and 1,8-diisocyanato p-menthane.
 芳香族ジイソシアネートとしては、o-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、1,4-ジイソシアナトナフタレン、1,5-ジイソシアナトナフタレン、1,8-ジイソシアナトナフタレン、2,6-ジイソシアナトナフタレン、2,7-ジイソシアナトナフタレン、1,8-ジイソシアナトアントラセン、2,6-ジイソシアナトアントラセン、2,7-ジイソシアナトアントラセン、2,4-ジイソシアナトトルエン、2,6-ジイソシアナトトルエン、2,4-ジイソシアナト(m-キシレン)、2,5-ジイソシアナト(m-キシレン)、1,1-ビス(3-イソシアナトフェニル)エタン、1,1-ビス(4-イソシアナトフェニル)エタン、2,2-ビス(3-イソシアナトフェニル)プロパン、2,2-ビス(4-イソシアナトフェニル)プロパン、2,2-ビス(4-イソシアナト3,5-ジメチルフェニル)プロパン、2,5-ジイソシアナトピリジン、2,6-ジイソシアナトピリジン、3,5-ジイソシアナトピリジン、2,4-ジイソシアナトトルエンベンジジン、3,3’-ジイソシアナトビフェニル、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジイソシアナトベンゾフェノン、4,4’-ジイソシアナトベンゾフェノン、3,3’-ジイソシアナトジフェニルエーテル、4,4’-ジイソシアナトジフェニルエーテル、3,3’-ジイソシアナトジフェニルメタン、4,4’-ジイソシアナトジフェニルメタン、4,4’-ジイソシアナト3,3’,5,5’-テトラメチルジフェニルメタン、3,3’-ジイソシアナトジフェニルスルホン、4,4’-ジイソシアナトジフェニルスルホン、3,3’-ジイソシアナトジフェニルスルフィド、4,4’-ジイソシアナトジフェニルスルフィド、4,4’-ジイソシアナトジフェニルチオエーテル、4,4’-ジイソシアナト3,3’,5,5’-テトラメチルジフェニルエーテル、4,4’-ジイソシアナト3,3’,5,5’-テトラエチルジフェニルエーテル、1,3-ビス(3-イソシアナトフェノキシ)ベンゼン、1,3-ビス(4-イソシアナトフェノキシ)ベンゼン、1,4-ビス(3-イソシアナトフェノキシ)ベンゼン、1,4-ビス(4-イソシアナトフェノキシ)ベンゼン、2,6-ビス(3-イソシアナトフェノキシ)ピリジン、1,4-ビス(3-イソシアナトフェニルスルホニル)ベンゼン、1,4-ビス(4-イソシアナトフェニルスルホニル)ベンゼン、1,4-ビス(3-イソシアナトフェニルチオエーテル)ベンゼン、1,4-ビス(4-イソシアナトフェニルチオエーテル)ベンゼン、4,4’-ビス(3-イソシアナトフェノキシ)ジフェニルスルホン、4,4’-ビス(4-イソシアナトフェノキシ)ジフェニルスルホン、4,4’-ビス(4-イソシアナトフェノキシ)ビフェニル、ビス[4-(3-イソシアナトフェノキシ)フェニル]スルホン、ビス[4-(4-イソシアナトフェノキシ)フェニル]スルホン、ビス[4-(4-イソシアナトフェノキシ)フェニル]エーテル、ビス[4-(4-イソシアナトフェノキシ)フェニル]メタン、ビス[3-メチル-4-(4-イソシアナトフェノキシ)フェニル]メタン、ビス[3-クロロ-4-(4-イソシアナトフェノキシ)フェニル]メタン、ビス[3,5-ジメチル-4-(4-イソシアナトフェノキシ)フェニル]メタン、1,1-ビス[4-(4-イソシアナトフェノキシ)フェニル]エタン、1,1-ビス[3-メチル-4-(4-イソシアナトフェノキシ)フェニル]エタン、1,1-ビス[3-クロロ-4-(4-イソシアナトフェノキシ)フェニル]エタン、1,1-ビス[3,5-ジメチル-4-(4-イソシアナトフェノキシ)フェニル]エタン、2,2-ビス[4-(4-イソシアナトフェノキシ)フェニル]プロパン、2,2-ビス[3-メチル-4-(4-イソシアナトフェノキシ)フェニル]プロパン、2,2-ビス[3-クロロ-4-(4-イソシアナトフェノキシ)フェニル]プロパン、2,2-ビス[3,5-ジメチル-4-(4-イソシアナトフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-イソシアナトフェノキシ)フェニル]ブタン、2,2-ビス[3-メチル-4-(4-イソシアナトフェノキシ)フェニル]ブタン、2,2-ビス[3,5-ジメチル-4-(4-イソシアナトフェノキシ)フェニル]ブタン、2,2-ビス[3,5-ジブロモ-4-(4-イソシアナトフェノキシ)フェニル]ブタン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(4-イソシアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス[3-メチル-4-(4-イソシアナトフェノキシ)フェニル]プロパン、ビス(3-イソシアナトフェニル)テトラメチルジシラン、ビス(4-イソシアナトフェニル)テトラメチルジシラン、ビス(3-メチル-4-イソシアナトフェニル)テトラメチルジシラン、ビス(3-イソシアナトフェノキシ)テトラメチルジシラン、ビス(4-イソシアナトフェノキシ)テトラメチルジシラン、ビス(3-イソシアナトフェノキシ)-1,1,3,3-テトラメチルジシロキサン、ビス(4-イソシアナトフェノキシ)-1,1,3,3-テトラメチルジシロキサン等が例示できる。 Aromatic diisocyanates include o-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, 1,4-diisocyanatonaphthalene, 1, 5-diisocyanatonaphthalene, 1,8-diisocyanatonaphthalene, 2,6-diisocyanatonaphthalene, 2,7-diisocyanatonaphthalene, 1,8-diisocyanatoanthracene, 2,6-diisocyanato Anthracene, 2,7-diisocyanatoanthracene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 2,4-diisocyanato (m-xylene), 2,5-diisocyanato (m-xylene) 1,1-bis (3- Socyanatophenyl) ethane, 1,1-bis (4-isocyanatophenyl) ethane, 2,2-bis (3-isocyanatophenyl) propane, 2,2-bis (4-isocyanatophenyl) propane, 2, 2-bis (4-isocyanato 3,5-dimethylphenyl) propane, 2,5-diisocyanatopyridine, 2,6-diisocyanatopyridine, 3,5-diisocyanatopyridine, 2,4-diisocyanato Toluenebenzidine, 3,3'-diisocyanatobiphenyl, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,2'-diisocyanatobenzophenone, 4,4 '-Diisocyanatobenzophenone, 3,3'-Diisocyanatodiphenyl ether, 4,4'-Diisocyanatodipheni Ether, 3,3'-diisocyanatodiphenylmethane, 4,4'-diisocyanatodiphenylmethane, 4,4'-diisocyanato 3,3 ', 5,5'-tetramethyldiphenylmethane, 3,3'-diisocyanato Diphenylsulfone, 4,4′-diisocyanatodiphenylsulfone, 3,3′-diisocyanatodiphenylsulfide, 4,4′-diisocyanatodiphenylsulfide, 4,4′-diisocyanatodiphenylthioether, 4,4 '-Diisocyanato 3,3', 5,5'-tetramethyldiphenyl ether, 4,4'-diisocyanato 3,3 ', 5,5'-tetraethyl diphenyl ether, 1,3-bis (3-isocyanatophenoxy) benzene, 1,3-bis (4-isocyanatophenoxy) benzene, 1,4-bis ( 3-isocyanatophenoxy) benzene, 1,4-bis (4-isocyanatophenoxy) benzene, 2,6-bis (3-isocyanatophenoxy) pyridine, 1,4-bis (3-isocyanatophenylsulfonyl) benzene 1,4-bis (4-isocyanatophenylsulfonyl) benzene, 1,4-bis (3-isocyanatophenylthioether) benzene, 1,4-bis (4-isocyanatophenylthioether) benzene, 4,4 ′ -Bis (3-isocyanatophenoxy) diphenylsulfone, 4,4'-bis (4-isocyanatophenoxy) diphenylsulfone, 4,4'-bis (4-isocyanatophenoxy) biphenyl, bis [4- (3- Isocyanatophenoxy) phenyl] sulfone, bis [4- (4-isocyanatophenoxy) ) Phenyl] sulfone, bis [4- (4-isocyanatophenoxy) phenyl] ether, bis [4- (4-isocyanatophenoxy) phenyl] methane, bis [3-methyl-4- (4-isocyanatophenoxy) Phenyl] methane, bis [3-chloro-4- (4-isocyanatophenoxy) phenyl] methane, bis [3,5-dimethyl-4- (4-isocyanatophenoxy) phenyl] methane, 1,1-bis [ 4- (4-isocyanatophenoxy) phenyl] ethane, 1,1-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] ethane, 1,1-bis [3-chloro-4- (4 -Isocyanatophenoxy) phenyl] ethane, 1,1-bis [3,5-dimethyl-4- (4-isocyanatophenoxy) phenyl] ethane, 2 2-bis [4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [3-chloro- 4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [3,5-dimethyl-4- (4-isocyanatophenoxy) phenyl] propane, 2,2-bis [4- (4-isocyanate) Natophenoxy) phenyl] butane, 2,2-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] butane, 2,2-bis [3,5-dimethyl-4- (4-isocyanatophenoxy) ) Phenyl] butane, 2,2-bis [3,5-dibromo-4- (4-isocyanatophenoxy) phenyl] butane, 1,1,1,3,3,3-hexafluoro-2, 2-bis (4-isocyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis [3-methyl-4- (4-isocyanatophenoxy) phenyl] propane, Bis (3-isocyanatophenyl) tetramethyldisilane, bis (4-isocyanatophenyl) tetramethyldisilane, bis (3-methyl-4-isocyanatophenyl) tetramethyldisilane, bis (3-isocyanatophenoxy) tetramethyl Disilane, bis (4-isocyanatophenoxy) tetramethyldisilane, bis (3-isocyanatophenoxy) -1,1,3,3-tetramethyldisiloxane, bis (4-isocyanatophenoxy) -1,1,3 And 3-tetramethyldisiloxane.
 Xなる構造の元となるジイソシアネートモノマーとしては、芳香族炭化水素基に2つのイソシアネート基が結合した化合物が、特には(a)ジイソシアナトトルエン又はその誘導体及び(b)ジイソシアナトジフェニルメタンまたはその誘導体が好ましい。 Examples of the diisocyanate monomer that forms the structure of X 1 include compounds in which two isocyanate groups are bonded to an aromatic hydrocarbon group, particularly (a) diisocyanatotoluene or a derivative thereof and (b) diisocyanatodiphenylmethane or Its derivatives are preferred.
 Xは1価の有機基を示し、好ましくはモノイソシアネートから1つのイソシアネート基を除いた1価の残基である。モノイソシアネートは、脂肪族、芳香族炭化水素または複素環化合物、若しくはこれらの誘導体に1つのイソシアネート基が付加された化合物として定義される。Xなる構造の元となるモノイソシアネートモノマーの中には次のもの又はそれらの混合物があるが、これらに限定されるものではない。 X 2 represents a monovalent organic group, preferably a monovalent residue obtained by removing one isocyanate group from monoisocyanate. Monoisocyanates are defined as compounds in which one isocyanate group is added to an aliphatic, aromatic hydrocarbon or heterocyclic compound, or derivatives thereof. Among the monoisocyanate monomers that form the structure of X 2 , there are the following or a mixture thereof, but the invention is not limited to these.
 脂肪族モノイソシアネートとしては、例えば、直鎖又は分岐の脂肪族モノイソシアネート、脂環式モノイソシアネート、又は芳香族モノイソシアネートが例示でき、炭素数6~20、好ましくは8~18の炭化水素残基を有し、直鎖状又は分枝状のアルキルモノイソシアネート、直鎖状又は分枝状のアルケニルモノイソシアネート、シクロアルキルモノイソシアネート、アルキルシクロアルキルモノイソシアネート、アリールモノイソシアネート、アルキルアリールモノイソシアネート、アリールアルキルモノイソシアネート等が挙げられる。具体例としてはヘキシルモノイソシアネート、ヘプチルモノイソシアネート、オクチルモノイソシアネート、ノニルモノイソシアネート、デシルモノイソシアネート、ウンデシルモノイソシアネート、ドデシルモノイソシアネート、トリデシルモノイソシアネート、テトラデシルモノイソシアネート、ペンタデシルモノイソシアネート、ヘキサデシルモノイソシアネート、ヘプタデシルモノイソシアネート、オクタデシルモノイソシアネート、ノナデシルモノイソシアネート、エイコシルモノイソシアネート等の直鎖状又は分枝状のアルキルモノイソシアネート;シクロヘキシルモノイソシアネート;メチルシクロヘキシルモノイソシアネート、ジメチルシクロヘキシルモノイソシアネート、エチルシクロヘキシルモノイソシアネート、ジエチルシクロヘキシルモノイソシアネート、プロピルシクロヘキシルモノイソシアネート、イソプロピルシクロヘキシルモノイソシアネート、1-メチル-3-プロピルシクロヘキシルモノイソシアネート、ブチルシクロヘキシルモノイソシアネート、アミルシクロヘキシルモノイソシアネート、アミルメチルシクロヘキシルモノイソシアネート、ヘキシルシクロヘキシルモノイソシアネート、ヘプチルシクロヘキシルモノイソシアネート、オクチルシクロヘキシルモノイソシアネート、ノニルシクロヘキシルモノイソシアネート、デシルシクロヘキシルモノイソシアネート、ウンデシルシクロヘキシルモノイソシアネート、ドデシルシクロヘキシルモノイソシアネート、トリデシルシクロヘキシルモノイソシアネート、テトラデシルシクロヘキシルモノイソシアネート等のアルキルシクロアルキルモノイソシアネート;フェニルモノイソシアネート、ナフチルモノイソシアネート等のアリールモノイソシアネート;トルイルモノイソシアネート、エチルフェニルモノイソシアネート、キシリルモノイソシアネート、プロピルフェニルモノイソシアネート、クメニルモノイソシアネート、メチルナフチルモノイソシアネート、エチルナフチルモノイソシアネート、ジメチルナフチルモノイソシアネート、プロピルナフチルモノイソシアネート等のアルキルアリールモノイソシアネート;ベンジルモノイソシアネート、メチルベンジルモノイソシアネート、エチルベンジルモノイソシアネート等のアリールアルキルモノイソシアネート等を挙げることができる。 Examples of the aliphatic monoisocyanate include linear or branched aliphatic monoisocyanates, alicyclic monoisocyanates, and aromatic monoisocyanates, and hydrocarbon residues having 6 to 20 carbon atoms, preferably 8 to 18 carbon atoms. Linear or branched alkyl monoisocyanate, linear or branched alkenyl monoisocyanate, cycloalkyl monoisocyanate, alkylcycloalkyl monoisocyanate, aryl monoisocyanate, alkylaryl monoisocyanate, arylalkyl A monoisocyanate etc. are mentioned. Specific examples include hexyl monoisocyanate, heptyl monoisocyanate, octyl monoisocyanate, nonyl monoisocyanate, decyl monoisocyanate, undecyl monoisocyanate, dodecyl monoisocyanate, tridecyl monoisocyanate, tetradecyl monoisocyanate, pentadecyl monoisocyanate, hexadecyl. Linear or branched alkyl monoisocyanates such as monoisocyanate, heptadecyl monoisocyanate, octadecyl monoisocyanate, nonadecyl monoisocyanate, eicosyl monoisocyanate; cyclohexyl monoisocyanate; methylcyclohexyl monoisocyanate, dimethylcyclohexyl monoisocyanate, ethyl Cyclohexyl monoisocyanate, die L-cyclohexyl monoisocyanate, propylcyclohexyl monoisocyanate, isopropylcyclohexyl monoisocyanate, 1-methyl-3-propylcyclohexyl monoisocyanate, butylcyclohexyl monoisocyanate, amylcyclohexyl monoisocyanate, amylmethylcyclohexyl monoisocyanate, hexylcyclohexyl monoisocyanate, heptylcyclohexyl monoisocyanate Isocyanates, octyl cyclohexyl monoisocyanate, nonyl cyclohexyl monoisocyanate, decyl cyclohexyl monoisocyanate, undecyl cyclohexyl monoisocyanate, dodecyl cyclohexyl monoisocyanate, tridecyl cyclohexyl monoisocyanate, tetradecyl cyclohexyl Alkyl cycloalkyl monoisocyanates such as sil monoisocyanate; aryl monoisocyanates such as phenyl monoisocyanate and naphthyl monoisocyanate; toluyl monoisocyanate, ethylphenyl monoisocyanate, xylyl monoisocyanate, propylphenyl monoisocyanate, cumenyl monoisocyanate, methylnaphthyl monoisocyanate Examples thereof include alkyl aryl monoisocyanates such as isocyanate, ethyl naphthyl monoisocyanate, dimethyl naphthyl monoisocyanate and propyl naphthyl monoisocyanate; arylalkyl monoisocyanates such as benzyl monoisocyanate, methylbenzyl monoisocyanate and ethylbenzyl monoisocyanate.
 Xなる構造の元となるモノイソシアネートモノマーとしては、潤滑性及びグリース性能の点からは、直鎖又は分岐の脂肪族モノイソシアネートが好ましい。直鎖又は分岐の脂肪族モノイソシアネートの炭素数は、好ましくは4~20、より好ましくは8~20である。また、脂肪族モノイソシアネートは直鎖又は分岐の飽和脂肪族モノイソシアネート又は不飽和脂肪族モノイソシアネートのいずれであってもよいが、酸化安定性に優れることから、直鎖又は分岐の飽和脂肪族モノイソシアネートが好ましい。 The former become monoisocyanate monomer X 2 made structure, in terms of lubricity and grease performance, straight-chain or branched aliphatic monoisocyanates are preferred. The carbon number of the linear or branched aliphatic monoisocyanate is preferably 4 to 20, more preferably 8 to 20. The aliphatic monoisocyanate may be either a linear or branched saturated aliphatic monoisocyanate or an unsaturated aliphatic monoisocyanate. However, since the aliphatic monoisocyanate is excellent in oxidative stability, the linear or branched saturated aliphatic monoisocyanate. Isocyanates are preferred.
 また、耐熱性の点からは、脂環式モノイソシアネートが好ましい。脂環式モノイソシアネートの炭素数は、好ましくは4~20、より好ましくは4~10である。また、脂環族モノイソシアネートは飽和脂環式モノイソシアネート又は不飽和脂環式イソシアネートのいずれであってもよいが、酸化安定性に優れることから、飽和脂環式イソシアネートが好ましい。 In addition, alicyclic monoisocyanate is preferable from the viewpoint of heat resistance. The carbon number of the alicyclic monoisocyanate is preferably 4 to 20, more preferably 4 to 10. Further, the alicyclic monoisocyanate may be either a saturated alicyclic monoisocyanate or an unsaturated alicyclic isocyanate, but a saturated alicyclic isocyanate is preferred because of excellent oxidation stability.
 さらに潤滑性及び耐熱性の点からは、芳香族モノイソシアネートが好ましい。芳香族モノイソシアネートの炭素数は、好ましくは6~20、より好ましくは8~20である。 Furthermore, aromatic monoisocyanate is preferable from the viewpoint of lubricity and heat resistance. The carbon number of the aromatic monoisocyanate is preferably 6 to 20, more preferably 8 to 20.
 R及びRは1価の有機基を示し、好ましくは脂肪族モノアミン、脂環式モノアミン又は芳香族モノアミンから1つのアミノ基を除いた1価の残基を示す。R及びRなる構造の元となるモノアミンとしては以下に示すモノアミン又はそれらの混合物が挙げられるが、これらに限定されるものではない。 R 1 and R 2 each represent a monovalent organic group, preferably a monovalent residue obtained by removing one amino group from an aliphatic monoamine, alicyclic monoamine or aromatic monoamine. Examples of the monoamine that is the base of the structure of R 1 and R 2 include, but are not limited to, the following monoamines or mixtures thereof.
 モノアミンとしては、脂肪族アミン、脂環式アミン、又は芳香族アミンが例示でき、炭素数6~20、好ましくは8~18の炭化水素残基を有し、直鎖状又は分枝状のアルキルアミン、直鎖状又は分枝状のアルケニルアミン、シクロアルキルアミン、アルキルシクロアルキルアミン、アリールアミン、アルキルアリールアミン、アリールアルキルアミン等が挙げられる。具体例としてはヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコシルアミン等の直鎖状又は分枝状のアルキルアミン;シクロヘキシルアミン;メチルシクロヘキシルアミン、ジメチルシクロヘキシルアミン、エチルシクロヘキシルアミン、ジエチルシクロヘキシルアミン、プロピルシクロヘキシルアミン、イソプロピルシクロヘキシルアミン、1-メチル-3-プロピルシクロヘキシルアミン、ブチルシクロヘキシルアミン、アミルシクロヘキシルアミン、アミルメチルシクロヘキシルアミン、ヘキシルシクロヘキシルアミン、ヘプチルシクロヘキシルアミン、オクチルシクロヘキシルアミン、ノニルシクロヘキシルアミン、デシルシクロヘキシルアミン、ウンデシルシクロヘキシルアミン、ドデシルシクロヘキシルアミン、トリデシルシクロヘキシルアミン、テトラデシルシクロヘキシルアミン等のアルキルシクロアルキルアミン;フェニルアミン、ナフチルアミン等のアリールアミン;トルイルアミン、エチルフェニルアミン、キシリルアミン、プロピルフェニルアミン、クメニルアミン、メチルナフチルアミン、エチルナフチルアミン、ジメチルナフチルアミン、プロピルナフチルアミン等のアルキルアリールアミン;ベンジルアミン、メチルベンジルアミン、エチルベンジルアミン等のアリールアルキルアミン等を挙げることができる。 Examples of monoamines include aliphatic amines, alicyclic amines, and aromatic amines, which have a hydrocarbon residue having 6 to 20 carbon atoms, preferably 8 to 18 carbon atoms, and are linear or branched alkyls. Examples include amines, linear or branched alkenylamines, cycloalkylamines, alkylcycloalkylamines, arylamines, alkylarylamines, arylalkylamines, and the like. Specific examples include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, eico Linear or branched alkylamine such as silamine; cyclohexylamine; methylcyclohexylamine, dimethylcyclohexylamine, ethylcyclohexylamine, diethylcyclohexylamine, propylcyclohexylamine, isopropylcyclohexylamine, 1-methyl-3-propylcyclohexyl Amine, butylcyclohexylamine, amylcyclohexylamine, amylmethylcyclohexylamine, hexylcyclo Alkylcycloalkylamines such as xylamine, heptylcyclohexylamine, octylcyclohexylamine, nonylcyclohexylamine, decylcyclohexylamine, undecylcyclohexylamine, dodecylcyclohexylamine, tridecylcyclohexylamine, tetradecylcyclohexylamine; aryls such as phenylamine and naphthylamine Amine; alkylarylamines such as toluylamine, ethylphenylamine, xylylamine, propylphenylamine, cumenylamine, methylnaphthylamine, ethylnaphthylamine, dimethylnaphthylamine, propylnaphthylamine; arylalkylamines such as benzylamine, methylbenzylamine, ethylbenzylamine, etc. Can be mentioned.
 R及びRなる構造の元となるモノアミンのうち、潤滑性及びグリース性能の点からは、直鎖又は分岐の脂肪族モノアミンが好ましい。直鎖又は分岐の脂肪族モノアミンの炭素数は、好ましくは4~20、より好ましくは8~20である。また、脂肪族モノアミンは飽和脂肪族モノアミン又は不飽和脂肪族モノアミンのいずれであってもよいが、酸化安定性に優れることから、飽和脂肪族アミンが好ましい。 Of the monoamines based on the structure of R 1 and R 2 , linear or branched aliphatic monoamines are preferable from the viewpoint of lubricity and grease performance. The carbon number of the linear or branched aliphatic monoamine is preferably 4 to 20, more preferably 8 to 20. The aliphatic monoamine may be either a saturated aliphatic monoamine or an unsaturated aliphatic monoamine, but is preferably a saturated aliphatic amine because of excellent oxidation stability.
 また、耐熱性の点からは、脂環式モノアミンが好ましい。脂環式モノアミンの炭素数は、好ましくは4~20、より好ましくは4~10である。また、脂環族モノアミンは飽和脂環式モノアミン又は不飽和脂環式モノアミンのいずれであってもよいが、酸化安定性に優れることから、飽和脂環式モノアミンが好ましい。 Also, from the viewpoint of heat resistance, alicyclic monoamines are preferable. The carbon number of the alicyclic monoamine is preferably 4 to 20, more preferably 4 to 10. The alicyclic monoamine may be either a saturated alicyclic monoamine or an unsaturated alicyclic monoamine, but is preferably a saturated alicyclic monoamine because of excellent oxidation stability.
 特に、耐熱性及びグリース性能の点からは、脂肪族鎖式モノアミンと脂環式モノアミン、及び芳香族モノアミンの混合が好ましい。 In particular, from the viewpoint of heat resistance and grease performance, a mixture of an aliphatic chain monoamine, an alicyclic monoamine, and an aromatic monoamine is preferable.
[第2実施形態:イミド-アミド化合物の製造方法]
 本発明の第2実施形態に係るイミド-アミド化合物の製造方法は、下記式(4)で表されるトリメリット酸無水物と下記一般式(5)で表されるモノアミンとを反応させて下記一般式(6)で表されるイミドカルボン酸を得る第1の工程と、前記イミドカルボン酸と下記一般式(7)で表されるイソシアネートとを反応させて下記一般式(1)で表されるイミド-アミド化合物を得る第2の工程と、を備える。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[式中、R及びXはそれぞれ1価の有機基を示す。]
[Second Embodiment: Method for Producing Imido-Amide Compound]
The method for producing an imide-amide compound according to the second embodiment of the present invention comprises the steps of reacting trimellitic anhydride represented by the following formula (4) with a monoamine represented by the following general formula (5). The first step of obtaining an imide carboxylic acid represented by the general formula (6) and the imide carboxylic acid reacted with an isocyanate represented by the following general formula (7) are represented by the following general formula (1). And a second step of obtaining an imide-amide compound.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[Wherein, R and X each represent a monovalent organic group. ]
 また、本実施形態における第2の工程は、好ましくは、前記イミドカルボン酸と下記一般式(8)で表されるジイソシアネート又は下記一般式(9)で表されるモノイソシアネートとを反応させて下記一般式(2)又は(3)で表されるイミド-アミド化合物を得る工程である。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[式中、R及びRは1価の有機基を示し、Xは2価の有機基を示し、Xは1価の有機基を示し、式(2)中のR及びRは同一でも異なっていてもよい。]
Moreover, the second step in the present embodiment is preferably performed by reacting the imide carboxylic acid with a diisocyanate represented by the following general formula (8) or a monoisocyanate represented by the following general formula (9). In this step, an imide-amide compound represented by the general formula (2) or (3) is obtained.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[Wherein R 1 and R 2 represent a monovalent organic group, X 1 represents a divalent organic group, X 2 represents a monovalent organic group, and R 1 and R in formula (2) 2 may be the same or different. ]
 一般式(8)で表されるジイソシアネートを用いた場合、主として一般式(2)で表されるイミド-アミド化合物が生成する。なお、この場合、副生成物として一般式(6)で表されるイミドカルボン酸と、ジイソシアネートの2個のイソシアネート基のうち一方のみが反応した化合物(すなわち一般式(3)で表されるイミド-アミド化合物)が生成し得る。後述するグリース用増ちょう剤及びグリース組成物においては、一般式(2)で表されるイミド-アミド化合物と一般式(3)で表されるイミド-アミド化合物との混合物のまま用いてもよく、混合物から副生成物を単離して得られる一般式(2)で表されるイミド-アミド化合物を用いてもよい。 When the diisocyanate represented by the general formula (8) is used, an imide-amide compound represented mainly by the general formula (2) is formed. In this case, as a by-product, an imide carboxylic acid represented by the general formula (6) and a compound obtained by reacting only one of the two isocyanate groups of the diisocyanate (that is, an imide represented by the general formula (3)) -Amide compounds) can be formed. In the thickener for grease and the grease composition described later, a mixture of the imide-amide compound represented by the general formula (2) and the imide-amide compound represented by the general formula (3) may be used as it is. Alternatively, an imide-amide compound represented by the general formula (2) obtained by isolating a by-product from the mixture may be used.
 一方、一般式(9)で表されるモノイソシアネートを用いた場合、一般式(3)で表されるイミド-アミド化合物が生成する。 On the other hand, when the monoisocyanate represented by the general formula (9) is used, an imide-amide compound represented by the general formula (3) is formed.
 一般式(8)で表されるジイソシアネートの具体例及び好ましい例は、第1実施形態におけるXなる構造の元となるジイソシアネートの具体例及び好ましい例と同様である。また、一般式(9)で表されるモノイソシアネートの具体例及び好ましい例は、第1実施形態におけるXなる構造の元となるモノイソシアネートの具体例及び好ましい例と同様である。また、一般式(5)で表されるモノアミン(一般式(2)中のR及びR並びに一般式(2)中のRなる構造の元となるモノアミンを含む)の具体例及び好ましい例は、第1実施形態におけるXなる構造の元となるジイソシアネートの具体例及び好ましい例と同様である。 Specific examples and preferred examples of the diisocyanate represented by the general formula (8) are the same as the specific examples and preferred examples of the diisocyanate which is the base of the structure of X 1 in the first embodiment. Further, specific examples and preferred examples of monoisocyanates of the general formula (9) are the same as the specific examples and preferred examples of the underlying monoisocyanate X 2 becomes the structure of the first embodiment. Specific examples and preferred examples of monoamines represented by the general formula (5) (including R 1 and R 2 in the general formula (2) and a monoamine that is the basis of the structure R 1 in the general formula (2)) are also included. Examples are the same as the specific examples and preferred examples of the diisocyanate that is the base of the structure X 1 in the first embodiment.
 第1の工程において、式(4)で表されるトリメリット酸無水物と一般式(5)で表されるモノアミンとの仕込み比は、一般式(4)で表されるトリメリット酸無水物1モルに対して、一般式(5)で示されるモノアミンが0.8~1.2モル、特には0.9~1.1モルとすることが好ましい。また、反応温度は100~350℃、特には130~260℃とすることが好ましい。このような温度で反応させることで、脱水環化により一般式(6)で示される反応中間体を高い収率で得ることができる。反応は、当初0℃~100℃で反応させた後、100~350℃、特には130~260℃とすることが好ましい。反応時間は、1~24時間、特には4~12時間とすることが好ましい。 In the first step, the charging ratio of trimellitic anhydride represented by formula (4) and monoamine represented by general formula (5) is trimellitic anhydride represented by general formula (4). The monoamine represented by the general formula (5) is preferably 0.8 to 1.2 mol, particularly 0.9 to 1.1 mol, per 1 mol. The reaction temperature is preferably 100 to 350 ° C., particularly 130 to 260 ° C. By reacting at such a temperature, the reaction intermediate represented by the general formula (6) can be obtained in high yield by dehydration cyclization. The reaction is preferably carried out at 0 ° C. to 100 ° C. initially, and then 100 to 350 ° C., particularly 130 to 260 ° C. The reaction time is preferably 1 to 24 hours, particularly 4 to 12 hours.
 第1の工程における一般式(4)で表されるトリメリット酸無水物と一般式(5)で表されるモノアミンとの反応は、無溶媒、溶媒中又は後に述べる潤滑油基油中で行うことができる。溶媒としては、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、トルエン等の有機溶媒、あるいはこれらの2種以上の混合溶媒を用いることができる。 The reaction of the trimellitic anhydride represented by the general formula (4) and the monoamine represented by the general formula (5) in the first step is performed without solvent, in a solvent, or in a lubricating base oil described later. be able to. As the solvent, organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, toluene, or a mixed solvent of two or more of these can be used.
 第2の工程における一般式(6)で表されるイミドカルボン酸と一般式(8)で表されるジアソシアネート又は一般式(9)で表されるモノアソシアネートとの反応は、溶媒中で行うことができる。溶媒としては、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、テトラヒドロフラン、トルエン等の有機溶媒、あるいはこれらの2種以上の混合溶媒を用いることができる。なお、潤滑油基油中で行った場合、そのままグリース組成物として使用することもできる。 In the second step, the reaction between the imide carboxylic acid represented by the general formula (6) and the diisocyanate represented by the general formula (8) or the monoasocyanate represented by the general formula (9) is carried out in a solvent. Can be done. As the solvent, organic solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, acetone, tetrahydrofuran, toluene, or a mixed solvent of two or more of these can be used. In addition, when performed in a lubricating base oil, it can be used as it is as a grease composition.
 第2の工程における一般式(8)で表されるジイソシアネートの使用量は特に制限されないが、一般式(6)で表されるイミドカルボン酸1モルに対して一般式(8)で表されるジイソシアネート0.3~0.7モル、特には0.4~0.6モル、さらには0.45~0.55モルを用いることが好ましい。また、反応温度は80~200℃、特には130~180℃とすることが好ましい。反応時間は、0.5~10時間、特には1~4時間とすることが好ましい。 Although the usage-amount of the diisocyanate represented by General formula (8) in a 2nd process in particular is not restrict | limited, It represents with General formula (8) with respect to 1 mol of imide carboxylic acids represented with General formula (6). It is preferable to use 0.3 to 0.7 mol of diisocyanate, particularly 0.4 to 0.6 mol, more preferably 0.45 to 0.55 mol. The reaction temperature is preferably 80 to 200 ° C, particularly 130 to 180 ° C. The reaction time is preferably 0.5 to 10 hours, particularly 1 to 4 hours.
 第2の工程における一般式(9)で表されるモノイソシアネートの使用量は特に制限されないが、一般式(6)で表されるイミドカルボン酸1モルに対して一般式(9)で表されるモノイソシアネート0.8~1.2モル、特には0.9~1.1モル、さらには0.95~1.05モルを用いることが好ましい。また、反応温度は80~200℃、特には130~180℃とすることが好ましい。反応時間は、0.5~10時間、特には1~4時間とすることが好ましい。 Although the usage-amount of the monoisocyanate represented by General formula (9) in a 2nd process in particular is not restrict | limited, It represents with General formula (9) with respect to 1 mol of imide carboxylic acid represented by General formula (6). It is preferable to use 0.8 to 1.2 mol, particularly 0.9 to 1.1 mol, more preferably 0.95 to 1.05 mol of monoisocyanate. The reaction temperature is preferably 80 to 200 ° C, particularly 130 to 180 ° C. The reaction time is preferably 0.5 to 10 hours, particularly 1 to 4 hours.
[第3実施形態:グリース用増ちょう剤]
 本発明の第3実施形態に係るグリース用増ちょう剤は、上記一般式(1)で表されるイミド-アミド化合物を含有する。なお、一般式(1)で表されるイミド-アミド化合物の具体例及び好ましい例は第1実施形態に係るイミド-アミド化合物の具体例及び好ましい例と同様である。
[Third embodiment: thickener for grease]
The thickener for grease according to the third embodiment of the present invention contains an imide-amide compound represented by the general formula (1). Specific examples and preferred examples of the imide-amide compound represented by the general formula (1) are the same as the specific examples and preferred examples of the imide-amide compound according to the first embodiment.
 本実施形態に係るグリース用増ちょう剤は、イミド-アミド化合物以外の増ちょう剤成分を含有してもよい。かかる増ちょう剤成分としては、金属石けん、複合金属石けん等の石けん系増ちょう剤成分;ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物、イミド化合物等の非石けん系増ちょう剤成分等、あらゆる増ちょう剤成分が使用可能である。前記石けん系増ちょう剤成分としては、例えばナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられる。また前記ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えばジウレア化合物、トリウレア化合物、テトラウレア化合物、その他のポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。 The grease thickener according to the present embodiment may contain a thickener component other than the imide-amide compound. Such thickener components include soap-type thickener components such as metal soaps and composite metal soaps; non-soap-type thickener components such as benton, silica gel, urea compounds, urea / urethane compounds, urethane compounds, imide compounds, etc. Any thickener component can be used. Examples of the soap-based thickener component include sodium soap, calcium soap, aluminum soap, lithium soap and the like. Examples of the urea compound, urea / urethane compound, and urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof.
 第1実施形態に係るイミド-アミド化合物及び第3実施形態に係るグリース用増ちょう剤は、耐熱性に優れることから、高温下で使用される等速ギヤ用、変速ギヤ用、製鉄設備用、玉軸受、ころ軸受等のグリースの増ちょう剤として特に好ましく使用される。これらの用途における使用温度は、好ましくは-40℃~300℃、より好ましくは-40℃~250℃である。 The imide-amide compound according to the first embodiment and the thickener for grease according to the third embodiment are excellent in heat resistance, so that they are used for constant speed gears, transmission gears, steel making equipment, It is particularly preferably used as a grease thickener for ball bearings and roller bearings. The use temperature in these applications is preferably −40 ° C. to 300 ° C., more preferably −40 ° C. to 250 ° C.
[第4実施形態:グリース組成物]
 本発明の第4実施形態に係るグリース組成物は、潤滑油基油と、上記一般式(1)で表されるイミド-アミド化合物とを含有し、該イミド-アミド化合物の含有量がグリース組成物全量基準で2~50質量%のものである。
[Fourth embodiment: grease composition]
The grease composition according to the fourth embodiment of the present invention contains a lubricating base oil and an imide-amide compound represented by the above general formula (1), and the content of the imide-amide compound is the grease composition. 2 to 50% by mass based on the total amount of the product.
 本実施形態に係るグリース組成物において、一般式(1)で表されるイミド-アミド化合物の含有量は、グリース組成物全量を基準として2質量%以上、好ましくは5質量%以上であり、また、50質量%以下、好ましくは40質量%以下である。イミド-アミド化合物の含有量が2質量%に満たない場合は増ちょう剤としての効果が少ないため十分なグリース状とはならず、また50質量%を越えるとグリースとして硬くなりすぎて十分な潤滑性能を発揮することができないため、それぞれ好ましくない。 In the grease composition according to this embodiment, the content of the imide-amide compound represented by the general formula (1) is 2% by mass or more, preferably 5% by mass or more based on the total amount of the grease composition. , 50% by mass or less, preferably 40% by mass or less. If the content of the imide-amide compound is less than 2% by mass, the effect as a thickener is small, so that it does not become a sufficient grease, and if it exceeds 50% by mass, it becomes too hard as a grease and sufficient lubrication Since performance cannot be demonstrated, it is not preferable respectively.
 本実施形態に係るグリース組成物の潤滑油基油としては、鉱油および/又は合成油を挙げられる。 The lubricating base oil of the grease composition according to this embodiment includes mineral oil and / or synthetic oil.
 鉱油としては、石油精製業の潤滑油製造プロセスで通常行われている方法により得られる、たとえば、原油を常圧蒸留および減圧蒸留して得られた潤滑油留分を溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理などの処理を1つ以上行って精製したものが挙げられる。 Mineral oil can be obtained by a method commonly used in the oil refining industry's lubricating oil production process. For example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and vacuum distillation can be desolvated, solvent extracted, Examples include those purified by one or more treatments such as hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, and clay treatment.
 また、合成油の具体例としてはポリブテン、1-オクテンオリゴマー、1-デセンオリゴマー等のポリα-オレフィン又はこれらの水素化物;ジトリデシルグルタレート、ジ2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ3-エチルヘキシルセバケート等のジエステル;トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネートなどのポリオールエステル;アルキルナフタレン;アルキルベンゼン、ポリオキシアルキレングリコール;ポリフェニルエーテル;ジアルキルジフェニルエーテル;シリコーン油;又はこれらの混合物が挙げられる。 Specific examples of synthetic oils include poly-α-olefins such as polybutene, 1-octene oligomer, 1-decene oligomer or hydrides thereof; ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, Diesters such as di3-ethylhexyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate; alkyl naphthalenes; alkylbenzenes, polyoxyalkylene glycols; Polyphenyl ethers; dialkyl diphenyl ethers; silicone oils; or mixtures thereof.
 高温での耐久性の観点から、合成油が好ましく、ポリオールエステル、ポリフェニルエーテル、アルキルジフェニルエーテル、アルキルナフタレンがより好ましい。 From the viewpoint of durability at high temperatures, synthetic oils are preferable, and polyol esters, polyphenyl ethers, alkyl diphenyl ethers, and alkyl naphthalenes are more preferable.
 潤滑油基油の100℃での動粘度は、好ましくは2~40mm/s、より好ましくは3~20mm/sである。また、潤滑油基油の粘度指数は、好ましくは90以上、より好ましくは100以上である。 The kinematic viscosity at 100 ° C. of the lubricating base oil is preferably 2 to 40 mm 2 / s, more preferably 3 to 20 mm 2 / s. The viscosity index of the lubricating base oil is preferably 90 or higher, more preferably 100 or higher.
 なお、本実施形態に係るグリ-ス組成物は、その性質を損ねることがない限り、さらに性能を向上させるために必要に応じて、上記一般式(1)で表されるイミド-アミド化合物以外の増ちょう剤、固体潤滑剤、極圧剤、酸化防止剤、油性剤、さび止め剤、粘度指数向上剤、清浄分散剤などを含有することができる。 In addition, the grease composition according to the present embodiment, other than the imide-amide compound represented by the above general formula (1), as necessary, in order to further improve the performance, as long as the properties are not impaired. Thickeners, solid lubricants, extreme pressure agents, antioxidants, oily agents, rust inhibitors, viscosity index improvers, detergent dispersants and the like.
 上記一般式(1)で表されるイミド-アミド化合物以外の増ちょう剤としては、金属石けん、複合金属石けん等の石けん系増ちょう剤、;ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物、イミド化合物等の非石けん系増ちょう剤等、あらゆる増ちょう剤が使用可能である。前記石けん系増ちょう剤としては、例えばナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられる。また前記ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えばジウレア化合物、トリウレア化合物、テトラウレア化合物、その他のポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。さらに、上記一般式(1)で表されるイミド-アミド化合物以外のイミド-アミド化合物を含有してもよい。 Thickeners other than the imide-amide compound represented by the general formula (1) include soap-type thickeners such as metal soaps and composite metal soaps; Benton, silica gel, urea compounds, urea / urethane compounds, urethanes Any thickeners such as non-soap thickeners such as compounds and imide compounds can be used. Examples of the soap-based thickener include sodium soap, calcium soap, aluminum soap, lithium soap and the like. Examples of the urea compound, urea / urethane compound, and urethane compound include diurea compounds, triurea compounds, tetraurea compounds, other polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof. Furthermore, an imide-amide compound other than the imide-amide compound represented by the general formula (1) may be contained.
 固体潤滑剤としては具体的には例えば、黒鉛、カーボンブラック、フッ化黒鉛、ポリテトラフロロエチレン、二硫化モリブデン、硫化アンチモン、アルカリ(土類)金属ほう酸塩などが挙げられる。 Specific examples of solid lubricants include graphite, carbon black, fluorinated graphite, polytetrafluoroethylene, molybdenum disulfide, antimony sulfide, and alkali (earth) metal borates.
 極圧剤としては具体的には、ジアルキルジチオリン酸亜鉛、ジアリールジチオリン酸亜鉛等の有機亜鉛化合物;ジハイドロカルビルポリサルファイド、硫化エステル、チアゾール化合物、チアジアゾール化合物等の硫黄含有化合物;ホスフェート、ホスファイト類などが挙げられる。 Specific examples of the extreme pressure agent include organic zinc compounds such as zinc dialkyldithiophosphate and zinc diaryldithiophosphate; sulfur-containing compounds such as dihydrocarbyl polysulfide, sulfide ester, thiazole compound and thiadiazole compound; phosphates and phosphites Etc.
 酸化防止剤としては具体的には、2、6-ジ-t-ブチルフェノール、2、6-ジ-t-ブチル-p-クレゾールなどのフエノール系化合物;ジアルキルジフェニルアミン、フェニル-α-ナフチルアミン、p-アルキルフェニル-α-ナフチルアミンなどのアミン系化合物;硫黄系化合物;フェノチアジン系化合物などが挙げられる。 Specific examples of the antioxidant include phenol compounds such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-p-cresol; dialkyldiphenylamine, phenyl-α-naphthylamine, p- Examples thereof include amine compounds such as alkylphenyl-α-naphthylamine; sulfur compounds; phenothiazine compounds.
 油性剤としては具体的には、ラウリルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミン、オレイルアミンなどのアミン類;ラウリルアルコール、ミリスチルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコールなどの高級アルコール類;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸などの高級脂肪酸類;ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、オレイン酸メチルなどの脂肪酸エステル類;ラウリルアミド、ミリスチルアミド、パルミチルアミド、ステアリルアミド、オレイルアミドなどのアミド類;油脂などが挙げられる。 Specific examples of oily agents include amines such as laurylamine, myristylamine, palmitylamine, stearylamine, oleylamine; higher alcohols such as lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol; laurin Higher fatty acids such as acid, myristic acid, palmitic acid, stearic acid, oleic acid; fatty acid esters such as methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl oleate; laurylamide, myristylamide, Amides such as palmitylamide, stearylamide, oleylamide; oils and fats.
 さび止め剤としては具体的には、金属石けん類;ソルビタン脂肪酸エステルなどの多価アルコール部分エステル類;アミン類;リン酸;リン酸塩などが挙げられる。 Specific examples of the rust inhibitor include metal soaps; partial alcohol esters such as sorbitan fatty acid esters; amines; phosphoric acid;
 粘度指数向上剤としては具体的には、ポリメタクリレート、ポリイソブチレン、ポリスチレンなどが挙げられる。 Specific examples of the viscosity index improver include polymethacrylate, polyisobutylene, and polystyrene.
 清浄分散剤としては具体的には、スルフォネート、サリシレート、フェネート等が例示される。 Specific examples of the cleaning dispersant include sulfonate, salicylate, phenate, and the like.
 本実施形態に係るグリース組成物を調製するには、例えば、潤滑油基油に、一般式(1)で表されるイミド-アミド化合物又は当該イミド-アミド化合物を含有する増ちょう剤、さらに必要に応じてその他の添加剤を混合し、その混合物を撹拌した後、ロールミル等を通すことにより得ることができる。 In order to prepare the grease composition according to this embodiment, for example, the lubricant base oil contains the imide-amide compound represented by the general formula (1) or a thickener containing the imide-amide compound, and further necessary. Depending on the conditions, other additives may be mixed and the mixture stirred and then passed through a roll mill or the like.
 第4実施形態に係るグリース組成物は、耐熱性に優れることから、高温下で使用される等速ギヤ用、変速ギヤ用、自動車用、製鉄設備用、産業機械用、精密機械用、玉軸受、ころ軸受等のグリースとして特に好ましく使用される。これらの用途における使用温度は、好ましくは-40℃~300℃、より好ましくは-40℃~250℃である。 Since the grease composition according to the fourth embodiment is excellent in heat resistance, it is used for constant speed gears, transmission gears, automobiles, steelmaking equipment, industrial machinery, precision machinery, ball bearings used at high temperatures. It is particularly preferably used as grease for roller bearings and the like. The use temperature in these applications is preferably −40 ° C. to 300 ° C., more preferably −40 ° C. to 250 ° C.
 以下、実施例および比較例に基づいて本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
 NMP(N-メチル-2-ピロリドン)溶媒250mL中にて、下記式(4)で表されるトリメリット酸無水物43.8gと下記式(10)で表されるドデシルアミン42.3gとを冷却しながら25℃で4時間反応させた。続いて、トルエン250mLを加えて還流温度でディーンスターク装置を用い共沸脱水しながら4時間加熱した。減圧蒸留を行い、トルエンとNMP150mlを除き、冷却後析出した固体をトルエン100mL、メタノール100mLで洗浄および減圧乾燥したところ、下記式(11)で表されるイミドカルボン酸中間体を含むイミドカルボン酸中間体-1を固形物として得た(収量:50.0g)。続いて、NMP(N-メチル-2-ピロリドン)溶媒15mL中にて、この中間体15.0gと下記式(12)で表される2,4-ジイソシアナトトルエン2.9gと下記式(13)で表される2,6-ジイソシアナトトルエン0.7gの混合物とを160℃で2時間反応させた。室温まで冷却後、トルエン30mLを加えけん濁させた後、固体をろ過し、トルエン100mlアセトン100mLで洗浄および乾燥したところ、下記式(14)で表されるイミド-アミド化合物を含むイミド-アミド化合物-1を固形物として得た(収量:14.3g)。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
[Example 1]
In 250 mL of NMP (N-methyl-2-pyrrolidone) solvent, 43.8 g of trimellitic anhydride represented by the following formula (4) and 42.3 g of dodecylamine represented by the following formula (10) The reaction was carried out at 25 ° C. for 4 hours while cooling. Subsequently, 250 mL of toluene was added, and the mixture was heated for 4 hours while being azeotropically dehydrated using a Dean-Stark apparatus at reflux temperature. Distilling under reduced pressure, removing 150 ml of toluene and NMP, and cooling and drying the precipitated solid with 100 ml of toluene and 100 ml of methanol, followed by imidocarboxylic acid intermediate containing an imide carboxylic acid intermediate represented by the following formula (11) Body-1 was obtained as a solid (yield: 50.0 g). Subsequently, in 15 mL of NMP (N-methyl-2-pyrrolidone) solvent, 15.0 g of this intermediate, 2.9 g of 2,4-diisocyanatotoluene represented by the following formula (12), and the following formula ( A mixture of 0.7 g of 2,6-diisocyanatotoluene represented by 13) was reacted at 160 ° C. for 2 hours. After cooling to room temperature and adding 30 mL of toluene to suspend, the solid was filtered, washed with 100 mL of toluene and 100 mL of acetone, and dried to give an imide-amide compound containing an imide-amide compound represented by the following formula (14) -1 was obtained as a solid (yield: 14.3 g).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 イミド-アミド化合物-1の赤外吸収スペクトル(日本分光株式会社製、FT/IR-410)をKBr法にて測定した。その結果を図1に示す。図1に示したとおり、環状イミド基に由来する約1720cm-1および、約1780cm-1、およびアミド基に由来する約1660cm-1の吸収が確認され、反応原料のイソシアニド基に帰属される約2270cm-1の吸収等は確認されなかった。この結果から、得られた固形物がイミド-アミド化合物であることが確認された。 The infrared absorption spectrum of imide-amide compound-1 (manufactured by JASCO Corporation, FT / IR-410) was measured by the KBr method. The result is shown in FIG. As shown in FIG. 1, about 1720 cm -1 and derived from cyclic imido group, absorption of about 1660 cm -1 derived from about 1780 cm -1, and an amide group is confirmed, about attributed to isocyanide groups of the reaction raw material Absorption at 2270 cm −1 was not confirmed. From this result, it was confirmed that the obtained solid was an imide-amide compound.
 また、イミド-アミド化合物-1についてFD-MS測定(日本電子株式会社製JMS-T100GC、イオン化方法:FD+、溶媒:o-n-プロピルフェノール)を実施した。その結果を図2に示す。一般式(14)で表されるイミド-アミド化合物に帰属されるピークは、全イオン強度に対して97%であった。 In addition, imide-amide compound-1 was subjected to FD-MS measurement (JEOL Ltd. JMS-T100GC, ionization method: FD +, solvent: on-propylphenol). The result is shown in FIG. The peak attributed to the imide-amide compound represented by the general formula (14) was 97% with respect to the total ionic strength.
[実施例2~18]
 実施例2~18においてはそれぞれ、一般式(4)で表されるモノアミンとして上記式(10)~(12)又は下記式(15)~(18)で表されるモノアミンを、一般式(8)で表されるジイソシアネートとして上記式(12)、(13)又は下記式(19)~22)で表されるジイソシアネートを、表1~6に示す組合せで用いたこと以外は実施例1と同様にして、イミド化合物-2~18を固形物として得た。実施例5~7および14、16は2種類のモノアミンを用いているが、それぞれの中間体を実施例1と同様に合成した後、モル比で1:1、かつ2種類の中間体を合せた重量が15gになる量の中間体とジイソシアネートを実施例1と同様に反応させた。反応後に固体が析出しない場合は、固体が析出するまでメタノールを添加した。反応で得られたイミド化合物-2~18の収量を表1~6に示す。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
[Examples 2 to 18]
In Examples 2 to 18, monoamines represented by the above formulas (10) to (12) or the following formulas (15) to (18) as monoamines represented by the general formula (4) are represented by the general formula (8). The diisocyanate represented by the above formulas (12), (13) or the following formulas (19) to 22) was used as the diisocyanate represented by the same formula as in Example 1 except that the combinations shown in Tables 1 to 6 were used. Thus, imide compounds -2 to 18 were obtained as solids. Examples 5 to 7, 14 and 16 use two types of monoamines, and after synthesizing each of the intermediates in the same manner as in Example 1, the molar ratio was 1: 1 and the two types of intermediates were combined. In the same manner as in Example 1, the intermediate and diisocyanate in an amount of 15 g were reacted. If no solid precipitated after the reaction, methanol was added until a solid precipitated. The yields of imide compounds-2 to 18 obtained by the reaction are shown in Tables 1 to 6.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 実施例2~18で得られたイミド-アミド化合物-2~18について、実施例1と同様にして赤外吸収スペクトルを測定したところ、いずれのイミド-アミド化合物においても環状イミド基に由来する約1720cm-1および、約1780cm-1、およびアミド基に由来する約1660cm-1の吸収が確認され、反応原料のイソシアニド基に帰属される約2270cm-1の吸収等は確認されなかった。これらの結果から、実施例2~18で得られた固形物がイミド-アミド化合物であることが確かめられた。 For the imide-amide compounds-2 to 18 obtained in Examples 2 to 18, the infrared absorption spectra were measured in the same manner as in Example 1. In any of the imide-amide compounds, it was found that about Absorption at 1720 cm −1 , about 1780 cm −1 , and about 1660 cm −1 derived from an amide group were confirmed, and absorption at about 2270 cm −1 attributed to the isocyanide group of the reaction raw material was not confirmed. From these results, it was confirmed that the solids obtained in Examples 2 to 18 were imide-amide compounds.
 また、実施例2~18で得られたイミド-アミド化合物-2~18について、実施例1と同様にしてFD-MS測定を行ったところ、それぞれ含有イミド-アミド化合物として表1~6に示すイミド-アミド化合物(下記式(23)~(39)で表される化合物)に帰属されるピークが観測された。各実施例において観測された、含有イミド-アミド化合物の全イオン強度に対する強度比を表1~6に示す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Further, imide-amide compounds-2 to 18 obtained in Examples 2 to 18 were subjected to FD-MS measurement in the same manner as in Example 1. The imide-amide compounds contained are shown in Tables 1 to 6, respectively. Peaks attributed to imide-amide compounds (compounds represented by the following formulas (23) to (39)) were observed. The intensity ratios of the contained imide-amide compounds to the total ion intensity observed in each example are shown in Tables 1 to 6.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
[比較例1]
 4,4’-ジイソシアナトジフェニルメタン55.8gに対し、シクロヘキシルアミン44.2gを100℃動粘度が13mm/sのジフェニルエーテル基油300g中にて反応させグリース状物質を得た。グリース状物質からヘキサンにてジフェニルエーテル基油を除去し、式(40)で表されるウレア化合物-1を得た。得られたウレア化合物の収量を表7に示す。
Figure JPOXMLDOC01-appb-C000060
[Comparative Example 1]
45.8 g of cyclohexylamine was reacted with 55.8 g of 4,4′-diisocyanatodiphenylmethane in 300 g of diphenyl ether base oil having a kinematic viscosity at 100 ° C. of 13 mm 2 / s to obtain a grease-like substance. Diphenyl ether base oil was removed from the grease-like substance with hexane to obtain urea compound-1 represented by the formula (40). The yield of the resulting urea compound is shown in Table 7.
Figure JPOXMLDOC01-appb-C000060
[比較例2]
 4,4’-ジイソシアナトジフェニルメタン31.7gに対し、オクタデシルアミン68.3gを100℃動粘度が13mm/sのジフェニルエーテル基油300g中にて反応させグリース状物質を得た。グリース状物質からヘキサンにてジフェニルエーテル基油を除去し、式(41)で表されるウレア化合物-2を得た。得られたウレア化合物の収量を表7に示す。
Figure JPOXMLDOC01-appb-C000061
[Comparative Example 2]
A grease-like substance was obtained by reacting 38.3 g of 4,4′-diisocyanatodiphenylmethane with 68.3 g of octadecylamine in 300 g of a diphenyl ether base oil having a kinematic viscosity at 100 ° C. of 13 mm 2 / s. Diphenyl ether base oil was removed from the grease-like substance with hexane to obtain urea compound-2 represented by the formula (41). The yield of the resulting urea compound is shown in Table 7.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
[耐熱性評価]
 実施例1~18で得られたイミド-アミド化合物-1~18及び比較例1、2で得られたウレア化合物-1、2を、熱分析装置(島津製作所製DTG60、昇温速度:5℃/分、雰囲気ガス:窒素)にて5%分解温度を測定した。得られた結果を表8~14に示す。表中、分解温度が高いほど耐熱性に優れることを意味する。
[Heat resistance evaluation]
The imide-amide compounds -1 to 18 obtained in Examples 1 to 18 and the urea compounds -1 and 2 obtained in Comparative Examples 1 and 2 were subjected to thermal analysis (DTG60, manufactured by Shimadzu Corporation, heating rate: 5 ° C. / Min, atmospheric gas: nitrogen), and 5% decomposition temperature was measured. The results obtained are shown in Tables 8-14. In the table, the higher the decomposition temperature, the better the heat resistance.
[増ちょう能評価]
 実施例1~18で得られたイミド-アミド化合物-1~18及び比較例1、2で得られたウレア化合物-1、2を、それぞれ25重量%になるよう100℃動粘度が13mm/sのジフェニルエーテル基油に混合し、ロールミルを通し基油中に均一に分散し得られた物質を、JIS2220のちょう度測定法により60混和(60W)後のちょう度の測定をした。得られた結果を表8~14に示す。なお、比較例1、2のウレア化合物に関しては、ヘキサンにてジフェニルエーテル基油を除去する前にちょう度を測定した。
[Capacity evaluation]
The imide-amide compounds-1 to 18 obtained in Examples 1 to 18 and the urea compounds 1 and 2 obtained in Comparative Examples 1 and 2 had a kinematic viscosity at 100 ° C. of 13 mm 2 / The substance obtained by mixing with s diphenyl ether base oil and uniformly dispersing in the base oil through a roll mill was measured for consistency after 60 blending (60 W) by the consistency measuring method of JIS2220. The results obtained are shown in Tables 8-14. For the urea compounds of Comparative Examples 1 and 2, the consistency was measured before removing the diphenyl ether base oil with hexane.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 表8~14に示した結果から、実施例1~18で得られたイミド-アミド化合物-1~18は、比較例1、2で得られたウレア化合物-1、2と比較して、耐熱性に優れること、また、グリースの増ちょう剤として使用可能なことがわかる。
 
From the results shown in Tables 8 to 14, the imide-amide compounds -1 to 18 obtained in Examples 1 to 18 were more heat resistant than the urea compounds -1 and 2 obtained in Comparative Examples 1 and 2. It can be seen that it has excellent properties and can be used as a thickener for grease.

Claims (5)

  1.  下記一般式(1)で表されるイミド-アミド化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びXはそれぞれ1価の有機基を示す。]
    An imide-amide compound represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R and X each represent a monovalent organic group. ]
  2.  下記一般式(2)又は(3)で表される、請求項1に記載のイミド-アミド化合物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRは1価の有機基を示し、Xは2価の有機基を示し、Xは1価の有機基を示し、式(2)中のR及びRは同一でも異なっていてもよい。]
    The imide-amide compound according to claim 1, which is represented by the following general formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 1 and R 2 represent a monovalent organic group, X 1 represents a divalent organic group, X 2 represents a monovalent organic group, and R 1 and R in formula (2) 2 may be the same or different. ]
  3.  下記式(4)で表されるトリメリット酸無水物と下記一般式(5)で表されるモノアミンとを反応させて下記一般式(6)で表されるイミドカルボン酸を得る第1の工程と、
     前記イミドカルボン酸と下記一般式(7)で表されるイソシアネートとを反応させて下記一般式(1)で表されるイミド-アミド化合物を得る第2の工程と、
    を備えるイミド化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    [式中、R及びXはそれぞれ1価の有機基を示す。]
    First step of obtaining imidocarboxylic acid represented by the following general formula (6) by reacting trimellitic anhydride represented by the following formula (4) with a monoamine represented by the following general formula (5) When,
    A second step of reacting the imide carboxylic acid with an isocyanate represented by the following general formula (7) to obtain an imide-amide compound represented by the following general formula (1);
    The manufacturing method of an imide compound provided with.
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    [Wherein, R and X each represent a monovalent organic group. ]
  4.  請求項1又は2に記載のイミド-アミド化合物を含有するグリース用増ちょう剤。 A thickener for grease containing the imide-amide compound according to claim 1 or 2.
  5.  潤滑油基油と、請求項1又は2に記載のイミド-アミド化合物とを含有するグリース組成物。
     
    A grease composition comprising a lubricating base oil and the imide-amide compound according to claim 1 or 2.
PCT/JP2013/063713 2012-05-17 2013-05-16 Imide-amide compound and method for producing same, grease thickener, and grease composition WO2013172428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012113432A JP5908786B2 (en) 2012-05-17 2012-05-17 IMIDE-AMIDE COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER
JP2012-113432 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013172428A1 true WO2013172428A1 (en) 2013-11-21

Family

ID=49583829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063713 WO2013172428A1 (en) 2012-05-17 2013-05-16 Imide-amide compound and method for producing same, grease thickener, and grease composition

Country Status (2)

Country Link
JP (1) JP5908786B2 (en)
WO (1) WO2013172428A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483217A (en) * 1966-12-02 1969-12-09 Allied Chem 9,10-dihydro-9,10-dioxoanthracenediyl- bis-(4'-carbamoylphthalimides
JPS4837422A (en) * 1971-09-16 1973-06-02
JPS4989795A (en) * 1972-12-28 1974-08-27
JPS5477661A (en) * 1977-12-02 1979-06-21 Teijin Ltd Crosslinked or uncrosslinked linear aromatic polyester composition and its production
JPS54113605A (en) * 1978-02-27 1979-09-05 Nippon Koyu Kk Lubricating grease composition intensified with imide base compound
JPS56139592A (en) * 1981-03-18 1981-10-31 Nippon Kouyu:Kk Lubricating grease composition
JPS57109896A (en) * 1980-12-26 1982-07-08 Toshiba Chem Corp Heat-resistant grease
JPH06501048A (en) * 1991-04-25 1994-01-27 コンゾルテイウム フユール エレクトロケミツシエインヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Polysiloxanes with additional ester and/or amide groups
JPH0971645A (en) * 1995-06-28 1997-03-18 Nisshinbo Ind Inc Insulating material for enameled wire in motor for refrigeration compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483217A (en) * 1966-12-02 1969-12-09 Allied Chem 9,10-dihydro-9,10-dioxoanthracenediyl- bis-(4'-carbamoylphthalimides
JPS4837422A (en) * 1971-09-16 1973-06-02
JPS4989795A (en) * 1972-12-28 1974-08-27
JPS5477661A (en) * 1977-12-02 1979-06-21 Teijin Ltd Crosslinked or uncrosslinked linear aromatic polyester composition and its production
JPS54113605A (en) * 1978-02-27 1979-09-05 Nippon Koyu Kk Lubricating grease composition intensified with imide base compound
JPS57109896A (en) * 1980-12-26 1982-07-08 Toshiba Chem Corp Heat-resistant grease
JPS56139592A (en) * 1981-03-18 1981-10-31 Nippon Kouyu:Kk Lubricating grease composition
JPH06501048A (en) * 1991-04-25 1994-01-27 コンゾルテイウム フユール エレクトロケミツシエインヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Polysiloxanes with additional ester and/or amide groups
JPH0971645A (en) * 1995-06-28 1997-03-18 Nisshinbo Ind Inc Insulating material for enameled wire in motor for refrigeration compressor

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DESIGNED MONOMERS AND POLYMERS, vol. 11, no. 3, 2008, pages 223 - 234 *
EUROPEAN POLYMER JOURNAL, vol. 42, no. 12, 2006, pages 3236 - 3247 *
JOURNAL OF APPLIED POLYMER SCIENCE (2013), vol. 127, no. 4, 13 May 2012 (2012-05-13), pages 2371 - 2379 *
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 27, no. 1, 1989, pages 245 - 62 *
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 37, no. 16, 1999, pages 3147 - 3154 *
KOBUNSHI RONBUNSHU, vol. 35, no. 11, 1978, pages 713 - 19 *
MAKROMOLEKULARE CHEMIE, vol. 177, no. 3, 1976, pages 951 - 5 *
POLYMER, vol. 40, no. 9, 1999, pages 2419 - 2428 *

Also Published As

Publication number Publication date
JP2013237820A (en) 2013-11-28
JP5908786B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5860818B2 (en) IMIDE COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINKING AGENT AND GREASE COMPOSITION
US6667281B2 (en) Grease composition
JP2799634B2 (en) Grease composition for constant velocity joints
US9150809B2 (en) Thickener, grease, method for producing the same, and grease-packed bearing
JP2001342483A (en) Grease composition
EP2687584B1 (en) Grease composition
KR101438853B1 (en) Urea grease composition
JPH0379698A (en) Grease composition for high-speed rolling bearing
US6020290A (en) Grease composition for rolling bearing
KR101487032B1 (en) Grease
KR20140107557A (en) Grease composition
EP0972821A2 (en) Grease composition suitable for a constant velocity joint
EP2913385A1 (en) Grease composition
US8722602B2 (en) Grease
JPH10273690A (en) Grease composition for rolling bearing
JP6211100B2 (en) Urea grease manufacturing method
JPH11116981A (en) Roller bearing grease composition
JP5417621B2 (en) Grease composition and method for producing the same
JP5934658B2 (en) IMIDE-UREA COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER, AND GREASE COMPOSITION
JP5908786B2 (en) IMIDE-AMIDE COMPOUND AND PROCESS FOR PRODUCING THE SAME, GREASE THINNER
JP2021063166A (en) Lubricant composition and rolling bearing
WO2021153258A1 (en) Grease composition and grease-sealed bearing
JP2007332383A (en) Grease composition
JP2023152773A (en) Grease composition and method for producing grease composition
JP6887758B2 (en) Grease composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791167

Country of ref document: EP

Kind code of ref document: A1