WO2013171926A1 - Method for producing allyl group-containing compound, catalyst for allylation reaction - Google Patents
Method for producing allyl group-containing compound, catalyst for allylation reaction Download PDFInfo
- Publication number
- WO2013171926A1 WO2013171926A1 PCT/JP2012/079829 JP2012079829W WO2013171926A1 WO 2013171926 A1 WO2013171926 A1 WO 2013171926A1 JP 2012079829 W JP2012079829 W JP 2012079829W WO 2013171926 A1 WO2013171926 A1 WO 2013171926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrotalcite
- palladium
- formula
- reaction
- organic phosphine
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/007—Mixed salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/24—Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
- B01J31/2404—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
- B01J31/2409—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/04—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
- C07C209/14—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
- C07C209/18—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to carbon atoms of six-membered aromatic rings or from amines having nitrogen atoms bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/09—Preparation of ethers by dehydration of compounds containing hydroxy groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
Definitions
- the present invention relates to a method for producing an allyl group-containing compound, and more particularly to a method for producing an allyl group-containing compound using allyl alcohol as a starting material.
- the present invention also relates to an allylation reaction catalyst used in the above method.
- Allyl group-containing compounds typified by allyl phenyl ether are extremely useful organic compounds because they can be used as raw materials for epoxy resins, intermediates for pharmaceuticals, or as starting materials for various organic synthesis reactions.
- Various methods have been developed to date for producing allyl group-containing compounds.
- allyl phenyl ether a method for producing phenol and allyl alcohol as starting materials through a dehydrating oxygen-position allylation reaction of phenol is disclosed. More specifically, Non-Patent Document 1 uses palladium acetate, PPh 3 and Ti (OPr) 4, and Non-Patent Document 2 uses [RuCp (CH 3 CN) 3 ] PF 3 and 2-quinoline.
- Non-Patent Document 3 discloses a method using carboxylic acid, and a method using [RuCp (PPh 3 ) 2 ] (OTs), PPh 3 and AgOTs.
- Non-Patent Documents 1 to 3 described above relate to a homogeneous reaction system in which the catalyst and additives are uniformly dissolved in the solvent, and thus the reaction efficiency is excellent, but the recovery of the catalyst and products is performed.
- the reaction system is not always satisfactory from an industrial viewpoint.
- solid catalysts are widely used in many chemical industrial processes, and these have thermal stability and durability that a homogeneous reaction system catalyst does not have.
- the solid catalyst is usually poor in solubility in a solvent or the like, a heterogeneous reaction system is realized, and the catalyst and the product can be favorably separated.
- the reactivity is inferior, for example, the yield of the product is lowered as compared with the homogeneous reaction system.
- An object of this invention is to provide the method of manufacturing the allyl group containing compound using the solid catalyst which is excellent in reaction yield in view of the said situation.
- Another object of the present invention is to provide an allylation reaction catalyst used in the above reaction.
- an allyl group-containing compound can be produced in a high yield by carrying out an allylation reaction in the presence of a hydrotalcite, an organic phosphine compound and a palladium source.
- the present invention has been completed. That is, the above problems can be solved by the following means.
- the aromatic hydrocarbon solvent is an alkylbenzene having two or more alkyl groups.
- the method of manufacturing the allyl group containing compound using the solid catalyst which is excellent in the reaction yield can be provided.
- the catalyst for allylation reaction used for the said reaction can also be provided.
- the suitable method of the manufacturing method of the allyl group containing compound of this invention and the catalyst for allylation reaction is demonstrated.
- the feature of the present invention is that the allylation reaction is carried out in the presence of hydrotalcite, an organic phosphine compound and a palladium source.
- a palladium catalyst formed from a palladium source and an organic phosphine compound on the surface of hydrotalcite and a starting material are adsorbed and these compounds are activated by the base supplied from the hydrotalcite, and it is presumed that the desired reaction proceeds. That is, hydrotalcite controls the coordination environment of palladium species to generate active species ( ⁇ -allyl intermediate species), a role as a carrier for immobilizing active species, and a solid base that supplies a base
- the catalyst system is constructed through the hydrotalcite surface.
- Hydrotalcite is a kind of basic layered clay compound and has properties such as surface basicity, surface adsorption ability, anion exchange ability of the intermediate layer, and cation exchange ability of the basic layer.
- hydrotalcite known or commercially available ones can be used. Moreover, what is obtained by a well-known manufacturing method can also be used.
- the hydrotalcite represented by the following formula (3) is preferable as the hydrotalcite.
- M 2+ represents a divalent metal ion. Examples of M 2+ include Mg 2+ , Zn 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , or Cu 2+ , and the yield of the product is more excellent. And Mg 2+ is preferred.
- M 3+ represents a trivalent metal ion.
- M 3+ examples include Al 3+ , Fe 3+ , Cr 3+ , Co 3+ , and In 3+ , and Al 3+ is preferable because the yield of the product is more excellent.
- a n ⁇ represents an n-valent anion (n is an integer of 1 or more).
- x is a number in the range of 0 ⁇ x ⁇ 1/3.
- m is a number in the range of 0 ⁇ m ⁇ 2.
- the shape of the hydrotalcite is not particularly limited, but usually a powdery or particulate form is used.
- the size of the hydrotalcite is not particularly limited, but an average particle size of 5 to 200 ⁇ m is preferable and an average particle size of 10 to 150 ⁇ m is more preferable from the viewpoint of better product yield.
- the average particle diameter can be appropriately adjusted by classification, pulverization, or the like.
- the average particle diameter can be measured by a known method such as a laser diffraction measurement method.
- the hydrotalcite may be used alone or in combination of two or more.
- the hydrotalcite may be subjected to pretreatment described later. By performing the pretreatment, the yield of the product is further improved.
- pretreatment a stirring step of stirring hydrotalcite in water under an inert gas atmosphere, and a grinding step of removing hydrotalcite by removing water after completion of stirring, and then drying and pulverizing Have Below, the procedure of each process is explained in full detail.
- the inert gas used in the stirring step is not particularly limited, and examples thereof include argon and nitrogen. Among these, argon is preferable because the yield of the product is further improved.
- the concentration of hydrotalcite in water is not particularly limited, and is preferably 5 to 15 g / L in terms of more excellent stirring efficiency.
- the stirring time is not particularly limited and is appropriately selected depending on the type of hydrotalcite used. From the viewpoint of productivity, 1 to 3 hours are preferable.
- ultrasonic treatment or heat treatment may be performed simultaneously.
- the heating temperature is not particularly limited, but 40 to 70 ° C. is preferable in terms of further improving the yield of the product.
- the method for removing water from the aqueous solution obtained in the stirring step is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a supernatant solution removal method.
- the recovered hydrotalcite is further washed with water as necessary.
- the hydrotalcite is subjected to a drying process to remove excess moisture, and then pulverized and sized to a predetermined size.
- the size of the hydrotalcite after pulverization is not particularly limited, but is preferably about 10 to 150 ⁇ m from the viewpoint of better product yield.
- An organic phosphine compound is a compound in which a hydrocarbon group is substituted on a phosphorus atom (organic phosphine ligand), whether it is a monodentate organic phosphine compound (monodentate phosphine) or a bidentate organic phosphine compound (bidentate phosphine). Good. Especially, it is preferable that it is a bidentate organic phosphine compound (bidentate phosphine) at the point which the yield of a product is more excellent.
- the angle (bite angle) formed by P (phosphorus) -Pd (palladium) -P (phosphorus) formed with palladium ions is estimated to be a suitable angle for allylation.
- monodentate organic phosphine compounds include triphenylphosphine, triethylphosphine, tributylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, 2- (di-tert-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) And biphenyl.
- bidentate organic phosphine compound examples include bis (diphenylphosphino) methane (dppm), 1,2-bis (diphenylphosphino) ethane (dppe), 1,3-bis (diphenylphosphino) propane ( dppp), 1,4-bis (diphenylphosphino) butane (dppb), bis (diphenylphosphino) ferrocene (dppf), bis (di-tert-butylphosphino) ferrocene (dt-Bu-pf), 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis (dicyclohexylphosphino) biphenyl, 2- (dicyclohexylphosphino) -2 '-(dimethylamino) Biphenyl, 4,5-bis (diphenylphosphino) -9,9-
- bidentate organophosphine compounds can be selected and used as appropriate according to the reaction substrate.
- allyl phenyl ether is produced through the dehydrative oxygen-position allylation of phenol using phenol and allyl alcohol as starting materials.
- 1,4-bis (diphenylphosphino) butane (dppb) and 1,3-bis (diphenylphosphino) propane (dppp) are preferable.
- an organic phosphine compound may be used individually or may be used in mixture of 2 or more types.
- the palladium source is not particularly limited as long as palladium is contained, and examples thereof include palladium salts and palladium complexes.
- the palladium salt include palladium salts of organic acids such as palladium acetate, palladium propionate, palladium n-butyrate, palladium iso-butyrate, palladium n-valerate, palladium iso-valerate, palladium trifluoroacetate, and palladium sulfate.
- palladium salts such as palladium carbonate, palladium hydroxide, palladium nitrate, palladium nitrite, palladium iodide, palladium bromide, palladium chloride, and bisacetylacetonato palladium.
- the palladium complex include sodium tetranitropalladium (II), potassium tetranitropalladium (II), bis (acetonitrile) palladium dichloride, dinitrodiammine palladium (II), potassium tetrachloropalladium (II), tetrabromo Palladium (II) potassium, tetraammine palladium (II) chloride, etc. are mentioned.
- the palladium salt of organic acid is more preferable at the point which the yield of a product is more excellent, and palladium acetate is especially preferable.
- a palladium source may be used individually or may be used in mixture of 2 or more types.
- the hydrotalcite, the organic phosphine compound and the palladium source may be added to the reaction system as separate compounds, respectively, or the palladium catalyst containing the organic phosphine compound and the palladium source and the hydrotalcite are the reaction system.
- a palladium catalyst containing hydrotalcite and a palladium source and an organic phosphine compound may be added to the reaction system.
- Allyl alcohol is a compound represented by the following formula (4) and is a starting material.
- Ar represents an aromatic hydrocarbon group which may have a substituent.
- the number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but is preferably 6 to 36 carbon atoms, more preferably 6 to 18 carbon atoms, from the viewpoints of better solubility in the reaction solvent and better handleability. More preferably, it has 6 to 12 carbon atoms.
- the aromatic hydrocarbon group may be monocyclic or polycyclic.
- Examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, and the like.
- a benzene ring is preferable at the point which versatility is more excellent.
- the aromatic hydrocarbon group may have a substituent, for example, an aliphatic hydrocarbon group (preferably having 1 to 20 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 60 carbon atoms), It has a heterocyclic group, an alkoxy group, an alkanoyl group, an aryloxy group, or a combination thereof.
- the aromatic hydrocarbon group may have a hydroxyl group (—OH), a thiol group (—SH), or an amino group (—NH 2 ) as a substituent, and these groups are the aromatic hydrocarbon groups. When they are bonded, the reaction proceeds even between these groups and allyl alcohol by this production method.
- X represents —OH, —SH, or —NH 2 .
- —OH is preferred because the yield of the product is more excellent.
- Examples of the compound represented by the formula (1) include phenol, ethylphenol, trimethylphenol, propylphenol, butylphenol (eg, 4-tert-butylphenol), cresol (o-cresol, m-cresol, p-cresol).
- monohydric phenols such as naphthol, dihydric phenols such as catechol, resorcinol or hydroquinone, trihydric phenols such as pyrogallol, bisphenols such as bisphenol A, aniline, alkylanilines (such as methylaniline, ethylaniline, propylaniline), dialkyl Anilines (such as dimethylaniline), anilines such as cyanoaniline or dichloroaniline, benzenethiol or alkylbenzenethiol (4-methylbenzenethiol, 4 And benzenethiols such as ethylbenzenethiol).
- the compound represented by Formula (1) may be used independently, or 2 or more types may be mixed and used for it.
- the reaction can proceed without using a solvent (solvent-free system), but the reaction may be performed in the presence of a solvent, if necessary. By dissolving the starting material in the solvent, the yield of the product is more excellent.
- the type of solvent used is not particularly limited, and an optimal solvent is selected according to the components used, such as the type of organic phosphine compound and the polarity of the reaction substrate.
- an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or the like can be given. These solvents may be used alone or in combination of two or more.
- an aromatic hydrocarbon solvent is preferable in that the yield of the product is more excellent.
- the aromatic hydrocarbon solvent include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, naphthalene, and tetralin.
- alkylbenzene is preferable in that the yield of the product is more excellent, and alkylbenzene having two or more alkyl groups (dialkylbenzene) is more preferable.
- alkylbenzene having one alkyl group include toluene, ethylbenzene, propylbenzene, and the like.
- dialkylbenzene examples include xylene, dimethylbenzene, diethylbenzene, ethylmethylbenzene and the like.
- alkylbenzene having three alkyl groups examples include trimethylbenzene and ethyldimethylbenzene.
- the reaction may be performed in the presence of a dehydrating agent as necessary.
- a dehydrating agent By using a dehydrating agent, the yield of the product is further improved.
- the dehydrating agent known ones can be used.
- organic dehydrating agents such as acetal, zeolites such as molecular sieve (3A) and molecular sieve (4A), calcium chloride (anhydrous), calcium sulfate (anhydrous) ), Magnesium chloride (anhydrous), magnesium sulfate (anhydrous), potassium carbonate (anhydrous), potassium sulfide (anhydrous), potassium sulfite (anhydrous), sodium sulfate (anhydrous), sodium sulfite (anhydrous) and other inorganic anhydrous salts Can be mentioned.
- zeolites are preferable and molecular sieve (4A) is more preferable in terms of more excellent dehydration ability and stability at the reaction temperature.
- the optimum reaction conditions are appropriately selected according to the materials used, but the reaction temperature is preferably 25 to 150 ° C., more preferably 50 to 120 ° C., and more preferably 85 to 105 in terms of higher productivity. More preferably.
- the reaction time is preferably 0.5 to 7 hours, more preferably 2 to 6 hours, and more preferably 2 to 4 hours.
- the reaction atmosphere is not particularly limited, and may be under air, but is preferably under an inert gas atmosphere such as nitrogen or argon from the viewpoint of suppressing side reactions.
- the amount of hydrotalcite used is not particularly limited, but the mass ratio with the palladium source (mass of hydrotalcite / mass of palladium source) from the point that the yield of the product is more excellent and the economy is also excellent. 32 to 999 is preferable, and 55 to 333 is more preferable.
- the amount of the organic phosphine compound to be used is not particularly limited. From the viewpoint of excellent product yield and economic efficiency, the molar ratio with the palladium source (molar amount of the organic phosphine compound / mol of the palladium source). The amount is preferably 0.5 to 5.0, more preferably 1.0 to 3.0.
- the amount of allyl alcohol used is not particularly limited, but the molar ratio with the palladium source (mole amount of allyl alcohol / mole amount of palladium source) from the viewpoint that the yield of the product is better and the economy is also excellent. 10 to 1000 is preferable, and 50 to 500 is more preferable.
- the mass ratio between the amount of allyl alcohol and the amount of hydrotalcite used is not particularly limited, but the mass ratio (mass of allyl alcohol / hydroallyl is superior in that the yield of the product is excellent and the economy is excellent.
- the mass of talcite is preferably from 0.1 to 100, more preferably from 0.1 to 10.
- the amount of the compound represented by the formula (1) to be used is not particularly limited, but from the viewpoint that the yield of the product is more excellent and the economy is excellent, the molar ratio with the palladium source (in the formula (1))
- the molar amount of the compound represented / the molar amount of the palladium source) is preferably 10 to 1000, more preferably 50 to 300.
- the mass ratio of the amount of the compound represented by the formula (1) used and the amount of hydrotalcite is not particularly limited, but the mass ratio is more excellent in terms of product yield and economic efficiency.
- the mass of the compound represented by the formula (1) / the mass of hydrotalcite is preferably 0.1 to 100, more preferably 1.0 to 10.
- the mixing molar ratio of allyl alcohol and the compound represented by formula (1) is not particularly limited, but the yield of the product is more 1 to 4 is preferable and 1 to 2 is more preferable from the viewpoints of being excellent and economical.
- the order in which the hydrotalcite, the organic phosphine compound and the palladium source are added to the reaction system is not particularly limited, and three may be added simultaneously or in order.
- the method in which the organic phosphine compound and the palladium source are added in random order and the hydrotalcite is added at the end is preferable because the yield of the product is more excellent, and the organic phosphine compound and the palladium source are added at the same time.
- the method of adding the last hydrotalcite is more preferable.
- a method of adding an organic phosphine compound and a palladium source simultaneously both may be added simultaneously as separate components, and a complex containing both (palladium catalyst) is prepared in advance and the obtained complex is added. May be.
- the order of adding allyl alcohol and the compound represented by formula (1) to the reaction system is not particularly limited, and both may be added simultaneously or may be added in order. A method of adding the compound represented by (1) is more preferable.
- the amount used is not particularly limited, but the mass ratio with the hydrotalcite (the mass of the solvent / (Mass) is preferably 0.5 to 45, more preferably 4.0 to 15.0.
- the amount used is not particularly limited, but the mass ratio with the hydrotalcite (the mass of the dehydrating agent / the hydrotalc is high because the yield of the product is more excellent and the economy is also excellent.
- the mass of the site is preferably 0.5 to 4.0, more preferably 1.0 to 2.0.
- an allylation reaction catalyst containing hydrotalcite, an organic phosphine compound and hydrotalcite acts effectively.
- an allylation reaction catalyst including hydrotalcite and a palladium catalyst composed of a palladium source supported on the hydrotalcite and an organic phosphine compound plays a major role.
- the reaction efficiency comparable to that of the conventional homogeneous reaction system can be realized.
- the catalyst containing hydrotalcite, an organic phosphine compound, and a palladium source can be easily separated from the product by a separation method such as filtration or centrifugation, which is an excellent system from an industrial viewpoint.
- the allyl group-containing compound represented by the formula (2) produced in the above step can be separated and purified by known means such as distillation and crystallization operation.
- Y represents —O—, —S—, or —NH—.
- the allyl group-containing compound represented by the formula (2) can be applied to various uses such as monomers for functional polymers, intermediates for medicines and agricultural chemicals, and fragrance materials.
- Example 2 After adding hydrotalcite A, allyl phenyl ether was produced according to the same procedure as in Example 1 except that molecular sieve 4A (Wako Pure Chemical Industries, Ltd., 200 mg) was further added. The results are shown in Table 1.
- Example 3 Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the amount of hydrotalcite A used was changed from 200 mg to 400 mg. The results are shown in Table 1.
- “Hydrotalcite amount” column means the amount of hydrotalcite A used.
- “ ⁇ ” indicates that the dehydrating agent is used, and “X” indicates that the dehydrating agent is not used.
- allyl phenyl ether could be produced in high yield.
- the yield was further improved in Example 2 using a dehydrating agent and Example 3 having a large amount of hydrotalcite.
- Example 1-2 Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the reaction temperature was changed from 90 ° C to 100 ° C. The results are shown in Table 2.
- Example 4 Allyl phenyl ether was produced according to the same procedure as in Example 1, except that m-xylene was used instead of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
- Example 6 Allyl phenyl ether was produced according to the same procedure as in Example 1 except that p-xylene was used instead of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
- Example 7 Allyl phenyl ether was produced according to the same procedure as in Example 1 except that toluene was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
- Example 8 Allyl phenyl ether was produced according to the same procedure as in Example 1, except that n-heptane was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
- Example 9 [1,4-bis (diphenylphosphino) butane] palladium (II) dichloride (hereinafter also referred to as PdCl 2 (dppb)) (20 ⁇ mol) containing a palladium source and an organic phosphine compound was added to toluene (3 mL). After dissolving, hydrotalcite A (200 mg) produced according to the same procedure as in Example 1 was added. Thereafter, allyl alcohol and phenol were further added, and a heat treatment was performed at 110 ° C. for 3 hours under argon. The mixed molar ratio of allyl alcohol, phenol, palladium source, and organic phosphine compound was 100: 50: 1: 1. After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 3.
- Hydrotalcite A (5.0 g) is added to an aqueous solution in which palladium chloride (0.5 mmol) and potassium chloride (6.5 mmol) are dissolved in water (50 mL), and the mixture is heated to a liquid temperature of 50 ° C. The mixture was stirred for 24 hours. After the stirring was completed, hydrotalcite was collected by filtration, washed with distilled water, and then dried under reduced pressure at room temperature. The obtained hydrotalcite was pulverized and then sized with a 150 mesh sieve to obtain hydrotalcite B (palladium chloride content: 1% by mass) on which palladium chloride was supported.
- Example 11 PdCl 2 (dppb) (20 ⁇ mol) was added and dissolved in toluene (3 mL), and instead of adding hydrotalcite A (200 mg), palladium chloride (0.02 mmol) was added to toluene (3 mL). After the addition, dppb (0.02 mmol) was added and dissolved, and hydrotalcite A (200 mg) was further added to carry out the procedure for preparing the reaction solution. Allyl phenyl ether was prepared. The results are shown in Table 3.
- Hydrotalcite C 200 mg was added and dispersed in toluene (3 mL), and 1,4-bis (diphenylphosphino) butane (hereinafter also referred to as dppb) was added. Thereafter, allyl alcohol and phenol were further added, and heat treatment was performed at 100 ° C. for 1 hour under argon. The mixing molar ratio of allyl alcohol, phenol, palladium source, and organic phosphine compound was 1000: 1000: 1: 4. After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 4.
- Example 13 Allyl phenyl ether was produced in the same manner as in Example 12 except that 1,4-bis (diphenylphosphino) propane was used instead of dppb. The results are shown in Table 4.
- the “yield relative ratio” in Table 4 indicates that the yield (%) of Example 14 is “1.0”, and the yield (%) of Examples 12 and 13 is the yield of Example 14 ( %).
- Example 15 Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the reaction temperature was changed from 90 ° C to 110 ° C. The results are shown in Table 5.
- Example 16 Allyl phenyl ether was produced according to the same procedure as in Example 15 except that untreated hydrotalcite not subjected to pretreatment was used instead of hydrotalcite A. The results are shown in Table 5.
- Example 17 A compound represented by the formula (5) (N-allylaniline) was produced according to the same procedure as in Example 1 except that aniline was used instead of phenol. The results are shown in Table 6.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
The purpose of the invention is to provide a method for producing an allyl group-containing compound using a solid catalyst at an excellent reaction yield. This method reacts allyl alcohol and a compound represented by formula (1) in the presence of hydrotalcite, an organic phosphine compound, and a palladium source, and produces an allyl group-containing compound represented by formula (2).
Description
本発明は、アリル基含有化合物を製造する方法に係り、特に、アリルアルコールを出発原料としてアリル基含有化合物を製造する方法に関する。
また、本発明は、上記方法で使用されるアリル化反応用触媒にも関する。 The present invention relates to a method for producing an allyl group-containing compound, and more particularly to a method for producing an allyl group-containing compound using allyl alcohol as a starting material.
The present invention also relates to an allylation reaction catalyst used in the above method.
また、本発明は、上記方法で使用されるアリル化反応用触媒にも関する。 The present invention relates to a method for producing an allyl group-containing compound, and more particularly to a method for producing an allyl group-containing compound using allyl alcohol as a starting material.
The present invention also relates to an allylation reaction catalyst used in the above method.
アリルフェニルエーテルに代表されるアリル基含有化合物は、エポキシ樹脂の原料、医薬品の中間体、または、様々な有機合成反応の出発物質として使用できるため、極めて有用な有機化合物である。
アリル基含有化合物を製造する方法としては、現在までに様々な手法が開発されている。例えば、アリルフェニルエーテルの場合、フェノールとアリルアルコールとを出発原料として、フェノールの脱水的酸素位アリル化反応を介して製造する方法が開示されている。より具体的には、非特許文献1においては酢酸パラジウムとPPh3とTi(OPr)4とを用いる方法や、非特許文献2においては[RuCp(CH3CN)3]PF3と2-quinoline carboxylic acidとを用いる方法や、非特許文献3においては[RuCp(PPh3)2](OTs)とPPh3とAgOTsとを用いる方法などが開示されている。 Allyl group-containing compounds typified by allyl phenyl ether are extremely useful organic compounds because they can be used as raw materials for epoxy resins, intermediates for pharmaceuticals, or as starting materials for various organic synthesis reactions.
Various methods have been developed to date for producing allyl group-containing compounds. For example, in the case of allyl phenyl ether, a method for producing phenol and allyl alcohol as starting materials through a dehydrating oxygen-position allylation reaction of phenol is disclosed. More specifically, Non-Patent Document 1 uses palladium acetate, PPh 3 and Ti (OPr) 4, and Non-Patent Document 2 uses [RuCp (CH 3 CN) 3 ] PF 3 and 2-quinoline. Non-Patent Document 3 discloses a method using carboxylic acid, and a method using [RuCp (PPh 3 ) 2 ] (OTs), PPh 3 and AgOTs.
アリル基含有化合物を製造する方法としては、現在までに様々な手法が開発されている。例えば、アリルフェニルエーテルの場合、フェノールとアリルアルコールとを出発原料として、フェノールの脱水的酸素位アリル化反応を介して製造する方法が開示されている。より具体的には、非特許文献1においては酢酸パラジウムとPPh3とTi(OPr)4とを用いる方法や、非特許文献2においては[RuCp(CH3CN)3]PF3と2-quinoline carboxylic acidとを用いる方法や、非特許文献3においては[RuCp(PPh3)2](OTs)とPPh3とAgOTsとを用いる方法などが開示されている。 Allyl group-containing compounds typified by allyl phenyl ether are extremely useful organic compounds because they can be used as raw materials for epoxy resins, intermediates for pharmaceuticals, or as starting materials for various organic synthesis reactions.
Various methods have been developed to date for producing allyl group-containing compounds. For example, in the case of allyl phenyl ether, a method for producing phenol and allyl alcohol as starting materials through a dehydrating oxygen-position allylation reaction of phenol is disclosed. More specifically, Non-Patent Document 1 uses palladium acetate, PPh 3 and Ti (OPr) 4, and Non-Patent Document 2 uses [RuCp (CH 3 CN) 3 ] PF 3 and 2-quinoline. Non-Patent Document 3 discloses a method using carboxylic acid, and a method using [RuCp (PPh 3 ) 2 ] (OTs), PPh 3 and AgOTs.
上述した非特許文献1~3で開示される方法は、触媒や添加物が溶媒に均一に溶解している均一反応系に関するものであるため、反応効率には優れるものの、触媒や生成物の回収が困難であり、工業的な観点からは必ずしも満足できる反応系ではなかった。
一般的に、多くの化学工業プロセスにおいては固体触媒が汎用されており、これらは均一反応系の触媒が有さない熱的安定性や耐久性を有している。また、通常、固体触媒は溶媒などへの溶解性に劣るため不均一反応系が実現され、触媒と生成物との分離を良好に実施することができる。しかしながら、均一反応系と比較して生成物の収率が落ちるなど、反応性に劣る場合が多かった。 The methods disclosed in Non-Patent Documents 1 to 3 described above relate to a homogeneous reaction system in which the catalyst and additives are uniformly dissolved in the solvent, and thus the reaction efficiency is excellent, but the recovery of the catalyst and products is performed. However, the reaction system is not always satisfactory from an industrial viewpoint.
In general, solid catalysts are widely used in many chemical industrial processes, and these have thermal stability and durability that a homogeneous reaction system catalyst does not have. Further, since the solid catalyst is usually poor in solubility in a solvent or the like, a heterogeneous reaction system is realized, and the catalyst and the product can be favorably separated. However, in many cases, the reactivity is inferior, for example, the yield of the product is lowered as compared with the homogeneous reaction system.
一般的に、多くの化学工業プロセスにおいては固体触媒が汎用されており、これらは均一反応系の触媒が有さない熱的安定性や耐久性を有している。また、通常、固体触媒は溶媒などへの溶解性に劣るため不均一反応系が実現され、触媒と生成物との分離を良好に実施することができる。しかしながら、均一反応系と比較して生成物の収率が落ちるなど、反応性に劣る場合が多かった。 The methods disclosed in Non-Patent Documents 1 to 3 described above relate to a homogeneous reaction system in which the catalyst and additives are uniformly dissolved in the solvent, and thus the reaction efficiency is excellent, but the recovery of the catalyst and products is performed. However, the reaction system is not always satisfactory from an industrial viewpoint.
In general, solid catalysts are widely used in many chemical industrial processes, and these have thermal stability and durability that a homogeneous reaction system catalyst does not have. Further, since the solid catalyst is usually poor in solubility in a solvent or the like, a heterogeneous reaction system is realized, and the catalyst and the product can be favorably separated. However, in many cases, the reactivity is inferior, for example, the yield of the product is lowered as compared with the homogeneous reaction system.
本発明は、上記実情に鑑みて、反応収率に優れる、固体触媒を用いたアリル基含有化合物を製造する方法を提供することを目的とする。
また、本発明は、上記反応に使用されるアリル化反応用触媒を提供することも目的とする。 An object of this invention is to provide the method of manufacturing the allyl group containing compound using the solid catalyst which is excellent in reaction yield in view of the said situation.
Another object of the present invention is to provide an allylation reaction catalyst used in the above reaction.
また、本発明は、上記反応に使用されるアリル化反応用触媒を提供することも目的とする。 An object of this invention is to provide the method of manufacturing the allyl group containing compound using the solid catalyst which is excellent in reaction yield in view of the said situation.
Another object of the present invention is to provide an allylation reaction catalyst used in the above reaction.
本発明者らは、上記課題について鋭意検討した結果、ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源の存在下でアリル化反応を実施することにより、高収率でアリル基含有化合物が製造できることを見出し、本発明を完成するに至った。
すなわち、以下に示す手段により上記課題を解決し得る。 As a result of intensive studies on the above problems, the present inventors have found that an allyl group-containing compound can be produced in a high yield by carrying out an allylation reaction in the presence of a hydrotalcite, an organic phosphine compound and a palladium source. The present invention has been completed.
That is, the above problems can be solved by the following means.
すなわち、以下に示す手段により上記課題を解決し得る。 As a result of intensive studies on the above problems, the present inventors have found that an allyl group-containing compound can be produced in a high yield by carrying out an allylation reaction in the presence of a hydrotalcite, an organic phosphine compound and a palladium source. The present invention has been completed.
That is, the above problems can be solved by the following means.
(1) ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源の存在下、アリルアルコールと後述する式(1)で表される化合物とを反応させ、後述する式(2)で表されるアリル基含有化合物を製造する方法。
(2) 有機ホスフィン化合物が、2座有機ホスフィン化合物である、(1)に記載の方法。
(3) 芳香族炭化水素系溶媒の存在下で反応を行う、(1)または(2)に記載の方法。
(4) 芳香族炭化水素系溶媒が、2以上のアルキル基を有するアルキルベンゼンである、(3)に記載の方法。
(5) 脱水剤の存在下で反応を行う、(1)~(4)のいずれかに記載の方法。
(6) 有機ホスフィン化合物およびパラジウム源が、有機ホスフィン化合物およびパラジウム源を含むパラジウム触媒として存在する、(1)~(5)のいずれかに記載の方法。
(7) ハイドロタルサイト、パラジウム源および有機ホスフィン化合物を有しており、アリルアルコールと後述する式(1)で表される化合物とを反応させ、後述する式(2)で表されるアリル基含有化合物を製造するために用いられるアリル化反応用触媒。 (1) An allyl group-containing compound represented by formula (2) described below by reacting allyl alcohol with a compound represented by formula (1) described below in the presence of hydrotalcite, an organic phosphine compound and a palladium source. How to manufacture.
(2) The method according to (1), wherein the organic phosphine compound is a bidentate organic phosphine compound.
(3) The method according to (1) or (2), wherein the reaction is carried out in the presence of an aromatic hydrocarbon solvent.
(4) The method according to (3), wherein the aromatic hydrocarbon solvent is an alkylbenzene having two or more alkyl groups.
(5) The method according to any one of (1) to (4), wherein the reaction is carried out in the presence of a dehydrating agent.
(6) The method according to any one of (1) to (5), wherein the organic phosphine compound and the palladium source are present as a palladium catalyst containing the organic phosphine compound and the palladium source.
(7) It has a hydrotalcite, a palladium source, and an organic phosphine compound, and reacts allyl alcohol with a compound represented by the formula (1) described below to react with an allyl group represented by the formula (2) described below. A catalyst for an allylation reaction used for producing a compound.
(2) 有機ホスフィン化合物が、2座有機ホスフィン化合物である、(1)に記載の方法。
(3) 芳香族炭化水素系溶媒の存在下で反応を行う、(1)または(2)に記載の方法。
(4) 芳香族炭化水素系溶媒が、2以上のアルキル基を有するアルキルベンゼンである、(3)に記載の方法。
(5) 脱水剤の存在下で反応を行う、(1)~(4)のいずれかに記載の方法。
(6) 有機ホスフィン化合物およびパラジウム源が、有機ホスフィン化合物およびパラジウム源を含むパラジウム触媒として存在する、(1)~(5)のいずれかに記載の方法。
(7) ハイドロタルサイト、パラジウム源および有機ホスフィン化合物を有しており、アリルアルコールと後述する式(1)で表される化合物とを反応させ、後述する式(2)で表されるアリル基含有化合物を製造するために用いられるアリル化反応用触媒。 (1) An allyl group-containing compound represented by formula (2) described below by reacting allyl alcohol with a compound represented by formula (1) described below in the presence of hydrotalcite, an organic phosphine compound and a palladium source. How to manufacture.
(2) The method according to (1), wherein the organic phosphine compound is a bidentate organic phosphine compound.
(3) The method according to (1) or (2), wherein the reaction is carried out in the presence of an aromatic hydrocarbon solvent.
(4) The method according to (3), wherein the aromatic hydrocarbon solvent is an alkylbenzene having two or more alkyl groups.
(5) The method according to any one of (1) to (4), wherein the reaction is carried out in the presence of a dehydrating agent.
(6) The method according to any one of (1) to (5), wherein the organic phosphine compound and the palladium source are present as a palladium catalyst containing the organic phosphine compound and the palladium source.
(7) It has a hydrotalcite, a palladium source, and an organic phosphine compound, and reacts allyl alcohol with a compound represented by the formula (1) described below to react with an allyl group represented by the formula (2) described below. A catalyst for an allylation reaction used for producing a compound.
本発明によれば、反応収率に優れる、固体触媒を用いたアリル基含有化合物を製造する方法を提供することができる。
また、本発明によれば、上記反応に使用されるアリル化反応用触媒を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing the allyl group containing compound using the solid catalyst which is excellent in the reaction yield can be provided.
Moreover, according to this invention, the catalyst for allylation reaction used for the said reaction can also be provided.
また、本発明によれば、上記反応に使用されるアリル化反応用触媒を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing the allyl group containing compound using the solid catalyst which is excellent in the reaction yield can be provided.
Moreover, according to this invention, the catalyst for allylation reaction used for the said reaction can also be provided.
以下に、本発明のアリル基含有化合物の製造方法およびアリル化反応用触媒の好適態様について説明する。
まず、本発明の特徴点について詳述する。
本発明の特徴点は、上述したように、ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源が共存する存在下でアリル化反応を実施することである。上記3つの成分を共存させることにより、均一反応系と同等程度の反応収率を実現できると共に、固体触媒を使用した利点である触媒と生成物との分離とを容易になし得る。
本製造方法のメカニズムの詳細は不明であるが、ハイドロタルサイトの表面上にパラジウム源と有機ホスフィン化合物とから形成されるパラジウム触媒と出発原料(特に、後述する式(1)で表される化合物)とが吸着し、ハイドロタルサイトから供給される塩基によってこれら化合物が活性化され、所望の反応が進行すると推測される。つまり、ハイドロタルサイトが、パラジウム種の配位環境を制御して活性種(π-アリル中間種)を生成する役割、活性種を固定化する担体としての役割、および、塩基を供給する固体塩基としての役割を果たし、ハイドロタルサイト表面を介した触媒システムを構築している。 Below, the suitable method of the manufacturing method of the allyl group containing compound of this invention and the catalyst for allylation reaction is demonstrated.
First, the features of the present invention will be described in detail.
As described above, the feature of the present invention is that the allylation reaction is carried out in the presence of hydrotalcite, an organic phosphine compound and a palladium source. By allowing the above three components to coexist, a reaction yield equivalent to that of a homogeneous reaction system can be realized, and separation of the catalyst and the product, which is an advantage of using a solid catalyst, can be easily achieved.
Although details of the mechanism of this production method are unclear, a palladium catalyst formed from a palladium source and an organic phosphine compound on the surface of hydrotalcite and a starting material (especially a compound represented by the formula (1) described later) ) Are adsorbed and these compounds are activated by the base supplied from the hydrotalcite, and it is presumed that the desired reaction proceeds. That is, hydrotalcite controls the coordination environment of palladium species to generate active species (π-allyl intermediate species), a role as a carrier for immobilizing active species, and a solid base that supplies a base The catalyst system is constructed through the hydrotalcite surface.
まず、本発明の特徴点について詳述する。
本発明の特徴点は、上述したように、ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源が共存する存在下でアリル化反応を実施することである。上記3つの成分を共存させることにより、均一反応系と同等程度の反応収率を実現できると共に、固体触媒を使用した利点である触媒と生成物との分離とを容易になし得る。
本製造方法のメカニズムの詳細は不明であるが、ハイドロタルサイトの表面上にパラジウム源と有機ホスフィン化合物とから形成されるパラジウム触媒と出発原料(特に、後述する式(1)で表される化合物)とが吸着し、ハイドロタルサイトから供給される塩基によってこれら化合物が活性化され、所望の反応が進行すると推測される。つまり、ハイドロタルサイトが、パラジウム種の配位環境を制御して活性種(π-アリル中間種)を生成する役割、活性種を固定化する担体としての役割、および、塩基を供給する固体塩基としての役割を果たし、ハイドロタルサイト表面を介した触媒システムを構築している。 Below, the suitable method of the manufacturing method of the allyl group containing compound of this invention and the catalyst for allylation reaction is demonstrated.
First, the features of the present invention will be described in detail.
As described above, the feature of the present invention is that the allylation reaction is carried out in the presence of hydrotalcite, an organic phosphine compound and a palladium source. By allowing the above three components to coexist, a reaction yield equivalent to that of a homogeneous reaction system can be realized, and separation of the catalyst and the product, which is an advantage of using a solid catalyst, can be easily achieved.
Although details of the mechanism of this production method are unclear, a palladium catalyst formed from a palladium source and an organic phosphine compound on the surface of hydrotalcite and a starting material (especially a compound represented by the formula (1) described later) ) Are adsorbed and these compounds are activated by the base supplied from the hydrotalcite, and it is presumed that the desired reaction proceeds. That is, hydrotalcite controls the coordination environment of palladium species to generate active species (π-allyl intermediate species), a role as a carrier for immobilizing active species, and a solid base that supplies a base The catalyst system is constructed through the hydrotalcite surface.
まず、本製造方法で使用される材料(ハイドロタルサイト、有機ホスフィン化合物、パラジウム源、アリルアルコール、式(1)で表される化合物など)について詳述し、その後製造方法の手順について詳述する。
First, materials (hydrotalcite, organic phosphine compound, palladium source, allyl alcohol, compound represented by formula (1), etc.) used in this production method will be described in detail, and then the procedure of the production method will be described in detail. .
<ハイドロタルサイト>
ハイドロタルサイトは、塩基性層状粘土化合物の一種であり、表面塩基性、表面吸着能、中間層のアニオン交換能および基本層のカチオン交換能といった性質を有している。
ハイドロタルサイトとしては、公知または市販のものを使用することができる。また、公知の製法によって得られるものも使用することができる。 <Hydrotalcite>
Hydrotalcite is a kind of basic layered clay compound and has properties such as surface basicity, surface adsorption ability, anion exchange ability of the intermediate layer, and cation exchange ability of the basic layer.
As hydrotalcite, known or commercially available ones can be used. Moreover, what is obtained by a well-known manufacturing method can also be used.
ハイドロタルサイトは、塩基性層状粘土化合物の一種であり、表面塩基性、表面吸着能、中間層のアニオン交換能および基本層のカチオン交換能といった性質を有している。
ハイドロタルサイトとしては、公知または市販のものを使用することができる。また、公知の製法によって得られるものも使用することができる。 <Hydrotalcite>
Hydrotalcite is a kind of basic layered clay compound and has properties such as surface basicity, surface adsorption ability, anion exchange ability of the intermediate layer, and cation exchange ability of the basic layer.
As hydrotalcite, known or commercially available ones can be used. Moreover, what is obtained by a well-known manufacturing method can also be used.
より具体的には、ハイドロタルサイトとしては、以下の式(3)で表されるハイドロタルサイトが好ましい。
〔(M2+)1-x(M3+)x(OH)2〕x+〔(An-)x/n・mH2O〕x- 式(3)
式(3)中、M2+は2価の金属イオンを表す。M2+としては、例えば、Mg2+、Zn2+、Mn2+、Fe2+、Co2+、Ni2+、またはCu2+などが挙げられ、生成物の収率がより優れる点で、Mg2+が好ましい。
式(3)中、M3+は3価の金属イオンを表す。M3+としては、Al3+、Fe3+、Cr3+、Co3+、またはIn3+などが挙げられ、生成物の収率がより優れる点で、Al3+が好ましい。
式(3)中、An-はn価(nは1以上の整数)のアニオンを表す。An-としては、OH-、F-、Cl-、Br-、NO3 -、CO3 2-、SO4 2-、Fe(CN)6 3-、CH3COO-、シュウ酸イオン、サリチル酸イオンなどが挙げられ、生成物の収率がより優れる点で、CO3 2-またはOH-が好ましい。
式(3)中、xは0<x≦1/3の範囲の数である。mは0≦m≦2の範囲の数である。 More specifically, the hydrotalcite represented by the following formula (3) is preferable as the hydrotalcite.
[(M 2+ ) 1-x (M 3+ ) x (OH) 2 ] x + [(A n− ) x / n · mH 2 O] x- formula (3)
In formula (3), M 2+ represents a divalent metal ion. Examples of M 2+ include Mg 2+ , Zn 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , or Cu 2+ , and the yield of the product is more excellent. And Mg 2+ is preferred.
In formula (3), M 3+ represents a trivalent metal ion. Examples of M 3+ include Al 3+ , Fe 3+ , Cr 3+ , Co 3+ , and In 3+ , and Al 3+ is preferable because the yield of the product is more excellent.
In formula (3), A n− represents an n-valent anion (n is an integer of 1 or more). A The n-, OH -, F -, Cl -, Br -, NO 3 -, CO 3 2-, SO 4 2-, Fe (CN) 6 3-, CH 3 COO -, oxalic acid ion, salicylic acid Examples thereof include ions, and CO 3 2− or OH − is preferable in that the yield of the product is more excellent.
In formula (3), x is a number in the range of 0 <x ≦ 1/3. m is a number in the range of 0 ≦ m ≦ 2.
〔(M2+)1-x(M3+)x(OH)2〕x+〔(An-)x/n・mH2O〕x- 式(3)
式(3)中、M2+は2価の金属イオンを表す。M2+としては、例えば、Mg2+、Zn2+、Mn2+、Fe2+、Co2+、Ni2+、またはCu2+などが挙げられ、生成物の収率がより優れる点で、Mg2+が好ましい。
式(3)中、M3+は3価の金属イオンを表す。M3+としては、Al3+、Fe3+、Cr3+、Co3+、またはIn3+などが挙げられ、生成物の収率がより優れる点で、Al3+が好ましい。
式(3)中、An-はn価(nは1以上の整数)のアニオンを表す。An-としては、OH-、F-、Cl-、Br-、NO3 -、CO3 2-、SO4 2-、Fe(CN)6 3-、CH3COO-、シュウ酸イオン、サリチル酸イオンなどが挙げられ、生成物の収率がより優れる点で、CO3 2-またはOH-が好ましい。
式(3)中、xは0<x≦1/3の範囲の数である。mは0≦m≦2の範囲の数である。 More specifically, the hydrotalcite represented by the following formula (3) is preferable as the hydrotalcite.
[(M 2+ ) 1-x (M 3+ ) x (OH) 2 ] x + [(A n− ) x / n · mH 2 O] x- formula (3)
In formula (3), M 2+ represents a divalent metal ion. Examples of M 2+ include Mg 2+ , Zn 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , or Cu 2+ , and the yield of the product is more excellent. And Mg 2+ is preferred.
In formula (3), M 3+ represents a trivalent metal ion. Examples of M 3+ include Al 3+ , Fe 3+ , Cr 3+ , Co 3+ , and In 3+ , and Al 3+ is preferable because the yield of the product is more excellent.
In formula (3), A n− represents an n-valent anion (n is an integer of 1 or more). A The n-, OH -, F -, Cl -, Br -, NO 3 -, CO 3 2-, SO 4 2-, Fe (CN) 6 3-, CH 3 COO -, oxalic acid ion, salicylic acid Examples thereof include ions, and CO 3 2− or OH − is preferable in that the yield of the product is more excellent.
In formula (3), x is a number in the range of 0 <x ≦ 1/3. m is a number in the range of 0 ≦ m ≦ 2.
2価の金属イオンと3価の金属イオンとのモル比(M2+/M3+)は特に制限されないが、生成物の収率がより優れる点で、M2+/M3+=2~7が好ましく、特にM2+/M3+=2~4がより好ましい。
The molar ratio of divalent metal ions to trivalent metal ions (M 2+ / M 3+ ) is not particularly limited, but M 2+ / M 3+ = 2 in terms of better product yield. To 7, more preferably M 2+ / M 3+ = 2 to 4.
ハイドロタルサイトの形状は特に限定されないが、通常は粉末状、粒子状のものが使用される。
ハイドロタルサイトの大きさは特に制限されないが、生成物の収率がより優れる点から、平均粒径5~200μmが好ましく、平均粒径10~150μmがより好ましい。
平均粒径は、分級、粉砕等により適宜調節することができる。なお、平均粒径は、レーザー回折測定法など公知の方法により測定できる。
なお、ハイドロタルサイトは、単独で使用しても二種類以上を混合使用してもよい。 The shape of the hydrotalcite is not particularly limited, but usually a powdery or particulate form is used.
The size of the hydrotalcite is not particularly limited, but an average particle size of 5 to 200 μm is preferable and an average particle size of 10 to 150 μm is more preferable from the viewpoint of better product yield.
The average particle diameter can be appropriately adjusted by classification, pulverization, or the like. The average particle diameter can be measured by a known method such as a laser diffraction measurement method.
The hydrotalcite may be used alone or in combination of two or more.
ハイドロタルサイトの大きさは特に制限されないが、生成物の収率がより優れる点から、平均粒径5~200μmが好ましく、平均粒径10~150μmがより好ましい。
平均粒径は、分級、粉砕等により適宜調節することができる。なお、平均粒径は、レーザー回折測定法など公知の方法により測定できる。
なお、ハイドロタルサイトは、単独で使用しても二種類以上を混合使用してもよい。 The shape of the hydrotalcite is not particularly limited, but usually a powdery or particulate form is used.
The size of the hydrotalcite is not particularly limited, but an average particle size of 5 to 200 μm is preferable and an average particle size of 10 to 150 μm is more preferable from the viewpoint of better product yield.
The average particle diameter can be appropriately adjusted by classification, pulverization, or the like. The average particle diameter can be measured by a known method such as a laser diffraction measurement method.
The hydrotalcite may be used alone or in combination of two or more.
(ハイドロタルサイトの前処理)
ハイドロタルサイトは、後述する前処理が施されてもよい。前処理を施すことにより、生成物の収率がより向上する。
前処理としては、不活性ガス雰囲気下にてハイドロタルサイトを水中で攪拌する攪拌工程と、攪拌終了後、水を除去してハイドロタルサイトを回収し、その後乾燥して、粉砕する粉砕工程とを有する。以下に、各工程の手順について詳述する。 (Pretreatment of hydrotalcite)
The hydrotalcite may be subjected to pretreatment described later. By performing the pretreatment, the yield of the product is further improved.
As pretreatment, a stirring step of stirring hydrotalcite in water under an inert gas atmosphere, and a grinding step of removing hydrotalcite by removing water after completion of stirring, and then drying and pulverizing Have Below, the procedure of each process is explained in full detail.
ハイドロタルサイトは、後述する前処理が施されてもよい。前処理を施すことにより、生成物の収率がより向上する。
前処理としては、不活性ガス雰囲気下にてハイドロタルサイトを水中で攪拌する攪拌工程と、攪拌終了後、水を除去してハイドロタルサイトを回収し、その後乾燥して、粉砕する粉砕工程とを有する。以下に、各工程の手順について詳述する。 (Pretreatment of hydrotalcite)
The hydrotalcite may be subjected to pretreatment described later. By performing the pretreatment, the yield of the product is further improved.
As pretreatment, a stirring step of stirring hydrotalcite in water under an inert gas atmosphere, and a grinding step of removing hydrotalcite by removing water after completion of stirring, and then drying and pulverizing Have Below, the procedure of each process is explained in full detail.
攪拌工程において使用される不活性ガスは特に制限されず、アルゴン、窒素などが挙げられる。なかでも、生成物の収率がより向上する点で、アルゴンが好ましい。
水中におけるハイドロタルサイトの濃度は特に制限されず、攪拌効率がより優れる点で、5~15g/Lが好ましい。
攪拌時間は特に制限されず、使用されるハイドロタルサイトの種類に応じて適宜選択されるが、生産性の点から、1~3時間が好ましい。
攪拌工程においては、超音波処理や加熱処理を同時に施してもよい。加熱温度は特に制限さないが、生成物の収率がより向上する点で、40~70℃が好ましい。 The inert gas used in the stirring step is not particularly limited, and examples thereof include argon and nitrogen. Among these, argon is preferable because the yield of the product is further improved.
The concentration of hydrotalcite in water is not particularly limited, and is preferably 5 to 15 g / L in terms of more excellent stirring efficiency.
The stirring time is not particularly limited and is appropriately selected depending on the type of hydrotalcite used. From the viewpoint of productivity, 1 to 3 hours are preferable.
In the stirring step, ultrasonic treatment or heat treatment may be performed simultaneously. The heating temperature is not particularly limited, but 40 to 70 ° C. is preferable in terms of further improving the yield of the product.
水中におけるハイドロタルサイトの濃度は特に制限されず、攪拌効率がより優れる点で、5~15g/Lが好ましい。
攪拌時間は特に制限されず、使用されるハイドロタルサイトの種類に応じて適宜選択されるが、生産性の点から、1~3時間が好ましい。
攪拌工程においては、超音波処理や加熱処理を同時に施してもよい。加熱温度は特に制限さないが、生成物の収率がより向上する点で、40~70℃が好ましい。 The inert gas used in the stirring step is not particularly limited, and examples thereof include argon and nitrogen. Among these, argon is preferable because the yield of the product is further improved.
The concentration of hydrotalcite in water is not particularly limited, and is preferably 5 to 15 g / L in terms of more excellent stirring efficiency.
The stirring time is not particularly limited and is appropriately selected depending on the type of hydrotalcite used. From the viewpoint of productivity, 1 to 3 hours are preferable.
In the stirring step, ultrasonic treatment or heat treatment may be performed simultaneously. The heating temperature is not particularly limited, but 40 to 70 ° C. is preferable in terms of further improving the yield of the product.
粉砕工程において、攪拌工程で得られた水溶液から水を除去する方法は特に制限されず、濾過処理を行う方法、遠心分離を行い、上澄み液を除去する方法などが挙げられる。
回収されたハイドロタルサイトは、必要に応じて、水でさらに洗浄処理される。
ハイドロタルサイトは、乾燥処理が施されて、余分な水分を除去した後、粉砕され所定の大きさに整粒される。粉砕された後のハイドロタルサイトの大きさは特に制限されないが、生成物の収率がより優れる点で、10~150μm程度が好ましい。 In the pulverization step, the method for removing water from the aqueous solution obtained in the stirring step is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a supernatant solution removal method.
The recovered hydrotalcite is further washed with water as necessary.
The hydrotalcite is subjected to a drying process to remove excess moisture, and then pulverized and sized to a predetermined size. The size of the hydrotalcite after pulverization is not particularly limited, but is preferably about 10 to 150 μm from the viewpoint of better product yield.
回収されたハイドロタルサイトは、必要に応じて、水でさらに洗浄処理される。
ハイドロタルサイトは、乾燥処理が施されて、余分な水分を除去した後、粉砕され所定の大きさに整粒される。粉砕された後のハイドロタルサイトの大きさは特に制限されないが、生成物の収率がより優れる点で、10~150μm程度が好ましい。 In the pulverization step, the method for removing water from the aqueous solution obtained in the stirring step is not particularly limited, and examples thereof include a filtration method, a centrifugal separation method, and a supernatant solution removal method.
The recovered hydrotalcite is further washed with water as necessary.
The hydrotalcite is subjected to a drying process to remove excess moisture, and then pulverized and sized to a predetermined size. The size of the hydrotalcite after pulverization is not particularly limited, but is preferably about 10 to 150 μm from the viewpoint of better product yield.
<有機ホスフィン化合物>
有機ホスフィン化合物はリン原子に炭化水素基が置換した化合物(有機ホスフィン配位子)であり、単座有機ホスフィン化合物(単座ホスフィン)であっても複座有機ホスフィン化合物(複座ホスフィン)であってもよい。なかでも、生成物の収率がより優れる点で、2座有機ホスフィン化合物(2座ホスフィン)であることが好ましい。2座有機ホスフィン化合物であれば、パラジウムイオンとの間で形成されるP(リン)-Pd(パラジウム)-P(リン)のなす角度(バイトアングル)がアリル化に好適な角度となると推測される。
単座有機ホスフィン化合物としては、例えば、トリフェニルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニルなどが挙げられる。 <Organic phosphine compound>
An organic phosphine compound is a compound in which a hydrocarbon group is substituted on a phosphorus atom (organic phosphine ligand), whether it is a monodentate organic phosphine compound (monodentate phosphine) or a bidentate organic phosphine compound (bidentate phosphine). Good. Especially, it is preferable that it is a bidentate organic phosphine compound (bidentate phosphine) at the point which the yield of a product is more excellent. In the case of a bidentate organic phosphine compound, the angle (bite angle) formed by P (phosphorus) -Pd (palladium) -P (phosphorus) formed with palladium ions is estimated to be a suitable angle for allylation. The
Examples of monodentate organic phosphine compounds include triphenylphosphine, triethylphosphine, tributylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, 2- (di-tert-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) And biphenyl.
有機ホスフィン化合物はリン原子に炭化水素基が置換した化合物(有機ホスフィン配位子)であり、単座有機ホスフィン化合物(単座ホスフィン)であっても複座有機ホスフィン化合物(複座ホスフィン)であってもよい。なかでも、生成物の収率がより優れる点で、2座有機ホスフィン化合物(2座ホスフィン)であることが好ましい。2座有機ホスフィン化合物であれば、パラジウムイオンとの間で形成されるP(リン)-Pd(パラジウム)-P(リン)のなす角度(バイトアングル)がアリル化に好適な角度となると推測される。
単座有機ホスフィン化合物としては、例えば、トリフェニルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニルなどが挙げられる。 <Organic phosphine compound>
An organic phosphine compound is a compound in which a hydrocarbon group is substituted on a phosphorus atom (organic phosphine ligand), whether it is a monodentate organic phosphine compound (monodentate phosphine) or a bidentate organic phosphine compound (bidentate phosphine). Good. Especially, it is preferable that it is a bidentate organic phosphine compound (bidentate phosphine) at the point which the yield of a product is more excellent. In the case of a bidentate organic phosphine compound, the angle (bite angle) formed by P (phosphorus) -Pd (palladium) -P (phosphorus) formed with palladium ions is estimated to be a suitable angle for allylation. The
Examples of monodentate organic phosphine compounds include triphenylphosphine, triethylphosphine, tributylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine, 2- (di-tert-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) And biphenyl.
また、2座有機ホスフィン化合物としては、例えば、ビス(ジフェニルホスフィノ)メタン(dppm)、1,2-ビス(ジフェニルホスフィノ)エタン(dppe)、1,3-ビス(ジフェニルホスフィノ)プロパン(dppp)、1,4-ビス(ジフェニルホスフィノ)ブタン(dppb)、ビス(ジフェニルホスフィノ)フェロセン(dppf)、ビス(ジ-tert-ブチルホスフィノ)フェロセン(d-t-Bu-pf)、2,2'-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、2,2’-ビス(ジシクロヘキシルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)-2’-(ジメチルアミノ)ビフェニル、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン、9,9-ジメチル-4,5-ビス(ジ-tert-ブチルホスフィノ)キサンテンなどが挙げられる。これらの2座有機ホスフィン化合物は、反応基質に応じて適宜選択して使用でき、例えば、フェノールとアリルアルコールとを出発原料として、フェノールの脱水的酸素位アリル化反応を介してアリルフェニルエーテルを製造する場合、1,4-ビス(ジフェニルホスフィノ)ブタン(dppb)や1,3-ビス(ジフェニルホスフィノ)プロパン(dppp)が好ましい。
なお、有機ホスフィン化合物は、単独で使用しても二種類以上を混合使用してもよい。 Examples of the bidentate organic phosphine compound include bis (diphenylphosphino) methane (dppm), 1,2-bis (diphenylphosphino) ethane (dppe), 1,3-bis (diphenylphosphino) propane ( dppp), 1,4-bis (diphenylphosphino) butane (dppb), bis (diphenylphosphino) ferrocene (dppf), bis (di-tert-butylphosphino) ferrocene (dt-Bu-pf), 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis (dicyclohexylphosphino) biphenyl, 2- (dicyclohexylphosphino) -2 '-(dimethylamino) Biphenyl, 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene, 9,9-dimethyl-4,5 -Bis (di-tert-butylphosphino) xanthene and the like. These bidentate organophosphine compounds can be selected and used as appropriate according to the reaction substrate. For example, allyl phenyl ether is produced through the dehydrative oxygen-position allylation of phenol using phenol and allyl alcohol as starting materials. In this case, 1,4-bis (diphenylphosphino) butane (dppb) and 1,3-bis (diphenylphosphino) propane (dppp) are preferable.
In addition, an organic phosphine compound may be used individually or may be used in mixture of 2 or more types.
なお、有機ホスフィン化合物は、単独で使用しても二種類以上を混合使用してもよい。 Examples of the bidentate organic phosphine compound include bis (diphenylphosphino) methane (dppm), 1,2-bis (diphenylphosphino) ethane (dppe), 1,3-bis (diphenylphosphino) propane ( dppp), 1,4-bis (diphenylphosphino) butane (dppb), bis (diphenylphosphino) ferrocene (dppf), bis (di-tert-butylphosphino) ferrocene (dt-Bu-pf), 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis (dicyclohexylphosphino) biphenyl, 2- (dicyclohexylphosphino) -2 '-(dimethylamino) Biphenyl, 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene, 9,9-dimethyl-4,5 -Bis (di-tert-butylphosphino) xanthene and the like. These bidentate organophosphine compounds can be selected and used as appropriate according to the reaction substrate. For example, allyl phenyl ether is produced through the dehydrative oxygen-position allylation of phenol using phenol and allyl alcohol as starting materials. In this case, 1,4-bis (diphenylphosphino) butane (dppb) and 1,3-bis (diphenylphosphino) propane (dppp) are preferable.
In addition, an organic phosphine compound may be used individually or may be used in mixture of 2 or more types.
<パラジウム源>
パラジウム源としてはパラジウムが含まれていれば特に制限されず、例えば、パラジウム塩、パラジウム錯体などが挙げられる。パラジウム塩としては、例えば、酢酸パラジウム、プロピオン酸パラジウム、n-酪酸パラジウム、iso-酪酸パラジウム、n-吉草酸パラジウム、iso-吉草酸パラジウム、トリフルオロ酢酸パラジウムなどの有機酸のパラジウム塩、硫酸パラジウム、炭酸パラジウム、水酸化パラジウム、硝酸パラジウム、亜硝酸パラジウム、ヨウ化パラジウム、臭化パラジウム、塩化パラジウム、ビスアセチルアセトナートパラジウムなどのパラジウム塩が挙げられる。パラジウム錯体としては、例えば、テトラニトロパラジウム(II)酸ナトリウム、テトラニトロパラジウム(II)酸カリウム、ビス(アセトニトリル)パラジウムジクロリド、ジニトロジアンミンパラジウム(II)、テトラクロロパラジウム(II)酸カリウム、テトラブロモパラジウム(II)酸カリウム、テトラアンミンパラジウム(II)塩化物などが挙げられる。なかでも、生成物の収率がより優れる点で、有機酸のパラジウム塩がより好ましく、酢酸パラジウムが特に好ましい。
なお、パラジウム源は、単独で使用しても二種類以上を混合使用してもよい。 <Palladium source>
The palladium source is not particularly limited as long as palladium is contained, and examples thereof include palladium salts and palladium complexes. Examples of the palladium salt include palladium salts of organic acids such as palladium acetate, palladium propionate, palladium n-butyrate, palladium iso-butyrate, palladium n-valerate, palladium iso-valerate, palladium trifluoroacetate, and palladium sulfate. And palladium salts such as palladium carbonate, palladium hydroxide, palladium nitrate, palladium nitrite, palladium iodide, palladium bromide, palladium chloride, and bisacetylacetonato palladium. Examples of the palladium complex include sodium tetranitropalladium (II), potassium tetranitropalladium (II), bis (acetonitrile) palladium dichloride, dinitrodiammine palladium (II), potassium tetrachloropalladium (II), tetrabromo Palladium (II) potassium, tetraammine palladium (II) chloride, etc. are mentioned. Especially, the palladium salt of organic acid is more preferable at the point which the yield of a product is more excellent, and palladium acetate is especially preferable.
In addition, a palladium source may be used individually or may be used in mixture of 2 or more types.
パラジウム源としてはパラジウムが含まれていれば特に制限されず、例えば、パラジウム塩、パラジウム錯体などが挙げられる。パラジウム塩としては、例えば、酢酸パラジウム、プロピオン酸パラジウム、n-酪酸パラジウム、iso-酪酸パラジウム、n-吉草酸パラジウム、iso-吉草酸パラジウム、トリフルオロ酢酸パラジウムなどの有機酸のパラジウム塩、硫酸パラジウム、炭酸パラジウム、水酸化パラジウム、硝酸パラジウム、亜硝酸パラジウム、ヨウ化パラジウム、臭化パラジウム、塩化パラジウム、ビスアセチルアセトナートパラジウムなどのパラジウム塩が挙げられる。パラジウム錯体としては、例えば、テトラニトロパラジウム(II)酸ナトリウム、テトラニトロパラジウム(II)酸カリウム、ビス(アセトニトリル)パラジウムジクロリド、ジニトロジアンミンパラジウム(II)、テトラクロロパラジウム(II)酸カリウム、テトラブロモパラジウム(II)酸カリウム、テトラアンミンパラジウム(II)塩化物などが挙げられる。なかでも、生成物の収率がより優れる点で、有機酸のパラジウム塩がより好ましく、酢酸パラジウムが特に好ましい。
なお、パラジウム源は、単独で使用しても二種類以上を混合使用してもよい。 <Palladium source>
The palladium source is not particularly limited as long as palladium is contained, and examples thereof include palladium salts and palladium complexes. Examples of the palladium salt include palladium salts of organic acids such as palladium acetate, palladium propionate, palladium n-butyrate, palladium iso-butyrate, palladium n-valerate, palladium iso-valerate, palladium trifluoroacetate, and palladium sulfate. And palladium salts such as palladium carbonate, palladium hydroxide, palladium nitrate, palladium nitrite, palladium iodide, palladium bromide, palladium chloride, and bisacetylacetonato palladium. Examples of the palladium complex include sodium tetranitropalladium (II), potassium tetranitropalladium (II), bis (acetonitrile) palladium dichloride, dinitrodiammine palladium (II), potassium tetrachloropalladium (II), tetrabromo Palladium (II) potassium, tetraammine palladium (II) chloride, etc. are mentioned. Especially, the palladium salt of organic acid is more preferable at the point which the yield of a product is more excellent, and palladium acetate is especially preferable.
In addition, a palladium source may be used individually or may be used in mixture of 2 or more types.
後述するように、ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源は、それぞれ別々の化合物として反応系に添加されてもよいし、有機ホスフィン化合物およびパラジウム源を含むパラジウム触媒とハイドロタルサイトとが反応系に添加されてもよいし、ハイドロタルサイトおよびパラジウム源を含むパラジウム触媒と有機ホスフィン化合物とが反応系に添加されてもよい。
As will be described later, the hydrotalcite, the organic phosphine compound and the palladium source may be added to the reaction system as separate compounds, respectively, or the palladium catalyst containing the organic phosphine compound and the palladium source and the hydrotalcite are the reaction system. A palladium catalyst containing hydrotalcite and a palladium source and an organic phosphine compound may be added to the reaction system.
<アリルアルコール>
アリルアルコールは、以下の式(4)で表される化合物であり、出発原料である。 <Allyl alcohol>
Allyl alcohol is a compound represented by the following formula (4) and is a starting material.
アリルアルコールは、以下の式(4)で表される化合物であり、出発原料である。 <Allyl alcohol>
Allyl alcohol is a compound represented by the following formula (4) and is a starting material.
<式(1)で表される化合物>
式(1)で表される化合物は、本製造方法の出発原料である。 <Compound represented by Formula (1)>
The compound represented by the formula (1) is a starting material for this production method.
式(1)で表される化合物は、本製造方法の出発原料である。 <Compound represented by Formula (1)>
The compound represented by the formula (1) is a starting material for this production method.
式(1)中、Arは、置換基を有していてもよい芳香族炭化水素基を表す。
芳香族炭化水素基の炭素数は特に制限されないが、反応溶媒への溶解性などがより優れ、取扱い性がより優れる点より、炭素数6~36が好ましく、炭素数6~18がより好ましく、炭素数6~12がさらに好ましい。
芳香族炭化水素基は単環式であっても、多環式であってもよい。例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などが挙げられる。なかでも、汎用性がより優れる点で、ベンゼン環が好ましい。 In formula (1), Ar represents an aromatic hydrocarbon group which may have a substituent.
The number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but is preferably 6 to 36 carbon atoms, more preferably 6 to 18 carbon atoms, from the viewpoints of better solubility in the reaction solvent and better handleability. More preferably, it has 6 to 12 carbon atoms.
The aromatic hydrocarbon group may be monocyclic or polycyclic. Examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, and the like. Especially, a benzene ring is preferable at the point which versatility is more excellent.
芳香族炭化水素基の炭素数は特に制限されないが、反応溶媒への溶解性などがより優れ、取扱い性がより優れる点より、炭素数6~36が好ましく、炭素数6~18がより好ましく、炭素数6~12がさらに好ましい。
芳香族炭化水素基は単環式であっても、多環式であってもよい。例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などが挙げられる。なかでも、汎用性がより優れる点で、ベンゼン環が好ましい。 In formula (1), Ar represents an aromatic hydrocarbon group which may have a substituent.
The number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but is preferably 6 to 36 carbon atoms, more preferably 6 to 18 carbon atoms, from the viewpoints of better solubility in the reaction solvent and better handleability. More preferably, it has 6 to 12 carbon atoms.
The aromatic hydrocarbon group may be monocyclic or polycyclic. Examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, and the like. Especially, a benzene ring is preferable at the point which versatility is more excellent.
芳香族炭化水素基は置換基を有していてもよく、例えば、脂肪族炭化水素基(好ましくは、炭素数1~20)、芳香族炭化水素基(好ましくは、炭素数6~60)、複素環基、アルコキシ基、アルカノイル基、アリールオキシ基、またはこれらを組み合わせた基を有する。
なお、芳香族炭化水素基は置換基として水酸基(-OH)、チオール基(-SH)、またはアミノ基(-NH2)を有していてもよく、これらの基が芳香族炭化水素基に結合している場合は、本製造方法によりこれらの基とアリルアルコールとの間でも反応が進行する。 The aromatic hydrocarbon group may have a substituent, for example, an aliphatic hydrocarbon group (preferably having 1 to 20 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 60 carbon atoms), It has a heterocyclic group, an alkoxy group, an alkanoyl group, an aryloxy group, or a combination thereof.
Note that the aromatic hydrocarbon group may have a hydroxyl group (—OH), a thiol group (—SH), or an amino group (—NH 2 ) as a substituent, and these groups are the aromatic hydrocarbon groups. When they are bonded, the reaction proceeds even between these groups and allyl alcohol by this production method.
なお、芳香族炭化水素基は置換基として水酸基(-OH)、チオール基(-SH)、またはアミノ基(-NH2)を有していてもよく、これらの基が芳香族炭化水素基に結合している場合は、本製造方法によりこれらの基とアリルアルコールとの間でも反応が進行する。 The aromatic hydrocarbon group may have a substituent, for example, an aliphatic hydrocarbon group (preferably having 1 to 20 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 60 carbon atoms), It has a heterocyclic group, an alkoxy group, an alkanoyl group, an aryloxy group, or a combination thereof.
Note that the aromatic hydrocarbon group may have a hydroxyl group (—OH), a thiol group (—SH), or an amino group (—NH 2 ) as a substituent, and these groups are the aromatic hydrocarbon groups. When they are bonded, the reaction proceeds even between these groups and allyl alcohol by this production method.
式(1)中、Xは、-OH、-SH、または-NH2を表す。なかでも、生成物の収率がより優れる点で、-OHが好ましい。
In the formula (1), X represents —OH, —SH, or —NH 2 . Of these, —OH is preferred because the yield of the product is more excellent.
式(1)で表される化合物としては、例えば、フェノール、エチルフェノール、トリメチルフェノール、プロピルフェノール、ブチルフェノール(例えば、4-tert-ブチルフェノール)、クレゾール(o-クレゾール、m-クレゾール、p-クレゾール)またはナフトールなどの1価フェノール、カテコール、レゾルシノールまたはヒドロキノンなどの2価フェノール、ピロガロールなどの3価フェノール、ビスフェノールAなどのビスフェノール類、アニリン、アルキルアニリン(メチルアニリン、エチルアニリン、プロピルアニリンなど)、ジアルキルアニリン(ジメチルアニリンなど)、シアノアニリンまたはジクロロアニリンなどのアニリン類、ベンゼンチオールまたはアルキルベンゼンチオール(4-メチルベンゼンチオール、4-エチルベンゼンチオールなど)などのベンゼンチオール類などが挙げられる。
なお、式(1)で表される化合物は、単独で使用しても二種類以上を混合使用してもよい。 Examples of the compound represented by the formula (1) include phenol, ethylphenol, trimethylphenol, propylphenol, butylphenol (eg, 4-tert-butylphenol), cresol (o-cresol, m-cresol, p-cresol). Or monohydric phenols such as naphthol, dihydric phenols such as catechol, resorcinol or hydroquinone, trihydric phenols such as pyrogallol, bisphenols such as bisphenol A, aniline, alkylanilines (such as methylaniline, ethylaniline, propylaniline), dialkyl Anilines (such as dimethylaniline), anilines such as cyanoaniline or dichloroaniline, benzenethiol or alkylbenzenethiol (4-methylbenzenethiol, 4 And benzenethiols such as ethylbenzenethiol).
In addition, the compound represented by Formula (1) may be used independently, or 2 or more types may be mixed and used for it.
なお、式(1)で表される化合物は、単独で使用しても二種類以上を混合使用してもよい。 Examples of the compound represented by the formula (1) include phenol, ethylphenol, trimethylphenol, propylphenol, butylphenol (eg, 4-tert-butylphenol), cresol (o-cresol, m-cresol, p-cresol). Or monohydric phenols such as naphthol, dihydric phenols such as catechol, resorcinol or hydroquinone, trihydric phenols such as pyrogallol, bisphenols such as bisphenol A, aniline, alkylanilines (such as methylaniline, ethylaniline, propylaniline), dialkyl Anilines (such as dimethylaniline), anilines such as cyanoaniline or dichloroaniline, benzenethiol or alkylbenzenethiol (4-methylbenzenethiol, 4 And benzenethiols such as ethylbenzenethiol).
In addition, the compound represented by Formula (1) may be used independently, or 2 or more types may be mixed and used for it.
<その他任意成分>
本製造方法では上述した成分以外に、本発明の効果を損なわない範囲で他の成分が使用されてもよい。 <Other optional components>
In this manufacturing method, in addition to the above-described components, other components may be used as long as the effects of the present invention are not impaired.
本製造方法では上述した成分以外に、本発明の効果を損なわない範囲で他の成分が使用されてもよい。 <Other optional components>
In this manufacturing method, in addition to the above-described components, other components may be used as long as the effects of the present invention are not impaired.
(溶媒)
本製造方法は溶媒を使用しなくとも反応を進行させることができるが(無溶剤系)、必要に応じて、溶媒の存在下で反応を行ってもよい。出発原料が溶媒に溶解することにより、生成物の収率がより優れる。
使用される溶媒の種類は特に制限されず、有機ホスフィン化合物の種類や反応基質の極性など使用される成分に合わせて最適な溶媒が選択される。例えば、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、芳香族炭化水素系溶媒、または脂肪族炭化水素系溶媒などが挙げられる。
なお、これらの溶媒は、単独で使用しても二種類以上を混合使用してもよい。 (solvent)
In this production method, the reaction can proceed without using a solvent (solvent-free system), but the reaction may be performed in the presence of a solvent, if necessary. By dissolving the starting material in the solvent, the yield of the product is more excellent.
The type of solvent used is not particularly limited, and an optimal solvent is selected according to the components used, such as the type of organic phosphine compound and the polarity of the reaction substrate. For example, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or the like can be given.
These solvents may be used alone or in combination of two or more.
本製造方法は溶媒を使用しなくとも反応を進行させることができるが(無溶剤系)、必要に応じて、溶媒の存在下で反応を行ってもよい。出発原料が溶媒に溶解することにより、生成物の収率がより優れる。
使用される溶媒の種類は特に制限されず、有機ホスフィン化合物の種類や反応基質の極性など使用される成分に合わせて最適な溶媒が選択される。例えば、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、芳香族炭化水素系溶媒、または脂肪族炭化水素系溶媒などが挙げられる。
なお、これらの溶媒は、単独で使用しても二種類以上を混合使用してもよい。 (solvent)
In this production method, the reaction can proceed without using a solvent (solvent-free system), but the reaction may be performed in the presence of a solvent, if necessary. By dissolving the starting material in the solvent, the yield of the product is more excellent.
The type of solvent used is not particularly limited, and an optimal solvent is selected according to the components used, such as the type of organic phosphine compound and the polarity of the reaction substrate. For example, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, or the like can be given.
These solvents may be used alone or in combination of two or more.
溶媒としては、生成物の収率がより優れる点で、芳香族炭化水素系溶媒が好ましい。芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼン、テトラメチルベンゼン、ナフタリン、テトラリンなどが挙げられる。
なかでも、生成物の収率がより優れる点で、アルキルベンゼンが好ましく、2つ以上のアルキル基を有するアルキルベンゼン(ジアルキルベンゼン)がより好ましい。例えば、1つのアルキル基を有するアルキルベンゼン(モノアルキルベンゼン)としては、トルエン、エチルベンゼン、プロピルベンゼンなどが挙げられる。ジアルキルベンゼンとしては、キシレン、ジメチルベンゼン、ジエチルベンゼン、エチルメチルベンゼンなどが挙げられる。3つのアルキル基を有するアルキルベンゼン(トリアルキルベンゼン)としては、トリメチルベンゼン、エチルジメチルベンゼンなどが挙げられる。 As the solvent, an aromatic hydrocarbon solvent is preferable in that the yield of the product is more excellent. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, naphthalene, and tetralin.
Among these, alkylbenzene is preferable in that the yield of the product is more excellent, and alkylbenzene having two or more alkyl groups (dialkylbenzene) is more preferable. For example, examples of the alkylbenzene having one alkyl group (monoalkylbenzene) include toluene, ethylbenzene, propylbenzene, and the like. Examples of the dialkylbenzene include xylene, dimethylbenzene, diethylbenzene, ethylmethylbenzene and the like. Examples of the alkylbenzene having three alkyl groups (trialkylbenzene) include trimethylbenzene and ethyldimethylbenzene.
なかでも、生成物の収率がより優れる点で、アルキルベンゼンが好ましく、2つ以上のアルキル基を有するアルキルベンゼン(ジアルキルベンゼン)がより好ましい。例えば、1つのアルキル基を有するアルキルベンゼン(モノアルキルベンゼン)としては、トルエン、エチルベンゼン、プロピルベンゼンなどが挙げられる。ジアルキルベンゼンとしては、キシレン、ジメチルベンゼン、ジエチルベンゼン、エチルメチルベンゼンなどが挙げられる。3つのアルキル基を有するアルキルベンゼン(トリアルキルベンゼン)としては、トリメチルベンゼン、エチルジメチルベンゼンなどが挙げられる。 As the solvent, an aromatic hydrocarbon solvent is preferable in that the yield of the product is more excellent. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, naphthalene, and tetralin.
Among these, alkylbenzene is preferable in that the yield of the product is more excellent, and alkylbenzene having two or more alkyl groups (dialkylbenzene) is more preferable. For example, examples of the alkylbenzene having one alkyl group (monoalkylbenzene) include toluene, ethylbenzene, propylbenzene, and the like. Examples of the dialkylbenzene include xylene, dimethylbenzene, diethylbenzene, ethylmethylbenzene and the like. Examples of the alkylbenzene having three alkyl groups (trialkylbenzene) include trimethylbenzene and ethyldimethylbenzene.
(脱水剤)
本製造方法は、必要に応じて、脱水剤の存在下で反応を行ってもよい。脱水剤を使用することにより、生成物の収率がより向上する。
脱水剤としては公知のものを使用することができ、例えば、アセタールなどの有機系脱水剤、モレキュラーシーブ(3A)、モレキュラーシーブ(4A)などのゼオライト類、塩化カルシウム(無水)、硫酸カルシウム(無水)、塩化マグネシウム(無水)、硫酸マグネシウム(無水)、炭酸カリウム(無水)、硫化カリウム(無水)、亜硫化カリウム(無水)、硫酸ナトリウム(無水)、亜硫酸ナトリウム(無水)などの無機無水塩類が挙げられる。なかでも、反応温度での脱水能力および安定性がより優れる点で、ゼオライト類が好ましく、モレキュラーシーブ(4A)がより好ましい。 (Dehydrating agent)
In this production method, the reaction may be performed in the presence of a dehydrating agent as necessary. By using a dehydrating agent, the yield of the product is further improved.
As the dehydrating agent, known ones can be used. For example, organic dehydrating agents such as acetal, zeolites such as molecular sieve (3A) and molecular sieve (4A), calcium chloride (anhydrous), calcium sulfate (anhydrous) ), Magnesium chloride (anhydrous), magnesium sulfate (anhydrous), potassium carbonate (anhydrous), potassium sulfide (anhydrous), potassium sulfite (anhydrous), sodium sulfate (anhydrous), sodium sulfite (anhydrous) and other inorganic anhydrous salts Can be mentioned. Among these, zeolites are preferable and molecular sieve (4A) is more preferable in terms of more excellent dehydration ability and stability at the reaction temperature.
本製造方法は、必要に応じて、脱水剤の存在下で反応を行ってもよい。脱水剤を使用することにより、生成物の収率がより向上する。
脱水剤としては公知のものを使用することができ、例えば、アセタールなどの有機系脱水剤、モレキュラーシーブ(3A)、モレキュラーシーブ(4A)などのゼオライト類、塩化カルシウム(無水)、硫酸カルシウム(無水)、塩化マグネシウム(無水)、硫酸マグネシウム(無水)、炭酸カリウム(無水)、硫化カリウム(無水)、亜硫化カリウム(無水)、硫酸ナトリウム(無水)、亜硫酸ナトリウム(無水)などの無機無水塩類が挙げられる。なかでも、反応温度での脱水能力および安定性がより優れる点で、ゼオライト類が好ましく、モレキュラーシーブ(4A)がより好ましい。 (Dehydrating agent)
In this production method, the reaction may be performed in the presence of a dehydrating agent as necessary. By using a dehydrating agent, the yield of the product is further improved.
As the dehydrating agent, known ones can be used. For example, organic dehydrating agents such as acetal, zeolites such as molecular sieve (3A) and molecular sieve (4A), calcium chloride (anhydrous), calcium sulfate (anhydrous) ), Magnesium chloride (anhydrous), magnesium sulfate (anhydrous), potassium carbonate (anhydrous), potassium sulfide (anhydrous), potassium sulfite (anhydrous), sodium sulfate (anhydrous), sodium sulfite (anhydrous) and other inorganic anhydrous salts Can be mentioned. Among these, zeolites are preferable and molecular sieve (4A) is more preferable in terms of more excellent dehydration ability and stability at the reaction temperature.
<製造方法の手順>
本製造方法では、上述したハイドロタルサイト、有機ホスフィン化合物およびパラジウム源の存在下にて、アリルアルコールと式(1)で表される化合物との反応を行う。 <Procedure of manufacturing method>
In this production method, the reaction between allyl alcohol and the compound represented by formula (1) is performed in the presence of the above-described hydrotalcite, organic phosphine compound, and palladium source.
本製造方法では、上述したハイドロタルサイト、有機ホスフィン化合物およびパラジウム源の存在下にて、アリルアルコールと式(1)で表される化合物との反応を行う。 <Procedure of manufacturing method>
In this production method, the reaction between allyl alcohol and the compound represented by formula (1) is performed in the presence of the above-described hydrotalcite, organic phosphine compound, and palladium source.
反応条件は使用される材料に応じて適宜最適な条件が選択されるが、生産性がより優れる点で、反応温度としては25~150℃が好ましく、50~120℃がより好ましく、85~105℃がさらに好ましい。反応時間としては0.5~7時間が好ましく、2~6時間がより好ましく、2~4時間がより好ましい。
反応雰囲気は特に制限されず、空気下であってもよいが、窒素またはアルゴンなどの不活性ガス雰囲気下である方が、副反応を抑制する観点から好ましい。 The optimum reaction conditions are appropriately selected according to the materials used, but the reaction temperature is preferably 25 to 150 ° C., more preferably 50 to 120 ° C., and more preferably 85 to 105 in terms of higher productivity. More preferably. The reaction time is preferably 0.5 to 7 hours, more preferably 2 to 6 hours, and more preferably 2 to 4 hours.
The reaction atmosphere is not particularly limited, and may be under air, but is preferably under an inert gas atmosphere such as nitrogen or argon from the viewpoint of suppressing side reactions.
反応雰囲気は特に制限されず、空気下であってもよいが、窒素またはアルゴンなどの不活性ガス雰囲気下である方が、副反応を抑制する観点から好ましい。 The optimum reaction conditions are appropriately selected according to the materials used, but the reaction temperature is preferably 25 to 150 ° C., more preferably 50 to 120 ° C., and more preferably 85 to 105 in terms of higher productivity. More preferably. The reaction time is preferably 0.5 to 7 hours, more preferably 2 to 6 hours, and more preferably 2 to 4 hours.
The reaction atmosphere is not particularly limited, and may be under air, but is preferably under an inert gas atmosphere such as nitrogen or argon from the viewpoint of suppressing side reactions.
使用されるハイドロタルサイトの量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源との質量比(ハイドロタルサイトの質量/パラジウム源の質量)で32~999が好ましく、55~333がより好ましい。
使用される有機ホスフィン化合物の量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源とのモル比(有機ホスフィン化合物のモル量/パラジウム源のモル量)で0.5~5.0が好ましく、1.0~3.0がより好ましい。
使用されるアリルアルコールの量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源とのモル比(アリルアルコールのモル量/パラジウム源のモル量)で10~1000が好ましく、50~500がより好ましい。
使用されるアリルアルコールの量とハイドロタルサイトの量との質量比は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、質量比(アリルアルコールの質量/ハイドロタルサイトの質量)は0.1~100が好ましく、0.1~10がより好ましい。
使用される式(1)で表される化合物の量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源とのモル比(式(1)で表される化合物のモル量/パラジウム源のモル量)で10~1000が好ましく、50~300がより好ましい。
使用される式(1)で表される化合物の量とハイドロタルサイトの量との質量比は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、質量比(式(1)で表される化合物の質量/ハイドロタルサイトの質量)は0.1~100が好ましく、1.0~10がより好ましい。
アリルアルコールと式(1)で表される化合物との混合モル比(アリルアルコールのモル量/式(1)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、1~4が好ましく、1~2がより好ましい。 The amount of hydrotalcite used is not particularly limited, but the mass ratio with the palladium source (mass of hydrotalcite / mass of palladium source) from the point that the yield of the product is more excellent and the economy is also excellent. 32 to 999 is preferable, and 55 to 333 is more preferable.
The amount of the organic phosphine compound to be used is not particularly limited. From the viewpoint of excellent product yield and economic efficiency, the molar ratio with the palladium source (molar amount of the organic phosphine compound / mol of the palladium source). The amount is preferably 0.5 to 5.0, more preferably 1.0 to 3.0.
The amount of allyl alcohol used is not particularly limited, but the molar ratio with the palladium source (mole amount of allyl alcohol / mole amount of palladium source) from the viewpoint that the yield of the product is better and the economy is also excellent. 10 to 1000 is preferable, and 50 to 500 is more preferable.
The mass ratio between the amount of allyl alcohol and the amount of hydrotalcite used is not particularly limited, but the mass ratio (mass of allyl alcohol / hydroallyl is superior in that the yield of the product is excellent and the economy is excellent. The mass of talcite is preferably from 0.1 to 100, more preferably from 0.1 to 10.
The amount of the compound represented by the formula (1) to be used is not particularly limited, but from the viewpoint that the yield of the product is more excellent and the economy is excellent, the molar ratio with the palladium source (in the formula (1)) The molar amount of the compound represented / the molar amount of the palladium source) is preferably 10 to 1000, more preferably 50 to 300.
The mass ratio of the amount of the compound represented by the formula (1) used and the amount of hydrotalcite is not particularly limited, but the mass ratio is more excellent in terms of product yield and economic efficiency. The mass of the compound represented by the formula (1) / the mass of hydrotalcite is preferably 0.1 to 100, more preferably 1.0 to 10.
The mixing molar ratio of allyl alcohol and the compound represented by formula (1) (mole amount of allyl alcohol / mole amount of compound represented by formula (1)) is not particularly limited, but the yield of the product is more 1 to 4 is preferable and 1 to 2 is more preferable from the viewpoints of being excellent and economical.
使用される有機ホスフィン化合物の量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源とのモル比(有機ホスフィン化合物のモル量/パラジウム源のモル量)で0.5~5.0が好ましく、1.0~3.0がより好ましい。
使用されるアリルアルコールの量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源とのモル比(アリルアルコールのモル量/パラジウム源のモル量)で10~1000が好ましく、50~500がより好ましい。
使用されるアリルアルコールの量とハイドロタルサイトの量との質量比は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、質量比(アリルアルコールの質量/ハイドロタルサイトの質量)は0.1~100が好ましく、0.1~10がより好ましい。
使用される式(1)で表される化合物の量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、パラジウム源とのモル比(式(1)で表される化合物のモル量/パラジウム源のモル量)で10~1000が好ましく、50~300がより好ましい。
使用される式(1)で表される化合物の量とハイドロタルサイトの量との質量比は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、質量比(式(1)で表される化合物の質量/ハイドロタルサイトの質量)は0.1~100が好ましく、1.0~10がより好ましい。
アリルアルコールと式(1)で表される化合物との混合モル比(アリルアルコールのモル量/式(1)で表される化合物のモル量)は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、1~4が好ましく、1~2がより好ましい。 The amount of hydrotalcite used is not particularly limited, but the mass ratio with the palladium source (mass of hydrotalcite / mass of palladium source) from the point that the yield of the product is more excellent and the economy is also excellent. 32 to 999 is preferable, and 55 to 333 is more preferable.
The amount of the organic phosphine compound to be used is not particularly limited. From the viewpoint of excellent product yield and economic efficiency, the molar ratio with the palladium source (molar amount of the organic phosphine compound / mol of the palladium source). The amount is preferably 0.5 to 5.0, more preferably 1.0 to 3.0.
The amount of allyl alcohol used is not particularly limited, but the molar ratio with the palladium source (mole amount of allyl alcohol / mole amount of palladium source) from the viewpoint that the yield of the product is better and the economy is also excellent. 10 to 1000 is preferable, and 50 to 500 is more preferable.
The mass ratio between the amount of allyl alcohol and the amount of hydrotalcite used is not particularly limited, but the mass ratio (mass of allyl alcohol / hydroallyl is superior in that the yield of the product is excellent and the economy is excellent. The mass of talcite is preferably from 0.1 to 100, more preferably from 0.1 to 10.
The amount of the compound represented by the formula (1) to be used is not particularly limited, but from the viewpoint that the yield of the product is more excellent and the economy is excellent, the molar ratio with the palladium source (in the formula (1)) The molar amount of the compound represented / the molar amount of the palladium source) is preferably 10 to 1000, more preferably 50 to 300.
The mass ratio of the amount of the compound represented by the formula (1) used and the amount of hydrotalcite is not particularly limited, but the mass ratio is more excellent in terms of product yield and economic efficiency. The mass of the compound represented by the formula (1) / the mass of hydrotalcite is preferably 0.1 to 100, more preferably 1.0 to 10.
The mixing molar ratio of allyl alcohol and the compound represented by formula (1) (mole amount of allyl alcohol / mole amount of compound represented by formula (1)) is not particularly limited, but the yield of the product is more 1 to 4 is preferable and 1 to 2 is more preferable from the viewpoints of being excellent and economical.
反応系にハイドロタルサイト、有機ホスフィン化合物およびパラジウム源を加える順番は特に制限されず、3つを同時に添加しても、それぞれ順番に添加してもよい。
なかでも、生成物の収率がより優れる点で、有機ホスフィン化合物およびパラジウム源を順不同で添加して、最後にハイドロタルサイトを加える方法が好ましく、有機ホスフィン化合物およびパラジウム源を同時に添加して、最後のハイドロタルサイトを加える方法がより好ましい。なお、有機ホスフィン化合物およびパラジウム源を同時に添加する方法としては、両者を別々の成分として同時に添加してもよく、事前に両者を含む錯体(パラジウム触媒)を調製して、得られた錯体を添加してもよい。
また、反応系にアリルアルコールおよび式(1)で表される化合物を加える順番は特に制限されず、両者を同時に添加しても、それぞれ順番に添加してもよく、アリルアルコールを添加後、式(1)で表される化合物を加える方法がより好ましい。 The order in which the hydrotalcite, the organic phosphine compound and the palladium source are added to the reaction system is not particularly limited, and three may be added simultaneously or in order.
Among them, the method in which the organic phosphine compound and the palladium source are added in random order and the hydrotalcite is added at the end is preferable because the yield of the product is more excellent, and the organic phosphine compound and the palladium source are added at the same time. The method of adding the last hydrotalcite is more preferable. In addition, as a method of adding an organic phosphine compound and a palladium source simultaneously, both may be added simultaneously as separate components, and a complex containing both (palladium catalyst) is prepared in advance and the obtained complex is added. May be.
In addition, the order of adding allyl alcohol and the compound represented by formula (1) to the reaction system is not particularly limited, and both may be added simultaneously or may be added in order. A method of adding the compound represented by (1) is more preferable.
なかでも、生成物の収率がより優れる点で、有機ホスフィン化合物およびパラジウム源を順不同で添加して、最後にハイドロタルサイトを加える方法が好ましく、有機ホスフィン化合物およびパラジウム源を同時に添加して、最後のハイドロタルサイトを加える方法がより好ましい。なお、有機ホスフィン化合物およびパラジウム源を同時に添加する方法としては、両者を別々の成分として同時に添加してもよく、事前に両者を含む錯体(パラジウム触媒)を調製して、得られた錯体を添加してもよい。
また、反応系にアリルアルコールおよび式(1)で表される化合物を加える順番は特に制限されず、両者を同時に添加しても、それぞれ順番に添加してもよく、アリルアルコールを添加後、式(1)で表される化合物を加える方法がより好ましい。 The order in which the hydrotalcite, the organic phosphine compound and the palladium source are added to the reaction system is not particularly limited, and three may be added simultaneously or in order.
Among them, the method in which the organic phosphine compound and the palladium source are added in random order and the hydrotalcite is added at the end is preferable because the yield of the product is more excellent, and the organic phosphine compound and the palladium source are added at the same time. The method of adding the last hydrotalcite is more preferable. In addition, as a method of adding an organic phosphine compound and a palladium source simultaneously, both may be added simultaneously as separate components, and a complex containing both (palladium catalyst) is prepared in advance and the obtained complex is added. May be.
In addition, the order of adding allyl alcohol and the compound represented by formula (1) to the reaction system is not particularly limited, and both may be added simultaneously or may be added in order. A method of adding the compound represented by (1) is more preferable.
なお、上述した他の任意成分(脱水剤、溶媒)などは必要に応じて、反応系に加えてもよい。
溶媒を使用する場合は、その使用量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、ハイドロタルサイトとの質量比(溶媒の質量/ハイドロタルサイトの質量)は0.5~45が好ましく、4.0~15.0がより好ましい。
脱水剤を使用する場合は、その使用量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、ハイドロタルサイトとの質量比(脱水剤の質量/ハイドロタルサイトの質量)は0.5~4.0が好ましく、1.0~2.0がより好ましい。 In addition, you may add the other arbitrary components (dehydrating agent, solvent), etc. which were mentioned above to a reaction system as needed.
In the case of using a solvent, the amount used is not particularly limited, but the mass ratio with the hydrotalcite (the mass of the solvent / (Mass) is preferably 0.5 to 45, more preferably 4.0 to 15.0.
In the case of using a dehydrating agent, the amount used is not particularly limited, but the mass ratio with the hydrotalcite (the mass of the dehydrating agent / the hydrotalc is high because the yield of the product is more excellent and the economy is also excellent. The mass of the site is preferably 0.5 to 4.0, more preferably 1.0 to 2.0.
溶媒を使用する場合は、その使用量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、ハイドロタルサイトとの質量比(溶媒の質量/ハイドロタルサイトの質量)は0.5~45が好ましく、4.0~15.0がより好ましい。
脱水剤を使用する場合は、その使用量は特に制限されないが、生成物の収率がより優れると共に、経済性にも優れる点から、ハイドロタルサイトとの質量比(脱水剤の質量/ハイドロタルサイトの質量)は0.5~4.0が好ましく、1.0~2.0がより好ましい。 In addition, you may add the other arbitrary components (dehydrating agent, solvent), etc. which were mentioned above to a reaction system as needed.
In the case of using a solvent, the amount used is not particularly limited, but the mass ratio with the hydrotalcite (the mass of the solvent / (Mass) is preferably 0.5 to 45, more preferably 4.0 to 15.0.
In the case of using a dehydrating agent, the amount used is not particularly limited, but the mass ratio with the hydrotalcite (the mass of the dehydrating agent / the hydrotalc is high because the yield of the product is more excellent and the economy is also excellent. The mass of the site is preferably 0.5 to 4.0, more preferably 1.0 to 2.0.
上記反応系においては、ハイドロタルサイト、有機ホスフィン化合物およびハイドロタルサイトを含むアリル化反応用触媒が有効に作用している。なかでも、ハイドロタルサイトと、ハイドロタルサイトに担持されたパラジウム源と有機ホスフィン化合物とから構成されるパラジウム触媒とを含むアリル化反応用触媒が主要な役割を果たしている。
In the above reaction system, an allylation reaction catalyst containing hydrotalcite, an organic phosphine compound and hydrotalcite acts effectively. Among them, an allylation reaction catalyst including hydrotalcite and a palladium catalyst composed of a palladium source supported on the hydrotalcite and an organic phosphine compound plays a major role.
上記反応系においては、従来の均一反応系と同等程度の反応効率を実現することができる。また、ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源を含む触媒を濾過または遠心分離のような分離方法により生成物と容易に分離することができ、工業的な観点から優れた系であるといえる。
なお、上記工程で生成された式(2)で表されるアリル基含有化合物は、蒸留や晶析操作などの周知の手段によって分離・精製することができる。 In the above reaction system, the reaction efficiency comparable to that of the conventional homogeneous reaction system can be realized. Moreover, the catalyst containing hydrotalcite, an organic phosphine compound, and a palladium source can be easily separated from the product by a separation method such as filtration or centrifugation, which is an excellent system from an industrial viewpoint.
The allyl group-containing compound represented by the formula (2) produced in the above step can be separated and purified by known means such as distillation and crystallization operation.
なお、上記工程で生成された式(2)で表されるアリル基含有化合物は、蒸留や晶析操作などの周知の手段によって分離・精製することができる。 In the above reaction system, the reaction efficiency comparable to that of the conventional homogeneous reaction system can be realized. Moreover, the catalyst containing hydrotalcite, an organic phosphine compound, and a palladium source can be easily separated from the product by a separation method such as filtration or centrifugation, which is an excellent system from an industrial viewpoint.
The allyl group-containing compound represented by the formula (2) produced in the above step can be separated and purified by known means such as distillation and crystallization operation.
<式(2)で表されるアリル基含有化合物>
上記工程を経ることにより、式(2)で表されるアリル基含有化合物が製造される。 <Allyl group-containing compound represented by formula (2)>
Through the above steps, an allyl group-containing compound represented by the formula (2) is produced.
上記工程を経ることにより、式(2)で表されるアリル基含有化合物が製造される。 <Allyl group-containing compound represented by formula (2)>
Through the above steps, an allyl group-containing compound represented by the formula (2) is produced.
式(2)中、Yは、-O-、-S-、または-NH-を表す。
In formula (2), Y represents —O—, —S—, or —NH—.
式(2)で表されるアリル基含有化合物は、機能性高分子用モノマー、医農薬中間体、香料原料など様々な用途に適用することができる。
The allyl group-containing compound represented by the formula (2) can be applied to various uses such as monomers for functional polymers, intermediates for medicines and agricultural chemicals, and fragrance materials.
以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<実施例1>
ハイドロタルサイト(富田製薬株式会社製、トミターAD、Mg/Al=3、5.0g)を水中(500mL)に添加して、アルゴン雰囲気下で液温55℃になるように加熱処理を施しながら1.5時間攪拌を行った。攪拌終了後、遠心分離によりハイドロタルサイトを回収し、蒸留水で洗浄した後、室温にて減圧乾燥して乾燥させた。得られたハイドロタルサイトを粉砕後、150メッシュの篩いで整粒し、前処理が施されたハイドロタルサイトA(直径100μm以下)を得た。 <Example 1>
Hydrotalcite (Tomita Pharmaceutical Co., Ltd., Tomita AD, Mg / Al = 3, 5.0 g) is added to water (500 mL) and heated to a liquid temperature of 55 ° C. under an argon atmosphere. Stir for 1.5 hours. After the stirring was completed, hydrotalcite was collected by centrifugation, washed with distilled water, and then dried under reduced pressure at room temperature. The obtained hydrotalcite was pulverized and then sized with a 150 mesh sieve to obtain a pretreated hydrotalcite A (diameter of 100 μm or less).
ハイドロタルサイト(富田製薬株式会社製、トミターAD、Mg/Al=3、5.0g)を水中(500mL)に添加して、アルゴン雰囲気下で液温55℃になるように加熱処理を施しながら1.5時間攪拌を行った。攪拌終了後、遠心分離によりハイドロタルサイトを回収し、蒸留水で洗浄した後、室温にて減圧乾燥して乾燥させた。得られたハイドロタルサイトを粉砕後、150メッシュの篩いで整粒し、前処理が施されたハイドロタルサイトA(直径100μm以下)を得た。 <Example 1>
Hydrotalcite (Tomita Pharmaceutical Co., Ltd., Tomita AD, Mg / Al = 3, 5.0 g) is added to water (500 mL) and heated to a liquid temperature of 55 ° C. under an argon atmosphere. Stir for 1.5 hours. After the stirring was completed, hydrotalcite was collected by centrifugation, washed with distilled water, and then dried under reduced pressure at room temperature. The obtained hydrotalcite was pulverized and then sized with a 150 mesh sieve to obtain a pretreated hydrotalcite A (diameter of 100 μm or less).
次に、パラジウム源と有機ホスフィン化合物とを含む[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)ジクロリド(以後、PdCl2(dppb)とも称する)(20μmol)をo-キシレン(3mL)に添加して溶解させた後、ハイドロタルサイトA(200mg)を添加した。
その後、アリルアルコールとフェノールとをさらに添加して、アルゴン下にて90℃で3時間加熱処理を実施した。なお、アリルアルコールとフェノールとPdCl2(dppb)との混合モル比は、100:50:1であった。
反応終了後、生成物をガスクロマトグラフィーにより分析してアリルフェニルエーテルを同定し、アリルフェニルエーテルのフェノールに対する収率を求めた。結果を表1に示す。
なお、反応終了後、反応溶液を濾過することにより、PdCl2(dppb)およびハイドロタルサイトAの混合物を回収した。 Next, [1,4-bis (diphenylphosphino) butane] palladium (II) dichloride (hereinafter also referred to as PdCl 2 (dppb)) (20 μmol) containing a palladium source and an organic phosphine compound was added to o-xylene (3 mL). After adding and dissolving, hydrotalcite A (200 mg) was added.
Thereafter, allyl alcohol and phenol were further added, and a heat treatment was performed at 90 ° C. for 3 hours under argon. The mixing molar ratio of allyl alcohol, phenol, and PdCl 2 (dppb) was 100: 50: 1.
After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 1.
After completion of the reaction, the reaction solution was filtered to recover a mixture of PdCl 2 (dppb) and hydrotalcite A.
その後、アリルアルコールとフェノールとをさらに添加して、アルゴン下にて90℃で3時間加熱処理を実施した。なお、アリルアルコールとフェノールとPdCl2(dppb)との混合モル比は、100:50:1であった。
反応終了後、生成物をガスクロマトグラフィーにより分析してアリルフェニルエーテルを同定し、アリルフェニルエーテルのフェノールに対する収率を求めた。結果を表1に示す。
なお、反応終了後、反応溶液を濾過することにより、PdCl2(dppb)およびハイドロタルサイトAの混合物を回収した。 Next, [1,4-bis (diphenylphosphino) butane] palladium (II) dichloride (hereinafter also referred to as PdCl 2 (dppb)) (20 μmol) containing a palladium source and an organic phosphine compound was added to o-xylene (3 mL). After adding and dissolving, hydrotalcite A (200 mg) was added.
Thereafter, allyl alcohol and phenol were further added, and a heat treatment was performed at 90 ° C. for 3 hours under argon. The mixing molar ratio of allyl alcohol, phenol, and PdCl 2 (dppb) was 100: 50: 1.
After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 1.
After completion of the reaction, the reaction solution was filtered to recover a mixture of PdCl 2 (dppb) and hydrotalcite A.
<実施例2>
ハイドロタルサイトAを添加した後に、さらにモレキュラーシーブ4A(和光純薬工業株式会社製、200mg)を添加した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表1に示す。 <Example 2>
After adding hydrotalcite A, allyl phenyl ether was produced according to the same procedure as in Example 1 except that molecular sieve 4A (Wako Pure Chemical Industries, Ltd., 200 mg) was further added. The results are shown in Table 1.
ハイドロタルサイトAを添加した後に、さらにモレキュラーシーブ4A(和光純薬工業株式会社製、200mg)を添加した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表1に示す。 <Example 2>
After adding hydrotalcite A, allyl phenyl ether was produced according to the same procedure as in Example 1 except that molecular sieve 4A (Wako Pure Chemical Industries, Ltd., 200 mg) was further added. The results are shown in Table 1.
<実施例3>
ハイドロタルサイトAの使用量を200mgから400mgに変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表1に示す。 <Example 3>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the amount of hydrotalcite A used was changed from 200 mg to 400 mg. The results are shown in Table 1.
ハイドロタルサイトAの使用量を200mgから400mgに変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表1に示す。 <Example 3>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the amount of hydrotalcite A used was changed from 200 mg to 400 mg. The results are shown in Table 1.
表1中、「ハイドロタルサイト量」欄は、使用したハイドロタルサイトAの量を意味する。「脱水剤の有無」欄は、脱水剤を使用した場合を「○」、使用しなかった場合を「×」として示す。
In Table 1, “Hydrotalcite amount” column means the amount of hydrotalcite A used. In the “Presence / absence of dehydrating agent” column, “○” indicates that the dehydrating agent is used, and “X” indicates that the dehydrating agent is not used.
表1に示すように、本発明の製造方法においては、アリルフェニルエーテルを高収率で製造することができた。
特に、脱水剤を使用した実施例2およびハイドロタルサイトの量が多い実施例3においては、より収率が向上することが確認された。 As shown in Table 1, in the production method of the present invention, allyl phenyl ether could be produced in high yield.
In particular, it was confirmed that the yield was further improved in Example 2 using a dehydrating agent and Example 3 having a large amount of hydrotalcite.
特に、脱水剤を使用した実施例2およびハイドロタルサイトの量が多い実施例3においては、より収率が向上することが確認された。 As shown in Table 1, in the production method of the present invention, allyl phenyl ether could be produced in high yield.
In particular, it was confirmed that the yield was further improved in Example 2 using a dehydrating agent and Example 3 having a large amount of hydrotalcite.
<実施例1-2>
反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 1-2>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the reaction temperature was changed from 90 ° C to 100 ° C. The results are shown in Table 2.
反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 1-2>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the reaction temperature was changed from 90 ° C to 100 ° C. The results are shown in Table 2.
<実施例4>
o-キシレンの代わりにm-キシレンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 4>
Allyl phenyl ether was produced according to the same procedure as in Example 1, except that m-xylene was used instead of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
o-キシレンの代わりにm-キシレンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 4>
Allyl phenyl ether was produced according to the same procedure as in Example 1, except that m-xylene was used instead of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
<実施例5>
o-キシレンの代わりに1,2,4-トリメチルベンゼンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 5>
Allylphenyl ether was produced according to the same procedure as in Example 1, except that 1,2,4-trimethylbenzene was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
o-キシレンの代わりに1,2,4-トリメチルベンゼンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 5>
Allylphenyl ether was produced according to the same procedure as in Example 1, except that 1,2,4-trimethylbenzene was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
<実施例6>
o-キシレンの代わりにp-キシレンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 6>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that p-xylene was used instead of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
o-キシレンの代わりにp-キシレンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 6>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that p-xylene was used instead of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
<実施例7>
o-キシレンの代わりにトルエンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 7>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that toluene was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
o-キシレンの代わりにトルエンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 7>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that toluene was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
<実施例8>
o-キシレンの代わりにn-ヘプタンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 8>
Allyl phenyl ether was produced according to the same procedure as in Example 1, except that n-heptane was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
o-キシレンの代わりにn-ヘプタンを使用し、反応温度を90℃から100℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表2に示す。 <Example 8>
Allyl phenyl ether was produced according to the same procedure as in Example 1, except that n-heptane was used in place of o-xylene and the reaction temperature was changed from 90 ° C. to 100 ° C. The results are shown in Table 2.
上記表2に示すように、溶媒の種類を変更した場合においても、アリルフェニルエーテルが製造されることが確認された。
特に、実施例1-2、4~7に示すように、溶媒として芳香族炭化水素系溶媒を使用した場合、収率がより向上することが確認された。なかでも、ジアルキルベンゼンを使用した実施例1-2、4~6において、より優れた効果が確認された。
なお、溶媒として1,4-ジオキサンを使用した場合および無溶媒の場合でも、同様にアリルフェニルエーテルが製造できた。 As shown in Table 2 above, it was confirmed that allyl phenyl ether was produced even when the type of solvent was changed.
In particular, as shown in Examples 1-2 and 4 to 7, it was confirmed that the yield was further improved when an aromatic hydrocarbon solvent was used as the solvent. In particular, in Examples 1-2 and 4 to 6 using dialkylbenzene, a more excellent effect was confirmed.
In addition, allyl phenyl ether was able to be produced similarly even when 1,4-dioxane was used as a solvent and when no solvent was used.
特に、実施例1-2、4~7に示すように、溶媒として芳香族炭化水素系溶媒を使用した場合、収率がより向上することが確認された。なかでも、ジアルキルベンゼンを使用した実施例1-2、4~6において、より優れた効果が確認された。
なお、溶媒として1,4-ジオキサンを使用した場合および無溶媒の場合でも、同様にアリルフェニルエーテルが製造できた。 As shown in Table 2 above, it was confirmed that allyl phenyl ether was produced even when the type of solvent was changed.
In particular, as shown in Examples 1-2 and 4 to 7, it was confirmed that the yield was further improved when an aromatic hydrocarbon solvent was used as the solvent. In particular, in Examples 1-2 and 4 to 6 using dialkylbenzene, a more excellent effect was confirmed.
In addition, allyl phenyl ether was able to be produced similarly even when 1,4-dioxane was used as a solvent and when no solvent was used.
<実施例9>
パラジウム源と有機ホスフィン化合物とを含む[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)ジクロリド(以後、PdCl2(dppb)とも称する)(20μmol)をトルエン(3mL)に添加して溶解させた後、実施例1と同様の手順に従って製造したハイドロタルサイトA(200mg)を添加した。
その後、アリルアルコールとフェノールとをさらに添加して、アルゴン下にて110℃で3時間加熱処理を実施した。なお、アリルアルコールとフェノールとパラジウム源と有機ホスフィン化合物との混合モル比は、100:50:1:1であった。
反応終了後、生成物をガスクロマトグラフィーにより分析してアリルフェニルエーテルを同定し、アリルフェニルエーテルのフェノールに対する収率を求めた。結果を表3に示す。 <Example 9>
[1,4-bis (diphenylphosphino) butane] palladium (II) dichloride (hereinafter also referred to as PdCl 2 (dppb)) (20 μmol) containing a palladium source and an organic phosphine compound was added to toluene (3 mL). After dissolving, hydrotalcite A (200 mg) produced according to the same procedure as in Example 1 was added.
Thereafter, allyl alcohol and phenol were further added, and a heat treatment was performed at 110 ° C. for 3 hours under argon. The mixed molar ratio of allyl alcohol, phenol, palladium source, and organic phosphine compound was 100: 50: 1: 1.
After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 3.
パラジウム源と有機ホスフィン化合物とを含む[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)ジクロリド(以後、PdCl2(dppb)とも称する)(20μmol)をトルエン(3mL)に添加して溶解させた後、実施例1と同様の手順に従って製造したハイドロタルサイトA(200mg)を添加した。
その後、アリルアルコールとフェノールとをさらに添加して、アルゴン下にて110℃で3時間加熱処理を実施した。なお、アリルアルコールとフェノールとパラジウム源と有機ホスフィン化合物との混合モル比は、100:50:1:1であった。
反応終了後、生成物をガスクロマトグラフィーにより分析してアリルフェニルエーテルを同定し、アリルフェニルエーテルのフェノールに対する収率を求めた。結果を表3に示す。 <Example 9>
[1,4-bis (diphenylphosphino) butane] palladium (II) dichloride (hereinafter also referred to as PdCl 2 (dppb)) (20 μmol) containing a palladium source and an organic phosphine compound was added to toluene (3 mL). After dissolving, hydrotalcite A (200 mg) produced according to the same procedure as in Example 1 was added.
Thereafter, allyl alcohol and phenol were further added, and a heat treatment was performed at 110 ° C. for 3 hours under argon. The mixed molar ratio of allyl alcohol, phenol, palladium source, and organic phosphine compound was 100: 50: 1: 1.
After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 3.
<実施例10>
塩化パラジウム(0.5mmol)および塩化カリウム(6.5mmol)を水(50mL)に溶解させた水溶液にハイドロタルサイトA(5.0g)を添加して、液温50℃になるように加熱処理を施しながら24時間攪拌を行った。攪拌終了後、濾過によりハイドロタルサイトを回収し、蒸留水で洗浄した後、室温にて減圧乾燥して乾燥させた。得られたハイドロタルサイトを粉砕後、150メッシュの篩いで整粒し、塩化パラジウムが担持されたハイドロタルサイトB(塩化パラジウム含有量:1質量%)を得た。 <Example 10>
Hydrotalcite A (5.0 g) is added to an aqueous solution in which palladium chloride (0.5 mmol) and potassium chloride (6.5 mmol) are dissolved in water (50 mL), and the mixture is heated to a liquid temperature of 50 ° C. The mixture was stirred for 24 hours. After the stirring was completed, hydrotalcite was collected by filtration, washed with distilled water, and then dried under reduced pressure at room temperature. The obtained hydrotalcite was pulverized and then sized with a 150 mesh sieve to obtain hydrotalcite B (palladium chloride content: 1% by mass) on which palladium chloride was supported.
塩化パラジウム(0.5mmol)および塩化カリウム(6.5mmol)を水(50mL)に溶解させた水溶液にハイドロタルサイトA(5.0g)を添加して、液温50℃になるように加熱処理を施しながら24時間攪拌を行った。攪拌終了後、濾過によりハイドロタルサイトを回収し、蒸留水で洗浄した後、室温にて減圧乾燥して乾燥させた。得られたハイドロタルサイトを粉砕後、150メッシュの篩いで整粒し、塩化パラジウムが担持されたハイドロタルサイトB(塩化パラジウム含有量:1質量%)を得た。 <Example 10>
Hydrotalcite A (5.0 g) is added to an aqueous solution in which palladium chloride (0.5 mmol) and potassium chloride (6.5 mmol) are dissolved in water (50 mL), and the mixture is heated to a liquid temperature of 50 ° C. The mixture was stirred for 24 hours. After the stirring was completed, hydrotalcite was collected by filtration, washed with distilled water, and then dried under reduced pressure at room temperature. The obtained hydrotalcite was pulverized and then sized with a 150 mesh sieve to obtain hydrotalcite B (palladium chloride content: 1% by mass) on which palladium chloride was supported.
次に、ハイドロタルサイトB(200mg)をトルエン(3mL)に添加した後、1,4-ビス(ジフェニルホスフィノ)ブタン(以後、dppbとも称する)(0.02mmol)を添加した。その後、実施例9と同様の手順に従って、アリルアルコールとフェノールとをさらに添加してアリルフェニルエーテルを製造した。結果を表3に示す。
Next, after adding hydrotalcite B (200 mg) to toluene (3 mL), 1,4-bis (diphenylphosphino) butane (hereinafter also referred to as dppb) (0.02 mmol) was added. Thereafter, according to the same procedure as in Example 9, allyl alcohol and phenol were further added to produce allyl phenyl ether. The results are shown in Table 3.
<実施例11>
PdCl2(dppb)(20μmol)をトルエン(3mL)に添加して溶解させた後、ハイドロタルサイトA(200mg)を添加する手順の代わりに、塩化パラジウム(0.02mmol)をトルエン(3mL)に添加した後、dppb(0.02mmol)を添加して溶解させ、さらにハイドロタルサイトA(200mg)を添加して反応溶液を調製する手順を実施した以外は、実施例9と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表3に示す。 <Example 11>
PdCl 2 (dppb) (20 μmol) was added and dissolved in toluene (3 mL), and instead of adding hydrotalcite A (200 mg), palladium chloride (0.02 mmol) was added to toluene (3 mL). After the addition, dppb (0.02 mmol) was added and dissolved, and hydrotalcite A (200 mg) was further added to carry out the procedure for preparing the reaction solution. Allyl phenyl ether was prepared. The results are shown in Table 3.
PdCl2(dppb)(20μmol)をトルエン(3mL)に添加して溶解させた後、ハイドロタルサイトA(200mg)を添加する手順の代わりに、塩化パラジウム(0.02mmol)をトルエン(3mL)に添加した後、dppb(0.02mmol)を添加して溶解させ、さらにハイドロタルサイトA(200mg)を添加して反応溶液を調製する手順を実施した以外は、実施例9と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表3に示す。 <Example 11>
PdCl 2 (dppb) (20 μmol) was added and dissolved in toluene (3 mL), and instead of adding hydrotalcite A (200 mg), palladium chloride (0.02 mmol) was added to toluene (3 mL). After the addition, dppb (0.02 mmol) was added and dissolved, and hydrotalcite A (200 mg) was further added to carry out the procedure for preparing the reaction solution. Allyl phenyl ether was prepared. The results are shown in Table 3.
表3中、「混合順番」は、トルエンに添加した順番を示し、数字の番号順に従って化合物を添加した。
また、表3中の「収率相対比」は、実施例11の収率(%)を「1.0」として、実施例9および10での収率(%)をそれぞれ実施例11の収率(%)に対する相対値として記載した。 In Table 3, “mixing order” indicates the order of addition to toluene, and the compounds were added according to the numerical order.
The “yield relative ratio” in Table 3 indicates that the yield (%) of Example 11 is “1.0”, and the yield (%) of Examples 9 and 10 is the same as that of Example 11. It was described as a relative value to the rate (%).
また、表3中の「収率相対比」は、実施例11の収率(%)を「1.0」として、実施例9および10での収率(%)をそれぞれ実施例11の収率(%)に対する相対値として記載した。 In Table 3, “mixing order” indicates the order of addition to toluene, and the compounds were added according to the numerical order.
The “yield relative ratio” in Table 3 indicates that the yield (%) of Example 11 is “1.0”, and the yield (%) of Examples 9 and 10 is the same as that of Example 11. It was described as a relative value to the rate (%).
表3に示すように、化合物の添加順を変更した場合においても、アリルフェニルエーテルが製造されることが確認された。
特に、実施例9および10の順番で化合物を添加すると、実施例11と比較して、収率がより優れることが確認された。 As shown in Table 3, it was confirmed that allyl phenyl ether was produced even when the addition order of the compounds was changed.
In particular, when the compounds were added in the order of Examples 9 and 10, it was confirmed that the yield was superior compared to Example 11.
特に、実施例9および10の順番で化合物を添加すると、実施例11と比較して、収率がより優れることが確認された。 As shown in Table 3, it was confirmed that allyl phenyl ether was produced even when the addition order of the compounds was changed.
In particular, when the compounds were added in the order of Examples 9 and 10, it was confirmed that the yield was superior compared to Example 11.
<実施例12>
<Example 12>
塩化パラジウム(0.5mmol)および塩化カリウム(6.5mmol)を水(50mL)に溶解させた水溶液にハイドロタルサイト(富田製薬株式会社製、トミターAD、Mg/Al=5.0、5.0g)を添加して、液温50℃になるように加熱処理を施しながら24時間攪拌を行った。攪拌終了後、濾過によりハイドロタルサイトを回収し、蒸留水で洗浄した後、室温にて減圧乾燥して乾燥させた。得られたハイドロタルサイトを粉砕後、150メッシュの篩いで整粒し、塩化パラジウムが担持されたハイドロタルサイトC(塩化パラジウム含有量:1質量%)を得た。
Hydrotalcite (Tomita Pharmaceutical Co., Ltd., Tomita AD, Mg / Al = 5.0, 5.0 g) was added to an aqueous solution in which palladium chloride (0.5 mmol) and potassium chloride (6.5 mmol) were dissolved in water (50 mL). ) Was added, and the mixture was stirred for 24 hours while being subjected to heat treatment so that the liquid temperature became 50 ° C. After the stirring was completed, hydrotalcite was collected by filtration, washed with distilled water, and then dried under reduced pressure at room temperature. The obtained hydrotalcite was pulverized and then sized with a 150 mesh sieve to obtain hydrotalcite C (palladium chloride content: 1% by mass) on which palladium chloride was supported.
ハイドロタルサイトC(200mg)をトルエン(3mL)に添加して分散させた後、1,4-ビス(ジフェニルホスフィノ)ブタン(以後、dppbとも称する)を添加した。その後、アリルアルコールとフェノールとをさらに添加して、アルゴン下にて100℃で1時間加熱処理を実施した。なお、アリルアルコールとフェノールとパラジウム源と有機ホスフィン化合物との混合モル比は、1000:1000:1:4であった。
反応終了後、生成物をガスクロマトグラフィーにより分析してアリルフェニルエーテルを同定し、アリルフェニルエーテルのフェノールに対する収率を求めた。結果を表4に示す。 Hydrotalcite C (200 mg) was added and dispersed in toluene (3 mL), and 1,4-bis (diphenylphosphino) butane (hereinafter also referred to as dppb) was added. Thereafter, allyl alcohol and phenol were further added, and heat treatment was performed at 100 ° C. for 1 hour under argon. The mixing molar ratio of allyl alcohol, phenol, palladium source, and organic phosphine compound was 1000: 1000: 1: 4.
After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 4.
反応終了後、生成物をガスクロマトグラフィーにより分析してアリルフェニルエーテルを同定し、アリルフェニルエーテルのフェノールに対する収率を求めた。結果を表4に示す。 Hydrotalcite C (200 mg) was added and dispersed in toluene (3 mL), and 1,4-bis (diphenylphosphino) butane (hereinafter also referred to as dppb) was added. Thereafter, allyl alcohol and phenol were further added, and heat treatment was performed at 100 ° C. for 1 hour under argon. The mixing molar ratio of allyl alcohol, phenol, palladium source, and organic phosphine compound was 1000: 1000: 1: 4.
After completion of the reaction, the product was analyzed by gas chromatography to identify allyl phenyl ether, and the yield of allyl phenyl ether to phenol was determined. The results are shown in Table 4.
<実施例13>
dppbの代わりに、1,4-ビス(ジフェニルホスフィノ)プロパンを使用した以外は、実施例12と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表4に示す。 <Example 13>
Allyl phenyl ether was produced in the same manner as in Example 12 except that 1,4-bis (diphenylphosphino) propane was used instead of dppb. The results are shown in Table 4.
dppbの代わりに、1,4-ビス(ジフェニルホスフィノ)プロパンを使用した以外は、実施例12と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表4に示す。 <Example 13>
Allyl phenyl ether was produced in the same manner as in Example 12 except that 1,4-bis (diphenylphosphino) propane was used instead of dppb. The results are shown in Table 4.
<実施例14>
dppbの代わりに、トリフェニルホスフィンを使用した以外は、実施例12と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表4に示す。 <Example 14>
Allylphenyl ether was produced according to the same procedure as in Example 12 except that triphenylphosphine was used instead of dppb. The results are shown in Table 4.
dppbの代わりに、トリフェニルホスフィンを使用した以外は、実施例12と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表4に示す。 <Example 14>
Allylphenyl ether was produced according to the same procedure as in Example 12 except that triphenylphosphine was used instead of dppb. The results are shown in Table 4.
表4中の「収率相対比」は、実施例14の収率(%)を「1.0」として、実施例12および13での収率(%)をそれぞれ実施例14の収率(%)に対する相対値として記載した。
The “yield relative ratio” in Table 4 indicates that the yield (%) of Example 14 is “1.0”, and the yield (%) of Examples 12 and 13 is the yield of Example 14 ( %).
表4に示すように、有機ホスフィン化合物の種類を変更した場合においても、アリルフェニルエーテルが製造されることが確認された。
特に、実施例12および13に示すように、2座有機ホスフィン化合物(2座ホスフィン化合物)を使用した場合に、収率がより向上することが確認された。 As shown in Table 4, it was confirmed that allyl phenyl ether was produced even when the type of the organic phosphine compound was changed.
In particular, as shown in Examples 12 and 13, it was confirmed that the yield was further improved when a bidentate organic phosphine compound (bidentate phosphine compound) was used.
特に、実施例12および13に示すように、2座有機ホスフィン化合物(2座ホスフィン化合物)を使用した場合に、収率がより向上することが確認された。 As shown in Table 4, it was confirmed that allyl phenyl ether was produced even when the type of the organic phosphine compound was changed.
In particular, as shown in Examples 12 and 13, it was confirmed that the yield was further improved when a bidentate organic phosphine compound (bidentate phosphine compound) was used.
<実施例15>
反応温度を90℃から110℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表5に示す。 <Example 15>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the reaction temperature was changed from 90 ° C to 110 ° C. The results are shown in Table 5.
反応温度を90℃から110℃に変更した以外は、実施例1と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表5に示す。 <Example 15>
Allyl phenyl ether was produced according to the same procedure as in Example 1 except that the reaction temperature was changed from 90 ° C to 110 ° C. The results are shown in Table 5.
<実施例16>
ハイドロタルサイトAの代わりに前処理を施していない未処理のハイドロタルサイトを使用した以外は、実施例15と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表5に示す。 <Example 16>
Allyl phenyl ether was produced according to the same procedure as in Example 15 except that untreated hydrotalcite not subjected to pretreatment was used instead of hydrotalcite A. The results are shown in Table 5.
ハイドロタルサイトAの代わりに前処理を施していない未処理のハイドロタルサイトを使用した以外は、実施例15と同様の手順に従って、アリルフェニルエーテルを製造した。結果を表5に示す。 <Example 16>
Allyl phenyl ether was produced according to the same procedure as in Example 15 except that untreated hydrotalcite not subjected to pretreatment was used instead of hydrotalcite A. The results are shown in Table 5.
表5中の「ハイドロタルサイトの前処理」欄は、所定の前処理が施されたハイドロタルサイト(ハイドロタルサイトA)を使用した場合を「○」、未処理のハイドロタルサイトを使用した場合を「×」として示す。
また、表5中の「収率相対比」は、実施例16の収率(%)を「1.0」として、実施例15の収率(%)を実施例16の収率(%)に対する相対値として記載した。 In the column “Pretreatment of hydrotalcite” in Table 5, the case where a hydrotalcite (hydrotalcite A) subjected to a predetermined pretreatment was used was “◯”, and an untreated hydrotalcite was used. Cases are indicated as “x”.
The “yield relative ratio” in Table 5 is that the yield (%) of Example 16 is “1.0”, and the yield (%) of Example 15 is the yield (%) of Example 16. It was described as a relative value to.
また、表5中の「収率相対比」は、実施例16の収率(%)を「1.0」として、実施例15の収率(%)を実施例16の収率(%)に対する相対値として記載した。 In the column “Pretreatment of hydrotalcite” in Table 5, the case where a hydrotalcite (hydrotalcite A) subjected to a predetermined pretreatment was used was “◯”, and an untreated hydrotalcite was used. Cases are indicated as “x”.
The “yield relative ratio” in Table 5 is that the yield (%) of Example 16 is “1.0”, and the yield (%) of Example 15 is the yield (%) of Example 16. It was described as a relative value to.
表5に示すように、前処理を施したハイドロタルサイトおよび未処理のハイドロタルサイトの両方において、アリルフェニルエーテルが製造されることが確認された。
特に、実施例15に示すように所定の前処理を施したハイドロタルサイトを使用したほうが、約1.5倍程度収率が高くなることが確認された。 As shown in Table 5, it was confirmed that allyl phenyl ether was produced in both the pretreated hydrotalcite and the untreated hydrotalcite.
In particular, as shown in Example 15, it was confirmed that the yield increased by about 1.5 times when the hydrotalcite subjected to the predetermined pretreatment was used.
特に、実施例15に示すように所定の前処理を施したハイドロタルサイトを使用したほうが、約1.5倍程度収率が高くなることが確認された。 As shown in Table 5, it was confirmed that allyl phenyl ether was produced in both the pretreated hydrotalcite and the untreated hydrotalcite.
In particular, as shown in Example 15, it was confirmed that the yield increased by about 1.5 times when the hydrotalcite subjected to the predetermined pretreatment was used.
<実施例17>
フェノールの代わりにアニリンを使用した以外は、実施例1と同様の手順に従って、式(5)で表される化合物(N-アリルアニリン)を製造した。結果を表6に示す。 <Example 17>
A compound represented by the formula (5) (N-allylaniline) was produced according to the same procedure as in Example 1 except that aniline was used instead of phenol. The results are shown in Table 6.
フェノールの代わりにアニリンを使用した以外は、実施例1と同様の手順に従って、式(5)で表される化合物(N-アリルアニリン)を製造した。結果を表6に示す。 <Example 17>
A compound represented by the formula (5) (N-allylaniline) was produced according to the same procedure as in Example 1 except that aniline was used instead of phenol. The results are shown in Table 6.
表6に示すように、出発原料を変更した場合においても、本製造方法により所望の化合物が得られることが確認された。
As shown in Table 6, it was confirmed that the desired compound was obtained by this production method even when the starting material was changed.
Claims (7)
- ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源の存在下、アリルアルコールと式(1)で表される化合物とを反応させ、式(2)で表されるアリル基含有化合物を製造する方法。
式(2)中、Yは、-O-、-S-、または-NH-を表す。) A method for producing an allyl group-containing compound represented by formula (2) by reacting allyl alcohol with a compound represented by formula (1) in the presence of hydrotalcite, an organic phosphine compound and a palladium source.
In formula (2), Y represents —O—, —S—, or —NH—. ) - 前記有機ホスフィン化合物が、2座有機ホスフィン化合物である、請求項1に記載の方法。 The method according to claim 1, wherein the organic phosphine compound is a bidentate organic phosphine compound.
- 芳香族炭化水素系溶媒の存在下で反応を行う、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the reaction is carried out in the presence of an aromatic hydrocarbon solvent.
- 前記芳香族炭化水素系溶媒が、2以上のアルキル基を有するアルキルベンゼンである、請求項3に記載の方法。 The method according to claim 3, wherein the aromatic hydrocarbon solvent is an alkylbenzene having two or more alkyl groups.
- 脱水剤の存在下で反応を行う、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the reaction is carried out in the presence of a dehydrating agent.
- 前記有機ホスフィン化合物および前記パラジウム源が、有機ホスフィン化合物およびパラジウム源を含むパラジウム触媒として存在する、請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the organic phosphine compound and the palladium source are present as a palladium catalyst containing the organic phosphine compound and the palladium source.
- ハイドロタルサイト、有機ホスフィン化合物およびパラジウム源を有しており、アリルアルコールと式(1)で表される化合物とを反応させ、式(2)で表されるアリル基含有化合物を製造するために用いられるアリル化反応用触媒。
式(2)中、Yは、-O-、-S-、または-NH-を表す。) In order to produce an allyl group-containing compound represented by the formula (2) by having hydrotalcite, an organic phosphine compound and a palladium source, and reacting allyl alcohol with the compound represented by the formula (1) Catalyst for allylation reaction used.
In formula (2), Y represents —O—, —S—, or —NH—. )
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-110680 | 2012-05-14 | ||
JP2012110680 | 2012-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013171926A1 true WO2013171926A1 (en) | 2013-11-21 |
Family
ID=49583362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079829 WO2013171926A1 (en) | 2012-05-14 | 2012-11-16 | Method for producing allyl group-containing compound, catalyst for allylation reaction |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013171926A1 (en) |
WO (1) | WO2013171926A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10511721A (en) * | 1994-12-23 | 1998-11-10 | ザ ダウ ケミカル カンパニー | Method for producing allyl ether, thioether and amine compound |
JP2008037822A (en) * | 2006-08-08 | 2008-02-21 | Osaka Univ | Method for forming carbon-nitrogen or carbon-carbon bond |
-
2012
- 2012-11-16 JP JP2014515457A patent/JPWO2013171926A1/en active Pending
- 2012-11-16 WO PCT/JP2012/079829 patent/WO2013171926A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10511721A (en) * | 1994-12-23 | 1998-11-10 | ザ ダウ ケミカル カンパニー | Method for producing allyl ether, thioether and amine compound |
JP2008037822A (en) * | 2006-08-08 | 2008-02-21 | Osaka Univ | Method for forming carbon-nitrogen or carbon-carbon bond |
Non-Patent Citations (5)
Title |
---|
HITOSHI MATSUO ET AL., 92ND ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2012), 9 March 2012 (2012-03-09), KOEN YOKOSHU II, pages 399 * |
HITOSHI MATSUO ET AL.: "Heisei 23 Nendo Hokuriku Chiku Koenkai to Kenkyu Happyokai Koen Yoshishu", THE CHEMICAL SOCIETY OF JAPAN KINKI SHIBU SHUSAI, 18 November 2011 (2011-11-18), pages 156 * |
HITOSHI MATSUO: "Heisei 23 Nendo Shushi Ronbun Kenkyu Happyo Yoshishu", JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY MATERIAL SCIENCE KENKYUSHO, 9 February 2012 (2012-02-09), pages 61 * |
NOBUYUKI KAKIUCHI ET AL., BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 74, no. 1, 2001, pages 165 - 172 * |
TETSUYA SATOH ET AL., THE JOURNAL OF ORGANIC CHEMISTRY, vol. 62, 1997, pages 4877 - 4879 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013171926A1 (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Di et al. | Copper anchored on phosphorus gC 3 N 4 as a highly efficient photocatalyst for the synthesis of N-arylpyridin-2-amines | |
Li et al. | From C (sp 2)–H to C (sp 3)–H: systematic studies on transition metal-catalyzed oxidative C–C formation | |
Ding et al. | A novel two-phase oxidative coupling of 2-naphthols suspended in aqueous Fe3+ solutions | |
US20230041360A1 (en) | Method for stereospecific cycloaddition reaction | |
CN101484416B (en) | Hydrocyanation process with reduced yield losses | |
CN101484417B (en) | Hydrocyanation process with reduced yield losses | |
Kubota et al. | A glove-box-and Schlenk-line-free protocol for solid-state C–N cross-coupling reactions using mechanochemistry | |
US10287260B2 (en) | Composite containing catalytic metal nanoparticles, and use for same | |
US9175004B2 (en) | Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same | |
US10463391B2 (en) | Magnetic ferrocenyl-functionalized nanoparticle | |
Moghaddam et al. | Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C–O bond formation: a comparative study between their catalytic activities | |
Shi et al. | A PdCl2–ionic liquid brush assembly: an efficient and reusable catalyst for Mizoroki–Heck reaction in neat water | |
KR102595028B1 (en) | Method for homogeneous hydrogenation dehalogenation of halogenated heteroaryl compounds | |
Sawatzky et al. | (DPEPhos) Ni (mesityl) Br: An Air-Stable Pre-Catalyst for Challenging Suzuki–Miyaura Cross-Couplings Leading to Unsymmetrical Biheteroaryls | |
Ishikawa et al. | Ortho-selective cross coupling of dibromophenols and dibromoanilines with grignard reagents in the presence of palladium catalysts bearing hydroxylated oligoarene-type phosphine | |
CN107552093B (en) | Supported iridium catalyst for bisphenol F and esterification reaction and preparation method thereof | |
Sun et al. | Solvent-free synthesis of imines via N-alkylation of aromatic amines with alcohols over Co2+-exchanged zeolites | |
WO2013171926A1 (en) | Method for producing allyl group-containing compound, catalyst for allylation reaction | |
Katayama et al. | Selective mono-alkylation and arylation of dichlorobenzenes by palladium-catalyzed Grignard cross-coupling | |
Ke et al. | Highly efficient nickel/phosphine catalyzed cross-couplings of diarylborinic acids with aryl tosylates and sulfamates | |
Vasconcelos et al. | Preparation and structure of new homochiral diazaphosphole ligands and their platinum (II) chloride complexes | |
Taher et al. | Graphene-Supported Palladium Complex: A Highly Efficient, Robust and Recyclable Catalyst for the Suzuki–Miyaura Cross-Coupling of Various Aryl Halides | |
EP3052666A1 (en) | System and method for removing transition metals from solution | |
Puzari et al. | Palladium complexes with two unsymmetrical Schiff base ligands: Highly active catalyst for activation of chloroarenes in Suzuki-Miyaura reaction | |
JPWO2013133386A1 (en) | Functional group-containing or non-containing cyclic compounds and methods for producing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877025 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014515457 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877025 Country of ref document: EP Kind code of ref document: A1 |