WO2013170550A1 - 一种降温发冷的纤维、制备方法及纺织品 - Google Patents

一种降温发冷的纤维、制备方法及纺织品 Download PDF

Info

Publication number
WO2013170550A1
WO2013170550A1 PCT/CN2012/080116 CN2012080116W WO2013170550A1 WO 2013170550 A1 WO2013170550 A1 WO 2013170550A1 CN 2012080116 W CN2012080116 W CN 2012080116W WO 2013170550 A1 WO2013170550 A1 WO 2013170550A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cooling
textile
temperature
sample
Prior art date
Application number
PCT/CN2012/080116
Other languages
English (en)
French (fr)
Inventor
毛盈军
Original Assignee
Mao Yingjun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mao Yingjun filed Critical Mao Yingjun
Publication of WO2013170550A1 publication Critical patent/WO2013170550A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof

Definitions

  • the present invention relates to a chemical fiber, in particular to a fiber which is cooled and chilled, a preparation method and a textile. Specifically, the present invention relates to a method for preparing a fiber for cooling and chilling, a method for preparing a textile fiber which is cooled by the wind, and a method for preparing a textile fiber for cooling and cooling, a textile for cooling and chilling, and a method for measuring the temperature and cooling. Background technique
  • the sandwich design simplifies the complicated arrangement of the pipelines, and through the multi-layering of the gas-permeable impervious and permeable layers, there is a coherent space of a specific structure between the two layers, and there may be temperature or humidity in the space.
  • the airflow generated by the difference is the effect of lowering the body heat temperature; as in US Pat. No.
  • Patent US2006276089, US2006064147, US2005284416, US6134714, US5415222, etc. using water-resistant and gas-impermeable material to seal water or phase change material to avoid loss of liquid heat-dissipating material; but for long-term use, due to external friction and pressure, it will still There is a problem of water leakage.
  • the use of phase change materials cannot be long-lasting. It is necessary to return the solid phase to the phase change material before it can cool down.
  • patent IT 1251745 due to the high cost and poor flexibility of metal fibers, the practical use of such cooled textiles is not good. Summary of the invention The object of the present invention is to provide a fiber for cooling and chilling, a preparation method and a textile which are convenient to manufacture, low in cost, and easy to implement industrially.
  • a first object of the present invention provides a fiber for cooling and chilling, the fiber comprising a conventional textile fiber and nano-units in an amount of 0.1 to 4% by weight based on the total weight, the nano-unit comprising micro-particles of 300 - 8000 nm,
  • the microparticles include potassium, or a mixture of potassium and sodium.
  • the conventional textile web comprises chemical fibers, and the chemical webs comprise artificial webs and/or synthetic fibers.
  • the fibers comprise 24% by weight of 300 4000 nanometers of microparticles based on the total weight.
  • the microparticles comprise 50 500 weight units of potassium and
  • the fiber comprises 0.12% by weight of the total particles of 4000 to 8000 nm of microparticles.
  • the microparticles comprise 50 - 500 weight units of potassium and 10 to 300 weight units of sodium.
  • the microparticles further comprise 200 to 3000 weight units
  • a second object of the present invention is to provide a wind-cooled fiber comprising the above-mentioned weiwei, wherein the wind-cooled weiwei has a temperature decrease of at least zero when the air flow velocity is greater than 0,5 m/s. 5 ° C.
  • the temperature of the wind-cooled fibers is continuously lower than the temperature of the surrounding environment in an environment of continuous air flow.
  • a third object of the present invention provides a method for preparing a textile fiber for cooling and chilling, the preparation method comprising the steps of: A, making a natural polymer material or an inorganic substance, or a synthetic polymer substance or an inorganic substance. Forming a spinning melt or solution; B, adding the above-mentioned nano unit to the spinning refining body or solution; C, extruding through a spinning mechanism to form a fiber.
  • a fourth object of the present invention provides a method for preparing a textile fiber for cooling and chilling, the preparation method comprising the steps of preparing a textile fiber masterbatch, and adding the above nano cell during the preparation of the chemical fiber masterbatch
  • a fifth object of the present invention is to provide a textile which is cooled and chilled, the textile comprising at least a part of the above-mentioned fibers.
  • a sixth object of the present invention provides a method for detecting a cooling and cooling fiber, the detection method package Including the following steps:
  • the surface of the fabric to be tested is subjected to photography after a lapse of time T;
  • the detecting method is performed on a human body in a constant temperature and humidity environment, and is simultaneously detected on both sides of the human body symmetrically, and then subjected to secondary detection after being mutually adjusted.
  • the fiber of the present invention can achieve an unexpected rapid cooling and cooling effect after encountering wind, and the present invention is relatively cold compared to the prior art.
  • the invention has the advantages of low manufacturing cost, simple manufacturing process, easy industrial production, etc.
  • the invention can be made into a high-quality new type of chilled fiber fabric, and is applied to indoor and outdoor sports, exercise and outdoor work in summer. , to achieve a cool and cool effect.
  • FIG. 1 is a schematic view showing the detection result of the fiber cooling and cooling effect in the first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the detection result of the fiber cooling and cooling effect in the second embodiment of the present invention
  • FIG. 4 is an analytical diagram of the skin surface temperature before wearing the fiber product of the present invention
  • Figure 5 is an analysis of the surface temperature of the instant fabric after wearing the fiber product of the present invention
  • Figure 6 is an analysis of the surface temperature of the fabric after the time T of wearing the continuous state of the present invention
  • Figure 7 is an instantaneous skin surface temperature analysis diagram after removing the fiber product of the present invention.
  • Figure 8 is an analytical diagram of the surface temperature of the fabric after the fiber product of the present invention is taken off
  • Figure 9 is a schematic view of the test sample in the test shown in Figures 4 to 8, wherein A is the invention
  • B is a control sample of conventional fibers
  • Figure 10 is a graph showing the surface temperature of the skin before wearing the silicone product of the present invention.
  • Figure 11 is an analysis of the surface temperature of the instant fabric after wearing the enamel product of the present invention
  • Figure 12 is an analysis of the surface temperature of the fabric after the lapse of the time T in the continuous state of wearing the enamel product of the present invention
  • Figure 13 is an analysis of the instantaneous skin surface temperature after the fiber product of the present invention is taken off
  • Figure 14 is an analytical diagram of the surface temperature of the fabric after the fiber product of the present invention is taken off;
  • Figure 15 is a schematic view of the test sample in the test shown in Figure 10 and Figure 14, wherein B is the sample to be tested of the present invention, and A is a control sample of the conventional fiber. Detailed description of the invention
  • a cooling and chilling fiber of the present invention comprises conventional textile fibers and nanometer units in an amount of 1 to 4% by weight based on the total weight, for example, nanometers account for 2% by weight of the total fibers, and the nanocells of the present invention include 300 8000 nm.
  • Microparticles which mainly include potassium, sodium or a mixture of any ratio between them.
  • the fibers of the present invention comprise, in addition to the conventional textile fibers, from about 2 to 4% by weight based on the total weight of the microparticles of from 300 to 2000 nm.
  • the fine particles include 50 parts by weight of potassium and 12 parts by weight of sodium, or only 50 parts by weight of potassium, and of course, the former is more effective.
  • weight unit described in the present invention preferably has a weight ratio of "micrograms/kg", and may be weighed according to other weight units according to actual needs.
  • the cooling and cooling fiber containing the nano unit is used, and the cooling and cooling effect is as follows:
  • Test certificate number Ding 09-035052-2 (Osaka-7190);
  • This embodiment differs from the above embodiment in that the present invention comprises about 2,000 to 5,000 nanometers of total particles of about 2,000 to 5,000 nanometers by weight.
  • the £ particles include 490 parts by weight of potassium and 300 parts by weight of sodium, or only 490 parts by weight of potassium, of course, the former is more effective.
  • the nanocell of the present invention can be added in the process of the manufacture of ⁇ V. using any of the prior art.
  • This embodiment adopts a method for preparing a textile fiber for cooling and chilling, which comprises the following steps: A. A natural polymer substance or an inorganic substance (such as viscose fiber), or a synthetic polymer substance or inorganic substance. a material (such as: nylon or acrylic) is made into a spinning refining body or a solution; B. adding the above-mentioned nano unit to the spinning refining body or solution; C, extruding through a spinning mechanism to form a fiber. Other process steps are the same as those of the prior art fiber preparation method, and will not be described herein.
  • the cooling and cooling fiber containing the nano unit is used, and the cooling and cooling effect is as follows:
  • the dimensions of the present invention include about the total weight. 0.1 - 1% by weight of particles of 5000 8000 nm.
  • the i particles include 300 parts by weight of potassium and 150 parts by weight of sodium, or only 300 parts by weight of potassium, of course, the former is more effective.
  • the i particles of the present embodiment may further include 200 to 3000 weight units of ruthenium (specifically, this embodiment includes 2000 weight units of ruthenium).
  • the nanocell of the present invention can be added in the process of the manufacture of ⁇ V. using any of the prior art.
  • This embodiment adopts a preparation method of a textile slab which is cooled and chilled, and includes a preparation step of a textile weiwei chemical fiber masterbatch.
  • the preparation process of the chemical fiber masterbatch the above-mentioned nano unit is added, and then the fiber is produced.
  • the other process steps of the fiber preparation method of this embodiment are the same as those of the prior art fiber preparation method, and will not be described herein.
  • the cooling and cooling fiber containing the nano unit is used, and the cooling and cooling effect is as follows:
  • Test item 3 Fever/cold contact
  • test results of the samples to be tested in the laboratory are as follows:
  • Fig. 3 The relationship between the heat absorption detected in this embodiment and the change with time is shown in Fig. 3, wherein the upper curve is the curve of the sample 1, and the lower curve is the curve of the sample 2.
  • Another object of the present invention is to provide a textile which is cooled and chilled, such as a knitted or woven product, in which at least some of the above-mentioned woven fabrics are included, and of course, all of the present invention can also be used for cooling.
  • a textile which is cooled and chilled such as a knitted or woven product, in which at least some of the above-mentioned woven fabrics are included, and of course, all of the present invention can also be used for cooling.
  • FIG. 4 to 9 there is shown a preferred embodiment of the method for detecting a cooling and cooling fiber of the present invention.
  • the cooling and cooling effect is as follows:
  • Sample B - untreated fiber comparative sample
  • the sample A in this embodiment is a wind-cooled fiber
  • the wind-cooled fiber may include the fiber described in any one of the above embodiments, that is, the wind-cooled ⁇ wei includes conventional textile.
  • a fiber and 0.1 to 4% by weight of the nanocells the nanocell comprising 300 to 8000 nm of microparticles, the microparticles comprising potassium, or a mixture of potassium and sodium; and the wind-cooled fiber
  • the temperature is reduced by at least 0.5 °C when the air flow rate is greater than 0,5 m/s.
  • the surface temperature of the above-mentioned test sample and the surface skin temperature and the surface fabric temperature are analyzed by observation and photography, and the test is performed at a wind speed (air flow speed) of more than 0.5 m/s (for example, 2 m/s or 3 m/s). It is carried out in a ventilated environment, and the ambient temperature is preferably 30 ⁇ 1 °C, the ambient relative humidity is 40 ⁇ 2%, and the tester is a 30-year-old female:
  • Photographing the skin surface (e.g., from the elbow to the wrist) of the sample to be tested before wearing and the "photography" of the embodiment is preferably thermal sensing or infrared thermal imaging;
  • T is 30 minutes
  • the second test is performed after the mutual adjustment, for example, the first test is the right hand sample A, the left hand is the sample B, as shown in FIG. 4 to FIG. 9; the second test is the left hand sample. A, the right hand is sample B, as shown in Figure 10 and Figure 15.
  • the results of the above test are not difficult to be found by those skilled in the art, because the present invention adds a certain proportion of microparticle nano-cells of 300 to 8000 nm in the conventional textile dimension.
  • the invention can achieve the unexpected rapid cooling and cooling effect after encountering the wind, that is, the temperature of the fiber chilled by the invention is reduced by at least 0, 5 ° C when the air flow speed is greater than 0.5 m/s.
  • the above-mentioned temperature reduction range is a process of gradually increasing with time, but does not increase indefinitely, as shown in FIG. 1, FIG. 2 and FIG. 3, and, in the above embodiments 1, 2 3 and 4 indicate that the temperature of the wind-cooled fibers of the present invention is continuously lower than the temperature of the surrounding environment under a continuous air flow environment.
  • the cooling and chilling fiber of the invention and the preparation method thereof can be effectively used for preparing high-quality new chilled fiber fabric, and can be effectively used for indoor and outdoor summer sports, exercise and outdoor work, thereby achieving the pre-preparation Unexpectedly cool down and cool. Further, the cooling and cooling of the present invention has the advantages of lower manufacturing cost, simple manufacturing process, and easy industrial production, compared to the conventional chilling and drying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Artificial Filaments (AREA)

Abstract

提供了降温发冷的纤维、遇风发冷的纤维、降温发冷的紡织纤维的制备方法、降温发冷的紡织品以及降温发冷纤维的检测方法。其中,降温发冷的纤维包括:常规紡织纤维和占总重量0.1~4%重量份的纳米单元,该纳米单元包括300~8000纳米的微粒子,所述的f微粒子包括钾、或钾与钠的混合物。

Description

一种降温发冷的纤维、 制备方法及纺织品 技术领域
本发明涉及一种化学纤维, 特別是一种降温发冷的纤维、 制备方法及 紡织品。 具体地, 本发明涉及降温发冷的纤维、 遇风发冷的紆维、 降温发 冷的紡织纤维的制备方法、 降温发冷的紡织品以及降温发冷紆维的检 1 j方 法。 背景技术
当前, 一般的降温紡织品早期制作以热交换器及电力输送热传流体为 主, 例如美国专利 US5062424、 US5092129, US5263336, US4738119等, 这些技术方案仅应用于特殊的作业环境, 不适用于日常穿着应用。
再者, 除使用管路外, 夹层设计简化管路的复杂布置, 通过透气不透 水与透水层的多层化, 使两层间存在特定结构的连贯性空间, 空间中存在 可因温度或湿度差异产生的气流, 而达到降低体热温度的效果; 如专利 US4342203 , WO2007088431 , JP4209809, US2007050878 , US2006201I78 , JP4209807等, 为使气流有良好的流通产生散热效果, 多层结构的设计较复 杂; 进而有人在多层结构的中间层引入可以含有大量水分的水吸收材料, 增力。 整体的降温程度, 如 US2003208831、 WO0108883 , MXPA01013376, US6516624、 US6134714等, 通过透气层使水蒸气进出中间层达到更好的冷 却效果。 中, 专利 US2006276089、 US2006064147, US2005284416, US6134714 , US5415222 等, 使用阻水性不透气材料封存水或相变化材料, 避免液态散 热材料的流失; 但长时间使用下, 因外界的磨擦与压力作用, 仍会有漏水 的问题, 相变化材料的使用则存在无法保持长效, 需待相变化材料回复固 态相才能再有降温的作用; 利用高热传性的金属纤维编织, 可以制作长时 间冷却作用的紡织品, 如专利 IT 1251745 , 因金属纤维的成本高与柔软性 差, 使这类降温紡织品的实用化不佳。 发明内容 本发明的目的是提出一种制造方便、 成本低廉、 易于产业化实施的降温发 冷的纤维、 制备方法及紡织品。
本发明的第一目的提供了一种降温发冷的纤维, 所述的纤维包括常规紡织 纤维和占总重量 0.1 ~ 4%重量份的纳米单元, 所述纳米单元包括 300 - 8000纳 米的微粒子, 所述的微粒子包括钾、 或钾与钠的混合物。
优选地, 所述常规紡织紆维包括化学纤维, 所述的化学紆维包括人造紆维 和 /或合成纤维。
更优选地,所述的纤维包括占总重量 2 4%重量份的 300 4000纳米的微 粒子。
进一步, 在所述的纳米单元中, 所述微粒子包括 50 500重量单元的钾和
10 - 300重量单元的钠。
优选地, 所述的纤维包括占总重量 0.1 2%重量份的 4000 ~ 8000纳米的 微粒子。
更优选地, 在所述的纳米单元中, 所述微粒子包括 50 - 500重量单元的钾 和 10 ~ 300重量单元的钠。
进一步, 所述的纳米单元中, 所述的微粒子还包括 200 ~ 3000重量单元的
4市。
本发明的第二目的提供了一种遇风发冷的纤维, 其包括了上述的紆维, 所 述遇风发冷的紆维在空气流动速度大于 0,5m/s时温度降低至少 0,5°C。优选地, 在持续空气流动的环境下, 所述遇风发冷的纤维的温度持续地低于周围环境的 温度。
本发明的第三目的提供了一种降温发冷的紡织纤维的制备方法, 所述制备 方法包括如下步骤: A、 将天然的高分子物质或无机物、 或者合成的高分子物 质或无机物制成纺丝熔体或溶液; B、 在所述紡丝炼体或溶液中添加上述的纳 米单元; C、 经喷丝机构挤出, 形成纤维。
本发明的第四目的提供了一种降温发冷的紡织纤维的制备方法, 所述制备 方法包括紡织紆维化纤母粒的制备步驟, 在化纤母粒的制备过程中, 添加上述 的纳米单元
本发明的第五目的提供了一种降温发冷的紡织品, 该紡织品至少包括部分 上述的纤维。
本发明的第六目的提供了一种降温发冷纤维的检测方法, 所述检测方法包 括如下步骤:
对待测样品穿着前的皮肤表面进行摄影;
对待测样品穿着后的即时面料表面进行摄影;
对待测样品穿着持续状态经过时间 T后的面料表面进行摄影;
对待测样品脱下后的即时皮肤表面进行摄影;
对待测样品脱下后的面料表面进行摄影。
优选地, 所述检测方法在恒温恒湿环境下的人体上进行检测, 并且在人体 上相互对称的两侧上同时进行检测后, 再相互对调后进行二次检测。
基于上述技术方案, 本发明的优点是:
由于本发明在常规纺织纤维中加入了一定比例 300 8000纳米的微粒子纳 米单元, 使得本发明的纤维能够在遇风后达到预想不到的快速降温发冷效果, 并且本发明相对于现有的发冷纤维而言, 具有制造成本较低、 制造工艺筒单、 易于工业化生产等优点, 同时本发明可以制成优质的新型发冷纤维织物, 并应 用于夏季室内外运动、 锻炼以及户外工作等条件下, 达到降温凉爽的效果。 本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面 的描述中变得明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述 中将变得明显和容易理解, 其中:
图 1为本发明实施例 1中的纤维降温发冷效果的检测结果示意图; 图 2为本发明实施例 2中的纤维降温发冷效果的检测结果示意图; 图 3为本发明实施例 3中的纤维降温发冷效果的检测结果示意图; 图 4为在穿着本发明纤维制品前的皮肤表面温度解析图;
图 5为在穿着本发明纤维制品后的即时面料表面温度解析图; 图 6为在穿着本发明紆维制品持续状态经过时间 T后的面料表面温度 解析图;
图 7为脱下本发明纤维制品后的即时皮肤表面温度解析图;
图 8为脱下本发明纤维制品后的面料表面温度解析图;
图 9为图 4 ~图 8所示试验中的检测样品示意图, 其中 A为本发明的 待测样品, B为常规纤维的对照样品;
图 10为在穿着本发明紆维制品前的皮肤表面温度解析图;
图 11为在穿着本发明紆维制品后的即时面料表面温度解析图; 图 12为在穿着本发明紆维制品持续状态经过时间 T后的面料表面温度 解析图;
图 13为脱下本发明纤维制品后的即时皮肤表面温度解析图;
图 14为脱下本发明纤维制品后的面料表面温度解析图;
图 15为图 10 图 14所示试验中的检测样品示意图, 其中 B为本发明 的待测样品, A为常规纤维的对照样品。 发明详细描述
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能理解为对本发明的限制。 实施例中未注明具体技术或条件的, 按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。 所用 试剂或仪器未注明生产厂商者, 均为可以通过市购获得的常规产品。
实施例 1:
本发明的一种降温发冷的纤维, 包括常规紡织纤维以及占总重量 1 ~ 4% 重量份的纳米单元, 例如纳米单元占纤维总重量的 2%, 本发明所述纳米单元 包括 300 8000纳米的微粒子, 所述的微粒子主要包括钾、 钠或者它们之间任 意比例的混合物。
在本实施例中,本发明的纤维中,除常规紡织纤维外, 包括约占总重量 2 ~ 4%重量份的 300 - 2000纳米的微粒子。 所述的微粒子包括 50重量单元的钾和 12重量单元的钠, 或者仅包括 50重量单元的钾, 当然, 前者的效果更明显。
需要说明的是: 本发明所述的 "重量单元"优选为 "微克 /公斤" 的重量比 值, 也可以根据实际需要按照其他重量单元进行称量。
本实施例中包含有纳米单元的降温发冷纤维, 其降温发冷效果参见如下的 检测试验:
检测单位: 日本化学纤维检查协会 ( Japan Synthetic Textile Inspection
Institute Foundation ); 收到样品日期: 2009年 12月 11 曰;
检测报告日期: 2009年 12月 21 日;
检测证书编号: 丁 09-035052-2(大阪-7190);
检测样品:
样品 1——处理过的纤维(本发明纤维),
样品 2——未经处理的紆维 (对比样品),
共计 2个样品;
检测项目 1 : 吸水、 吸热试验(第一次, N=l ):
具体检测方法:
a) 在 70 °C的干燥机内将待测样品干燥 2小时;
b) 将检测室内的温度设定为 35 °C;
c) 向检测室内预先放入待用的装置;
d) 将调节了温度和湿度的待测样品对折 2次, 中心位置用移 液枪加 0.5ml蒸馏水,然后直接将传感器放在待测样品的中心部位, 为了使传感器与待测样品紧密接触, 用夹子将它们夹住, 并记录温 度随时间的变化, 参见下表。
表 1 ( N=l )
Figure imgf000006_0001
上述检测结果的温度-时间关系曲线参见附图 1所示;
通过该日本化学纤维检查协会 ( Japan Synthetic Textile Inspection Institute Foundation ) 的上述检测结果以及表 1和图 1可以得出, 本发明降温发冷的纤 维在相同的温度和湿度条件下, 比常规的化学纤维具有更加显著的和预料不到 的快速降温效果。 实施例 2:
本实施例与上述实施例的不同之处在于, 本发明的紆维包括约占总重量 1 ~ 2%重量份的 2000 ~ 5000纳米的 ^啟粒子。 所述的 £粒子包括 490重量单元 的钾和 300重量单元的钠, 或者仅包括 490重量单元的钾, 当然, 前者的效果 更明显。
本发明的纳米单元可以采用现有技术中的任意一种在紆维制造的工艺中 进行添加。
例如: 本实施例采用了一种降温发冷的紡织纤维的制备方法, 包括如下步 骤: A、 将天然的高分子物质或无机物(如: 粘胶纤维)、 或者合成的高分子物 质或无机物 (如: 锦纶或腈纶)制成纺丝炼体或溶液; B、 在所述纺丝炼体或 溶液中添加上述的纳米单元; C、 经喷丝机构挤出, 形成纤维。 其他工艺步骤 与现有技术的纤维制备方法相同, 在此不再赘述。
本实施例中包含有纳米单元的降温发冷纤维, 其降温发冷效果参见如下的 检测试验:
检测项目 2: 吸水、 吸热试验(第二次, N=2 ):
表 2 ( N=2 )
Figure imgf000007_0001
上述检测结果的温度-时间关系曲线参见附图 2所示;
通过该日本化学纤维检查协会的上述进一步检测结果以及表 2和图 2可以 得出, 本发明降温发冷的纤维在相同的温度和湿度条件下, 比常规的化学纤维 具有更加显箸的和预料不到的快速降温效果。 实施例 3:
本实施例与上述实施例的不同之处在于, 本发明的紆维包括约占总重量 0.1 - 1%重量份的 5000 8000纳米的微粒子。所述的 i粒子包括 300重量单元 的钾和 150重量单元的钠, 或者仅包括 300重量单元的钾, 当然, 前者的效果 更明显。 进一步优选地, 本实施例的 i粒子中还可以包括 200 ~ 3000重量单元 的铈(具体地, 本实施例包括 2000重量单元的铈)。
本发明的纳米单元可以采用现有技术中的任意一种在紆维制造的工艺中 进行添加。
例如: 本实施例采用了一种降温发冷的紡织紆维的制备方法, 包括紡织紆 维化纤母粒的制备步骤, 在化纤母粒的制备过程中, 添加上述的纳米单元, 然 后生产出纤维。本实施例纤维制备方法的其他工艺步骤与现有技术的纤维制备 方法相同, 在此不再赘述。
本实施例中包含有纳米单元的降温发冷纤维, 其降温发冷效果参见如下的 检测试验:
检测项目 3: 发热 /发冷接触感;
检测方法及检测结果: 如下表所示
兹证明实验室待测样品的检测结果如下:
表 3
Figure imgf000008_0001
本实施例检测的吸热量随时间的变化关系曲线参见附图 3所示, 其中, 上 部的曲线为样品 1的曲线, 下部的曲线为样品 2的曲线。
通过该日本化学纤维检查协会上述方法的检测结果以及表 3和图 3可以得 出, 本发明降温发冷的紆维在相同的温度和湿度条件下, 比常规的化学紆维还 具有更加显著的和预料不到的快速吸收热量的效果, 并且进一步能够使得本发 明的纤维具有预料不到的降温效果。
此外, 本发明的另一目的是提供一种降温发冷的紡织品, 例如针织或梭织 产品, 在该紡织品中, 至少包括部分上述的紆维, 当然, 也可以全部使用本发 明降温发冷的紆维制成。 实施例 4:
参见图 4 ~图 9 , 其中示出本发明一种降温发冷纤维的检测方法的优选实 施例, 其降温发冷效果参见如下的检测试验:
检测单位: 日本株式会社消费科学研究所
1、 检测样品:
样品 A—一处理过的纤维(本发明纤维);
样品 B——未经处理的纤维(对比样品);
需要说明的是,本实施例样品 A为遇风发冷的纤维, 该遇风发冷的纤维可 以包括上述任意一个实施例中所述的纤维, 即该遇风发冷的紆维包括常规紡织 纤维和占总重量 0.1 ~ 4%重量份的纳米单元, 所述纳米单元包括 300 - 8000纳 米的微粒子, 所述的微粒子包括钾、 或钾与钠的混合物; 并且所述遇风发冷的 纤维在空气流动速度大于 0,5m/s时温度降低至少 0.5 °C。
2、 试验内容及条件
在以下条件下, 对上述检测样品及表面皮肤温度、 表面面料温度通过观察 摄影进行表面温度解析,本试验在风速(空气流动速度 )大于 0.5m/s (例如 2m/s 或 3m/s ) 的通风环境内进行, 并且, 环境温度优选为 30 ± 1 °C, 环境相对湿度 为 40 ± 2 %, 测试者为 30岁女性:
( 1 )对待测样品穿着前的皮肤表面 (例如从肘到手腕) 进行摄影, 本实 施例的 "摄影" 优选为热感应摄影或红外热感摄影;
( 2 )对待测样品穿着后的即时面料表面 (例如从肘到手腕)进行摄影;
( 3 )对待测样品穿着持续状态经过时间 T后(本实施例中 T为 30分钟) 的面料表面 (例如从肘到手腕)进行摄影;
( 4 )对待测样品脱下后的即时皮肤表面 (例如从肘到手腕)进行摄影;
( 5 )对待测样品脱下后的面料表面进行摄影。
优选地, 在完成上述试验后, 再相互对调后进行二次检测, 例如第一次试 验右手为样品 A, 左手为样品 B, 如图 4 ~图 9所示; 第二次试验左手为样品 A, 右手为样品 B, 如图 10 图 15所示。
上述试验的结果,参见图 4 ~图 9和图 10 ~图 15,对于本领域普通技术人 员不难发现, 由于本发明在常规紡织紆维中加入了一定比例 300 ~ 8000纳米的 微粒子纳米单元, 使得本发明的紆维能够在遇风后达到预想不到的快速降温发 冷效果, 即: 本发明遇风发冷的纤维在空气流动速度大于 0.5m/s时温度降低至 少 0,5°C, 当然对于本领域技术人员不难理解, 上述的温度降低幅度是随时间 而逐渐增加的过程, 但并非无限的增加, 如图 1、 图 2和图 3所示, 并且, 上 述实施例 1、 2、 3和 4表明, 在持续的空气流动环境下, 本发明所述遇风发冷 的纤维的温度持续地低于周围环境的温度。 工业实用性
本发明的降温发冷的纤维及其制备方法, 能够有效地用于制备优质的 新型发冷纤维织物, 进而能够有效地用于夏季室内外运动、 锻炼以及户外 工作等条件下, 从而能够达到预想不到的快速降温发冷效果。 并且本发明 的降温发冷的紆维, 相对于现有的发冷紆维而言, 具有制造成本较低、 制 造工艺简单、 易于工业化生产等优点。 尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将会理 解。 根据已经公开的所有教导, 可以对那些细节进行各种修改和替换, 这些改 变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等 同物给出。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性 实施例"、 "示例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例 或示例描述的具体特征、 结构、 材料或者特点包含于本发明的至少一个实施例 或示例中。 在本说明书中, 对上述术语的示意性表述不一定指的是相同的实施 例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在任何的一个或 多个实施例或示例中以合适的方式结合。

Claims

权利要求书
1、 一种降温发冷的紆维, 其特征在于: 所述的纤维包括常规紡织纤维和 占总重量 0,1 - 4%重量份的纳米单元, 所述纳米单元包括 300 ~ 8000纳米的微 粒子, 所述的微粒子包括钾、 或钾与钠的混合物。
2、 根据权利要求 1所述的紆维, 其特征在于: 所述常规紡织紆维包括化 学紆维, 所述的化学纤维包括人造紆维和 /或合成纤维。
3、 根据权利要求 2所述的纤维, 其特征在于: 包括占总重量 2 4%重量 份的 300 4000纳米的 i粒子。
4、 根据权利要求 3所述的纤维, 其特征在于: 在所述的纳米单元中, 所 述微粒子包括 50 - 500重量单元的钾和 10 - 300重量单元的钠。
5、 根据权利要求 2所述的纤维, 其特征在于: 包括占总重量 0.1 2%重 量份的 4000 8000纳米的微粒子。
6、 根据权利要求 5所述的紆维, 其特征在于: 在所述的纳米单元中, 所 述微粒子包括 50 - 500重量单元的钾和 10 - 300重量单元的钠。
7、 根据权利要求 4或 6所述的紆维, 其特征在于: 所述的纳米单元中, 所述的微粒子还包括 200 ~ 3000重量单元的铈。
8、 一种遇风发冷的紆维, 其特征在于: 包括上述任意一项权利要求所述 的紆维, 所述遇风发冷的纤维在空气流动速度大于 0,5m/s时温度降低至少 0.5 °C。
9、 根据权利要求 8所述的纤维, 其特征在于: 在持续空气流动的环境下, 所述遇风发冷的纤维的温度持续地低于周围环境的温度。
10、 一种降温发冷的紡织纤维的制备方法, 其特征在于: 所述制备方法包 括如下步骤:
A、 将天然的高分子物质或无机物、 或者合成的高分子物质或无机物制成 紡丝熔体或溶液;
B、在所述紡丝; ^体或溶液中添加上述任意一项权利要求所述的纳米单元;
C、 经喷丝机构挤出, 形成纤维。
11、 一种降温发冷的紡织纤维的制备方法, 其特征在于: 所述制备方法包 括紡织纤维化紆母粒的制备步驟,在化紆母粒的制备过程中,添加权利要求 1 ~
9中任意一项权利要求所述的纳米单元。
12、 一种降温发冷的紡织品, 其特征在于: 该紡织品至少包括部分上述任 意一项权利要求所述的紆维。
13、 一种降温发冷纤维的检测方法, 其特征在于: 所述检测方法包括如下 步骤:
对待测样品穿着前的皮肤表面进行摄影;
对待测样品穿着后的即时面料表面进行摄影;
对待测样品穿着持续状态经过时间 T后的面料表面进行摄影;
对待测样品脱下后的即时皮肤表面进行摄影;
对待测样品脱下后的面料表面进行摄影。
14、 根据权利要求 13所述的检测方法, 其特征在于: 所述检测方法在恒 温恒湿环境下的人体上进行检测, 并且在人体上相互对称的两侧上同时进行检 测后, 再相互对调后进行二次检测。
PCT/CN2012/080116 2012-05-14 2012-08-14 一种降温发冷的纤维、制备方法及纺织品 WO2013170550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210149148.2A CN102747446B (zh) 2012-05-14 2012-05-14 一种降温发冷的纤维、制备方法及纺织品
CN201210149148.2 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013170550A1 true WO2013170550A1 (zh) 2013-11-21

Family

ID=47027921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080116 WO2013170550A1 (zh) 2012-05-14 2012-08-14 一种降温发冷的纤维、制备方法及纺织品

Country Status (3)

Country Link
CN (1) CN102747446B (zh)
TW (1) TW201346087A (zh)
WO (1) WO2013170550A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160943B (zh) * 2013-03-05 2015-05-20 毛盈军 一种保温隔热纤维及由该纤维制成的纺织品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279830A (ja) * 1998-03-26 1999-10-12 Kuraray Co Ltd 熱線放射性に優れる繊維
CN1655700A (zh) * 2002-03-22 2005-08-17 王克继 利用计算机网络进行浏览、储存和传输服装模型的方法和设备
CN1804160A (zh) * 2005-01-13 2006-07-19 李官奇 一种功能性纤维
CN101709511A (zh) * 2009-11-26 2010-05-19 毛盈军 遇光快速升温发热的化学纤维及包含该纤维的纺织品
CN101748541A (zh) * 2008-12-17 2010-06-23 东丽纤维研究所(中国)有限公司 一种膨松感织物及其加工方法
CN101929065A (zh) * 2010-07-30 2010-12-29 毛盈军 遇风快速降温发冷的化学纤维及包含该纤维的纺织品
CN102677204A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081876A (ja) * 2006-09-27 2008-04-10 Ohara Palladium Kagaku Kk 繊維用加工剤、ならびにそれを用いた繊維製品
KR20110123956A (ko) * 2010-05-10 2011-11-16 정청식 자외선 차단 기능 및 다기능성능을 갖는 섬유 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279830A (ja) * 1998-03-26 1999-10-12 Kuraray Co Ltd 熱線放射性に優れる繊維
CN1655700A (zh) * 2002-03-22 2005-08-17 王克继 利用计算机网络进行浏览、储存和传输服装模型的方法和设备
CN1804160A (zh) * 2005-01-13 2006-07-19 李官奇 一种功能性纤维
CN101748541A (zh) * 2008-12-17 2010-06-23 东丽纤维研究所(中国)有限公司 一种膨松感织物及其加工方法
CN101709511A (zh) * 2009-11-26 2010-05-19 毛盈军 遇光快速升温发热的化学纤维及包含该纤维的纺织品
CN101929065A (zh) * 2010-07-30 2010-12-29 毛盈军 遇风快速降温发冷的化学纤维及包含该纤维的纺织品
CN102677204A (zh) * 2012-05-14 2012-09-19 毛盈军 在潮湿条件下自然升温发热的纤维、制备方法和纺织品

Also Published As

Publication number Publication date
CN102747446B (zh) 2014-12-17
TW201346087A (zh) 2013-11-16
CN102747446A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
Zhang et al. Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask
WO2012012920A1 (zh) 遇风快速降温发冷的化学纤维及包含该纤维的纺织品
Lizák et al. Heat transfer through a textile layer composed of hollow fibres
Venkataraman et al. Aerogel based nanoporous fibrous materials for thermal insulation
Albanakis et al. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation
WO2011063580A1 (zh) 遇光快速升温发热的化学纤维及包含该纤维的纺织品
WO2013170552A1 (zh) 一种升温蓄热的纤维及其制备方法和纺织品
Kang et al. Numerical modeling of body heat dissipation through static and dynamic clothing air gaps
Khosrojerdi et al. Impregnation of a porous material with a PCM on a cotton fabric and the effect of vacuum on thermo-regulating textiles
WO2013170551A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
Schacher et al. Comparison between thermal insulation and thermal properties of classical and microfibres polyester fabrics
JP2015518527A (ja) 保温断熱の繊維及びその織物
Borhani et al. Computational and experimental investigation of moisture transport of spacer fabrics
WO2013170546A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
WO2013170550A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
WO2013170554A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
Zhang et al. Wet-spinning knittable hygroscopic organogel fibers toward moisture-capture-enabled multifunctional devices
WO2013170548A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
WO2013170553A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
WO2013170549A1 (zh) 一种降温发冷的纤维、制备方法及纺织品
WO2013170547A1 (zh) 一种升温蓄热的纤维及其制备方法和纺织品
Hou Modeling Firefighter Apparel with Integrated Carbon Nanotube Fabric Layers for Cooling
Khosrsojerdi et al. Improving thermal properties of N-nonadecane/expanded dolomite composite phase change material for thermo-regulating textiles
TW201346083A (zh) 一種升溫蓄熱纖維及其製備方法和紡織品
Guo et al. Intelligent color-changing hygrothermal-controlled film for enhanced thermal comfort of personal protective equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876928

Country of ref document: EP

Kind code of ref document: A1