WO2013168845A1 - Target for light absorbing layer of thin film solar cell, method for manufacturing same and thin film solar cell - Google Patents

Target for light absorbing layer of thin film solar cell, method for manufacturing same and thin film solar cell Download PDF

Info

Publication number
WO2013168845A1
WO2013168845A1 PCT/KR2012/003960 KR2012003960W WO2013168845A1 WO 2013168845 A1 WO2013168845 A1 WO 2013168845A1 KR 2012003960 W KR2012003960 W KR 2012003960W WO 2013168845 A1 WO2013168845 A1 WO 2013168845A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
cztse
light absorbing
target
absorbing layer
Prior art date
Application number
PCT/KR2012/003960
Other languages
French (fr)
Korean (ko)
Inventor
조용수
조연화
연득호
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2013168845A1 publication Critical patent/WO2013168845A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Target for light absorption layer of thin film solar cell manufacturing method thereof and thin film solar cell
  • the present invention relates to the manufacture of a target, and more particularly, a target for use in forming a Cu2ZnSnSe 2 (CZTSe) based thin film instead of a CuInSe 2 (CIS) based material commonly used as a light absorbing layer thin film of a thin film solar cell.
  • CZTSe Cu2ZnSnSe 2
  • CIS CuInSe 2
  • Thin-film solar cells are much thinner than Si wafer-based cells, can form thin films over large areas at lower temperatures, and can be manufactured at lower cost.
  • a thin film made of CIS or CIGS (CuInGaSe 2 ) material is used as the light absorption layer of the thin film solar cell.
  • CIS or CIGS series solar cells have been selected as potential candidates to replace Si solar cells due to the high efficiency that is equivalent to that of Si solar cells and the relatively low cost of materials.
  • Recently, despite the promising properties of the CIS or CIGS-based materials research into a new light-absorbing layer of a thin-film solar cell is being attempted to replace this, in particular, with the expectation that the supply of In elements from mineral resources will be very limited. .
  • the present invention is to solve the above-mentioned problems of the prior art, a single target of Cu-Zn-Sn-Se component for forming a light absorption layer thin film of a three thin film solar cell, a method of manufacturing the same, and the light formed using the target
  • An object of the present invention is to provide a thin film solar cell including an absorbing layer.
  • Another object of the present invention includes a target of Cu—Zn—Sn-Se component and a method for manufacturing the same, the light absorbing layer formed using the target, having a composition which does not form a secondary phase when forming a thin film despite a single target. It is an object to provide a thin film solar cell.
  • a target manufacturing method for use in depositing a CZTSe (Cu—Zn—Sn-Se) based light absorbing layer thin film of a solar cell comprises the steps of (1) preparing Cu, Zn, Sn and Se powders at a molar ratio of 2 + ⁇ : 1 + ⁇ : 1: 4, and (2) preparing the Cu, Zn, Sn and Se powders and metal balls.
  • a and ⁇ may be 0 ⁇ ⁇ ⁇ 0.5, 0 ⁇ ⁇ ⁇ 0.5, provided that at least one of a and ⁇ is greater than 0, preferably a and ⁇ are both to be.
  • the synthesis of the CZTSe material in the step (2) can be carried out at room temperature and pressure.
  • the heat treatment may be performed at a silver and atmospheric pressure of about 300 ° C.
  • the CZTGeSe single target is characterized by having a composition of Ciu c Znu + i ⁇ S — x Ge x Se 4 (0 ⁇ x ⁇ l).
  • a single target for use in depositing a CZTSe (Cu—Zn—Sn—Se) based light absorbing layer thin film of a solar cell wherein the single target is Cu (2 + a) Zn ( 1 + P) SnSe 4 (0 ⁇ ⁇ 1, 0 ⁇ ⁇ 1, wherein at least one of ⁇ and ⁇ is larger than 0).
  • ⁇ and ⁇ may be 0 ⁇ ⁇ ⁇ 0.5 and 0 ⁇ ⁇ 0 ⁇ 5, provided that at least one of ⁇ and ⁇ is greater than zero.
  • the single target further comprises Ge, and the Ge-containing CZTSe single target is characterized in that the composition of Cu ⁇ + c Znd + Sn-x Ge x Se ⁇ CK l).
  • a substrate forming a lower electrode on the substrate, and forming a CZTSe (Cu-Zn-Sn—Se) based light absorbing layer thin film on the lower electrode
  • a buffer layer to reduce a band gap energy difference on the light absorbing layer thin film, and forming a metal grid and an upper electrode on the buffer layer
  • the CZTSe-based light absorbing layer thin film includes: Provided is a solar cell comprising a composition of Cu (2 + a) Zn ( i + P) SnSe4 (0 ⁇ ⁇ ⁇ 1, 0 ⁇ ⁇ 1, wherein at least one of a and ⁇ is greater than 0) do.
  • the light absorbing layer thin film is CZTSe single having a composition of Cu ⁇ + cZn d + SnS (0 ⁇ ⁇ 1, 0 ⁇ ⁇ 1. At least one of ⁇ and ⁇ is greater than 0)
  • the target can be formed by sputtering.
  • the CZTSe single target comprises (1) preparing Cu, Zn, Sn and Se powders at a molar ratio of 2 + ⁇ : 1 + ⁇ : 1: 4, and (2) the Cu, Zn, Sn and Se powder and a metal ball in a container and stirring, synthesizing the CZTSe material by mechanical force, (3) pressurized and calcined the synthesized CZTSe material pellets shaped to the target shape
  • the step of preparing to, and (4) can be prepared through the step of heat-treating the prepared pellets to produce a final CZTSe single target.
  • a and ⁇ may be 0 ⁇ ⁇ ⁇ 0.5, 0 ⁇ ⁇ 0.5, provided that at least one of a and ⁇ increases greater than zero.
  • the synthesis of the CZTSe material in the step (2) can be carried out at room temperature and pressure.
  • the heat treatment in the step (4) may be carried out at a temperature and atmospheric pressure of about 30CTC.
  • H 2 Heat treatment in an S / N 2 atmosphere may further include the step of including sulfur in the light absorbing layer thin film.
  • the sulfur may be included in the thin film by substituting Se of the light absorbing layer thin film after the heat treatment.
  • a substrate, a lower electrode formed on the substrate, a CZTSe (Cu ⁇ Zn-Sn-Se) based light absorbing layer thin film formed on the lower electrode, and formed on the light absorbing layer thin film A buffer layer, which serves to alleviate the band gap energy difference, and an upper electrode and a metal grid sequentially formed on the buffer layer, wherein the CZTSe-based light absorbing layer thin film is formed of Cu ( 2 + a) Zn (i + i3) SnSe4 ( 0 ⁇ ⁇ 1, 0 ⁇ ⁇ 1, provided that at least one of a and ⁇ is greater than 0).
  • the light absorbing layer thin film is Cu ( 2 + a) Zn (i + p) Sn Se 4 (0 ⁇ ⁇ 1, 0 ⁇ ⁇ 1, provided that at least one of a and ⁇ is greater than 0) It can be formed by sputtering a CZTSe single target having a composition of greater than, preferably a and ⁇ are 0 ⁇ 0.5, 0 ⁇ 0.5 (where at least one of a and ⁇ is greater than 0) .
  • the light absorbing layer thin film further comprises Ge, wherein the CZTSe light absorbing thin film containing Ge is Cu ( 2 + a ) Zn ( i + P) S — x Ge x Se 4 (0 ⁇ x It is characterized by having a composition of ⁇ l).
  • the light absorbing layer thin film may be further heat-treated in the H 2 S / N 2 atmosphere.
  • the solar cell is used as a light absorption layer
  • a single target is provided instead of each individual target. Therefore, as compared with the case of forming a thin film by sputtering individual targets, the composition of the thin film can be more easily controlled, the process can be simplified, and the cost can be reduced.
  • the single target of the present invention can be provided in a low-cost process hard, does not require high pressure or high vacuum required in the manufacture of a general target, it can be expected to further reduce the cost.
  • FIG. 1 is a view showing the optical properties of the CZTSe thin film prepared by sputtering the CZTSe target prepared according to an embodiment of the present invention.
  • FIG. 2 is a micrograph showing the microstructure of a thin film when the Zn content of the CZTSe tablet is changed.
  • FIG. 3 is a graph showing XRD diffraction patterns and atomic ratio measurement results of CZTSe thin films including various contents of Zn.
  • FIG. 4 is a view showing the shape according to the heat treatment temperature of the CZTSe thin film formed by increasing the Cu content of the CZTSe target to 2.5.
  • FIG. 5 is a view illustrating I V characteristics of a Cu ⁇ Z .sSnS thin film solar cell formed according to an exemplary embodiment of the present invention.
  • FIG. 6 is a micrograph of a CZTGeSe thin film solar cell formed by including Ge according to one embodiment of the present invention.
  • FIG. 7 is a view showing the microstructure change of the thin film as the content of Ge increases.
  • 8 is a view showing the optical properties of the CZTGeSe thin film.
  • FIG. 9 is a view showing the optical properties of the CZTSSe thin film.
  • a CZTSe thin film is formed on a predetermined substrate by sputtering simultaneously or sequentially a material constituting the CZTSe thin film, that is, Cu, Zn, Sn, Se, or a two-component compound.
  • this method is, as described above, the composition of the thin film finally formed It is difficult to control the cost and the complexity of the process makes it difficult to manufacture a low-cost thin film.
  • the present inventors have attempted to manufacture a single target consisting of Cu, Zn, Sn, and Se instead of individual targets.
  • each material that will constitute the CZTSe thin film that is, Cu, Zn, Sn, Se material (powder) is prepared according to a predetermined molar ratio (for example, 2: 1: 1: 4), and then zirconia It was placed in a vessel with a ball and stirred with a strong force (ball milling).
  • a strong force ball milling
  • the surface area becomes wider, and CZTSe material mixing is possible without applying a large force.
  • This mixing process was performed at room temperature and atmospheric pressure.
  • the inventors manufactured the CZTSe target using the CZTSe material made according to the above procedure.
  • the target used for sputtering is in the form of a hard disk, and the CZTSe material produced according to the above process is still in powder form.
  • high silver and high vacuum are required, but in this case, there is a problem in that the manufacturing cost increases.
  • the inventors have found that hard CZTSe targets can be produced without high temperature and high vacuum processes. That is, the synthesized CZTSe material is further pressurized and fired through a press to prepare a pellet, and then pellets are heat-treated at 300 ° C. for 1 hour at atmospheric pressure in a nitrogen atmosphere. CZTSe target was produced by the process.
  • the melting point of Se is about 217 ° C
  • the heat treatment process Se of about 300 ° C is melted, and it is thought to be connected between the particles of the CZTSe material.
  • the CuSe phase since it can be synthesized at about 250 ° C., it is thought that a phase is formed in the sintering process and eventually a hard target is formed.
  • the inventors formed a CZTSe thin film (i2ZnSnSe4) on a predetermined substrate through a PVD process using the CZTSe target prepared by the above process (i2ZnSnSe4), and measured the optical properties of the thin film. The results are shown in FIG. As shown in FIG.
  • the optical properties of the transmittance, photon energy vs ahv, and photoluminescence intensity according to wavelength of the CZTSe thin film are substantially the same as those of the CZTSe thin film formed according to the conventional method. Confirmed. That is, it was confirmed that the CZTSe thin film can be formed as a light absorption layer on a predetermined substrate by using the CZTSe single target prepared according to the present invention. On the other hand, the present inventors produced a target by changing the amount of zinc (Zn) of the CZTSe target, and then observed the properties of the thin film by forming a CZTSe thin film using each target. The results are shown in FIG.
  • the picture on the left is a cross-sectional picture of the deposited CZTSe thin film formed at 10 mTor ⁇ 2 mTorr, respectively, and the picture on the right shows a cross-sectional picture after annealing heat treatment of the thin film at 50 (55 (rc for about 30 minutes).
  • Fig. 2 shows that as the amount of Zn increases, the thinner the film becomes and the grain size becomes larger, that is, the more preferable thin film properties are shown.
  • the XRD diffraction pattern and atomic ratio of the thin film stones were measured, and the results are shown in FIG.
  • the thin film is formed on a Mo-coated glass substrate, which is a substrate commonly used in thin film solar cells.
  • a second phase, SnS3 ⁇ 4 is prominent. Increases with decreasing the amount of the second phase such as SnSe 2, and particularly in the case of 2Zn, second phase atda not observed.
  • the ratio of Zn also increases, and in the case of 1.5Zn, it exhibits almost stoichiometric atomic ratio, and thus a preferable thin film composition, so when constructing a CZTSe target, the content range of Zn is different from other elements.
  • the molar ratio is included in the range of 1 ⁇ 2, preferably in the range of 1 ⁇ . ⁇ ⁇ 1.5, on the other hand, the inventors added a Cu content in the CZTSe single target to observe a change in its properties.
  • Figure 4 is a micrograph showing a form of a thin film according to a CZTSe thin film formed by adding a 2.5 mole ratio (Cu 2. 5 Zni. 5 SnSe 4) the silver foil film annealing heat treatment Cu. samples of both the CZTSe This appeared, showed little signs on MoS3 ⁇ 4, SnSe 2, SnSe, ZnSe and the like of the second phase was not observed. On the other hand, in the case of annealing heat treated samples at 530 ° C, it can be seen that the microstructure and electrical properties are improved, which means that the heat treatment temperature makes a certain contribution to the properties of the thin film.
  • the microstructure of the thin film showed a dense structure.
  • a second phase such as SnSe 2 , SnSe, ZnSe is observed, and when it is included in a molar ratio of 3, a second phase such as some CuSe is observed (not shown).
  • a second phase such as some CuSe is observed (not shown).
  • no second phase was observed. That is, similarly to Zn, Cu was further included to form a thin film of a preferred composition with respect to the second phase. Therefore, Cu is included in the range of 2 ⁇ Cu ⁇ 3, and preferably in the range of 2 ⁇ Cu ⁇ 2.5 in molar ratio with respect to other elements.
  • the present inventors manufactured the CZTSe single target, unlike the conventional art, to form the light absorbing layer thin film material of the solar cell.
  • the second phase is prevented from forming and With respect to the microstructure, etc., a composition capable of obtaining a desirable structure was found as described above. That is, the chemical composition of the CZTSe single target prepared according to the present invention may be represented by Cu (2 + a) Zna + p) SnSe4, and the range of a is 0 ⁇ ⁇ 1, preferably 0 ⁇ a ⁇ 0.5. And the range of ⁇ is 0 ⁇ 1, preferably 0 ⁇ 0.5.
  • a second phase such as SnSe2 and SnSe is formed in a CZTSe thin film deposition to be formed later, and when a is 1, a second phase of CuSe is weakly formed, so that 0 ⁇ It is preferable that it is ⁇ 1, and especially when a is 0.5, since no second phase is formed in the thin film to be formed later, it is preferable that 0 ⁇ a ⁇ 0.5.
  • the Zn content is measured by changing the content of Zn
  • the content of Zn is measured by changing the Cu content while fixing the content of Zn.
  • Cu (2 + a) Zna + i3) SnSe 4 and more precisely 0 ⁇ ⁇ 1 ⁇ 0 ⁇ 1 (where at least one of a and ⁇ is greater than 0), and the preferred ranges are 0 ⁇ 0.5, 0 ⁇ 0.5 (where a and at least one of ⁇ increase is greater than zero).
  • the inventors formed a solar cell light absorbing layer using the CZTSe single target of the various compositions, to manufacture a solar cell ⁇ Specifically, after depositing a Mo layer, a lower electrode on the glass substrate by the sputtering method, the present invention After forming the CZTSe thin film (light absorbing layer) presented in the above, a CdS layer serving as a buffer layer to alleviate the band gap energy difference was deposited by the CBE Chemical bath deposition method. The intrinsic ZnO layer was deposited by a thin sputtering method to prevent energization with the upper electrode, and the Al-doped ZnO layer, which is the upper electrode, was deposited using the sputtering method.
  • A1 metal grid
  • a patterned metal electrode on top was deposited by thermal evaporation to produce a solar cell having an active area of 0.2 cm 2 (glass / Mo / CZTSe / CdS / iZnO / Al— ZnO / Al).
  • the light absorbing layer was deposited using a single target of various compositions, and the CZTSe thin film formed using Cu ⁇ Z .sSnSe single target showed the best quality after annealing.
  • Such as Cu 2 . 5 Zm. IV characteristics of the 5 SnSe 4 thin film solar cell were measured, and the results and related parameters are shown in FIG. 5. As shown in FIG. 5, an effect of about 4.16% was obtained, and Cu 2.5 Zni.
  • the grain size is large and the composition is optimized, which is considered to have high efficiency as described above.
  • the maximum efficiency gained from CZTSe thin film solar cells formed by the simple sputtering method reported to date is about 3.2%.
  • the target used was a metal target consisting of each element, and after depositing a metal precursor layer to form a CZTSe thin film through the selenization process. Even when comparing the effect obtained by the present invention with the conventional one, the effect of about 30% was improved.
  • the present inventors examined whether the CZTSe single target including Ge can be prepared. That is, Ge is an element that increases the band gap energy, and exhibits desirable characteristics when included in thin film deposition.
  • the CZTSe material has a bandgap energy of about 0.9 eV, which is lacking in visible light absorption that can yield the highest efficiency.
  • a CZTSe single target containing Ge to form a thin film, it is possible to improve the bandgap energy to more than 1 eV through which the light absorption layer ideal for absorbing visible light can be manufactured.
  • Zn ( i + P) can be represented by the general formula of Sni- x Ge x Se 4 (0 ⁇ x ⁇ l).
  • FIG. 6 shows a microscope (TEM) of a CZTGeSe thin film solar cell formed using a CZTSe target containing Ge in FIG. 6. ) Showed a photo. As shown, it can be seen that the CZTGeSe thin film is clearly formed. Meanwhile, the microstructure of the thin film according to the Ge content is shown in FIG. 7. As can be seen from Figure 7, it can be seen that as the content of Ge increases, the growth of grain is improved. In addition, it was confirmed that as the Ge content was increased, the intensity of the CZTSe (112) peak was reduced and shifted to a greater intensity (see FIG. 8). Only the shift of the (112) peak was observed without any other secondary phases, suggesting that Ge was a good substitute for Sn in the CZTSe material.
  • TEM microscope
  • the decrease in the intensity of the peak was observed in the CZTSe thin film containing a certain amount of Ge, a large amount of Ge seems to have an adverse effect on the improvement of crystallinity.
  • the optical band gap energy calculated by the photon energy vs ahv curve was 0.93 eV (0 Ge) and 0.96 eV (0.3 Ge), respectively. That is, it was confirmed that the band gap energy of the thin film was increased by adding Ge.
  • the inventors further studied the means to increase the band gap energy of the thin film. That is, similarly to Ge, S is an element that increases the band gap energy, and examined whether or not it exhibits desirable characteristics when included in the thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a method for manufacturing a target to be used in depositing a CZTSe(Cu-Zn-Sn—Se)-based light absorbing thin film of a solar cell. The method comprises: (1) a step of preparing Cu, Zn, Sn and Se powder at a mole ratio of 2+α:1+β:1:4; (2) a step of introducing the Cu, Zn, Sn and Se powder and metal balls into a container and stirring the powder to synthesize CZTSe material by mechanical force; (3) a step of pressurizing and firing the synthesized CZTSe material to produce pellets having shapes corresponding to the shape of the target; and (4) a step of performing a heat treatment on the produced pellets to produce a final single CZTSe target. The final single CZTSe target has a composition of Cu(2+a)Zn(1+β)SnSe4 (0≤α<1, 0≤β≤1, where at least one of α and β is larger than zero).

Description

[명세서】  [Specification】
[발명의 명칭]  [Name of invention]
박막형 태양전지의 광흡수층용 타겟 및 그 제조 방법 및 박막형 태양전지  Target for light absorption layer of thin film solar cell, manufacturing method thereof and thin film solar cell
[기술분야】  [Technical Field]
본 발명은 타겟 제조와 관련된 것으로서, 보다 구체적으로는 박막형 태양전지의 광 흡수층 박막으로 통상 사용되는 CuInSe2(CIS) 계열 물질 대신에 Cu2ZnSnSe2(CZTSe) 계열 의 박막을 형성하는 데 사용하기 위한 타겟 및 그 타겟 제조 방법 그리고 상기 박막형 태양 전지에 관한 것이다. The present invention relates to the manufacture of a target, and more particularly, a target for use in forming a Cu2ZnSnSe 2 (CZTSe) based thin film instead of a CuInSe 2 (CIS) based material commonly used as a light absorbing layer thin film of a thin film solar cell. The target manufacturing method and the said thin-film solar cell.
[배경기술]  [Background]
박막형 태양전지는 Si 웨이퍼 기반 전지에 비해 그 두께가 훨씬 얇고 보다 낮은 온 도에서 박막을 대면적에 걸쳐 형성할 수 있으며, 보다 저렴하게 제조할 수 있다는 이점이 있다. 이러한 박막형 태양전지의 광흡수층으로서 CIS 또는 CIGS(CuInGaSe2) 재료로 이루 어진 박막이 많이 사용되고 있다. CIS 또는 CIGS 계열 태양전지는 Si 태양전지에 버금가 는 높은 효을과 재료에 소요되는 상대적으로 적은 비용 등으로 Si 태양전지를 대체할 유력 한 후보로 채택되어, 상용화를 위한 연구가 진행되고 있다. ' 최근에는, 상기 CIS 또는 CIGS 계열 재료의 유망한 특성에도 불구하고 특히 광물 자원으로부터 In 원소의 공급이 매우 제한될 것이라는 예측에 따라 이를 대체할 새로운 박 막형 태양전지의 광흡수층에 대한 연구가 시도되고 있다. 대표적으로, Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4)(CZTS) 박막을 광흡수층으로 형성한 태양전지 제조가 시도되고 있으 며, In대체를 통해 저가의 태양전지가 가능하다고 알려져 있다. 상기 CZTSe 태양전지의 흡수층을 제조하기 위해서 용액 프로세스 (solution process)를 이용할 수도 있지만, 대면적 제조에 효과적이고 또 고품질의 박막을 형성하기 위 하여 스퍼터링 방법을 이용하는 것이 유리하다. 이때, 기존에는 Cu, Zn, Sn, Se혹은 2성분 계 화합물의 2가지 이상의 개별 타겟을 이용하여 동시 혹은 순차적 증착을 통해 상기 박막 을 형성하였다. 스퍼터링 방법에서는ᅳ 각각의 타겟에 이온을 층돌시켜 그 힘에 의해 타겟으 로부터 미량의 물질을 분리하고, 분리된 물질을 원하는 기판에 증착한다. 현재 성공적으로 알려진 기존의 방법은 다수의 개별 타겟을 이용한 스퍼퍼링이라고 하는 관념에서 벗어나지 못하고 있다. 또한, 단일 조성의 타겟이 아니라, 복수 개의 타겟을 이용하기 때문에, 최종적 으로 형성되는 박막의 조성 조절이 어렵고, 균일한 형태의 막을 제조하기가 어렵다. 또한, 다수의 타겟을 제조하여야 하기 때문에, 비용도 많이 발생하고 복잡한 공정을 감수해야 하 는 번거로움이 존재한다. 단일 타겟이 성공하지 못했던 이유는 스퍼터링 공정에서 발생되 는 각각의 원소들이 다른 양으로 분리됨으로써, 증착 과정 시 원하 원소간 몰비를 유지하 기 어려웠기 때문이다. Thin-film solar cells are much thinner than Si wafer-based cells, can form thin films over large areas at lower temperatures, and can be manufactured at lower cost. As the light absorption layer of the thin film solar cell, a thin film made of CIS or CIGS (CuInGaSe 2 ) material is used. CIS or CIGS series solar cells have been selected as potential candidates to replace Si solar cells due to the high efficiency that is equivalent to that of Si solar cells and the relatively low cost of materials. Recently, despite the promising properties of the CIS or CIGS-based materials, research into a new light-absorbing layer of a thin-film solar cell is being attempted to replace this, in particular, with the expectation that the supply of In elements from mineral resources will be very limited. . Representatively, manufacture of solar cells in which Cu 2 ZnSnSe 4 (CZTSe) and Cu 2 ZnSnS 4 ) (CZTS) thin films are formed as a light absorption layer has been attempted. Although a solution process may be used to prepare the absorbing layer of the CZTSe solar cell, it is advantageous to use a sputtering method to form an effective and high quality thin film for large area production. In this case, conventionally, the thin film was formed through simultaneous or sequential deposition using two or more individual targets of Cu, Zn, Sn, Se, or a bicomponent compound. In the sputtering method, ᅳ layers of ions are deposited on each target, and a small amount of material is separated from the target by the force, and the separated material is deposited on a desired substrate. Existing methods that are now known to be successful have not escaped the notion of spurring with multiple individual targets. In addition, since a plurality of targets are used instead of a single target, it is difficult to control the composition of the finally formed thin film and to produce a uniform film. In addition, since a large number of targets have to be manufactured, it is expensive and hassle to take a complicated process. The reason why a single target was not successful is that each element generated in the sputtering process is separated by a different amount, thereby maintaining the molar ratio between the desired elements during the deposition process. Because it was difficult.
[발명의 상세한 설명】  Detailed description of the invention
【기술적 과제]  [Technical problem]
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것으로세 박막형 태양전지 의 광흡수층 박막을 형성하기 위한 Cu-Zn-Sn-Se 성분의 단일 타겟 및 그 제조 방법, 상기 타겟을 이용하여 형성한 광흡수층을 포함하는 박막형 태양전지를 제공하는 것을 목적으로 한다.  The present invention is to solve the above-mentioned problems of the prior art, a single target of Cu-Zn-Sn-Se component for forming a light absorption layer thin film of a three thin film solar cell, a method of manufacturing the same, and the light formed using the target An object of the present invention is to provide a thin film solar cell including an absorbing layer.
본 발명의 다른 목적은 단일 타겟에도 불구하고 박막 형성 시 이차 상을 형성하지 않는 조성으로 이루어진 Cu—Zn— Sn-Se 성분의 타겟 및 그 제조 방법, 상기 타겟을 이용하 여 형성한 광흡수층을 포함하는 박막형 태양전지를 제공하는 것을 목적으로 한다.  Another object of the present invention includes a target of Cu—Zn—Sn-Se component and a method for manufacturing the same, the light absorbing layer formed using the target, having a composition which does not form a secondary phase when forming a thin film despite a single target. It is an object to provide a thin film solar cell.
【기술적 해결 방법】 · [Technical solution] ·
상기 목적을 달성하기 위하여, 본 발명에 따라서 태양전지의 CZTSe(Cu— Zn-Sn-Se) 계 광 흡수층 박막을 증착하는 데 사용하기 위한 타겟 제조 방법이 제공된다. 상기 방법은 (1) Cu, Zn, Sn 및 Se 파우더를 2+α:1+β:1:4의 몰 비로 준비하는 단계와, (2) 상기 Cu, Zn, Sn 및 Se 파우더와 금속 볼을 용기 안에 넣고 교반하여, 기계적인 힘에 의해 CZTSe 물질 을 합성하는 단계와, (3) 상기 합성된 CZTSe물질을 가압 및 소성하여 타겟 형태에 대응하 는 형상의 펠릿으로 제조하는 단계와, (4) 상기 제조된 펠릿에 대해 열처리를 하여 최종 CZTSe 단일 타겟을 제조하는 단계를 포함하고, 상기 최종 CZTSe 단일 타겟은 Cu(2+ a)Zn(i+p)SnSe4 (0≤α<1, 0<β<1. 단, a 및 β 중 적어도 하나는 0보다 크다)의 초성을 갖는 것을 특징으로 한다. 한 가지 실시예에 있어서, a 및 β는 0≤α≤0.5, 0≤β≤0.5(단, a 및 β 중 적어도 하 나는 0보다 크다)일 수 있고, 바람직하게는 a및 β는 모두 으5이다. 한 가자 실시예에 있어서, 상기 (2)의 단계에서 상기 CZTSe물질의 합성은 상온 및 상압에서 수행할 수 있다. 한 가지 실시예에 있어서, 상기 (4)의 단계에서, 상기 열처리는 약 300°C의 은도 및 대기압에서 수행할 수 있다. 한 가지 실시예에 있어서, 상기 (1)의 단계에서 Ge 파우더를 Sn:Ge=l-x:x의 몰 비 로 더 추가하여 준비하고, 상기 (2) 내지 (4)의 단계를 통해 CZTGeSe 단일 타겟을 쩨조하 는 것을 더 포함하고, 상기 CZTGeSe 단일 타겟은 Ciu c Znu+i^S — xGexSe4(0<x<l)의 조 성을 갖는 것을 특징으로 한다. 본 발명의 다른 양태에 따라서, 태양전지의 CZTSe(Cu— Zn-Sn-Se)계 광 흡수층 박 막을 증착하는 데 사용하기 위한 단일 타겟이 제공되는데, 상기 단일 타겟은 Cu(2+a)Zn(1+ P)SnSe4 (0<α<1, 0<β<1. 단, α 및 β 중 적어도 하나는 0보다 크다)의 조성을 갖는 것을 특징으로 한다. 한 가지 실시예에 있어서, α 및 β는 0≤α≤0.5, 0<β≤0·5(단, α 및 β 중 적어도 하 나는 0보다 크다)일 수 있다. 한 가지 실시예에 있어서, 상기 단일 타겟은 Ge을 더 포함하고, 상기 Ge이 포함된 CZTSe단일 타겟은 Cu^+c Znd+ Sn—xGexSe^CK l)의 조성을 갖는 것을 특징으로 한다. 본 발명의 다른 양태에 따라서, 기판을 제공하는 단계와, 상기 기판 상에 하부 전극 을 형성하는 단계와, 상기 하부 전극 상에 CZTSe(Cu-Zn-Sn— Se)계 광 흡수층 박막을 형성 하는 단계와 상기 광 흡수층 박막 상에 밴드 갭 에너지 차이를 완화시키는 역할을 하는 버 퍼층을 형성하는 단계와, 상기 버퍼층 상에 상부 전극과 메탈 그리드를 형성하는 단계를 포 함하고, 상기 CZTSe계 광 흡수층 박막은 Cu(2+a)Zn(i+P)SnSe4 (0≤α<1, 0<β<1. 단, a 및 β중 적어도 하나는 0보다 크다)의 조성을 갖는 것을 특징으로 하는 태양전지가 제공된다. 한 가지 실시예에 있어서, 상기 광 흡수층 박막은 Cu^+cZnd+ SnS (0<α<1, 0< β≤1. 단, α및 β중 적어도 하나는 0보다 크다)의 조성을 갖는 CZTSe단일 타겟을 스퍼터 링하여 형성할 수 있다. 한 가자 실시예 elᅵ 있어서, 상기 CZTSe 단일 타겟은 (1) Cu, Zn, Sn 및 Se 파우더 를 2+α:1+β:1:4의 몰 비로 준비하는 단계와, (2) 상기 Cu, Zn, Sn 및 Se파우더와 금속 볼을 용기 안에 넣고 교반하여, 기계적인 힘에 의해 CZTSe물질을 합성하는 단계와, (3) 상기 합 성된 CZTSe물질을 가압 및 소성하여 타겟 형태에 대웅하는 형상의 펠릿으로 제조하는 단 계와, (4) 상기 제조된 펠릿에 대해 열처리를 하여 최종 CZTSe 단일 타겟을 제조하는 단계 를 통해 제조될 수 있다. 한 가지 실시예에 있어서, a 및 β는 0≤α<0.5, 0<β<0.5(단, a 및 β 증 적어도 하 나는 0보다 크다)일 수 있다. 한 가자실시예에 있어서, 상가 (2)의 단계에서 상기 CZTSe물질의 합성은 상온 및 상압에서 수행할 수 있다. 한 가지 실시예에 있어서, 상기 (4)의 단계에세 상기 열처리는 약 30CTC의 온도 및 대기압에서 수행할 수 있다. In order to achieve the above object, according to the present invention, there is provided a target manufacturing method for use in depositing a CZTSe (Cu—Zn—Sn-Se) based light absorbing layer thin film of a solar cell. The method comprises the steps of (1) preparing Cu, Zn, Sn and Se powders at a molar ratio of 2 + α: 1 + β: 1: 4, and (2) preparing the Cu, Zn, Sn and Se powders and metal balls. Putting into a container and stirring, synthesizing the CZTSe material by mechanical force, (3) pressing and firing the synthesized CZTSe material into pellets of a shape corresponding to the target shape, and (4) Heat-treating the prepared pellets to produce a final CZTSe single target, wherein the final CZTSe single target is Cu (2 + a) Zn (i + p) SnSe 4 (0 ≦ α <1, 0 < β <1, wherein at least one of a and β is larger than 0). In one embodiment, a and β may be 0 ≦ α ≦ 0.5, 0 ≦ β ≦ 0.5, provided that at least one of a and β is greater than 0, preferably a and β are both to be. In one embodiment, the synthesis of the CZTSe material in the step (2) can be carried out at room temperature and pressure. In one embodiment, in the step (4), the heat treatment may be performed at a silver and atmospheric pressure of about 300 ° C. In one embodiment, the Ge powder in step (1) is further added to the molar ratio of Sn: Ge = lx: x, and the CZTGeSe single target is prepared through the steps (2) to (4). In addition, the CZTGeSe single target is characterized by having a composition of Ciu c Znu + i ^ S — x Ge x Se 4 (0 <x <l). According to another aspect of the invention, there is provided a single target for use in depositing a CZTSe (Cu—Zn—Sn—Se) based light absorbing layer thin film of a solar cell, wherein the single target is Cu (2 + a) Zn ( 1 + P) SnSe 4 (0 <α <1, 0 <β <1, wherein at least one of α and β is larger than 0). In one embodiment, α and β may be 0 ≦ α ≦ 0.5 and 0 <β ≦ 0 · 5, provided that at least one of α and β is greater than zero. In one embodiment, the single target further comprises Ge, and the Ge-containing CZTSe single target is characterized in that the composition of Cu ^ + c Znd + Sn-x Ge x Se ^ CK l). According to another aspect of the invention, providing a substrate, forming a lower electrode on the substrate, and forming a CZTSe (Cu-Zn-Sn—Se) based light absorbing layer thin film on the lower electrode And forming a buffer layer to reduce a band gap energy difference on the light absorbing layer thin film, and forming a metal grid and an upper electrode on the buffer layer, wherein the CZTSe-based light absorbing layer thin film includes: Provided is a solar cell comprising a composition of Cu (2 + a) Zn ( i + P) SnSe4 (0 ≦ α <1, 0 <β <1, wherein at least one of a and β is greater than 0) do. In one embodiment, the light absorbing layer thin film is CZTSe single having a composition of Cu ^ + cZn d + SnS (0 <α <1, 0 <β ≤ 1. At least one of α and β is greater than 0) The target can be formed by sputtering. In one embodiment, the CZTSe single target comprises (1) preparing Cu, Zn, Sn and Se powders at a molar ratio of 2 + α: 1 + β: 1: 4, and (2) the Cu, Zn, Sn and Se powder and a metal ball in a container and stirring, synthesizing the CZTSe material by mechanical force, (3) pressurized and calcined the synthesized CZTSe material pellets shaped to the target shape The step of preparing to, and (4) can be prepared through the step of heat-treating the prepared pellets to produce a final CZTSe single target. In one embodiment, a and β may be 0 ≦ α <0.5, 0 <β <0.5, provided that at least one of a and β increases greater than zero. In one embodiment, the synthesis of the CZTSe material in the step (2) can be carried out at room temperature and pressure. In one embodiment, the heat treatment in the step (4) may be carried out at a temperature and atmospheric pressure of about 30CTC.
한 가지 실시예에 있어서, 상기 (1)의 단계에서 Ge 파우더를 Sn:Ge=l-x:x의 몰 비 로 더 추가하여 준비하고, 상기 (2) 내지 (4)의 단계를 통해 CZTGeSe 단일 타겟을 제조하 는 것을 더 포함하고, 상기 CZTGeSe 단일 타겟은 Cu +coZrm+ Sm-xGexSe O x^)의 조 성을 갖는 것을 특징으로 한다. 한 가지 실시예에 있어서, 상기 광 흡수층 박막을 형성한 후, 추가의 Se 펠릿과 함 께 열처리를 한 후 다시 H2S/N2 분위기에서 열처리를 하거나 상기 광 흡수층 박막을 형성 한 후, H2S/N2 분위기에서 열처리하여, 상기 광 흡수층 박막에 황을 포함시키는 단계를 더 포함할 수 있다. - 한 가지 실시예에 있어서, 상기 황은 상기 열처리 후 상기 광 흡수층 박막의 Se을 치환하여 상기 박막 중에 포함될 수 있다. 본 발명의 다른 양태에 따라서, 기판과, 상기 기판 상에 형성된 하부 전극과, 상기 하부 전극 상에 형성된 CZTSe(Cuᅳ Zn-Sn-Se)계 광 흡수층 박막과, 상기 광 흡수층 박막 상에 형성되어 밴드 갭 에너지 차이를 완화시키는 역할을 하는 버퍼층과, 상기 버퍼층 상에 순차적으로 형성된 상부 전극 및 메탈 그리드를 포함하고, 상기 CZTSe계 광 흡수층 박막은 Cu(2+a)Zn(i+i3)SnSe4 (0<α<1, 0<β<1. 단, a 및 β 중 적어도 하나는 0보다 크다)의 조성을 갖는 것을 특징으로 하는 태양전지가 제공된다. 한 가지 실시예에 있어서, 상기 광 흡수층 박막은 Cu(2+a)Zn(i+p)SnSe4 (0≤α<1, 0< β<1. 단 , a 및 β 중 적어도 하나는 0보다 크다)의 조성을 갖는 CZTSe 단일 타겟을 스퍼터 링하여 형성할 수 있고, 바람직하게는 a 및 β는 0≤α≤0.5, 0≤β≤0.5(단, a 및 β 중 적어도 하나는 0보다 크다)이다. 한 가지 실시예에 있어서, 상기 광 흡수층 박막은 Ge을 더 포함하고, Ge 포함된 상 기 CZTSe 광 흡수층 박막은 Cu(2+a)Zn(i+P)S — xGexSe4(0<x<l)의 조성을 갖는 것을 특징으 로 한다. 한 가지 실시예에 있어서, 상기 광 흡수층 박막은 H2S/N2 분위기에서 열처리되어 황을 더 포함할 수 있다. In one embodiment, the Ge powder in step (1) is further added to the molar ratio of Sn: Ge = lx: x to prepare a CZTGeSe single target through the steps of (2) to (4) Further comprising, the CZTGeSe single target is characterized in that having a composition of Cu + coZrm + Sm-xGexSe O x ^). In one embodiment, after forming the light absorbing layer thin film, after heat treatment with additional Se pellets and then heat treatment in the H 2 S / N 2 atmosphere or after forming the light absorbing layer thin film, H 2 Heat treatment in an S / N 2 atmosphere may further include the step of including sulfur in the light absorbing layer thin film. In one embodiment, the sulfur may be included in the thin film by substituting Se of the light absorbing layer thin film after the heat treatment. According to another aspect of the present invention, a substrate, a lower electrode formed on the substrate, a CZTSe (Cu ᅳ Zn-Sn-Se) based light absorbing layer thin film formed on the lower electrode, and formed on the light absorbing layer thin film A buffer layer, which serves to alleviate the band gap energy difference, and an upper electrode and a metal grid sequentially formed on the buffer layer, wherein the CZTSe-based light absorbing layer thin film is formed of Cu ( 2 + a) Zn (i + i3) SnSe4 ( 0 <α <1, 0 <β <1, provided that at least one of a and β is greater than 0). In one embodiment, the light absorbing layer thin film is Cu ( 2 + a) Zn (i + p) Sn Se 4 (0≤α <1, 0 <β <1, provided that at least one of a and β is greater than 0) It can be formed by sputtering a CZTSe single target having a composition of greater than, preferably a and β are 0≤α≤0.5, 0≤β≤0.5 (where at least one of a and β is greater than 0) . In one embodiment, the light absorbing layer thin film further comprises Ge, wherein the CZTSe light absorbing thin film containing Ge is Cu ( 2 + a ) Zn ( i + P) S — x Ge x Se 4 (0 <x It is characterized by having a composition of <l). In one embodiment, the light absorbing layer thin film may be further heat-treated in the H 2 S / N 2 atmosphere.
【유리한 효과】 본 발명에 따른 타겟 제조 방법에 따르면, 태양전지꾀 광흡수층으로 이용되는Advantageous Effects According to the target manufacturing method according to the invention, the solar cell is used as a light absorption layer
CZTSe 계열의 박막을 형성하기 위한 타겟으로서, 각각의 개별 타겟이 아니라, 단일 타겟이 제공된다. 따라서, 개별 타겟을 스퍼터링하여 박막을 형성하는 경우와 비교하여, 보다 용이 하게 박막의 조성을 조절할 수 있고, 공정의 단순화를 이를 수 있고 비용도 절감할 수 있다. 또한, 본 발명의 단일 타겟은 저은 공정으로 경질로 제공될 수 있고, 일반적인 타겟 제조시 요구되는 높은 압력이나 고진공도 필요로 하지 않아, 추가의 비용 절감의 효과를 기대할 수 있다. As a target for forming a CZTSe series thin film, a single target is provided instead of each individual target. Therefore, as compared with the case of forming a thin film by sputtering individual targets, the composition of the thin film can be more easily controlled, the process can be simplified, and the cost can be reduced. In addition, the single target of the present invention can be provided in a low-cost process hard, does not require high pressure or high vacuum required in the manufacture of a general target, it can be expected to further reduce the cost.
[도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 한 가지 실시예에 따라 제조한 CZTSe타겟을 스퍼퍼링하여 제조한 CZTSe박막의 광학적 성질을 보여주는 도면이다.  1 is a view showing the optical properties of the CZTSe thin film prepared by sputtering the CZTSe target prepared according to an embodiment of the present invention.
도 2는 CZTSe타젯 중 Zn의 함량을 변화시킨 경우, 박막의 미세 구조를 보여주는 현미경 사진이다.  2 is a micrograph showing the microstructure of a thin film when the Zn content of the CZTSe tablet is changed.
도 3은 다양한 함량의 Zn을 포함한 CZTSe박막의 XRD회절 패턴 및 원자비 측정 결과를 보여주는 도면이다.  FIG. 3 is a graph showing XRD diffraction patterns and atomic ratio measurement results of CZTSe thin films including various contents of Zn.
도 4는 CZTSe타겟의 Cu함량을 2.5로 증가시켜 형성한 CZTSe박막의 열처리 온도에 따른 형태를 보여주는 도면이다.  4 is a view showing the shape according to the heat treatment temperature of the CZTSe thin film formed by increasing the Cu content of the CZTSe target to 2.5.
도 5는 본 발명의 한 가지 실시예에 따라 형성한 Cu^Z .sSnS 박막 태양전지의 I一 V특성을 보여주는 도면이다.  FIG. 5 is a view illustrating I V characteristics of a Cu ^ Z .sSnS thin film solar cell formed according to an exemplary embodiment of the present invention.
도 6은 본 발명의 한 가지 실시예에 따라 Ge을 포함시켜 형성한 CZTGeSe박막 태양전지의 현미경 사진이다.  6 is a micrograph of a CZTGeSe thin film solar cell formed by including Ge according to one embodiment of the present invention.
도 7은 Ge의 함량이 증가함에 따른 박막의 미세구조 변화를 보여주는 도면이다. 도 8은 CZTGeSe박막의 광학적 성질을 보여주는 도면이다.  7 is a view showing the microstructure change of the thin film as the content of Ge increases. 8 is a view showing the optical properties of the CZTGeSe thin film.
도 9는 CZTSSe박막의 광학적 성질을 보여주는 도면이다.  9 is a view showing the optical properties of the CZTSSe thin film.
【발명와 실시를 위한 최선의 형태】  Best Mode for Invention and Implementation
이하에서는 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다. 이하의 설명에 있어서, 태양전지 둥과 같이 일반적으로 널리 알려진 구성에 대한 설명은 생략한다. 이러한 설명을 생략하더라도, 당업자라면 이하의 설명을 통해 본 발명의 특징적 구성을 쉽 게 이해할 수 있을 것이다. 본 발명자는 CZTSe계 태양전지를 제조하는 프로세스 증 태양전지의 핵심층인 광 흡수층, 즉 CZTSe박막을 기존의 방법과는 다른 방법으로 제조하는 방법에 대해 연구를 하 였다. 종래의 방법에 따르면, CZTSe박막을 구성하는 물질, 즉 Cu, Zn, Sn, Se혹은 2성분 계 화합물의 개별 타겟을 동시 또는 순차적으로 스퍼터링하여 소정의 기판에 CZTSe 박막 을 형성한다. 그러나, 이러한 방법은 상기한 바와 같이, 최종적으로 형성되는 박막의 조성 을 제어하기가 어렵고 공정이 복잡하여 저가의 박막을 제조하기가 어렵다. 본 발명자는 이 러한 문제를 해결하기 위해, 개별 타겟이 아닌 Cu, Zn, Sn, Se으로 이루어진 단일 타겟의 제조를 시도하였다. 구체적으로, 먼저 CZTSe 박막을 구성하게 될 각 물질, 즉 Cu, Zn, Sn, Se 물질 (분 말)을 미리 정해진 몰비 (예컨대, 2:1:1:4)에 맞춰 준비한 후, 지르코니아 (zirconia) 볼과 함께 용기에 넣어 강한 힘으로 교반하였다 (볼 밀링). 이 과정에서, Cu, Zn, Sn, Se 물질이 상기 볼과의 충돌에 의해 계속 분할되면서, 표면적이 넓어지게 되어, 큰 힘을 들이지 않고도 CZTSe물질 흔합이 가능하였다. 이러한 혼합 과정은 상온 및 상압에서 수행하였다. 이어서, 본 발명자는 상기 과정에 따라 만들어진 CZTSe 물질을 이용하여 CZTSe 타겟을 제조하였다. 즉 스퍼터링에 이용하는 타겟은 경질의 디스크 형태인데, 상기 과정에 따라 만들어진 CZTSe물질은 여전히 파우더 형태이다. 이러한 파우더 형태의 물질을 경질 의 타겟 형태로 제조하기 위해서는 높은 은도와 고진공이 필요하지만, 이 경우 제조 비용이 증가한다는 문제점이 있다. 본 발명자는 고온 및 고진공 프로세스 없이도 경질의 CZTSe 타겟을 제조할 수 있다는 것을 발견하였다. 즉 상기 합성한 CZTSe 물질을 추가로 프레스 기를 통해 가압 및 소성 (firing)하여 펠릿 (pellet) 형태로 제조한 후, 이 펠릿을 300°C에서 1 시간 동안 질소 분위기의 대기압에서 열처리를 하는 소결 (sintering) 프로세스를 통해 CZTSe 타겟을 제조할 수 있었다. 이는 Se의 경우 그 용융점이 약 217°C인데, 300°C 정도 의 열처리 과정 증 Se이 용융되어, CZTSe물질의 입자들 사이를 연결시켜 주기 때문인 것 으로 생각된다. 게다가 CuSe 상의 경우, 250°C 정도에서 합성 가능하기 때문에, 소결 과정 증에 상이 형성되며, 결국 경질의 타겟이 형성된 것으로 생각된다. 본 발명자는 상기 과정을 통해 제조한 CZTSe 타겟을 이용하예 PVD 공정을 통해 소정의 기판 상에 CZTSe 박막을 형성하였으며 ( i2ZnSnSe4), 그 박막의 광학적 성질을 측 정하였다. 그 결과를 도 1에 나타내었다. 도 1에 도시한 바와 같이, CZTSe 박막의 투과 율, 광자 에너지 vs ahv, 파장에 따른 발광 (photoluminescence) 강도 둥의 광학적 성질돌은 기존의 방법에 따라 형성한 CZTSe 박막의 그것과 실질상 동일하다는 것을 확인하였다. 즉, 본 발명에 따라 제조한 CZTSe 단일 타겟을 이용하여, 소정의 기판 상에 광흡수층으로 서 CZTSe박막을 형성할 수 있다는 것을 확인하였다. 한편, 본 발명자는 CZTSe 타겟의 아연 (Zn)의 양을 변화시켜 타겟을 제조한 후, 각 타겟을 이용하여 CZTSe박막을 형성하여 박막의 성질을 관찰하였다. 그 결과를 도 2에 나 타내었다. 도 2에는 Cu2ZnxSnSe4(x=l, 1.5, 2)의 조성으로 이루어진 박막들의 현미경 사진이 도시되어 있다. 좌측의 사진은 각각 10 mTor^ 2 mTorr에서 형성한 증착한 대로의 CZTSe 박막의 단면 사진이고, 우측의 사진은 그 박막을 50( 55(rc에서 약 30분간 어닐링 열처리한 후의 단면 사진을 나타낸다. 도 2를 통해 알 수 있는 바와 같이, Zn의 양이 증가 할수록 박막이 치밀해지고 grain크기가 커지는 것, 즉 더 바람직한 박막 성질을 나타낸다. 본 발명자는 또한 상기 각각의 Zn-rich CZTSe 타겟을 이용하여 형성한 박막돌의 XRD 회절 패턴 및 원자비를 측정하였으며, 그 결과를 도 3에 나타내었다 (상기 박막은 Mo 이 코팅된 유리 기판 상에 형성한 것으로서, 이러한 기판은 박막형 태양전지에서 통상 이용 되는 기판이다. 이하 동일). 도 3에 도시한 바와 같이, Zn이 CZTSe 박막 증 1의 몰 비로 포함된 경우, SnS¾라고 하는 제 2의 상이 두드러지게 나타난 것을 알 수 있으며, Zn의 양이 증가할수록 SnSe2와 같은 제 2상의 양이 감소하며, 특히 2Zn의 경우, 제 2상이 관찰되지 않 았다. 특히, 우측 그림에서 관찰할 수 있는 바와 같이, Zn 양이 증가함에 따라 박막에서의 상대적인 Zn의 비도 증가하는 것을 알 수 있고, 1.5Zn의 경우 거의 화학양론적 원자비 (stoichiometric atomic ratio)를 나타내어, 바람직한 박막 조성을 나타낸다. 따라서, CZTSe 타겟을 구성할 때, Zn의 함량 범위는 다른 원소와 관련하여 몰 비로 1<Ζη≤2의 범위, 바람 직하게는 1<Ζη<1.5의 범위로 포함시킨다. 한편, 본 발명자는 CZTSe 단일 타겟 중의 Cu 함량을 추가하여, 그 성질의 변화를 관찰하였다. 도 4는 Cu를 2.5의 몰 비로 추가하여 형성한 CZTSe 박막 (Cu2.5Zni.5SnSe4) 박 막의 어닐링 열처리 은도에 따른 박막의 형태를 보여주는 현미경 사진이다. 샘플들 모두 CZTSe 상만이 나타났고, 약간의 MoS¾ 상의 흔적이 나타났으며, SnSe2, SnSe, ZnSe와 같 은 제 2 상은 관찰되지 않았다. 한편, 530°C에서 어닐링 열처리한 샘플의 경우, 그 미세 구 조 및 전기적 성질이 개선된 것을 알 수 있는데, 이는 열처리 온도가 박막의 성질에 소정의 기여를 한다는 것을 의미한다. 또한, 구체적으로 도시하지는 않았지만, 추가되는 Cu 양이 많아질수록, 박막의 미세구조가 치밀한 구조를 나타내었다. 또 Cu가 2의 몰 비로 포함된 경우, SnSe2, SnSe, ZnSe와 같은 제 2 상이 관찰되었고, 3의 몰 비로 포함된 경우, 약간의 CuSe와 같은 제 2 상이 관찰되었다 (도시 생략). 그러나ᅳ 2.5Cu의 경우, 어떠한 제 2 상도 관 찰되지 않았다. 즉 Zn과 마찬가지로, Cu 역시 추가로 포함시키는 것아 제 2 상과 관련하여 바람직한 조성의 박막을 형성할 수 있었다. 따라서, Cu는 다른 원소와 관련하여, 몰 비로 2<Cu<3의 범위, 바람직하게는 2<Cu≤2.5의 범위로 포함시킨다. 이와 같이, 본 발명자는 종래와 달리 CZTSe 단일 타겟을 제조하여, 태양전지의 광 흡수층 박막 재료를 형성할 수 있었다. 또한, 제 2.상이 형성되지 않도록 하고, 또 박막의 미세 구조 등과 관련하여 바람직한 구조를 얻을 수 있는 조성을 상기와 같이 찾아내었으며, 이를 일반화하면 다음과 같다. 즉, 본 발명에 따라 제조되는 CZTSe 단일 타겟의 화학적 조성은 Cu(2+a)Zna+p)SnSe4로 나타낼 수 있고ᅳ a의 범위는 0<α<1, 바람직하게는 0<a≤0.5이 고, β의 범위는 0<β≤1, 바람직하게는 0<β≤0.5이다. 즉 상기한 바와 같이, a가 0인 경우, 추후 형성되는 CZTSe 박막 증에, SnSe2, SnSe와 같은 제 2 상이 형성되고, a가 1인 경우, 미약하게나마 CuSe의 제 2상이 형성되므로, 0<α<1인 것이 좋고, 특히 a가 0.5인 경우, 추후 형성되는 박막 중에 아무런 제 2 상도 형성되지 않으므로, 0<a≤0.5인 것이 바람직하다. 또 Zn과 관련하여, β가 0인 경우, SnSe2, SnSe제 2상이 많이 형성되고 β가 1인 경우, 이러한 저 12 상이 전혀 형성되지 않으므로 0<β≤1의 범위가 좋고, 화학양론적 원자비의 관점에서, 0<β≤(λ5의 범위가 바람직하다. 특히, α, β가 모두 0.5일 때, 이하에서 설명하는 바와 같이, 태양전지의 효을과 관련하여 최상의 ᅳ결과를 나타낸다. 그러나, 상기 조성 범위에서, a와 ·β 가 동시에 0이 되지 않기만 하다면, α와 β는 0이 될 수도 있다. 즉, 도 3의 경우, Cu는 몰 비가 2(즉, a는 0)로 고정된 채, Zn의 함량을 변화시켜가며 그 특성을 측정한 것이고, 도 4 의 경우도 Zn의 함량은 고정한 채, Cu 함량을 변화시켜가며 그 특성을 측정한 것이다. 따 라서, 상기 CZTSe 단일 타겟의 화학적 조성을 Cu(2+a)Zna+i3)SnSe4로 나타낼 수 있으며, 이 때 더욱 엄밀하게는 0≤α<1ᅳ 0≤β≤1(단, a와 β증 적어도 하나는 0보다 크다)로 나타낼 수 있고, 그 바람직한 범위는 0≤α≤0.5, 0≤β≤0.5(단, a와 β 증 적어도 하나는 0보다 크다)라 고 표현할 수 있다. 한편, 본 발명자는 상기 여러 조성의 CZTSe 단일 타겟을 이용하여 태양전지용 광 흡수층을 형성하여, 태양전지를 제조하였다ᅳ 구체적으로, 유리 기판 위에 하부 전극인 Mo 층을 스퍼터링 방법으로 증착한 후, 본 발명에서 제시한 CZTSe 박막 (광 흡수층)을 형성한 후, 밴드 갭 에너지 차이를 완화시켜주는 버퍼층 역할을 하는 CdS 층을 CBE Chemical bath deposition) 방법을 통해 증착하였다. 그리고, intrinsic ZnO 층을 얇게 스퍼터링 방법 으로 증착하여 상부 전극과의 통전을 방지하고, 상부 전극인 Al-doped ZnO 층을 마찬가지 로 스퍼터링 방법을 이용하여 증착하였다. 맨 위에 패턴화된 금속 전극인 A1 (메탈 그리드) 을 thermal evaporation방법으로 증착하여 0.2 cm2의 활성 영역 (active area)을 갖는 태양전 지를 제조하였다 (유리 /Mo/CZTSe/CdS/iZnO/Al— ZnO/Al). 여러 조성의 단일 타겟을 이용하 여 광흡수층을 증착하였는데, Cu^Z .sSnSe 단일 타겟을 이용하여 형성한 CZTSe 박막이 어닐링 후 가장 좋은 품질의 나나내었다. 이러한 Cu2.5Zm.5SnSe4 박막 태양전지의 I-V 특 성을 측정하였고, 그 결과 및 관련 파라미터들을 도 5에 나타내었다. 도 5에 나타낸 바와 같이, 약 4.16%의 효을을 얻었는데, Cu2.5Zni.5SnSe4 박막의 경우 grain이 크고 또 조성이 최 적화되어 있어, 상기와 같이 높은 효율을 나타낸 것으로 생각된다. 현재까지 보고된 단순히 스퍼터링 방법을 통해 형성된 CZTSe 박막 태양전지에서 얻어지는 최대 효율은 약 3.2%이 며, 이 경우 사용된 타겟은 각 원소로 이루어진 금속 타겟이었고, 금속 precursor층을 증착 한 후 셀렌화 공정을 통해 CZTSe박막을 형성하였다. 본 발명을 통해 얻어지는 상기 효을 과 기존의 것을 비교하여 보더라도, 약 30%의 효을 개선이 이루어졌다. 또한, 본 발명자는 Ge을 포함하는 CZTSe단일 타겟을 제조할 수 있는지 여부를 검 토하였다. 즉, Ge은 band gap 에너지를 높이는 원소로서, 박막 증에 포함되는 경우, 바람직 한 특성을 나타낸다. CZTSe물질의 경우, 약 0.9 eV의 밴드갭 에너지를 갖고 있는데, 이는 최고 효율을 나타낼 수 있는 가시광선 흡수에 부족한 면이 있다. 본 발명의 한 가지 실시 예에 따르면, Ge을 포함하는 CZTSe단일 타겟을 제조하여 박막을 형성하여, 밴드갭 에너지 를 1 eV 이상으로 향상시킬 수 있고 이를 통해 가시광선 흡수에 이상적인 광흡수층을 제조 할 수 있다.. 즉 상기와 같은 방법으로 Ge을 포함시켜, 단일 타곗을 제조할 수 있었으며, 이 때 Ge은 Sn을 대체하여, 포함되는 것으로 확인되었고, Ge이 포함된 CZTSe 타겟은 Cu(2+ a)Zn(i+P)Sni-xGexSe4(0<x<l)의 일반식으로 나타낼 수 있다, 도 6에 Ge이 포함된 CZTSe타겟을 이용하여 형성한 CZTGeSe박막 태양전지의 현 미경 (TEM) 사진을 나타내었다. 도시한 바와 같이, CZTGeSe 박막이 명확하게 형성된 것 을 알 수 있다. 한편, Ge의 함량에 따른 박막의 미세구조를 도 7에 나타내었다. 도 7을 통 해 알 수 있는 바와 같이, Ge의 함량이 증가함에 따라, grain의 성장이 개선된다는 것을 알 수 있다. 또한, Ge 함량이 증가함에 따라, CZTSe (112) 피크의 강도가 감소함과 아울러, 더 큰 강도로 편이된다는 것을 확인하였다 (도 8 참조). 다른 이차상이 발견되지 않으면서 (112) 피크의 이동만이 관찰된 것으로 보아 Ge은 CZTSe물질 안에 Sn의 자리를 잘 대체한 것으로 판단된다. 또한, 일정양 이상의 Ge이 포함된 CZTSe 박막에서 피크의 강도 감소가 관찰돤 것으로 보아 많은 양의 Ge은 결정성의 향상에 좋지 않은 영향을 미치는 것으로 보 인다. 또한, 광자 에너지 vs ahv 곡선에 의해 계산한 광 밴드 갭 에너지 (optical band gap energy)는 각각 0.93 eV(0 Ge) 및 0.96 eV(0.3 Ge)이었다. 즉ᅳ Ge 첨가에 의해, 박막의 밴 드 갭 에너지가 증가된 것을 확인할 수 있었다. 본 발명자는 추가로 박막의 밴드 갭 에너지를 증가시키는 수단에 대해 연구를 하였 다. 즉, Ge과 마찬가지로 S 역시 밴드 갭 에너지를 높이는 원소로서, 박막 중에 포함되는 경우 바람직한 특성을 나타내는 지 여부를 검토하였다. 구체적으로, 상기와 같이 구성한 CZTSe 타겟을 이용하여 스퍼터하여 박막을 형성한 후, 추가의 Se 펠렛과 함께 열처리를 하였고 (Se 샘플), CZTSe타겟을 이용하여 스퍼터링하여 박막을 형성한 후, 추가의 Se 펠렛 과 함께 열처리를 한 후 다시 H2S/N2 분위기에서 열처리를 하였으며 (Se/ S 샘플), 또 CZTSe 타겟을 이용하여 스퍼터링하여 박막을 형성한 후ᅳ S N2.분위기에서 열처리를 하 였다 (H2S 샘플). 각 샘플에 대해 여러 특성을 측정하였고, 그 결과를 도 9에 나타내었다. Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention. In the following description, descriptions of generally known configurations such as solar cells are omitted. Even if this description is omitted, those skilled in the art will be able to easily understand the features of the present invention through the following description. The present inventors studied a process of manufacturing a CZTSe-based solar cell, a light absorbing layer, that is, a CZTSe thin film, which is a core layer of a solar cell, by a method different from the conventional method. According to the conventional method, a CZTSe thin film is formed on a predetermined substrate by sputtering simultaneously or sequentially a material constituting the CZTSe thin film, that is, Cu, Zn, Sn, Se, or a two-component compound. However, this method is, as described above, the composition of the thin film finally formed It is difficult to control the cost and the complexity of the process makes it difficult to manufacture a low-cost thin film. In order to solve this problem, the present inventors have attempted to manufacture a single target consisting of Cu, Zn, Sn, and Se instead of individual targets. Specifically, first, each material that will constitute the CZTSe thin film, that is, Cu, Zn, Sn, Se material (powder) is prepared according to a predetermined molar ratio (for example, 2: 1: 1: 4), and then zirconia It was placed in a vessel with a ball and stirred with a strong force (ball milling). In this process, as the Cu, Zn, Sn, Se materials are continuously divided by the collision with the ball, the surface area becomes wider, and CZTSe material mixing is possible without applying a large force. This mixing process was performed at room temperature and atmospheric pressure. Subsequently, the inventors manufactured the CZTSe target using the CZTSe material made according to the above procedure. That is, the target used for sputtering is in the form of a hard disk, and the CZTSe material produced according to the above process is still in powder form. In order to produce such a powder-like material in a hard target form, high silver and high vacuum are required, but in this case, there is a problem in that the manufacturing cost increases. The inventors have found that hard CZTSe targets can be produced without high temperature and high vacuum processes. That is, the synthesized CZTSe material is further pressurized and fired through a press to prepare a pellet, and then pellets are heat-treated at 300 ° C. for 1 hour at atmospheric pressure in a nitrogen atmosphere. CZTSe target was produced by the process. This is because the melting point of Se is about 217 ° C, and the heat treatment process Se of about 300 ° C is melted, and it is thought to be connected between the particles of the CZTSe material. In addition, in the case of the CuSe phase, since it can be synthesized at about 250 ° C., it is thought that a phase is formed in the sintering process and eventually a hard target is formed. The inventors formed a CZTSe thin film (i2ZnSnSe4) on a predetermined substrate through a PVD process using the CZTSe target prepared by the above process (i2ZnSnSe4), and measured the optical properties of the thin film. The results are shown in FIG. As shown in FIG. 1, the optical properties of the transmittance, photon energy vs ahv, and photoluminescence intensity according to wavelength of the CZTSe thin film are substantially the same as those of the CZTSe thin film formed according to the conventional method. Confirmed. That is, it was confirmed that the CZTSe thin film can be formed as a light absorption layer on a predetermined substrate by using the CZTSe single target prepared according to the present invention. On the other hand, the present inventors produced a target by changing the amount of zinc (Zn) of the CZTSe target, and then observed the properties of the thin film by forming a CZTSe thin film using each target. The results are shown in FIG. 2 shows micrographs of thin films of the composition Cu 2 Zn x SnSe 4 (x = l, 1.5, 2). The picture on the left is a cross-sectional picture of the deposited CZTSe thin film formed at 10 mTor ^ 2 mTorr, respectively, and the picture on the right shows a cross-sectional picture after annealing heat treatment of the thin film at 50 (55 (rc for about 30 minutes). As can be seen from Fig. 2, as the amount of Zn increases, the thinner the film becomes and the grain size becomes larger, that is, the more preferable thin film properties are shown. The XRD diffraction pattern and atomic ratio of the thin film stones were measured, and the results are shown in FIG. 3 (The thin film is formed on a Mo-coated glass substrate, which is a substrate commonly used in thin film solar cells. As shown in Fig. 3, when Zn is included in the molar ratio of CZTSe thin film deposition 1, it can be seen that a second phase, SnS¾, is prominent. Increases with decreasing the amount of the second phase such as SnSe 2, and particularly in the case of 2Zn, second phase atda not observed. In particular, as can be observed in the right figure, in the thin film relative As the Zn amount is increased It can be seen that the ratio of Zn also increases, and in the case of 1.5Zn, it exhibits almost stoichiometric atomic ratio, and thus a preferable thin film composition, so when constructing a CZTSe target, the content range of Zn is different from other elements. The molar ratio is included in the range of 1 <Ζη≤2, preferably in the range of 1 <.η <1.5, on the other hand, the inventors added a Cu content in the CZTSe single target to observe a change in its properties. Figure 4 is a micrograph showing a form of a thin film according to a CZTSe thin film formed by adding a 2.5 mole ratio (Cu 2. 5 Zni. 5 SnSe 4) the silver foil film annealing heat treatment Cu. samples of both the CZTSe This appeared, showed little signs on MoS¾, SnSe 2, SnSe, ZnSe and the like of the second phase was not observed. On the other hand, in the case of annealing heat treated samples at 530 ° C, it can be seen that the microstructure and electrical properties are improved, which means that the heat treatment temperature makes a certain contribution to the properties of the thin film. In addition, although not specifically illustrated, as the amount of Cu added increases, the microstructure of the thin film showed a dense structure. In addition, when Cu is included in a molar ratio of 2 , a second phase such as SnSe 2 , SnSe, ZnSe is observed, and when it is included in a molar ratio of 3, a second phase such as some CuSe is observed (not shown). However, for 2.5Cu, no second phase was observed. That is, similarly to Zn, Cu was further included to form a thin film of a preferred composition with respect to the second phase. Therefore, Cu is included in the range of 2 <Cu <3, and preferably in the range of 2 <Cu≤2.5 in molar ratio with respect to other elements. As described above, the present inventors manufactured the CZTSe single target, unlike the conventional art, to form the light absorbing layer thin film material of the solar cell. In addition, the second phase is prevented from forming and With respect to the microstructure, etc., a composition capable of obtaining a desirable structure was found as described above. That is, the chemical composition of the CZTSe single target prepared according to the present invention may be represented by Cu (2 + a) Zna + p) SnSe4, and the range of a is 0 <α <1, preferably 0 <a≤0.5. And the range of β is 0 <β≤1, preferably 0 <β≤0.5. That is, as described above, when a is 0, a second phase such as SnSe2 and SnSe is formed in a CZTSe thin film deposition to be formed later, and when a is 1, a second phase of CuSe is weakly formed, so that 0 <α It is preferable that it is <1, and especially when a is 0.5, since no second phase is formed in the thin film to be formed later, it is preferable that 0 <a≤0.5. In relation to Zn, when β is 0, many SnSe 2 and second SnSe phases are formed, and when β is 1, since such low 12 phases are not formed at all, the range of 0 <β ≤ 1 is good, and the stoichiometric atomic ratio From the standpoint of 0, the range of 0 <β≤ (λ5 is preferable. In particular, when α and β are both 0.5, as described below, the best results are obtained with respect to the efficiency of the solar cell. In the composition range, α and β may be 0 as long as a and β do not become zero at the same time, ie, in Fig. 3, Cu has a fixed molar ratio of 2 (ie a is 0). In addition, the Zn content is measured by changing the content of Zn, and the content of Zn is measured by changing the Cu content while fixing the content of Zn. Cu (2 + a) Zna + i3) SnSe 4 , and more precisely 0≤α <1 ᅳ 0≤β≤1 (where at least one of a and β is greater than 0), and the preferred ranges are 0≤α≤0.5, 0≤β≤0.5 (where a and at least one of β increase is greater than zero). On the other hand, the inventors formed a solar cell light absorbing layer using the CZTSe single target of the various compositions, to manufacture a solar cell ᅳ Specifically, after depositing a Mo layer, a lower electrode on the glass substrate by the sputtering method, the present invention After forming the CZTSe thin film (light absorbing layer) presented in the above, a CdS layer serving as a buffer layer to alleviate the band gap energy difference was deposited by the CBE Chemical bath deposition method. The intrinsic ZnO layer was deposited by a thin sputtering method to prevent energization with the upper electrode, and the Al-doped ZnO layer, which is the upper electrode, was deposited using the sputtering method. A1 (metal grid), a patterned metal electrode on top, was deposited by thermal evaporation to produce a solar cell having an active area of 0.2 cm 2 (glass / Mo / CZTSe / CdS / iZnO / Al— ZnO / Al). The light absorbing layer was deposited using a single target of various compositions, and the CZTSe thin film formed using Cu ^ Z .sSnSe single target showed the best quality after annealing. Such as Cu 2 . 5 Zm. IV characteristics of the 5 SnSe 4 thin film solar cell were measured, and the results and related parameters are shown in FIG. 5. As shown in FIG. 5, an effect of about 4.16% was obtained, and Cu 2.5 Zni. In the case of 5 SnSe4 thin films, the grain size is large and the composition is optimized, which is considered to have high efficiency as described above. The maximum efficiency gained from CZTSe thin film solar cells formed by the simple sputtering method reported to date is about 3.2%. In this case, the target used was a metal target consisting of each element, and after depositing a metal precursor layer to form a CZTSe thin film through the selenization process. Even when comparing the effect obtained by the present invention with the conventional one, the effect of about 30% was improved. In addition, the present inventors examined whether the CZTSe single target including Ge can be prepared. That is, Ge is an element that increases the band gap energy, and exhibits desirable characteristics when included in thin film deposition. The CZTSe material has a bandgap energy of about 0.9 eV, which is lacking in visible light absorption that can yield the highest efficiency. According to one embodiment of the present invention, by forming a CZTSe single target containing Ge to form a thin film, it is possible to improve the bandgap energy to more than 1 eV through which the light absorption layer ideal for absorbing visible light can be manufactured In other words, it was possible to prepare a single target by including Ge in the same manner as described above, in which Ge was found to be substituted by Sn, and the CZTSe target containing Ge was Cu (2+ a). Zn ( i + P) can be represented by the general formula of Sni- x Ge x Se 4 (0 <x <l). FIG. 6 shows a microscope (TEM) of a CZTGeSe thin film solar cell formed using a CZTSe target containing Ge in FIG. 6. ) Showed a photo. As shown, it can be seen that the CZTGeSe thin film is clearly formed. Meanwhile, the microstructure of the thin film according to the Ge content is shown in FIG. 7. As can be seen from Figure 7, it can be seen that as the content of Ge increases, the growth of grain is improved. In addition, it was confirmed that as the Ge content was increased, the intensity of the CZTSe (112) peak was reduced and shifted to a greater intensity (see FIG. 8). Only the shift of the (112) peak was observed without any other secondary phases, suggesting that Ge was a good substitute for Sn in the CZTSe material. In addition, the decrease in the intensity of the peak was observed in the CZTSe thin film containing a certain amount of Ge, a large amount of Ge seems to have an adverse effect on the improvement of crystallinity. In addition, the optical band gap energy calculated by the photon energy vs ahv curve was 0.93 eV (0 Ge) and 0.96 eV (0.3 Ge), respectively. That is, it was confirmed that the band gap energy of the thin film was increased by adding Ge. The inventors further studied the means to increase the band gap energy of the thin film. That is, similarly to Ge, S is an element that increases the band gap energy, and examined whether or not it exhibits desirable characteristics when included in the thin film. Specifically, after sputtering using the CZTSe target configured as described above to form a thin film, heat treatment with additional Se pellets (Se sample), sputtering using a CZTSe target to form a thin film, and then additional Se after the heat treatment with the pellets were heat-treated again in H 2 S / N 2 atmosphere (Se / S samples), and then by sputtering using a target CZTSe form a thin film to a heat treatment in the atmosphere 2. eu SN (H 2 S sample). Various properties were measured for each sample, and the results are shown in FIG. 9.
XRD 패턴을 나타내는 도 9의 좌측 도면을 보면 알 수 있는 바와 같이, 상기와 같 은 황처리 (sulfurization)을 통해 샘플들의 Se이 모두 S으로 치환되었으며, 이때 추가의 이차 상은 형성되지 않았다. 한편, 우측 도면에 나타낸 바와 같이, Se 샘플, Se/H2S 샘플 및 H2S 샘플의 밴드 갭 에너지는 각각 0.97 eV, 1.09 eV, 1.20 eV이었다. 즉 황 처리를 통해 CZTSSe계 박막의 밴드 갭 에너지를 증대시킬 수 있다는 것을 확인하였다. 이상, 본 발명을 바람직한 실시예를 참조하여 설명하였으나, 본 발명이 상기 실시예에 제한되는 것은 아니다. 이하의 특허청구범위 내에서 상기 실시예를 다양하게 변형 및 수정할 수 있으며, 이들 역시 본 발명의 범위 내에 속하는 것이다. 따라서, 본 발명은 특허청구범위 및 그 균등물에 의해서만 제한된다. As can be seen in the left figure of FIG. 9 showing the XRD pattern, all the Se of the samples were replaced with S through the sulfurization as described above, and no additional secondary phase was formed. On the other hand, as shown in the right figure, the band gap energy of the Se sample, the Se / H 2 S sample, and the H 2 S sample was 0.97 eV, 1.09 eV, and 1.20 eV, respectively. That is, it was confirmed that the band gap energy of the CZTSSe-based thin film could be increased by sulfur treatment. As mentioned above, although this invention was demonstrated with reference to the preferred embodiment, this invention is not limited to the said embodiment. The above embodiments can be variously modified and modified within the scope of the following claims, which are also within the scope of the present invention. Accordingly, the invention is limited only by the claims and the equivalents thereof.

Claims

[청구의 범위] [청구항 1】 태양전지의 CZTSe(Cu— Znᅳ Sn— Se)계 광 흡수층 박막을 증착하는 데 사용하기 위한 타겟 제조 방법으로서, [Claim 1] [Claim 1] A target manufacturing method for use in depositing a CZTSe (Cu—Zn ᅳ Sn—Se) based light absorbing layer thin film of a solar cell,
(1) Cu, Zn, Sn및 Se파우더를 2+α:1+β:1:4의 몰 비로 준비하는 단계와,  (1) preparing Cu, Zn, Sn and Se powders at a molar ratio of 2 + α: 1 + β: 1: 4,
(2) 상기 Cu, Zn, Sn 및 Se파우더와 금속 볼을 용기 안에 넣고 교반하여, 기계적인 힘에 의해 CZTSe물질을 합성하는 단계와,  (2) putting Cu, Zn, Sn, and Se powder and a metal ball into a container to stir to synthesize CZTSe material by mechanical force;
(3) 상기 합성된 CZTSe물질을 가압 및 소성하여 타겟 형태에 대웅하는 형상의 펠 릿으로 제조하는 단계와,  (3) pressurizing and sintering the synthesized CZTSe material to produce pellets shaped to target shapes;
(4) 상기 제조된 펠릿에 대해 열처리를 하여 최종 CZTSe단일 타겟을 제조하는 단 계 ' (4) Step of preparing a Final CZTSe single target to a heat treatment for the pellets prepared above,
를 포함하고, 상기 최종 CZTSe단일 타겟은 Cu(2+a)Zna+{3)SnSe4 (0<α<1, 0<β<1. 단 , α 및 β증 적어도 하나는 0보다 크다)의 조성을 갖는 것을 특징으로 하는 타겟 제조 방 법. Wherein the final CZTSe single target comprises a composition of Cu (2 + a) Zna + ( 3) SnSe4 (0 <α <1, 0 <β <1, wherein at least one of α and β is greater than 0). Target manufacturing method characterized by having.
[청구항 2】  [Claim 2]
청구항 1에 있어서, a 및 β는 0<α<0.5, 0<β<0.5(단, a 및 β 중 적어도 하나는 0 보다 크다)인 것을 특징으로 하는 타겟 제조 방법.  The method of claim 1, wherein a and β are 0 <α <0.5 and 0 <β <0.5, provided that at least one of a and β is greater than 0.
[청구항 3】  [Claim 3]
청구항 2에 있어서, a및 β는 모두 0,5인 것을 특징으로 하는 타겟 제조 방법.  The method of manufacturing a target according to claim 2, wherein a and β are both 0 and 5.
【청구항 4】 . 【Claim 4】 .
청구항 1 내지 청구항 3중 어느 한 항에 있어서, 상기 (2)의 단계에서 상기 CZTSe 물질의 합성은 상온 및 상압에서 수행하는 것을 특징으로 하는 타겟 제조 방법.  The method according to any one of claims 1 to 3, wherein the synthesis of the CZTSe material in the step (2) is carried out at room temperature and atmospheric pressure.
[청구항 5】  [Claim 5]
청구항 4에 있어서, 상기 (4)의 단계에서, 상기 열처리는 약 300°C의 은도 및 대기압 에서 수행하는 것을 특징으로 하는 타겟 제조 방법. The method according to claim 4, wherein in the step (4), the heat treatment is performed at a degree of silver and atmospheric pressure of about 300 ° C.
【청구항 6】  [Claim 6]
청구항 1 내지 청구항 3증 어느 한 항에 있어서, 상기 (1)의 단계에서 Ge 파우더를 Sn:Ge=lᅳ x:x의 몰 비로 더 추가하여 준비하고, 상기 (2) 내지 (4)의 단계를 통해 CZTGeSe 단일 타겟을 제조하는 것을 더 포함하고, 상기 CZTGeSe 단일 타겟은 Cii(2+a)Zna+ Sni-xGexSe^CK l)의 조성을 갖는 것을 특징으로 하는 타겟 제조 방법. The method according to any one of claims 1 to 3, wherein the Ge powder in step (1) is further added in a molar ratio of Sn: Ge = l ᅳ x: x, and the steps of (2) to (4). Further comprising preparing a CZTGeSe single target, wherein the CZTGeSe single target has a composition of Cii ( 2 + a) Zna + Sni-xGexSe ^ CK1).
[청구항 7】  [Claim 7]
태양전지의 CZTSe(Cu-Zn-Sn-Se)계 광 흡수층 박막을 증착하는 데 사용하기 위한 단일 타겟으로서, 상가 단일 타겟은 Cu(2+a)Zn(1+p)SnSe4 (0<α<1, 0<β<1. 단, a 및 β 중 적어도 하나는 0보다 크다)의 조성을 갖는 것을 특징으로 하는 단일 타겟. A single target for use in depositing a CZTSe (Cu-Zn-Sn-Se) based light absorbing layer thin film of a solar cell, wherein an additional single target is Cu (2 + a) Zn (1+ p) SnSe4 (0 <α < 1, 0 <β <1, provided that at least one of a and β is greater than 0).
【청구항 8】 [Claim 8]
청구항 7에 있어서, α 및 β는 0≤α≤0.5, 0≤β≤0.5(단, α 및 β 증 적어도 하나는 0 보다 크다)인 것을 특징으로 하는 단일 타겟.  8. The single target of claim 7, wherein α and β are 0 ≦ α ≦ 0.5 and 0 ≦ β ≦ 0.5, provided that at least one of α and β increases greater than zero.
【청구항 9】  [Claim 9]
청구항 7에 있어서, 상기 단일 타겟은 Ge을 더 포함하고, 상기 Ge이 포함된 CZTSe 단일 타겟은 Cu +cZnii+i^Sni-xGexSeOK l)의 조성을 갖는 것을 특징으로 하는 단일 타 겟.  The single target of claim 7, wherein the single target further comprises Ge, and the CZTSe single target including Ge has a composition of Cu + cZnii + i ^ Sni-xGexSeOK l).
【청구항 10】  [Claim 10]
유리 기판을 제공하는 단계와,  Providing a glass substrate;
상기 유리 기판 상에 하부 전극을 형성하는 단계와,  Forming a lower electrode on the glass substrate;
상기 하부 전극 상에 CZTSe(Cu-Zn-Sn-Se)계 광 흡수층 박막을 형성하는 단계와, 상기 광 흡수층 박막 상에 밴드 갭 에너지 차이를 완화시키는 역할을 하는 버퍼층 을 형성하는 단계와,  Forming a CZTSe (Cu-Zn-Sn-Se) -based light absorbing layer thin film on the lower electrode, forming a buffer layer on the light absorbing layer thin film to reduce a band gap energy difference;
상기 버퍼층 상에 상부 전극과 메탈 그리드를 형성하는 단계  Forming an upper electrode and a metal grid on the buffer layer
를 포함하고,  Including
상기 CZTSe계 광 흡수층 박막은 Cu(2+a)Zn(i+p)SnSe4 (0<α<1, 0<β<1. 단, a및 β 중 적어도 하나는 0보다'크다)의 조성을 갖는 것을 특징으로 하는 태양전지 제조 방법. The CZTSe based light absorbing thin film Cu (2+ a) Zn (i + p) the composition of SnSe 4 (0 <α <1 , 0 <β <1. However, at least one of a and β is "greater than zero), Solar cell manufacturing method characterized by having.
[청구항 11】 [Claim 11]
청구항 10에 있어서, 상기 광 흡수층 박막은 Cu +c Znd+ SnSe (0<α<1, 0<β<1. 단, a및 β중 적어도 하나는 0보다 크다)의 조성을 갖는 CZTSe단일 타겟을 스퍼터링하여 형성하는 것을 특징으로 하는 태양전지 제조 방법.  The thin film of claim 10, wherein the light absorbing layer thin film is formed by sputtering a CZTSe single target having a composition of Cu + c Znd + SnSe (0 <α <1, 0 <β <1, wherein at least one of a and β is greater than 0). Forming a solar cell, characterized in that formed.
【청구항 12】  [Claim 12]
청구항 11에 있어서, 상기 CZTSe단일 타겟은  The method of claim 11, wherein the CZTSe single target is
(1) Cu, Zn, Sn 및 Se파우더를 2+α:1+β:1:4의 몰 비로 준비하는 단계와,  (1) preparing Cu, Zn, Sn and Se powders at a molar ratio of 2 + α: 1 + β: 1: 4,
(2) 상기 Cu, Zn, Sn 및 Se파우더와 금속 볼을 용기 안에 넣고 교반하여, 기계적인 힘에 의해 CZTSe물질을 합성하는 단계와,  (2) putting Cu, Zn, Sn, and Se powder and a metal ball into a container to stir to synthesize CZTSe material by mechanical force;
(3) 상기 합성된 CZTSe물질을 가압 및 소성하여 타겟 형태에 대웅하는 형상의 펠 릿으로 제조하는 단계와,  (3) pressurizing and sintering the synthesized CZTSe material to produce pellets shaped to target shapes;
(4) 상기 제조된 펠릿에 대해 열처리를 하여 최종 CZTSe 단일 타겟을 제조하는 단 계  (4) heat-treating the prepared pellets to produce a final CZTSe single target
를 통해 제조되는 것을 특징으로 하는 태양전지 제조 방법.  Solar cell manufacturing method characterized in that is manufactured through.
【청구항 13】  [Claim 13]
청구항 10에 있어세 a 및 β는 0≤α≤0.5, 0≤β≤0.5(단, a 및 β증 적어도 하나는 0 보다 크다)인 것을 특징으로 하는 태양전지 제조 방법. The method of claim 10, wherein a and β are 0 ≦ α ≦ 0.5 and 0 ≦ β ≦ 0.5 (where at least one of a and β is greater than 0).
【청구항 14] [Claim 14]
청구항 12에 있어서, 상기 (2)의 단계에서 상기 CZTSe물질의 합성은 상은 및 상압 에서 수행하는 것을 특징으로 하는 태양전지 제조 방법.  The method according to claim 12, wherein the synthesis of the CZTSe material in the step (2) is a solar cell manufacturing method, characterized in that carried out at the phase silver and atmospheric pressure.
[청구항 15】  [Claim 15]
청구항 14에 있어서, 상기 (4)의 단계에서, 상기 열처리는 약 300°C의 온도 및 대가 압에서 수행하는 것을 특징으로 하는 태양전지 제조 방법. The method according to claim 14, wherein in the step (4), the heat treatment is performed at a temperature of about 300 ° C and a high pressure.
[청구항 16】  [Claim 16]
청구항 14에 있어서, 상기 (1)의 단계에서 Ge 파우더를 Sn:Ge=l— x:x의 몰 비로 더 추가하여 준비하고, 상기 (2) 내지 (4)의 단계를 통해 CZTGeSe 단일 타겟을 제조하는 것을 더 포함하고, 상기 CZTGeSe 단일 타겟은 Cu +c Zna+ S -xGexSe^CKx^ )의 조성을 갖는 것을 특징으로 하는 태양전지 제조 '방법. ·  The method according to claim 14, wherein the Ge powder in the step of (1) is further prepared by adding a molar ratio of Sn: Ge = l—x: x, and the CZTGeSe single target is prepared through the steps of (2) to (4). Further comprising, wherein the single CZTGeSe target has a composition of Cu + c Zna + S -xGexSe ^ CKx ^). ·
[청구항 17] [Claim 17]
청구항 10 내지 청구항 16 증 어느 한 항에 있어서, 상기 광 흡수층 박막을 형성한 후, 추가의 Se 펠릿과 함께 열처리를 한 후 다시 H2S/N2 분위기에서 열처리를 하거나 상기 광 흡수층 박막을 형성한 후, H2S 2 분위기에서 열처리하여, 상기 광 흡수층 박막에 황을 포함시키는 단계를 더 포함하는 것을 특징으로 하는 태양전지 제조 방법. The method according to any one of claims 10 to 16, wherein after forming the light absorbing layer thin film, heat treatment with additional Se pellets and then heat treatment in H 2 S / N 2 atmosphere or the light absorbing layer thin film is formed Thereafter, by heat treatment in an H 2 S 2 atmosphere, further comprising the step of including sulfur in the light absorbing layer thin film.
【청구항 18】  [Claim 18]
청구항 17에 있어서, 상기 황은 상기 열처리 후 상기 광 흡수층 박막의 Se을 치환하 여 상기 박막 중에 포함되는 것을 특징으로 하는 태양전지 제조 방법ᅳ  The method of claim 17, wherein the sulfur is included in the thin film by substituting Se of the light absorbing layer thin film after the heat treatment.
【청구항 19】  [Claim 19]
기판과,  Substrate,
상기 기판 상에 형성된 하부 전극과,  A lower electrode formed on the substrate;
상가하부 전극 상에 형성된 CZTSe(Cu-Zn-Sn— Se)계 광 흡수층 박막과, 상기 광 흡수층 박막 상에 형성되어 밴드 갭 에너지 차이를 완화시키는 역할을 하 는 버퍼층과,  A CZTSe (Cu-Zn-Sn—Se) -based light absorbing layer thin film formed on the upper and lower electrodes, a buffer layer formed on the light absorbing layer thin film to serve to alleviate the band gap energy difference,
상기 버퍼층 상에 순차적으로 형성된 상부 전극 및 메탈 그리드  An upper electrode and a metal grid sequentially formed on the buffer layer
를 포함하고,  Including
상기 CZTSe계 광 흡수층 박막은 Cu(2+a)Zn(1+P)SnSe4 (0<α<1, 0<β<1. 단 , a및 β 중 적어도 하나는 0보다 크다)의 조성을 갖는 것을 특징으로 하는 태양전지. The CZTSe-based light absorbing layer thin film has a composition of Cu (2 + a) Zn (1 + P) SnSe4 (0 <α <1, 0 <β <1, wherein at least one of a and β is greater than 0). A solar cell characterized by the above-mentioned.
【청구항 20】  [Claim 20]
청구항 19에 있어서, 상기 광 흡수층 박막은 Cuu+coZnd+ SnSe (0<α<1, 0<β<1. 단, a및 β중 적어도 하나는 0보다 크다)의 조성을 갖는 CZTSe단일 타겟을 스퍼터링하여 형성하는 것을 특징으로 하는 태양전지. .  The thin film of claim 19, wherein the light absorbing layer thin film is formed by sputtering a CZTSe single target having a composition of Cuu + coZnd + SnSe (0 <α <1, 0 <β <1, wherein at least one of a and β is greater than 0). Solar cell characterized in that. .
【청구항 21】 청구항 20에 있어서, α 및 β는 0<α<0.5, 0<β<0.5(단 α 및 β증 적어도 하나는 0 보다 크다)인 것을 특징으로 하는 태양전지. [Claim 21] The solar cell according to claim 20, wherein α and β are 0 <α <0.5 and 0 <β <0.5 (where at least one of α and β is greater than 0).
[청구항 22】  [Claim 22]
청구항 19 내지 청구항 21 증 어느 한 항에 있어서, 상기 광 흡수층 박막은 Ge을 더 포함하고, Ge 포함된 상기 CZTSe 광 흡수층 박막은 Cuu+c Znn+i^Sm-xGexSe ^ l) 의 조성을 갖는 것을 특징으로 하는 태양전지.  The light absorbing layer thin film of claim 19, wherein the light absorbing layer thin film further comprises Ge, and the CZTSe light absorbing thin film containing Ge has a composition of Cuu + c Znn + i ^ Sm-xGexSe ^ l). Solar cell.
【청구항 23】  [Claim 23]
청구항 19 내지 청구항 21 중 어느 한 항에 있어서, 상기 광 흡수층 박막은 H2S/N2 분위기에서 열처리되어 황을 더 포함하는 것을 특징으로 하는 태양전지. 22. The solar cell of any one of claims 19 to 21, wherein the light absorbing layer thin film is further heat-treated in an H 2 S / N 2 atmosphere.
PCT/KR2012/003960 2012-05-11 2012-05-18 Target for light absorbing layer of thin film solar cell, method for manufacturing same and thin film solar cell WO2013168845A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0050039 2012-05-11
KR1020120050039A KR101418831B1 (en) 2012-05-11 2012-05-11 Target for light absorption layer of thin film solar cell, method for the same and the thin film solar cell

Publications (1)

Publication Number Publication Date
WO2013168845A1 true WO2013168845A1 (en) 2013-11-14

Family

ID=49550868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003960 WO2013168845A1 (en) 2012-05-11 2012-05-18 Target for light absorbing layer of thin film solar cell, method for manufacturing same and thin film solar cell

Country Status (2)

Country Link
KR (1) KR101418831B1 (en)
WO (1) WO2013168845A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634107A (en) * 2017-08-30 2018-01-26 常州豫春化工有限公司 A kind of preparation method for strengthening efficiency of light absorption type nano photovoltaic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707050B1 (en) * 2015-11-03 2017-02-17 재단법인대구경북과학기술원 Preparation for method of perovskite absorber layer and perovskite solar cells comprising the perovskite absorber layer thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026891A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Photoelectric element and sulfide system compound semiconductor
US20110094557A1 (en) * 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film
JP2012059847A (en) * 2010-09-07 2012-03-22 Showa Shell Sekiyu Kk Method of fabricating light absorption layer in czts thin film solar cell
US20120067408A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered CZTS Nanoparticle Solar Cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026891A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Photoelectric element and sulfide system compound semiconductor
US20110094557A1 (en) * 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film
JP2012059847A (en) * 2010-09-07 2012-03-22 Showa Shell Sekiyu Kk Method of fabricating light absorption layer in czts thin film solar cell
US20120067408A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered CZTS Nanoparticle Solar Cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WIBOWO, R. A. ET AL.: "Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets", J. PHYS. CHEM. SOLIDS, 19 May 2007 (2007-05-19), pages 1908 - 1913 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634107A (en) * 2017-08-30 2018-01-26 常州豫春化工有限公司 A kind of preparation method for strengthening efficiency of light absorption type nano photovoltaic material
CN107634107B (en) * 2017-08-30 2019-03-26 中建材(合肥)新能源有限公司 A kind of preparation method enhancing efficiency of light absorption type nano photovoltaic material

Also Published As

Publication number Publication date
KR20130126170A (en) 2013-11-20
KR101418831B1 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
Araki et al. Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers
Vanalakar et al. A review on pulsed laser deposited CZTS thin films for solar cell applications
DK1654769T4 (en) PROCEDURE FOR MANUFACTURING QUATERNARY OR HIGHER ALloy semiconductor films from groups IB-IIIA-VIA
Tanaka et al. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors
Suryawanshi et al. A simple aqueous precursor solution processing of earth-abundant Cu2SnS3 absorbers for thin-film solar cells
Wibowo et al. Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders
EP2548217A1 (en) Photoelectronically active, chalcogen-based thin film structures incorporating tie layers
Bhaskar et al. Preparation and characterization of co-evaporated Cu2ZnGeSe4 thin films
CN104835869B (en) Copper-indium-galliun-selenium film solar cell and preparation method thereof
US8779283B2 (en) Absorber layer for thin film photovoltaics and a solar cell made therefrom
Gobeaut et al. Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films
KR101418831B1 (en) Target for light absorption layer of thin film solar cell, method for the same and the thin film solar cell
Jin et al. Pulsed laser deposition of Cu2ZnSn (SxSe1− x) 4 thin film solar cells using quaternary oxide target prepared by combustion method
Li et al. Properties of the Cu (In, Ga) Se2 absorbers deposited by electron-beam evaporation method for solar cells
Yan et al. Cu2SixSn1− xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells
Abusnina et al. Impact of the stack order in Cu-Zn-Sn metal precursors on the properties of Cu2ZnSnS4 thin films
Zhang et al. Grain growth enhancing through preheating treatment of a sputtered stacked metallic precursor for Cu (In, Al) Se2 thin film solar cells application
Malik et al. Atmospheric pressure synthesis of In2Se3, Cu2Se, and CuInSe2 without external selenization from solution precursors
Kaufmann et al. Co-evaporation of Cu (In, Ga) Se 2 at low temperatures: An In-Situ x-ray growth analysis
EP2221876A1 (en) Absorber layer for thin film photovoltaic cells and a solar cell made therefrom
KR101067337B1 (en) Method of manufaturing target for pvd
KR101635955B1 (en) A method for preparing CZTS solar cell by controlling bandgap of abosorbance layer
Alberts et al. Material properties of Cu (In, Ga) Se2 thin films prepared by the reaction of thermally evaporated compound materials in H2Se/Ar
Abdullahi et al. Growth mechanism and influence of annealing temperature on structural and compositional properties of Cu2ZnSnS4 (CZTS) thin films deposited by rf sputtering method from a compound target
Bhale et al. Study of optical and structural properties of CZTS thin films using copper capping layer and sulfurization to correct stoichiometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876188

Country of ref document: EP

Kind code of ref document: A1