WO2013168835A1 - Electrophoretic chip for electrochemical detection - Google Patents

Electrophoretic chip for electrochemical detection Download PDF

Info

Publication number
WO2013168835A1
WO2013168835A1 PCT/KR2012/003646 KR2012003646W WO2013168835A1 WO 2013168835 A1 WO2013168835 A1 WO 2013168835A1 KR 2012003646 W KR2012003646 W KR 2012003646W WO 2013168835 A1 WO2013168835 A1 WO 2013168835A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
electrode
equipotential
electrophoretic chip
working electrode
Prior art date
Application number
PCT/KR2012/003646
Other languages
French (fr)
Korean (ko)
Inventor
정택동
강충무
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2012/003646 priority Critical patent/WO2013168835A1/en
Publication of WO2013168835A1 publication Critical patent/WO2013168835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoretic chip for electrochemical detection and a method for monitoring an electrochemical signal without interference of an electric field using the same.
  • the electrophoretic chip is provided with a working electrode for detecting the electrochemical characteristics of the fluid analyte at one point in the fluid channel, the equipotential structure electrically connected to the working electrode on at least one wall of the channel is provided
  • the electrochemical signal generated between the working electrode and the counter electrode is provided with a counter electrode in the equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution outside the channel adjacent to the fluid channel through the equipotential structure as a passage. It is characterized by detecting.
  • a method for monitoring an electrochemical signal without interference of the electric field through a working electrode provided at a point in the fluid channel to which the electric field is applied comprising the steps of measuring an electrochemical signal between the working electrode and the counter electrode,
  • the equipotential space is formed by an equipotential structure formed on at least one wall surface of the fluid channel and electrically connected to the working electrode, and the counter electrode is disposed in the equipotential space separated from the channel by the equipotential structure.
  • Microchip electrophoresis has emerged as a method for chemical and biological analysis using miniaturized systems over the last decades. Recently, microfluidic chip-based analytical tools have been applied to integrate a plurality of unit processes such as sample preparation, separation, and detection into a single chip so that non-experts can perform the analysis anytime and anywhere.
  • An essential element for portable systems is the detection method for high performance separation-based systems with low detection limits, fast analysis, high efficiency, low cost, one-time and portability. In practice, miniaturized detectors can provide significant advantages for chip-based analytical tools.
  • MS detection has been reported to provide high efficiency in combination with MCE, but it requires expensive equipment and has a disadvantage in that it is generally not portable.
  • LIF is a universal detection method in combination with MCE that allows for extremely sensitive detection.
  • the analyte must be synthesized as a phosphor or a natural fluorescent compound must be selected as the analyte.
  • EC detection consists of a very simple device and a microscale electrode integrated on a microchip, but with excellent sensitivity and selectivity.
  • End-channel detection is an easy way to measure redox currents from analytes by reducing the effects of CE voltage and current.
  • Woolley et al. Proposed an end-channel detection method on a microchip using a working electrode located at the end of a separation channel gradually widening immediately before the working electrode to minimize interference of a capillary electrophoresis field (CE field).
  • CE field capillary electrophoresis field
  • the decoupling approach is another method to separate the signal by current measurement from the electrophoretic field and to eliminate the diffuse band-wideness observed in the end-channel method.
  • Rossier and colleagues have integrated a decoupler, which consists of an array of microholes located perpendicular to the separation channel.
  • Chen et al. Used a palladium metal electrode as a decoupling device to effectively remove hydrogen bubbles.
  • the decoupling method for in-channel detection can separate the EC detector from the separation field and provide another effective way to suppress the band widening that is characteristic of the end-channel method, the decoupling device There is still a band dispersion due to the rapid decrease in electric field strength between the electrode and the working electrode.
  • bipolar electrochemistry Another approach using bipolar electrochemistry is in-channel detection without the use of decoupling devices.
  • current-based detection method-based bipolar electrochemistry which modulates the potential of the working electrode by controlling the size of the bipolar electrode, the electrode spacing, or the electric field strength, provides an intrinsic redox potential that depends on the individual redox-active analyte. The variety makes them unsuitable for the detection of redox-activity analytes.
  • a polymer electrolyte electrically connected to a working electrode in a fluid channel as an equipotential structure on one wall of the fluid channel By introducing a polyelectrolytic gel salt bridge (PSGB), it acts as a pseudo-reference electrode, causing the working electrode and the reference electrode to experience the same potential difference, so that they are in-channel anywhere on the microchannel without being affected by electrophoresis.
  • PSGB polyelectrolytic gel salt bridge
  • the in-channel method is particularly suitable for MCE for the following reasons: (i) In-channel detection can easily be carried out without decouplers. (ii) The production of PGSB by UV exposure is very simple and therefore the PGSB can be placed anywhere in the separation channel. (iii) An electrically isolated detector can eliminate damage to the electronics, thereby minimizing potential fluctuations at the working electrode. (iv) By placing the working electrode in the separation channel, high separation efficiency can be obtained by eliminating the band-wideness observed when using the end-channel detection method.
  • An object of the present invention is an electrophoretic chip having a fluid channel between both ends and having a fluid channel separating analyte by a difference in moving speed while moving analytes in a sample by the voltage.
  • a working electrode is provided for detecting the electrochemical characteristics of the analyte, and an equipotential structure electrically connected to the working electrode is provided on at least one wall of the channel, and the channel is adjacent to the fluid channel using the equipotential structure as a passage.
  • the present invention provides an electrophoretic chip characterized by measuring an electrochemical signal between a working electrode and a counter electrode by having a counter electrode disposed in an equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution.
  • Another object of the present invention is a method for monitoring an electrochemical signal without interference of the electric field through a working electrode provided at a point in the fluid channel to which the electric field is applied, the electrochemical signal between the working electrode and the counter electrode And measuring, wherein an equipotential space is formed by an equipotential structure formed on at least one wall of the fluid channel and electrically connected to the working electrode, and the counter electrode is separated from the channel by the equipotential structure. It is to provide a method characterized by being disposed in the equipotential space.
  • an equipotential structure electrically connected to a working electrode for electrochemical detection existing in a separation channel for example, a polyelectrolyte gel salt bridge, forms an equipotential space and forms the equipotential space.
  • a separation channel for example, a polyelectrolyte gel salt bridge
  • FIG. 1 is a diagram illustrating a process of manufacturing PGSB on a glass microchip. UV adhesion is fast and can be applied to glass chips to ensure the stability of the electrodes. PGSB was formed by exposure to UV immediately after adhesion.
  • FIG. 2 shows the design of the electrode and the micro channel.
  • (a) shows the photo-mask design for the electrode and micro channel pattern, the scale being as follows: dual-T from injection channel, sample (and sample-waste) reservoir 6 mm to channel, 2 mm from buffer reservoir to dual-T channel; Separation channel length. 16 mm; Effective length, 12 mm; PGSB channel, 350 ⁇ m.
  • (b) shows an image of an electrode and a microchip channel.
  • the channel is 80 ⁇ m wide and 15 ⁇ m deep.
  • the dual-T channel is 80 ⁇ m wide, 15 ⁇ m deep and contains an injection intersection of 100 ⁇ m.
  • PGSB channels are 120 ⁇ m wide and 15 ⁇ ml deep.
  • Au electrodes have a width of 10 or 20 ⁇ m.
  • (c) is a microchip photograph for in-channel electrochemical detection.
  • GSG polyelectrolytic gel salt bridge
  • MCE microchip eletrophoresis
  • the Au working electrode (10 ⁇ m wide) was placed at (a) 0 ⁇ m, (b) 100 ⁇ m, (c) 200 ⁇ m, and (d) 400 ⁇ m from the PGSB as shown in the inset.
  • Micro channels were filled with 100 mM KNO 3 solution.
  • FIG. 6 is a cyclic voltammetry from an Au electrode located in front of the PGSB under a capillary electrophoresis field (CE field).
  • the solid line is a graph for 0 V / cm, the dashed line for 200 V / cm and the dashed line for 400 V / cm.
  • Cyclic voltammetry was performed in a 1 mM K 3 Fe (CN) 6 solution containing 100 mM KNO 3 as auxiliary electrolyte. 10 ⁇ m wide Au working electrode was used, Ag / AgCl / KCl (3M) was used as reference electrode, Pt line was used as counter electrode, and scanning speed was 100 mV / s.
  • FIG. 8 is an electrophoretic diagram of 200 ⁇ K 3 Fe (CN) 6 detected at (a) 0 ⁇ and (b) 50 ⁇ from PGSB. Performance conditions were as follows: capillary electrophoresis intensity, -150 V / cm; Au working electrode width, 20 ⁇ m; Total length, 1.6 cm; Effective length, 1.2 cm; Running buffer, 25 mM sodium borate; Detection potential, +0.15 V vs. Ag / AgCl / KCl (3 M) reference electrode.
  • FIG. 9 is an electrophoresis diagram of 1.5 ⁇ M K 3 Fe (CN) 6 detected using an Au electrode located near PGSB. Performance conditions were as follows: capillary electrophoresis intensity, -150 V / cm; Au working electrode width, 20 ⁇ m; Total length, 1.6 cm; Effective length, 1.2 cm; Running buffer, 25 mM sodium borate; Detection potential, +0.15 V vs. Ag / AgCl / KCl (3 M) reference electrode.
  • FIG. 10 is the electrophoresis of catechol (150 ⁇ M) and dopamine (100 ⁇ M) under high electric fields obtained using PGSB-integrated microchips.
  • the performance conditions were as follows: Au working electrode width, 20 ⁇ m; Total length, 5.4 cm; Effective length, 5 cm; Running buffer, 25 mM MES (2- (N-morpholino) ethanesulfonic acid); Detection potential, +0.05 V vs. Ag / AgCl / KCl (3 M) reference electrode.
  • FIG. 11 is a view schematically showing an equipotential structure and an equipotential space formed thereby according to the present invention.
  • the present invention provides an electrophoretic chip having a fluid channel between both ends thereof and having a fluid channel separating analyte by a difference in moving speed while moving analytes in a sample by the voltage.
  • a working electrode is provided at one point to detect the electrochemical characteristics of the analyte, and an equipotential structure electrically connected to the working electrode is provided on at least one wall of the channel, and is adjacent to the fluid channel using the equipotential structure as a passage.
  • It provides an electrophoretic chip characterized by measuring the electrochemical signal between the working electrode and the counter electrode is provided with a counter electrode in the equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution outside the channel.
  • the present invention is a method for monitoring an electrochemical signal without interference of the electric field through the working electrode provided at a point in the fluid channel to which the electric field is applied, the electrochemical signal between the working electrode and the counter electrode And measuring an equipotential space by an equipotential structure formed on at least one wall surface of the fluid channel and electrically connected to the working electrode, wherein the counter electrode is connected to the channel by the equipotential structure.
  • a method is characterized by being arranged in separate equipotential spaces.
  • Electrophoresis is a method of separating a substance by the difference in the moving speed of the substance to be analyzed under an electric field.
  • the analytes have their own charges and are based on the principle that the electric field will move at different speeds.
  • a solvent such as a buffer
  • the molecules each have a unique charge (for example, DNA is usually negatively charged and proteins are negatively charged, neutral or positively charged depending on pH). They can be separated because they move at different speeds.
  • Electrophoresis in the present invention is preferably capillary electrophoresis.
  • the capillary electrophoresis is a separation method capable of separating neutrals as well as positive and negative ions at the same time by introducing the separation mechanism of electrophoresis and the instrumentation and automation concept of chromatography.
  • each component moves in a constant direction and speed depending on the charge and mobility.
  • Each component is separated according to mobility, and factors affecting mobility include surface charge characteristics such as particle size, shape, average charge, and pH, concentration, and temperature of an aqueous solution.
  • Capillary electrophoresis uses dozens of ⁇ m diameter capillaries and is typically an electroosmotic, an electrophoretic phenomenon rather than a laminar or parabolic flow caused by an external pump. High separation efficiency can be obtained by flow.
  • Another advantage of the electroosmotic flow is that it moves in the same direction regardless of the charge of the analyte.
  • the electroosmotic flow acts significantly greater than the force that the negative ions tend to the anode. Therefore, it moves faster by the combined force of the cation's electrical and electroosmotic flow, the neutral material moves by the electroosmotic flow rather than the electrical movement, and the anion is the anode by the electroosmotic flow which is significantly larger than the electrical movement. Move to the cathode, but at a slower rate than the neutral.
  • This principle of capillary electrophoresis can be applied to microchips.
  • an analysis chip having a microfluidic channel having a length of several cm and a width of several tens of ⁇ m and applying an electric field to the sock end, a trace amount of sample can be separated and / or analyzed on the same principle as the capillary electrophoresis.
  • a strong electric field must be applied to increase the separation efficiency.
  • a strong electric field may be applied for the injection, transfer, mixing, reaction, separation, detection or post-analysis of the sample.
  • these strong electric fields affect the electrochemical detection of analytes.
  • the “electric field” is expressed as a voltage applied per unit length, and may be applied up to 30 kV in a commercially available capillary electrophoretic system, but in some cases, a high voltage of 60 kV or more may be applied.
  • a voltage of 30 kV is applied to a 30 cm capillary
  • an electric field of about 1000 V / cm is applied.
  • the voltage applied for the electrophoresis may be selected in consideration of analyte and separation efficiency.
  • an electric field of 0 V / cm to 1000 V / cm may be preferably applied, and more preferably an electric field of 0 V / cm to 500 V / cm may be applied.
  • the present invention is not limited thereto.
  • electrochemical detection was possible even under an electric field of 500 V / cm without interference of the electric field.
  • the width of the working electrode is reduced to 1 ⁇ m, the electrochemical detection is possible under an electric field of 8000 V / cm in theory.
  • an equipotential structure electrically connected to a working electrode for electrochemical detection of analyte located in a separate channel to exclude the influence of a strong electric field for electrophoresis in the electrochemical detection of an electrophoretic analysis using a microchip It is characterized by allowing to form an equipotential space by introducing a.
  • the equipotential space may be formed by introducing a polymer electrolyte gel salt bridge as an equipotential structure, for example.
  • the introduction of the equipotential structure eliminates the voltage gradient that can occur due to the electric field for electrophoresis between the working electrode and the reference electrode and allows both electrodes to be at the same potential.
  • the equipotential structure may refer to a structure introduced to extend the equipotential surface into a three-dimensional space.
  • the electrochemical signal may include an electrical signal of an analyte or a chemical signal converted into an electrical signal through an electrode, and may be a current, conductivity or potential difference, but is not limited thereto.
  • An electrode introduced on the analysis chip for detecting the electrochemical signal may be provided at one wall (in-channel or off-channel detection method) or at an end thereof (end-channel detection method) in the separation channel.
  • the working electrode for performing the in-channel detection method that is, the intra-channel detection method, may be provided on one wall in the separation channel perpendicularly to the separation channel, that is, parallel to the electrophoretic field, but is not limited thereto. It can be introduced without limitation.
  • the electrode system for electrochemical detection can be a two-electrode system or a three-electrode system.
  • the two-electrode system includes a working electrode and a counter electrode for the detection of the analyte, while the three-electrode system further includes a reference electrode.
  • three-electrode system is widely used, but is not limited thereto.
  • the counter electrode also serves as a reference electrode. Accordingly, in the present invention, the term "reference electrode” may refer to a reference electrode provided as a reference electrode in the case of a two-electrode system, and a reference electrode provided separately from the counter electrode in the case of a three-electrode system.
  • a counter electrode and optionally a reference electrode may be provided in an equipotential space filled with a supporting electrolyte solution separated from a channel by an equipotential structure such as the polyelectrolyte gel salt bridge.
  • an equipotential structure such as the polyelectrolyte gel salt bridge.
  • the equipotential structure serves as a pseudo reference electrode.
  • an "equipotential surface” means a surface consisting of points having the same potential in an electric field in a dictionary meaning.
  • the separation channel formed on the microchip has a short distance of several cm and a strong electric field (for example, tens to hundreds of V / cm) is applied for separation within the short distance.
  • the physical distance between the reference electrodes causes errors in the detection signal due to the large potential difference on the solution in the channel. Therefore, in an embodiment of the present invention, a polymer electrolyte gel salt bridge is introduced as an equipotential structure on the working electrode and the equipotential surface for electrochemical detection existing in the channel of the electrophoretic microchip, and is separated from the channel by the equipotential structure.
  • An equipotential space was formed in which the space had the same potential as the working electrode.
  • the polymer electrolyte gel salt which is the equipotential structure, is preferably an ion conductive polymer, and thus allows free movement of ions between the separation channel and the space in which the reference electrode and the counter electrode exist, while allowing buffer components of other components, such as the separation channel, to separate.
  • the mixing with the supporting electrolyte solution filled in the external channel separated by the polymer electrolyte gel salt bridge may serve to block. That is, the equipotential structure allows free movement of ions, but can prevent leakage of analytical buffer solution to a high concentration of a supporting electrolyte.
  • the equipotential structure formed of the ion conductive polymer has a very low resistance
  • its width is not limited, but is preferably formed as thin as long as it has a function of allowing the movement of ions and blocking the entry and exit of the solution.
  • the resulting polymer electrolyte gel salt bridge may be prepared in a few tens of nm to several hundred ⁇ m in width.
  • the equipotential space formed by the equipotential structure is a vertical distance from the outer wall of the separation channel to the reference electrode including the width of the fluid channel A, the passage length toward the equipotential space formed by the equipotential structure, and the separation channel width.
  • the width of the passageway toward the equipotential space is C
  • the vertical distance B from the outer wall of the separation channel to the reference electrode may be at least 1.5 times the width A of the fluid channel.
  • the passage may have a length of several ⁇ m to several hundred ⁇ m, preferably 5 to 50 ⁇ m, and more preferably 3 to 10 ⁇ m, but is not limited thereto.
  • the width C of the passage may be several ⁇ m to several hundred ⁇ m, preferably 1 to 10 ⁇ m, whereby the width D of the equipotential space in which the counter electrode and / or reference electrode separated from the channel is present is It may be 1 to 10 times or 1 to 100 times C, but is not limited so long as it does not depart from the description of the microchip (FIG. 11).
  • the width of the equipotential space is also not limited unless it leaves the microchip.
  • the shape of the equipotential space separated from the channel through the passage may be circular or square, but is not limited thereto as long as it can accommodate a counter electrode and / or a reference electrode for detecting an electrochemical signal, and the width of the equipotential space is not limited thereto.
  • the width means the maximum distance between the faces perpendicular to the faces, ie parallel to the passage.
  • the size of the channel and the structure presented above is only a value created in consideration of the size of the microchip presented in the embodiment can be adjusted according to the size of the microchip itself. In other words, when manufactured in the nanometer or centimeter level analysis chip can be adjusted to a level corresponding thereto.
  • the polymer electrolyte gel salt bridge is injected with a polymer monomer (monomer) or dimers to depolymers in the channel and the gel is irradiated locally using a photomask on the same position as the working electrode to form an equipotential surface. It can be prepared by curing in the form. In order to induce curing by light irradiation, the polymer monomer or polymer may be reacted by using a material in which a photoinitiator is bound or by additionally adding a separate photoinitiator.
  • AMPSA 2-acrylamido-2-methyl-1-propanesulfonic acid
  • DMAC diallyldimethylammonium chloride
  • 2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone may be used, but curing When the gel is formed to form a conductive polymer that can allow free access of the electrolyte ions and can be cured by irradiation with light can be used without limitation.
  • a crosslinking agent may be further added to stabilize the structure of the prepared polymer electrolyte gel salt bridge to form a more rigid structure.
  • the crosslinking agent N, N'-methylenebisacrylamide may be used, but any material capable of stabilizing the prepared polymer salt bridge structure may be used without limitation.
  • TMSMA trimethoxysilyl propylmethacrylate
  • FIG. 3 A schematic diagram of an electrophoretic microchip for electrochemical detection prepared by the above method is shown in FIG. 3.
  • the electrophoretic chip of the present invention is preferably manufactured on a substrate made of glass, quartz or silicon, but is not limited thereto.
  • a substrate made of glass, quartz or silicon, but is not limited thereto.
  • PDMS poly dimethylsiloxane
  • PMMA poly methyl methacrylate
  • PC polycarbonate
  • polystyrene polystyrene
  • cellulose acetate cellulose acetate
  • polyethylene Polymers such as terephthalate (poly (ethylene terephthalate; PETP) may be used, and may be used without limitation as long as the microfluidic channel may be formed by a known method such as nanolithography. It can optionally be made in the form of a conjugate of two or three different materials.
  • the working electrode may be a fine band electrode made of a metallic material or a semiconductor material such as gold, platinum, carbon, indium tin oxide (ITO), but is not limited thereto.
  • the fine strip electrode may be patterned on a substrate through a known semiconductor process.
  • the electrophoretic chip according to an embodiment of the present invention may be prepared by separately preparing and bonding a first substrate having a working electrode and a second substrate having a micro flow path.
  • UV epoxy may be used as the material for adhering the substrate.
  • the electrode and the fine on the glass substrate are manufactured using the film photo-mask in which the electrode and the microfluidic channel pattern is devised as previously reported through the photolithography process.
  • the electrode is spin-coated with UV epoxy, that is, UV curing resin, on the patterned first substrate and the patterned surface is in contact with each of the first and second substrates so as to place the electrode at a desired position. Align and bond to UV.
  • the process may include washing the channel with an organic solvent and circulating the potential using an acid solution to remove contaminants remaining on the channel and the electrode.
  • the organic solvent may be acetone, sulfuric acid solution as the acid solution, but is not limited thereto.
  • TMSMA is coated on the inner wall of the fluid channel as an adhesive material, and then the fluid channel is filled with a mixture including a photoinitiator or a pure polymer monomer or dimer to a derivatizer and / or a separate photoinitiator.
  • a photoinitiator or a pure polymer monomer or dimer to a derivatizer and / or a separate photoinitiator.
  • a photomask By selective exposure using a photomask, a polymer electrolyte gel salt bridge can be formed and added at a desired position.
  • the mixture may additionally include a crosslinking agent. The excess uncured mixture was removed and the channels and electrodes were washed by electrochemical washing with sulfuric acid solution.
  • the method of manufacturing a microchip by adhering a substrate using the UV epoxy has an advantage that it can be performed relatively simply.
  • a method of washing with a specific solvent is widely used to remove excess UV epoxy from the electrode, but the use of the solvent may damage the electrode itself.
  • a small amount of acidic solution may be injected into the channel and electrochemically washed by circulating the potential.
  • AMPSA 2-acrylamido-2-methyl-1-propanesulfonic acid
  • 2-hydroxy-4 '-(2- 0.5% N, N'-methylenebis as a crosslinking agent for preparing a polymer electrolyte gel with hydroxyethoxy) -2-methylpropiophenone (2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone)
  • acrylamide N, N'-methylenebisacrylamide
  • TMSMA trimethoxysilyl propylmethacrylate
  • Potassium ferricyanide stock solutions of various concentrations were prepared with 100 mM potassium nitrate as a supporting electrolyte for potentiometric measurements. 25 mM sodium borate was used as an electrophoretic buffer of potassium ferricyanide.
  • a solution containing neurotransmitters such as dopamine and catechol in 25 mM 2- (N-morpholino) ethanesulfonic acid (MES) buffer at pH 6.5 was prepared. All reagents were purchased from Sigma-Aldrich (USA).
  • FIG. 1 A method of making a microchip electrophoresis (MCE) device using novel photopolymerization of a polymer electrolyte gel plug by traditional photolithography, UV epoxy adhesion and UV exposure is shown in FIG. 1.
  • MCE microchip electrophoresis
  • a photoresist (AZ4620, Clariant, Switzerland) was spin coated onto a glass slide at 7000 rpm for 30 seconds. Subsequently, the photolithography process was sequentially performed, including soft baking, UV exposure, development, hard baking, and wet etching.
  • Microchips were fabricated through a photolithography process as previously reported using film photo-masks created from AutoCAD drawings of channel and electrode patterns (Joo, S .; Kim, KH; Chung, TD, Biosens. Bioelectron., 2010, 25: 1509-1515).
  • 2 (b) and 2 (c) show photographs of the manufactured microchip structure.
  • Microchips consist of glass substrates with patterned channels and Au-deposited glass substrates. The microchip pattern and fabrication results are shown in FIG. 2.
  • Au electrodes can be manufactured and used in various sizes for electrochemical studies under various electrophoretic conditions with the electrode scale shown in FIG. 2.
  • Bottom glass slides were also made by applying a similar photolithography protocol.
  • the glass slides were washed with piranha solution and coated with hexamethyldisilazane (HMDS, Clariant, Switzerland), followed by spin coating at 4000 rpm for 30 seconds with AZ5214 (Clariant, Switzerland).
  • Prebaking at 100 ° C. for 1 minute, first exposure to 17 mJ / cm 2 for 5 seconds, reversal baking at 100 ° C. for 5 minutes, and then exposure to 17 mJ / cm 2 for 5 seconds to AZ300MIF (Clariant, Switzerland).
  • a metal film was sputtered onto the patterned glass by using a DC / RF electron sputter (Atek, Korea).
  • a titanium (Ti) adhesive layer was sputtered to a thickness of about 350 mm 3 and a gold (Au) thin film of 5000 mm thick and 10 to 20 ⁇ m wide was deposited thereon at 5 mm / s.
  • Gold-patterned glass was soaked in acetone (JT Baker, USA) to remove residues of the patterned Au / Ti layer. UV exposure was then used for the adhesion process and PGSB integration. After washing with air of piranha solution and air blowing, the gold electrode pattern was spin-coated with UV curing resin (LOT No. A10K01, ThreeBond Co., Ltd., Japan) at 1500 rpm for 30 seconds.
  • the substrate was exposed to ultraviolet light of 365 nm wavelength at 17 mJ / cm 2 for 12 seconds.
  • the channel was then washed for 30 seconds with acetone.
  • the bottom glass slide was electrochemically washed with Ag / AgCl and platinum wire as 0.5 and 0.5 M sulfuric acid solutions, respectively, at a circulation potential between +1.0 and +0.2 V.
  • the pattern design of the microchip and the optical image of the manufactured chip are shown in FIG. 2.
  • the final chip was made by adhering the cover and the bottom glass slide. After washing with sulfuric acid, the surface area of the gold electrode exposed to the microchannel was confirmed experimentally whether the gold thin film acted as an electrode and is stable. Gold surface area was measured by cyclic voltammetry in a 5 mM K 3 Fe (CN) 6 solution, which is consistent with the area measured using a video microscope system (ICS-305B, Sometech, Korea). PGSB in the channel was made using UV exposure. Briefly, the microfluidic chip internal channels were filled with 0.1 M TMSMA solution and left at room temperature for 20 minutes.
  • the solution was removed in vacuo, washed with anhydrous methanol, filled with 2.5 M AMPSA monomer solution, and cured by exposing the microfluidic chip to ultraviolet light at 17 mJ / cm 2 for 35 seconds through a photomask.
  • the gold surface was electrochemically cleaned by cycling the potential between +1.0 and +0.2 V with respect to the Ag / AgCl electrode in 0.5 M sulfuric acid solution until a reproducible cyclic voltammetry was obtained.
  • electrochemical behavior was observed using a TMSMA-modified gold substrate as a control. The cyclic voltammetry was confirmed to indicate that the gold surface was cleaned by sulfuric acid washing.
  • Electrochemical experiments of needle-shaped gold electrodes were performed using a conventional potnetiostat (Model CHI660A, CH Instruments Inc.) using Ag / AgCl and platinum wires as reference and counter electrodes, respectively. Electrophoresis was performed using a DBHV-100 high voltage supplier (Digital Bio Technology, Korea) operated by a six-channel voltage regulation program written in LabVIEW software version 8.2 (National Instruments, Austin, TX). The constant potential is isolated from the external electrical outlet by a custom-made DC power supply that switches from DC 9V batteries to DC +5, +15 and -15V to match the output voltage of the internal power module of the constant potential. It became. Detection by current measurement was performed in a Faraday cage equipped with a picoamp booster (Model CHI200, CH Instruments Inc.).
  • the glass chip channels were treated by the following procedure. First, the channels were washed with deionized water, 0.1 M HCl, 0.1 M NaOH and 25 mM Na 2 B 4 O 7 (or 25 mM MES) for 10 minutes each. The effect of the position of the gold working electrode relative to PGSB was evaluated by electrophoretic separation of ferricyanide species. A 200 ⁇ M potassium ferricyanide solution was placed in the sample reservoir and loaded in pinched injection mode by applying +150 V for 20 seconds to the sample waste reservoir; The buffer and waste reservoirs are both floating while the sample reservoir is grounded.
  • OCP open circuit potential
  • 4 shows OCP data obtained with a space of ⁇ 0, 100, 200 and 400 ⁇ m between the gold working electrode and the PGSB.
  • the electric field gradient ( ⁇ V s ) applied along the microchannels for electrophoretic separation was varied from 30 to 400 V / cm.
  • OCP data were clearly dependent on ⁇ V s as well as the distance between the gold working electrode and PGSB.
  • OCP increased with increasing distance from ⁇ V s .
  • the results indicate that there is an important problem to be solved in order to perform electrochemical detection using an electrode located in the middle of a microchannel subjected to a high electric field for electrophoresis.
  • ⁇ V edge value should be lower than the electrochemical potential window for a given solution and the electrode material (electrochemical potential window).
  • the potential window is determined through a cyclic voltammetry obtained in the absence of an electric field gradient in solution. For example, an electric field with an intensity of 400 V / cm results in a maximum difference of 0.4 V and 0.8 V, respectively, between the 10 ⁇ m and 20 ⁇ m wide gold electrode ends. Since the potential window of the gold electrode in the 0.1 M KNO 3 and MES buffer used in the present invention is wider than 1 V, the electrochemical reaction on the gold electrode due to the external electric field required for electrophoretic separation is negligible. Furthermore, as shown in FIG. 5, the electrical potential gradient is expected to be minimal in front of the PGSB connected to the reference electrode system having a very low resistance.
  • Sikindamyeon electrode is positioned just before the PGSB, reduction in electric potential gradient in the vicinity of PGSB will result in minimal effect polarity that is, inhibition of ⁇ V edge. This was confirmed by a significant decrease in OCP fluctuations as shown in FIG. 4 (a).
  • the electrochemical potential difference ⁇ V s due to the electrophoretic electric field is much larger than the potential difference applied between the work-reference electrodes for current detection.
  • the work is also required for the current detecting small variations in ⁇ V s - may result in serious movement in electrochemical potential between a reference electrode.
  • the system comprising: the bipolar effect that is influenced by the ⁇ V edge. Due to the significantly reduced electrical potential gradient near the PGSB, the working electrode present to be in electrical connection with the PGSB is expected to be on an almost equipotential surface with the PGSB. Therefore, the solution potential in the working electrode located near the PGSB does not differ significantly from that of the reference electrode (FIG. 5).
  • the electrical potential gradient in the middle of the microchannel is proportional to the resistance of the region of interest on the microchip channel.
  • the local resistance in the PGSB region is significantly lower than in other parts of the microchannel because PGSB allows free movement of ions and is an electrical conductor connected to the reference electrode.
  • the potential drop near the PGSB is expected to deform out of the sharp potential drop in other microchannel regions. This was confirmed by the OCP data which is almost free from the influence of the external potential gradient obtained from the electrode placed before the PGSB shown in FIG. 4.
  • the noise generated while measuring the potential difference increased in proportion to the external electric field ( ⁇ V s ). Nevertheless, the noise level was less than 5 pA in the Faraday cage.
  • EC measurements can intensify the noise and inaccurate electrochemical potential of the electrode, ultimately damaging the working electrode (FIG. 7). Therefore, arranging the working electrode near the PGSB allows the microfluidic chips of various designs to be devised by overcoming the restriction on the detector position in performing the electrophoresis by the current measurement.
  • Electrophoresis was performed on PGSB-integrated microchips to confirm separation efficiency and detection performance through current measurement reactions.
  • 8 shows electrophoresis from gold microband electrodes located at (a) 0 and (b) 50 ⁇ m from PGSB.
  • the electrophoresis was obtained from the separation of 200 ⁇ M potassium ferricyanide solution on PGSB-integrated microchips at 150 V / cm.
  • the theoretical number, that is, the separation efficiency is 10700 / m (a) and 11500 / m (b), and the peak currents are 17 nA (a) and 8.0 nA (b).
  • Another role of the polymer electrolyte gel is to prevent the buffer in the separation channel from leaking into the reservoir where the reference electrode is present.
  • FIG. 10 The functionality of the microchip system equipped with PGSB for the separation of neurotransmitters by electrophoresis proposed in the present invention is shown in FIG. It was shown that the electrophoresis of the neurotransmitter mixture consisting of dopamine (100 ⁇ M) and catechol (150 ⁇ M) can be separated under an electric field in the range of 50 to 500 V / cm.
  • the results shown in FIG. 10 show that the electric field strength is a major parameter in determining separation efficiency. The highest separation efficiency was observed under an electric field of 200 V / cmc (catechol, 10500 / m and dopamine, 8500 / m). As the electric field increased from 50 V / cm to 500 V / cm, the migration time for all compounds decreased.

Abstract

The present invention relates to an electrophoretic chip for electrochemical detection and to a method for monitoring an electrochemical signal using the electrophoretic chip without interferences by an electric field. More particularly, the electrophoretic chip is configured in that a working electrode for detecting the electrochemical characteristics of materials for fluidic analysis is arranged at one point in a fluid channel, an equipotential structure electrically connected to the working electrode is arranged on at least one wall surface of the channel, and a counter electrode is arranged in an equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution, in the outside of the channel arranged adjacent to the fluid channel with the equipotential structure serving as a passage, thus detecting an electrochemical signal generated between the working electrode and the counter electrode. Furthermore, the method for monitoring an electrochemical signal without interferences by an electric field through the working electrode arranged at one point in the fluid channel to which electric field is applied comprises a step of measuring an electrochemical signal between the working electrode and a counter electrode. An equipotential space is formed by an equipotential structure formed on at least one wall surface of the fluid channel and electrically connected to the working electrode. The counter electrode is disposed in the equipotential space separated from the channel by the equipotential structure.

Description

전기화학적 검출을 위한 전기영동칩Electrophoretic Chips for Electrochemical Detection
본 발명은 전기화학적 검출을 위한 전기영동칩 및 이를 이용하여 전기장의 간섭없이 전기화학적 신호를 모니터링하는 방법에 관한 것이다. 구체적으로, 상기 전기영동칩은 유체채널 내의 일 지점에 유체 분석물질의 전기화학적 특성을 검출하기 위한 작업전극이 구비되어 있고, 채널의 적어도 일 벽면에 상기 작업전극과 전기적으로 연결된 등전위구조물이 구비되고, 상기 등전위구조물을 통로로 하여 유체채널과 인접해 있는 채널 외부에 지지전해질 용액으로 채위지고 상기 등전위구조물에 의해 형성된 등전위공간에 상대전극이 구비되어 작업전극과 상대전극 사이에 발생하는 전기화학적 신호를 검출하는 것을 특징으로 한다. 또한 전기장이 인가된 유체채널 내의 일 지점에 구비된 작업전극을 통해 상기 전기장의 간섭없이 전기화학적 신호를 모니터링하는 방법으로서, 상기 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 단계를 포함하며, 이때 상기 유체채널의 적어도 일 벽면에 형성되고 상기 작업전극과 전기적으로 연결되어 있는 등전위구조물에 의해 등전위공간이 형성되고, 상기 상대전극은 상기 등전위구조물에 의해 채널과 분리된 등전위공간에 배치되어 있는 것이 특징인 방법에 관한 것이다.The present invention relates to an electrophoretic chip for electrochemical detection and a method for monitoring an electrochemical signal without interference of an electric field using the same. Specifically, the electrophoretic chip is provided with a working electrode for detecting the electrochemical characteristics of the fluid analyte at one point in the fluid channel, the equipotential structure electrically connected to the working electrode on at least one wall of the channel is provided The electrochemical signal generated between the working electrode and the counter electrode is provided with a counter electrode in the equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution outside the channel adjacent to the fluid channel through the equipotential structure as a passage. It is characterized by detecting. In addition, a method for monitoring an electrochemical signal without interference of the electric field through a working electrode provided at a point in the fluid channel to which the electric field is applied, comprising the steps of measuring an electrochemical signal between the working electrode and the counter electrode, In this case, the equipotential space is formed by an equipotential structure formed on at least one wall surface of the fluid channel and electrically connected to the working electrode, and the counter electrode is disposed in the equipotential space separated from the channel by the equipotential structure. A method is characterized.
마이크로칩 전기영동법(microchip electrophoresis; MCE)은 지난 십수년에 걸쳐 소형화된 시스템을 사용하는 화학적 및 생물학적 분석을 위한 방법으로 대두되고 있다. 비전문가들이 언제 어디서나 분석을 수행할 수 있도록 하기 위하여 최근에는 미세유체 칩-기반 분석도구를 응용하여 시료 전처리, 분리 및 검출 등의 복수의 단위 공정을 하나의 칩에 집적시키는 경향이 있다. 휴대용 시스템을 위한 필수적인 요소로는 낮은 검출한계, 빠른 분석, 높은 효율, 낮은 비용, 일회성 및 휴대가능성을 갖춘 고성능 분리-기반 시스템을 위한 검출기법이 중요하다. 실제적으로 소형화된 검출기는 칩-기반 분석도구에 상당한 이점을 제공할 수 있다.Microchip electrophoresis (MCE) has emerged as a method for chemical and biological analysis using miniaturized systems over the last decades. Recently, microfluidic chip-based analytical tools have been applied to integrate a plurality of unit processes such as sample preparation, separation, and detection into a single chip so that non-experts can perform the analysis anytime and anywhere. An essential element for portable systems is the detection method for high performance separation-based systems with low detection limits, fast analysis, high efficiency, low cost, one-time and portability. In practice, miniaturized detectors can provide significant advantages for chip-based analytical tools.
적외선 흡수 스펙트럼의 푸리에 전환(Fourier transformation of infrared light absorption spectra; FT-IR), 라만산란(Raman scattering), 핵자기공명(nuclear magnetic resonance; NMR), 굴절률(refractive index; RI), 열렌즈 현미경관찰법(thermal lens microscopy; TLM), 마이크로플라즈마-광학 방출 분광법(microplasma-optical emission spectroscopy; OES), 표면 플라즈몬 공명(surface plasmon resonance; SPR), 전기화학적 분석법(electrochemical analysis; EC), 화학발광법(chemiluminescence; CL), 질량분석법(mass spectrometry; MS), UV-vis 흡광법(UV-vis), 및 레이저 유도 형광법(laser induced fluorescence; LIF)과 같은 검출방법을 전기영동 장치에 통합시키려는 시도가 진행되어 오고 있다. 특히, 검출의 질의 현저한 손실 없는 모세관 전기영동법(capillary electrophoresis; CE)과의 호환성으로 인해 MS, LIF, UV-vis 및 EC에 관심이 집중되고 있다. 시판되고 있는 CE 기기의 대부분이 UV-vis 흡광법을 이용하고 있음에도 불구하고, 상기 검출법은 본질적으로 열악한 검출한계로 인해 나노몰 또는 나노몰 미만의 농도 범위의 미량의 화학종 분석에는 부적합하다. MS 검출법은 MCE와 결합하여 높은 효율을 제공하는 것으로 보고되고 있으나, 고가의 장비를 요구하며 일반적으로 휴대할 수 없다는 단점이 있다. LIF는 MCE와 결합하여 극도로 민감한 검출을 허용하는 보편적인 검출방법이다. 하지만, LIF법을 수행할 수 있도록 분석물질을 형광체로 유도체합성하거나 자연적 형광 화합물을 분석물질로 선택해야만 한다. EC 검출법은 매우 단순한 기기와 마이크로칩 상에 집적시킨 마이크로 스케일의 전극으로 구성되면서도 탁월한 민감도와 선택성을 가진다. 따라서, 미세유체 온-칩(on-chip) 분리 시스템을 위한 이상적인 검출방법으로 널리 사용되고 있다. 이러한 EC 검출법에 있어서 가장 큰 문제점은 CE를 위해 기본적으로 인가되는 높은 CE 전압과 그로 인해 검출기가 받게 되는 강한 전기장의 영향이다. 이로 인해, 심한 노이즈가 유발되고 전기화학적 검출을 불가능하게 할 수 있다. 또한, 전기적 급증(electrical surge)이 EC 검출기에 심각한 손상을 야기할 수 있다.Fourier transformation of infrared light absorption spectra (FT-IR), Raman scattering, nuclear magnetic resonance (NMR), refractive index (RI), thermal lens microscopy (thermal lens microscopy; TLM), microplasma-optical emission spectroscopy (OES), surface plasmon resonance (SPR), electrochemical analysis (EC), chemiluminescence Attempts to integrate detection methods such as CL, mass spectrometry (MS), UV-vis absorption (UV-vis), and laser induced fluorescence (LIF) into electrophoretic devices Coming. In particular, attention is focused on MS, LIF, UV-vis and EC due to compatibility with capillary electrophoresis (CE) without significant loss of quality of detection. Although most of the commercially available CE instruments use UV-vis absorption, the detection method is inherently unsuitable for the analysis of trace species in concentration ranges of nanomolar or sub-nanomol due to poor detection limits. MS detection has been reported to provide high efficiency in combination with MCE, but it requires expensive equipment and has a disadvantage in that it is generally not portable. LIF is a universal detection method in combination with MCE that allows for extremely sensitive detection. However, in order to perform the LIF method, the analyte must be synthesized as a phosphor or a natural fluorescent compound must be selected as the analyte. EC detection consists of a very simple device and a microscale electrode integrated on a microchip, but with excellent sensitivity and selectivity. Therefore, it is widely used as an ideal detection method for microfluidic on-chip separation systems. The biggest problem with this EC detection method is the effect of the high CE voltage applied basically for the CE and the strong electric field the detector receives. This can cause severe noise and make electrochemical detection impossible. In addition, electrical surges can cause serious damage to the EC detector.
전류 측정에 의한 검출방법은 마이크로채널 내의 작업전극의 위치에 따라 엔드-채널형과 인-채널형으로 분류된다. 엔드-채널 검출법은 CE 전압과 전류의 영향을 감소시켜 분석물로부터 산화환원 전류를 측정하는 손쉬운 방법이다. Woolley 등은 전기영동장(capillary electrophoresis field; CE field)의 간섭을 최소화하기 위해 작업전극 직전에서 점차적으로 넓어지는 분리 채널 말단에 위치한 작업전극을 이용하는 마이크로칩 상에서의 엔드-채널 검출법을 제안하였다. 그러나, 채널의 배출구 근처에서 전기화학적 전류를 측정하는 것은 산화환원종의 반파전위 이동을 유발시켜 전기영동장 하에서 작업전극과 채널 배출구의 상대적인 위치에 대한 민감도로 인해 재현성을 저하시킬 수 있다. Wang 등은 이러한 문제점을 해결하기 위하여, 분리채널과 작업전극 간에 특정한 거리를 유지하는 "wall-jet"이라 명명한 엔드-채널 검출방법을 개발하였다. 그러나, 수직으로 존재하는 검출 스트립에 연결된 분리채널의 구조는 마이크로칩의 소형화와 다양성을 제한한다. 엔드-채널 검출법이 전기영동장 하에서 EC 전류를 측정할 수 있는 방법을 제공할 수 있으나, 피크 넓어짐을 야기하고 분리효율에 영향을 주는 시료 플러그 분산을 포함하여 몇 가지 실질적인 문제점을 여전히 가지고 있다. Ertl 등은 마이크로 채널 상에서 외피유동(sheath-flow)을 이용하여 시료 플러그의 분산을 방지함으로써 엔드-채널 검출법을 개선하였다. 그러나, 외피유동 채널의 형성은 채널 디자인의 복잡성을 증가시킨다. 분리채널 내의 분석물질로부터 산화환원 전류를 측정하기 위한 몇몇 이론적 및 실험적 전략이 보고되고 있다. Martin 등은 분리채널의 최말단에 배열된 그러나 여전히 내부에 존재하는 작업전극을 갖는 디자인을 제시하였다. 그러나, 상기 인-채널 배열은 반파전위의 이동과 전기화학적 노이즈를 최소화하기 위하여 분리채널 내에서 작업전극의 정확한 배열을 요구한다. Chen 등은 이중채널 배치(dual-channel configuration)를 이용하여 전위이동을 제거할 수 있는 인-채널 검출법을 제안하였으나, 이때 작업전극 및 기준전극은 iR 강하를 최소화하기 위하여 채널 배출구에 위치한 상대전극에 가능한 가까이 위치해야만 한다. 더불어, 상기 검출법에 있어서 이중채널은 칩 패턴의 단순화를 저해하고 동일한 칩 상에 다른 요소의 집적을 곤란하게 하는 복잡한 채널 디자인을 요구한다.Detection methods by current measurement are classified into end-channel type and in-channel type according to the position of the working electrode in the microchannel. End-channel detection is an easy way to measure redox currents from analytes by reducing the effects of CE voltage and current. Woolley et al. Proposed an end-channel detection method on a microchip using a working electrode located at the end of a separation channel gradually widening immediately before the working electrode to minimize interference of a capillary electrophoresis field (CE field). However, measuring the electrochemical current near the outlet of the channel can lead to half-wave potential shift of the redox species, thereby reducing reproducibility due to the sensitivity of the relative position of the working electrode and the channel outlet under electrophoresis. In order to solve this problem, Wang et al. Developed an end-channel detection method called "wall-jet" that maintains a specific distance between the separation channel and the working electrode. However, the structure of the isolation channel connected to the vertically present detection strip limits the miniaturization and diversity of the microchip. Although end-channel detection can provide a way to measure EC currents under electrophoresis, there are still some practical problems, including sample plug dispersions that cause peak broadening and affect separation efficiency. Ertl et al. Improved end-channel detection by using sheath-flow on the microchannels to prevent dispersion of the sample plug. However, the formation of skin flow channels increases the complexity of the channel design. Several theoretical and experimental strategies have been reported for measuring redox currents from analytes in separate channels. Martin et al. Proposed a design with working electrodes arranged at the end of the separation channel but still present. However, the in-channel arrangement requires the exact arrangement of working electrodes within the separation channel to minimize half-wave potential shifts and electrochemical noise. Chen et al. Proposed an in-channel detection method that eliminates potential shifts using a dual-channel configuration, but at this time, the working electrode and the reference electrode are placed on the counter electrode located at the channel outlet to minimize the iR drop. It should be as close as possible. In addition, the dual channel in the detection method requires a complex channel design that inhibits the simplification of the chip pattern and makes it difficult to integrate other elements on the same chip.
감결합 접근법(decoupling approach)은 전기영동장으로부터 전류측정에 의한 신호를 분리하고 엔드-채널법에서 관찰되는 확산성 띠-넓어짐을 제거하기 위한 또 다른 방법이다. Rossier와 동업자들은 분리채널에 수직하게 위치한 마이크로홀 어레이로 구성되는 감결합기를 집적시켰다. Chen 등은 수소 버블을 효과적으로 제거하기 위하여 감결합기로서 팔라듐 금속전극을 사용하였다. 상기 인-채널 검출을 위한 감결합법이 분리장(separation field)으로부터 EC 검출기를 분리시킬 수 있고 엔드-채널법의 특징인 띠 넓어짐을 억제할 수 있는 또 다른 효과적인 방법을 제공함에도 불구하고, 감결합기와 작업전극 간의 전기장 세기의 빠른 감소로 인한 띠 분산은 여전히 존재한다. 양극성 전기화학을 이용하는 또 다른 접근법은 감결합기를 사용하지 않는 인-채널 검출방법이다. 그러나, 양극성 전극 크기, 전극 간격 또는 전기장 세기를 조절함으로써 작업전극의 전위를 조절하는, 전류측정에 의한 검출방법-기반 양극성 전기화학은 개개의 산화환원-활성 분석물질에 따라 달라지는 고유 산화환원 전위의 다양성으로 인해 산화환원-활성 분석물질의 검출에는 적합하지 않다.The decoupling approach is another method to separate the signal by current measurement from the electrophoretic field and to eliminate the diffuse band-wideness observed in the end-channel method. Rossier and colleagues have integrated a decoupler, which consists of an array of microholes located perpendicular to the separation channel. Chen et al. Used a palladium metal electrode as a decoupling device to effectively remove hydrogen bubbles. Although the decoupling method for in-channel detection can separate the EC detector from the separation field and provide another effective way to suppress the band widening that is characteristic of the end-channel method, the decoupling device There is still a band dispersion due to the rapid decrease in electric field strength between the electrode and the working electrode. Another approach using bipolar electrochemistry is in-channel detection without the use of decoupling devices. However, current-based detection method-based bipolar electrochemistry, which modulates the potential of the working electrode by controlling the size of the bipolar electrode, the electrode spacing, or the electric field strength, provides an intrinsic redox potential that depends on the individual redox-active analyte. The variety makes them unsuitable for the detection of redox-activity analytes.
이에 본 발명자들은 강한 전기영동장의 영향을 최소화시켜 재현성있는 전기화학적 측정을 가능하게 할 수 있는 방법을 예의 연구노력한 결과, 유체채널의 일 벽면에 등전위구조물로서 유체채널 내의 작업전극과 전기적으로 연결된 고분자 전해질 겔 염다리(polyelectrolytic gel salt bridge; PGSB)를 도입함으로써 유사기준전극으로 작용하도록 하여 작업전극과 기준전극이 동일한 전위차를 경험하도록 하는 효과를 유발하여 전기영동장의 영향을 받지 않고 마이크로채널 상의 어디서나 인-채널 검출을 가능하게 하는 신규한 모세관 전기영동을 위한 마이크로칩 및 이를 이용한 검출방법을 확인하고 본 발명을 완성하였다. 상기 인-채널법은 다음의 이유로 특히 MCE에 적합하다: (i) 감결합기(decoupler) 없이 인-채널 검출을 쉽게 수행할 수 있다. (ii) UV 노출에 의한 PGSB의 생성은 매우 간편하며 따라서, PGSB를 분리채널 내 어느 곳에도 위치시킬 수 있다. (iii) 전기적으로 분리된 검출기(detector)는 전자장치에 대한 손상을 제거할 수 있으므로 작업전극에서 전위변동(potential fluctuation)을 최소화할 수 있다. (iv) 분리채널 내에 작업전극을 위치시킴으로 엔드-채널 검출법을 사용할 때 관찰되는 띠-넓어짐을 제거하여 높은 분리효율을 얻을 수 있다. (v) 작업전극과 기준전극을 등전위면 상에 위치시킴으로써 반파전위 이동을 감소시키고, 고분자 전해질 염다리 영역의 급격한 저항감소로 인해 바탕 노이즈를 실질적으로 감소시킨다; 따라서, 변화하는(varying) 그리고 변동가능한(possibly fluctuating) 전기영동장 하에서도 작업전극에 일정한 전위를 적용할 수 있다.Accordingly, the present inventors have diligently studied a method that can minimize the influence of strong electrophoretic field and enable reproducible electrochemical measurement. As a result, a polymer electrolyte electrically connected to a working electrode in a fluid channel as an equipotential structure on one wall of the fluid channel By introducing a polyelectrolytic gel salt bridge (PSGB), it acts as a pseudo-reference electrode, causing the working electrode and the reference electrode to experience the same potential difference, so that they are in-channel anywhere on the microchannel without being affected by electrophoresis. A novel microchip for capillary electrophoresis that enables detection and a detection method using the same has been identified and the present invention has been completed. The in-channel method is particularly suitable for MCE for the following reasons: (i) In-channel detection can easily be carried out without decouplers. (ii) The production of PGSB by UV exposure is very simple and therefore the PGSB can be placed anywhere in the separation channel. (iii) An electrically isolated detector can eliminate damage to the electronics, thereby minimizing potential fluctuations at the working electrode. (iv) By placing the working electrode in the separation channel, high separation efficiency can be obtained by eliminating the band-wideness observed when using the end-channel detection method. (v) reducing the half-wave potential shift by placing the working electrode and the reference electrode on the equipotential surface and substantially reducing the background noise due to the rapid decrease in resistance of the polymer electrolyte salt bridge region; Thus, a constant potential can be applied to the working electrode even under varying and posibly fluctuating electrophoretic fields.
본 발명의 목적은 양단부 사이에 전압이 걸려있고 상기 전압에 의해 시료 중 분석물질들이 이동하면서 이동속도 차이에 의해 분석물질을 분리하는 유체채널을 구비하는 전기영동칩에 있어서, 유체채널 내의 일 지점에 분석물질의 전기화학적 특성을 검출하기 위한 작업전극이 구비되어 있고, 채널의 적어도 일 벽면에 상기 작업전극과 전기적으로 연결된 등전위구조물이 구비되고, 상기 등전위구조물을 통로로 하여 유체채널과 인접해 있는 채널 외부에 지지전해질 용액으로 채위지고 상기 등전위구조물에 의해 형성된 등전위공간에 상대전극이 구비되어 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 것이 특징인 전기영동칩을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is an electrophoretic chip having a fluid channel between both ends and having a fluid channel separating analyte by a difference in moving speed while moving analytes in a sample by the voltage. A working electrode is provided for detecting the electrochemical characteristics of the analyte, and an equipotential structure electrically connected to the working electrode is provided on at least one wall of the channel, and the channel is adjacent to the fluid channel using the equipotential structure as a passage. The present invention provides an electrophoretic chip characterized by measuring an electrochemical signal between a working electrode and a counter electrode by having a counter electrode disposed in an equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution.
본 발명의 다른 하나의 목적은 전기장이 인가된 유체채널 내의 일 지점에 구비된 작업전극을 통해 상기 전기장의 간섭없이 전기화학적 신호를 모니터링하는 방법으로서, 상기 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 단계를 포함하며, 이때, 상기 유체채널의 적어도 일 벽면에 형성되고 상기 작업전극과 전기적으로 연결되어 있는 등전위구조물에 의해 등전위공간이 형성되고, 상기 상대전극은 상기 등전위구조물에 의해 채널과 분리된 등전위공간에 배치되어 있는 것이 특징인 방법을 제공하는 것이다.Another object of the present invention is a method for monitoring an electrochemical signal without interference of the electric field through a working electrode provided at a point in the fluid channel to which the electric field is applied, the electrochemical signal between the working electrode and the counter electrode And measuring, wherein an equipotential space is formed by an equipotential structure formed on at least one wall of the fluid channel and electrically connected to the working electrode, and the counter electrode is separated from the channel by the equipotential structure. It is to provide a method characterized by being disposed in the equipotential space.
본 발명은 전기영동법을 이용하여 물질을 분석함에 있어서, 분리 채널 내에 존재하는 전기화학적 검출을 위한 작업전극과 전기적으로 연결된 등전위구조물 예컨대, 고분자 전해질 겔 염다리의 도입에 의해, 등전위공간을 형성하고 상기 등전위공간에 상대전극 및 선택적으로 기준전극을 위치시킴으로 상기 등전위구조물이 유사기준전극으로 작용하여 전기영동을 위한 강한 전기장에 의한 간섭없이 전기화학적 검출이 가능하다.According to the present invention, in the analysis of materials using electrophoresis, an equipotential structure electrically connected to a working electrode for electrochemical detection existing in a separation channel, for example, a polyelectrolyte gel salt bridge, forms an equipotential space and forms the equipotential space. By placing the counter electrode and optionally the reference electrode in the space, the equipotential structure acts as a pseudo reference electrode, allowing electrochemical detection without interference by a strong electric field for electrophoresis.
도 1은 유리 마이크로칩 상에 PGSB를 제조하는 과정을 나타낸 도이다. UV 접착은 빠르고 유리칩에 적용가능하여 전극의 안정성을 보장할 수 있다. PGSB는 접착 후 즉시 UV에 노출시킴으로 형성되었다.1 is a diagram illustrating a process of manufacturing PGSB on a glass microchip. UV adhesion is fast and can be applied to glass chips to ensure the stability of the electrodes. PGSB was formed by exposure to UV immediately after adhesion.
도 2는 전극 및 마이크로 채널의 고안을 나타낸 도이다. (a)는 전극 및 마이크로 채널 패턴을 위한 포토-마스크 디자인을 나타낸 것으로, 규모는 하기와 같다: 주입채널, 시료(및 시료-폐액) 저장소(sample(and sample-waste) reservoir)로부터 이중-T 채널까지 6 mm, 완충액 저장소로부터 이중-T 채널까지 2 mm; 분리채널 길이. 16 mm; 유효 길이, 12 mm; PGSB 채널, 350 μm. (b)는 전극과 마이크로칩 채널의 이미지를 나타낸 도이다. 채널의 너비 80 μm, 깊이 15 μm 이다. 이중-T 채널의 규모는 너비 80 μm, 깊이 15 μm 이며 100 μm의 주입교차점(injection intersection)을 포함한다. PGSB 채널은 120 μm 너비, 15 μml 깊이를 갖는다. Au 전극은 10 또는 20 μm의 폭을 갖는다. (c)는 채널-내 전기화학적 검출을 위한 마이크로칩 사진이다.2 shows the design of the electrode and the micro channel. (a) shows the photo-mask design for the electrode and micro channel pattern, the scale being as follows: dual-T from injection channel, sample (and sample-waste) reservoir 6 mm to channel, 2 mm from buffer reservoir to dual-T channel; Separation channel length. 16 mm; Effective length, 12 mm; PGSB channel, 350 μm. (b) shows an image of an electrode and a microchip channel. The channel is 80 μm wide and 15 μm deep. The dual-T channel is 80 μm wide, 15 μm deep and contains an injection intersection of 100 μm. PGSB channels are 120 μm wide and 15 μml deep. Au electrodes have a width of 10 or 20 μm. (c) is a microchip photograph for in-channel electrochemical detection.
도 3은 고분자 전해질 겔 염다리(polyelectrolytic gel salt bridge; PGSB)-집적 마이크로칩 전기영동법(microchip eletrophoresis; MCE)을 개략적으로 나타낸 도이다.3 is a schematic representation of a polyelectrolytic gel salt bridge (GSG) -integrated microchip eletrophoresis (MCE).
도 4는 다양한 전기장 하에서 개방회로 전위차를 Au 작업전극과 PGSB의 상대적인 위치의 함수로 나타낸 도이다. Au 작업전극(10 μm 너비)을 삽입도에 나타낸 바와 같이 PGSB로부터 (a) 0 μm, (b) 100 μm, (c) 200 μm, 및 (d) 400 μm 거리에 위치시켰다. 마이크로 채널은 100 mM KNO3 용액으로 채웠다.4 shows the open circuit potential difference as a function of the relative positions of the Au working electrode and the PGSB under various electric fields. The Au working electrode (10 μm wide) was placed at (a) 0 μm, (b) 100 μm, (c) 200 μm, and (d) 400 μm from the PGSB as shown in the inset. Micro channels were filled with 100 mM KNO 3 solution.
도 5는 PGSB 영역 근처에서 예측되는 전위 프로필을 나타낸 도이다. PGSB 채널의 ΔφPGSB는 마이크로채널 내의 어느 곳에서의 전위차보다 훨씬 더 작다.5 shows the potential profile predicted near the PGSB region. Δφ PGSB PGSB of channels is much smaller than the potential at any place within the microchannel.
도 6은 모세관 전기영동장(capillary electrophoresis field; CE field) 하에서 PGSB 전방에 위치한 Au 전극으로부터의 순환 전압전류도이다. 실선은 0 V/cm, 점선은 200 V/cm 그리고 쇄선(dashed line)은 400 V/cm에 대한 그래프이다. 순환 전압전류법은 보조 전해질로 100 mM KNO3를 포함하는 1 mM K3Fe(CN)6 용액에서 수행되었다. 10 μm 너비의 Au 작업전극을 사용하였고, 기준전극으로는 Ag/AgCl/KCl (3M)을, 상대전극으로는 Pt 선을 사용하였으며 주사 속도는 100 mV/s 이었다.FIG. 6 is a cyclic voltammetry from an Au electrode located in front of the PGSB under a capillary electrophoresis field (CE field). The solid line is a graph for 0 V / cm, the dashed line for 200 V / cm and the dashed line for 400 V / cm. Cyclic voltammetry was performed in a 1 mM K 3 Fe (CN) 6 solution containing 100 mM KNO 3 as auxiliary electrolyte. 10 μm wide Au working electrode was used, Ag / AgCl / KCl (3M) was used as reference electrode, Pt line was used as counter electrode, and scanning speed was 100 mV / s.
도 7은 다양한 전기영동장 하에서 PGSB로부터 Au 작업전극까지의 거리의 영향을 나타낸 도이다. (a)는 Au 작업전극이 PGSB로부터 50 μm 거리에 위치할 때, (b)는 150 μm 거리에 위치할 때의 전기영동도이다. Au 작업전극의 너비는 60 μm이며, 100 mM KNO3를 포함하는 5 mM K3Fe(CN)6 용액에서 50 mV/s의 주사속도로 Ag/AgCl에 대해 0과 +0.5 V 사이의 전위를 순환시킴으로 순환 전압전류법을 수행하였다.7 shows the effect of the distance from PGSB to Au working electrodes under various electrophoretic fields. (a) is electrophoresis when the Au working electrode is located at 50 μm distance from PGSB, and (b) is at 150 μm distance. The width of the Au working electrode is 60 μm and a potential of between 0 and +0.5 V for Ag / AgCl is obtained at a scanning rate of 50 mV / s in a 5 mM K 3 Fe (CN) 6 solution containing 100 mM KNO 3 . Cyclic voltammetry was performed by cycling.
도 8은 PGSB로부터 (a) 0 μm 및 (b) 50 μm에서 검출된 200 μM K3Fe(CN)6의 전기영동도이다. 수행 조건은 다음과 같다: 모세관 전기영동장 세기, -150 V/cm; Au 작업전극 너비, 20 μm; 총 길이, 1.6 cm; 유효 길이, 1.2 cm; 작동 완충액(running buffer), 25 mM 붕산나트륨; 검출 전위, +0.15 V 대 Ag/AgCl/KCl (3 M) 기준전극.8 is an electrophoretic diagram of 200 μΜ K 3 Fe (CN) 6 detected at (a) 0 μιη and (b) 50 μιη from PGSB. Performance conditions were as follows: capillary electrophoresis intensity, -150 V / cm; Au working electrode width, 20 μm; Total length, 1.6 cm; Effective length, 1.2 cm; Running buffer, 25 mM sodium borate; Detection potential, +0.15 V vs. Ag / AgCl / KCl (3 M) reference electrode.
도 9는 PGSB 가까이에 위치한 Au 전극을 사용하여 검출한 1.5 μM K3Fe(CN)6의 전기영동도이다. 수행 조건은 다음과 같다: 모세관 전기영동장 세기, -150 V/cm; Au 작업전극 너비, 20 μm; 총 길이, 1.6 cm; 유효 길이, 1.2 cm; 작동 완충액(running buffer), 25 mM 붕산나트륨; 검출 전위, +0.15 V 대 Ag/AgCl/KCl (3 M) 기준전극.FIG. 9 is an electrophoresis diagram of 1.5 μM K 3 Fe (CN) 6 detected using an Au electrode located near PGSB. Performance conditions were as follows: capillary electrophoresis intensity, -150 V / cm; Au working electrode width, 20 μm; Total length, 1.6 cm; Effective length, 1.2 cm; Running buffer, 25 mM sodium borate; Detection potential, +0.15 V vs. Ag / AgCl / KCl (3 M) reference electrode.
도 10은 PGSB-집적 마이크로칩을 이용하여 얻은 높은 전기장 하에서 카테콜(150 μM)과 도파민(100 μM)의 전기영동도이다. 수행 조건은 다음과 같다: Au 작업전극 너비, 20 μm; 총 길이, 5.4 cm; 유효 길이, 5 cm; 작동 완충액(running buffer), 25 mM MES(2-(N-morpholino)ethanesulfonic acid); 검출 전위, +0.05 V 대 Ag/AgCl/KCl (3 M) 기준전극.FIG. 10 is the electrophoresis of catechol (150 μM) and dopamine (100 μM) under high electric fields obtained using PGSB-integrated microchips. The performance conditions were as follows: Au working electrode width, 20 μm; Total length, 5.4 cm; Effective length, 5 cm; Running buffer, 25 mM MES (2- (N-morpholino) ethanesulfonic acid); Detection potential, +0.05 V vs. Ag / AgCl / KCl (3 M) reference electrode.
도 11은 본 발명에 따른 등전위구조물 및 이에 의해 형성되는 등전위공간을 개략적으로 나타낸 도이다.11 is a view schematically showing an equipotential structure and an equipotential space formed thereby according to the present invention.
하나의 양태로서 본 발명은 양단부에 사이에 전압이 걸려있고 상기 전압에 의해 시료 중 분석물질들이 이동하면서 이동속도 차이에 의해 분석물질을 분리하는 유체채널을 구비하는 전기영동칩에 있어서, 유체채널 내의 일 지점에 분석물질의 전기화학적 특성을 검출하기 위한 작업전극이 구비되어 있고, 채널의 적어도 일 벽면에 상기 작업전극과 전기적으로 연결된 등전위구조물이 구비되고, 상기 등전위구조물을 통로로 하여 유체채널과 인접해 있는 채널 외부에 지지전해질 용액으로 채위지고 상기 등전위구조물에 의해 형성된 등전위공간에 상대전극이 구비되어 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 것이 특징인 전기영동칩을 제공한다.In one aspect, the present invention provides an electrophoretic chip having a fluid channel between both ends thereof and having a fluid channel separating analyte by a difference in moving speed while moving analytes in a sample by the voltage. A working electrode is provided at one point to detect the electrochemical characteristics of the analyte, and an equipotential structure electrically connected to the working electrode is provided on at least one wall of the channel, and is adjacent to the fluid channel using the equipotential structure as a passage. It provides an electrophoretic chip characterized by measuring the electrochemical signal between the working electrode and the counter electrode is provided with a counter electrode in the equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution outside the channel.
다른 하나의 양태로서, 본 발명은 전기장이 인가된 유체채널 내의 일 지점에 구비된 작업전극을 통해 상기 전기장의 간섭없이 전기화학적 신호를 모니터링하는 방법으로서, 상기 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 단계를 포함하며, 이때, 상기 유체채널의 적어도 일 벽면에 형성되고 상기 작업전극과 전기적으로 연결되어 있는 등전위구조물에 의해 등전위공간이 형성되고, 상기 상대전극은 상기 등전위구조물에 의해 채널과 분리된 등전위공간에 배치되어 있는 것이 특징인 방법을 제공한다.In another aspect, the present invention is a method for monitoring an electrochemical signal without interference of the electric field through the working electrode provided at a point in the fluid channel to which the electric field is applied, the electrochemical signal between the working electrode and the counter electrode And measuring an equipotential space by an equipotential structure formed on at least one wall surface of the fluid channel and electrically connected to the working electrode, wherein the counter electrode is connected to the channel by the equipotential structure. A method is characterized by being arranged in separate equipotential spaces.
"전기영동"은 전기장 하에서 분석하고자 하는 물질의 이동속도 차이에 의해 물질을 분리하는 방법이다. 분석물질들은 각기 고유의 전하를 띠고 있어 전기장을 적용하면 서로 다른 속도로 이동하게 되는 원리에 근거한 분석 방법이다. 완충용액과 같은 용매 속에서 분자들은 각각 고유의 전하를 띠게 되고(예를 들어 DNA는 일반적으로 음전하를, 단백질은 pH에 따라 음전하, 중성 또는 양전하를 띔) 상기 혼합물에 전기장을 걸어주면 전하에 따라 각기 다른 속도로 이동하게 되므로 분리가 가능하다. 본 발명에서 전기영동은 모세관 전기영동(capillary electrophoresis)인 것이 바람직하다. 상기 모세관 전기영동은 전기영동의 분리 메커니즘과 크로마토그래피의 기기화 및 자동화 개념을 도입한 양이온과 음이온은 물론 중성물질까지도 한번에 분리할 수 있는 분리법이다. 용액 중에 존재하는 분석물질 혼합물에 전기장을 걸어주면, 각 성분들은 각각의 전하와 이동도에 따라 일정한 방향과 속도로 이동한다. 각 성분들은 이동도에 따라 분리되며, 이때, 이동도에 영향을 주는 요소는 입자의 크기, 모양, 평균 전하량 등의 표면전하 특성 및 수용액의 pH, 농도, 온도 등이다. 모세관 전기영동에는 수십 μm 직경의 캐필러리를 이용하며 일반적으로 외부펌프에 의해 발생하는 층상흐름(laminar flow)이나 포물선흐름(parabolic flow)이 아닌 전기영동적 현상인 수직의 전기삼투적 흐름(electro osmotic flow)에 의해 높은 분리효율을 얻을 수 있다. 상기 전기삼투적 흐름의 또 다른 이점은 분석성분의 전하에 관계없이 동일한 방향으로 이동시킨다는 것이다. 이는 전기삼투적 흐름이 음이온이 양극으로 향하려는 힘보다 현저히 크게 작용하기 때문이다. 따라서, 양이온의 전기적 이동력과 전기삼투적 흐름의 합력으로 보다 빠르게 이동하고 중성물질은 전기적 이동력이 아닌 전기삼투적 흐름에 의해 이동하며 음이온은 전기적 이동력 보다 현저히 큰 전기삼투적 흐름에 의해 양극이 아닌 음극으로 이동하나 그 속도는 중성물질보다 느리다."Electrophoresis" is a method of separating a substance by the difference in the moving speed of the substance to be analyzed under an electric field. The analytes have their own charges and are based on the principle that the electric field will move at different speeds. In a solvent, such as a buffer, the molecules each have a unique charge (for example, DNA is usually negatively charged and proteins are negatively charged, neutral or positively charged depending on pH). They can be separated because they move at different speeds. Electrophoresis in the present invention is preferably capillary electrophoresis. The capillary electrophoresis is a separation method capable of separating neutrals as well as positive and negative ions at the same time by introducing the separation mechanism of electrophoresis and the instrumentation and automation concept of chromatography. When an electric field is applied to the analyte mixture present in the solution, each component moves in a constant direction and speed depending on the charge and mobility. Each component is separated according to mobility, and factors affecting mobility include surface charge characteristics such as particle size, shape, average charge, and pH, concentration, and temperature of an aqueous solution. Capillary electrophoresis uses dozens of μm diameter capillaries and is typically an electroosmotic, an electrophoretic phenomenon rather than a laminar or parabolic flow caused by an external pump. High separation efficiency can be obtained by flow. Another advantage of the electroosmotic flow is that it moves in the same direction regardless of the charge of the analyte. This is because the electroosmotic flow acts significantly greater than the force that the negative ions tend to the anode. Therefore, it moves faster by the combined force of the cation's electrical and electroosmotic flow, the neutral material moves by the electroosmotic flow rather than the electrical movement, and the anion is the anode by the electroosmotic flow which is significantly larger than the electrical movement. Move to the cathode, but at a slower rate than the neutral.
이러한 모세관 전기영동의 원리는 마이크로칩에 적용될 수 있다. 수 cm 길이와 수십 μm 너비를 갖는 미세유체채널을 갖는 분석칩을 제조하고 그 양말단에 전기장을 걸어주면 상기 모세관 전기영동과 동일한 원리로 미량의 시료를 분리 및/또는 분석할 수 있다. 그러나, 이러한 마이크로칩을 이용하여 전기영동 분리를 하는 경우 시료가 분리될 수 있는 이동 거리가 짧으므로, 분리효율을 높이기 위하여 보다 강한 전기장을 걸어주어야만 한다. 뿐만 아니라, 시료의 주입, 이동, 혼합, 반응, 분리, 검출 또는 사후분석의 과정을 위해서도 강한 전기장이 가해질 수 있다. 그러나, 이러한 강한 전기장은 분석물질의 전기화학적 검출에 영향을 미친다.This principle of capillary electrophoresis can be applied to microchips. By preparing an analysis chip having a microfluidic channel having a length of several cm and a width of several tens of μm and applying an electric field to the sock end, a trace amount of sample can be separated and / or analyzed on the same principle as the capillary electrophoresis. However, when the electrophoretic separation using such a microchip, the moving distance that the sample can be separated is short, a strong electric field must be applied to increase the separation efficiency. In addition, a strong electric field may be applied for the injection, transfer, mixing, reaction, separation, detection or post-analysis of the sample. However, these strong electric fields affect the electrochemical detection of analytes.
상기 "전기장"은 단위길이당 인가되는 전압으로 표현되는 것으로, 일반적으로 상용화된 모세관 전기영동 시스템에서 최대 30 kV까지 인가될 수 있으나, 예외적으로 60 kV 또는 그 이상의 고전압이 인가되는 경우도 있고, 상기 30 kV의 전압이 30 cm 모세관에 가해지는 경우 약 1000 V/cm의 전기장이 인가된다. 그러나 상기 전기영동을 위해 적용되는 전압은 분석물질 및 분리효율 등을 고려하여 선택될 수 있다. 효율적인 분석물질의 분리 및 전기화학적 검출을 위하여 바람직하게는 0 V/cm 내지 1000 V/cm의 전기장이 인가될 수 있으며, 보다 바람직하게는 0 V/cm 내지 500 V/cm의 전기장이 인가될 수 있으나, 이에 제한되지 않는다.The “electric field” is expressed as a voltage applied per unit length, and may be applied up to 30 kV in a commercially available capillary electrophoretic system, but in some cases, a high voltage of 60 kV or more may be applied. When a voltage of 30 kV is applied to a 30 cm capillary, an electric field of about 1000 V / cm is applied. However, the voltage applied for the electrophoresis may be selected in consideration of analyte and separation efficiency. For efficient separation and electrochemical detection of analytes, an electric field of 0 V / cm to 1000 V / cm may be preferably applied, and more preferably an electric field of 0 V / cm to 500 V / cm may be applied. However, the present invention is not limited thereto.
본 발명의 일 실시예에 의하면, 10 μm의 폭을 갖는 작업전극을 이용하여 500 V/cm의 전기장 하에서도 상기 전기장의 간섭없이 전기화학적 검출이 가능하였다. 그러나, 상기 작업전극의 폭을 1 μm까지 줄인다면 이론적으로 8000 V/cm의 전기장 하에서도 전기화학적 검출이 가능하다.According to an embodiment of the present invention, using a working electrode having a width of 10 μm, electrochemical detection was possible even under an electric field of 500 V / cm without interference of the electric field. However, if the width of the working electrode is reduced to 1 μm, the electrochemical detection is possible under an electric field of 8000 V / cm in theory.
따라서, 본 발명에서는 마이크로칩을 이용한 전기영동 분석의 전기화학적 검출에서 상기 전기영동을 위한 강한 전기장의 영향을 배제하기 위하여 분리 채널 내에 위치한 분석물질의 전기화학적 검출을 위한 작업전극과 전기적으로 연결된 등전위구조물을 도입하여 등전위공간을 형성할 수 있도록 하는 것이 특징이다. 한편, 상기 등전위공간은 일례로 등전위구조물로서 고분자 전해질 겔 염다리를 도입하여 형성할 수 있다. 상기 등전위구조물을 도입함으로써 작업전극과 기준전극 사이에 전기영동을 위한 전기장으로 인해 발생할 수 있는 전압구배를 제거하고 상기 양 전극이 동일한 전위 상에 존재할 수 있도록 한다. 상기 등전위구조물은 등전위면을 3차원적인 공간으로 확장시키기 위해 도입된 구조물을 지칭할 수 있다.Accordingly, in the present invention, an equipotential structure electrically connected to a working electrode for electrochemical detection of analyte located in a separate channel to exclude the influence of a strong electric field for electrophoresis in the electrochemical detection of an electrophoretic analysis using a microchip. It is characterized by allowing to form an equipotential space by introducing a. On the other hand, the equipotential space may be formed by introducing a polymer electrolyte gel salt bridge as an equipotential structure, for example. The introduction of the equipotential structure eliminates the voltage gradient that can occur due to the electric field for electrophoresis between the working electrode and the reference electrode and allows both electrodes to be at the same potential. The equipotential structure may refer to a structure introduced to extend the equipotential surface into a three-dimensional space.
상기 전기화학적 신호는 분석물질의 전기적 신호 또는 전극을 통하여 전기적 신호로 변환된 화학적 신호를 포함할 수 있으며, 전류, 전도도 또는 전위차일 수 있으나, 이에 제한되지 않는다.The electrochemical signal may include an electrical signal of an analyte or a chemical signal converted into an electrical signal through an electrode, and may be a current, conductivity or potential difference, but is not limited thereto.
상기 전기화학적 신호의 검출을 위해 분석칩 상에 도입되는 전극은 분리채널 내의 일 벽면(인-채널 또는 오프-채널 검출법)에 또는 그 말단(엔드-채널 검출법)에 구비될 수 있다. 인-채널 검출법 즉, 채널 내 검출법 수행을 위한 작업전극은 바람직하게는 분리채널 내의 일 벽면에 분리채널과 수직하게 즉, 전기영동장과 평행하게 구비될 수 있으나 이에 제한되지 않으며, 위치 또한 분리채널 상이기만 하면 제한없이 도입될 수 있다.An electrode introduced on the analysis chip for detecting the electrochemical signal may be provided at one wall (in-channel or off-channel detection method) or at an end thereof (end-channel detection method) in the separation channel. The working electrode for performing the in-channel detection method, that is, the intra-channel detection method, may be provided on one wall in the separation channel perpendicularly to the separation channel, that is, parallel to the electrophoretic field, but is not limited thereto. It can be introduced without limitation.
전기화학적 검출을 위한 전극 시스템은 2전극 시스템 또는 3전극 시스템일 수 있다. 2전극 시스템은 분석물질의 검출을 위한 작업전극 및 상대전극을 포함하는 반면, 3전극 시스템은 추가적으로 기준전극을 더 포함한다. 일반적으로 3전극 시스템이 널리 사용되고 있으나, 이에 제한되지 않는다. 상기 2전극 시스템에서는 상대전극이 기준전극의 역할을 겸한다. 따라서, 본 발명에서 용어 "기준전극"은 2전극 시스템의 경우에는 기준전극의 역할을 겸하는 상대전극을 3전극 시스템인 경우에는 상대전극과 별도로 구비된 기준전극을 지칭할 수 있다. 상기 고분자 전해질 겔 염다리와 같은 등전위구조물에 의해 채널과 분리된 지지전해질 용액으로 채워진 등전위공간에는 상대전극 및 선택적으로 기준전극을 구비할 수 있다. 이때, 상기 등전위구조물은 유사기준전극으로 작용한다.The electrode system for electrochemical detection can be a two-electrode system or a three-electrode system. The two-electrode system includes a working electrode and a counter electrode for the detection of the analyte, while the three-electrode system further includes a reference electrode. In general, three-electrode system is widely used, but is not limited thereto. In the two-electrode system, the counter electrode also serves as a reference electrode. Accordingly, in the present invention, the term "reference electrode" may refer to a reference electrode provided as a reference electrode in the case of a two-electrode system, and a reference electrode provided separately from the counter electrode in the case of a three-electrode system. A counter electrode and optionally a reference electrode may be provided in an equipotential space filled with a supporting electrolyte solution separated from a channel by an equipotential structure such as the polyelectrolyte gel salt bridge. In this case, the equipotential structure serves as a pseudo reference electrode.
본 발명에서 "등전위면(equipotential surface)"은 사전적 의미로 전기장 안에서 전위가 같은 점들로 이루어진 면을 의미한다. 마이크로칩 상에 형성된 분리채널은 수 cm의 짧은 거리를 가지며 상기 짧은 거리 내에서 분리를 위하여 강한 전기장(예를 들어, 수 십 내지 수 백 V/cm)이 가해지므로 전기화학적 검출을 위한 작업전극과 기준전극 사이의 물리적인 거리는 채널 내 용액 상에서의 큰 전위차로 인해 검출 신호에 있어서 오차를 발생시키게 된다. 따라서, 본 발명의 일 실시예에서는 전기영동용 마이크로칩의 채널 내에 존재하는 전기화학적 검출을 위한 작업전극과 등전위면 상에 등전위구조물로서 고분자 전해질 겔 염다리를 도입하여 상기 등전위구조물에 의해 채널과 분리된 공간이 상기 작업전극과 동일한 전위를 갖는 등전위공간을 형성하였다.In the present invention, an "equipotential surface" means a surface consisting of points having the same potential in an electric field in a dictionary meaning. The separation channel formed on the microchip has a short distance of several cm and a strong electric field (for example, tens to hundreds of V / cm) is applied for separation within the short distance. The physical distance between the reference electrodes causes errors in the detection signal due to the large potential difference on the solution in the channel. Therefore, in an embodiment of the present invention, a polymer electrolyte gel salt bridge is introduced as an equipotential structure on the working electrode and the equipotential surface for electrochemical detection existing in the channel of the electrophoretic microchip, and is separated from the channel by the equipotential structure. An equipotential space was formed in which the space had the same potential as the working electrode.
상기 등전위구조물인 고분자 전해질 겔 염다리는 바람직하게 이온전도성 고분자이며, 이에 따라 분리채널과 기준전극과 상대전극이 존재하는 공간 사이에서 이온의 자유로운 이동은 허용하면서 이온 이외의 다른 성분 예컨대 분리채널의 완충용액이 상기 고분자 전해질 겔 염다리로 분리된 외부채널에 채워진 지지전해질(supporting electrolyte) 용액과 혼합되는 것은 차단하는 기능을 할 수 있다. 즉, 상기 등전위구조물은 이온의 자유로운 이동은 허용하지만, 고농도의 지지전해질로의 분석용 완충용액의 누수는 방지할 수 있다. 상기 이온전도성 고분자로 형성된 등전위구조물은 매우 낮은 저항을 가지므로 그 폭이 제한되지 않으나, 이온의 이동은 허용하고 용액의 출입은 차단할 수 있는 기능을 가지는 한 얇게 형성되는 것이 바람직하다. 예를 들어 형성되는 고분자 전해질 겔 염다리는 수십 nm 내지 수백 μm 폭으로 제조될 수 있다.The polymer electrolyte gel salt, which is the equipotential structure, is preferably an ion conductive polymer, and thus allows free movement of ions between the separation channel and the space in which the reference electrode and the counter electrode exist, while allowing buffer components of other components, such as the separation channel, to separate. The mixing with the supporting electrolyte solution filled in the external channel separated by the polymer electrolyte gel salt bridge may serve to block. That is, the equipotential structure allows free movement of ions, but can prevent leakage of analytical buffer solution to a high concentration of a supporting electrolyte. Since the equipotential structure formed of the ion conductive polymer has a very low resistance, its width is not limited, but is preferably formed as thin as long as it has a function of allowing the movement of ions and blocking the entry and exit of the solution. For example, the resulting polymer electrolyte gel salt bridge may be prepared in a few tens of nm to several hundred μm in width.
바람직하게 상기 등전위구조물에 의해 형성되는 등전위공간은 유체채널의 너비가 A, 등전위구조물에 의해 형성된 등전위공간으로 향하는 통로 길이 및 분리채널 너비를 포함하는 분리채널 외벽으로부터 기준전극까지의 수직거리가 B이고 등전위 공간으로 향하는 통로의 너비가 C일 때, 상기 분리채널 외벽으로부터 기준전극까지의 수직 거리 B는 유체채널의 너비인 A의 1.5배 이상일 수 있다. 상기 통로의 길이는 수 μm 내지 수백 μm일 수 있으며, 바람직하게는 5 내지 50 μm일 수 있고, 보다 바람직하게는 3 내지 10 μm일 수 있으나, 이에 제한되지 않는다. 이때, 상기 통로의 폭 C는 수 μm 내지 수백 μm일 수 있으며, 바람직하게는 1 내지 10 μm일 수 있으며, 이에 의해 채널로부터 분리된 상대전극 및/또는 기준전극이 존재하는 등전위공간의 너비 D는 C의 1 내지 10배 또는 1 내지 100배 일 수 있으나, 마이크로칩의 기재를 벗어나지 않는 한 제한되지 않는다(도 11). 등전위공간의 폭 또한 마이크로칩을 벗어나지 않는 한 제한되지 않는다. 상기 통로를 통해 채널로부터 분리된 등전위공간의 형태는 원형 또는 사각형일 수 있으나, 전기화학적 신호 검출을 위한 상대전극 및/또는 기준전극을 수용할 수 있는 한 이에 제한되지 않으며, 상기 등전위공간의 너비는 통로가 존재하는 면 또는 이와 대향하는 면 사이의 최대거리를, 폭은 상기 면들과 수직하는 즉, 통로와 평행한 면 사이의 최대거리를 의미한다. 그러나, 상기 제시한 채널 및 구조물의 규모는 실시예에 제시된 마이크로칩의 크기를 고려하여 작성된 값일 뿐 마이크로칩 자체의 크기에 따라 조절될 수 있다. 즉, 나노미터 수준 또는 센티미터 수준의 분석칩으로 제작되는 경우 이에 준하는 수준으로 조절될 수 있다.Preferably, the equipotential space formed by the equipotential structure is a vertical distance from the outer wall of the separation channel to the reference electrode including the width of the fluid channel A, the passage length toward the equipotential space formed by the equipotential structure, and the separation channel width. When the width of the passageway toward the equipotential space is C, the vertical distance B from the outer wall of the separation channel to the reference electrode may be at least 1.5 times the width A of the fluid channel. The passage may have a length of several μm to several hundred μm, preferably 5 to 50 μm, and more preferably 3 to 10 μm, but is not limited thereto. In this case, the width C of the passage may be several μm to several hundred μm, preferably 1 to 10 μm, whereby the width D of the equipotential space in which the counter electrode and / or reference electrode separated from the channel is present is It may be 1 to 10 times or 1 to 100 times C, but is not limited so long as it does not depart from the description of the microchip (FIG. 11). The width of the equipotential space is also not limited unless it leaves the microchip. The shape of the equipotential space separated from the channel through the passage may be circular or square, but is not limited thereto as long as it can accommodate a counter electrode and / or a reference electrode for detecting an electrochemical signal, and the width of the equipotential space is not limited thereto. The maximum distance between the face on which the passage exists or the face opposite thereto, the width means the maximum distance between the faces perpendicular to the faces, ie parallel to the passage. However, the size of the channel and the structure presented above is only a value created in consideration of the size of the microchip presented in the embodiment can be adjusted according to the size of the microchip itself. In other words, when manufactured in the nanometer or centimeter level analysis chip can be adjusted to a level corresponding thereto.
상기 고분자 전해질 겔 염다리는 고분자 단량체(monomer) 또는 이량체 내지 십량체를 채널 내에 주입하고 등전위면을 형성하고자 하는 위치 즉, 작업전극과 동일한 위치 상에 포토마스크를 이용하여 국부적으로 빛을 조사하여 겔 형태로 경화시킴으로 제조될 수 있다. 광조사에 의한 경화를 유도하기 위해 상기 고분자 단량체 또는 중합체는 광개시제가 결합된 물질을 사용하거나 추가적으로 별도의 광개시제를 첨가하여 반응시킬 수 있다. 바람직하게 고분자 단량체로는 2-아크릴아미도-2-메틸-1-프로판술폰산(2-acrylamido-2-methyl-1-propanesulfonic acid; AMPSA) 또는 염화 디알릴디메틸암모늄(diallyldimethylammonium chloride; DADMAC)를, 광개시제로는 2-히드록시-4'-(2-히드록시에톡시)-2-메틸프로피오페논(2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone)를 사용할 수 있으나, 경화되어 겔을 형성하였을 때 전해질 이온의 자유로운 출입을 허용할 수 있고 빛을 조사하여 경화시킬 수 있는 전도성 고분자를 형성할 수 있는 물질은 제한없이 사용될 수 있다. 또한, 제조된 고분자 전해질 겔 염다리의 구조를 안정화시켜 보다 견고한 구조물을 형성하기 위하여 가교제를 추가로 첨가할 수 있다. 일 제조예로 가교제로는 N,N'-메틸렌비스아크릴아미드(N,N'-methylenebisacrylamide)를 사용할 수 있으나, 상기 제조된 고분자 염다리 구조를 안정화시킬 수 있는 물질이면 제한없이 사용될 수 있다.The polymer electrolyte gel salt bridge is injected with a polymer monomer (monomer) or dimers to depolymers in the channel and the gel is irradiated locally using a photomask on the same position as the working electrode to form an equipotential surface. It can be prepared by curing in the form. In order to induce curing by light irradiation, the polymer monomer or polymer may be reacted by using a material in which a photoinitiator is bound or by additionally adding a separate photoinitiator. Preferably, as the polymer monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or diallyldimethylammonium chloride (DADMAC) may be used. As photoinitiator, 2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone may be used, but curing When the gel is formed to form a conductive polymer that can allow free access of the electrolyte ions and can be cured by irradiation with light can be used without limitation. In addition, a crosslinking agent may be further added to stabilize the structure of the prepared polymer electrolyte gel salt bridge to form a more rigid structure. As one example of the crosslinking agent, N, N'-methylenebisacrylamide may be used, but any material capable of stabilizing the prepared polymer salt bridge structure may be used without limitation.
상기 고분자 전해질 겔 염다리를 기판에 접착시키기 위하여 추가적으로 3-(트리메톡시실릴)프로필메타아크릴리에트(3-(trimethoxysilyl)propylmethacrylate; TMSMA)를 제조된 분석칩의 채널 내에 일정시간 채웠다가 알코올로 세척해 내는 방법으로 유체채널 내벽에 코팅할 수 있다.In order to bond the polyelectrolyte gel salt to the substrate, 3- (trimethoxysilyl) propylmethacrylate (TMSMA) was added to the channel of the prepared analytical chip for a predetermined time and washed with alcohol. The method of coating can be applied to the inner wall of the fluid channel.
상기한 방법으로 제조된 전기화학적 검출을 위한 전기영동용 마이크로칩의 개략도를 도 3에 나타내었다.A schematic diagram of an electrophoretic microchip for electrochemical detection prepared by the above method is shown in FIG. 3.
본 발명의 전기영동칩은 바람직하게, 유리, 석영 또는 실리콘 재질의 기판 상에 제조할 수 있으나, 이에 제한되지 않는다. 또한, 폴리디메틸실록산(poly(dimethylsiloxane); PDMS), 폴리메틸메타아크릴레이트(poly(methyl methacrylate); PMMA), 폴리카보네이트(polycarbonate; PC), 폴리스티렌(polystyrene), 셀룰로스아세테이트(cellulose acetate) 및 폴리에틸렌테레프탈레이트(poly(ethylene terephthalate; PETP) 등의 고분자가 사용될 수 있으며, 나노 리소그라피 등의 공지의 방법으로 미세유체채널을 형성할 수 있는 것이면 제한없이 사용될 수 있다. 또한 상판과 하판을 각기 다른 재질을 선택하여 둘 또는 세가지 다른 재질의 접합체 형태로 제조될 수 있다.The electrophoretic chip of the present invention is preferably manufactured on a substrate made of glass, quartz or silicon, but is not limited thereto. In addition, poly dimethylsiloxane (PDMS), poly methyl methacrylate (PMMA), polycarbonate (PC), polystyrene, cellulose acetate and polyethylene Polymers such as terephthalate (poly (ethylene terephthalate; PETP) may be used, and may be used without limitation as long as the microfluidic channel may be formed by a known method such as nanolithography. It can optionally be made in the form of a conjugate of two or three different materials.
본 발명에서 바람직하게 작업전극으로는 금, 백금, 탄소, ITO(indium tin oxide) 등의 금속성 물질 또는 반도체성 물질로 이루어진 미세띠 전극을 사용할 수 있으나, 이에 제한되지 않는다. 상기 미세띠 전극은 공지의 반도체 공정을 통하여 기판 상에 패턴화될 수 있다.In the present invention, the working electrode may be a fine band electrode made of a metallic material or a semiconductor material such as gold, platinum, carbon, indium tin oxide (ITO), but is not limited thereto. The fine strip electrode may be patterned on a substrate through a known semiconductor process.
본 발명의 일 실시예에 따른 전기영동칩은 작업전극이 형성된 제1기판과 미세유로가 형성된 제2기판을 별도로 준비하여 접착시켜 제조할 수 있다. 바람직하게 상기 기판을 접착시키는 물질로는 UV 에폭시를 사용할 수 있다.The electrophoretic chip according to an embodiment of the present invention may be prepared by separately preparing and bonding a first substrate having a working electrode and a second substrate having a micro flow path. Preferably, UV epoxy may be used as the material for adhering the substrate.
본 발명의 일 실시예에 따라, 도 2에 나타낸 바와 같이 전극 및 미세유체채널 패턴이 고안된 필름 포토-마스크를 이용하여 기존에 보고된 바와 같이 사진평판술 과정을 통해 각각 유리기질 상에 전극과 미세유체채널이 패턴화된 제1기판과 제2기판을 제조한다. 이후 전극이 패턴화된 제1기판 상에 UV 에폭시 즉, UV 경화 수지(UV curing resin)를 스핀코팅하고 전극을 원하는 위치에 놓이도록 제1기판과 제2기판을 각각 패턴화된 면이 접하도록 정렬한 후 UV에 노출시켜 접착시킨다. 추가적으로 채널을 유기용매로 세척하고 산용액을 이용하여 전위를 순환시켜 채널 및 전극 상에 남아있을 오염물질을 제거하는 과정을 포함할 수 있다. 바람직하게 상기 유기용매로는 아세톤, 산용액으로는 황산용액이 사용될 수 있으나, 이에 제한되지 않는다.According to one embodiment of the present invention, as shown in Figure 2, using the film photo-mask in which the electrode and the microfluidic channel pattern is devised as previously reported through the photolithography process, the electrode and the fine on the glass substrate, respectively A first substrate and a second substrate having a fluid channel patterned are manufactured. After that, the electrode is spin-coated with UV epoxy, that is, UV curing resin, on the patterned first substrate and the patterned surface is in contact with each of the first and second substrates so as to place the electrode at a desired position. Align and bond to UV. Additionally, the process may include washing the channel with an organic solvent and circulating the potential using an acid solution to remove contaminants remaining on the channel and the electrode. Preferably, the organic solvent may be acetone, sulfuric acid solution as the acid solution, but is not limited thereto.
이후 염다리를 제조하기 위하여 접착물질로서 TMSMA를 유체채널 내벽에 코팅한 후 광개시제가 결합된 또는 순수한 고분자 단량체 또는 이량체 내지 십량체 및/또는 별도의 광개시제를 포함하는 혼합물을 유체채널에 채우고 미리 고안한 포토마스크를 이용하여 선별적으로 노광시킴으로 원하는 위치에 고분자 전해질 겔 염다리를 형성하고 여분의 할 수 있다. 상기 혼합물은 추가적으로 가교제를 포함할 수 있다. 경화되지 않은 여분의 혼합물을 제거하고 황산용액을 이용한 전기화학적 세척방법으로 채널 및 전극을 세척하였다.Then, in order to prepare the salt bridge, TMSMA is coated on the inner wall of the fluid channel as an adhesive material, and then the fluid channel is filled with a mixture including a photoinitiator or a pure polymer monomer or dimer to a derivatizer and / or a separate photoinitiator. By selective exposure using a photomask, a polymer electrolyte gel salt bridge can be formed and added at a desired position. The mixture may additionally include a crosslinking agent. The excess uncured mixture was removed and the channels and electrodes were washed by electrochemical washing with sulfuric acid solution.
상기 UV 에폭시를 이용하여 기판을 접착시킴으로 마이크로칩을 제작하는 방법은 비교적 간편하게 수행될 수 있다는 장점이 있다. 그러나, 이와 같이 UV 에폭시를 이용하여 칩을 제작하는 경우 여분의 UV 에폭시가 전극 상에 남아 센서로서의 기능을 저해할 수 있다는 단점이 있다. 따라서, 전극으로부터 여분의 UV 에폭시를 제거하기 위하여 특정용매를 사용하여 세척하는 방법이 널리 이용되고 있으나, 상기 용매의 사용으로 전극 자체가 손상될 수 있다. 이에 본 발명에서는 미량의 산성용액을 채널에 주입하고 전위를 순환시킴으로 전기화학적으로 세척하는 방법을 이용할 수 있다.The method of manufacturing a microchip by adhering a substrate using the UV epoxy has an advantage that it can be performed relatively simply. However, in the case of manufacturing a chip using UV epoxy as described above, there is a disadvantage that extra UV epoxy may remain on the electrode and impair the function as a sensor. Therefore, a method of washing with a specific solvent is widely used to remove excess UV epoxy from the electrode, but the use of the solvent may damage the electrode itself. In the present invention, a small amount of acidic solution may be injected into the channel and electrochemically washed by circulating the potential.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited to these examples.
실시예 1: 화합물 및 시약Example 1: Compounds and Reagents
2-아크릴아미도-2-메틸-1-프로판술폰산(2-acrylamido-2-methyl-1-propanesulfonic acid; AMPSA)의 2.5 M 수용액을 광개시제로 1% 2-히드록시-4'-(2-히드록시에톡시)-2-메틸프로피오페논(2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone)과 고분자 전해질성 겔을 제조하기 위한 가교제로 0.5% N,N'-메틸렌비스아크릴아미드(N,N'-methylenebisacrylamide)와 조합하여 사용하였다. 3-(트리메톡시실릴)프로필메타아크릴리에트(3-(trimethoxysilyl)propylmethacrylate; TMSMA) 무수 메탄올 용액을 채널 표면 상에 고분자 전해질 겔을 부착시키기 위한 코팅 물질로 사용하였다. 전위차 측정을 위한 지지 전해질로서는 100 mM 질산칼륨으로 다양한 농도의 페리시안화 칼륨(potassium ferricyanide) 원액을 제조하였다. 25 mM 붕산 나트륨(sodium borate)을 페리시안화 칼륨의 전기영동 완충용액으로 사용하였다. pH 6.5의 25 mM 2-(N-몰포리노)에탄술폰산(2-(N-morpholino)ethanesulfonic acid; MES) 완충용액으로 도파민(dopamine) 및 카테콜(catechol)과 같은 신경전달물질을 포함하는 용액을 제조하였다. 모든 시약은 Sigma-Aldrich(USA)로부터 구입하였다.A 2.5 M aqueous solution of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) with 1% 2-hydroxy-4 '-(2- 0.5% N, N'-methylenebis as a crosslinking agent for preparing a polymer electrolyte gel with hydroxyethoxy) -2-methylpropiophenone (2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone) Used in combination with acrylamide (N, N'-methylenebisacrylamide). 3- (trimethoxysilyl) propylmethacrylate (TMSMA) anhydrous methanol solution was used as coating material for attaching the polymer electrolyte gel on the channel surface. Potassium ferricyanide stock solutions of various concentrations were prepared with 100 mM potassium nitrate as a supporting electrolyte for potentiometric measurements. 25 mM sodium borate was used as an electrophoretic buffer of potassium ferricyanide. A solution containing neurotransmitters such as dopamine and catechol in 25 mM 2- (N-morpholino) ethanesulfonic acid (MES) buffer at pH 6.5 Was prepared. All reagents were purchased from Sigma-Aldrich (USA).
실시예 2: PGSB(polyelectrolytic gel salt bridge)가 집적된 마이크로칩의 제조Example 2 Fabrication of Microchips Incorporating Polyelectrolytic Gel Salt Bridge
전통적인 사진평판술, UV 에폭시 접착 및 UV 노출에 의한 고분자 전해질성 겔 플러그의 신규한 광중합을 이용하여 마이크로칩 전기영동(microchip electrophoresis; MCE) 장치를 제조하는 방법을 도 1에 도시하였다. 채널 및 금 전극의 패턴화는 본 발명자들이 이전에 이전 연구와 유사하게 제조하였다. 간략히, 미세채널 패턴을 형성하기 위하여, 먼저 피라냐 용액(piranha solution; H2SO4:H2O2=3:1)을 이용하여 유리 커버 슬라이드(glass cover slide; Cat. No. 1000412, Paul Marienfeld GmbH & Co. KG, Germany)를 세척하였다(주의: 피라냐 용액은 유기 화합물과 격렬히 반응하는 강한 산화제이므로 특별히 주의하여 취급하여야만 한다.). 포토레지스트(photoresist; AZ4620, Clariant, Switzerland)를 7000 rpm으로 30초간 유리 슬라이드에 스핀코팅하였다. 이어서, 소프트 베이킹(soft baking), UV 노출(UV exposure), 현상(development), 하드 베이킹(hard baking) 및 습식 식각법(wet etching)을 포함하는 사진평판술 과정으로 순차적으로 처리하였다.A method of making a microchip electrophoresis (MCE) device using novel photopolymerization of a polymer electrolyte gel plug by traditional photolithography, UV epoxy adhesion and UV exposure is shown in FIG. 1. Patterning of the channel and gold electrodes was made by the inventors similar to previous studies. Briefly, to form a microchannel pattern, a glass cover slide (Cat. No. 1000412, Paul Marienfeld) was first used with a piranha solution (H 2 SO 4 : H 2 O 2 = 3: 1). GmbH & Co. KG, Germany) (Note: Piranha solutions are strong oxidants which react violently with organic compounds and must be handled with special care). A photoresist (AZ4620, Clariant, Switzerland) was spin coated onto a glass slide at 7000 rpm for 30 seconds. Subsequently, the photolithography process was sequentially performed, including soft baking, UV exposure, development, hard baking, and wet etching.
상기 미세채널의 디자인과 전극 이미지는 오토캐드를 사용하여 제작하였다(도 2(a)). 채널 및 전극 패턴의 오토캐드 도면으로부터 작성된 필름 포토-마스크를 이용하여 기존에 보고된 바와 같이 사진평판술 과정을 통해 마이크로칩을 제작하였다(Joo, S.; Kim, K. H.; Chung, T. D., Biosens. Bioelectron., 2010, 25: 1509-1515). 도 2(b) 및 2(c)는 제작된 마이크로칩 구조물의 사진을 도시한 것이다. 마이크로칩은 채널이 패턴화된 유리기질 및 Au-침착된 유리기질로 구성된다. 마이크로칩 도안과 제작결과물을 도 2에 나타내었다. Au 전극은 도 2에 나타난 전극 규모와 더불어 다양한 전기영동장 조건 하에서 전기화학적 연구를 위해 다양한 크기로 제작되어 사용될 수 있다.The design of the microchannels and the electrode images were produced using autocad (FIG. 2 (a)). Microchips were fabricated through a photolithography process as previously reported using film photo-masks created from AutoCAD drawings of channel and electrode patterns (Joo, S .; Kim, KH; Chung, TD, Biosens. Bioelectron., 2010, 25: 1509-1515). 2 (b) and 2 (c) show photographs of the manufactured microchip structure. Microchips consist of glass substrates with patterned channels and Au-deposited glass substrates. The microchip pattern and fabrication results are shown in FIG. 2. Au electrodes can be manufactured and used in various sizes for electrochemical studies under various electrophoretic conditions with the electrode scale shown in FIG. 2.
바닥 유리 슬라이드도 유사한 사진평판술 프로토콜을 적용하여 제작하였다. 피라냐 용액으로 유리 슬라이드를 세척하고 헥사메틸디실라잔(hexamethyldisilazane; HMDS, Clariant, Switzerland)로 코팅한 후, AZ5214(Clariant, Switzerland)로 4000 rpm에서 30초간 스핀코팅하였다. 100℃에 1분간 프리 베이킹한 후 17 mJ/cm2에 5초간 일차 노출시키고, 100℃에 5분간 전환 베이킹(reversal baking)한 후 17 mJ/cm2에 5초간 전면노광(flood exposure)시켜 AZ300MIF(Clariant, Switzerland)를 이용하여 현상하였다. DC/RF 전자관 스퍼터(magnetron sputter; Atek, Korea)를 이용하여 패턴화된 유리에 금속필름을 스퍼터시켰다. 약 350 Å 두께로 티타늄(titanium; Ti) 접착층을 스퍼터시키고 그 위에 5000 Å 두께 및 10 내지 20 μm 너비의 금(gold; Au) 박막을 5 Å/s로 침착시켰다. 금-패턴화된 유리는 아세톤(J.T. Baker, USA)에 담구어 패턴화된 Au/Ti 층의 잔여물을 제거하였다. 이어서 접착 과정과 PGSB 집적을 위해 UV 노출을 이용하였다. 피라냐 용액으로의 세척 및 공기 분사(air blowing) 후 금 전극 패턴을 UV 경화 수지(UV curing resin; LOT No. A10K01, ThreeBond Co., Ltd., Japan)로 1500 rpm에서 30초간 스핀코팅하였다. 기질을 17 mJ/cm2에서 12초간 365 nm 파장의 자외선에 노출시켰다. 이후 채널은 아세톤으로 30초간 씻어내었다. 바닥 유리 슬라이드는 +1.0과 +0.2 V 사이의 순환전위로 0.5 M 황산용액에서 Ag/AgCl와 백금선을 각각 기준전극 및 상대전극으로 사용하여 전기화학적으로 세척하였다. 마이크로칩의 패턴 고안 및 제조된 칩의 광학적 이미지는 도 2에 나타내었다.Bottom glass slides were also made by applying a similar photolithography protocol. The glass slides were washed with piranha solution and coated with hexamethyldisilazane (HMDS, Clariant, Switzerland), followed by spin coating at 4000 rpm for 30 seconds with AZ5214 (Clariant, Switzerland). Prebaking at 100 ° C. for 1 minute, first exposure to 17 mJ / cm 2 for 5 seconds, reversal baking at 100 ° C. for 5 minutes, and then exposure to 17 mJ / cm 2 for 5 seconds to AZ300MIF (Clariant, Switzerland). A metal film was sputtered onto the patterned glass by using a DC / RF electron sputter (Atek, Korea). A titanium (Ti) adhesive layer was sputtered to a thickness of about 350 mm 3 and a gold (Au) thin film of 5000 mm thick and 10 to 20 μm wide was deposited thereon at 5 mm / s. Gold-patterned glass was soaked in acetone (JT Baker, USA) to remove residues of the patterned Au / Ti layer. UV exposure was then used for the adhesion process and PGSB integration. After washing with air of piranha solution and air blowing, the gold electrode pattern was spin-coated with UV curing resin (LOT No. A10K01, ThreeBond Co., Ltd., Japan) at 1500 rpm for 30 seconds. The substrate was exposed to ultraviolet light of 365 nm wavelength at 17 mJ / cm 2 for 12 seconds. The channel was then washed for 30 seconds with acetone. The bottom glass slide was electrochemically washed with Ag / AgCl and platinum wire as 0.5 and 0.5 M sulfuric acid solutions, respectively, at a circulation potential between +1.0 and +0.2 V. The pattern design of the microchip and the optical image of the manufactured chip are shown in FIG. 2.
최종 칩은 커버와 바닥 유리 슬라이드를 접착시켜 제조하였다. 황산으로 세척 후, 미세채널에 노출된 금 전극의 표면적을 금 박막이 전극으로서 작용하며 안정한지 실험적으로 확인하였다. 금 표면적은 5 mM K3Fe(CN)6 용액에서 순환 전압전류법으로 측정하였고 이는 비디오 현미경 시스템(ICS-305B, Sometech, Korea)를 이용하여 측정한 면적과 일치하였다. 채널 내에 PGSB는 UV 노출을 이용하여 제작하였다. 간략히, 미세유체칩 내부 채널을 0.1 M TMSMA 용액으로 채우고 실온에 20분간 방치하였다. 이후, 진공으로 용액을 제거하고 무수 메탄올로 세척한 후, 2.5 M AMPSA 단량체 용액을 채우고 포토마스크를 통해 17 mJ/cm2로 35초간 미세유체칩을 자외선에 노출시켜 경화시켰다. 마지막으로, 금 표면을 재현성 있는 순환 전압전류도가 얻어질 때까지 0.5 M 황산용액에서 Ag/AgCl 전극에 대하여 +1.0과 +0.2 V 사이에서 전위를 순환시킴으로 전기화학적으로 세척하였다. 황산으로 금 전극 표면을 세척한 효과를 확인하기 위하여, TMSMA-변형 금 기질을 대조군으로 사용하여 전기화학적 거동을 관찰하였다. 순환 전압전류도를 확인하여 금 표면이 황산 세척에 의해 정화되었음을 나타내었다.The final chip was made by adhering the cover and the bottom glass slide. After washing with sulfuric acid, the surface area of the gold electrode exposed to the microchannel was confirmed experimentally whether the gold thin film acted as an electrode and is stable. Gold surface area was measured by cyclic voltammetry in a 5 mM K 3 Fe (CN) 6 solution, which is consistent with the area measured using a video microscope system (ICS-305B, Sometech, Korea). PGSB in the channel was made using UV exposure. Briefly, the microfluidic chip internal channels were filled with 0.1 M TMSMA solution and left at room temperature for 20 minutes. Thereafter, the solution was removed in vacuo, washed with anhydrous methanol, filled with 2.5 M AMPSA monomer solution, and cured by exposing the microfluidic chip to ultraviolet light at 17 mJ / cm 2 for 35 seconds through a photomask. Finally, the gold surface was electrochemically cleaned by cycling the potential between +1.0 and +0.2 V with respect to the Ag / AgCl electrode in 0.5 M sulfuric acid solution until a reproducible cyclic voltammetry was obtained. In order to confirm the effect of washing the gold electrode surface with sulfuric acid, electrochemical behavior was observed using a TMSMA-modified gold substrate as a control. The cyclic voltammetry was confirmed to indicate that the gold surface was cleaned by sulfuric acid washing.
실시예 3: 기기Example 3: Instrument
Ag/AgCl 및 백금선을 각각 기준전극 및 상대전극으로 사용하는 종래의 일정전위기(potnetiostat; Model CHI660A, CH Instruments Inc.)를 사용하여 침 상의 금 전극의 전기화학적 실험을 수행하였다. LabVIEW 소프트웨어 버전 8.2(National Instruments, Austin, TX)으로 쓰여진 6-채널 전압 조절 프로그램에 의해 작동되는 DBHV-100 고전압 공급기(high voltage supplier; Digital Bio Technology, Korea)를 이용하여 전기영동을 수행하였다. 일정전위기는 일정전위기의 내부 전력 모듈의 출력 전압을 일치시키기 위하여 DC 9V 배터리로부터 DC +5, +15 및 -15V로 전환시키는 직접 제작한 DC 전력 공급기에 의해 외부 전기 전원(outlet)으로부터 격리되었다. 피코앰프 부스터(picoamp booster; Model CHI200, CH Instruments Inc.)를 장착한 패러데이 케이지에서 전류측정에 의한 검출을 수행하였다.Electrochemical experiments of needle-shaped gold electrodes were performed using a conventional potnetiostat (Model CHI660A, CH Instruments Inc.) using Ag / AgCl and platinum wires as reference and counter electrodes, respectively. Electrophoresis was performed using a DBHV-100 high voltage supplier (Digital Bio Technology, Korea) operated by a six-channel voltage regulation program written in LabVIEW software version 8.2 (National Instruments, Austin, TX). The constant potential is isolated from the external electrical outlet by a custom-made DC power supply that switches from DC 9V batteries to DC +5, +15 and -15V to match the output voltage of the internal power module of the constant potential. It became. Detection by current measurement was performed in a Faraday cage equipped with a picoamp booster (Model CHI200, CH Instruments Inc.).
실시예 4: 전기영동Example 4: Electrophoresis
미세채널의 표면조건을 최적화하기 위하여, 유리 칩 채널을 하기의 과정으로 처리하였다. 먼저, 채널을 탈이온수, 0.1 M HCl, 0.1 M NaOH 및 25 mM Na2B4O7(또는 25 mM MES)로 각 10분간 세척하였다. PGSB에 상대적인 금 작업전극의 위치의 효과를 페리시안화 종(ferricyanide species)의 전기영동 분리를 통하여 평가하였다. 200 μM 페리시안화 칼륨(potassium ferricyanide) 용액을 시료 저장소(sample reservior)에 위치시키고 시료 폐액 저장소(sample waste reservoir)에 20초간 +150 V를 적용하여 pinched injection 모드로 부하하였다; 완충액과 폐액 저장소는 모두 유동적(floating)인 반면 시료 저장소는 접지되었다(grounded). 시료 주입 및 분리를 위하여, +250 및 +100 V의 전압을 각각 완충액-폐액 저장소 및 시료 저장소/시료-폐액 저장소에 적용하였으며, 완충액 저장소는 접지되었다. 도 3에 나타난 바와 같이, PGSB 너머 챔버 내에 위치한 Ag/AgCl/KCl (3M) 기준전극에 대하여 +0.15 V의 검출전위를 분리하는 동안 금 작업전극에 적용하였다.In order to optimize the surface conditions of the microchannels, the glass chip channels were treated by the following procedure. First, the channels were washed with deionized water, 0.1 M HCl, 0.1 M NaOH and 25 mM Na 2 B 4 O 7 (or 25 mM MES) for 10 minutes each. The effect of the position of the gold working electrode relative to PGSB was evaluated by electrophoretic separation of ferricyanide species. A 200 μM potassium ferricyanide solution was placed in the sample reservoir and loaded in pinched injection mode by applying +150 V for 20 seconds to the sample waste reservoir; The buffer and waste reservoirs are both floating while the sample reservoir is grounded. For sample injection and separation, voltages of +250 and +100 V were applied to the buffer-waste reservoir and sample reservoir / sample-waste reservoir, respectively, and the buffer reservoir was grounded. As shown in FIG. 3, a detection potential of +0.15 V was applied to the gold working electrode for the Ag / AgCl / KCl (3M) reference electrode located in the chamber beyond the PGSB.
높은 전기장 하에서 성공적인 전기영동 및 전류측정에 의한 검출을 확인하기 위하여, 두 가지 생물학적 화합물 즉, 100 μM 도파민과 150 μM 카테콜을 25 mM MES 완충용액에 혼합하여 사용하였다. 페리시안화물을 부하하고 분리하는데 사용된 방법과 유사하게 pinched injection을 이용하여 시료 및 시료 폐액 저장소 사이에 +150 V를 20초간 적용하여 시료 플러그를 부하하였다. 분리는 다양한 전기장(50 내지 500 V/cm) 하에서 수행되었다.In order to confirm successful electrophoresis and amperometric detection under high electric fields, two biological compounds, 100 μM dopamine and 150 μM catechol, were mixed in 25 mM MES buffer. Similar to the method used to load and separate ferricyanide, the sample plug was loaded by applying +150 V for 20 seconds between the sample and the sample waste reservoir using pinched injection. Separation was performed under various electric fields (50-500 V / cm).
<실험결과><Experiment Result>
외부 전기장 하에서 개방회로전위Open circuit potential under external electric field
다양한 전기장 하에서 금 작업전극과 PGSB 사이의 개방회로전위(open circuit potential; OCP)를 측정하였다. 도 4는 금 작업전극과 PGSB 사이에 -0, 100, 200 및 400 μm의 공간을 두고 얻어진 OCP 데이터를 나타낸다. 전기영동 분리를 위해 미세채널을 따라 적용되는 전기장 구배(ΔV s)를 30으로부터 400 V/cm까지 변화시켰다. OCP 데이터는 금 작업전극과 PGSB 간의 거리뿐 아니라 명백히 ΔV s에 의존적이었다. OCP는 ΔV s와 거리가 증가함에 따라 증가되었다. 상기 결과는 전기영동을 위해 높은 전기장이 가해지는 미세채널의 중간에 위치하는 전극을 사용하는 전기화학적 검출을 수행하기 위하여 해결되어야 할 중요한 문제점이 존재함을 나타낸다.The open circuit potential (OCP) between the gold working electrode and the PGSB was measured under various electric fields. 4 shows OCP data obtained with a space of −0, 100, 200 and 400 μm between the gold working electrode and the PGSB. The electric field gradient (Δ V s ) applied along the microchannels for electrophoretic separation was varied from 30 to 400 V / cm. OCP data were clearly dependent on Δ V s as well as the distance between the gold working electrode and PGSB. OCP increased with increasing distance from Δ V s . The results indicate that there is an important problem to be solved in order to perform electrochemical detection using an electrode located in the middle of a microchannel subjected to a high electric field for electrophoresis.
두 가지 주된 문제점은 하기와 같다: 전극 상에서 전기화학적 전위의 양극성 차이 및 부정확한 전류측정에 의한 검출. 첫 번째 이슈는 전극이 가파른 전기장 구배에 노출되었을 때 관찰되는 양극성 효과와 밀접하게 관련된다. 이러한 양극성 전극 거동은 전극으로부터의 전기화학적 신호를 왜곡하고 작업전극 표면에 해를 끼칠 수 있다. 용액상(solution phase)에서 외부 전기장의 가파른 구배는 전극 말단 사이의 전기화학적 전위(ΔV edge)에 상당한 차이를 유발할 수 있다. 그러나, 전극을 통한 페르미 레벨은 장 구배에 크게 영향받지 않을 것이다. 이러한 전극 표면 상의 이질적인 전기화학적 전위는 미세유체칩 상에서 전극의 너비 및 위치의 함수로 나타난다. 좁은 미세채널 내에서 PGSB로부터 보다 멀리 위치한 보다 넓은 전극에 대해 더 큰 ΔV edge 값이 관찰되었다. 전기영동 분리를 위해 미세채널에 적용될 수 있는 최대 전압은 외부 전기장 구배로 인한 양극성 전기화학적 반응이 일어나지 않는 조건으로 제한된다. 상기 조건을 만족시키기 위하여, ΔV edge 값은 주어진 용액과 전극 물질에 대한 전기화학적 전위창(electrochemical potential window)보다 낮아야만 한다.Two main problems are as follows: Bipolar difference in electrochemical potential on the electrode and detection by incorrect current measurement. The first issue is closely related to the bipolar effect observed when the electrodes are exposed to steep electric field gradients. This bipolar electrode behavior can distort the electrochemical signal from the electrode and harm the working electrode surface. The steep gradient of the external electric field in the solution phase (solution phase) can lead to a significant difference in the electrochemical potential between the electrode terminal (Δ V edge). However, Fermi level through the electrode will not be greatly affected by the field gradient. This heterogeneous electrochemical potential on the electrode surface appears as a function of the width and position of the electrode on the microfluidic chip. The greater Δ V value for the edge wider than the electrode located away from PGSB within a narrow microchannel were observed. The maximum voltage that can be applied to the microchannels for electrophoretic separation is limited to conditions where no bipolar electrochemical reaction occurs due to an external electric field gradient. In order to satisfy the above condition, Δ V edge value should be lower than the electrochemical potential window for a given solution and the electrode material (electrochemical potential window).
전위창은 용액 내에 전기장 구배 부재시 얻어지는 순환 전압전류도를 통해 결정된다. 예를 들어, 400 V/cm의 세기를 갖는 전기장은 10 μm 및 20 μm 너비의 금 전극 말단 사이에서 각각 0.4 V 및 0.8 V의 최대값 차이를 야기한다. 본 발명에 사용된 0.1 M KNO3 및 MES 완충액에서 금 전극의 전위창은 1 V 보다 넓으므로, 전기영동 분리를 위해 요구되는 외부 전기장으로 인한 금 전극 상에서의 전기화학적 반응은 무시할 만하다. 나아가, 도 5에 나타난 바와 같이, 전기적 전위 구배는 매우 낮은 저항을 갖는 기준전극 시스템에 연결된 PGSB 앞에서 최소일 것으로 예상된다. 전극이 PGSB 바로 직전에 위치시킨다면, PGSB 근처에서 전기적 전위 구배의 감소는 최소한의 양극성 효과 즉, ΔV edge의 억제를 유발할 것이다. 이는 도 4(a)에 나타난 바와 같이 OCP 변동의 현저한 감소에 의해 확인되었다.The potential window is determined through a cyclic voltammetry obtained in the absence of an electric field gradient in solution. For example, an electric field with an intensity of 400 V / cm results in a maximum difference of 0.4 V and 0.8 V, respectively, between the 10 μm and 20 μm wide gold electrode ends. Since the potential window of the gold electrode in the 0.1 M KNO 3 and MES buffer used in the present invention is wider than 1 V, the electrochemical reaction on the gold electrode due to the external electric field required for electrophoretic separation is negligible. Furthermore, as shown in FIG. 5, the electrical potential gradient is expected to be minimal in front of the PGSB connected to the reference electrode system having a very low resistance. Sikindamyeon electrode is positioned just before the PGSB, reduction in electric potential gradient in the vicinity of PGSB will result in minimal effect polarity that is, inhibition of Δ V edge. This was confirmed by a significant decrease in OCP fluctuations as shown in FIG. 4 (a).
다른 문제점은 전류측정에 의한 검출을 위한 금 전극에 적용되는 전기화학적 전위의 정확성이다. 이는 또한 ΔV edge와 전극과 PGSB 사이의 전위 강하의 함수이다. 보다 가파른 외부 전기장 하에서 작업 및 기준전극 사이의 보다 높은 저항은 미세채널 내에서 용액에 따른 보다 큰 전위 강하를 야기한다. 따라서, 마이크로칩 상에서 전기영동을 수행하는 동안 성공적인 전류측정에 의한 검출을 위해 PGSB에 대한 작업전극의 위치를 조절할 필요가 있다. 실질적으로, 미세채널 내에서 ΔV s에 의해 야기되는 작업 및 기준전극 사이의 전위 이동은 유체역학적 전압저류도(hydrodynamic voltammogram)를 이용하여 보정될 수 있다. 그러나, PGSB로부터 현저히 소원하게 존재하는 미세채널 내에서의 위치도 여전히 문제가 있다. 첫째로, 전기영동 전기장에 기인한 전기화학적 전위차 ΔV s는 전류검출을 위한 작업-기준전극 간에 적용되는 전위 차이보다 훨씬 더 크다. 따라서, ΔV s의 작은 변동도 전류검출에 필요한 작업-기준 전극 간의 전기화학적 전위에 심각한 이동을 야기할 수 있다. 나아가, 상기 시스템은 양극성 효과 즉, ΔV edge에 의한 영향을 받는다. PGSB 근처에서 현저히 감소된 전기적 전위 구배로 인해 PGSB와 전기적으로 연결되도록 존재하는 작업전극은 PGSB와 거의 등전위면 상에 존재하는 것으로 예측된다. 따라서, PGSB 근처에 위치하는 작업전극에서 용액 전위는 기준전극의 전위와 크게 다르지 않다(도 5). 이는 OCP(ΔV F)에서의 전위 변동이 400 V/cm의 높은 외부 전기장(ΔV s) 하에서 조차도 5 mV 보다 낮다는 사실에 의해 뒷받침 된다(표 1). 상기 결과는 등전위면 상에서 획득한 OCP 데이터에 대해 Klett가 보고한 바와 일치한다. 상기 결과는 전류측정에 의한 검출을 위한 전위 바이어스(electrical potential bias)가 적용되지 않을 때, PGSB 직전에 위치한 작업전극이 기준전극과 동일한 전위를 가짐을 나타낸다. 전위 변동을 최소화하고 노이즈 수준을 효과적으로 억제하였다. 따라서, 전극이 PGSB와 전기적으로 연결되도록 위치한다면, ΔV s의 효과를 보상하기 위해 검출 전위를 보정할 필요가 없다. 그 결과, PGSB에 근접하게 작업전극을 위치시킴으로 전기영동 채널의 중간에서 전기화학적 전위를 정확히 인가할 수 있고, 전기영동을 수행하는 동안 연속적인 전류측정이 가능하다.Another problem is the accuracy of the electrochemical potential applied to the gold electrode for detection by amperometric measurement. This is also a function of the potential drop between the electrode and the edge Δ V PGSB. Higher resistance between the working and reference electrodes under a steeper external electric field results in a greater potential drop along the solution in the microchannel. Therefore, it is necessary to adjust the position of the working electrode relative to the PGSB for the detection by successful current measurement during the electrophoresis on the microchip. In practice, in the fine channel potential movement between the working and the reference electrode caused by the Δ V s can be corrected by using a voltage stored hydrodynamic also (hydrodynamic voltammogram). However, the location in the microchannels, which is remarkably desired from the PGSB, is still problematic. First, the electrochemical potential difference Δ V s due to the electrophoretic electric field is much larger than the potential difference applied between the work-reference electrodes for current detection. Thus, the work is also required for the current detecting small variations in Δ V s - may result in serious movement in electrochemical potential between a reference electrode. Furthermore, the system comprising: the bipolar effect that is influenced by the Δ V edge. Due to the significantly reduced electrical potential gradient near the PGSB, the working electrode present to be in electrical connection with the PGSB is expected to be on an almost equipotential surface with the PGSB. Therefore, the solution potential in the working electrode located near the PGSB does not differ significantly from that of the reference electrode (FIG. 5). This is supported by the fact that, even below the 5 mV under high external electric fields (V Δ s) of the potential variation in the OCP (Δ V F) 400 V / cm ( Table 1). The results are consistent with Klett's report on OCP data obtained on equipotential surfaces. The results indicate that the working electrode located immediately before the PGSB has the same potential as the reference electrode when no electrical potential bias for detection by current measurement is applied. The potential variation was minimized and the noise level was effectively suppressed. Thus, if the electrode is positioned so as electrically connected with PGSB, it is not necessary to correct the detected voltage to compensate for the effects of Δ V s. As a result, by placing the working electrode close to the PGSB, the electrochemical potential can be accurately applied in the middle of the electrophoretic channel, and continuous current measurement can be performed during the electrophoresis.
표 1
Figure PCTKR2012003646-appb-T000001
Table 1
Figure PCTKR2012003646-appb-T000001
다양한 전기장 하에서 순환 전압전류법Cyclic voltammetry under various electric fields
미세채널 중간에서 전기적 전위 구배는 마이크로칩 채널 상에서 관심 영역의 저항에 비례한다. PGSB 영역에서의 국부 저항은 PGSB가 이온의 자유로운 이동을 가능하게 하고 기준전극에 연결되어 있는 전기적 전도체이므로 미세채널의 다른 부분에서 보다 현저히 낮다. PGSB 근처에서 전위 강하는 그 외 미세채널 영역(remainder) 내에서의 급격한 전위 강하에서 벗어나 변형될 것으로 예상된다. 이는 도 4에 나타난 PGSB 앞에 배치된 전극으로부터 얻어진 외부 전위 구배의 영향으로부터 거의 자유로운 OCP 데이터에 의해 확인되었다. 전위차를 측정하는 동안 생성되는 노이즈는 외부 전기장(ΔV s)에 비례하여 증가하였다. 그럼에도 불구하고, 노이즈 수준은 패러데이 케이지 내에서 5 pA 미만이었다. 도 6에 나타난 순환전압전류도는 전극에서 페리시안화 이온의 전기화학적 산화환원 거동이 400 V/cm에 달하는 전기장 하에서 수십 mV 미만의 전위 이동과 약간의 전류 감소를 제외하고는 변화없이 유지됨을 나타낸다. 이는 주어진 범위의 ΔV s로부터 야기되는 전위 이동과 노이즈가 마이크로칩 상에서 전기영동 분리를 수행하는 동안 채널-내 전기화학적 검출에 대해 허용될 수 있는 수준임을 뒷받침한다.The electrical potential gradient in the middle of the microchannel is proportional to the resistance of the region of interest on the microchip channel. The local resistance in the PGSB region is significantly lower than in other parts of the microchannel because PGSB allows free movement of ions and is an electrical conductor connected to the reference electrode. The potential drop near the PGSB is expected to deform out of the sharp potential drop in other microchannel regions. This was confirmed by the OCP data which is almost free from the influence of the external potential gradient obtained from the electrode placed before the PGSB shown in FIG. 4. The noise generated while measuring the potential difference increased in proportion to the external electric field (Δ V s ). Nevertheless, the noise level was less than 5 pA in the Faraday cage. The cyclic voltammetry shown in FIG. 6 shows that the electrochemical redox behavior of ferricyanide ions in the electrode remains unchanged except for a few tens of mV potential shift and a slight current decrease under an electric field of 400 V / cm. This potential shift and noise channel during the electrophoretic separation on a micro chip which is caused from the Δ V s given range - supports the sujunim that can be allowed for within the electrochemical detection.
작업전극과 PGSB 사이의 거리가 증가함에 따라, EC 측정은 심한 노이즈 및 전극의 부정확한 전기화학적 전위가 심화되고, 궁극적으로 작업전극에 손상을 입힐 수 있다(도 7). 따라서, PGSB 가까이에 작업전극을 배치하는 것은 전류측정에 의한 전기영동을 수행함에 있어 검출기 위치에 대한 제약을 극복하여 다양한 디자인의 미세유체칩을 고안할 수 있도록 한다.As the distance between the working electrode and the PGSB increases, EC measurements can intensify the noise and inaccurate electrochemical potential of the electrode, ultimately damaging the working electrode (FIG. 7). Therefore, arranging the working electrode near the PGSB allows the microfluidic chips of various designs to be devised by overcoming the restriction on the detector position in performing the electrophoresis by the current measurement.
PGSB가 집적된 마이크로칩 상에서의 분리Separation on PGSB-Integrated Microchips
분리 효율과 전류측정 반응을 통한 분리와 검출 수행능을 확인하기 위하여 PGSB가 집적된 마이크로칩 상에서 전기영동을 수행하였다. 도 8은 PGSB로부터 (a) 0 및 (b) 50 μm에 위치한 금 미세띠 전극으로부터의 전기영동도를 나타낸다. 상기 전기영동도는 150 V/cm에서 PGSB-집적 마이크로칩 상에서 200 μM 페리시안화 칼륨 용액의 분리로부터 얻어졌다. 이론단수 즉, 분리효율은 10700 /m (a) 및 11500 /m (b)이고, 피크 전류는 17 nA (a) 및 8.0 nA (b)이다. 고분자 전해질성 겔의 또 다른 역할은 분리채널의 완충용액이 기준전극이 존재하는 저장소로 누출되는 것을 방지하는 것이다.Electrophoresis was performed on PGSB-integrated microchips to confirm separation efficiency and detection performance through current measurement reactions. 8 shows electrophoresis from gold microband electrodes located at (a) 0 and (b) 50 μm from PGSB. The electrophoresis was obtained from the separation of 200 μM potassium ferricyanide solution on PGSB-integrated microchips at 150 V / cm. The theoretical number, that is, the separation efficiency is 10700 / m (a) and 11500 / m (b), and the peak currents are 17 nA (a) and 8.0 nA (b). Another role of the polymer electrolyte gel is to prevent the buffer in the separation channel from leaking into the reservoir where the reference electrode is present.
고분자 전해질성 겔은 유리와는 명백히 다른 물질임에도 불구하고, 분리효율이라는 측면에서 두 영역 간의 차이는 눈에 띄지 않는다. 예를 들어, PGSB 앞에 위치한 전극을 사용하여 측정되는 이론단수는 PGSB로부터 50 μm 거리에 위치한 다른 전극으로부터의 것과 유사하다. 한편, PGSB 앞에 위치한 전극에 대한 피크 전류는 PGSB로부터 50 μm 거리에 위치한 전극의 것보다 2배 더 높다. 도 8은 PGSB에 위치한 전극으로부터의 전기영동도의 피크 모양이 유리 미세채널 중간에 위치한 전극으로부터의 것과 매우 유사함을 보여준다. 검출한계(S/N=2)는 -150 V/cm 하에서 페리시안화물에 대해 1.5 μM로 결정되었다(도 9).Although polymer electrolyte gels are clearly different materials from glass, the difference between the two areas in terms of separation efficiency is inconspicuous. For example, the theoretical number measured using an electrode located in front of the PGSB is similar to that from other electrodes located 50 μm from the PGSB. On the other hand, the peak current for the electrode located in front of the PGSB is twice higher than that of the electrode located 50 μm from the PGSB. 8 shows that the peak shape of the electrophoresis from the electrode located in the PGSB is very similar to that from the electrode located in the middle of the glass microchannel. The detection limit (S / N = 2) was determined to be 1.5 μM for ferricyanide under −150 V / cm (FIG. 9).
본 발명에서 제안된 전기영동에 의한 신경전달물질의 분리를 위한 PGSB를 장착된 마이크로칩 시스템의 기능성을 도 10에 나타내었다. 도파민(100 μM)과 카테콜(150 μM)로 구성되는 신경전달물질 혼합물의 전기영동도는 50 내지 500 V/cm 범위의 전기장 하에서 분리될 수 있음을 나타내었다. 상기 도 10에 나타난 결과는 전기장 세기가 분리 효율 결정에 주요한 변수임을 보여준다. 가장 높은 분리 효율은 200 V/cmc의 전기장 하에서 관찰되었다(카테콜, 10500 /m 및 도파민, 8500 /m). 50 V/cm으로부터 500 V/cm으로 전기장이 증가함에 따라, 모든 화합물에 대한 이동 시간(migration time)은 감소하였다. PGSB가 집적된 마이크로칩 상에서 전기영동의 재현성을 확인하기 위하여 7회 반복하여 분리를 수행하였다. 도파민과 카테콜에 대한 평균 이동 시간은 각각 32±0.8초 및 36±1.2초이고 피크 전류는 750±40 pA 및 920±35 pA로 관찰되었다. 상기 전기영동 결과는 PGSB-기반 검출 시스템을 이용하여 높은 전기장 하에서 재현가능한 분리를 확인하였다. The functionality of the microchip system equipped with PGSB for the separation of neurotransmitters by electrophoresis proposed in the present invention is shown in FIG. It was shown that the electrophoresis of the neurotransmitter mixture consisting of dopamine (100 μM) and catechol (150 μM) can be separated under an electric field in the range of 50 to 500 V / cm. The results shown in FIG. 10 show that the electric field strength is a major parameter in determining separation efficiency. The highest separation efficiency was observed under an electric field of 200 V / cmc (catechol, 10500 / m and dopamine, 8500 / m). As the electric field increased from 50 V / cm to 500 V / cm, the migration time for all compounds decreased. Separation was performed 7 times to confirm the reproducibility of electrophoresis on the microchip integrated with PGSB. Average travel times for dopamine and catechol were 32 ± 0.8 seconds and 36 ± 1.2 seconds, respectively, and peak currents of 750 ± 40 pA and 920 ± 35 pA were observed. The electrophoresis results confirmed the reproducible separation under high electric fields using a PGSB-based detection system.

Claims (21)

  1. 양단부 사이에 전압이 걸려있고 상기 전압에 의해 시료 중 분석물질들이 이동하면서 이동속도 차이에 의해 분석물질을 분리하는 유체채널을 구비하는 전기영동칩에 있어서,A voltage is applied between both ends, and the analyte moves in the sample by the voltage, thereby separating the analyte by the difference in moving speed. In the electrophoretic chip having a fluid channel,
    유체채널 내의 일 지점에 분석물질의 전기화학적 특성을 검출하기 위한 작업전극이 구비되어 있고, 채널의 적어도 일 벽면에 상기 작업전극과 전기적으로 연결된 등전위구조물이 구비되고, 상기 등전위구조물을 통로로 하여 유체채널과 인접해 있는 채널 외부에 지지전해질 용액으로 채위지고 상기 등전위구조물에 의해 형성된 등전위공간에 상대전극이 구비되어 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 것이 특징인 전기영동칩.A working electrode for detecting the electrochemical characteristics of the analyte is provided at a point in the fluid channel, and an equipotential structure electrically connected to the working electrode is provided on at least one wall of the channel, and the fluid is formed using the equipotential structure as a passage. An electrophoretic chip characterized by measuring an electrochemical signal between a working electrode and a counter electrode by having a counter electrode disposed in an equipotential space formed by the equipotential structure and filled with a supporting electrolyte solution outside the channel adjacent to the channel.
  2. 제1항에 있어서,The method of claim 1,
    상기 전기화학적 신호는 전류, 전도도 또는 전위차인 것인 전기영동칩.The electrochemical signal is an electrophoretic chip of the current, conductivity or potential difference.
  3. 제1항에 있어서,The method of claim 1,
    상기 등전위구조물은 이온의 이동을 허용하는 것이 특징인 전기영동칩.The equipotential structure is electrophoretic chip, characterized in that to allow the movement of ions.
  4. 제1항에 있어서, The method of claim 1,
    상기 등전위구조물은 고분자 전해질 겔 염다리인 것인 전기영동칩.The equipotential structure is an electrophoretic chip that is a polymer electrolyte gel salt bridge.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 고분자 전해질 겔 염다리는 이온전도성 고분자인 것인 전기영동칩.The polymer electrolyte gel salt bridge is an electrophoretic chip that is an ion conductive polymer.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 고분자 전해질 겔 염다리는 고분자 단량체(monomer) 또는 이량체 내지 십량체에 빛을 조사하여 경화시킴으로 형성되는 겔 형태로 제조되는 것인 전기영동칩.The polymer electrolyte gel salt bridge is an electrophoretic chip that is prepared in the form of a gel formed by curing the polymer monomer (monomer) or dimers to depolymers by irradiation with light.
  7. 제6항에 있어서,The method of claim 6,
    상기 고분자 단량체는 2-아크릴아미도-2-메틸-1-프로판술폰산(2-acrylamido-2-methyl-1-propanesulfonic acid; AMPSA) 또는 염화 디알릴디메틸암모늄(diallyldimethylammonium chloride; DADMAC)를 단위체로 하는 것인 전기영동칩.The polymer monomer is a 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or diallyldimethylammonium chloride (DADMAC) as a unit. Electrophoretic chip.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 고분자 단량체는 광개시제가 결합된 것이거나 추가적으로 별도의 광개시제를 포함하는 것인 전기영동칩.The polymer monomer is an electrophoretic chip that is a photoinitiator is combined or additionally comprises a separate photoinitiator.
  9. 제8항에 있어서,The method of claim 8,
    상기 광개시제는 2-히드록시-4'-(2-히드록시에톡시)-2-메틸프로피오페논(2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone)인 것인 전기영동칩.The photoinitiator is a 2-hydroxy-4 '-(2-hydroxyethoxy) -2-methylpropiophenone (2-hydroxy-4'-(2-hydroxyethoxy) -2-methylpropiophenone) electrophoretic chip .
  10. 제6항에 있어서,The method of claim 6,
    가교제를 추가로 포함하는 것인 전기영동칩.Electrophoretic chip that further comprises a crosslinking agent.
  11. 제10항에 있어서,The method of claim 10,
    상기 가교제는 N,N'-메틸렌비스아크릴아미드(N,N'-methylenebisacrylamide)인 것인 전기영동칩.The crosslinking agent is N, N'-methylenebisacrylamide (N, N'-methylenebisacrylamide) electrophoretic chip.
  12. 제1항에 있어서,The method of claim 1,
    상기 전기영동칩의 재질은 유리, 석영, 실리콘, 폴리디메틸실록산(poly(dimethylsiloxane); PDMS), 폴리메틸메타아크릴레이트(poly(methyl methacrylate); PMMA), 폴리카보네이트(polycarbonate; PC), 폴리스티렌(polystyrene), 셀룰로스아세테이트(cellulose acetate) 및 폴리에틸렌테레프탈레이트(poly(ethylene terephthalate; PETP)로 구성된 군으로부터 선택되는 것인 전기영동칩.The electrophoretic chip may be made of glass, quartz, silicon, poly (dimethylsiloxane) (PDMS), poly (methyl methacrylate) (PMMA), polycarbonate (PC), polystyrene (polystyrene). An electrophoretic chip selected from the group consisting of polystyrene), cellulose acetate and ethylene terephthalate (polyP).
  13. 제1항에 있어서,The method of claim 1,
    상기 작업전극은 금, 백금, 탄소, ITO(indium tin oxide) 및 반도체성 물질로 구성된 군으로부터 선택되는 전극인 것인 전기영동칩.The working electrode is an electrophoretic chip is an electrode selected from the group consisting of gold, platinum, carbon, indium tin oxide (ITO) and semiconducting material.
  14. 제1항에 있어서,The method of claim 1,
    상기 전기영동칩은 추가적으로 기준전극을 구비한 것이 특징인 전기영동칩.The electrophoretic chip is characterized in that the electrophoretic chip further comprises a reference electrode.
  15. 제1항에 있어서,The method of claim 1,
    유체채널 중 대향하는 채널 내벽 간의 거리를 A, 등전위구조물과 대향하는 유체채널 내벽으로부터 상대전극까지의 거리를 B라고 할 때,When the distance between the inner channel walls of the fluid channel is A, the distance from the inner wall of the fluid channel facing the equipotential structure to the counter electrode is B,
    B는 A의 1.5배 이상인 것이 특징인 전기영동칩.B is an electrophoretic chip characterized by more than 1.5 times A.
  16. 제1항에 있어서,The method of claim 1,
    유체채널 일 벽면에 위치한 등전위구조물의 길이를 C라고 할 때,When the length of the equipotential structure located on one wall of the fluid channel is C,
    상기 등전위구조물은 1 μm 내지 10 μm의 길이(C)를 갖고, 이에 의해 채널로부터 분리된 등전위공간의, C에 평행인 너비(D)는 C의 1 내지 10배인 것이 특징인 전기영동칩.The equipotential structure has a length (C) of 1 μm to 10 μm, whereby the width (D) parallel to C of the equipotential space separated from the channel is 1 to 10 times C.
  17. 제1항에 있어서,The method of claim 1,
    상기 전기영동칩은 작업전극이 형성된 제1기판과 미세유로가 형성된 제2기판을 접착시켜 제조되는 것인 전기영동칩.The electrophoretic chip is an electrophoretic chip manufactured by bonding a first substrate on which a working electrode is formed and a second substrate on which a micro flow path is formed.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 17,
    상기 전기영동칩은 전기영동용 마이크로칩인 것이 특징인 전기영동칩.The electrophoretic chip is an electrophoretic chip, characterized in that the electrophoretic microchip.
  19. 전기장이 인가된 유체채널 내의 일 지점에 구비된 작업전극을 통해 상기 전기장의 간섭없이 전기화학적 신호를 모니터링하는 방법으로서,A method of monitoring an electrochemical signal without interference of the electric field through a working electrode provided at a point in the fluid channel to which the electric field is applied,
    상기 작업전극과 상대전극 사이의 전기화학적 신호를 측정하는 단계를 포함하며,Measuring an electrochemical signal between the working electrode and the counter electrode;
    이때, 상기 유체채널의 적어도 일 벽면에 형성되고 상기 작업전극과 전기적으로 연결되어 있는 등전위구조물에 의해 등전위공간이 형성되고,In this case, an equipotential space is formed by an equipotential structure formed on at least one wall surface of the fluid channel and electrically connected to the working electrode.
    상기 상대전극은 상기 등전위구조물에 의해 채널과 분리된 등전위공간에 배치되어 있는 것이 특징인 방법.And the counter electrode is disposed in an equipotential space separated from a channel by the equipotential structure.
  20. 제19항에 있어서,The method of claim 19,
    상기 전기장은 시료의 주입, 이동, 혼합, 반응, 검출 및 사후분석으로 구성된 군으로부터 선택되는 어느 하나의 과정을 위해 외부에서 인가되는 것인 방법.The electric field is applied externally for any one process selected from the group consisting of injection, transfer, mixing, reaction, detection and post analysis of a sample.
  21. 제19항에 있어서,The method of claim 19,
    상기 전기장은 0 V/cm 이상 10000 V/cm 이하인 것인 방법.The electric field is 0 V / cm or more and 10000 V / cm or less.
PCT/KR2012/003646 2012-05-09 2012-05-09 Electrophoretic chip for electrochemical detection WO2013168835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/003646 WO2013168835A1 (en) 2012-05-09 2012-05-09 Electrophoretic chip for electrochemical detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/003646 WO2013168835A1 (en) 2012-05-09 2012-05-09 Electrophoretic chip for electrochemical detection

Publications (1)

Publication Number Publication Date
WO2013168835A1 true WO2013168835A1 (en) 2013-11-14

Family

ID=49550860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003646 WO2013168835A1 (en) 2012-05-09 2012-05-09 Electrophoretic chip for electrochemical detection

Country Status (1)

Country Link
WO (1) WO2013168835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696830B (en) * 2019-06-05 2020-06-21 國立中山大學 Combined electrochemical analyzing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000035802A (en) * 1996-08-26 2000-06-26 더 리전츠 오브 더 유니버서티 오브 캘리포니아 Electrochemical detector integrated on microfabricated capillary electrophoresis chips
JP2001108655A (en) * 1999-10-14 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector for capillary electrophoresis and its manufacture
US6361671B1 (en) * 1999-01-11 2002-03-26 The Regents Of The University Of California Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels
JP2006170646A (en) * 2004-12-13 2006-06-29 National Institute Of Advanced Industrial & Technology Prodegradent for microbe separation by fine tube electrophoresis and analyzer
KR20080086177A (en) * 2007-03-22 2008-09-25 명지대학교 산학협력단 Electrochemical detector integrated on microfabricated capilliary electrophoresis chip and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000035802A (en) * 1996-08-26 2000-06-26 더 리전츠 오브 더 유니버서티 오브 캘리포니아 Electrochemical detector integrated on microfabricated capillary electrophoresis chips
US6361671B1 (en) * 1999-01-11 2002-03-26 The Regents Of The University Of California Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels
JP2001108655A (en) * 1999-10-14 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Electrochemical detector for capillary electrophoresis and its manufacture
JP2006170646A (en) * 2004-12-13 2006-06-29 National Institute Of Advanced Industrial & Technology Prodegradent for microbe separation by fine tube electrophoresis and analyzer
KR20080086177A (en) * 2007-03-22 2008-09-25 명지대학교 산학협력단 Electrochemical detector integrated on microfabricated capilliary electrophoresis chip and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696830B (en) * 2019-06-05 2020-06-21 國立中山大學 Combined electrochemical analyzing device

Similar Documents

Publication Publication Date Title
KR101409065B1 (en) An electrophoresis chip for electrochemical detection
Zhou et al. Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips
EP2144057B1 (en) Method for analyzing a sample containing glycosylated hemoglobin and glucose
US9880128B2 (en) Electrode strip and sensor strip and manufacture method thereof and system thereof
CN100543446C (en) Field electrochemical contact angle measuring method based on the micro-nano interface
Vázquez et al. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips
SE532599C2 (en) Apparatus for detecting contaminants in a liquid and a system for using them
Xu et al. Electrochemical detection modes for microchip capillary electrophoresis
Fischer et al. Pyrolyzed Photoresist Carbon Electrodes for Microchip Electrophoresis with Dual‐Electrode Amperometric Detection
Zhu et al. A gold nanoparticle-modified indium tin oxide microelectrode for in-channel amperometric detection in dual-channel microchip electrophoresis
WO2017003126A1 (en) Bio-sensor and bio-sensor array
Jin et al. Measurement of chloramphenicol by capillary zone electrophoresis following end-column amperometric detection at a carbon fiber micro-disk array electrode
Mecker et al. Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis
Castaño-Álvarez et al. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters
Wu et al. An end-channel amperometric detector for microchip capillary electrophoresis
Dawoud et al. Separation of catecholamines and dopamine-derived DNA adduct using a microfluidic device with electrochemical detection
WO2013168835A1 (en) Electrophoretic chip for electrochemical detection
CN103969312A (en) Detection device and detection method of detection test piece
Kim et al. A disposable capillary electrophoresis microchip with an indium tin oxide decoupler/amperometric detector
WO2018182082A1 (en) Microfluidic chip-based isoelectric focusing based on contactless conductivity detection and requiring no pumps
CN104977334B (en) A kind of experimental provision and method for measuring BOD
CN211718187U (en) Electrochemical test strip capable of removing endogenous interfering substances
KR20100055664A (en) Capillary electrophoresis electrochemical detection apparatus and analysis method using by it
WO2023033271A1 (en) Thin film-type electrochemical system comprising salt bridge and electrochemical analysis method using same
CN113514525A (en) Method for measuring nitrate ions by using solid contact type ion selective electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876382

Country of ref document: EP

Kind code of ref document: A1