WO2013168377A1 - Waveguide structure having ebg characteristic - Google Patents

Waveguide structure having ebg characteristic Download PDF

Info

Publication number
WO2013168377A1
WO2013168377A1 PCT/JP2013/002716 JP2013002716W WO2013168377A1 WO 2013168377 A1 WO2013168377 A1 WO 2013168377A1 JP 2013002716 W JP2013002716 W JP 2013002716W WO 2013168377 A1 WO2013168377 A1 WO 2013168377A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
split ring
waveguide structure
resonator
connection portion
Prior art date
Application number
PCT/JP2013/002716
Other languages
French (fr)
Japanese (ja)
Inventor
嘉晃 笠原
博 鳥屋尾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014514371A priority Critical patent/JP6176242B2/en
Publication of WO2013168377A1 publication Critical patent/WO2013168377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0236Electromagnetic band-gap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements

Definitions

  • the present invention relates to a waveguide structure, and more particularly to a waveguide structure having an electromagnetic band gap (EBG) characteristic for suppressing electromagnetic noise propagating in a printed circuit board.
  • ESG electromagnetic band gap
  • a magnetic field is induced by a current flowing into a circuit at the time of switching of a digital circuit, or an electric field is induced by a voltage fluctuation generated at the time of switching, thereby generating an electromagnetic wave.
  • This electromagnetic noise causes problems such as destabilizing the operation of other circuits and degrading the wireless performance of the device. That is, by establishing a technique for suppressing this electromagnetic noise, the stability of the circuit and the wireless performance of the device can be improved.
  • the background technique has the following problems.
  • the method using a decoupling capacitor it is difficult to make the self-resonance frequency as high as several GHz due to the inevitable parasitic inductance of the capacitor. Therefore, the method using the decoupling capacitor is usually applicable only to the frequency band up to about 1 GHz. That is, it cannot cope with a high frequency band such as that used in wireless communication in recent years, for example, the 2.4 GHz band.
  • the technique for avoiding the creation of a large island-shaped conductor plane is based on the principle that an unintended resonance frequency is pressed to the high frequency side by reducing the conductor plane.
  • conductor planes with the same potential need to be connected in a DC (direct current) manner. If the connecting portion is made too thin, the self-inductance of the connecting portion increases, and the voltage drop at the time of current inflow during switching cannot be ignored. Therefore, there is a practical limit to reducing the conductor plane.
  • Patent Document 1 There is a technique listed in Patent Document 1 as a technique for solving the problems of the background art.
  • the structure described in Patent Document 1 is a structure having an EBG (Electromagnetic Bandgap) characteristic, and is intended to suppress propagation of electromagnetic noise between power planes.
  • 36A is a perspective view showing a structure having an EBG characteristic proposed in Patent Document 1
  • FIG. 36B is a sectional view of the structure having the EBG characteristic
  • FIG. 36B is an equivalent circuit of the structure having the EBG characteristic.
  • an equivalent circuit of this structure has a configuration in which a parallel plate waveguide composed of two power supply planes is shunted by a series resonance portion composed of a capacitance C of a conductor patch and an inductance L of a conductor rod.
  • a series resonance portion composed of a capacitance C of a conductor patch and an inductance L of a conductor rod.
  • Patent Document 2 there is a technique cited in Patent Document 2 as another form of a structure having another EBG characteristic that solves the problems of the background art. Since the structure described in Patent Document 2 is a modified example of the structure described as the background art in Patent Document 3, the principle is simply described with reference to FIGS. 38A and 38B which are the drawings described in Patent Document 3. To do. As shown in FIG. 38A, the waveguide structure described as the background art in Patent Document 3 is a structure in which conductor planes are divided by slits, and each conductor patch formed by being divided by the slits is connected by a thin connection portion. ing. As shown in FIG. 38B, the equivalent circuit diagram of this structure is shown in FIG. The parallel resonant circuit is added as a series branch.
  • a series branch portion (a portion formed by an inductance Lp of a parallel plate waveguide, a capacitance Cg of a slit portion, and an inductance Lb of a connection portion connecting the slit portions) behaves as a capacitance.
  • the electromagnetic noise suppression effect can be achieved even in a high frequency such as the GHz band, which has been difficult to achieve with the method using the decoupling capacitor described in the background art.
  • Patent Document 2 is a structure in which the connecting portion for connecting the slit portion described as the background art in Patent Document 3 is realized by using a layer different from the conductor plane provided with the slit.
  • a cross-sectional view of the waveguide structure described in Patent Document 2 is shown in FIG.
  • the metal plates 304 and 305 are connected using the first via 301, the second via 302, and the connection pattern 303.
  • the first via 301, the second via 302, and the connection pattern 303 correspond to the thin connection portion of the background art of Patent Document 3
  • the metal plates 304 and 305 correspond to the conductor plane divided by the slit of the background technology of Patent Document 3. is doing.
  • the thin connection portion of the background art of Patent Document 3 is formed using a layer different from the conductor plane (in Patent Document 2, the metal plates 304 and 305) by using vias.
  • the equivalent circuit is the same as the structure described in the background art of Patent Document 3, and an electromagnetic noise suppression effect can be expected based on the same principle as the structure described in the background art of Patent Document 3.
  • Patent Document 1 the problem of Patent Document 1 will be described.
  • the problem is that the area of the structure for realizing the EBG characteristics in a desired frequency band occupies a large area.
  • the area of one conductor patch 106 occupies 200 mm ⁇ 200 mm in plan view.
  • the conductor patch is simply made smaller, the capacitance value between the conductor patch and the conductor plane is reduced, and the frequency band having the EBG characteristic is increased in frequency, so that the desired frequency band is deviated.
  • the decrease in capacitance must be compensated by increasing the inductance of the conductor rod.
  • a prescription such as reducing the diameter of the rod or increasing the length of the rod is necessary.
  • the former has a limit due to manufacturable conditions, and the latter is not practically desirable because the layer spacing of the substrate is limited by the structure having EBG characteristics. That is, it is possible in principle to reduce the area in plan view, but in that case, a new problem arises.
  • the problem of the background art of Patent Document 2 and Patent Document 3 is that the conductor plane divided by the slit is connected by a thin connection portion, so that the inductance value of the corresponding portion becomes large and causes a voltage drop.
  • the waveguide structure having the EBG characteristic described in the background art of Patent Document 2 and Patent Document 3 is assumed to be used for a power plane as understood from the fact that the divided conductor patches are connected in a DC manner. .
  • the present invention takes into consideration the above-mentioned problems and does not cause a voltage drop. Therefore, the present invention provides a waveguide structure having an EBG characteristic that can be mounted in a small area when viewed in a plan view without a large work on the conductor plane. The purpose is to provide.
  • a waveguide structure having EBG characteristics includes a substrate, first and second conductor planes provided on the substrate so as to be substantially parallel to each other, and a split ring.
  • the split ring resonator has an annular portion and at least one pair of open end pairs in which the annular portion is interrupted, and constitutes the one set of open end pairs. At least a part of the annular portion of the split ring resonator in a region sandwiched between the first and second conductor planes.
  • the annular portion is provided in a direction that is not substantially parallel to the main surface of the second conductor plane.
  • the present invention can provide a waveguide structure having EBG characteristics that can be mounted in a small area.
  • FIG. 25 is a sectional view taken along line VV in FIG. 24. It is sectional drawing along the VI-VI line of FIG. It is a graph for demonstrating the effect of the waveguide structure of 7th Embodiment of this invention. It is a top view for demonstrating the waveguide structure of 8th Embodiment of this invention. It is sectional drawing along the VII-VII line of FIG. It is sectional drawing along the VIII-VIII line of FIG. It is a top view for demonstrating the other example of the waveguide structure of 8th Embodiment of this invention.
  • FIG. 32 is a cross-sectional view taken along line IX-IX in FIG. 31.
  • FIG. 32 is a cross-sectional view taken along line XX in FIG. 31.
  • It is a top view for demonstrating the other example of the waveguide structure of embodiment of this invention.
  • It is a top view for demonstrating the other example of the waveguide structure of embodiment of this invention.
  • It is sectional drawing of the waveguide structure for demonstrating another example of the waveguide structure of 2nd Embodiment of this invention.
  • It is a perspective view for demonstrating the structure which has the EBG characteristic proposed by patent document 1.
  • FIG. FIG. 36B is a cross-sectional view of the structure having the EBG characteristic of FIG. 36A.
  • FIG. 36B is an equivalent circuit diagram of the structure having the EBG characteristic of FIG. 36A. It is sectional drawing of the structure which has the EBG characteristic proposed by patent document 2.
  • FIG. FIG. 11 is a plan view of a structure having EBG characteristics described in the background art of Patent Document 3.
  • FIG. 38B is an equivalent circuit diagram of the structure having the EBG characteristic of FIG. 38A.
  • the electromagnetic wave noise to be a problem is an electromagnetic wave propagating between parallel plate conductor planes.
  • a split ring resonator is arranged in a parallel plate waveguide composed of a plurality of conductor planes so that the magnetic field component of the electromagnetic wave propagating in the parallel plate waveguide penetrates the ring.
  • the split ring resonator has an annular portion and at least one open end pair in which the annular portion is interrupted, and each open end constituting the open end pair is adjacent to form a capacitance. Yes. That is, the split ring-shaped resonator constitutes an LC resonator by having at least one open end pair of the annular portion behave as capacitance and the other annular portion behave as inductance.
  • the parallel plate waveguide is described by an inductance which is a series impedance part and a capacitance which is a parallel admittance part.
  • a structure in which a split ring-shaped LC resonator is coupled to the parallel plate waveguide by a magnetic field is an equivalent circuit of the present invention.
  • This equivalent circuit model can be expressed more simply as an equivalent circuit model in which a parallel LC resonator is added as a series impedance to the equivalent circuit model of the parallel plate waveguide. At this time, the coupling between the parallel plate line and the split ring LC resonator due to the magnetic field is pushed into the values of the inductance L and the capacitance C of the simplified parallel LC resonator.
  • the amplitude of the electromagnetic wave propagating in such an equivalent circuit attenuates as it progresses in a frequency band in which the series impedance portion is capacitive. That is, it has an EBG characteristic in such a frequency band.
  • the electromagnetic wave which propagates between the parallel plate conductor planes as a problem can be suppressed by arranging the split ring resonator.
  • the present invention can provide a waveguide structure having EBG characteristics.
  • the area of the conductor patch directly affects the capacitance value because the mushroom type structure must form a capacitance with the conductor plane.
  • prescriptions such as reducing the diameter of the rod and increasing the length of the rod are necessary, and considering that these are difficult in practice, the inductance value is It is difficult to use as a design parameter, and the size of the conductor patch and the frequency band with the EBG characteristic correspond one-to-one (however, the distance between the conductor patch and the conductor plane and the relative dielectric constant of the material are fixed). if you did this).
  • each open end constituting one open end pair of the split ring resonator is close to form a capacitance.
  • a capacitance is not formed between the conductor plane and the capacitance forming method has a great degree of freedom, and the capacitance value is not necessarily divided in a plan view. There is no one-to-one correspondence with the area occupied by the resonators.
  • the entire annular portion behaves as an inductance.
  • clearance holes openings, slits, cutouts, etc.
  • split ring resonators using such clearance holes, slits, cutouts, etc.
  • FIG. 1 is a plan view showing a waveguide structure according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II in FIG.
  • FIG. 3 is a cross-sectional view taken along the line II in FIG. 1, showing another example of the waveguide structure according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line II of FIG. 1, showing still another example of the waveguide structure according to the first embodiment of the present invention.
  • FIG. 5 is a plan view of a printed circuit board in which a plurality of the split ring resonators of FIG. 1 are arranged.
  • FIGS. 1 to 4 show the periphery of a region where one of the split ring resonators is arranged
  • FIG. 5 shows a state in which a plurality of the split ring resonators are arranged on a printed circuit board. Yes.
  • the x, y, and z axes will be defined and described.
  • the waveguide structure having the EBG characteristic includes the first conductor plane 102 and the second conductor provided on the surface layer or the inner layer of the printed circuit board 101 so as to be substantially parallel to the printed circuit board 101.
  • a plane 103 and a split ring-shaped resonator 110 provided on the printed circuit board 101 are provided.
  • the split ring-shaped resonator 110 is configured in a range surrounded by a rectangular dotted line.
  • the split ring resonator 110 of the present embodiment is an annular portion of the split ring resonator. Are arranged so as to be included in the first region 104.
  • the first region 104 is not only the region sandwiched between the first conductor plane 102 and the second conductor plane 103 facing each other, but also the first conductor plane 102 and the second conductor plane 103. It also includes the existing in-plane region.
  • the split ring resonator is rectangular.
  • the split ring resonator includes a first conductor via 105 and a second conductor via 106 provided at different positions in plan view, and a first conductor via 105 and a second conductor via 106.
  • One end is connected to the first conductor via 105 and the other end extends to the second conductor via 106 provided above or below the first connection portion 107 and the first connection portion 107.
  • the second connection portion 108 a and the second connection portion 108 b having one end connected to the second conductor via 106 and the other end extending to the first conductor via 105.
  • the first conductor via 105 and the second conductor via 106 are electrically connected to the first conductor plane 102 and the second conductor plane 103.
  • a plurality of clearance holes are formed in the first conductor plane 102 and the second conductor plane 103 so as to pass without being connected.
  • the planar shape of the clearance hole may be a quadrangular shape as shown in FIG. 1, a circular shape or an elliptical shape.
  • a gap 109 is formed between the other ends of the second connecting portion 108a and the second connecting portion 108b, and the other ends are capacitively connected.
  • the first connection portion 107, the second connection portion 108a, and the second connection portion 108b are configured by a surface layer or inner layer wiring of the printed circuit board 101, or a conductor via and a surface layer or inner layer wiring that connect wirings between different layers. It is thought that it is done.
  • FIG. 2 shows a case where the first connecting portion 107, the second connecting portion 108a, and the second connecting portion 108b are configured by wiring on the inner layer of the printed circuit board 101.
  • the split ring-shaped resonator 110 provided on the printed circuit board 101 is surrounded by the rectangular dotted lines in FIG. 2, that is, the first conductor via 105, the second conductor via 105, and the second conductor via 105.
  • the conductor via 106, the first connecting portion 107, the second connecting portion 108a, and the second connecting portion 108b are configured.
  • FIG. 3 shows a case where the split ring resonator 110 is configured by the first conductor via 105 and the second conductor via 106, the conductor via connecting the above-described wiring between different layers, and the wiring on the surface layer or the inner layer. Show. In a region outside the first region 104, a first connecting portion 107a having one end connected to the first conductor via 105, and a first connecting portion 107b having one end connected to the second conductor via 106, Is formed. The first connection portion 107a and the first connection portion 107b are arranged in different layers, and the other end portions overlap each other in a plan view in a region outside the first region 104, so that a gap portion is formed. 109 is formed.
  • a second connection portion 108 a having one end connected to the first conductor via 105 is disposed in the first region 104.
  • a second connection portion 108b having one end connected to the second conductor via 106 is disposed in a region outside the first region 104.
  • the other end of the second connection portion 108b is capacitively coupled to one end of the second connection portion 108c arranged in the same layer via the gap portion 109.
  • the second connection portion 108 c and the second connection portion 108 a are connected by a conductor via that passes through a clearance hole provided in the second conductor plane 103.
  • the split ring-shaped resonator 110 provided on the printed circuit board 101 is surrounded by the square dotted lines in FIG. 3, that is, the first conductor via 105, the second conductor via 105, and the second conductor via 105.
  • the split ring-shaped resonator is rectangular, but any other polygonal shape does not affect the essential effect of the present invention. For example, an octagonal shape as shown in FIG. 3 may be used, or a completely different shape may be used.
  • FIG. 4 is a modified example of FIG. 2, and shows a case where the second connection portion 108a and the second connection portion 108b are arranged in different layers. That is, the printed circuit board 101 is provided with a first connection portion 107 that connects the first conductor via 105 and the second conductor via 106 in the first region 104. Further, in the first region 104, a second connection part 108a having one end connected to the first conductor via 105 and a second connection part 108b having one end connected to the second conductor via 106 are provided. Is formed. The second connection portion 108a and the second connection portion 108b are arranged in different layers, and the other end portions thereof are overlapped with each other in plan view to form a gap portion 109.
  • the split ring-shaped resonator 110 includes a first conductor via 105 and a second conductor via 106, and further electrically connects the first conductor via 105 and the second conductor via 106. Or a plurality of connecting portions that are capacitively connected through the gap 109 to form a split ring resonator.
  • the gap portion 109 may be formed by providing a slit so as to divide the wiring, or between the first connection portion 107a and the first connection portion 107b in FIG. 3 or the second connection in FIG. It may be created by having a portion where wirings arranged in different layers overlap each other in plan view, such as between the portion 108a and the second connection portion 108b.
  • the waveguide structure having EBG characteristics shown in FIGS. 2 and 3 is configured by arranging one or a plurality of split ring resonators one-dimensionally or two-dimensionally. A case where a plurality of split ring resonators of the present embodiment are two-dimensionally arranged will be described with reference to FIG.
  • the waveguide structure of the present embodiment is assumed to be used for suppressing electromagnetic wave noise propagating between power planes. That is, it is assumed that the printed circuit board 101 includes an electronic device 111 such as an integrated circuit (IC) or a large-scale integrated circuit (LSI) that becomes a noise source.
  • FIG. 5 shows a plurality of two-dimensionally arranged split ring resonators having a waveguide structure having EBG characteristics as shown in FIGS.
  • the split ring resonators disposed at this time do not have to have the same shape. That is, even if split ring resonators having various shapes are mixed and arranged, the essential effect of the present invention is not affected.
  • FIG. 6 shows an equivalent circuit diagram of the waveguide structure of the present embodiment.
  • the first conductor plane 102 and the second conductor plane 103 provided on the printed circuit board 101 form a parallel plate waveguide.
  • the capacitively connected gap portion 109 existing in the split ring resonator acts as a capacitance
  • other components of the split ring resonator act as an inductance, thereby functioning as an LC resonance circuit.
  • the LC resonant circuit is coupled to the parallel plate flat plate waveguide via a magnetic field, which is an equivalent circuit diagram of this embodiment. That is, the equivalent circuit diagram of this embodiment is described as shown in FIG. When the equivalent circuit diagram of FIG.
  • the equivalent circuit diagram of FIG. 6 becomes a simpler equivalent circuit as shown in FIG. Can be expressed as That is, the L ′ SRR and the C ′ SRR in FIG. 7 represent amounts different from the C SRR from the L SRR in FIG. 6.
  • the propagation of the electric field component of the electromagnetic wave of the one-dimensional transmission line model described by the equivalent circuit of FIG. 8 is expressed by the following equation (1) except for the time-dependent factor with the traveling direction of the electromagnetic wave as the x-axis direction. .
  • E Electric field component of electromagnetic wave of one-dimensional transmission line
  • E 0 Amplitude of electric field component of electromagnetic wave of one-dimensional transmission line
  • Propagation constant in one-dimensional transmission line.
  • j imaginary unit ⁇ : angular frequency
  • Z TL series impedance of one-dimensional transmission line
  • Y TL parallel admittance
  • L PPW of one-dimensional transmission line inductance of parallel plate waveguide
  • C PPW capacitance of parallel plate waveguide
  • L SRR division Inductance
  • C SRR of ring-shaped resonator Capacitance
  • L ′ SRR of divided ring-shaped resonator Effective inductance C ′ SRR generated from the divided ring-shaped resonator when the equivalent circuit diagram of FIG. : Effective capacitance generated from the split ring resonator when the equivalent circuit diagram of FIG.
  • L ′ SRR , C ′ SRR , L SRR , and C SRR are represented by the following relational expressions.
  • M A mutual inductance between the inductance of the parallel plate line and the inductance of the split ring resonator.
  • Equation (1) becomes an electromagnetic wave that attenuates as it propagates in the positive direction of the x-axis in the frequency band where Equation (3) has capacitance (Im [Z] ⁇ 0). It can be seen that the waveguide structure of the embodiment has EBG characteristics. From this, it can be seen that the present invention can provide a waveguide structure having an EBG characteristic in which electromagnetic wave noise does not propagate in a frequency band in which Equation (3) becomes capacitive.
  • FIG. 9 shows a graph comparing the propagation characteristics of the waveguide structure of the present embodiment and a normal parallel plate waveguide analyzed by electromagnetic field analysis.
  • the propagation amount is attenuated in the specific frequency band (corresponding to the frequency band in which Equation (3) behaves as capacitance: the shaded portion in the figure).
  • the EBG characteristic is generated in the vicinity of 3.5 GHz. Thereby, it can confirm that this waveguide structure has an EBG characteristic.
  • a waveguide structure having an EBG characteristic is obtained by adding the above split ring resonator to a normal parallel plate waveguide.
  • the gap portion 109 of the split ring-shaped resonator 110 behaves as a capacitance, and the other portion behaves as an inductance, thereby forming an LC resonator.
  • the method of mounting the capacitance of the gap 109 has a very large degree of freedom, and the capacitance value does not necessarily correspond to the area occupied by the split ring resonator in a plan view.
  • the waveguide structure of the present embodiment can provide a waveguide structure having EBG characteristics with a small mounting area.
  • the waveguide structure described above can be formed through the following manufacturing process as an example.
  • a multilayer printed circuit board is created by layering a core material with copper foil on both sides and a prepreg, which is a resin material that bonds the core materials together.
  • a prepreg which is a resin material that bonds the core materials together.
  • Clearances locations without copper foil
  • a clearance hole is formed in the first conductor plane 102 and the second conductor plane 103 so that the drill hole passes through the clearance hole.
  • FIG. 10 is a plan view showing a waveguide structure according to the second embodiment of the present invention.
  • 11 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 12 is a cross-sectional view taken along the line II-II of FIG. 10, showing another example of the waveguide structure of the second embodiment of the present invention.
  • 10 to 12 show the periphery of a region where one split ring resonator is arranged.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • At least one of the first connection portion 107, the second connection portion 108a, and the second connection portion 108b is in the same plane as the first conductor plane 102 and the second conductor plane 103. It is characterized by that.
  • the waveguide structure having the EBG characteristic includes the first conductor plane 102 and the second conductor provided on the surface layer or the inner layer of the printed circuit board 101 so as to be substantially parallel to the printed circuit board 101.
  • a split ring-shaped resonator 110 provided on the printed circuit board 101 so that the plane 103 and at least a part of the annular portion thereof are located between the first conductor plane 102 and the second conductor plane 103; Prepare.
  • the split ring-shaped resonator 110 is configured in a range surrounded by a rectangular dotted line.
  • the annular portion of the split ring-shaped resonator 110 is arranged so as to be included in the first region 104.
  • the split ring resonator is rectangular.
  • first conductive via 105 and the second conductive via 106 are provided on the printed circuit board 100 so that the first conductive via 105 and the second conductive via 106 are not electrically connected. Clearance holes are formed in the conductor plane 102 and the second conductor plane 103. At this time, the first conductor via 105 and the second conductor via 106 are provided at different positions in plan view.
  • the first connecting portion 107 is disposed in the clearance hole of the first conductor plane 102. That is, the printed circuit board 101 is provided with the first connection portion 107 that connects the first conductor via 105 and the second conductor via 106 in the same layer as the first conductor plane 102. Further, above or below the first connection portion 107, a second connection portion 108a having one end connected to the first conductor via 105 and the other end extending to the second conductor via 106, and the second connection via A second connection portion 108 b having one end connected to the conductor via 106 and the other end extending to the first conductor via 105 is provided on the printed circuit board 101. In FIG.
  • the second connection portion 108 a and the second connection portion 108 b are arranged in different layers, and the other end portions overlap each other in plan view to form a gap portion 109. .
  • the second connection portion 108a and the second connection portion 108b may be provided in the same layer.
  • FIG. 12 shows a case where the gap portion 109 is formed by providing a slit in the connection portion so as to divide the wiring. Furthermore, in FIG. 12, both the first connection portion 107, the second connection portion 108 a, and the second connection portion 108 b are in the same plane as the first conductor plane 102 and the second conductor plane 103. It is characterized by. That is, in FIG. 12, the second connection portion 10 a and the second connection portion 108 b are disposed in the clearance hole of the second conductor plane 103. That is, they are arranged on the same layer as the second conductor plane 103.
  • FIG. 10 to 12 show the case where the split ring-shaped resonator 110, the first conductor plane 102, and the second conductor plane 103 are not electrically connected by a clearance hole.
  • the conductor plane 102, the second conductor plane 103, and the split ring resonator 110 may not be electrically separated.
  • FIG. 35 is a modification of FIG.
  • the first connection portion 107 existing in the same layer as the first conductor plane 102 may be electrically connected.
  • a part of the first conductor plane behaves as the first connection portion.
  • the split ring resonator 110 is coupled to the parallel plate waveguide formed of the first conductor plane 102 and the second conductor plane 103 via a magnetic field.
  • At least one of the first connection portion 107, the second connection portion 108a, and the second connection portion 108b includes the first conductor plane 102, the second connection portion 108b, and the second conductor portion 102b. It exists in the same plane as the second conductor plane 103.
  • the first connection plane 107, the first connection portion 107, the second connection portion 108a, and the second connection portion 10b existing in the same plane as the second conductor plane 103 are the first conductor plane 102 or the second conductor plane 103. It can be formed in the manufacturing process of the second conductor plane 103.
  • FIG. 13 is a cross-sectional view showing a waveguide structure according to a third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing another example of the waveguide structure according to the third embodiment of the present invention.
  • FIG. 15 is a sectional view showing still another example of the waveguide structure of the third embodiment of the present invention.
  • FIGS. 13 to 15 show the periphery of a region where one split ring resonator is arranged. Since this embodiment is a modification of the first embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • This embodiment is characterized in that the annular portion of the split ring resonator has a portion that exists outside the first region 104.
  • the first connection portion 107, the second connection portion 108 a, and the second connection portion 108 b constituting the split ring resonator are located outside the first region 104. This is the case.
  • the first connection portion 107, the second connection portion 108 b, and the second connection portion 108 c may be located outside the first region 104.
  • the second connection portion 108 a is disposed in the first region 104 and one end is connected to the first conductor via 105.
  • the other end of the second connection portion 108 a is a conductor via that passes through the clearance hole of the second conductor plane 103 and is connected to the second connection portion 108 c outside the first region 104.
  • the second connecting portion 108b and the second connecting portion 108c are arranged in different layers, and the gap portion 109 is formed by having a portion overlapping in plan view.
  • the first conductor plane 102 and the second conductor plane 103 have a clearance so that the first conductor plane 102 and the second conductor plane 103 are not included inside the annular portion of the split ring resonator. A hole is formed.
  • the first conductor plane 102 and the second conductor plane 103 located in the split ring resonator are preferably clearance holes as shown in FIGS. 13 and 14, but as shown in FIG.
  • One conductor plane 102 and part of the second conductor plane 103 may exist.
  • the first connecting portion 107, the second connecting portions 108 and 108a, the second connecting portion 108b, the second connecting portion 108c, the first conductor via 105, and the second conductor via 106 are used.
  • the circumference of the split ring resonator 110 can be increased, that is, the LC resonance inductance component of the split ring resonator 110 can be increased.
  • increasing the inductance component in the split ring resonator leads to lowering the frequency band in which the EBG characteristics occur. This realizes a split ring resonator having a smaller area in plan view. That is, according to the present embodiment, it is possible to provide a waveguide structure having an EBG characteristic having a split ring resonator having a smaller area in plan view.
  • FIG. 16 and 17 are plan views showing the waveguide structure according to the present embodiment.
  • FIG. 20 is a cross-sectional view for explaining still another example of the waveguide structure of the present embodiment. Since this embodiment is a modification of the first embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • This embodiment is characterized in that the first auxiliary conductor 112 is provided in the gap 109 connected capacitively of the split ring resonator 110 to increase the capacitance.
  • FIG. 16 shows that the rectangular first auxiliary conductor 112 is the same as the first connection portion 107 in the gap 109 of the first connection portion 107 when the first connection portion 107 exists in one layer. This is an example in which the capacitance is increased in the layer.
  • the shape of the first auxiliary conductor 112 may be a square shape as shown in FIG. 16, or may be an interdigital shape as shown in FIG. Other shapes may also be used.
  • the first connection portion 107 exists over two different layers, and a part of the first connection portion 107 that exists in one layer and the first connection portion that exists in another layer.
  • the gap portion 109 that is capacitively connected is realized by having a portion that overlaps a part of the connection portion 107 in plan view.
  • the auxiliary conductor 112 is provided in the gap 109 to increase the capacitance.
  • 18 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 19 is a cross-sectional view taken along line IV-IV in FIG. As can be seen from FIG.
  • an auxiliary conductor 112 is provided in the first connecting portion 107 connected to the second conductor via 106, and the first connection connected to the first conductor via 105 is understood from FIG.
  • the auxiliary conductor 112 is provided in the part, and the capacitance of the gap part 109 is increased. 18 to 20, a square patch is provided as the first auxiliary conductor 112 to increase the capacitance.
  • the shape does not have to be a square, and may be another shape such as a circle.
  • the auxiliary conductor 112 does not need to be provided in one gap portion 109 as described in the drawing. If there are a plurality of gap portions, a plurality of sets of auxiliary conductors 112 may be provided in the plurality of gap portions 109. Good.
  • the capacitance component of the LC resonator composed of the split ring resonator can be increased by the auxiliary conductor. According to the equations (3), (5), and (6), increasing the capacitance component of the LC resonator leads to lowering the frequency band in which the EBG characteristics occur. This realizes a smaller split ring resonator. According to the present embodiment, it is possible to provide a waveguide structure having an EBG characteristic having a split ring resonator having a smaller size.
  • FIG. 21 is a plan view showing a waveguide structure according to a fifth embodiment of the present invention. Since this embodiment is a modification of the first embodiment, detailed description of the same parts as those of the first embodiment will be omitted.
  • the present embodiment considers a straight line in a plane parallel to the first conductor plane 102 of a split ring resonator and connecting the first conductor via 105 and the second conductor via 106.
  • the first conductor via 105 and the second conductor via 106 of another split ring-shaped resonator are in a plane parallel to the first conductor plane 102.
  • 90 degrees
  • the magnitude of ⁇ is preferably close to 90 degrees.
  • the waveguide structure having EBG characteristics operates when a magnetic field passes through the annular portion of the split ring resonator 110 and current is induced in the LC resonator formed by the split ring resonator. .
  • the first conductor plane 102 The magnetic field component of the electromagnetic wave traveling in the direction perpendicular to the straight line connecting the first conductor via 105 and the second conductor via 106 passes through the annular portion of the split ring resonator. It does not penetrate.
  • FIG. 22 is a plan view showing a waveguide structure according to the sixth embodiment of the present invention.
  • FIG. 23 is a plan view showing another example of the waveguide structure according to the sixth embodiment of the present invention.
  • This embodiment is characterized by having a split ring resonator 110 and another split ring resonator that shares some of the components with the split ring resonator 110.
  • FIG. 22 shows an example in which the conductor via 105 or 106 is shared by two split ring resonators
  • FIG. 23 shows a part of the first connection 107 or the second connection 108, or In this example, both of the first connecting portion 107 and the second connecting portion 108 are shared by two split ring resonators.
  • Each split ring resonator includes a first conductor via, a second conductor via, a first connection portion, and a first connection portion. It consists of two connections.
  • one of the conductor vias of one split ring resonator and one of the conductor vias of another split ring resonator are shared, and two split ring resonators are connected.
  • the straight lines of the respective split ring resonators form an angle of 90 degrees, and thus have an “L” shape structure in plan view.
  • each split ring resonator has It is configured to behave independently as an LC resonator.
  • a resonator of one split ring and a resonator of another split ring share a part of the connecting portion, and two split ring resonators are connected.
  • the plan view has a “+”-shaped structure. It has become.
  • the plan view has a “+” shape.
  • FIGS. 22 and 23 show the case where two split ring resonators share a part of the split ring resonator, but three or more split ring resonators are used. The resonator may share a part of the split ring resonator.
  • a part of the split ring resonator 110 is shared with a part of another split ring resonator, a large number of split ring resonators are more densely printed. 101. This leads to a stronger effect of suppressing propagation of electromagnetic waves. That is, according to the present embodiment, a waveguide structure having EBG characteristics for obtaining a stronger electromagnetic wave propagation suppressing effect can be provided.
  • FIG. 24 is a plan view of the waveguide structure according to the present embodiment.
  • FIG. 25 is a cross-sectional view taken along the line VV in FIG. 26 is a cross-sectional view taken along line VI-VI in FIG.
  • the waveguide structure of the present embodiment is characterized in that a separate ring-shaped resonator 114 is provided at a location translated from the split ring-shaped resonator 110 by a distance d. At this time, it is desirable that the distance d is as small as possible, and it is desirable that the distance d be within ⁇ / 8 at most, where ⁇ is the wavelength of the electromagnetic wave whose propagation is to be suppressed. It should be noted that another split ring resonator 114 that has been translated by a distance d does not necessarily have to have a gap 109 that is capacitively coupled, and may have a structure without a gap as shown in FIG. 26, for example.
  • the split ring-shaped resonator shown in FIG. 25 includes a first conductor via 105, a second conductor via 106, a first connection portion 107, and a second connection portion 108.
  • the first conductor via 105 and the second conductor via 106 are connected to each other, and the first connection portion 107 is connected to the first conductor via 105 and the second via a gap 109 that is capacitively coupled.
  • the conductive via 106 is connected.
  • another split ring-shaped resonator 114 translated by the distance d shown in FIG. 26 does not have the gap 109, and both the first connection 107 and the second connection 108 are the first.
  • the conductive via 105 and the second conductive via 106 are connected without a gap 109 that is capacitively coupled.
  • a split ring-shaped resonator 110 and another split ring-shaped resonator 114 that has been translated from the split ring-shaped resonator 110 by a distance d behave as transmission lines. Resonance depending on the transmission line length occurs. That is, EBG characteristics can be obtained in a frequency band in which resonance depending on the transmission line length occurs, instead of LC resonance of a single resonator of a split ring shape.
  • FIG. 27 shows an electromagnetic field analysis model according to the present embodiment, in which another split ring-shaped resonator obtained by translating a split ring-shaped resonator is added to the electromagnetic field analysis model used in FIG. It is an analysis result of the propagation characteristic. It can be confirmed that the EBG characteristic generated in the vicinity of 3.5 GHz in FIG. 9 is generated in the vicinity of 2.6 GHz in FIG. That is, it can be seen from this example that the frequency can be lowered without changing the size of the split ring resonator. This leads to a smaller split ring resonator. That is, according to the present embodiment, it is possible to provide a waveguide structure having an EBG characteristic having a split ring resonator having a smaller size.
  • FIG. 28 is a plan view of the waveguide structure according to the present embodiment.
  • 29 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 30 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 31 is a plan view of another example of the waveguide structure according to the present embodiment.
  • 32 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 33 is a cross-sectional view taken along line XX of FIG.
  • the split ring-shaped resonator 110 described in the seventh embodiment and the other split ring-shaped resonator 114 obtained by translating the split ring-shaped resonator by a distance d are provided.
  • Two auxiliary conductors 113 are provided, and a capacitance is formed between the split ring resonator 110 and another split ring resonator 114.
  • the second auxiliary conductor 113 connected to the first connection portion 107 of the split ring resonator and the first auxiliary portion 107 connected to the first connection portion 107 of another split ring resonator 114.
  • a capacitance is formed between the two auxiliary conductors 113. For example, as shown in FIG.
  • the interdigital second auxiliary conductor 113 may be used to increase the capacitance, or one of the split ring resonator 110 and another split ring resonator 114.
  • the second auxiliary conductor 113 having a rectangular shape may be provided so that the portions are close to each other, thereby increasing the capacitance.
  • the second auxiliary conductor 113 having a rectangular shape is formed by using a layer different from the layer in which the connecting portions 107 and 108 of the split ring resonators 110 and 114 are present, and the capacitance is increased. It is an example of an example.
  • the second auxiliary conductor 113 is connected to the first connecting portion 107 of the split ring resonator 114, and the second auxiliary conductor 113 is as shown in FIG. 31 and FIG.
  • the first connecting portion 107 of the split ring resonator 110 overlaps in a plan view to form a capacitance.
  • FIG. 33 the second auxiliary conductor 113 having a rectangular shape is formed by using a layer different from the layer in which the connecting portions 107 and 108 of the split ring resonators 110 and 114 are present, and the capacitance is increased. It is an example of an example.
  • the second auxiliary conductor 113 is connected to the first connecting portion 107 of the split ring resonator 114, and the second
  • the square-shaped second auxiliary conductor 113 is used, but it does not have to be square, and may be any other shape such as a circle or an ellipse. Further, the second auxiliary conductor does not need to be provided at one place as described in the drawings, and a plurality of sets may be provided at a plurality of places.
  • a certain split ring resonator 110 and another split ring resonator 114 obtained by translating the split ring resonator 110 by a distance d. Behaves as a transmission line and obtains EBG characteristics by causing resonance depending on the transmission line length.
  • the frequency characteristic of the waveguide structure having the EBG characteristic described in the seventh embodiment is determined by the transmission line length, a smaller split ring resonator can be realized by reducing the effective transmission line length. It will be possible.
  • a second split ring-shaped resonator 110 which is a transmission line, and another split ring-shaped resonator 114 that has been translated from one split ring-shaped resonator 110 by a distance d, is a second transmission ring.
  • This is achieved by forming a capacitance using the auxiliary conductor 113. That is, according to this embodiment, the EBG characteristic of the seventh embodiment can be obtained by using a smaller split ring resonator.
  • the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments.
  • the clearance hole is formed in the first conductor plane 102 and the second conductor plane 103 has been described, but the clearance hole may not be formed as shown in FIG.
  • a part of the annular portion of the split ring resonator 110 may be disposed in the first region 104 of FIG. 34A or 34B.
  • 34A is a modification of FIG. 2
  • FIG. 34B is a modification of FIG.
  • the split ring resonator can be manufactured by a normal printed circuit board manufacturing process and is integrally formed in the waveguide structure, but the present invention is not limited thereto.
  • a component in which a split ring resonator is formed is prepared, and an opening from the surface to the first region 104 is provided in the printed circuit board 101, so that the split ring resonator is formed.
  • the waveguide structure of the present invention is inserted into the opening.
  • a waveguide structure having EBG characteristics characterized in that the annular portion is provided on the substrate.
  • the annular portion of the split ring resonator has first and second conductor vias provided at positions that do not overlap each other in plan view, the first conductor via, and the second conductor.
  • the open end pair of the split ring-shaped resonator has a gap formed in at least one of the first connection portion and the second connection portion.
  • the waveguide structure having EBG characteristics according to appendix 2 wherein the waveguide structure is formed by being divided in a plane substantially parallel to the main surface of the substrate. (Supplementary Note 5) At least one of the first connection portion and the second connection portion is disposed on substantially the same plane as the first conductor plane and the second conductor plane, Any one of appendix 2 to appendix 4, wherein a clearance hole is provided in at least one of the second conductor planes so as not to contact the first connection portion and the second connection portion.
  • At least one of the first connection portion and the second connection portion has a portion that exists outside a region sandwiched between the first and second conductor planes, and the first and the second The EBG according to any one of appendix 2 to appendix 4, wherein a clearance hole is provided in at least one of the second conductor planes so as not to contact the split ring resonator.
  • a waveguide structure having characteristics.
  • At least one of the open ends constituting the open end pair of the split ring resonator has an auxiliary conductor, and the auxiliary conductor constitutes the open end pair.
  • the waveguide structure having an EBG characteristic according to any one of appendix 1 to appendix 7, wherein an area of a portion where the ends are close to each other is increased.
  • a plurality of the split ring resonators are arranged on the substrate, and connect the first conductor via and the second conductor via of one split ring resonator.
  • Having a waveguide structure. (Supplementary note 10) The waveguide structure having EBG characteristics according to supplementary note 9, wherein the first straight line and the second straight line form an angle of 90 degrees.
  • a plurality of the split ring resonators are arranged on the substrate, and among the plurality of split ring resonators, at least one set of split ring resonators sharing a component is provided.
  • a plurality of the split ring resonators are arranged on the substrate, and the first conductor via of the one split ring resonator among the plurality of split ring resonators or the There is at least one split ring resonator set in which the second conductor via and the first conductor via or the second conductor via of the other split ring resonator are shared.
  • a plurality of the split ring resonators are arranged on the substrate, and the first connection portion of the one split ring resonator among the plurality of split ring resonators or the There is at least one split ring resonator set in which the second connection portion and the first connection portion or the second connection portion of the other split ring resonator are connected.
  • a ring-shaped conductor is disposed in the vicinity of the split ring-shaped resonator at a position translated by a predetermined distance, and the ring-shaped conductor includes the split ring-shaped resonator, or The waveguide structure having an EBG characteristic according to any one of appendices 1 to 13, wherein the waveguide structure has only an annular portion having no open end pair in the split ring resonator. .
  • At least one of the split ring resonator and the ring conductor has a second auxiliary conductor, and the second auxiliary conductor includes the split ring resonator and the ring. 15.

Abstract

Provided is a waveguide structure having an EBG characteristic, mountable in a small area, when viewed in plan. The waveguide structure includes a printed circuit board, a first conductor plane and a second conductor plane provided on the printed circuit board so as to be substantially parallel to each other, and a divided-ring-shaped resonator. The divided-ring-shaped resonator has a ring part and at least a pair of open ends where the ring part is disconnected. The open ends constituting the pair of open ends are disposed close. At least a part of the ring part of the divided-ring-shaped resonator is disposed in an area sandwiched by the first conductor plane and the second conductor plane. The ring part is provided substantially not parallel to the main surfaces of the first conductor plane and the second conductor plane.

Description

EBG特性を有する導波路構造Waveguide structure having EBG characteristics
 本発明は、導波路構造に関し、特にプリント基板内を伝搬する電磁ノイズを抑制する電磁バンドギャップ(EBG)特性を備える導波路構造に関する。 The present invention relates to a waveguide structure, and more particularly to a waveguide structure having an electromagnetic band gap (EBG) characteristic for suppressing electromagnetic noise propagating in a printed circuit board.
 複数の導体プレーンが存在する電子機器では、例えば、デジタル回路のスイッチング時に回路に流れ込む電流により磁場が誘起されたり、スイッチング時に生じる電圧変動により電場が誘起されたりして、電磁波が生じる。これは、導体プレーンを伝わる電磁ノイズとなる。この電磁ノイズは他の回路の動作を不安定にしたり、機器の無線性能を劣化させたりするなどの課題をもたらす。つまり、この電磁ノイズを抑える技術を確立することにより、回路の安定性や機器の無線性能を向上させることができる。 In an electronic device having a plurality of conductor planes, for example, a magnetic field is induced by a current flowing into a circuit at the time of switching of a digital circuit, or an electric field is induced by a voltage fluctuation generated at the time of switching, thereby generating an electromagnetic wave. This becomes electromagnetic noise transmitted through the conductor plane. This electromagnetic noise causes problems such as destabilizing the operation of other circuits and degrading the wireless performance of the device. That is, by establishing a technique for suppressing this electromagnetic noise, the stability of the circuit and the wireless performance of the device can be improved.
 このような電磁ノイズ対策の背景技術としては、デカップリングキャパシタを導体プレーン間に挿入する方法や、大きな島状導体プレーンを作成することを避ける方法等がある。しかし、背景技術の手法では、以下のような課題がある。デカップリングキャパシタを用いた手法では、キャパシタの不可避な寄生インダクタンスにより自己共振周波数を数GHzといった高周波にするのは困難である。そのため、通常デカップリングキャパシタを用いた手法は1GHz程度までの周波数帯にしか適用できない。すなわち、近年無線通信で用いられているような高周波数帯、例えば2.4GHz帯、には対応できない。大きな島状導体プレーンを作成することを避ける手法では、導体プレーンを小さくすることにより、意図しない共振周波を高周波数側に押し付けることを原理としている。しかし、同電位の導体プレーンはDC的(直流的)に接続しておく必要がある。そして、その接続部を細くしすぎると接続部の自己インダクタンスが増加しスイッチング時の電流流入時の電圧降下が無視できなくなる。そのため、導体プレーンを小さくするにも実用的な限界がある。 As background art for such electromagnetic noise countermeasures, there are a method of inserting a decoupling capacitor between conductor planes, a method of avoiding the creation of a large island conductor plane, and the like. However, the background technique has the following problems. In the method using a decoupling capacitor, it is difficult to make the self-resonance frequency as high as several GHz due to the inevitable parasitic inductance of the capacitor. Therefore, the method using the decoupling capacitor is usually applicable only to the frequency band up to about 1 GHz. That is, it cannot cope with a high frequency band such as that used in wireless communication in recent years, for example, the 2.4 GHz band. The technique for avoiding the creation of a large island-shaped conductor plane is based on the principle that an unintended resonance frequency is pressed to the high frequency side by reducing the conductor plane. However, conductor planes with the same potential need to be connected in a DC (direct current) manner. If the connecting portion is made too thin, the self-inductance of the connecting portion increases, and the voltage drop at the time of current inflow during switching cannot be ignored. Therefore, there is a practical limit to reducing the conductor plane.
 上記背景技術の課題を解決する手法として、特許文献1に挙げられた手法がある。特許文献1に記載の構造はEBG(Electromagnetic Bandgap)特性を有する構造であり、電源プレーン間の電磁波ノイズの伝搬の抑制を目的としている。図36Aは特許文献1で提案されているEBG特性を有する構造を示す斜視図であり、図36BはこのEBG特性を有する構造の断面図であり、図36BはこのEBG特性を有する構造の等価回路図である。図36Aや図36Bに示すように、電源プレーン201、202間の層に導体パッチ203が周期的に配列され、各々の導体パッチ203が電源プレーン201と導体ロッド204で接続された構造となっている。この構造の等価回路は図36Cに示すように、2枚の電源プレーンよりなる平行平板導波路を導体パッチのキャパシタンスCと導体ロッドのインダクタンスLよりなる直列共振部でシャントした構成となっている。この導体パッチのキャパシタンスCと導体ロッドのインダクタンスLよりなる直列回路部のインピーダンスがインダクタンスとして振る舞う周波数帯において、電磁ノイズ抑制効果を持つ。 There is a technique listed in Patent Document 1 as a technique for solving the problems of the background art. The structure described in Patent Document 1 is a structure having an EBG (Electromagnetic Bandgap) characteristic, and is intended to suppress propagation of electromagnetic noise between power planes. 36A is a perspective view showing a structure having an EBG characteristic proposed in Patent Document 1, FIG. 36B is a sectional view of the structure having the EBG characteristic, and FIG. 36B is an equivalent circuit of the structure having the EBG characteristic. FIG. As shown in FIGS. 36A and 36B, conductor patches 203 are periodically arranged in a layer between the power planes 201 and 202, and each conductor patch 203 is connected to the power plane 201 and the conductor rod 204. Yes. As shown in FIG. 36C, an equivalent circuit of this structure has a configuration in which a parallel plate waveguide composed of two power supply planes is shunted by a series resonance portion composed of a capacitance C of a conductor patch and an inductance L of a conductor rod. In the frequency band in which the impedance of the series circuit portion composed of the capacitance C of the conductor patch and the inductance L of the conductor rod behaves as an inductance, it has an electromagnetic noise suppressing effect.
 特許文献1のEBG特性を有する構造によれば、GHz帯に電磁ノイズ抑制効果を設けることができ、かつ導体プレーンを小さな島に分割する手法のように電源プレーンに細工をしていないため、背景技術として記載した導体プレーンを分離する手法のようにインダクタンスの増加を招く心配もない。 According to the structure having the EBG characteristic of Patent Document 1, an electromagnetic noise suppressing effect can be provided in the GHz band, and the power supply plane is not crafted like the technique of dividing the conductor plane into small islands. There is no fear of increasing the inductance unlike the technique of separating the conductor planes described as the technology.
 また、上記背景技術の課題を解決する別のEBG特性を有する構造の別の形態として特許文献2に挙げられた手法がある。特許文献2に記載の構造は、特許文献3に背景技術として記載の構造の変形例となっているため、特許文献3に記載の図である図38A及び図38Bを用いて簡単に原理を説明する。図38Aに示すように、特許文献3に背景技術として記載の導波路構造は、導体プレーンをスリットで分断し、スリットで分断されたことによりできる各導体パッチを細い接続部で接続した構造となっている。この構造の等価回路図は、図38Bに示すように、平行平板導波路より生じる直列ブランチのインダクタンスLp、並列ブランチのキャパシタンスCpに、スリット部のキャパシタンスCg、スリット部を接続する接続部のインダクタンスLbよりなる並列共振回路を直列ブランチとして追加した構成となっている。このような等価回路で記述される導波路構造は、直列ブランチ部(平行平板導波路のインダクタンスLp、スリット部のキャパシタンスCg、スリット部を接続する接続部のインダクタンスLbよりなる箇所)がキャパシタンスとして振る舞う周波数帯において、電磁ノイズの抑制効果を持ち、背景技術に記載のデカップリングキャパシタを用いた手法では困難であった、GHz帯といった高周波数においても電磁ノイズ抑制効果を実現することができる。 Also, there is a technique cited in Patent Document 2 as another form of a structure having another EBG characteristic that solves the problems of the background art. Since the structure described in Patent Document 2 is a modified example of the structure described as the background art in Patent Document 3, the principle is simply described with reference to FIGS. 38A and 38B which are the drawings described in Patent Document 3. To do. As shown in FIG. 38A, the waveguide structure described as the background art in Patent Document 3 is a structure in which conductor planes are divided by slits, and each conductor patch formed by being divided by the slits is connected by a thin connection portion. ing. As shown in FIG. 38B, the equivalent circuit diagram of this structure is shown in FIG. The parallel resonant circuit is added as a series branch. In the waveguide structure described by such an equivalent circuit, a series branch portion (a portion formed by an inductance Lp of a parallel plate waveguide, a capacitance Cg of a slit portion, and an inductance Lb of a connection portion connecting the slit portions) behaves as a capacitance. In the frequency band, the electromagnetic noise suppression effect can be achieved even in a high frequency such as the GHz band, which has been difficult to achieve with the method using the decoupling capacitor described in the background art.
 特許文献2に記載の構造は、特許文献3に背景技術として記載のスリット部を接続する接続部を、スリットを設けた導体プレーンとは別の層を用いて実現した構造となっている。特許文献2に記載の導波路構造の断面図を図37に示す。図37から分かるように、第1ビア301、第2ビア302、接続パターン303を用いて、金属板304、305を接続する構成となっている。第1ビア301、第2ビア302、接続パターン303が特許文献3の背景技術の細い接続部に相当し、金属板304、305が特許文献3の背景技術のスリットで分断された導体プレーンに相当している。つまりは、特許文献3の背景技術の細い接続部を、ビアを用いることにより導体プレーン(特許文献2では、金属板304、305)とは異なる層を用いて形成している。このため、等価回路も特許文献3の背景技術に記載の構造と同一のものとなり、特許文献3の背景技術に記載の構造と同じ原理に基づき電磁ノイズ抑制効果が期待できる。 The structure described in Patent Document 2 is a structure in which the connecting portion for connecting the slit portion described as the background art in Patent Document 3 is realized by using a layer different from the conductor plane provided with the slit. A cross-sectional view of the waveguide structure described in Patent Document 2 is shown in FIG. As can be seen from FIG. 37, the metal plates 304 and 305 are connected using the first via 301, the second via 302, and the connection pattern 303. The first via 301, the second via 302, and the connection pattern 303 correspond to the thin connection portion of the background art of Patent Document 3, and the metal plates 304 and 305 correspond to the conductor plane divided by the slit of the background technology of Patent Document 3. is doing. In other words, the thin connection portion of the background art of Patent Document 3 is formed using a layer different from the conductor plane (in Patent Document 2, the metal plates 304 and 305) by using vias. For this reason, the equivalent circuit is the same as the structure described in the background art of Patent Document 3, and an electromagnetic noise suppression effect can be expected based on the same principle as the structure described in the background art of Patent Document 3.
米国特許第7,215,007号US Patent No. 7,215,007 特開2010-10647号公報JP 2010-10647 A US2007/0090398A1US2007 / 0090398A1
 しかしながら、特許文献1、特許文献2、特許文献3の背景技術の電磁ノイズ抑制技術であるEBG特性を有する構造には、以下の課題が存在する。 However, the following problems exist in the structure having the EBG characteristic that is the electromagnetic noise suppression technology of the background art of Patent Document 1, Patent Document 2, and Patent Document 3.
 まず、特許文献1の課題について記載する。その課題とは、所望の周波数帯においてEBG特性を実現するための構造の平面に占める面積が大きいことである。例えば、特許文献1では、2GHzから始まる電磁バンドギャップを実現するのに、平面視で一つの導体パッチ106の面積が200mm×200mmを占めている。平面視での占有面積を小さくするには、導体パッチの面積を小さくする必要がある。しかし、単純に導体パッチを小さくしたのでは、導体パッチと導体プレーン間のキャパシタンス値が減少し、EBG特性を持つ周波数帯が高周波化されてしまい、所望の周波数帯を外れてしまう。この高周波化を避けるには、キャパシタンスの減少分を導体ロッドのインダクタンスを増加させることにより補わなくてはならない。導体ロッドのインダクタンスを増加させるには、ロッドの径を小さくする、ロッドの長さを長くするなどの処方が必要である。しかし、前者は、製造可能条件により限界があり、後者は、EBG特性を有する構造により基板の層間隔が制限を受けることになり実用上望ましくない。つまり、平面視での面積を小さくすることは原理上可能ではあるが、その場合新たな課題が浮上することになる。  First, the problem of Patent Document 1 will be described. The problem is that the area of the structure for realizing the EBG characteristics in a desired frequency band occupies a large area. For example, in Patent Document 1, in order to realize an electromagnetic band gap starting from 2 GHz, the area of one conductor patch 106 occupies 200 mm × 200 mm in plan view. In order to reduce the occupied area in plan view, it is necessary to reduce the area of the conductor patch. However, if the conductor patch is simply made smaller, the capacitance value between the conductor patch and the conductor plane is reduced, and the frequency band having the EBG characteristic is increased in frequency, so that the desired frequency band is deviated. In order to avoid this high frequency, the decrease in capacitance must be compensated by increasing the inductance of the conductor rod. In order to increase the inductance of the conductor rod, a prescription such as reducing the diameter of the rod or increasing the length of the rod is necessary. However, the former has a limit due to manufacturable conditions, and the latter is not practically desirable because the layer spacing of the substrate is limited by the structure having EBG characteristics. That is, it is possible in principle to reduce the area in plan view, but in that case, a new problem arises. *
 特許文献2、特許文献3の背景技術の課題は、スリットで分断した導体プレーンを細い接続部で接続しているため、該当箇所のインダクタンス値が大きくなり、電圧降下を引き起こしてしまうことである。特許文献2、特許文献3の背景技術に記載のEBG特性を有する導波路構造は、分断された導体パッチをDC的に接続していることから分かる通り、電源プレーンに用いることを想定している。しかし、特許文献2や特許文献3の背景技術に記載の構造では、電源プレーンとして想定している導体プレーン内に、細い接続部でしか接続されていない箇所が多数存在している。これでは、該当箇所に電流が流れた際に大きな電圧降下が起こり、実用的には電源プレーンとして使用することは困難である。 The problem of the background art of Patent Document 2 and Patent Document 3 is that the conductor plane divided by the slit is connected by a thin connection portion, so that the inductance value of the corresponding portion becomes large and causes a voltage drop. The waveguide structure having the EBG characteristic described in the background art of Patent Document 2 and Patent Document 3 is assumed to be used for a power plane as understood from the fact that the divided conductor patches are connected in a DC manner. . However, in the structures described in the background arts of Patent Document 2 and Patent Document 3, there are many places that are connected only by thin connection portions in a conductor plane that is assumed as a power plane. In this case, a large voltage drop occurs when a current flows through the corresponding portion, and it is difficult to use it as a power plane in practical use.
 したがって本発明は、上記課題を考慮し、電圧降下を引き起こさないために、導体プレーンに大きな細工をせず、かつ平面視で見込んだ際に小さな面積で実装可能なEBG特性を有する導波路構造を提供することを目的とする。 Therefore, the present invention takes into consideration the above-mentioned problems and does not cause a voltage drop. Therefore, the present invention provides a waveguide structure having an EBG characteristic that can be mounted in a small area when viewed in a plan view without a large work on the conductor plane. The purpose is to provide.
 前記目的を達成するため、本発明に係るEBG特性を有する導波路構造は、基板と、お互いに実質的に平行になるよう上記基板に設けられた第一及び第二の導体プレーンと、分割リング状の共振器とを備え、上記分割リング状の共振器は、環状部と、上記環状部が途切れた少なくとも一組の開放端対とを有しており、上記一組の開放端対を構成する各々の開放端が近接しており、上記第一及び第二の導体プレーンに挟まれる領域に上記分割リング状の共振器の上記環状部の少なくとも一部が存在しており、上記第一及び第二の導体プレーンの主表面に対し実質的に平行でない向きに上記環状部が設けられていることを特徴とする。 To achieve the above object, a waveguide structure having EBG characteristics according to the present invention includes a substrate, first and second conductor planes provided on the substrate so as to be substantially parallel to each other, and a split ring. The split ring resonator has an annular portion and at least one pair of open end pairs in which the annular portion is interrupted, and constitutes the one set of open end pairs. At least a part of the annular portion of the split ring resonator in a region sandwiched between the first and second conductor planes. The annular portion is provided in a direction that is not substantially parallel to the main surface of the second conductor plane.
 本発明は、小さな面積で実装可能なEBG特性を有する導波路構造を提供できる。 The present invention can provide a waveguide structure having EBG characteristics that can be mounted in a small area.
本発明の第1実施形態の、EBG特性を有する導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure which has EBG characteristic of 1st Embodiment of this invention. 図1のI-I線に沿った断面図である。It is sectional drawing along the II line | wire of FIG. 本発明の第1実施形態の導波路構造の別の例を説明するための、図1のI-I線に沿った断面図である。It is sectional drawing along the II line of FIG. 1 for demonstrating another example of the waveguide structure of 1st Embodiment of this invention. 本発明の第1実施形態の導波路構造のさらに別の例を説明するための、図1のI-I線に沿った断面図である。It is sectional drawing along the II line of FIG. 1 for demonstrating another example of the waveguide structure of 1st Embodiment of this invention. 分割リング状の共振器が複数配列されたプリント基板の平面図である。It is a top view of the printed circuit board with which the division | segmentation ring-shaped resonator was arranged in multiple numbers. 本発明の実施形態の導波路構造の等価回路図である。It is an equivalent circuit diagram of the waveguide structure of the embodiment of the present invention. 本発明の実施形態の導波路構造の等価回路図である。It is an equivalent circuit diagram of the waveguide structure of the embodiment of the present invention. 1次元伝送線路モデルを示す回路図である。It is a circuit diagram which shows a one-dimensional transmission line model. 本発明の第1実施形態の導波路構造の効果を説明するためのグラフである。It is a graph for demonstrating the effect of the waveguide structure of 1st Embodiment of this invention. 本発明の第2実施形態の導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure of 2nd Embodiment of this invention. 図10のII-II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 本発明の第2実施形態の導波路構造の別の例を説明するための、図10のII-II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 10 for demonstrating another example of the waveguide structure of 2nd Embodiment of this invention. 本発明の第3実施形態の導波路構造を説明するための断面図である。It is sectional drawing for demonstrating the waveguide structure of 3rd Embodiment of this invention. 本発明の第3実施形態の導波路構造の別の例を説明するための断面図である。It is sectional drawing for demonstrating another example of the waveguide structure of 3rd Embodiment of this invention. 本発明の第3実施形態の導波路構造のさらに別の例を説明するための断面図である。It is sectional drawing for demonstrating another example of the waveguide structure of 3rd Embodiment of this invention. 本発明の第4実施形態の導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure of 4th Embodiment of this invention. 本発明の第4実施形態の導波路構造の別の例を説明するための平面図である。It is a top view for demonstrating another example of the waveguide structure of 4th Embodiment of this invention. 図20のIII-III線に沿った断面図である。It is sectional drawing along the III-III line of FIG. 図20のIV-IV線に沿った断面図である。It is sectional drawing along the IV-IV line of FIG. 本発明の第4実施形態の導波路構造のさらに別の例を説明するための断面図である。It is sectional drawing for demonstrating another example of the waveguide structure of 4th Embodiment of this invention. 本発明の第5実施形態の導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure of 5th Embodiment of this invention. 本発明の第6実施形態の導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure of 6th Embodiment of this invention. 本発明の第6実施形態の導波路構造の別の例を説明するための平面図である。It is a top view for demonstrating another example of the waveguide structure of 6th Embodiment of this invention. 本発明の第7実施形態の導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure of 7th Embodiment of this invention. 図24のV-V線に沿った断面図である。FIG. 25 is a sectional view taken along line VV in FIG. 24. 図24のVI-VI線に沿った断面図である。It is sectional drawing along the VI-VI line of FIG. 本発明の第7実施形態の導波路構造の効果を説明するためのグラフである。It is a graph for demonstrating the effect of the waveguide structure of 7th Embodiment of this invention. 本発明の第8実施形態の導波路構造を説明するための平面図である。It is a top view for demonstrating the waveguide structure of 8th Embodiment of this invention. 図28のVII-VII線に沿った断面図である。It is sectional drawing along the VII-VII line of FIG. 図28のVIII-VIII線に沿った断面図である。It is sectional drawing along the VIII-VIII line of FIG. 本発明の第8実施形態の導波路構造の他の例を説明するための平面図である。It is a top view for demonstrating the other example of the waveguide structure of 8th Embodiment of this invention. 図31のIX-IX線に沿った断面図である。FIG. 32 is a cross-sectional view taken along line IX-IX in FIG. 31. 図31のX-X線に沿った断面図である。FIG. 32 is a cross-sectional view taken along line XX in FIG. 31. 本発明の実施形態の導波路構造の他の例を説明するための平面図である。It is a top view for demonstrating the other example of the waveguide structure of embodiment of this invention. 本発明の実施形態の導波路構造の他の例を説明するための平面図である。It is a top view for demonstrating the other example of the waveguide structure of embodiment of this invention. 本発明の第2実施形態の導波路構造の別の例を説明するための導波路構造の断面図である。It is sectional drawing of the waveguide structure for demonstrating another example of the waveguide structure of 2nd Embodiment of this invention. 特許文献1で提案されているEBG特性を有する構造を説明するための斜視図である。It is a perspective view for demonstrating the structure which has the EBG characteristic proposed by patent document 1. FIG. 図36AのEBG特性を有する構造の断面図である。FIG. 36B is a cross-sectional view of the structure having the EBG characteristic of FIG. 36A. 図36AのEBG特性を有する構造の等価回路図である。FIG. 36B is an equivalent circuit diagram of the structure having the EBG characteristic of FIG. 36A. 特許文献2で提案されているEBG特性を有する構造の断面図である。It is sectional drawing of the structure which has the EBG characteristic proposed by patent document 2. FIG. 特許文献3の背景技術に記載のEBG特性を有する構造の平面図である。FIG. 11 is a plan view of a structure having EBG characteristics described in the background art of Patent Document 3. 図38AのEBG特性を有する構造の等価回路図である。FIG. 38B is an equivalent circuit diagram of the structure having the EBG characteristic of FIG. 38A.
 本発明の好ましい実施形態について具体的に説明する前に、本発明のコンセプトについて説明する。 Before describing the preferred embodiment of the present invention in detail, the concept of the present invention will be described.
 課題となる電磁波ノイズは、平行平板導体プレーン間を伝搬する電磁波である。本発明では、複数の導体プレーンよりなる平行平板導波路に、分割リング状の共振器が、平行平板導波路内を伝搬する電磁波の磁場成分がリングを貫くように配置された構造となっている。分割リング状の共振器は、環状部と、上記環状部が途切れた少なくとも一つの開放端対とを有しており、開放端対を構成する各々の開放端が近接して容量を形成している。つまり、分割リング状の共振器は、上記環状部の少なくとも1つの開放端対がキャパシタンスとして振る舞い、その他の上記環状部がインダクタンスとして振る舞うことにより、LC共振器を構成している。等価回路モデルで記述すると、上記平行平板導波路は、直列インピーダンス部であるインダクタンスと、並列アドミタンス部であるキャパシタンスで記述される。この平行平板導波路に分割リング状のLC共振器が磁場で結合した構成が本発明の等価回路となる。この等価回路モデルは、上記平行平板導波路の等価回路モデルに並列LC共振器を直列インピーダンスとして付加した等価回路モデルとしてより簡略化して表現できる。この際、磁場による平行平板線路と分割リング状のLC共振器の結合は、簡略化した並列LC共振器のインダクタンスLとキャパシタンスCの値に押し込まれる。このような等価回路中を伝搬する電磁波は、直列インピーダンス部がキャパシタンス性となる周波数帯において、進行するにつれて振幅が減衰していく。つまり、このような周波数帯においてEBG特性を有する。これにより、課題となる平行平板導体プレーン間を伝搬する電磁波は、上記分割リング状の共振器を配置することにより抑制することができる。これにより、本発明は、EBG特性を持った導波路構造を提供できる。 The electromagnetic wave noise to be a problem is an electromagnetic wave propagating between parallel plate conductor planes. In the present invention, a split ring resonator is arranged in a parallel plate waveguide composed of a plurality of conductor planes so that the magnetic field component of the electromagnetic wave propagating in the parallel plate waveguide penetrates the ring. . The split ring resonator has an annular portion and at least one open end pair in which the annular portion is interrupted, and each open end constituting the open end pair is adjacent to form a capacitance. Yes. That is, the split ring-shaped resonator constitutes an LC resonator by having at least one open end pair of the annular portion behave as capacitance and the other annular portion behave as inductance. When described by an equivalent circuit model, the parallel plate waveguide is described by an inductance which is a series impedance part and a capacitance which is a parallel admittance part. A structure in which a split ring-shaped LC resonator is coupled to the parallel plate waveguide by a magnetic field is an equivalent circuit of the present invention. This equivalent circuit model can be expressed more simply as an equivalent circuit model in which a parallel LC resonator is added as a series impedance to the equivalent circuit model of the parallel plate waveguide. At this time, the coupling between the parallel plate line and the split ring LC resonator due to the magnetic field is pushed into the values of the inductance L and the capacitance C of the simplified parallel LC resonator. The amplitude of the electromagnetic wave propagating in such an equivalent circuit attenuates as it progresses in a frequency band in which the series impedance portion is capacitive. That is, it has an EBG characteristic in such a frequency band. Thereby, the electromagnetic wave which propagates between the parallel plate conductor planes as a problem can be suppressed by arranging the split ring resonator. As a result, the present invention can provide a waveguide structure having EBG characteristics.
 特許文献1に記載のマッシュルーム型のEBG構造では、マッシュルーム型の構造物が導体プレーンとの間にキャパシタンスを形成しなければならないため、導体パッチの面積が容量値に直接影響する。ここで、導体ロッドのインダクタンスを増加させるには、ロッドの径を小さくする、ロッドの長さを長くするなどの処方が必要であり、これらが実用上困難であることを考えると、インダクタンス値を設計パラメータとして使用することは困難であり、導体パッチのサイズとEBG特性を持つ周波数帯は一対一に対応することとなる(ただし、導体パッチと導体プレーン間の間隔、材料の比誘電率を固定した場合)。つまり、EBG特性を持つ周波数帯を定めると導体パッチのサイズ、つまりは平面視に占める面積が決定されてしまう。対して、本発明では分割リング状の共振器の一つの開放端対を構成する各々の開放端が近接してキャパシタンスを形成している。特許文献1に記載の構造とは異なり、導体プレーンとの間にキャパシタンスを形成しているわけではないため、キャパシタンスの形成方法に非常に大きな自由度があり、容量値は必ずしも平面視において分割リング状の共振器が占める面積と一対一に対応しない。加えて、分割リング状の共振器を構成する環状部は、環状部全体がインダクタンスとして振る舞う。特許文献1に記載の構造では、ロッド部のみがインダクタンスとして振る舞っていたが、本発明では環状部全体がインダクタンスとして振る舞うため、容易に大きなインダクタンス値を得ることが可能である。以上の理由から、本発明により、所望の周波数帯においてEBG特性を持つ導波路構造を、特許文献1に記載の構造よりも平面視に占める面積がより狭い領域で実現できる。 In the mushroom type EBG structure described in Patent Document 1, the area of the conductor patch directly affects the capacitance value because the mushroom type structure must form a capacitance with the conductor plane. Here, in order to increase the inductance of the conductor rod, prescriptions such as reducing the diameter of the rod and increasing the length of the rod are necessary, and considering that these are difficult in practice, the inductance value is It is difficult to use as a design parameter, and the size of the conductor patch and the frequency band with the EBG characteristic correspond one-to-one (however, the distance between the conductor patch and the conductor plane and the relative dielectric constant of the material are fixed). if you did this). That is, when the frequency band having the EBG characteristic is determined, the size of the conductor patch, that is, the area occupied in plan view is determined. On the other hand, in the present invention, each open end constituting one open end pair of the split ring resonator is close to form a capacitance. Unlike the structure described in Patent Document 1, a capacitance is not formed between the conductor plane and the capacitance forming method has a great degree of freedom, and the capacitance value is not necessarily divided in a plan view. There is no one-to-one correspondence with the area occupied by the resonators. In addition, in the annular portion constituting the split ring resonator, the entire annular portion behaves as an inductance. In the structure described in Patent Document 1, only the rod portion behaves as an inductance. However, in the present invention, since the entire annular portion behaves as an inductance, it is possible to easily obtain a large inductance value. For the above reasons, according to the present invention, a waveguide structure having EBG characteristics in a desired frequency band can be realized in a region having a smaller area in plan view than the structure described in Patent Document 1.
 また、特許文献2に記載のEBG構造では、スリットで分断した導体プレーンを細い接続部で接続しているため、該当箇所のインダクタンス値が大きくなり、導体プレーンを電源プレーンとして用いた場合には、該当箇所において大きな電圧降下が起こってしまう。対して、本発明のEBG特性を有する導波路構造では、導体プレーンに細い接続部が存在するような加工を施さないため、こうした電圧降下は生じない。つまり、導体プレーンを電源プレーンとして用いても、大きな電圧降下の生じないEBG特性を持つ構造を提供できる。 Further, in the EBG structure described in Patent Document 2, since the conductor plane divided by the slit is connected by a thin connection portion, the inductance value of the corresponding portion becomes large, and when the conductor plane is used as a power plane, A large voltage drop occurs at the relevant location. On the other hand, in the waveguide structure having the EBG characteristic of the present invention, such a voltage drop does not occur because the conductor plane is not processed to have a thin connection portion. That is, it is possible to provide a structure having EBG characteristics in which a large voltage drop does not occur even when a conductor plane is used as a power supply plane.
 また、導体プレーンにクリアランスホール、開口部、スリットや切り欠きなどを設け、分割リング状の共振器を、このようなクリアランスホール、スリットや切り欠きなどを利用して配置することもできる。こうした構成も合わせて用いることにより、層の構成に影響されることなく実装可能なEBG特性を有する導波路構造を提供できる。以下では、クリアランスホール、開口部、スリットや切り欠きなどを、クリアランスホールと総称して説明することとする。 It is also possible to provide clearance holes, openings, slits, cutouts, etc. in the conductor plane, and to arrange split ring resonators using such clearance holes, slits, cutouts, etc. By using these configurations together, a waveguide structure having EBG characteristics that can be mounted without being affected by the layer configuration can be provided. Hereinafter, clearance holes, openings, slits, cutouts, and the like will be collectively referred to as clearance holes.
 〔第1実施形態〕
 初めに、本発明の第1実施形態によるEBG特性を有する導波路構造について、説明する。図1は、本発明の第1実施形態の導波路構造を示す平面図である。図2は、図1のI-I線に沿った断面図である。図3は、本発明の第1実施形態の導波路構造の別の例を示す、図1のI-I線に沿った断面図である。図4は、本発明の第1実施形態の導波路構造のさらに別の例を示す、図1のI-I線に沿った断面図である。図5は、図1の分割リング状の共振器が複数配列されたプリント基板の平面図である。
[First Embodiment]
First, a waveguide structure having EBG characteristics according to the first embodiment of the present invention will be described. FIG. 1 is a plan view showing a waveguide structure according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along line II in FIG. FIG. 3 is a cross-sectional view taken along the line II in FIG. 1, showing another example of the waveguide structure according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view taken along line II of FIG. 1, showing still another example of the waveguide structure according to the first embodiment of the present invention. FIG. 5 is a plan view of a printed circuit board in which a plurality of the split ring resonators of FIG. 1 are arranged.
 図1乃至図4は上記分割リング状の共振器が1つ配置された領域の周囲を示すものであり、図5は上記分割リング状の共振器がプリント基板に複数配列された状態を示している。図2乃至図4に示すように、x、y及びz軸を定義して説明することにする。 1 to 4 show the periphery of a region where one of the split ring resonators is arranged, and FIG. 5 shows a state in which a plurality of the split ring resonators are arranged on a printed circuit board. Yes. As shown in FIGS. 2 to 4, the x, y, and z axes will be defined and described.
 本実施形態によるEBG特性を有する導波路構造は、プリント基板101と、お互いに実質的に平行になるよう、プリント基板101の表層又は内層に設けられた第一の導体プレーン102、第二の導体プレーン103と、上記プリント基板101に設けられた分割リング状の共振器110とを備えている。図2では、分割リング状の共振器110は四角状の点線で囲った範囲で構成されている。第一の導体プレーン102と第二の導体プレーン103に挟まれる領域を第一の領域104としたときに、本実施形態の分割リング状の共振器110は、分割リング状の共振器の環状部の全体が第一の領域104に含まれるよう配置されている。以下、第一の領域104とは、お互いに対向する第一の導体プレーン102と第二の導体プレーン103とに挟まれる領域だけでなく、第一の導体プレーン102や第二の導体プレーン103が存在する面内の領域も含むものとする。図2の断面図では、上記分割リング状の共振器が長方形のものとなっている。 The waveguide structure having the EBG characteristic according to the present embodiment includes the first conductor plane 102 and the second conductor provided on the surface layer or the inner layer of the printed circuit board 101 so as to be substantially parallel to the printed circuit board 101. A plane 103 and a split ring-shaped resonator 110 provided on the printed circuit board 101 are provided. In FIG. 2, the split ring-shaped resonator 110 is configured in a range surrounded by a rectangular dotted line. When the region sandwiched between the first conductor plane 102 and the second conductor plane 103 is the first region 104, the split ring resonator 110 of the present embodiment is an annular portion of the split ring resonator. Are arranged so as to be included in the first region 104. Hereinafter, the first region 104 is not only the region sandwiched between the first conductor plane 102 and the second conductor plane 103 facing each other, but also the first conductor plane 102 and the second conductor plane 103. It also includes the existing in-plane region. In the cross-sectional view of FIG. 2, the split ring resonator is rectangular.
 より細部について説明すると、分割リング状の共振器は、平面視で異なる位置に設けられる第一の導体ビア105と第二の導体ビア106、第一の導体ビア105と第二の導体ビア106との間を接続する第一の接続部107、第一の接続部107の上方または下方に設けられた、第一の導体ビア105に一端が接続され他端が第二の導体ビア106へと伸びている第二の接続部108a、及び第二の導体ビア106に一端が接続され他端が第一の導体ビア105へと伸びている第二の接続部108bにより構成される。 In more detail, the split ring resonator includes a first conductor via 105 and a second conductor via 106 provided at different positions in plan view, and a first conductor via 105 and a second conductor via 106. One end is connected to the first conductor via 105 and the other end extends to the second conductor via 106 provided above or below the first connection portion 107 and the first connection portion 107. The second connection portion 108 a and the second connection portion 108 b having one end connected to the second conductor via 106 and the other end extending to the first conductor via 105.
 また、図2に示すように、導体ビアとして貫通ビアを用いる際には、第一の導体ビア105及び第二の導体ビア106が、第一の導体プレーン102及び第二の導体プレーン103と電気的に接続しないで通過するよう、第一の導体プレーン102及び第二の導体プレーン103に、それぞれ複数のクリアランスホールが形成される。クリアランスホールの平面的な形状は、図1に示すような四角形状でも、円形状でも楕円形状でもよい。そして、第二の接続部108aと第二の接続部108bの他端間に空隙部109が形成されて、他端間が容量的に接続された構造となっている。第一の接続部107、第二の接続部108a及び第二の接続部108bは、プリント基板101の表層又は内層の配線、又は異なる層間の配線を接続する導体ビアと表層又は内層の配線により構成されることが考えられる。 In addition, as shown in FIG. 2, when the through via is used as the conductor via, the first conductor via 105 and the second conductor via 106 are electrically connected to the first conductor plane 102 and the second conductor plane 103. A plurality of clearance holes are formed in the first conductor plane 102 and the second conductor plane 103 so as to pass without being connected. The planar shape of the clearance hole may be a quadrangular shape as shown in FIG. 1, a circular shape or an elliptical shape. A gap 109 is formed between the other ends of the second connecting portion 108a and the second connecting portion 108b, and the other ends are capacitively connected. The first connection portion 107, the second connection portion 108a, and the second connection portion 108b are configured by a surface layer or inner layer wiring of the printed circuit board 101, or a conductor via and a surface layer or inner layer wiring that connect wirings between different layers. It is thought that it is done.
 図2は、第一の接続部107、第二の接続部108a及び第二の接続部108bが、プリント基板101の内層の配線で構成された場合を示している。そして、図2では上述したように、プリント基板101に設けられた分割リング状の共振器110が図2の四角状の点線で囲った範囲の要素、すなわち、第一の導体ビア105、第二の導体ビア106、第一の接続部107、第二の接続部108a及び第二の接続部108bを含んで、構成されている。 FIG. 2 shows a case where the first connecting portion 107, the second connecting portion 108a, and the second connecting portion 108b are configured by wiring on the inner layer of the printed circuit board 101. In FIG. 2, as described above, the split ring-shaped resonator 110 provided on the printed circuit board 101 is surrounded by the rectangular dotted lines in FIG. 2, that is, the first conductor via 105, the second conductor via 105, and the second conductor via 105. The conductor via 106, the first connecting portion 107, the second connecting portion 108a, and the second connecting portion 108b are configured.
 図3は、第一の導体ビア105及び第二の導体ビア106と、上述した異なる層間の配線を接続する導体ビアと表層又は内層の配線により、分割リング状の共振器110を構成した場合を示している。第一の領域104の外側の領域において、一端が第一の導体ビア105に接続された第一の接続部107aと、一端が第二の導体ビア106に接続された第一の接続部107bとが形成されている。この第一の接続部107aと第一の接続部107bとは、お互いに異なる層に配置されており、第一の領域104の外側の領域において他端部同士が平面視で重なって、空隙部109が形成されている。さらに、第一の領域104には、一端が第一の導体ビア105に接続された第二の接続部108aが配置されている。第一の領域104の外側の領域において、一端が第二の導体ビア106に接続された第二の接続部108bが配置されている。第一の領域104の外側の領域において、第二の接続部108bの他端は、同層に配置された第二の接続部108cの一端と空隙部109を介して容量的に結合しており、第二の接続部108cと第二の接続部108aとの間は、第二の導体プレーン103に設けられたクリアランスホールを通過する導体ビアで接続されている。 FIG. 3 shows a case where the split ring resonator 110 is configured by the first conductor via 105 and the second conductor via 106, the conductor via connecting the above-described wiring between different layers, and the wiring on the surface layer or the inner layer. Show. In a region outside the first region 104, a first connecting portion 107a having one end connected to the first conductor via 105, and a first connecting portion 107b having one end connected to the second conductor via 106, Is formed. The first connection portion 107a and the first connection portion 107b are arranged in different layers, and the other end portions overlap each other in a plan view in a region outside the first region 104, so that a gap portion is formed. 109 is formed. Further, a second connection portion 108 a having one end connected to the first conductor via 105 is disposed in the first region 104. In a region outside the first region 104, a second connection portion 108b having one end connected to the second conductor via 106 is disposed. In the region outside the first region 104, the other end of the second connection portion 108b is capacitively coupled to one end of the second connection portion 108c arranged in the same layer via the gap portion 109. The second connection portion 108 c and the second connection portion 108 a are connected by a conductor via that passes through a clearance hole provided in the second conductor plane 103.
 そして、図3では上述したように、プリント基板101に設けられた分割リング状の共振器110が図3の四角状の点線で囲った範囲の要素、すなわち、第一の導体ビア105、第二の導体ビア106、第一の接続部107a、107b、第二の接続部108a、第二の接続部108b、第二の接続部108c、第二の接続部108aと第二の接続部108cとを接続する導体ビアを含んで、構成されている。図2では、上記分割リング状の共振器が長方形のものを示したが、他のどんな多角形の形状であっても、本発明の本質的な効果に何ら影響を与えるものではない。例えば、図3に示すような八角形の形状であってもよいし、また、全く別の形状でもよい。 In FIG. 3, as described above, the split ring-shaped resonator 110 provided on the printed circuit board 101 is surrounded by the square dotted lines in FIG. 3, that is, the first conductor via 105, the second conductor via 105, and the second conductor via 105. Conductor via 106, first connecting portions 107a and 107b, second connecting portion 108a, second connecting portion 108b, second connecting portion 108c, second connecting portion 108a and second connecting portion 108c. It includes a conductor via to be connected. In FIG. 2, the split ring-shaped resonator is rectangular, but any other polygonal shape does not affect the essential effect of the present invention. For example, an octagonal shape as shown in FIG. 3 may be used, or a completely different shape may be used.
 図4は、図2の変形例であり、第二の接続部108a、第二の接続部108bが異なる層に配置された場合を示している。すなわち、上記第一の領域104において第一の導体ビア105と第二の導体ビア106との間を接続する第一の接続部107が、プリント基板101に設けられている。さらに、上記第一の領域104において、一端が第一の導体ビア105に接続された第二の接続部108aと、一端が第二の導体ビア106に接続された第二の接続部108bとが形成されている。この第二の接続部108aと第二の接続部108bとは、お互いに異なる層に配置されており、他端部同士が平面視で重なって、空隙部109が形成されている。 FIG. 4 is a modified example of FIG. 2, and shows a case where the second connection portion 108a and the second connection portion 108b are arranged in different layers. That is, the printed circuit board 101 is provided with a first connection portion 107 that connects the first conductor via 105 and the second conductor via 106 in the first region 104. Further, in the first region 104, a second connection part 108a having one end connected to the first conductor via 105 and a second connection part 108b having one end connected to the second conductor via 106 are provided. Is formed. The second connection portion 108a and the second connection portion 108b are arranged in different layers, and the other end portions thereof are overlapped with each other in plan view to form a gap portion 109.
 分割リング状の共振器110は、第一の導体ビア105と、第二の導体ビア106とを有しており、さらに第一の導体ビア105と第二の導体ビア106間を電気的に接続する或いは空隙部109を介して容量的に接続する複数の接続部とを備えて分割リング状の共振器を形成している。空隙部109は、配線を分断するようにスリットを設けて形成してもよいし、図3の第一の接続部107aと第一の接続部107bとの間や、図4の第二の接続部108aと第二の接続部108bとの間のように、異なる層に配設された配線同士が平面視で重なる部分を有することにより作成されてもよい。 The split ring-shaped resonator 110 includes a first conductor via 105 and a second conductor via 106, and further electrically connects the first conductor via 105 and the second conductor via 106. Or a plurality of connecting portions that are capacitively connected through the gap 109 to form a split ring resonator. The gap portion 109 may be formed by providing a slit so as to divide the wiring, or between the first connection portion 107a and the first connection portion 107b in FIG. 3 or the second connection in FIG. It may be created by having a portion where wirings arranged in different layers overlap each other in plan view, such as between the portion 108a and the second connection portion 108b.
 図2や図3に示す、EBG特性を有する導波路構造は、分割リング状の共振器が1次元、又は2次元的に1つ又は複数配置することにより構成される。本実施形態の分割リング状の共振器を2次元的に複数配置した場合を、図5を参照して説明する。本実施形態の導波路構造は、電源プレーン間を伝搬する電磁波ノイズの抑制の用途に用いることが想定される。つまり、プリント基板101には、ノイズ源となる集積回路(IC)、大規模集積回路(LSI)などの電子機器111が存在することが想定される。この周囲に、図1乃至図4に示すようなEBG特性を有する導波路構造の分割リング状の共振器を2次元的に複数配置したのが図5である。この際配置される分割リング状の共振器はおのおの同じ形状である必要はない。つまり、さまざまな形状を有する分割リング状の共振器を混合して配置しても本発明の本質的な効果に影響は与えない。 The waveguide structure having EBG characteristics shown in FIGS. 2 and 3 is configured by arranging one or a plurality of split ring resonators one-dimensionally or two-dimensionally. A case where a plurality of split ring resonators of the present embodiment are two-dimensionally arranged will be described with reference to FIG. The waveguide structure of the present embodiment is assumed to be used for suppressing electromagnetic wave noise propagating between power planes. That is, it is assumed that the printed circuit board 101 includes an electronic device 111 such as an integrated circuit (IC) or a large-scale integrated circuit (LSI) that becomes a noise source. FIG. 5 shows a plurality of two-dimensionally arranged split ring resonators having a waveguide structure having EBG characteristics as shown in FIGS. The split ring resonators disposed at this time do not have to have the same shape. That is, even if split ring resonators having various shapes are mixed and arranged, the essential effect of the present invention is not affected.
 図6に本実施形態の導波路構造の等価回路図を示す。本実施形態の導波路構造は、プリント基板101に設けられた第一の導体プレーン102と第二の導体プレーン103とが平行平板導波路を形成する。また、上記分割リング状の共振器に存在する容量性で接続された空隙部109がキャパシタンスとして振る舞い、分割リング状の共振器のその他の構成要素部がインダクタンスとして振る舞うことによりLC共振回路として機能する。このLC共振回路が、磁場を介して平行板平板導波路と結合したのが本実施形態の等価回路図となる。つまり、本実施形態の等価回路図は、図6のように記述される。磁場による結合の効果、つまり平行平板線路と分割リング状の共振器の相互インダクタンスMを考慮し図6の等価回路図を書き換えると、図6の等価回路図は図7のようにより単純な等価回路で表現することができる。つまり、図7でのL’SRRとC’SRRは、図6のLSRRとは、CSRRとは異なる量を表現している。 FIG. 6 shows an equivalent circuit diagram of the waveguide structure of the present embodiment. In the waveguide structure of the present embodiment, the first conductor plane 102 and the second conductor plane 103 provided on the printed circuit board 101 form a parallel plate waveguide. Further, the capacitively connected gap portion 109 existing in the split ring resonator acts as a capacitance, and other components of the split ring resonator act as an inductance, thereby functioning as an LC resonance circuit. . The LC resonant circuit is coupled to the parallel plate flat plate waveguide via a magnetic field, which is an equivalent circuit diagram of this embodiment. That is, the equivalent circuit diagram of this embodiment is described as shown in FIG. When the equivalent circuit diagram of FIG. 6 is rewritten in consideration of the effect of coupling by a magnetic field, that is, the mutual inductance M of the parallel plate line and the split ring resonator, the equivalent circuit diagram of FIG. 6 becomes a simpler equivalent circuit as shown in FIG. Can be expressed as That is, the L ′ SRR and the C ′ SRR in FIG. 7 represent amounts different from the C SRR from the L SRR in FIG. 6.
 また、図8の等価回路で記述される一次元伝送線路モデルの電磁波の電場成分の伝搬は、電磁波の進行方向をx軸方向とし、時間依存因子を除いて次式(1)で表される。 Further, the propagation of the electric field component of the electromagnetic wave of the one-dimensional transmission line model described by the equivalent circuit of FIG. 8 is expressed by the following equation (1) except for the time-dependent factor with the traveling direction of the electromagnetic wave as the x-axis direction. .
 〔数1〕
Figure JPOXMLDOC01-appb-I000001
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
ここで、
E:一次元伝送線路の電磁波の電場成分
:一次元伝送線路の電磁波の電場成分の振幅
γ:一次元伝送線路中の伝搬定数
とする。図7と図8の等価回路図を比較することにより、次式の関係式が導かれる。
here,
E: Electric field component of electromagnetic wave of one-dimensional transmission line E 0 : Amplitude of electric field component of electromagnetic wave of one-dimensional transmission line γ: Propagation constant in one-dimensional transmission line. By comparing the equivalent circuit diagrams of FIG. 7 and FIG. 8, the following relational expression is derived.
 〔数2〕
Figure JPOXMLDOC01-appb-I000002
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
ここで、
j:虚数単位
ω:角周波数
TL:一次元伝送線路の直列インピーダンス
TL:一次元伝送線路の並列アドミタンス
PPW:平行平板導波路のインダクタンス
PPW:平行平板導波路のキャパシタンス
SRR:分割リング状の共振器のインダクタンス
SRR:分割リング状の共振器のキャパシタンス
L’SRR:図6の等価回路図を図7としたときの分割リング状の共振器より生じる実効的なインダクタンス
C’SRR:図6の等価回路図を図7としたときの分割リング状の共振器より生じる実効的なキャパシタンス
である。
また、L’SRR、C’SRR、LSRR、CSRRは、以下の関係式であらわされる。
here,
j: imaginary unit ω: angular frequency Z TL : series impedance of one-dimensional transmission line Y TL : parallel admittance L PPW of one-dimensional transmission line: inductance of parallel plate waveguide C PPW : capacitance of parallel plate waveguide L SRR : division Inductance C SRR of ring-shaped resonator: Capacitance L ′ SRR of divided ring-shaped resonator: Effective inductance C ′ SRR generated from the divided ring-shaped resonator when the equivalent circuit diagram of FIG. : Effective capacitance generated from the split ring resonator when the equivalent circuit diagram of FIG.
L ′ SRR , C ′ SRR , L SRR , and C SRR are represented by the following relational expressions.
 〔数3〕
Figure JPOXMLDOC01-appb-I000003
[Equation 3]
Figure JPOXMLDOC01-appb-I000003
ここで、
M:平行平板線路のインダクタンスと分割リング状の共振器のインダクタンスとの間の相互インダクタンス
である。
here,
M: A mutual inductance between the inductance of the parallel plate line and the inductance of the split ring resonator.
 式(1)乃至式(4)より、式(3)がキャパシタンス性(Im[Z]<0)となる周波数帯において式(1)はx軸正方向に伝搬するにつれて減衰する電磁波となり、本実施形態の導波路構造がEBG特性を持つことが分かる。これより、本発明は、式(3)がキャパシタンス性となる周波数帯において電磁波ノイズが伝搬しないEBG特性を有する導波路構造を提供できることが分かる。 From Equations (1) to (4), Equation (1) becomes an electromagnetic wave that attenuates as it propagates in the positive direction of the x-axis in the frequency band where Equation (3) has capacitance (Im [Z] <0). It can be seen that the waveguide structure of the embodiment has EBG characteristics. From this, it can be seen that the present invention can provide a waveguide structure having an EBG characteristic in which electromagnetic wave noise does not propagate in a frequency band in which Equation (3) becomes capacitive.
 図9に本実施形態の導波路構造と通常の平行平板導波路を電磁界解析により解析し、伝搬特性を比較したグラフを示す。グラフから分かるとおり、本発明の導波路構造は、特定周波数帯(式(3)がキャパシタンス性として振る舞う周波数帯に相当:図中影部)において伝搬量が減衰していることが分かる。図9では、EBG特性が3.5GHz付近に生じている。これにより、本導波路構造がEBG特性を有することが確認できる。 FIG. 9 shows a graph comparing the propagation characteristics of the waveguide structure of the present embodiment and a normal parallel plate waveguide analyzed by electromagnetic field analysis. As can be seen from the graph, in the waveguide structure of the present invention, the propagation amount is attenuated in the specific frequency band (corresponding to the frequency band in which Equation (3) behaves as capacitance: the shaded portion in the figure). In FIG. 9, the EBG characteristic is generated in the vicinity of 3.5 GHz. Thereby, it can confirm that this waveguide structure has an EBG characteristic.
 本実施形態の導波路構造によれば、通常の平行平板導波路に上記分割リング状の共振器を付加することによりEBG特性を有する導波路構造としている。分割リング状の共振器110の空隙部109がキャパシタンスとして振る舞い、またその他の部分がインダクタンスとして振る舞うことにより、LC共振器を構成している。空隙部109のキャパシタンスの実装方法には非常に大きな自由度が有り、容量値は必ずしも平面視において分割リング状の共振器が占める面積と一対一に対応しない。加えて、分割リング状の共振器の空隙部109以外の箇所は、全体がインダクタンスとして振る舞うため容易に大きなインダクタンス値を得ることが可能となる。以上の理由から本実施の形態の導波路構造により、小さな実装面積でEBG特性を有する導波路構造を提供できる。 According to the waveguide structure of the present embodiment, a waveguide structure having an EBG characteristic is obtained by adding the above split ring resonator to a normal parallel plate waveguide. The gap portion 109 of the split ring-shaped resonator 110 behaves as a capacitance, and the other portion behaves as an inductance, thereby forming an LC resonator. The method of mounting the capacitance of the gap 109 has a very large degree of freedom, and the capacitance value does not necessarily correspond to the area occupied by the split ring resonator in a plan view. In addition, since the entire portion other than the gap 109 of the split ring resonator behaves as an inductance, a large inductance value can be easily obtained. For the above reasons, the waveguide structure of the present embodiment can provide a waveguide structure having EBG characteristics with a small mounting area.
 なお、上述した導波路構造は、一例として次のような製造工程を経て形成できる。両側に銅箔が付いたコア材、コア材同士を接着する樹脂材料であるプリプレグを層状に重ねることにより、多層のプリント基板を作成する。次に、多層となったプリント基板にドリルで穴をあけ、その穴の内側に銅でメッキをすることにより、貫通ビア(上記実施形態では第一の導体ビア105や第二の導体ビア106)を形成する。貫通ビアにより層間をつなぎたくない箇所には、予めクリアランス(銅箔のない箇所)を作成しておき、ドリルの穴がクリアランスを通過するようにする。上記実施形態では、第一の導体プレーン102や第二の導体プレーン103にクリアランスホールを形成しておき、ドリルの穴がクリアランスホールを通過するようにする。 The waveguide structure described above can be formed through the following manufacturing process as an example. A multilayer printed circuit board is created by layering a core material with copper foil on both sides and a prepreg, which is a resin material that bonds the core materials together. Next, by drilling holes in the multilayer printed circuit board and plating the inside of the holes with copper, through vias (in the above embodiment, the first conductor via 105 and the second conductor via 106) Form. Clearances (locations without copper foil) are created in advance at locations where it is not desired to connect the layers with through vias, so that the drill holes pass through the clearance. In the above embodiment, a clearance hole is formed in the first conductor plane 102 and the second conductor plane 103 so that the drill hole passes through the clearance hole.
 〔第2実施形態〕
 次に、本発明の第2実施形態によるEBG特性を有する導波路構造について、説明する。図10は、本発明の第2実施形態の導波路構造を示す平面図である。図11は、図10のII-II線に沿った断面図である。図12は、本発明の第2実施形態の導波路構造の別の例を示す、図10のII-II線に沿った断面図である。図10乃至図12は、分割リング状の共振器が1つ配置された領域の周囲を示すものである。第1実施形態と同様な構成については同じ参照番号を付けて、その詳細な説明は省略することにする。
[Second Embodiment]
Next, a waveguide structure having EBG characteristics according to the second embodiment of the present invention will be described. FIG. 10 is a plan view showing a waveguide structure according to the second embodiment of the present invention. 11 is a cross-sectional view taken along line II-II in FIG. FIG. 12 is a cross-sectional view taken along the line II-II of FIG. 10, showing another example of the waveguide structure of the second embodiment of the present invention. 10 to 12 show the periphery of a region where one split ring resonator is arranged. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態では、第一の接続部107、第二の接続部108a及び第二の接続部108bの少なくとも1つの接続部が、第一の導体プレーン102、第二の導体プレーン103と同一面内にあることを特徴とする。 In the present embodiment, at least one of the first connection portion 107, the second connection portion 108a, and the second connection portion 108b is in the same plane as the first conductor plane 102 and the second conductor plane 103. It is characterized by that.
 本実施形態によるEBG特性を有する導波路構造は、プリント基板101と、お互いに実質的に平行になるよう、プリント基板101の表層又は内層に設けられた第一の導体プレーン102、第二の導体プレーン103と、少なくともその環状部の一部が上記第一の導体プレーン102と上記第二の導体プレーン103間に位置するよう、上記プリント基板101に設けられた分割リング状の共振器110とを備える。図11では、分割リング状の共振器110は四角状の点線で囲った範囲で構成されている。第一の導体プレーン102と第二の導体プレーン103に挟まれる領域、及び第一の導体プレーン102と第二の導体プレーンが存在する面内の領域を第一の領域104としたときに、本実施形態の分割リング状の共振器110の環状部は第一の領域104に含まれるよう配置されている。図11や図12の断面図では、上記分割リング状の共振器が長方形のものとなっている。 The waveguide structure having the EBG characteristic according to the present embodiment includes the first conductor plane 102 and the second conductor provided on the surface layer or the inner layer of the printed circuit board 101 so as to be substantially parallel to the printed circuit board 101. A split ring-shaped resonator 110 provided on the printed circuit board 101 so that the plane 103 and at least a part of the annular portion thereof are located between the first conductor plane 102 and the second conductor plane 103; Prepare. In FIG. 11, the split ring-shaped resonator 110 is configured in a range surrounded by a rectangular dotted line. When the area between the first conductor plane 102 and the second conductor plane 103 and the area in the plane where the first conductor plane 102 and the second conductor plane exist are defined as the first area 104, The annular portion of the split ring-shaped resonator 110 according to the embodiment is arranged so as to be included in the first region 104. In the cross-sectional views of FIGS. 11 and 12, the split ring resonator is rectangular.
 より細部について説明すると、プリント基板100に第一の導体ビア105、第二の導体ビア106が設けられ、第一の導体ビア105、第二の導体ビア106と電気的に接続しないよう、第一の導体プレーン102、第二の導体プレーン103にはクリアランスホールが形成されている。この際、第一の導体ビア105と第二の導体ビア106は平面視で異なる位置に設けられる。 More specifically, the first conductive via 105 and the second conductive via 106 are provided on the printed circuit board 100 so that the first conductive via 105 and the second conductive via 106 are not electrically connected. Clearance holes are formed in the conductor plane 102 and the second conductor plane 103. At this time, the first conductor via 105 and the second conductor via 106 are provided at different positions in plan view.
 さらに、第一の接続部107は第一の導体プレーン102のクリアランスホール内に配置される。すなわち第一の導体プレーン102と同じ層に、第一の導体ビア105と第二の導体ビア106との間を接続する第一の接続部107がプリント基板101に設けられている。さらに、第一の接続部107の上方又は下方には、第一の導体ビア105に一端が接続され他端が第二の導体ビア106へと伸びている第二の接続部108a及び第二の導体ビア106に一端が接続され他端が第一の導体ビア105へと伸びている第二の接続部108bがプリント基板101に設けられている。図11では、この第二の接続部108aと第二の接続部108bとは、お互いに異なる層に配置されており、他端部同士が平面視で重なって、空隙部109が形成されている。この第二の接続部108aと第二の接続部108bとは、同じ層に設けられてもよい。 Further, the first connecting portion 107 is disposed in the clearance hole of the first conductor plane 102. That is, the printed circuit board 101 is provided with the first connection portion 107 that connects the first conductor via 105 and the second conductor via 106 in the same layer as the first conductor plane 102. Further, above or below the first connection portion 107, a second connection portion 108a having one end connected to the first conductor via 105 and the other end extending to the second conductor via 106, and the second connection via A second connection portion 108 b having one end connected to the conductor via 106 and the other end extending to the first conductor via 105 is provided on the printed circuit board 101. In FIG. 11, the second connection portion 108 a and the second connection portion 108 b are arranged in different layers, and the other end portions overlap each other in plan view to form a gap portion 109. . The second connection portion 108a and the second connection portion 108b may be provided in the same layer.
 図12は、空隙部109が、配線を分断するように接続部にスリットを設けて形成された場合を示している。さらに、図12では、第一の接続部107、第二の接続部108a及び第二の接続部108bの双方が、第一の導体プレーン102、第二の導体プレーン103と同一面内にあることを特徴としている。すなわち、図12では、第二の接続部10a及び第二の接続部108bは、第二の導体プレーン103のクリアランスホール内に配置される。すなわち第二の導体プレーン103と同じ層に配置されている。 FIG. 12 shows a case where the gap portion 109 is formed by providing a slit in the connection portion so as to divide the wiring. Furthermore, in FIG. 12, both the first connection portion 107, the second connection portion 108 a, and the second connection portion 108 b are in the same plane as the first conductor plane 102 and the second conductor plane 103. It is characterized by. That is, in FIG. 12, the second connection portion 10 a and the second connection portion 108 b are disposed in the clearance hole of the second conductor plane 103. That is, they are arranged on the same layer as the second conductor plane 103.
 また、図10から図12では、分割リング状の共振器110と第一の導体プレーン102及び第二の導体プレーン103がクリアランスホールにより電気的に接続されていない場合を示したが、必ずしも第一の導体プレーン102及び第二の導体プレーン103と分割リング状の共振器110は電気的に分断されていなくてもよい。図35は、図11の変形例である。例えば、図35に示すように、第一の導体プレーン102と同一の層に存在する第一の接続部107が電気的に接続されていてもよい。この場合は、第一の導体プレーンの一部が第一の接続部として振る舞うことになる。このような構成の場合にも分割リング状の共振器110は、第一の導体プレーン102及び第二の導体プレーン103よりなる平行平板導波路と、磁場を介して結合することになる。つまり、図6の等価回路で記述でき、図35の構成もEBG特性を有することになる。ただし、こうした構成とした場合、第一の接続部107の部分のインダクタンスの値が小さくなるため、EBG特性の生じる周波数帯域は、高周波化してしまい、分割リング状の共振器の平面視で占める面積の拡大につながる。しかし、導体プレーンにクリアランスを設ける必要がないため、余計な電磁波の放射を抑える効果が期待できる。 10 to 12 show the case where the split ring-shaped resonator 110, the first conductor plane 102, and the second conductor plane 103 are not electrically connected by a clearance hole. The conductor plane 102, the second conductor plane 103, and the split ring resonator 110 may not be electrically separated. FIG. 35 is a modification of FIG. For example, as shown in FIG. 35, the first connection portion 107 existing in the same layer as the first conductor plane 102 may be electrically connected. In this case, a part of the first conductor plane behaves as the first connection portion. Even in such a configuration, the split ring resonator 110 is coupled to the parallel plate waveguide formed of the first conductor plane 102 and the second conductor plane 103 via a magnetic field. That is, it can be described by the equivalent circuit of FIG. 6, and the configuration of FIG. 35 also has EBG characteristics. However, in such a configuration, since the inductance value of the first connecting portion 107 becomes small, the frequency band in which the EBG characteristic occurs is increased in frequency, and the area occupied by the split ring resonator in plan view Leads to the expansion of However, since it is not necessary to provide a clearance in the conductor plane, it is possible to expect an effect of suppressing unnecessary radiation of electromagnetic waves.
 本実施形態によれば、第一の接続部107、第二の接続部108a及び第二の接続部108bの少なくとも1つの接続部が、平行平板導波路を構成する第一の導体プレーン102、第二の導体プレーン103と同一面内に存在する。第一の導体プレーン102、第二の導体プレーン103と同一面内に存在する第一の接続部107、第二の接続部108a及び第二の接続部10bは、第一の導体プレーン102もしくは第二の導体プレーン103の製造工程において形成することができる。これにより、EBG特性を有する導波路構造を、通常の平行平板導波路に対して、層の追加を少なく、又は層追加をすることなく提供できることが分かる。つまり、層の追加を少なく、又は層追加をすることなく実装可能なEBG特性を有する導波路構造を提供できる。 According to this embodiment, at least one of the first connection portion 107, the second connection portion 108a, and the second connection portion 108b includes the first conductor plane 102, the second connection portion 108b, and the second conductor portion 102b. It exists in the same plane as the second conductor plane 103. The first connection plane 107, the first connection portion 107, the second connection portion 108a, and the second connection portion 10b existing in the same plane as the second conductor plane 103 are the first conductor plane 102 or the second conductor plane 103. It can be formed in the manufacturing process of the second conductor plane 103. Thus, it can be seen that a waveguide structure having EBG characteristics can be provided with less or no additional layers compared to a normal parallel plate waveguide. That is, it is possible to provide a waveguide structure having an EBG characteristic that can be mounted with little or no additional layers.
 〔第3実施形態〕
 次に、本発明の第3実施形態によるEBG特性を有する導波路構造について、説明する。図13は、本発明の第3実施形態の導波路構造を示す断面図である。図14は、本発明の第3実施形態の導波路構造の別の例を示す断面図である。図15は、本発明の第3実施形態の導波路構造のさらに別の例を示す断面図である。図13乃至図15は、分割リング状の共振器が1つ配置された領域の周囲を示すものである。本実施形態は、第1実施形態の変形例であるので、第1実施形態と同様な構成については同じ参照番号を付けて、その詳細な説明は省略することにする。 
[Third Embodiment]
Next, a waveguide structure having EBG characteristics according to a third embodiment of the present invention will be described. FIG. 13 is a cross-sectional view showing a waveguide structure according to a third embodiment of the present invention. FIG. 14 is a cross-sectional view showing another example of the waveguide structure according to the third embodiment of the present invention. FIG. 15 is a sectional view showing still another example of the waveguide structure of the third embodiment of the present invention. FIGS. 13 to 15 show the periphery of a region where one split ring resonator is arranged. Since this embodiment is a modification of the first embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施形態では、分割リング状の共振器の環状部が、第一の領域104外に存在する部分を有することを特徴とする。例えば、図13のように分割リング状の共振器を構成する第一の接続部107、第二の接続部108a及び第二の接続部108bの全体が第一の領域104の外側に位置している例が該当する。 This embodiment is characterized in that the annular portion of the split ring resonator has a portion that exists outside the first region 104. For example, as shown in FIG. 13, the first connection portion 107, the second connection portion 108 a, and the second connection portion 108 b constituting the split ring resonator are located outside the first region 104. This is the case.
 図14のように、第一の接続部107と、第二の接続部108b、第二の接続部108cが第一の領域104の外側に位置していてもよい。図14では、第二の接続部108aは第一の領域104に配置され、一端が第一の導体ビア105に接続されている。第二の接続部108aの他端は、第二の導体プレーン103のクリアランスホールを通過する導体ビアで、第一の領域104の外側の第二の接続部108cに接続されている。第二の接続部108bと第二の接続部108cとは異なる層に配置され、平面視で重なる部分を有することにより空隙部109が形成されている。図14では、分割リング状の共振器の環状部の内部に第一の導体プレーン102及び第二の導体プレーン103を含まないように、第一の導体プレーン102及び第二の導体プレーン103にクリアランスホールが形成されている。 As shown in FIG. 14, the first connection portion 107, the second connection portion 108 b, and the second connection portion 108 c may be located outside the first region 104. In FIG. 14, the second connection portion 108 a is disposed in the first region 104 and one end is connected to the first conductor via 105. The other end of the second connection portion 108 a is a conductor via that passes through the clearance hole of the second conductor plane 103 and is connected to the second connection portion 108 c outside the first region 104. The second connecting portion 108b and the second connecting portion 108c are arranged in different layers, and the gap portion 109 is formed by having a portion overlapping in plan view. In FIG. 14, the first conductor plane 102 and the second conductor plane 103 have a clearance so that the first conductor plane 102 and the second conductor plane 103 are not included inside the annular portion of the split ring resonator. A hole is formed.
 分割リング状の共振器内に位置する第一の導体プレーン102、第二の導体プレーン103は、図13、図14のようにクリアランスホールとなっていることが望ましいが、図15のように第一の導体プレーン102、第二の導体プレーン103の一部が存在していてもよい。 The first conductor plane 102 and the second conductor plane 103 located in the split ring resonator are preferably clearance holes as shown in FIGS. 13 and 14, but as shown in FIG. One conductor plane 102 and part of the second conductor plane 103 may exist.
 本実施形態によれば、第一の接続部107、第二の接続部108、108a、第二の接続部108b、第二の接続部108c、第一の導体ビア105、第二の導体ビア106よりなる分割リング状の共振器110の周の長さを長くとることができる、つまり分割リング状の共振器110のLC共振のインダクタンス成分を大きくすることができる。式(3)、式(5)、式(6)によれば分割リング状の共振器中のインダクタンス成分を大きくすることは、EBG特性が生じる周波数帯を低周波数化することにつながる。これは、より平面視で占める面積の小さい分割リング状の共振器を実現することになる。つまり、本実施形態により、平面視で占める面積のより小さい分割リング状の共振器を持つ、EBG特性を有する導波路構造を提供できる。 According to the present embodiment, the first connecting portion 107, the second connecting portions 108 and 108a, the second connecting portion 108b, the second connecting portion 108c, the first conductor via 105, and the second conductor via 106 are used. The circumference of the split ring resonator 110 can be increased, that is, the LC resonance inductance component of the split ring resonator 110 can be increased. According to the equations (3), (5), and (6), increasing the inductance component in the split ring resonator leads to lowering the frequency band in which the EBG characteristics occur. This realizes a split ring resonator having a smaller area in plan view. That is, according to the present embodiment, it is possible to provide a waveguide structure having an EBG characteristic having a split ring resonator having a smaller area in plan view.
 〔第4実施形態〕
 次に、本発明の第4実施形態によるEBG特性を有する導波路構造について説明する。図16及び図17は、本実施形態による導波路構造を示す平面図である。図20は、本実施形態の導波路構造のさらに別の例を説明するための断面図である。本実施形態は、第1実施形態の変形例であるので、第1実施形態と同様な構成については同じ参照番号を付けて、その詳細な説明は省略することにする。
[Fourth Embodiment]
Next, a waveguide structure having EBG characteristics according to a fourth embodiment of the present invention will be described. 16 and 17 are plan views showing the waveguide structure according to the present embodiment. FIG. 20 is a cross-sectional view for explaining still another example of the waveguide structure of the present embodiment. Since this embodiment is a modification of the first embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施形態では、分割リング状の共振器110の容量的に接続された空隙部109に第一の補助導体112を有し、キャパシタンスを増加させていることを特徴とする。図16は、第一の接続部107が1つの層内に存在する際に、第一の接続部107の空隙部109に長方形上の第一の補助導体112を第一の接続部107と同一の層に設けキャパシタンスを増加している例である。第一の補助導体112の形状は、図16に示すように方形の形状でもよいし、図17に示すようなインターデジタル状の形状でもよい。また、他の形状でもよい。 This embodiment is characterized in that the first auxiliary conductor 112 is provided in the gap 109 connected capacitively of the split ring resonator 110 to increase the capacitance. FIG. 16 shows that the rectangular first auxiliary conductor 112 is the same as the first connection portion 107 in the gap 109 of the first connection portion 107 when the first connection portion 107 exists in one layer. This is an example in which the capacitance is increased in the layer. The shape of the first auxiliary conductor 112 may be a square shape as shown in FIG. 16, or may be an interdigital shape as shown in FIG. Other shapes may also be used.
 図18、図19、図20の例では、第一の接続部107が異なる2層にわたって存在し、ある層に存在する第一の接続部107の一部と、別の層に存在する第一の接続部107の一部とが平面視で重なる部分を有することにより、容量的に接続された空隙部109を実現している。そして、空隙部109に補助導体112を有して、キャパシタンスを増加させている例である。図18は図20のIII-III線に沿った断面図であり、図19は図20のIV-IV線に沿った断面図である。図18から分かるように、第二の導体ビア106に接続された第一の接続部107に補助導体112を設け、図19から分かるように第一の導体ビア105に接続された第一の接続部に補助導体112を設け、空隙部109のキャパシタンスを増加している。図18乃至図20では、第一の補助導体112として方形のパッチを設けキャパシタンスの増加を行っているが、形状は、方形である必要はなく、例えば、円など、他の形状でもよい。また、補助導体112は、図面で記載したように一か所の空隙部109に設けられる必要はなく、複数の空隙部が存在する場合には、複数の空隙部109に複数組設けられてもよい。 In the example of FIGS. 18, 19, and 20, the first connection portion 107 exists over two different layers, and a part of the first connection portion 107 that exists in one layer and the first connection portion that exists in another layer. The gap portion 109 that is capacitively connected is realized by having a portion that overlaps a part of the connection portion 107 in plan view. In this example, the auxiliary conductor 112 is provided in the gap 109 to increase the capacitance. 18 is a cross-sectional view taken along line III-III in FIG. 20, and FIG. 19 is a cross-sectional view taken along line IV-IV in FIG. As can be seen from FIG. 18, an auxiliary conductor 112 is provided in the first connecting portion 107 connected to the second conductor via 106, and the first connection connected to the first conductor via 105 is understood from FIG. The auxiliary conductor 112 is provided in the part, and the capacitance of the gap part 109 is increased. 18 to 20, a square patch is provided as the first auxiliary conductor 112 to increase the capacitance. However, the shape does not have to be a square, and may be another shape such as a circle. In addition, the auxiliary conductor 112 does not need to be provided in one gap portion 109 as described in the drawing. If there are a plurality of gap portions, a plurality of sets of auxiliary conductors 112 may be provided in the plurality of gap portions 109. Good.
 本実施形態によれば、補助導体により分割リング状の共振器よりなるLC共振器のキャパシタンス成分を大きくすることができる。式(3)、式(5)、式(6)によれば、LC共振器のキャパシタンス成分を大きくすることは、EBG特性が生じる周波数帯を低周波数化することにつながる。これは、より小さい分割リング状の共振器を実現することになる。本実施形態によれば、サイズのより小さい分割リング状の共振器を持つ、EBG特性を有する導波路構造を提供できる。 According to the present embodiment, the capacitance component of the LC resonator composed of the split ring resonator can be increased by the auxiliary conductor. According to the equations (3), (5), and (6), increasing the capacitance component of the LC resonator leads to lowering the frequency band in which the EBG characteristics occur. This realizes a smaller split ring resonator. According to the present embodiment, it is possible to provide a waveguide structure having an EBG characteristic having a split ring resonator having a smaller size.
 〔第5実施形態〕
 次に本実施形態に係る導波路構造の第5実施形態について、図面を参照して説明する。図21は、本発明の第5実施形態の導波路構造を示す平面図である。本実施形態は第1実施形態の変形例であるため、第1実施形態と同様の箇所についてはその詳細な説明は省略する。本実施形態は、ある分割リング状の共振器の上記第一の導体プレーン102と平行な面内にある直線であり、第一の導体ビア105と第二の導体ビア106とを結ぶ直線を考えた際に、その直線と、上記第一の導体プレーン102と平行な面内にある直線であり、別の分割リング状の共振器の第一の導体ビア105と第二の導体ビア106とを結ぶ直線が有限の角度を有するような、ある分割リング状の共振器110とは別の分割リング状の共振器110を持つことを特徴とする。この角度とは、図21において「θ」と記載した箇所である。図21では、一例としてθ=90度の場合を示したが、有限の角度であれば、本実施形態の効果を有するので、必ずしもθ=90度である必要はない。例えば、θ=30度、60度でもよい。ただし、θの大きさは90度に近い方が望ましい。
[Fifth Embodiment]
Next, a fifth embodiment of the waveguide structure according to this embodiment will be described with reference to the drawings. FIG. 21 is a plan view showing a waveguide structure according to a fifth embodiment of the present invention. Since this embodiment is a modification of the first embodiment, detailed description of the same parts as those of the first embodiment will be omitted. The present embodiment considers a straight line in a plane parallel to the first conductor plane 102 of a split ring resonator and connecting the first conductor via 105 and the second conductor via 106. The first conductor via 105 and the second conductor via 106 of another split ring-shaped resonator are in a plane parallel to the first conductor plane 102. It is characterized by having a split ring-shaped resonator 110 different from a split ring-shaped resonator 110 in which a straight line to be connected has a finite angle. This angle is a portion described as “θ” in FIG. In FIG. 21, the case of θ = 90 degrees is shown as an example. However, if the angle is finite, the effect of the present embodiment is obtained, and therefore it is not always necessary that θ = 90 degrees. For example, θ = 30 degrees or 60 degrees may be used. However, the magnitude of θ is preferably close to 90 degrees.
 本発明のEBG特性を有する導波路構造は、分割リング状の共振器110の環状部を磁場が貫いて、分割リング状の共振器が構成するLC共振器に電流が誘起されることにより動作する。配置された分割リング状の共振器間のθが、全て0度の場合、すなわち全ての分割リング状の共振器の上記直線が同一方向を向いている場合は、第一の導体プレーン102に対して平行に設けられた直線であり、第一の導体ビア105と第二の導体ビア106を結ぶ直線に対し、垂直な方向に進行する電磁波の磁場成分は分割リング状の共振器の環状部を貫かない。例えば、図2のy軸方向に進行する電磁波の磁場成分は分割リング状の共振器の環状部を貫かない。そのため、図2に記載した分割リング状の共振器を全て同じ向きに配置した場合には、y軸方向に進行する電磁波に限っては本発明の効果が得られないことになる。そこで、本実施形態のようにθが有限の角度を持つように、分割リング状の共振器110を配置することにより、平行平板導波路内に伝搬する任意の進行方向を有する電磁波に対して、EBG特性を有する導波路構を提供できる。 The waveguide structure having EBG characteristics according to the present invention operates when a magnetic field passes through the annular portion of the split ring resonator 110 and current is induced in the LC resonator formed by the split ring resonator. . When the θ between the arranged split ring resonators is all 0 degrees, that is, when the straight lines of all the split ring resonators face the same direction, the first conductor plane 102 The magnetic field component of the electromagnetic wave traveling in the direction perpendicular to the straight line connecting the first conductor via 105 and the second conductor via 106 passes through the annular portion of the split ring resonator. It does not penetrate. For example, the magnetic field component of the electromagnetic wave traveling in the y-axis direction in FIG. 2 does not penetrate the annular portion of the split ring resonator. Therefore, when all the split ring resonators shown in FIG. 2 are arranged in the same direction, the effect of the present invention cannot be obtained only for electromagnetic waves traveling in the y-axis direction. Therefore, by arranging the split ring-shaped resonator 110 so that θ has a finite angle as in this embodiment, with respect to electromagnetic waves having an arbitrary traveling direction propagating in the parallel plate waveguide, A waveguide structure having EBG characteristics can be provided.
 〔第6実施形態〕
 次に本発明の第6実施形態に係る導波路構造について、図面を参照して説明する。本実施形態は第1実施形態の変形例であるため、第1実施形態と同様の箇所についてはその詳細な説明は省略する。図22は、本発明の第6実施形態の導波路構造を示す平面図である。図23は、本発明の第6実施形態の導波路構造の別の例を示す平面図である。
[Sixth Embodiment]
Next, a waveguide structure according to a sixth embodiment of the present invention will be described with reference to the drawings. Since this embodiment is a modification of the first embodiment, detailed description of the same parts as those of the first embodiment will be omitted. FIG. 22 is a plan view showing a waveguide structure according to the sixth embodiment of the present invention. FIG. 23 is a plan view showing another example of the waveguide structure according to the sixth embodiment of the present invention.
 本実施形態は、ある分割リング状の共振器110と、ある分割リング状の共振器110と構成要素の一部を共有するような別の分割リング状の共振器を有することを特徴とする。例えば、図22は導体ビア105、もしくは106を2つの分割リング状の共振器で共有している例であり、図23は第一の接続部107か第二の接続部108の一部、もしくは第一の接続部107、第二の接続部108の双方の一部を2つの分割リング状の共振器で共有している例である。 This embodiment is characterized by having a split ring resonator 110 and another split ring resonator that shares some of the components with the split ring resonator 110. For example, FIG. 22 shows an example in which the conductor via 105 or 106 is shared by two split ring resonators, and FIG. 23 shows a part of the first connection 107 or the second connection 108, or In this example, both of the first connecting portion 107 and the second connecting portion 108 are shared by two split ring resonators.
 図22、図23では、2つの分割リング状の共振器を有しており、それぞれの分割リング状の共振器は、第一の導体ビア、第二の導体ビア、第一の接続部、第二の接続部で構成されている。図22では、ある分割リング状の共振器の導体ビアの1つと別の分割リング状の共振器の導体ビアの1つを共有し、二つの分割リング状の共振器が接続されている。図22の例では、各々の分割リング状の共振器の上記直線どうしが90度の角度をなしているため、平面視が「L」字型の構造となっている。この際、それぞれの分割リング状の共振器の第一の接続部、第二の接続部のそれぞれまたは両方には、少なくとも1つの空隙部が形成されており、それぞれの分割リング状の共振器は独立にLC共振器として振る舞うように構成されている。図23では、ある分割リング状の共振器と別の分割リングの共振器が接続部の一部を共有し、二つの分割リング状の共振器が接続されている。図23の例では、接続部の中心付近を共有し、かつ各々の分割リング状の共振器の上記直線どうしが90度の角度をなしているため、平面視が「+」字型の構造となっている。この際、それぞれの分割リング状の共振器の第一の接続部、第二の接続部のそれぞれ、または両方には、少なくとも1つの空隙部が形成されており、それぞれの分割リング状の共振器は独立にLC共振器として振る舞うように構成されている。図23では、平面視が「+」字形となっている。また、図22、図23では2つの分割リング状の共振器で分割リング状の共振器の一部を共有している場合を示したが、3つ又はそれ以上の数の分割リング状の共振器で分割リング状の共振器の一部を共有してもよい。 22 and 23, two split ring resonators are provided. Each split ring resonator includes a first conductor via, a second conductor via, a first connection portion, and a first connection portion. It consists of two connections. In FIG. 22, one of the conductor vias of one split ring resonator and one of the conductor vias of another split ring resonator are shared, and two split ring resonators are connected. In the example of FIG. 22, the straight lines of the respective split ring resonators form an angle of 90 degrees, and thus have an “L” shape structure in plan view. At this time, at least one gap is formed in each or both of the first connection part and the second connection part of each split ring resonator, and each split ring resonator has It is configured to behave independently as an LC resonator. In FIG. 23, a resonator of one split ring and a resonator of another split ring share a part of the connecting portion, and two split ring resonators are connected. In the example of FIG. 23, since the vicinity of the center of the connecting portion is shared and the above-described straight lines of the respective split ring-shaped resonators form an angle of 90 degrees, the plan view has a “+”-shaped structure. It has become. At this time, at least one air gap is formed in each of the first connection portion, the second connection portion, or both of the respective split ring resonators, and the respective split ring resonators. Are configured to behave independently as LC resonators. In FIG. 23, the plan view has a “+” shape. FIGS. 22 and 23 show the case where two split ring resonators share a part of the split ring resonator, but three or more split ring resonators are used. The resonator may share a part of the split ring resonator.
 本実施形態によれば、分割リング状の共振器110の一部を他の分割リング状の共振器の一部と共有しているため、より密に数多くの分割リング状の共振器をプリント基板101内に配置できる。これは、電磁波の伝搬抑制効果をより強く得ることにつながる。つまり、本実施形態により電磁波の伝搬抑制効果をより強く得るEBG特性を有する導波路構造を提供できる。 According to the present embodiment, since a part of the split ring resonator 110 is shared with a part of another split ring resonator, a large number of split ring resonators are more densely printed. 101. This leads to a stronger effect of suppressing propagation of electromagnetic waves. That is, according to the present embodiment, a waveguide structure having EBG characteristics for obtaining a stronger electromagnetic wave propagation suppressing effect can be provided.
 〔第7実施形態〕
 次に本発明の第7実施形態に係る導波路構造について、図面を参照して説明する。本実施形態は第1実施形態の変形例であるので、第1実施形態と同様の箇所についてはその詳細な説明は省略する。図24は本実施形態による導波路構造の平面図である。図25は、図24のV-V線に沿った断面図である。図26は、図24のVI-VI線に沿った断面図である。
[Seventh Embodiment]
Next, a waveguide structure according to a seventh embodiment of the present invention will be described with reference to the drawings. Since this embodiment is a modification of the first embodiment, detailed description of the same parts as those of the first embodiment will be omitted. FIG. 24 is a plan view of the waveguide structure according to the present embodiment. FIG. 25 is a cross-sectional view taken along the line VV in FIG. 26 is a cross-sectional view taken along line VI-VI in FIG.
 本実施形態の導波路構造は、分割リング状の共振器110に対し、距離dだけ平行移動した箇所に別の分割リング状の共振器114を備えていることを特徴とする。この際、距離dは小さい方が望ましく、伝搬を抑制したい電磁波の波長をλとしたとき、大きくてもλ/8以内であることが望ましい。なお、距離dだけ平行移動した別の分割リング状の共振器114は、必ずしも容量性で結合した空隙部109を有する必要はなく、例えば図26のように空隙のない構造でもよい。 The waveguide structure of the present embodiment is characterized in that a separate ring-shaped resonator 114 is provided at a location translated from the split ring-shaped resonator 110 by a distance d. At this time, it is desirable that the distance d is as small as possible, and it is desirable that the distance d be within λ / 8 at most, where λ is the wavelength of the electromagnetic wave whose propagation is to be suppressed. It should be noted that another split ring resonator 114 that has been translated by a distance d does not necessarily have to have a gap 109 that is capacitively coupled, and may have a structure without a gap as shown in FIG. 26, for example.
 図25に示す分割リング状の共振器は、第一の導体ビア105、第二の導体ビア106、第一の接続部107、第二の接続部108により構成され、第二の接続部108は第一の導体ビア105と第二の導体ビア106との間を接続しており、第一の接続部107は容量性で結合した空隙部109を介して、第一の導体ビア105と第二の導体ビア106との間を接続している。一方、図26に示す距離dだけ平行移動した別の分割リング状の共振器114は空隙部109を有しておらず、第一の接続部107及び第二の接続部108は、ともに第一の導体ビア105と第二の導体ビア106との間を容量性で結合した空隙部109を介さず接続している。 The split ring-shaped resonator shown in FIG. 25 includes a first conductor via 105, a second conductor via 106, a first connection portion 107, and a second connection portion 108. The first conductor via 105 and the second conductor via 106 are connected to each other, and the first connection portion 107 is connected to the first conductor via 105 and the second via a gap 109 that is capacitively coupled. The conductive via 106 is connected. On the other hand, another split ring-shaped resonator 114 translated by the distance d shown in FIG. 26 does not have the gap 109, and both the first connection 107 and the second connection 108 are the first. The conductive via 105 and the second conductive via 106 are connected without a gap 109 that is capacitively coupled.
 本実施形態によれば、ある分割リング状の共振器110と、その分割リング状の共振器110を距離dだけ平行移動した別の分割リング状の共振器114とが伝送線路として振る舞うことにより、伝送線路長に依存した共振が起きる。つまり、分割リング状の共振器単体のLC共振でなく、伝送線路長に依存した共振が起きる周波数帯でEBG特性を得ることができる。 According to the present embodiment, a split ring-shaped resonator 110 and another split ring-shaped resonator 114 that has been translated from the split ring-shaped resonator 110 by a distance d behave as transmission lines. Resonance depending on the transmission line length occurs. That is, EBG characteristics can be obtained in a frequency band in which resonance depending on the transmission line length occurs, instead of LC resonance of a single resonator of a split ring shape.
 例えば、図27は、図9において使用している電磁界解析モデルにおいて、分割リング状の共振器を平行移動した別の分割リング状の共振器を追加し、本実施形態とした電磁界解析モデルにおける、伝搬特性の解析結果である。図9では3.5GHz付近に生じていたEBG特性が、図27では2.6GHz付近に生じていることが確認できる。つまりこの例から、分割リング状の共振器の大きさを変えずに低周波化することができることが分かる。これは、より小さい分割リング状の共振器を実現することにつながる。つまり、本実施形態により、サイズのより小さい分割リング状の共振器を持つ、EBG特性を有する導波路構造を提供できる。 For example, FIG. 27 shows an electromagnetic field analysis model according to the present embodiment, in which another split ring-shaped resonator obtained by translating a split ring-shaped resonator is added to the electromagnetic field analysis model used in FIG. It is an analysis result of the propagation characteristic. It can be confirmed that the EBG characteristic generated in the vicinity of 3.5 GHz in FIG. 9 is generated in the vicinity of 2.6 GHz in FIG. That is, it can be seen from this example that the frequency can be lowered without changing the size of the split ring resonator. This leads to a smaller split ring resonator. That is, according to the present embodiment, it is possible to provide a waveguide structure having an EBG characteristic having a split ring resonator having a smaller size.
 〔第8実施形態〕
 次に本発明の第8実施形態に係る導波路構造について、図面を参照して説明する。本実施形態は、第7実施形態の変形例であるので、第7実施形態と同様の箇所についてはその詳細な説明は省略する。図28は本実施形態による導波路構造の平面図である。図29は、図28のVII-VII線に沿った断面図である。図30は、図28のVIII-VIII線に沿った断面図である。図31は本実施形態による導波路構造の他の例の平面図である。図32は、図31のIX-IX線に沿った断面図である。図33は、図31のX-X線に沿った断面図である。
[Eighth Embodiment]
Next, a waveguide structure according to an eighth embodiment of the present invention will be described with reference to the drawings. Since this embodiment is a modification of the seventh embodiment, detailed description of the same parts as those of the seventh embodiment will be omitted. FIG. 28 is a plan view of the waveguide structure according to the present embodiment. 29 is a cross-sectional view taken along line VII-VII in FIG. FIG. 30 is a sectional view taken along line VIII-VIII in FIG. FIG. 31 is a plan view of another example of the waveguide structure according to the present embodiment. 32 is a cross-sectional view taken along line IX-IX in FIG. FIG. 33 is a cross-sectional view taken along line XX of FIG.
 本実施形態は、第7実施形態に記載の、分割リング状の共振器110と、この分割リング状の共振器を距離dだけ平行移動した別の分割リング状の共振器114との間に第二の補助導体113が設けられ、分割リング状の共振器110と別の分割リング状の共振器114との間にキャパシタンスを形成していることを特徴とする。図28では、分割リング状の共振器の第一の接続部107に接続された第二の補助導体113と、別の分割リング状の共振器114の第一の接続部107に接続された第二の補助導体113との間に、キャパシタンスが形成される。例えば、図28のようにインターデジタル状の第二の補助導体113を用いて、キャパシタンスを増加させてもよいし、分割リング状の共振器110と、別の分割リング状の共振器114の一部が近接するように方形状の第二の補助導体113を設けて、キャパシタンスを増加させてもよい。 In the present embodiment, the split ring-shaped resonator 110 described in the seventh embodiment and the other split ring-shaped resonator 114 obtained by translating the split ring-shaped resonator by a distance d are provided. Two auxiliary conductors 113 are provided, and a capacitance is formed between the split ring resonator 110 and another split ring resonator 114. In FIG. 28, the second auxiliary conductor 113 connected to the first connection portion 107 of the split ring resonator and the first auxiliary portion 107 connected to the first connection portion 107 of another split ring resonator 114. A capacitance is formed between the two auxiliary conductors 113. For example, as shown in FIG. 28, the interdigital second auxiliary conductor 113 may be used to increase the capacitance, or one of the split ring resonator 110 and another split ring resonator 114. The second auxiliary conductor 113 having a rectangular shape may be provided so that the portions are close to each other, thereby increasing the capacitance.
 図31は、分割リング状の共振器110、114の接続部107、108が存在する層とは異なる層を用いて、方形状の第二の補助導体113を形成し、キャパシタンスを増加させている例の一例である。図33に示すように、分割リング状の共振器114の第一の接続部107に第二の補助導体113が接続されており、この第二の補助導体113は図31や図32に示すように分割リング状の共振器110の第一の接続部107と平面視で重なって、キャパシタンスを形成している。図31では、方形状の第二の補助導体113を用いているが、方形状である必要はなく、円形、楕円等、他のどんな形状でもよい。また、第二の補助導体は、図面で記載したように一か所に設けられる必要はなく、複数の箇所に複数組設けられてもよい。 In FIG. 31, the second auxiliary conductor 113 having a rectangular shape is formed by using a layer different from the layer in which the connecting portions 107 and 108 of the split ring resonators 110 and 114 are present, and the capacitance is increased. It is an example of an example. As shown in FIG. 33, the second auxiliary conductor 113 is connected to the first connecting portion 107 of the split ring resonator 114, and the second auxiliary conductor 113 is as shown in FIG. 31 and FIG. The first connecting portion 107 of the split ring resonator 110 overlaps in a plan view to form a capacitance. In FIG. 31, the square-shaped second auxiliary conductor 113 is used, but it does not have to be square, and may be any other shape such as a circle or an ellipse. Further, the second auxiliary conductor does not need to be provided at one place as described in the drawings, and a plurality of sets may be provided at a plurality of places.
 本実施形態によれば、第7実施形態に記載のとおり、ある分割リング状の共振器110と、この分割リング状の共振器110を距離dだけ平行移動した別の分割リング状の共振器114は、伝送線路として振る舞い、伝送線路長に依存した共振を起こすことによりEBG特性を得る。つまり、第7実施形態に記載のEBG特性を有する導波路構造の周波数特性は伝送線路長により決定されているため、実効的な伝送線路長を短くすればより小さい分割リング状の共振器を実現できることとなる。本実施形態は伝送線路となる、ある分割リング状の共振器110と、ある分割リング状の共振器110を距離dだけ平行移動した別の分割リング状の共振器114との間に第二の補助導体113を用いてキャパシタンスを形成することにより、これを実現したものである。つまり、本実施形態によれば、第7実施形態のEBG特性をより小さい分割リング状の共振器を用いて得ることができる。 According to the present embodiment, as described in the seventh embodiment, a certain split ring resonator 110 and another split ring resonator 114 obtained by translating the split ring resonator 110 by a distance d. Behaves as a transmission line and obtains EBG characteristics by causing resonance depending on the transmission line length. In other words, since the frequency characteristic of the waveguide structure having the EBG characteristic described in the seventh embodiment is determined by the transmission line length, a smaller split ring resonator can be realized by reducing the effective transmission line length. It will be possible. In the present embodiment, a second split ring-shaped resonator 110, which is a transmission line, and another split ring-shaped resonator 114 that has been translated from one split ring-shaped resonator 110 by a distance d, is a second transmission ring. This is achieved by forming a capacitance using the auxiliary conductor 113. That is, according to this embodiment, the EBG characteristic of the seventh embodiment can be obtained by using a smaller split ring resonator.
 以上実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されものではない。例えば、上述した実施形態では第一の導体プレーン102、第二の導体プレーン103にクリアランスホールが形成された場合で説明したが、図34に示すようにクリアランスホールが形成されていなくてもよい。図34Aや図34Bの第一の領域104に、分割リング状の共振器110の環状部の一部が配置されていればよい。図34Aは図2の変形例であり、図34Bは図4の変形例である。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. For example, in the above-described embodiment, the case where the clearance hole is formed in the first conductor plane 102 and the second conductor plane 103 has been described, but the clearance hole may not be formed as shown in FIG. A part of the annular portion of the split ring resonator 110 may be disposed in the first region 104 of FIG. 34A or 34B. 34A is a modification of FIG. 2, and FIG. 34B is a modification of FIG.
 また、上述した実施形態では、分割リング状の共振器が通常のプリント基板の製造プロセスで製造可能であり、導波路構造内に一体形成された場合を示しているが、本発明はこれに限定されない。例えば、分割リング状の共振器が形成された部品を用意して、プリント基板101にはその表面から上記第一の領域104に至る開口部を設け、分割リング状の共振器が形成された部品をこの開口部に挿入して、本発明の導波路構造とすることも考えられる。 Further, in the above-described embodiment, the case where the split ring resonator can be manufactured by a normal printed circuit board manufacturing process and is integrally formed in the waveguide structure is shown, but the present invention is not limited thereto. Not. For example, a component in which a split ring resonator is formed is prepared, and an opening from the surface to the first region 104 is provided in the printed circuit board 101, so that the split ring resonator is formed. It is also conceivable that the waveguide structure of the present invention is inserted into the opening.
 以上、好ましい実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to preferable embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2012年5月10日に出願された日本出願特願2012-108197号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-108197 filed on May 10, 2012, the entire disclosure of which is incorporated herein.
 上述の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)基板と、お互いに実質的に平行になるよう前記基板に設けられた第一及び第二の導体プレーンと、分割リング状の共振器とを備え、前記分割リング状の共振器は、環状部と、前記環状部が途切れた少なくとも一組の開放端対とを有しており、前記一組の開放端対を構成する各々の開放端が近接しており、前記第一及び第二の導体プレーンに挟まれる領域に前記分割リング状の共振器の前記環状部の少なくとも一部が存在しており、前記第一及び第二の導体プレーンの主表面に対し実質的に平行でない向きに前記環状部が設けられていることを特徴とする、EBG特性を有する導波路構造。
(付記2)前記分割リング状の共振器の前記環状部は、互いに平面視で重ならない位置に設けられた第一及び第二の導体ビアと、前記第一の導体ビアと前記第二の導体ビアとの間を接続する第一の接続部と、前記第一の導体ビアと前記第二の導体ビアとの間を接続する前記第一の接続部の上方または下方に設けられた第二の接続部とを有して構成され、前記分割リング状の共振器の前記開放端対は、前記第一の接続部及び前記第二の接続部の少なくとも一方に空隙部が形成されて構成されていることを特徴とする、付記1に記載のEBG特性を有する導波路構造。
(付記3)前記第一の接続部と前記第二の接続部に形成されている少なくとも一つの空隙部が、前記第一及び前記第二の接続部どうしが前記第一及び第二の導体プレーンの主表面に対し実質的に垂直な方向で重なる部分を有することにより形成されていることを特徴とする、付記2に記載のEBG特性を有する導波路構造。
(付記4)前記第一の接続部と前記第二の接続部に形成されている少なくとも一つの空隙部が、前記第一及び前記第二の接続部が前記第一及び前記第二の導体プレーンの主表面に対し実質的に平行な面内で分断されることにより形成されていることを特徴とする、付記2に記載のEBG特性を有する導波路構造。
(付記5)前記第一の接続部と前記第二の接続部の少なくとも一方は、前記第一の導体プレーン及び前記第二の導体プレーンと実質的に同一の面に配置され、前記第一及び前記第二の導体プレーンの少なくとも一方には、前記第一の接続部及び第二の接続部と接触しないようにクリアランスホールが設けられていることを特徴とする、付記2乃至付記4の何れか一つに記載のEBG特性を有する導波路構造。
(付記6)前記第一の接続部と前記第二の接続部の少なくとも一方が、前記第一及び前記第二の導体プレーンに挟まれる領域外に存在する部分を有し、前記第一及び前記第二の導体プレーンの少なくとも一方には、前記分割リング状の共振器と接触しないようにクリアランスホールが設けられていることを特徴とする、付記2乃至付記4の何れか一つに記載のEBG特性を有する導波路構造。
(付記7)前記分割リング状の共振器の前記環状部に囲まれる領域には、前記第一及び第二の導体プレーンが存在していないことを特徴とする、付記6に記載のEBG特性を有する導波路構造。
(付記8)前記分割リング状の共振器の前記開放端対を構成する各々の開放端の少なくとも一方に、補助導体を有しており、前記補助導体が前記開放端対を構成する各々の開放端が近接する部分の面積を増加していることを特徴とする、付記1乃至付記7の何れか一つに記載のEBG特性を有する導波路構造。
(付記9)前記分割リング状の共振器が前記基板に複数配置されており、一つの分割リング状の共振器の前記第一の導体ビアと前記第二の導体ビアとを結ぶ、第一及び第二の導体プレーンと実質的に平行な面内にある第一の直線と、他の一つの分割リング状の共振器の前記第一の導体ビアと前記第二の導体ビアとを結ぶ、第一及び第二の導体プレーンと実質的に平行な面内にある第二の直線とが有限の角度をなすことを特徴とする、付記2乃至付記8の何れか一つに記載のEBG特性を有する導波路構造。
(付記10)第一の直線と第二の直線とが90度の角度をなすことを特徴とする、付記9に記載のEBG特性を有する導波路構造。
(付記11)前記分割リング状の共振器が前記基板に複数配置されており、複数配置された分割リング状の共振器のうち、構成要素を共有している分割リング共振器の組が少なくとも1組あることを特徴とする、付記1乃至付記10の何れか一つに記載のEBG特性を有する導波路構造。
(付記12)前記分割リング状の共振器が前記基板に複数配置されており、複数の分割リング状の共振器のうち、ある一つの分割リング状の共振器の前記第一の導体ビア又は前記第二の導体ビアと、他の一つの分割リング状の共振器の前記第一の導体ビア又は前記第二の導体ビアとが共有されている分割リング状の共振器の組が少なくとも1組あることを特徴とする、付記11に記載のEBG特性を有する導波路構造。
(付記13)前記分割リング状の共振器が前記基板に複数配置されており、複数の分割リング状の共振器のうち、ある一つの分割リング状の共振器の前記第一の接続部又は前記第二の接続部と、他の一つの分割リング状の共振器の前記第一の接続部又は前記第二の接続部とが接続されている分割リング状の共振器の組が少なくとも1組あることを特徴とする、付記11に記載のEBG特性を有する導波路構造。
(付記14)前記分割リング状の共振器に近接して、所定距離だけ平行移動した位置にリング状の導体が配置されており、前記リング状の導体は、前記分割リング状の共振器、もしくは前記分割リング状の共振器において開放端対の存在しない環状部のみにより構成される構造であることを特徴とする、付記1乃至付記13の何れか1つに記載のEBG特性を有する導波路構造。
(付記15)前記分割リング状の共振器、もしくは前記リング状の導体の少なくとも一方に第二の補助導体を有しており、前記第二の補助導体は前記分割リング状の共振器と前記リング状の共振器とが対向する部分の面積を増加していることを特徴とする、付記14に記載のEBG特性を有する導波路構造。
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Additional remark 1) It is provided with the board | substrate, the 1st and 2nd conductor plane provided in the said board | substrate so that it may become substantially mutually parallel, and the division | segmentation ring-shaped resonator, The annular portion and at least one pair of open end pairs in which the annular portion is interrupted, and the open ends constituting the pair of open end pairs are close to each other. At least a part of the annular portion of the split ring resonator is present in a region sandwiched between two conductor planes, and is not substantially parallel to the main surfaces of the first and second conductor planes. A waveguide structure having EBG characteristics, characterized in that the annular portion is provided on the substrate.
(Supplementary Note 2) The annular portion of the split ring resonator has first and second conductor vias provided at positions that do not overlap each other in plan view, the first conductor via, and the second conductor. A first connection portion connecting between the vias, and a second connection portion provided above or below the first connection portion connecting between the first conductor via and the second conductor via. And the open end pair of the split ring-shaped resonator has a gap formed in at least one of the first connection portion and the second connection portion. 2. A waveguide structure having EBG characteristics according to appendix 1.
(Additional remark 3) At least 1 space | gap part currently formed in said 1st connection part and said 2nd connection part, said 1st and said 2nd connection part are said 1st and 2nd conductor planes The waveguide structure having an EBG characteristic according to appendix 2, characterized in that the waveguide structure is formed by having a portion overlapping in a direction substantially perpendicular to the main surface.
(Additional remark 4) At least 1 space | gap part formed in said 1st connection part and said 2nd connection part, said 1st and said 2nd connection part are said 1st and said 2nd conductor plane. The waveguide structure having EBG characteristics according to appendix 2, wherein the waveguide structure is formed by being divided in a plane substantially parallel to the main surface of the substrate.
(Supplementary Note 5) At least one of the first connection portion and the second connection portion is disposed on substantially the same plane as the first conductor plane and the second conductor plane, Any one of appendix 2 to appendix 4, wherein a clearance hole is provided in at least one of the second conductor planes so as not to contact the first connection portion and the second connection portion. A waveguide structure having EBG characteristics as described in one.
(Appendix 6) At least one of the first connection portion and the second connection portion has a portion that exists outside a region sandwiched between the first and second conductor planes, and the first and the second The EBG according to any one of appendix 2 to appendix 4, wherein a clearance hole is provided in at least one of the second conductor planes so as not to contact the split ring resonator. A waveguide structure having characteristics.
(Supplementary note 7) The EBG characteristic according to supplementary note 6, wherein the first and second conductor planes are not present in a region surrounded by the annular portion of the split ring resonator. Having a waveguide structure.
(Supplementary Note 8) At least one of the open ends constituting the open end pair of the split ring resonator has an auxiliary conductor, and the auxiliary conductor constitutes the open end pair. The waveguide structure having an EBG characteristic according to any one of appendix 1 to appendix 7, wherein an area of a portion where the ends are close to each other is increased.
(Supplementary note 9) A plurality of the split ring resonators are arranged on the substrate, and connect the first conductor via and the second conductor via of one split ring resonator. A first straight line that lies in a plane substantially parallel to the second conductor plane and connects the first conductor via and the second conductor via of the other split ring resonator; The EBG characteristic according to any one of appendix 2 to appendix 8, wherein the first straight line and the second straight line in a plane substantially parallel to the second conductor plane form a finite angle. Having a waveguide structure.
(Supplementary note 10) The waveguide structure having EBG characteristics according to supplementary note 9, wherein the first straight line and the second straight line form an angle of 90 degrees.
(Supplementary Note 11) A plurality of the split ring resonators are arranged on the substrate, and among the plurality of split ring resonators, at least one set of split ring resonators sharing a component is provided. A waveguide structure having EBG characteristics according to any one of Supplementary Note 1 to Supplementary Note 10, wherein the waveguide structure is a pair.
(Supplementary Note 12) A plurality of the split ring resonators are arranged on the substrate, and the first conductor via of the one split ring resonator among the plurality of split ring resonators or the There is at least one split ring resonator set in which the second conductor via and the first conductor via or the second conductor via of the other split ring resonator are shared. 14. A waveguide structure having EBG characteristics according to appendix 11.
(Supplementary Note 13) A plurality of the split ring resonators are arranged on the substrate, and the first connection portion of the one split ring resonator among the plurality of split ring resonators or the There is at least one split ring resonator set in which the second connection portion and the first connection portion or the second connection portion of the other split ring resonator are connected. 14. A waveguide structure having EBG characteristics according to appendix 11.
(Supplementary note 14) A ring-shaped conductor is disposed in the vicinity of the split ring-shaped resonator at a position translated by a predetermined distance, and the ring-shaped conductor includes the split ring-shaped resonator, or The waveguide structure having an EBG characteristic according to any one of appendices 1 to 13, wherein the waveguide structure has only an annular portion having no open end pair in the split ring resonator. .
(Supplementary note 15) At least one of the split ring resonator and the ring conductor has a second auxiliary conductor, and the second auxiliary conductor includes the split ring resonator and the ring. 15. The waveguide structure having EBG characteristics according to appendix 14, wherein an area of a portion facing the resonator is increased.
 101  プリント基板
 102  第一の導体プレーン
 103  第二の導体プレーン
 104  第一の領域
 105  第一の導体ビア
 106  第二の導体ビア
 107、107a、107b  第一の接続部
 108、108a、108b、108c  第二の接続部
 109  空隙部
 110  分割リング状の共振器(単位構造)
 111  電子機器
 112  第一の補助導体
 113  第二の補助導体
 114  共振器(単位構造)
DESCRIPTION OF SYMBOLS 101 Printed circuit board 102 1st conductor plane 103 2nd conductor plane 104 1st area | region 105 1st conductor via 106 2nd conductor via 107, 107a, 107b 1st connection part 108, 108a, 108b, 108c 1st Second connection 109 Gap 110 Split ring resonator (unit structure)
111 Electronic Device 112 First Auxiliary Conductor 113 Second Auxiliary Conductor 114 Resonator (Unit Structure)

Claims (10)

  1.  基板と、お互いに実質的に平行になるよう前記基板に設けられた第一及び第二の導体プレーンと、分割リング状の共振器とを備え、
     前記分割リング状の共振器は、環状部と、前記環状部が途切れた少なくとも一組の開放端対とを有しており、前記一組の開放端対を構成する各々の開放端が近接しており、
     前記第一及び第二の導体プレーンに挟まれる領域に前記分割リング状の共振器の前記環状部の少なくとも一部が存在しており、前記第一及び第二の導体プレーンの主表面に対し実質的に平行でない向きに前記環状部が設けられていることを特徴とする、EBG特性を有する導波路構造。
    A substrate, first and second conductor planes provided on the substrate so as to be substantially parallel to each other, and a split ring-shaped resonator;
    The split ring-shaped resonator includes an annular portion and at least one pair of open end pairs in which the annular portion is interrupted, and the open ends constituting the set of open end pairs are adjacent to each other. And
    At least a part of the annular portion of the split ring resonator is present in a region sandwiched between the first and second conductor planes, and is substantially relative to the main surfaces of the first and second conductor planes. A waveguide structure having EBG characteristics, wherein the annular portion is provided in a direction that is not parallel to each other.
  2.  前記分割リング状の共振器の前記環状部は、互いに平面視で重ならない位置に設けられた第一及び第二の導体ビアと、前記第一の導体ビアと前記第二の導体ビアとの間を接続する第一の接続部と、前記第一の導体ビアと前記第二の導体ビアとの間を接続する前記第一の接続部の上方または下方に設けられた第二の接続部とを有して構成され、
     前記分割リング状の共振器の前記開放端対は、前記第一の接続部及び前記第二の接続部の少なくとも一方に空隙部が形成されて構成されていることを特徴とする、請求項1に記載のEBG特性を有する導波路構造。
    The annular portion of the split ring-shaped resonator is provided between the first and second conductor vias provided at positions that do not overlap each other in plan view, and between the first conductor via and the second conductor via. A first connection part for connecting the first connection via and a second connection part provided above or below the first connection part for connecting the first conductor via and the second conductor via. Configured with
    2. The open end pair of the split ring resonator is configured such that a gap is formed in at least one of the first connection portion and the second connection portion. A waveguide structure having the EBG characteristic described in 1.
  3.  前記第一の接続部と前記第二の接続部に形成されている少なくとも一つの空隙部が、前記第一及び前記第二の接続部どうしが前記第一及び第二の導体プレーンの主表面に対し実質的に垂直な方向で重なる部分を有することにより形成されていることを特徴とする、請求項2に記載のEBG特性を有する導波路構造。 At least one gap formed in the first connection portion and the second connection portion is formed so that the first and second connection portions are on the main surfaces of the first and second conductor planes. The waveguide structure having an EBG characteristic according to claim 2, wherein the waveguide structure is formed by having a portion overlapping in a direction substantially perpendicular to the waveguide.
  4.  前記第一の接続部と前記第二の接続部に形成されている少なくとも一つの空隙部が、前記第一及び前記第二の接続部が前記第一及び前記第二の導体プレーンの主表面に対し実質的に平行な面内で分断されることにより形成されていることを特徴とする、請求項2に記載のEBG特性を有する導波路構造。 At least one gap portion formed in the first connection portion and the second connection portion, the first and second connection portions are on the main surfaces of the first and second conductor planes. The waveguide structure having an EBG characteristic according to claim 2, wherein the waveguide structure is formed by being divided in a plane substantially parallel to the waveguide.
  5.  前記第一の接続部と前記第二の接続部の少なくとも一方は、前記第一の導体プレーン及び前記第二の導体プレーンと実質的に同一の面に配置され、
     前記第一及び前記第二の導体プレーンの少なくとも一方には、前記第一の接続部及び第二の接続部と接触しないようにクリアランスホールが設けられていることを特徴とする、請求項2乃至請求項4の何れか一項に記載のEBG特性を有する導波路構造。
    At least one of the first connection portion and the second connection portion is disposed on substantially the same surface as the first conductor plane and the second conductor plane,
    The clearance hole is provided in at least one of said 1st and said 2nd conductor plane so that it may not contact said 1st connection part and 2nd connection part, The thru | or 2 thru | or characterized by the above-mentioned. The waveguide structure which has the EBG characteristic as described in any one of Claim 4.
  6.  前記第一の接続部と前記第二の接続部の少なくとも一方が、前記第一及び前記第二の導体プレーンに挟まれる領域外に存在する部分を有し、
     前記第一及び前記第二の導体プレーンの少なくとも一方には、前記分割リング状の共振器と接触しないようにクリアランスホールが設けられていることを特徴とする、請求項2乃至請求項4の何れか一項に記載のEBG特性を有する導波路構造。
    At least one of the first connection portion and the second connection portion has a portion that exists outside the region sandwiched between the first and second conductor planes,
    The clearance hole is provided in at least one of said 1st and said 2nd conductor plane so that it may not contact with the said division | segmentation ring-shaped resonator, Any of Claim 2 thru | or 4 characterized by the above-mentioned. A waveguide structure having the EBG characteristic according to claim 1.
  7.  前記分割リング状の共振器の前記開放端対を構成する各々の開放端の少なくとも一方に、補助導体を有しており、
     前記補助導体が前記開放端対を構成する各々の開放端が近接する部分の面積を増加していることを特徴とする、請求項1乃至請求項6の何れか一項に記載のEBG特性を有する導波路構造。
    At least one of the open ends constituting the open end pair of the split ring resonator has an auxiliary conductor,
    The EBG characteristic according to any one of claims 1 to 6, wherein the auxiliary conductor increases an area of a portion where each open end constituting the open end pair is adjacent. Having a waveguide structure.
  8.  前記分割リング状の共振器が前記基板に複数配置されており、
     一つの分割リング状の共振器の前記第一の導体ビアと前記第二の導体ビアとを結ぶ、第一及び第二の導体プレーンと実質的に平行な面内にある第一の直線と、他の一つの分割リング状の共振器の前記第一の導体ビアと前記第二の導体ビアとを結ぶ、第一及び第二の導体プレーンと実質的に平行な面内にある第二の直線とが有限の角度をなすことを特徴とする、請求項2乃至請求項7の何れか一項に記載のEBG特性を有する導波路構造。
    A plurality of the split ring resonators are arranged on the substrate,
    A first straight line in a plane substantially parallel to the first and second conductor planes connecting the first conductor via and the second conductor via of one split ring resonator; A second straight line in a plane substantially parallel to the first and second conductor planes connecting the first conductor via and the second conductor via of the other split ring resonator. The waveguide structure having an EBG characteristic according to any one of claims 2 to 7, wherein and have a finite angle.
  9.  前記分割リング状の共振器が前記基板に複数配置されており、
     複数配置された分割リング状の共振器のうち、構成要素を共有している分割リング共振器の組が少なくとも1組あることを特徴とする、請求項1乃至請求項8の何れか一項に記載のEBG特性を有する導波路構造。
    A plurality of the split ring resonators are arranged on the substrate,
    9. The device according to claim 1, wherein among the plurality of divided ring-shaped resonators, there is at least one set of divided ring resonators sharing a component. 10. A waveguide structure having the described EBG characteristics.
  10.  前記分割リング状の共振器に近接して、所定距離だけ平行移動した位置にリング状の導体が配置されており、
     前記リング状の導体は、前記分割リング状の共振器、もしくは前記分割リング状の共振器において開放端対の存在しない環状部のみにより構成される構造であることを特徴とする、請求項1乃至請求項9の何れか一項に記載のEBG特性を有する導波路構造。
    In the vicinity of the split ring resonator, a ring conductor is arranged at a position translated by a predetermined distance,
    The said ring-shaped conductor is a structure comprised only by the annular part which does not have an open end pair in the said split ring-shaped resonator or the said split ring-shaped resonator. The waveguide structure which has the EBG characteristic as described in any one of Claim 9.
PCT/JP2013/002716 2012-05-10 2013-04-23 Waveguide structure having ebg characteristic WO2013168377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014514371A JP6176242B2 (en) 2012-05-10 2013-04-23 Waveguide structure having EBG characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-108197 2012-05-10
JP2012108197 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013168377A1 true WO2013168377A1 (en) 2013-11-14

Family

ID=49550446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002716 WO2013168377A1 (en) 2012-05-10 2013-04-23 Waveguide structure having ebg characteristic

Country Status (2)

Country Link
JP (1) JP6176242B2 (en)
WO (1) WO2013168377A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129200A1 (en) * 2015-02-12 2016-08-18 日本電気株式会社 Structure and wiring substrate
WO2016129199A1 (en) * 2015-02-12 2016-08-18 日本電気株式会社 Structure and wiring substrate
JP2018139390A (en) * 2017-02-24 2018-09-06 日本電信電話株式会社 Electromagnetic wave conversion plate
CN115799790A (en) * 2022-11-25 2023-03-14 厦门大学 Multilayer stacked gap waveguide structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183202A (en) * 1986-02-06 1987-08-11 Matsushita Electric Ind Co Ltd Strip line resonator
JP2010010183A (en) * 2008-06-24 2010-01-14 Nec Corp Waveguide structure and printed-circuit board
WO2012042717A1 (en) * 2010-09-28 2012-04-05 日本電気株式会社 Structural body and wiring substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183202A (en) * 1986-02-06 1987-08-11 Matsushita Electric Ind Co Ltd Strip line resonator
JP2010010183A (en) * 2008-06-24 2010-01-14 Nec Corp Waveguide structure and printed-circuit board
WO2012042717A1 (en) * 2010-09-28 2012-04-05 日本電気株式会社 Structural body and wiring substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129200A1 (en) * 2015-02-12 2016-08-18 日本電気株式会社 Structure and wiring substrate
WO2016129199A1 (en) * 2015-02-12 2016-08-18 日本電気株式会社 Structure and wiring substrate
JPWO2016129199A1 (en) * 2015-02-12 2017-12-07 日本電気株式会社 Structure and wiring board
US10079415B2 (en) 2015-02-12 2018-09-18 Nec Corporation Structure and wiring substrate
US10230143B2 (en) 2015-02-12 2019-03-12 Nec Corporation Structure and wiring substrate
JP2018139390A (en) * 2017-02-24 2018-09-06 日本電信電話株式会社 Electromagnetic wave conversion plate
CN115799790A (en) * 2022-11-25 2023-03-14 厦门大学 Multilayer stacked gap waveguide structure

Also Published As

Publication number Publication date
JP6176242B2 (en) 2017-08-09
JPWO2013168377A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5931851B2 (en) Circuit board having noise suppression structure
US8779874B2 (en) Waveguide structure and printed-circuit board
US7479857B2 (en) Systems and methods for blocking microwave propagation in parallel plate structures utilizing cluster vias
JP2015061258A (en) Ebg structure, semiconductor device, and circuit board
US10721821B2 (en) Printed circuit board
JP6176242B2 (en) Waveguide structure having EBG characteristics
US20140293566A1 (en) Circuit board and electronic device
WO2011152054A1 (en) Wiring board and electronic device
JP5674363B2 (en) Circuit board having noise suppression structure
WO2014006796A1 (en) Structural body and wiring board
US9674942B2 (en) Structure, wiring board and electronic device
JP6565938B2 (en) Structure and wiring board
KR100969660B1 (en) Semiconductor package substrate having a double-stacked electromagnetic bandgap structure around a via hole
US20200352024A1 (en) Structure and wiring substrate
JP2011171900A (en) Electromagnetic band gap structure element and printed circuit substrate
WO2011105193A1 (en) Circuit substrate having a noise-suppression structure
JP6131600B2 (en) Printed circuit board having interlayer connection hole and arrangement method
JP2015018944A (en) Printed circuit board
JP2015057865A (en) Circuit board having noise suppression structure
JP2016219615A (en) Printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787981

Country of ref document: EP

Kind code of ref document: A1