WO2013168326A1 - 暗号鍵設定システム、端末装置 - Google Patents

暗号鍵設定システム、端末装置 Download PDF

Info

Publication number
WO2013168326A1
WO2013168326A1 PCT/JP2013/001374 JP2013001374W WO2013168326A1 WO 2013168326 A1 WO2013168326 A1 WO 2013168326A1 JP 2013001374 W JP2013001374 W JP 2013001374W WO 2013168326 A1 WO2013168326 A1 WO 2013168326A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
identification information
common key
key
message
Prior art date
Application number
PCT/JP2013/001374
Other languages
English (en)
French (fr)
Inventor
尚弘 福田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013168326A1 publication Critical patent/WO2013168326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/061Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0822Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using key encryption key
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0827Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving distinctive intermediate devices or communication paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds

Definitions

  • the present invention relates to an encryption key setting system for setting a common key to a plurality of nodes, and a terminal device as a node to which a common key is set.
  • an encryption key is used when communicating between nodes in a communication network in order to prevent leakage of communication data, unauthorized intrusion into a communication network, and the like (for example, Japanese Patent No. 4746296 (hereinafter referred to as Japanese Patent No. 4746296) (Refer to “Document 1”).
  • the technology described in Document 1 encrypts and transmits specific data for setting an encryption key between nodes, and generates an encryption key based on a basic value obtained from the time required for transmission / reception of the specific data. .
  • Reference 1 assumes a wireless LAN, and specific data is not specifically described, but it is considered that the WEP key and MAC address correspond to the specific data from the context.
  • the same initial encryption key is set in two nodes, and a basic value is obtained by transmitting / receiving the specific data encrypted with the initial encryption key. Is generated.
  • the technology described in Document 1 sets the encryption key only by the communicating nodes communicating with each other, so that the two nodes are nodes that are permitted to communicate with each other, and set the initial encryption key Guaranteed only by work. Since the initial encryption key is set by changing a part of the temporary encryption key preset in the node, when another node functioning as a node exists in the vicinity when the initial encryption key is set, There is a possibility that the initial encryption key is set to a node that is not desired by mistake.
  • the secret key for each node is collectively managed by a management apparatus provided separately from the node, and the encryption key (common key) is set only for an appropriate combination of nodes.
  • the encryption key common key
  • the number of nodes increases, there is a problem that it takes time to register the node secret key in the management apparatus.
  • each management entity is allowed to store the secret key of the managed node, but the node secret key is stored in a management entity that is not the original management entity. This is not desirable in terms of private key management.
  • the present invention reduces the possibility that the common key is erroneously set to a node outside the communication by setting the common key only to the nodes permitted by the management apparatus.
  • An object is to provide an encryption key setting system that enables a common key to be safely set to a node that is not managed by a management device that manages one unit only by managing the secret key of the managed node. Furthermore, an object of the present invention is to provide a terminal device used in this encryption key setting system.
  • the encryption key setting system is capable of communicating with the first node in which the first identification information and the secret key are set, the first node, and the second node.
  • Communication with at least one of the second node in which identification information is set, the first node, and the second node is possible, and the first identification information and the secret key of the first node are A management device stored in advance, wherein the management device acquires the first identification information of the first node and the second identification information of the second node by communication, and acquires the acquired A collation unit for collating the first identification information of the first node with the first identification information stored in advance in the management device, and the collation unit to the second node as the first node Allow communication with A ticket generated using the secret key of the first node stored in the management device, the ticket being addressed to the first node and addressed to the second node A ticket issuing unit for issuing a second ticket, wherein the first node is transmitted using the secret key set in the first node and the first ticket for authentication
  • the first node generates a first exchange code for a set of the first common key and the second common key, and the first exchange For transmitting a second code to the second node, the second node having a second exchange code for a set of the first common key and the second common key And the second common code is transmitted to the first node, and the first common key generation unit is configured to set the secret key set in the first node. And the first exchange code and the second exchange code received from the second node in the message transmitted using the first ticket for authentication. And having the function of generating the first common key, the second common key generation unit A function of generating the second common key using the second ticket, the second exchange code, and the first exchange code received from the first node; It is preferable.
  • the first exchange code is a first random number
  • the second exchange code is a second random number
  • the management device can communicate with the second node, and the first node is set in the first node through a secure communication path.
  • the second node has a function of transmitting identification information to the second node, and the second node is set in the second node when receiving the first identification information from the first node. It is preferable to have a function of transmitting the second identification information to the management apparatus together with the first identification information received from the first node.
  • the second node has a function of communicating with the management apparatus using a secure communication path.
  • the first node is provided with means for detecting an event that triggers the setting of the first common key and the second common key, and the first node includes: When the means detects the event, the means has a function of transmitting the first identification information set in the first node to the second node, and the second node has the first When the first identification information is received from the first node, the second identification information set in the second node is combined with the first identification information received from the first node and the management It preferably has a function of transmitting to the apparatus.
  • the second node is provided with means for detecting an event that triggers the setting of the first common key and the second common key, and the second node includes: When the means detects the event, it has a function of transmitting the second identification information set in the second node to the first node, and the first node When the second identification information is received from the second node, the first identification information set in the first node is combined with the second identification information received from the second node and the management It preferably has a function of transmitting to the apparatus.
  • the ticket issuing unit in the management device is configured to validate the first common key set in the first node and the second common key set in the second node.
  • the first node is attached to a measurement device that measures the usage amount of a resource supplied from a resource supplier, and has a function of acquiring measurement data from the measurement device,
  • the second node preferably has a function of managing resource consumption by at least the device by communicating with the device used by the resource consumer using the resource.
  • the first node is attached to a measurement device that measures the usage amount of a resource supplied from a resource supplier, and has a function of acquiring measurement data from the measurement device
  • the second node is attached to a device used by the resource consumer using the resource, and has a function of managing at least a resource consumption amount by the device.
  • the resource supplier is an electric power company and the resource is electric power.
  • the first ticket is a first hash value generated using the secret key, the first identification information, and the second identification information
  • the second ticket is preferably a second hash value generated using the secret key and the second identification information.
  • the terminal device according to the present invention is used in any of the encryption key setting systems described above, and functions as the first node.
  • the terminal device according to the present invention is used in any one of the above-described encryption key setting systems, and functions as the second node.
  • the management device acquires the first identification information of the first node and the second identification information of the second node, and the common key is assigned to the first node and the second node. Since the setting of (the first common key, the second common key) is permitted, the common key is set only for the nodes permitted by the management apparatus. As a result, there is an advantage that the possibility that the common key is erroneously set in a node outside communication is reduced.
  • the management device issues a first ticket addressed to the first node and a second ticket addressed to the second node, and the first node uses the first ticket for message authentication, Since the second node uses the second ticket for generating the common key, the management device only manages the secret key of the first node, and does not need to manage the secret key of the second node. In other words, there is an advantage that the management device can safely set the common key in both the first node and the second node only by storing the secret key for the first node.
  • FIG. 1 is a block diagram illustrating a management device used in Embodiment 1.
  • FIG. It is a block diagram which shows the 2nd node used for Embodiment 1.
  • FIG. FIG. 3 is a block diagram illustrating a first node used in the first embodiment. It is explanatory drawing which showed the operation
  • the embodiment described below is used by a consumer who supplies a resource from a resource supplier, and includes a first node attached to a measuring device that measures the usage of the resource in the consumer, a first node, A technique for setting a common key to a second node communicating with each other will be described as an example.
  • a resource supply company is an electric power company and electric power is supplied to a consumer as a resource is demonstrated.
  • the same technique can be applied even when gas, water, heat, etc. are used as resources other than electric power.
  • a meter as a measuring device for measuring the amount of resource used is installed in a consumer who is supplied with the resource.
  • the measuring device is provided with an electric power meter.
  • a measuring device measures the electric energy which a consumer uses for every unit time, and outputs the measured electric energy as measurement data.
  • the measuring device not only measures the amount of electric power supplied from the electric power company, but also has a function of measuring the amount of electric power created by the consumer if the consumer has a power generation device. Good.
  • the measurement data is notified to the host device through the communication network. For this reason, a node (hereinafter referred to as “first node”) belonging to the communication network is attached to the measurement device.
  • the host device is assumed to be a management server operated by an electric power company or a service provider entrusted by the electric power company.
  • the host device may be realized by a plurality of computers instead of a single computer.
  • the host device may construct a communication network that is hierarchized into a plurality of hierarchies.
  • the communication network may be constructed such that the management server communicates with a plurality of relay devices, and each relay device communicates with the plurality of first nodes. That is, the host device may include a management server and a plurality of relay devices, and the relay device belonging to the same communication network and the first node may communicate with each other.
  • a plurality of types of transmission media may be used in the communication network constructed by the host device.
  • the device may include a power generation device (solar power generation device, wind power generation device, fuel cell, etc.) that generates power, and a power storage device that charges and discharges power, in addition to a device that consumes power.
  • the device may include a measurement unit that measures the amount of power passing through the main circuit or branch circuit of the distribution board. At least some of these devices become nodes belonging to a communication network constructed by a consumer, separately from the communication network including the first node.
  • the communication network constructed by the customer includes a node (hereinafter referred to as “second node”) that communicates with the device.
  • the second node has a function of transmitting / receiving at least information regarding the use of power by the device to / from the device.
  • the second node desirably has not only the information on power input / output in the device but also a function of monitoring the operation of the device and a function of instructing the operation of the device.
  • the second node desirably has a function as a so-called HEMS (Home Energy Management System).
  • the first node and the second node communicate using a communication path that does not belong to any of the communication networks described above.
  • this communication path is a wireless communication path using radio waves as a medium, but this communication path may be a wired communication path.
  • a power line carrier communication technique that uses a distribution line for supplying power to a customer as a communication path.
  • the first node is attached to a measurement device provided in the power meter, and constitutes a so-called “smart meter” together with the measurement device.
  • the second node corresponds to so-called “HEMS” as described above. Therefore, in the following embodiments, the first node will be described assuming “smart meter”, and the second node will be described assuming “HEMS”. Further, there are actually a large number of smart meters and HEMSs, respectively, but in the following embodiments, a case where one first node and one second node are provided will be described. The operation when there are a plurality of first nodes and second nodes respectively results in the operation when one first node and one second node are provided.
  • the embodiment described below is not limited to the use for managing the resource usage. That is, the technology described in the following embodiment is a case where one of the two terminal devices (first node and second node) capable of communication is registered with a third party. If it is necessary to set a common key for both terminal apparatuses, it can be used for other purposes.
  • the first node, the second node, and the management apparatus each include an independent computer (microcomputer) and a communication interface unit as main hardware configurations.
  • the encryption key setting system includes a first node 10 and a second node 20, both of which are installed in a consumer.
  • the first node 10 and the second node 20 have identification information for specifying each. This identification information may be different from the identification information used for communication.
  • the identification information (first identification information) of the first node 10 needs to be set uniquely so as not to overlap with the other first nodes 10.
  • the identification information (second identification information) of the second node 20 can be set by the user and is not required to be unique. If there is no interference in communication between the first node 10 and the second node 20 between adjacent customers, the identification information of the second node 20 is allowed to be common.
  • a secret key is set for the first node 10.
  • the first node 10 can communicate with the second node 20 using a wireless communication path using radio waves as a transmission medium.
  • the second node 20 can communicate with a management device 30 (see FIG. 1A) operated by a third party organization.
  • the communication path between the second node 20 and the management apparatus 30 is not particularly limited, and either a wireless communication path or a wired communication path may be used.
  • the management device 30 manages information for identifying the first node 10.
  • the information specifying the first node 10 includes, in addition to the identification information (first identification information) of the first node 10 registered in the management device 30 and the secret key set in the first node 10, The location and owner of the first node 10 is included.
  • the information specifying the first node 10 may include a manufacturing number (product number) and a MAC address that are uniquely assigned to the first node 10.
  • the identification information of the second node 20 may be registered in the management apparatus 30, but it is not essential that it is registered in the management apparatus 30.
  • the management device 30 does not manage the location and owner of the second node 20.
  • the third-party organization that manages the management device 30 means an electric power company that supplies electric power to consumers, a service provider company entrusted by the electric power company, and the like.
  • the management device 30 includes a communication interface unit 31 to communicate with the second node 20.
  • the communication interface unit is referred to as “communication I / F”.
  • the management device 30 includes a key storage unit 32 that stores at least a set of identification information for identifying the first node 10 and a secret key set in the first node 10.
  • the key storage unit 32 is a storage device, and in addition to the identification information and secret key of the first node 10, the location (for example, address) of the first node 10 and the administrator (for example, the first node 10) The name of the customer) is stored in advance. That is, with the installation of the first node 10, these pieces of information are registered in the management device 30.
  • the management device 30 includes a collation unit 33 that collates the identification information of the first node 10 acquired from the second node 20 with the key storage unit 32, and the first node 10 and the second node 20.
  • a ticket issuing unit 34 for issuing two types of tickets addressed to each.
  • the ticket issuing unit 34 issues a first hash value addressed to the first node 10 and a second hash value addressed to the second node 20 as two types of tickets. Therefore, here, the first hash value is used in the same meaning as the first ticket, and the second hash value is used in the same meaning as the second ticket.
  • the collation unit 33 Upon receipt of the identification information (first identification information) of the first node 10, the collation unit 33 collates the received identification information with the key storage unit 32, and performs fraud depending on the relationship with the location of the first node 10. Has a function to confirm. That is, the collation unit 33 collates the identification information of the first node 10 with the authentication information (identification information) stored in the key storage unit 32. Furthermore, the management device 30 includes a message generation unit 35 that generates a message to be transmitted to the second node 20 using the first hash value and the second hash value issued by the ticket issuing unit 34. The relationship between the first hash value and the second hash value will be described later.
  • the second node 20 includes a communication I / F 21 that communicates with the first node 10 in order to bidirectionally transmit information to and from the first node 10 and the management device 30.
  • the communication I / F 22 that communicates with the management device 30 is provided.
  • the two communication I / Fs 21 and 22 may share a common hardware configuration. Information that is exchanged between the first node 10 and the management device 30 through the communication I / F 21 and the communication I / F 22 is distributed to the destination by the distribution unit 23.
  • the second node 20 has one common key for the first node 10 in order to set a common key (first common key, second common key) with the first node 10. Send a message containing the second exchange code generated for. Further, the second node 20 receives a message including the hash value calculated from the information including the first exchange code from the first node 10 (see FIG. 2). In the present embodiment, a random number (second random number) is employed as the second exchange code.
  • the second node 20 In order to transmit a message to the first node 10, the second node 20 generates a message to be transmitted to the first node 10 and a random number that is a second exchange code. And a random number generator 25 for generation.
  • the random number generator 25 generates a random number every time a message for generating a common key is transmitted to the first node 10.
  • the second node 20 includes a secret key storage unit 26 that stores the second hash value received from the management device 30 through the distribution unit 23 as a secret key, and the secret key and the first key A (second) common key generation unit 27 that generates a common key (second common key) using a message from the node 10;
  • the secret key storage unit 26 also stores the identification information of the second node 20.
  • the common key generated by the common key generation unit 27 is stored in the common key storage unit 28 and used for subsequent communication with the first node 10.
  • an operating device (not shown) for enabling the setting of the identification information is provided in the second node 20.
  • a communication I / F 29 is provided for connection. It is desirable that the operation device can display not only operations but also a touch panel.
  • the operation device may be realized by executing an appropriate application program on a personal computer, a smart phone, a tablet node, or the like in addition to a dedicated operation device.
  • an interface unit having no communication function may be used instead of the communication I / F 29 having the communication function.
  • the first node 10 includes a communication I / F 11 for communicating with the second node 20, as shown in FIG. 1C.
  • the first node 10 generates a common key with the second node 20, and the first node 10 generates a first exchange for the second node 20 only for one communication.
  • Send a message containing the code Further, the first node 10 includes a message confirmation unit 13 for confirming that the message received from the second node 20 has not been tampered with. The function of the message confirmation unit 13 will be described later.
  • the first node 10 In order to transmit a message to the second node 20, the first node 10 generates a message to be transmitted to the second node 20, and a random number (a first exchange code). A random number generator 15 for generating a first random number). The random number generator 15 generates a random number every time a message for generating a common key is transmitted to the second node 20.
  • the first node 10 also includes a secret key storage unit 16 that stores the same information as the identification information and secret key managed by the management device 30.
  • the first node 10 generates a common key (first common key) using the secret key and the message from the second node 20 in addition to the above-described configuration (first) common key generation unit 17 and a common key storage unit 18 for storing the common key generated by the common key generation unit 17.
  • the common key stored in the common key storage unit 18 is used for subsequent communication with the second node 20.
  • the common key generated by the common key generation unit 17 must match the common key (second common key) generated by the common key generation unit 27 of the second node 20.
  • the first hash value and the second hash value issued by the management apparatus 30 are exchanged between the first node 10 and the second node 20.
  • the message is defined as follows.
  • the first node 10 and the second node 20 respectively identify the identification information ID 1 for the management device 30.
  • ID2 is notified (P11, P12).
  • the management apparatus 30 can communicate only with the second node 20. Therefore, the first node 10 transmits identification information (first identification information) ID1 to the second node 20 (P11), and when the second node 20 receives the identification information ID1 from the first node 10, The management device 30 is notified of the identification information ID1 of the first node 10 through the distribution unit 23 (P12). At this time, the identification information ID2 of the second node 20 stored in the secret key storage unit 26 is also notified to the management apparatus 30.
  • the verification unit 33 of the management device 30 Upon receiving the identification information ID1, the verification unit 33 of the management device 30 extracts the secret key K1 of the first node 10 by verifying the identification information ID1 with the key storage unit 32.
  • the ticket issuing unit 34 generates the first hash value H1 using the extracted secret key K1 and the identification information ID1 and ID2, and also generates the secret key K1 and the identification information (second identification information) ID2.
  • the second hash value H2 H (K1; ID2).
  • H (a; b) represents a hash value with a key calculated for b using a as a key
  • d) represents a value obtained by combining (arranged in order) c and d.
  • the first hash value H1 is generated for transmission to the first node 10
  • the second hash value H2 is generated for transmission to the second node 20
  • the first hash value H1 and the second Both hash values H2 are transmitted to the second node 20 (P13, P14).
  • the message generation unit 35 generates a message M11 including the first hash value H1 generated by the ticket issuing unit 34 and the identification information ID2 of the second node 20, and the communication I / F 31 transmits the message M11 to the second It transmits to the node 20 (P13).
  • the message generation unit 35 generates a message M12 including the second hash value H2 generated by the ticket issuing unit 34, and the communication I / F 31 transmits this message M12 to the second node 20 (P14).
  • the message M11 including the first hash value H1 and the message M12 including the second hash value H2 are transmitted at different timings, but both the messages M11 and M12 are transmitted in one communication. May be.
  • the first hash value H1 has a function of guaranteeing that the management device 30 has authenticated the identification information ID2 of the second node 20 with respect to the first node 10, and the second hash value H2 2 is used as a secret key of the second node 20.
  • SSL Secure Socket Layer
  • the communication (P12 to P14) between the second node 20 and the management device 30 needs to be performed securely so as not to be intercepted. It is desirable that at least this communication uses a technology such as SSL. That is, the first node 10 has a function of transmitting the first identification information ID1 set in the first node 10 to the second node 20 through the secure communication path. Has a function of communicating with the management apparatus 30 using a secure communication path.
  • the message generator 24 includes the first hash value H1.
  • a message M13 to be transmitted to the first node 10 is generated using the message M11.
  • the message M13 includes a message M11 including the first hash value H1 received from the management device 30 through the communication I / F 21 and the allocating unit 23, and a random number as a second exchange code generated by the random number generator 25. (Second random number) r2.
  • the message M13 generated by the message generator 24 is in the form of (ID2, r2, H1), for example. Note that the order of information included in the message M13 can be changed as appropriate.
  • the message M13 generated by the message generator 24 is transmitted from the communication I / F 21 to the first node 10 (P15).
  • the first hash value H1 is generated using the secret key K1 and identification information ID1 of the first node 10 and the identification information ID2 of the second node 20.
  • the first node 10 stores the same information as the secret key K1 and the identification information ID1 stored in the key storage unit 32 of the management apparatus 30 in the secret key storage unit 16.
  • the message confirmation unit 13 uses the identification information ID2 of the second node 20 included in the message M13 received from the second node 20, and the secret key K1 and identification information ID1 stored in the secret key storage unit 16. A hash value corresponding to the first hash value H1 is generated. Furthermore, the message confirmation unit 13 compares the generated hash value with the first hash value H1 received from the second node 20, and if the two match, the identification information ID2 included in the message M13 is The identification information transmitted from the management device 30 is recognized. In other words, it is guaranteed that the identification information ID2 included in the message M13 received from the second node 20 has not been tampered with during communication. This hash value is used in the same manner as the message authentication technique.
  • the first node 10 confirms that the identification information ID2 of the second node 20 in the message M13 received from the second node 20 is guaranteed by the management device 30, and then uses the random number generator 15 to generate a random number ( (First random number) r1 is generated, and using this random number r1, the common key generation unit 17 generates a common key (first common key) Ks1.
  • the common key generation unit 17 uses the secret key K1 stored in the secret key storage unit 16, the random number r2 included in the message M13 received from the second node 20, and the random number r1 generated by the random number generator 15. To generate a common key Ks1.
  • the second hash value H2 transmitted from the management device 30 to the second node 20 is used as the secret key K2 of the second node 20.
  • the common key generation unit 17 uses the generated secret key K2 together with the random number r2 included in the message M13 received from the second node 20 and the random number r1 generated by the random number generator 15, thereby using the common key Ks1. Generate.
  • the random number r1 generated by the random number generator 15 is also given to the message generator 14.
  • the message generator 14 generates a hash value H (K2; r2) using the secret key K2 generated by the common key generator 17 and the random number r2 received from the second node 20, and is generated from the random number generator 15. Together with the random number r1, the hash value H (K2; r2) is transmitted as a message M14 to the second node 20 (P16).
  • the message M14 has a format of (r1, H (K2; r2)), for example.
  • the common key generation unit 27 receives the random number r2 generated by the random number generator 25 and the secret key K2 stored in the secret key storage unit 26. To calculate a hash value H (K2; r2). If the generated hash value H (K2; r2) matches the hash value of the message M14 received from the first node 10, the common key generation unit 27 uses the random number r1 included in the message M14 as the first node. 10 is received as a random number r1 issued.
  • the common key Ks1 is generated using the three parameters of the secret key K2 and the two random numbers r1 and r2, and any one of the random numbers r1 and r2 and the common key Ks1 It is sufficient if it is extremely difficult to obtain the secret key K2 even if is used.
  • the identification information ID2 of the second node 20 guaranteed by the management device 30 and the random number r2 issued by the second node 20 are included from the second node 20 to the first node 10.
  • a message M13 is transmitted.
  • the first node 10 that has received the message M13 transmits a message M14 including the random number r1 issued by the first node 10 to the second node 20.
  • the second node 20 uses the random numbers r1 and r2 based on the secret key K2 generated by the management apparatus 30 using the secret key K1 of the first node 20 and the identification information ID2 of the second node 20. To generate a common key (second common key) Ks1.
  • the first node 10 uses the hash value H2 (using the secret key K1 of the first node 20 stored in the first node 10 and the identification information ID2 received through the second node 20). That is, based on the secret key K2), a common key (first common key) Ks1 is generated using random numbers r1 and r2. As a result, each of the first node 10 and the second node 20 has the same common key Ks1.
  • the subsequent communication between the first node 10 and the second node 20 uses the common key Ks1. Encrypted.
  • the management device 30 issues the secret key K2 of the second node 20. Therefore, the second node 20 does not need to store the secret key K2 in advance, and management of the secret key is easy. Even if the management entities of the first node 10 and the second node 20 are different, the common key Ks1 can be set for both by adopting the technique of this embodiment. For example, even when the management entity of the first node 10 is an electric power company and the management entity of the second node 20 is a manufacturer or a user, only the information managed by the management entity of the first node 10 is The common key Ks1 can be set in the first node 10 and the second node 20. In addition, the second node 20 does not hold the secret key K1 of the first node 10, but holds the common key Ks1 used by both the first node 10 and the second node 20 for encrypted communication. Is possible.
  • the validity period of the common key Ks1 is set for communication (P15, P16) performed for the first node 10 and the second node 20 to set the common key Ks1. That is, when the second node 20 transmits a message to the first node 10 (P15), this valid period is included in the message, and this valid period is also used when generating a hash value attached to the message. Further, when the first node 10 transmits a message to the second node 20 (P16), a hash value generated using the valid period is added.
  • the format for specifying the validity period of the common key Ks1 includes the format for designating both the start time and the end time of the validity period, the format for designating only the start time and setting the valid period from the start time, and the end.
  • the format is selected from a format in which only the time is specified and the end time is valid. Any format may be adopted as long as the format for specifying the valid period is selected in advance.
  • H2 H (K1; T
  • the message at the time of communication from the second node 20 to the first node 10 is changed from (ID2, r2, H1) to (ID2, r2, T, H1) or the like.
  • FIG. 3 shows an operation example when the valid period T is set in the common key Ks1.
  • the first node 10 and the second node 20 notify the management device 30 of the identification information ID1, ID2, respectively (P21, P22).
  • the management device 30 includes a real-time clock (not shown) that counts the current time, and the ticket issuing unit 34 determines a valid period T that is a predetermined time later than the time when the identification information ID1 and ID2 are received.
  • the ticket issuing unit 34 generates the first hash value H1 using the extracted secret key K1, the identification information ID1, ID2, and the validity period T, and uses the secret key K1 and the identification information ID2.
  • the second hash value H2 is generated.
  • the message generation unit 35 generates a message M21 including the first hash value H1, the identification information ID2 of the second node 20, and the validity period T generated by the ticket issuing unit 34.
  • the message M21 is stored in the second node. 20 (P23).
  • the message generator 35 generates a message M22 including the second hash value H2 generated by the ticket issuing unit 34, and transmits this message M22 to the second node 20 (P24).
  • the random number r1 generated by the random number generator 15 of the first node 10 is added with a hash value (for example, H (H (K1; T
  • ID2), r2) H (K2; r2)) used for message authentication. Then, the message M24 is transmitted from the first node 10 to the second node 20 (P26). The second node 20 performs message authentication using the secret key K2 and the random number r2, and receives the random number r1 generated by the first node 10.
  • a hash value for example, H (H (K1; T
  • ID2), r2) H (K2; r2)
  • the valid period T is set in each of the first node 10 and the second node 20. If the management period exceeds the valid period T, the common key Ks1 becomes invalid. In other words, when one of the first node 10 and the second node 20 uses the common key Ks1 to transmit information to the other, and the validity period T has passed, the transmitting side uses the common key Ks1. It cannot be used and encrypted, and the information cannot be decrypted on the receiving side.
  • a message including the first hash value and a message including the second hash value are transmitted from the management device 30 to the second node 20.
  • the first hash is used. Only messages containing values are sent to the second node 20. In this case, the second node 20 cannot obtain the secret key from the message transmitted from the management device 30.
  • the secret key K2 of the second node 20 must be information that can be generated in the first node 10.
  • the secret key K2 of the second node 20 issued by the management device 30 is transmitted to the user through another route, and the user inputs the secret key K2 to the second node 20.
  • a method of transmitting the secret key K2 to the user it is possible to use an e-mail or a web page, but it is desirable to use mail, facsimile, telephone or the like for safety.
  • the user When the user obtains the secret key K2 issued by the management apparatus 30, the user operates the operation unit connected to the communication I / F 29 provided in the second node 20 to transfer the secret key K2 to the secret key storage unit 26. sign up.
  • the management apparatus 30 includes a communication I / F 36 for receiving a location notified from the user of the second node 20 (see FIG. 1).
  • the communication I / F 36 exchanges information with a communication node used by a user, or exchanges information with a node operated by a management entity of the management apparatus 30.
  • the identification information ID2 of the second node 20 and the location of the second node 20 are input to the management device 30 through the communication I / F 36.
  • the verification unit 33 of the management device 30 extracts the location of the first node 10 from the key storage unit 32 based on the identification information ID1 received by the communication I / F 31 from the second node 20, and the extracted location is the communication I / F 36. Match the location entered from. If the locations of the first node 10 and the second node 20 match, the second node 20 is allowed to communicate with the first node 10. That is, the management apparatus 30 issues a secret key K2 for generating the common key Ks1 to the second node 20. Note that the timing at which the management device 30 transmits a message including the first hash value to the second node 20 and the timing at which the identification information and location of the first node 10 are received through the communication I / F 36 are earlier. There may be.
  • the management device 30 has a function of accepting the input of the location of the second node 20 and the first node 10 that stores the input location of the second node 20 in the key storage unit 32. It has a function to match the location. Therefore, it becomes possible to link the first node 10 and the second node 20 by the location (address), and when the second node 20 is linked to the first node 10, the second node 20 is mistakenly inserted. Selection of one node 10 is prevented.
  • the timing of notifying the identification information ID1 from the first node 10 to the second node 20 may be triggered by the detection of some event. Therefore, the first node 10 includes a notification unit 12 that notifies the identification information ID1 when an event is detected. This type of event is selected from switch and keyboard operations, changes in the state detected by the sensor, time schedule, and the like. In other words, the first node 10 is provided with means for detecting an event that triggers the setting of the common key, and the first node 10 is set as the first node 10 when the means detects the event.
  • the identification information ID1 is transmitted to the second node 20.
  • the second node 20 manages the identification information ID2 set in the second node 20 together with the identification information ID1 received from the first node 10. To device 30.
  • the common key Ks1 is set only when the distance between the second node 20 and the first node 10 is within a predetermined range. It is possible to start the operation for This operation prevents the second node 20 from being erroneously associated with the first node 10 of the neighbor.
  • a special communication path that is not always used is formed as a communication path between the first node 10 and the second node 20. It is possible to perform the association using a special communication path, triggered by the detection of the event described above. In this case, if the communication path is a wireless communication path, the frequency or the modulation method may be different from the usual one.
  • a dedicated communication connector used at the time of linking is provided so as to temporarily form a wired communication path between the first node 10 and the second node 20. The first node 10 and the second node 20 may be provided.
  • the present embodiment employs the following three technologies.
  • the second node 20 includes a communication I / F 29 that receives an input of the secret key K2.
  • the management device 30 includes a communication I / F 36 that accepts the input of the identification information ID2 and the location of the second node 20, and has a function of collating the locations of the first node 10 and the second node 20. Have.
  • the message including the first hash value is transmitted from the management device 30 to the second node 20, and the secret key K2 of the second node 20 issued by the management device 30 is the first hash value.
  • the message including the first hash value may be transmitted to the user by mail, facsimile, telephone, e-mail, web page or the like without passing through the communication path, similarly to the secret key K2.
  • the user inputs a message including the first hash value to the second node 20.
  • the location of the second node 20 corresponds to the location of the first node 10 attached to the smart meter.
  • a message including the first hash value may be sent to the location of.
  • confirmation that the first node 10 and the second node 20 are at the same location (address) is performed by the user who has received the message including the first hash value. That is, since the management device 30 does not need to collate the location of the first node 10 and the second node 20, the technique (2) described above is not necessary.
  • Embodiment 3 Although the above-described embodiment uses one management device 30, this embodiment describes a technique using two management devices 30 and 40.
  • the management entity that manages the first node 10 operates the management device 30.
  • the present embodiment is different in that a management device 40 operated by the management entity of the second node 20 is provided separately from the management device 30 operated by the management entity of the first node 10.
  • the management device 30 stores the identification information ID1 and the secret key K1 of the first node 10.
  • the management device 40 is provided to store the identification information ID2 and the secret key K2 of the second node 20.
  • the management device 30 according to the above-described embodiment communicates directly with the second node 20, but the management device 30 according to the present embodiment interposes the management device 40 with the second node 20. That is, the communication I / F 31 of the management device 30 forms a communication path with the management device 40. However, it is assumed that communication between the management device 30 and the management device 40 is guaranteed to be performed securely.
  • the management device 40 includes a communication I / F 41 that performs communication with the management device 30 and the second node 20, as shown in FIG. Therefore, the communication I / F 22 of the second node 20 communicates with the management device 40.
  • the management device 40 includes a key storage unit 42 for storing the identification information ID2 of the second node 20 and the secret key K2.
  • the key storage unit 42 stores the identification information ID4 of the management device 40 and the secret key K4 of the management device 40.
  • the hash value H4 generated using the secret key K4 of the management device 40 and the identification information ID2 of the second node 20 is the second value.
  • the node 20 can be stored in advance in the second node 20 at the time of manufacture or shipment.
  • the hash value H5 generated from the hash value H4, the identification information ID4 of the management device 40, and the identification information ID2 of the second node 20 is also stored in the key storage unit 42.
  • the hash value H4 is not used for communication but is used for the purpose of message authentication, and the hash value H5 is used for confirming that the message is from the second node 20 when communicating with the management apparatus 40.
  • the management device 40 includes a message generation unit 44 that generates a message to be transmitted to the second node 20 and the management device 30, and a random number as an exchange code Is provided with a random number generator 45. Furthermore, the management device 40 includes a common key generation unit 47 that generates a common key used for communication with the second node 20, and a common key storage unit 48 that stores the common key generated by the common key generation unit 47. .
  • the random number generator 25 When the second node 20 receives the identification information ID1 from the first node 10 (P31), the random number generator 25 generates a random number. Since the random number generated by the random number generator 25 is an exchange code, it is used only during message authentication with the communication partner, and a new random number is used for the next communication opportunity. That is, the random number generated by the random number generator 25 is a valid period of the random number until a message including the random number is transmitted and a response message obtained from the communication partner is authenticated.
  • the random number r21 generated by the random number generator 25 is transmitted as a message M31 to the management apparatus 40 together with the identification information ID1 acquired from the first node 10 and the identification information ID2 of the second node 20 (P32).
  • the message M31 from the second node 20 to the management device 40 also includes a hash value H5.
  • the message generation unit 44 of the management device 40 When the message generation unit 44 of the management device 40 receives the message M31 received from the second node 20, the message generation unit 44 includes the second key included in the message M31 together with the secret key K4 and the identification information ID4 stored in the key storage unit 42. A hash value is generated using the identification information ID2 of the node 20. Further, the message generation unit 44 compares the generated hash value with the hash value H5 included in the message M31. If the two match, the message generation unit 44 indicates that the message M31 is a message transmitted from the second node 20. Certify.
  • the message generator 44 After authenticating the message M31, the message generator 44 transmits the identification information ID1 and ID2 of the first node 10 and the second node 20 received from the second node 20 to the management device 30 (P33). Further, the message generator 44 transmits a message M32 including the random number r4 generated by the random number generator 45 to the second node 20 (P34).
  • the management device 40 has the secret key K4 stored in the key storage unit 42, the random number r4 generated by the random number generator 45, the identification information ID2 of the second node 20, the second The random number r21 received from the node 20 is acquired.
  • the common key generation unit 47 generates a hash value based on the secret key K4, the identification information ID2, and the random numbers r21 and r4, and uses this hash value as a common key for subsequent communication with the second node 20.
  • This common key is, for example, H (H4, r21
  • r4) H (H (K4; ID2), r21
  • the management apparatus 30 When the management apparatus 30 receives the identification information ID1 and ID2 from the management apparatus 40, the message M33 including the first hash value H1 directed to the first node 10 and the second address directed to the second node 20 are displayed.
  • the message M34 including the hash value H2 of the message is transmitted (P35).
  • the first hash value H1 and the second hash value H2 are the same as those in the first or second embodiment.
  • the second node 20 that has received the message M32 including the random number r4 generated by the management device 40 from the management device 40 has the hash value H4 stored in the private key storage unit 26 and the previously generated random number r21. Then, a hash value is generated based on the random number r4 received from the management device 40.
  • the message generation unit 24 authenticates that the message M32 is a message from the management device 40, and sends the message M32 to the common key generation unit 27. Notify that has been authenticated.
  • the common key generation unit 27 in the second node 20 is based on the random number r4 received from the management device 40, the hash value H4 stored in the secret key storage unit 26, and the random number r21 generated by the random number generator 25.
  • the generated hash value is generated as a common key Ks2, and the common key Ks2 is stored in the common key storage unit 28.
  • the common key Ks2 is naturally, for example, H (H4, r21
  • r4) H (H (K4; ID2), r21
  • the common key Ks2 is set between the second node 20 and the management apparatus 40, and subsequent communications between the second node 20 and the management apparatus 40 are encrypted using the common key Ks2.
  • the second node 20 generates a random number r22 by the random number generator 25, and combines the random number r22 and the random number r4 received from the management device 40 with the message M35 encrypted using the common key Ks2. It transmits to the management apparatus 40 (P36).
  • the message M35 is, for example, E (Ks2; r4
  • E (K; y) represents that y is encrypted with the common key K.
  • the management device 40 Since the management device 40 that has received the message M35 encrypted with the common key Ks2 can decrypt the content of the message M35 using the common key Ks2, it extracts the random number r22. In addition, the management device 40 encrypts the message M33 including the first hash value H1 and the message M34 including the second hash value H2 received from the management device 30 with the common key Ks2, and stores the second message M36. To the node 20 (P37). In addition, in order to increase the safety of communication, information encrypted by the common key Ks2 by performing a predetermined calculation on the random number r22 is also transmitted. In the illustrated example, the calculation for adding 1 to the random number r22 is illustrated as the calculation for the random number r22, but other calculations may be used.
  • the second node 20 that has received the information encrypted with the common key Ks2 from the management device 40 decrypts the information regarding the random number r22 and confirms that the information is the information transmitted from the management device 40. Thereafter, the second node 20 decrypts the message M33 including the first hash value H1 addressed to the first node 10 and the message M34 including the second hash value H2 addressed to the second node 20. To do.
  • the decrypted messages M33 and M34 are, for example, H (K1; ID2) and (ID2, H (K2; ID2
  • the management device 30 that is the same management entity as the first node 10 and the management device 40 that is the same management entity as the second node 20 are provided separately, so that the first It is possible to separately manage information related to the node 10 and the second node 20.
  • a validity period is set for the common keys Ks1 and Ks2 used between the second node 20 and the management apparatus 40, and the common key Ks1, Ks1, as in the technique described in the second embodiment. If the effective period of Ks2 is managed, key sharing due to retransmission attack or replay attack is prevented.
  • FIG. 6 shows an operation example in which the valid period T is set for the common keys Ks1 and Ks2.
  • the illustrated example has many common points with the operation shown in FIG. 5, but the validity period T is defined for the common keys Ks1 and Ks2, and the first node 10 and the second node 20 are In addition to the identification information ID1, ID2, the product number is used as the identification information.
  • the product number of the first node 10 is PN1
  • the product number of the second node 20 is PN2.
  • the reason why the product number PN2 is used as information for identifying the second node 20 is that the user can easily input the information for identifying the second node 20.
  • the product number PN 2 is input to the second node 20 using the operating device connected to the second node 20.
  • the second node 20 When the second node 20 receives the identification information ID1 from the first node 10 (P41), the second node 20 sets a common key Ks2 to be used with the management device 40 by communicating with the management device 40. .
  • the second node 20 For setting the common key Ks2, the second node 20 includes the identification information ID1 of the first node 10, the identification information ID2 of the second node, the random number r21 generated by the random number generator 25, and the hash value.
  • a message M41 including H5 is transmitted to the management apparatus 40 (P42).
  • the message M41 also includes information E (Kx; PN2) obtained by encrypting the product number PN2 using the encryption key Kx.
  • the management device 40 authenticates the message M41 using the hash value H5, and sets the common key Ks2 using the content of the message M41 and the information stored in the management device 40.
  • the identification information ID1, ID2 is transmitted from the management device 40 to the management device 30, but the operation example shown in FIG. 6 is added to the identification information ID1, ID2.
  • the product number PN2 is transmitted (P43).
  • the management device 40 transmits a message M42 including the random number r4 generated by the random number generator 45 to the second node 20 (P44).
  • the hash value H4 calculated from the identification information ID2 of the second node 20 using the secret key K4 of the management device 40 is used as the encryption key Kx, and this encryption key Kx is used.
  • the hash value for message authentication added to the random number r4 is, for example, H (Kx; r21
  • the second node 20 uses the hash value calculated using the encryption key Kx from the hash value received for message authentication from the management device 40 for communication with the management device 40.
  • the relationship between the product number PN2 transmitted from the management device 40 to the management device 30 is confirmed in the management device 30 with the product number PN1 of the first node 10 managed by the management device 30. If the product numbers PN1 and PN2 have a prescribed relationship, the management device 30 transmits a message M43 including the first hash value H1 and a message M44 including the second hash value H2 to the management device 40 (P45). ). Messages M43 and M44 from the management apparatus 30 to the management apparatus 40 are the same as the messages M33 and M34 shown in FIG.
  • the management device 40 determines the validity period T of the common key Ks1 used by the first node 10 and the second node 20, encrypts the message M45 including the validity period T with the common key Ks2, and outputs the second It transmits to the node 20 (P46). For example, information E (Ks2; ID2, T, H (K1; T
  • the second node 20 transmits a random number r22 to the management device 40, so that the second node 20 The response from the management apparatus 40 is confirmed.
  • the operation example shown in FIG. 6 omits the random number r22, and the management device 40 receives the first hash value H1 and the second hash value H2 from the management device 30 as a trigger. The information described above is transmitted from the device 40 to the second node 20.
  • the subsequent processing is the same as the processing shown in FIG. 3 in the first embodiment, and the second node 20 decrypts the information received from the management device 40 to thereby obtain two hash values H (K1; T
  • ID2) is stored as the secret key K2 of the second node 20, and the other hash value H (K1; T
  • the information ID2, the valid period T, and the random number r2 are transmitted to the first node 10 (P47).
  • the message M46 from the second node 20 to the first node 10 is, for example, (ID2, T, r2, H (K1; T
  • the first node 10 generates the common key Ks1 using the information it has and the information received from the second node 20. Further, the first node 10 generates a random number r1, adds a hash value for message authentication to the random number r1, and transmits it to the second node 20 (P48). The second node 20 generates the common key Ks1 by receiving the random number r1 from the first node 10.
  • the message M47 from the first node 10 to the second node 20 is, for example, (r1, H (K2; T
  • K2 H (K1; T
  • the validity period T is set to the common key Ks1 used for communication between the first node 10 and the second node 20. It is possible. In communication between the first node 10 and the second node 20, when the validity period T of the common key Ks1 is exceeded, the common key Ks1 is invalidated.
  • Other configurations and operations are the same as those in the first and second embodiments, and thus the description thereof is omitted.
  • the 1st node 10 comprises what is called a smart meter in combination with a measuring device
  • the 2nd node 20 corresponds to what is called HEMS. Therefore, when a device used by a consumer has a communication function, a communication network is constructed by the second node 20 and the device, and the second node 20 is used as a gateway of this communication network.
  • the second node 20 is a HEMS serving as a gateway, and the above-described technique can be applied even when the second node 20 is provided for each device used in a consumer.
  • the management apparatus 30 is operated by the management main body of the 1st node 10
  • the management apparatus 40 is operated by the management main body of the 2nd node 20
  • the management apparatus 40 may be installed in a consumer.
  • Such a communication network corresponds to, for example, a wireless LAN in which the management device 40 is a wireless LAN access point, the first node 10 is HEMS, and the second node 20 is a device.
  • the management device 30 may be able to communicate with the first node 10 instead of the second node 20.
  • the management apparatus 30 may acquire the identification information ID1 of the first node 10 and the identification information ID2 of the second node 20 through communication with the first node 10.
  • the management device 30 may be able to communicate with both the first node 10 and the second node 20.
  • the management device 30 may acquire the identification information ID1 of the first node 10 through communication with the first node 10 and acquire the second identification information ID2 through communication with the second node 20. .
  • the second node 20 may be provided with means for detecting an event that triggers the setting of the common key.
  • the second node 20 has a function of transmitting the identification information ID2 set in the second node 20 to the first node 10 when the means detects an event.
  • the first node 10 manages the identification information ID1 set in the first node 10 together with the identification information ID2 received from the second node 20. It has a function of transmitting to the device 30.
  • each embodiment mentioned above demonstrates as an example the case where the 1st node 10 comprises an electric power meter together with a measuring device, and the 2nd node 20 is attached to the apparatus used by HEMS or a consumer.
  • the application of the technology described in the embodiment is not limited to the content described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Storage Device Security (AREA)

Abstract

 暗号鍵設定システムは、第1のノードと第2のノードと管理装置とを備える。管理装置は、第1のノードの第1の識別情報および秘密鍵をあらかじめ保管している。管理装置は、第1のノードの第1の識別情報および第2のノードの第2の識別情報を通信によって取得し、第1,2の識別情報の関係を確認する。さらに、管理装置は、第1のノードに宛てた第1のチケットと、第2のノードに宛てた第2のチケットとを発行する。第1のノードは、第1のノードに設定されている秘密鍵と第1のチケットを認証用に用いて送信されたメッセージとを用いて第1の共通鍵を生成する。第2のノードは、第2のチケットを用いて第2の共通鍵を生成する。第1の共通鍵と第2の共通鍵とは一致する。

Description

暗号鍵設定システム、端末装置
 本発明は、複数のノードに共通鍵を設定する暗号鍵設定システム、および共通鍵が設定されるノードとしての端末装置に関するものである。
 従来から、通信データの漏洩、通信ネットワークへの不正侵入などを防止するために、通信ネットワークにおけるノード間で通信する際に暗号鍵が用いられている(たとえば、日本国特許第4746296号公報(以下「文献1」という)参照)。文献1に記載された技術は、ノード間で暗号鍵を設定するための特定データを暗号化して伝送し、特定データの送受信に要する時間から求めた基礎値に基づいて暗号鍵を生成している。文献1は、無線LANを想定しており、特定データについてはとくに説明されていないが、文脈からWEPキーやMACアドレスが特定データに相当すると考えられる。この特定データを暗号化するために2台のノードに同じ初期暗号鍵が設定され、初期暗号鍵で暗号化された特定データを送受信することによって基礎値が得られ、基礎値に基づいて暗号鍵が生成される。
 文献1に記載された技術は、通信するノードが互いに通信するだけで、暗号鍵を設定しているから、2台のノードが互いに通信を許可されたノードであることは初期暗号鍵を設定する作業でしか保証されない。初期暗号鍵は、ノードにあらかじめ設定された仮暗号鍵の一部を変更することにより設定されるから、初期暗号鍵の設定時に、ノードとして機能する別のノードが近隣に存在していると、希望しないノードに誤って初期暗号鍵が設定される可能性がある。
 この問題を解決するために、ノードごとの秘密鍵をノードとは別に設けた管理装置で一括して管理し、適切な組み合わせのノードにのみ暗号鍵(共通鍵)を設定することが考えられる。しかしながら、ノードの台数が増加すると、管理装置にノードの秘密鍵を登録する作業に手間がかかるという問題が生じる。また、ノードの管理主体が複数存在する場合に、個々の管理主体が管理下のノードの秘密鍵を保管することは許容されるが、本来の管理主体ではない管理主体にノードの秘密鍵を保管することは、秘密鍵の管理の上で望ましいとは言えない。
 本発明は、管理装置が許可したノードにのみ共通鍵を設定することによって、共通鍵が通信外のノードに誤って設定される可能性を低減し、さらに、共通鍵を設定するノードのうちの1台を管理する管理装置が管理下のノードの秘密鍵を管理するだけで、管理下ではないノードにも共通鍵を安全に設定することを可能にした暗号鍵設定システムを提供することを目的とし、さらに、この暗号鍵設定システムに用いられる端末装置を提供することを目的とする。
 本発明に係る暗号鍵設定システムは、上記目的を達成するために、第1の識別情報および秘密鍵が設定された第1のノードと、前記第1のノードと通信可能であって第2の識別情報が設定された第2のノードと、前記第1のノードと前記第2のノードとの少なくとも一方と通信可能であって前記第1のノードの前記第1の識別情報および前記秘密鍵があらかじめ保管されている管理装置とを備え、前記管理装置は、前記第1のノードの前記第1の識別情報および前記第2のノードの前記第2の識別情報を通信によって取得し、取得した前記第1のノードの前記第1の識別情報を、前記管理装置にあらかじめ保管されている前記第1の識別情報と照合する照合部と、前記照合部が前記第2のノードに前記第1のノードとの通信を許可する場合に、前記管理装置に保管されている前記第1のノードの前記秘密鍵を用いて生成されるチケットであって、前記第1のノードに宛てた第1のチケット、および前記第2のノードに宛てた第2のチケットを発行するチケット発行部とを備え、前記第1のノードは、前記第1のノードに設定されている前記秘密鍵と、前記第1のチケットを認証用に用いて送信されたメッセージとを用いて、第1の共通鍵を生成する第1の共通鍵生成部を備え、前記第2のノードは、前記第2のチケットを用いて、前記第1のノードで生成された前記第1の共通鍵と一致する第2の共通鍵を生成する第2の共通鍵生成部を備えることを特徴とする。
 この暗号鍵設定システムにおいて、前記第1のノードは、1組の前記第1の共通鍵および前記第2の共通鍵のために第1の交換用のコードを生成し、かつ前記第1の交換用のコードを前記第2のノードに送信する機能を有し、前記第2のノードは、1組の前記第1の共通鍵および前記第2の共通鍵のために第2の交換用のコードを生成し、かつ前記第2の交換用のコードを前記第1のノードに送信する機能を有し、前記第1の共通鍵生成部は、前記第1のノードに設定されている前記秘密鍵と、前記第1の交換用のコードと、前記第1のチケットを認証用に用いて送信された前記メッセージに含めて前記第2のノードから受信した前記第2の交換用のコードとを用いて、前記第1の共通鍵を生成する機能を有し、前記第2の共通鍵生成部は、前記第2のチケットと、前記第2の交換用のコードと、前記第1のノードから受信した前記第1の交換用のコードとを用いて、前記第2の共通鍵を生成する機能を有することが好ましい。
 この暗号鍵設定システムにおいて、前記第1の交換用のコードは、第1の乱数であり、前記第2の交換用のコードは、第2の乱数であることが好ましい。
 この暗号鍵設定システムにおいて、前記管理装置は、前記第2のノードと通信可能であり、前記第1のノードは、セキュアな通信路を通して、前記第1のノードに設定されている前記第1の識別情報を前記第2のノードに送信する機能を有し、前記第2のノードは、前記第1のノードから前記第1の識別情報を受信すると、前記第2のノードに設定されている前記第2の識別情報を、前記第1のノードから受信した前記第1の識別情報と併せて前記管理装置に送信する機能を有していることが好ましい。
 この暗号鍵設定システムにおいて、前記第2のノードは、セキュアな通信路を用いて、前記管理装置と通信する機能を有していることが好ましい。
 この暗号鍵設定システムにおいて、前記第1のノードには、前記第1の共通鍵および前記第2の共通鍵を設定する契機となる事象を検出する手段が付設され、前記第1のノードは、当該手段が前記事象を検出すると、前記第1のノードに設定されている前記第1の識別情報を前記第2のノードに送信する機能を有し、前記第2のノードは、前記第1のノードから前記第1の識別情報を受信すると、前記第2のノードに設定されている前記第2の識別情報を、前記第1のノードから受信した前記第1の識別情報と併せて前記管理装置に送信する機能を有していることが好ましい。
 この暗号鍵設定システムにおいて、前記第2のノードには、前記第1の共通鍵および前記第2の共通鍵を設定する契機となる事象を検出する手段が付設され、前記第2のノードは、当該手段が前記事象を検出すると、前記第2のノードに設定されている前記第2の識別情報を前記第1のノードに送信する機能を有し、前記第1のノードは、前記第2のノードから前記第2の識別情報を受信すると、前記第1のノードに設定されている前記第1の識別情報を、前記第2のノードから受信した前記第2の識別情報と併せて前記管理装置に送信する機能を有していることが好ましい。
 この暗号鍵設定システムにおいて、前記管理装置における前記チケット発行部は、前記第1のノードに設定される前記第1の共通鍵および前記第2のノードに設定される前記第2の共通鍵の有効期間を定める機能と、少なくとも前記第1のチケットと併せて前記第1のノードに前記有効期間を通知する機能とを有し、前記第1のノードは、前記第1のチケットと併せて通知された前記有効期間を取得し、前記第1のノードに設定された前記第1の共通鍵を前記有効期間内の通信にのみ使用する機能を有することが好ましい。
 この暗号鍵設定システムにおいて、前記第1のノードは、資源供給事業者から供給される資源の使用量を計測する計測装置に付設され、前記計測装置から計測データを取得する機能を有し、前記第2のノードは、前記資源の需要家が前記資源を用いて使用する機器との間で通信することにより、少なくとも前記機器による資源の消費量を管理する機能を有することが好ましい。
 この暗号鍵設定システムにおいて、前記第1のノードは、資源供給事業者から供給される資源の使用量を計測する計測装置に付設され、前記計測装置から計測データを取得する機能を有し、前記第2のノードは、前記資源の需要家が前記資源を用いて使用する機器に付設され、少なくとも前記機器による資源の消費量を管理する機能を有することが好ましい。
 この暗号鍵設定システムにおいて、前記資源供給事業者は電力会社であり、前記資源は電力であることが好ましい。
 この暗号鍵設定システムにおいて、前記第1のチケットは、前記秘密鍵と前記第1の識別情報と前記第2の識別情報とを用いて生成される第1のハッシュ値であり、前記第2のチケットは、前記秘密鍵と前記第2の識別情報とを用いて生成される第2のハッシュ値であることが好ましい。
 本発明に係る端末装置は、上述したいずれかの暗号鍵設定システムに用いられ、前記第1のノードとして機能することを特徴とする。
 また、本発明に係る端末装置は、上述したいずれかの暗号鍵設定システムに用いられ、前記第2のノードとして機能することを特徴とする。
 本発明の構成によれば、管理装置が、第1のノードの第1の識別情報および第2のノードの第2の識別情報を取得して、第1のノードおよび第2のノードに共通鍵(第1の共通鍵、第2の共通鍵)の設定を許可するから、管理装置が許可したノードにのみ共通鍵が設定されることになる。その結果、共通鍵が通信外のノードに誤って設定される可能性が低減されるという利点がある。また、管理装置は、第1のノードに宛てた第1のチケットと第2のノードに宛てた第2のチケットとを発行し、第1のノードは第1のチケットをメッセージの認証に用い、第2のノードは第2のチケットを共通鍵の生成に用いるから、管理装置は、第1のノードの秘密鍵を管理するだけで、第2のノードの秘密鍵を管理する必要がない。すなわち、管理装置は第1のノードについて秘密鍵を保管するだけで、第1のノードと第2のノードとの両方に共通鍵を安全に設定することが可能になるという利点がある。
 本発明の好ましい実施形態をより詳細に記載する。本発明の他の特徴および利点は、以下の詳細な記載および添付図面に関連して一層よく理解される。
実施形態1に用いる管理装置を示すブロック図である。 実施形態1に用いる第2のノードを示すブロック図である。 実施形態1に用いる第1のノードを示すブロック図である。 実施形態1に係る暗号鍵設定システムの動作をシーケンス図で示した説明図である。 実施形態1に係る暗号鍵設定システムの他の動作をシーケンス図で示した説明図である。 実施形態3に用いる管理装置を示すブロック図である。 実施形態3に係る暗号鍵設定システムの動作をシーケンス図で示した説明図である。 実施形態3に係る暗号鍵設定システムの他の動作をシーケンス図で示した説明図である。
 (概要)
 以下に説明する実施形態は、資源供給事業者が資源を供給する需要家に用いられ、需要家における資源の使用量を計測する計測装置に付設された第1のノードと、第1のノードとの間で通信する第2のノードとに共通鍵を設定する技術を例として説明する。以下では、資源供給事業者が電力会社であって需要家には資源として電力が供給される場合について説明する。ただし、電力以外にガス、水、熱などを資源とする場合でも同様の技術を適用可能である。資源が供給される需要家には、資源の使用量を計測する計測装置としてのメータが設置される。
 ここでは、資源が電力であるから、計測装置は電力メータが備えている。計測装置は、需要家が使用する電力量を単位時間毎に計測し、計測した電力量を計測データとして出力する。ここに、計測装置は、電力会社から供給された電力量を計測するだけではなく、需要家が発電装置を備えている場合は、需要家が創出した電力量を計測する機能を備えていてもよい。計測データは、通信ネットワークを通して上位装置に通知される。そのため、通信ネットワークに属するノード(以下、「第1のノード」という)が計測装置に付設される。
 上位装置は、電力会社、または電力会社から委託されたサービス提供会社が運営する管理サーバを想定している。上位装置は、1台のコンピュータではなく、複数台のコンピュータで実現されていてもよい。また、上位装置は、複数階層に階層化された通信ネットワークを構築していてもよい。たとえば、管理サーバが複数台の中継装置と通信し、それぞれの中継装置が複数台の第1のノードと通信するように通信ネットワークが構築されていてもよい。すなわち、上位装置が管理サーバと複数台の中継装置とを含み、同じ通信ネットワークに属する中継装置と第1のノードとが通信する構成でもよい。この場合、上位装置が構築している通信ネットワークには、複数種類の伝送媒体が用いられていてもよい。
 需要家は資源としての電力を使用する機器を備える。機器は、電力を消費する機器のほか、電力を創出する発電装置(太陽光発電装置、風力発電装置、燃料電池など)、電力を充放電する蓄電装置を含んでいてもよい。機器は、分電盤の主幹回路や分岐回路を通過する電力量などを計測する計測ユニットを含んでいてもよい。これらの機器の少なくとも一部は、第1のノードを備える通信ネットワークとは別に、需要家に構築される通信ネットワークに属するノードになる。
 需要家に構築される通信ネットワークは、機器との間で通信を行うノード(以下、「第2のノード」という)を備える。第2のノードは、少なくとも機器による電力の使用に関する情報を機器との間で授受する機能を有する。また、第2のノードは、機器における電力の出入の情報を収集するだけではなく、機器の動作を監視する機能、機器の動作を指示する機能も有していることが望ましい。つまり、第2のノードは、いわゆるHEMS(Home Energy Management System)としての機能を備えることが望ましい。
 第1のノードと第2のノードとは、上述した通信ネットワークのいずれにも属さない通信路を用いて通信を行う。以下の実施形態は、この通信路が電波を媒体とする無線通信路である場合を想定して説明するが、この通信路は有線通信路であってもよい。有線通信路をこの通信路に採用する場合は、需要家に給電する配電線を通信路に兼用する電力線搬送通信の技術を採用することが望ましい。第1のノードと第2のノードとの間では、第1のノードが取得した電力量、上位装置から第1のノードに通知された電力量の削減目標、第1のノードと第2のノードとが共有すべき情報などの通信を行う。
 上述したように、第1のノードは、電力メータに設けられた計測装置に付設されており、計測装置と併せていわゆる「スマートメータ」を構成している。また、第2のノードは、上述のように、いわゆる「HEMS」に対応している。したがって、以下の実施形態において、第1のノードは「スマートメータ」を想定して説明し、第2のノードは「HEMS」を想定して説明する。また、スマートメータおよびHEMSは、実際にはそれぞれ多数台存在するが、以下の実施形態では、第1のノードおよび第2のノードを1台ずつ設けた場合について説明する。第1のノードおよび第2のノードがそれぞれ複数台存在する場合の動作は、第1のノードおよび第2のノードを1台ずつ設けている場合の動作に帰着する。
 なお、以下に説明する実施形態は、資源の使用量を管理する用途に制限されない。すなわち、以下の実施形態で説明する技術は、通信可能な2台の端末装置(第1のノード、第2のノード)のうちの一方の端末装置が第三者機関に登録されている場合であって、両方の端末装置に共通鍵を設定する必要があれば、他の用途であっても利用可能である。
 (実施形態1)
 以下の実施形態において、第1のノード、第2のノード、管理装置は、それぞれ独立したコンピュータ(マイコン)と通信インターフェイス部とを主なハードウェア構成として備える。
 図1B,1Cに示すように、本実施形態の暗号鍵設定システムは、いずれもが需要家に設置される第1のノード10と第2のノード20とを備える。第1のノード10および第2のノード20は、それぞれを特定するための識別情報を有する。この識別情報は、通信に用いる識別情報とは異なっていてもよい。第1のノード10の識別情報(第1の識別情報)は、他の第1のノード10と重複しないようにユニークに設定されている必要がある。一方、第2のノード20の識別情報(第2の識別情報)は、利用者による設定が可能であり、ユニークであることは要求されない。隣接した需要家の間で、第1のノード10と第2のノード20との間の通信に干渉が生じなければ、第2のノード20の識別情報は共通であることが許容される。また、第1のノード10には秘密鍵が設定されている。
 第1のノード10は需要家に設置することが必須であるが、第2のノード20は必要に応じて設けられる。第1のノード10は、上述したように、電波を伝送媒体とする無線通信路を用いて第2のノード20と通信可能である。第2のノード20は、第三者機関により運営されている管理装置30(図1A参照)と通信可能になっている。第2のノード20と管理装置30との間の通信路は、とくに制限はなく、無線通信路と有線通信路とのどちらを用いてもよい。
 ここに、第1のノード10を特定する情報は管理装置30が管理する。第1のノード10を特定する情報には、管理装置30に登録された第1のノード10の識別情報(第1の識別情報)および第1のノード10に設定された秘密鍵のほかに、第1のノード10の所在地および所有者が含まれる。第1のノード10を特定する情報は、第1のノード10に固有に割り当てられた製造番号(製品番号)やMACアドレスなどを含んでいてもよい。
 第2のノード20の識別情報は、管理装置30に登録されていてもよいが、管理装置30に登録されていることは必須ではない。また、管理装置30は、第2のノード20の所在地および所有者は管理しない。
 管理装置30を運営する第三者機関は、需要家に電力を供給する電力会社、当該電力会社から委託されたサービス提供会社などを意味する。図1Aに示すように、管理装置30は、第2のノード20と通信するために通信インターフェイス部31を備える。以下、通信インターフェイス部を「通信I/F」と記載する。
 管理装置30は、少なくとも第1のノード10を特定する識別情報と第1のノード10に設定された秘密鍵との組を保管する鍵保管部32を備える。鍵保管部32は、記憶装置であって、第1のノード10の識別情報および秘密鍵のほか、第1のノード10の所在地(たとえば、住所)と第1のノード10の管理者(たとえば、需要家の氏名)をあらかじめ保管している。すなわち、第1のノード10の設置に伴って、これらの情報が管理装置30に登録される。
 また、管理装置30は、第2のノード20から取得される第1のノード10の識別情報を鍵保管部32に照合する照合部33と、第1のノード10と第2のノード20とにそれぞれ宛てる2種類のチケットを発行するチケット発行部34とを備える。チケット発行部34は、第1のノード10に宛てる第1のハッシュ値と、第2のノード20に宛てる第2のハッシュ値とを2種類のチケットとして発行する。したがって、ここでは、第1のハッシュ値は第1のチケットと同じ意味で用い、第2のハッシュ値は第2のチケットと同じ意味で用いる。照合部33は、第1のノード10の識別情報(第1の識別情報)を受け取ると、受け取った識別情報を鍵保管部32と照合し、第1のノード10の所在地との関係によって不正を確認する機能を有する。つまり、照合部33は、第1のノード10の識別情報を鍵保管部32に保存された認証用の情報(識別情報)と照合する。さらに、管理装置30は、チケット発行部34が発行した第1のハッシュ値および第2のハッシュ値を用いて第2のノード20に送信するメッセージを生成するメッセージ生成部35を備える。第1のハッシュ値と第2のハッシュ値との関係については後述する。
 第2のノード20は、図1Bに示すように、第1のノード10と管理装置30とのそれぞれと情報を双方向に伝送するために、第1のノード10と通信する通信I/F21と、管理装置30と通信する通信I/F22とを備える。2つの通信I/F21,22は共通のハードウェア構成を兼用していてもよい。通信I/F21および通信I/F22を通して第1のノード10および管理装置30との間で授受される情報は、振分部23により宛先が振り分けられる。
 第2のノード20は、第1のノード10との間で共通鍵(第1の共通鍵、第2の共通鍵)を設定するために、第1のノード10に対して1個の共通鍵のために生成される第2の交換用のコードを含むメッセージを送信する。さらに、第2のノード20は、第1の交換用のコードを含んだ情報から計算されたハッシュ値を含むメッセージを第1のノード10から受信する(図2参照)。本実施形態は、第2の交換用のコードとして乱数(第2の乱数)を採用している。
 第2のノード20は、第1のノード10へのメッセージを送信するために、第1のノード10に送信するメッセージを生成するメッセージ生成部24と、第2の交換用のコードである乱数を発生させる乱数発生器25とを備える。乱数発生器25は、共通鍵を生成するためのメッセージを第1のノード10に送信するたびに乱数を発生する。
 第2のノード20は、上述の構成のほかに、振分部23を通して管理装置30から受信した第2のハッシュ値を秘密鍵として保管する秘密鍵保管部26と、この秘密鍵と第1のノード10からのメッセージとを用いて共通鍵(第2の共通鍵)を生成する(第2の)共通鍵生成部27とを備える。秘密鍵保管部26は、第2のノード20の識別情報も保管する。共通鍵生成部27が生成した共通鍵は、共通鍵保管部28に保管され、第1のノード10とのその後の通信に用いられる。
 第2のノード20の識別情報は、上述したように、利用者による設定が可能であるから、識別情報の設定などを可能にするための操作器(図示せず)を第2のノード20に接続するために通信I/F29が設けられる。操作器は、タッチパネルのように操作だけでなく表示も可能であることが望ましい。操作器は、専用の操作器のほか、パーソナルコンピュータ、スマートホン、タブレットノードなどで適宜のアプリケーションプログラムを実行することによって実現してもよい。第2のノード20が操作器を専用に用いる場合、通信機能を備えた通信I/F29に代えて通信機能のないインターフェイス部を用いてもよい。
 ところで、第1のノード10は、図1Cに示すように、第2のノード20と通信するための通信I/F11を備える。また、第1のノード10は、第2のノード20との間で共通鍵を設定するために、第2のノード20に対して1回の通信に限って生成される第1の交換用のコードを含むメッセージを送信する。さらに、第1のノード10は、第2のノード20から受信したメッセージについて改ざんされていないことを確認するためのメッセージ確認部13を備える。メッセージ確認部13の機能については後述する。
 第1のノード10は、第2のノード20へのメッセージを送信するために、第2のノード20に送信するメッセージを生成するメッセージ生成部14と、第1の交換用のコードである乱数(第1の乱数)を発生させる乱数発生器15とを備える。乱数発生器15は、共通鍵を生成するためのメッセージを第2のノード20に送信するたびに乱数を発生する。第1のノード10は、管理装置30が管理している識別情報および秘密鍵と同じ情報を保管する秘密鍵保管部16も備える。
 第1のノード10は、上述の構成のほかに、秘密鍵と第2のノード20からのメッセージとを用いて共通鍵(第1の共通鍵)を生成する(第1の)共通鍵生成部17と、共通鍵生成部17が生成した共通鍵を保管する共通鍵保管部18を備える。共通鍵保管部18に保管された共通鍵は、第2のノード20とのその後の通信に用いられる。共通鍵生成部17が生成する共通鍵は、第2のノード20の共通鍵生成部27が生成した共通鍵(第2の共通鍵)と一致していなければならない。
 また、第1のノード10と第2のノード20とに共通鍵を設定する場合、共通鍵の設定のために授受している情報が盗聴されても共通鍵の生成が困難であることが要求される。さらに、中間攻撃によるメッセージの改ざんを検出することも要求される。これらの要求を満足するために、本実施形態は、管理装置30が発行する第1のハッシュ値および第2のハッシュ値と、第1のノード10と第2のノード20との間で授受するメッセージを以下のように定めている。
 図2に示すように、第1のノード10と第2のノード20とに共通鍵を設定する場合、第1のノード10および第2のノード20が管理装置30に対してそれぞれの識別情報ID1,ID2を通知する(P11,P12)。図示例において、管理装置30は、第2のノード20との間でのみ通信が可能になっている。そのため、第1のノード10は識別情報(第1の識別情報)ID1を第2のノード20に送信し(P11)、第2のノード20は第1のノード10から識別情報ID1を受け取ると、振分部23を通して第1のノード10の識別情報ID1を管理装置30に通知する(P12)。このとき、秘密鍵保管部26に保管されている第2のノード20の識別情報ID2も併せて管理装置30に通知される。
 管理装置30の照合部33は、識別情報ID1を受け取ると、識別情報ID1を鍵保管部32に照合することにより第1のノード10の秘密鍵K1を抽出する。チケット発行部34は、抽出した秘密鍵K1と識別情報ID1,ID2とを用いて、第1のハッシュ値H1を生成し、また、秘密鍵K1と識別情報(第2の識別情報)ID2とを用いて第2のハッシュ値H2を生成する。たとえば、第1のハッシュ値H1は、H1=H(K1;ID1|ID2)になり、第2のハッシュ値H2は、H2=H(K1;ID2)になる。
 ただし、H(a;b)は、aを鍵に用いてbについて算出した鍵付きのハッシュ値を表し、(c|d)はcとdとを結合した(順に並べた)値を表す。
 第1のハッシュ値H1は第1のノード10に送信するために生成され、第2のハッシュ値H2は第2のノード20に送信するために生成され、第1のハッシュ値H1および第2のハッシュ値H2は、ともに第2のノード20に送信される(P13,P14)。メッセージ生成部35は、チケット発行部34が生成した第1のハッシュ値H1と第2のノード20の識別情報ID2とを含むメッセージM11を生成し、通信I/F31はこのメッセージM11を第2のノード20に送信する(P13)。また、メッセージ生成部35は、チケット発行部34が生成した第2のハッシュ値H2を含むメッセージM12を生成し、通信I/F31はこのメッセージM12も第2のノード20に送信する(P14)。図示例では、第1のハッシュ値H1を含むメッセージM11と第2のハッシュ値H2を含むメッセージM12とを異なるタイミングで送信しているが、両方のメッセージM11,M12を1回の通信で送信してもよい。
 第1のハッシュ値H1は、第1のノード10に対して第2のノード20の識別情報ID2を管理装置30が認証したことを保証する機能を有し、第2のハッシュ値H2は、第2のノード20の秘密鍵として用いられる。なお、第1のノード10と第2のノード20と管理装置30との間の通信(P11~P14)の盗聴を防止するには、たとえばSSL(Secure Socket Layer)を採用すればよい。とくに、第2のノード20と管理装置30との間の通信(P12~P14)は盗聴されないように、セキュアに通信を行う必要がある。少なくともこの通信はSSLなどの技術を用いることが望ましい。つまり、第1のノード10は、セキュアな通信路を通して、第1のノード10に設定されている第1の識別情報ID1を第2のノード20に送信する機能を有し、第2のノード20は、セキュアな通信路を用いて、管理装置30と通信する機能を有している。
 第2のノード20が管理装置30から第1のハッシュ値H1を含むメッセージM11と第2のハッシュ値H2を含むメッセージM12とを受け取ると、メッセージ生成部24は、第1のハッシュ値H1を含むメッセージM11を用いて第1のノード10に送信するメッセージM13を生成する。このメッセージM13は、通信I/F21および振分部23を通して管理装置30から受信した第1のハッシュ値H1を含むメッセージM11と、乱数発生器25が生成した第2の交換用のコードとしての乱数(第2の乱数)r2とを含む。メッセージ生成部24が生成するメッセージM13は、たとえば(ID2,r2,H1)という形式になる。なお、このメッセージM13に含まれる情報の順序は適宜に変更可能である。メッセージ生成部24が生成したメッセージM13は、通信I/F21から第1のノード10に送信される(P15)。
 ところで、上述したように、第1のハッシュ値H1は、第1のノード10の秘密鍵K1および識別情報ID1と、第2のノード20の識別情報ID2を用いて生成されている。第1のノード10は、管理装置30の鍵保管部32に保管されている秘密鍵K1および識別情報ID1と同じ情報を秘密鍵保管部16に保管している。
 メッセージ確認部13は、第2のノード20から受け取ったメッセージM13に含まれる第2のノード20の識別情報ID2と、秘密鍵保管部16に保管された秘密鍵K1および識別情報ID1とを用いて、第1のハッシュ値H1に相当するハッシュ値を生成する。さらに、メッセージ確認部13は、生成したハッシュ値と、第2のノード20から受信した第1のハッシュ値H1とを比較し、両者が一致していれば、メッセージM13に含まれる識別情報ID2が、管理装置30から送信された識別情報であると認識する。言い換えると、第2のノード20から受信したメッセージM13に含まれる識別情報ID2が通信の途中で改ざんされていないことが保証される。このハッシュ値の使い方は、メッセージ認証の技術と同様である。
 第1のノード10は、第2のノード20から受信したメッセージM13のうち第2のノード20の識別情報ID2が管理装置30で保証されていることを確認した後、乱数発生器15で乱数(第1の乱数)r1を生成し、この乱数r1を用いて共通鍵生成部17が共通鍵(第1の共通鍵)Ks1を生成する。共通鍵生成部17は、秘密鍵保管部16に保管された秘密鍵K1と、第2のノード20から受信したメッセージM13に含まれる乱数r2と、乱数発生器15が生成した乱数r1とを用いて共通鍵Ks1を生成する。
 ところで、上述したように、管理装置30が第2のノード20に送信する第2のハッシュ値H2は、第2のノード20の秘密鍵K2として用いられる。共通鍵(第2の共通鍵)Ks1は、秘密鍵K2を用いて、たとえば、Ks1=H(K2;r2|r1)という形式で生成される。そのため、第1のノード10は、第2のノード20が生成した乱数r2を受け取るだけではなく、秘密鍵K2を生成する必要がある。一方、第2のノード20は、管理装置30から秘密鍵K2が引き渡されるから、第1のノード10が生成した乱数r1を受け取る必要がある。
 ここに、秘密鍵K2は第2のハッシュ値H2であって、第2のハッシュ値H2は、第1のノード10の秘密鍵K1と第2のノード20の識別情報ID2とから生成される。したがって、第1のノード10の共通鍵生成部17は、第2のノード20から受信したメッセージM13に含まれる識別情報ID2と、第1のノード10の秘密鍵保管部16に保管されている秘密鍵K1とを用いて秘密鍵K2を生成する。つまり、秘密鍵K2は、たとえばK2=H(K1;ID2)になるから、第2のハッシュ値H2と同じハッシュ値を生成可能である。共通鍵生成部17は、生成した秘密鍵K2を、第2のノード20から受信したメッセージM13に含まれる乱数r2および乱数発生器15が発生した乱数r1と併せて用いることにより、共通鍵Ks1を生成する。
 乱数発生器15が発生した乱数r1は、メッセージ生成部14にも与えられる。メッセージ生成部14は、共通鍵生成部17が生成した秘密鍵K2と第2のノード20から受け取った乱数r2とを用いてハッシュ値H(K2;r2)を生成し、乱数発生器15から発生した乱数r1と併せて、このハッシュ値H(K2;r2)を第2のノード20にメッセージM14として送信する(P16)。このメッセージM14は、たとえば(r1,H(K2;r2))という形式になる。
 第2のノード20は、第1のノード10からメッセージM14を受信すると、共通鍵生成部27において、乱数発生器25が生成した乱数r2と秘密鍵保管部26に保管された秘密鍵K2とを用いて、ハッシュ値H(K2;r2)を算出する。共通鍵生成部27は、生成したハッシュ値H(K2;r2)が第1のノード10から受信したメッセージM14のハッシュ値と一致していれば、メッセージM14に含まれる乱数r1を第1のノード10が発行した乱数r1として受け取る。さらに、共通鍵生成部27は、秘密鍵保管部26に保管された秘密鍵K2および乱数発生器25が生成した乱数r2と、メッセージM14に含まれる乱数r1とを用いてハッシュ値を算出し、このハッシュ値を共通鍵Ks1として共通鍵保管部28に保管する。したがって、共通鍵Ks1は、第1のノード10から受け取ったメッセージM14に含まれる乱数r1と第2のノード20が保有する情報とを用いて、たとえば、Ks1=H(K2;r2|r1)という形式で生成される。なお、共通鍵Ks1を求める演算では、秘密鍵K2と2つの乱数r1,r2との3個のパラメータを用いて共通鍵Ks1が生成され、かついずれか1つの乱数r1,r2と共通鍵Ks1とを用いても秘密鍵K2を求めることが極めて困難であればよい。
 上述のように、第2のノード20から第1のノード10に対して、管理装置30が保証した第2のノード20の識別情報ID2と、第2のノード20が発行した乱数r2とを含むメッセージM13を送信する。また、このメッセージM13を受信した第1のノード10は第2のノード20に対して、第1のノード10が発行した乱数r1を含むメッセージM14を送信する。
 第2のノード20は、管理装置30が第1のノード20の秘密鍵K1と第2のノード20の識別情報ID2とを用いて生成した秘密鍵K2を元にして、乱数r1,r2を用いて共通鍵(第2の共通鍵)Ks1を生成する。一方、第1のノード10は、第1のノード10が保管している第1のノード20の秘密鍵K1と第2のノード20を通して受信した識別情報ID2とを用いて生成したハッシュ値H2(つまり、秘密鍵K2)を元にして、乱数r1,r2を用いて共通鍵(第1の共通鍵)Ks1を生成する。その結果、第1のノード10と第2のノード20とのそれぞれが同じ共通鍵Ks1を持つ。
 上述のようにして第1のノード10と第2のノード20とにそれぞれ共通鍵Ks1が設定されると、第1のノード10と第2のノード20との以後の通信は、共通鍵Ks1を用いて暗号化される。
 本実施形態の技術では、第2のノード20の秘密鍵K2は、管理装置30が発行する。したがって、第2のノード20は、あらかじめ秘密鍵K2を保管している必要がなく、秘密鍵の管理が容易である。また、第1のノード10と第2のノード20との管理主体が異なる場合でも、本実施形態の技術を採用すれば、両者に共通鍵Ks1を設定できる。たとえば、第1のノード10の管理主体が電力会社であり、第2のノード20の管理主体が製造メーカあるいは利用者である場合でも、第1のノード10の管理主体が管理する情報のみで、第1のノード10と第2のノード20とに共通鍵Ks1を設定できる。しかも、第2のノード20は、第1のノード10の秘密鍵K1を保持することなく、第1のノード10と第2のノード20との双方が暗号通信に用いる共通鍵Ks1を保有することが可能になる。
 第1のノード10と第2のノード20とが共通鍵Ks1を設定するために行う通信(P15,P16)には共通鍵Ks1の有効期間を設定しておくことが好ましい。つまり、第2のノード20が第1のノード10にメッセージを送信する際に(P15)、メッセージ中にこの有効期間を含め、メッセージに添付するハッシュ値の生成時にこの有効期間も用いる。また、第1のノード10が第2のノード20にメッセージを送信する際に(P16)、有効期間を用いて生成したハッシュ値を付加しておく。
 共通鍵Ks1の有効期間を指定する形式は、有効期間の開始時刻と終了時刻との両方を指定する形式と、開始時刻のみを指定して開始時刻から所定時間を有効期間とする形式と、終了時刻のみを指定して終了時刻までを有効期間とする形式とから選択される。有効期間を指定する形式は、あらかじめ選択しておけば、どの形式を採用してもよい。
 共通鍵Ks1に有効期間(有効期限)を設定する場合、有効期間をTとすると、第1のハッシュ値H1は、たとえばH1=H(K1;T|ID1|ID2)になり、第2のハッシュ値H2は、たとえばH2=H(K1;T|ID2)になる。また、第2のノード20から第1のノード10への通信の際のメッセージを、(ID2,r2,H1)から(ID2,r2,T,H1)などに変更する。一方、第1のノード10から第2のノード20への通信の際のメッセージは、(r1,H(K2;r2))でよい。K2=H2=H(K1;T|ID2)であるから、このメッセージのメッセージ認証に有効期間Tが用いられることになる。
 共通鍵Ks1に有効期間Tを設定する場合の動作例を図3に示す。図示例は、図2に示した動作例と同様に、まず、第1のノード10および第2のノード20が管理装置30に対してそれぞれの識別情報ID1,ID2を通知する(P21,P22)。管理装置30は、現在時刻を計時するリアルタイムクロック(図示せず)を備え、チケット発行部34は、識別情報ID1,ID2を受信した時刻に対して所定時間後である有効期間Tを定める。
 すなわち、チケット発行部34は、抽出した秘密鍵K1と識別情報ID1,ID2と有効期間Tとを用いて、第1のハッシュ値H1を生成し、また、秘密鍵K1と識別情報ID2とを用いて第2のハッシュ値H2を生成する。第1のハッシュ値H1は、たとえば、H1=H(K1;T|ID1|ID2)になり、第2のハッシュ値H2は、たとえば、H2=H(K1;T|ID2)になる。
 メッセージ生成部35は、チケット発行部34が生成した第1のハッシュ値H1と第2のノード20の識別情報ID2と有効期間Tとを含むメッセージM21を生成し、このメッセージM21を第2のノード20に送信する(P23)。また、メッセージ生成部35は、チケット発行部34が生成した第2のハッシュ値H2を含むメッセージM22を生成し、このメッセージM22を第2のノード20に送信する(P24)。
 第2のノード20は、管理装置30から受信した第2のハッシュ値H2を秘密鍵K2に用いる。したがって、秘密鍵K2は、たとえば、K2=H(K1;T|ID2)になる。また、第2のノード20は、管理装置30から受信した第1のハッシュ値H1を、第2のノード20の識別情報ID2と、乱数発生器25が生成した乱数r2と、有効期間Tと併せたメッセージM23を第1のノード10に送信する(P25)。
 第1のノード10は、第2のノード20から受信したメッセージM23に含まれる第1のハッシュ値H1を用いてメッセージ認証を行う。さらに、第1のノード10の共通鍵生成部17は、保有している秘密鍵K1、乱数発生器15が生成した乱数r1、第2のノード20から受信した識別情報ID2および乱数r2、有効期間Tを用いて、共通鍵Ks1を生成する。すなわち、共通鍵Ks1は、たとえば、Ks1=H(K2;T|r2|r1)という形式で生成される。また、第1のノード10は、有効期間Tを受け取ることにより、有効期間Tの終了時刻を知るから、以後は、生成した共通鍵Ks1の有効期間Tの管理を行う。
 第1のノード10の乱数発生器15で生成された乱数r1は、メッセージ認証に用いるハッシュ値(たとえば、H(H(K1;T|ID2),r2)=H(K2;r2))を付加して、メッセージM24として第1のノード10から第2のノード20に送信される(P26)。第2のノード20は、秘密鍵K2と乱数r2とを用いてメッセージ認証を行い、第1のノード10が生成した乱数r1を受け取る。
 第2のノード20は、管理装置30から第1のハッシュ値H1とともに有効期間Tを受け取っているから、この有効期間Tと、第1のノード10から受け取った乱数r1と、秘密鍵K2および乱数r2とを用いて共通鍵Ks1を生成する。共通鍵Ks1は、たとえば、Ks1=H(K2;T|r2|r1)という形式で生成される。つまり、共通鍵生成部27は、第1のノード10と同じ形式の共通鍵Ks1を生成するから、第1のノード10と第2のノード20との間で共通鍵Ks1を用いて暗号化した通信を行うことが可能になる。
 第1のノード10と第2のノード20とがそれぞれ生成した共通鍵Ks1は、有効期間Tが設定されているから、第1のノード10と第2のノード20とにおいて、それぞれ有効期間Tを管理し、有効期間Tを超えると共通鍵Ks1は無効になる。つまり、第1のノード10と第2のノード20との一方が共通鍵Ks1を用いて他方に対して情報を伝送する際に、有効期間Tを過ぎているときには、送信側において共通鍵Ks1を用いて暗号化することができず、受信側において情報を復号することができなくなる。
 したがって、第三者が何らかの方法で取得した共通鍵Ks1を用いて暗号化した情報を伝送したとしても、有効期間Tが過ぎていれば、その情報は受信側に到達することがない。そのため、第1のノード10と第2のノード20との間の通信において、共通鍵Ks1の有効期間Tを管理し、有効期間Tを超える場合には共通鍵Ks1を無効にすれば、再送攻撃ないし再生攻撃による鍵共有が防止される。なお、共通鍵Ks1に有効期間Tを設定する技術は、以下の実施形態においても適用可能である。
 (実施形態2)
 実施形態1は、管理装置30から、第1のハッシュ値を含むメッセージと第2のハッシュ値を含むメッセージとを第2のノード20に送信していたが、本実施形態は、第1のハッシュ値を含むメッセージのみを第2のノード20に送信する。この場合、第2のノード20は管理装置30から送信されたメッセージでは秘密鍵を得られない。一方、実施形態1の説明から明らかなように、第2のノード20の秘密鍵K2は、第1のノード10において生成可能な情報でなければならない。
 本実施形態では、管理装置30が発行した第2のノード20の秘密鍵K2を、別経路で利用者に伝達し、第2のノード20に対して利用者が秘密鍵K2を入力する。秘密鍵K2を利用者に伝達する方法は、電子メールやウェブページを利用することが可能であるが、安全のためには郵送、ファクシミリ、電話などを利用することが望ましい。
 利用者は、管理装置30が発行した秘密鍵K2を入手すると、第2のノード20に設けられた通信I/F29に接続された操作器を操作して秘密鍵K2を秘密鍵保管部26に登録する。本実施形態は、第2のノード20に人為的に秘密鍵K2を登録する作業を行うことにより、実施形態1と同様に、第1のノード10と同じ共通鍵Ks1を生成することが可能になる。
 ところで、管理装置30が第2のノード20に対する秘密鍵K2を発行するにあたって、第2のノード20の利用者に宛てて秘密鍵K2を送付しなければならないから、第2のノード20の所在地を知る必要がある。そのため、管理装置30は、第2のノード20の利用者から通知される所在地を受け付けるための通信I/F36を備える(図1参照)。通信I/F36は、利用者が利用する通信ノードとの間で情報を授受するか、あるいは管理装置30の管理主体が操作するノードとの間で情報を授受する。いずれの場合も、通信I/F36を通して、第2のノード20の識別情報ID2と、第2のノード20の所在地とが管理装置30に入力される。
 管理装置30の照合部33は、通信I/F31が第2のノード20から受信した識別情報ID1により鍵保管部32から第1のノード10の所在地を抽出し、抽出した所在地を通信I/F36から入力された所在地と照合する。第1のノード10と第2のノード20との所在地が一致していれば、第2のノード20が第1のノード10と通信することを許可する。すなわち、管理装置30は、第2のノード20に対して、共通鍵Ks1を生成するための秘密鍵K2を発行する。なお、管理装置30が第1のハッシュ値を含むメッセージを第2のノード20に送信するタイミングと、通信I/F36を通して第1のノード10の識別情報および所在地を受け付けるタイミングとは、どちらが先であってもよい。
 本実施形態は、管理装置30が、第2のノード20の所在地の入力を受け付ける機能と、入力された第2のノード20の所在地を鍵保管部32に保管している第1のノード10の所在地と照合する機能とを備えている。そのため、第1のノード10と第2のノード20とを所在地(住所)によって紐付けることが可能になり、第2のノード20を第1のノード10に紐付ける際に、誤って隣家の第1のノード10を選択することが防止される。
 実施形態1では、とくに説明していないが、第1のノード10から第2のノード20に対して識別情報ID1を通知するタイミングは、何らかの事象の検出を行ったことを契機とすればよい。そのため、第1のノード10は、事象の検出を契機として識別情報ID1を通知させる通知部12を備える。この種の事象は、スイッチやキーボードの操作、センサが検出している状態の変化、タイムスケジュールなどから選択される。つまり、第1のノード10には、共通鍵を設定する契機となる事象を検出する手段が付設され、第1のノード10は、当該手段が事象を検出すると、第1のノード10に設定されている識別情報ID1を第2のノード20に送信する。第2のノード20は、第1のノード10から識別情報ID1を受信すると、第2のノード20に設定されている識別情報ID2を、第1のノード10から受信した識別情報ID1と併せて管理装置30に送信する。
 上述のように、事象を検出したときに識別情報ID1を通知すれば、たとえば、第2のノード20が第1のノード10との距離が所定範囲内であるときにのみ、共通鍵Ks1を設定するための動作を開始させることが可能になる。この動作により、第2のノード20が誤って隣家の第1のノード10に対応付けることが防止される。
 第1のノード10と第2のノード20との紐付けをさらに確実にするには、第1のノード10と第2のノード20との通信路として、常時は使用しない特別な通信路を形成可能にしておき、上述した事象の検出を契機として、特別な通信路を用いて紐付けを行えばよい。この場合の通信路は、無線通信路であれば周波数あるいは変調方式を常時とは異ならせるようにすればよい。また、特別な通信路を形成するために、第1のノード10と第2のノード20との間に一時的に有線通信路を形成するように、紐付け時に用いる専用の通信用コネクタを第1のノード10と第2のノード20とに設けてもよい。
 以上説明したように、本実施形態は、以下の3つの技術を採用している。(1)第2のノード20が秘密鍵K2の入力を受け付ける通信I/F29を備える。(2)管理装置30が、第2のノード20の識別情報ID2および所在地の入力を受け付ける通信I/F36を備え、かつ第1のノード10と第2のノード20との所在地を照合する機能を有する。(3)第1のノード10が、何らかの事象を検出したときに、識別情報ID1を送信する通知部12を備える。
 本実施形態では、第1のハッシュ値を含むメッセージのみが管理装置30から第2のノード20に送信され、管理装置30が発行した第2のノード20の秘密鍵K2は、第1のハッシュ値を含むメッセージとは別経路で第2のノード20に送信されている。ただし、第1のハッシュ値を含むメッセージも、秘密鍵K2と同様に、通信路を通さずに郵送、ファクシミリ、電話、電子メール、ウェブページなどを利用して利用者に伝達してもよい。この場合、第1のハッシュ値を含むメッセージを、利用者が第2のノード20に入力することになる。
 ここで、第2のノード20がHEMSである場合、第2のノード20の所在地はスマートメータに付設された第1のノード10の所在地に対応していると考えられるから、第1のノード10の所在地に第1のハッシュ値を含むメッセージを送ればよい。この場合、第1のノード10と第2のノード20とが同じ所在地(住所)であることの確認は、第1のハッシュ値を含むメッセージを受け取った利用者が行う。つまり、第1のノード10と第2のノード20との所在地の照合を管理装置30で行う必要がないから、上述した(2)の技術は不要になる。
 他の構成および動作は実施形態1と同様であるから説明を省略する。
 (実施形態3)
 上述した実施形態は、1台の管理装置30を用いているが、本実施形態は2台の管理装置30,40を用いる技術を説明する。上述した実施形態では、第1のノード10を管理する管理主体が管理装置30を運営していることを想定している。これに対して、本実施形態では、第1のノード10の管理主体が運営する管理装置30とは別に、第2のノード20の管理主体が運営する管理装置40を設けている点が異なる。管理装置30は、実施形態1で説明したように、第1のノード10の識別情報ID1および秘密鍵K1を保管している。一方、管理装置40は、第2のノード20の識別情報ID2および秘密鍵K2を保管するために設けられている。
 上述した実施形態の管理装置30は、第2のノード20と直接通信するが、本実施形態の管理装置30は、第2のノード20との間に管理装置40を介在させている。つまり、管理装置30の通信I/F31は管理装置40との間に通信路を形成する。ただし、管理装置30と管理装置40との間の通信は、セキュアに行われることが保証されていることを想定している。
 管理装置40は、図4に示すように、管理装置30および第2のノード20との通信を行う通信I/F41を備える。したがって、第2のノード20の通信I/F22は、管理装置40と通信することになる。管理装置40は、第2のノード20の識別情報ID2および秘密鍵K2を保管するために鍵保管部42を備える。鍵保管部42は、管理装置40の識別情報ID4および管理装置40の秘密鍵K4を保管する。
 第2のノード20と管理装置40とは管理主体が同じであるから、管理装置40の秘密鍵K4と第2のノード20の識別情報ID2とを用いて生成したハッシュ値H4を、第2のノード20の製造時ないし出荷時にあらかじめ第2のノード20に保存しておくことが可能である。さらに、ハッシュ値H4と管理装置40の識別情報ID4と第2のノード20の識別情報ID2とから生成したハッシュ値H5も鍵保管部42に保管される。ハッシュ値H4は通信には用いられずメッセージ認証の目的で用いられ、ハッシュ値H5は管理装置40との通信に際して第2のノード20からのメッセージであることを確認させるために用いられる。ハッシュ値H4は、たとえばH4=H(K4;ID2)とし、ハッシュ値H5は、たとえばH5=H(H4;ID4|ID2)とする。
 管理装置40は、通信I/F41と鍵保管部42とに加えて、第2のノード20および管理装置30とに対して送信するメッセージを生成するメッセージ生成部44、交換用のコードとしての乱数を生成する乱数発生器45を備える。さらに、管理装置40は、第2のノード20との通信に用いる共通鍵を生成する共通鍵生成部47と、共通鍵生成部47が生成した共通鍵を保管する共通鍵保管部48とを備える。
 次に、図5を用いて本実施形態の動作を説明する。第2のノード20は、第1のノード10から識別情報ID1を受け取ると(P31)、乱数発生器25が乱数を生成する。乱数発生器25が生成する乱数は、交換用のコードであるから、通信相手との間でメッセージの認証を行う間にのみ用いられ、次の通信機会には新たな乱数が用いられる。すなわち、乱数発生器25が生成した乱数は、乱数を含むメッセージを送信し、通信相手から得られる応答のメッセージについて認証するまでの間が乱数の有効期間になる。
 乱数発生器25が生成した乱数r21は、第1のノード10から取得した識別情報ID1と、第2のノード20の識別情報ID2とともに管理装置40へのメッセージM31として送信される(P32)。第2のノード20から管理装置40へのメッセージM31は、ハッシュ値H5も含む。
 管理装置40のメッセージ生成部44は、第2のノード20から受信したメッセージM31を受信すると、鍵保管部42に保管している秘密鍵K4と識別情報ID4とともに、メッセージM31に含まれる第2のノード20の識別情報ID2を用いてハッシュ値を生成する。さらに、メッセージ生成部44は、生成したハッシュ値をメッセージM31に含まれるハッシュ値H5と比較し、両者が一致していれば、メッセージM31が第2のノード20から送信されたメッセージであることを認証する。
 メッセージ生成部44は、メッセージM31を認証した後、第2のノード20から受け取った第1のノード10および第2のノード20の識別情報ID1,ID2を管理装置30に送信する(P33)。さらに、メッセージ生成部44は、乱数発生器45が生成した乱数r4を含むメッセージM32を第2のノード20に送信する(P34)。このメッセージM32は、第2のノード20が鍵保管部42に保管しているハッシュ値H4および管理装置40が第2のノード20から受信した乱数r21を元にしたハッシュ値を含む。このハッシュ値は、たとえばH(H4,r21)=H(H(K4;ID2),r21)になる。
 ここまでの処理によって、管理装置40は、鍵保管部42に保管されている秘密鍵K4と、乱数発生器45が生成した乱数r4と、第2のノード20の識別情報ID2と、第2のノード20から受信した乱数r21とを取得する。共通鍵生成部47は、秘密鍵K4、識別情報ID2、乱数r21,r4を元にハッシュ値を生成し、このハッシュ値を共通鍵として、第2のノード20との以後の通信に用いる。この共通鍵は、たとえばH(H4,r21|r4)=H(H(K4;ID2),r21|r4)になる。
 ところで、管理装置30は、管理装置40から識別情報ID1,ID2を受け取ると、第1のノード10に向けた第1のハッシュ値H1を含むメッセージM33と、第2のノード20に向けた第2のハッシュ値H2を含むメッセージM34とを送信する(P35)。第1のハッシュ値H1および第2のハッシュ値H2は、実施形態1あるいは実施形態2と同様である。
 一方、管理装置40が生成した乱数r4を含むメッセージM32を管理装置40から受信した第2のノード20は、秘密鍵保管部26に保管しているハッシュ値H4と、先に生成した乱数r21と、管理装置40から受信した乱数r4とを元にハッシュ値を生成する。メッセージ生成部24は、管理装置40から受信したハッシュ値が、生成したハッシュ値と一致すると、メッセージM32が管理装置40からのメッセージであることを認証し、共通鍵生成部27に対してメッセージM32を認証したことを通知する。
 第2のノード20における共通鍵生成部27は、管理装置40から受信した乱数r4と秘密鍵保管部26に保管しているハッシュ値H4と、乱数発生器25が生成した乱数r21とを元にしたハッシュ値を共通鍵Ks2として生成し、この共通鍵Ks2を共通鍵保管部28に保管する。この共通鍵Ks2は、当然のことであるが、たとえばH(H4,r21|r4)=H(H(K4;ID2),r21|r4)になる。
 以上の手順によって、第2のノード20と管理装置40との間で共通鍵Ks2が設定され、第2のノード20と管理装置40との間の以後の通信は、共通鍵Ks2を用いた暗号化が可能になる。そこで、第2のノード20は、乱数発生器25により乱数r22を生成し、この乱数r22と、管理装置40から受け取った乱数r4とを併せて、共通鍵Ks2を用いて暗号化したメッセージM35を管理装置40に送信する(P36)。このメッセージM35は、たとえばE(Ks2;r4|r22)になる。ここに、E(K;y)は、yを共通鍵Kで暗号化したことを表す。
 共通鍵Ks2で暗号化されたメッセージM35を受信した管理装置40は、共通鍵Ks2を用いてメッセージM35の内容を復号することができるから、乱数r22を取り出す。また、管理装置40は、管理装置30から受信した第1のハッシュ値H1を含むメッセージM33、および第2のハッシュ値H2を含むメッセージM34を、共通鍵Ks2で暗号化して、メッセージM36として第2のノード20に送信する(P37)。また、通信の安全性を高めるために、乱数r22に所定の演算を行って共通鍵Ks2で暗号化した情報も送信される。図示例では、乱数r22に対する演算として、乱数r22に1を加算する演算を例示しているが、他の演算であってもよい。
 管理装置40から共通鍵Ks2で暗号化された情報を受信した第2のノード20は、乱数r22に関する情報を復号し、当該情報が管理装置40から送信された情報であることを確認する。その後、第2のノード20は、第1のノード10に宛てた第1のハッシュ値H1を含むメッセージM33と、第2のノード20に宛てた第2のハッシュ値H2を含むメッセージM34とを復号する。復号されたメッセージM33,M34は、たとえば、H(K1;ID2)と(ID2,H(K2;ID2|ID1))とであって、実施形態1、実施形態2と同様に、前者は第2のノード20の秘密鍵保管部26に保管され、後者は第1のノード10に送信される。
 以後の動作は実施形態1、実施形態2において説明した動作と同様であるから、以後の動作については説明を省略する。本実施形態のように、第1のノード10と同じ管理主体である管理装置30と、第2のノード20と同じ管理主体である管理装置40とを分離して設けられたことにより、第1のノード10と第2のノード20とに関する情報を、分離して管理することが可能になる。
 なお、本実施形態の動作において、第2のノード20と管理装置40との間で用いる共通鍵Ks1,Ks2について有効期間を設定し、実施形態2で説明した技術と同様にして共通鍵Ks1,Ks2の有効期間を管理すれば、再送攻撃ないし再生攻撃による鍵共有が防止される。
 共通鍵Ks1,Ks2に有効期間Tを設定する動作例を図6に示す。図示例は、図5に示した動作と多くの共通点を有しているが、共通鍵Ks1,Ks2に有効期間Tを定めている点と、第1のノード10および第2のノード20を識別する情報として、識別情報ID1,ID2のほかに、製品番号を用いる点とが相違する。以下では、第1のノード10の製品番号をPN1とし、第2のノード20の製品番号をPN2とする。第2のノード20を識別する情報として製品番号PN2を用いているのは、第2のノード20を識別する情報として利用者が容易に入力できるからである。
 以下では、主として図5に示した動作との相違点について説明する。上述した動作と同様に、第2のノード20は、管理装置40の秘密鍵K4を用いて第2のノード20の識別情報ID2から算出したハッシュ値H4=H(K4;ID2)を暗号鍵Kxとして保管している。また、第2のノード20は、暗号鍵Kxを用いて管理装置40の識別情報ID4および第2のノード20の識別情報ID2から算出したハッシュ値H5=H(Kx;ID4|ID2)も保管している。さらに、第2のノード20に接続された操作器を用いて、第2のノード20に製品番号PN2が第2のノード20に入力される。
 第2のノード20は、第1のノード10から識別情報ID1を受け取ると(P41)、管理装置40との間で通信を行うことにより、管理装置40との間で用いる共通鍵Ks2を設定する。共通鍵Ks2の設定のために、第2のノード20は、第1のノード10の識別情報ID1と、第2のノードの識別情報ID2と、乱数発生器25が生成した乱数r21と、ハッシュ値H5とを含むメッセージM41を管理装置40に送信する(P42)。このメッセージM41は、暗号鍵Kxを用いて製品番号PN2を暗号化した情報E(Kx;PN2)も含む。
 管理装置40は、ハッシュ値H5を用いてメッセージM41を認証し、メッセージM41の内容と管理装置40が保管している情報とを用いて共通鍵Ks2を設定する。共通鍵Ks2は、たとえばKs2=H(Kx;H(Kx;r21|r4))とする。ここで、図5に示した動作例は、管理装置40から管理装置30に対して、識別情報ID1,ID2を送信しているが、図6に示す動作例は、識別情報ID1,ID2に加えて製品番号PN2を送信している(P43)。また、管理装置40は、乱数発生器45が生成した乱数r4を含むメッセージM42を第2のノード20に送信する(P44)。このメッセージM42を認証するためのハッシュ値は、管理装置40の秘密鍵K4を用いて第2のノード20の識別情報ID2から算出したハッシュ値H4を暗号鍵Kxとし、この暗号鍵Kxを用いて、乱数r21および乱数r4から算出される。つまり、乱数r4に付加されるメッセージ認証用のハッシュ値は、たとえば、H(Kx;r21|r4)になる。
 図6に示す動作例では、第2のノード20は、管理装置40からメッセージ認証用に受け取ったハッシュ値から暗号鍵Kxを用いて算出したハッシュ値を、管理装置40との間の通信に用いる共通鍵Ks2とする。つまり、共通鍵Ks2は、たとえばKs2=H(Kx;H(Kx;r21|r4))になる。このようにして、第2のノード20が共通鍵Ks2を生成することにより、管理装置40と同じ共通鍵Ks2が第2のノード20に設定され、第2のノード20と管理装置40との以後の通信を、共通鍵Ks2により暗号化することが可能になる。
 ところで、管理装置40から管理装置30に対して送信された製品番号PN2は、管理装置30において、管理装置30が管理している第1のノード10の製品番号PN1との関係が確認される。管理装置30は、製品番号PN1,PN2が規定の関係であれば、第1のハッシュ値H1を含むメッセージM43と、第2のハッシュ値H2を含むメッセージM44とを管理装置40に送信する(P45)。管理装置30から管理装置40へのメッセージM43,M44は、図5に示したメッセージM33,M34と同じである。
 ここで、管理装置40は、第1のノード10と第2のノード20とが用いる共通鍵Ks1の有効期間Tを定め、有効期間Tを含むメッセージM45を共通鍵Ks2で暗号化して第2のノード20に送信する(P46)。管理装置40から第2のノード20には、たとえば、E(Ks2;ID2,T,H(K1;T|ID1|ID2),H(K1;T|ID2))という情報が送信される。
 図5に示した動作例は、第2のノード20が共通鍵Ks2を生成した後に、第2のノード20から管理装置40に対して、乱数r22を送信することにより、第2のノード20が管理装置40からの応答を確認している。これに対して、図6に示す動作例は、乱数r22を省略して、管理装置40が管理装置30から第1のハッシュ値H1および第2のハッシュ値H2を受け取ったことを契機として、管理装置40から第2のノード20に上述した情報を送信している。
 以後の処理は、実施形態1において図3に示した処理と同様であって、第2のノード20は、管理装置40から受け取った情報を復号することにより、2個のハッシュ値H(K1;T|ID1|ID2),H(K1;T|ID2)を受け取る。一方のハッシュ値H(K1;T|ID2)は、第2のノード20の秘密鍵K2として保管され、他方のハッシュ値H(K1;T|ID1|ID2)は、第2のノード20の識別情報ID2、有効期間T、乱数r2と併せて第1のノード10に送信される(P47)。第2のノード20から第1のノード10へのメッセージM46は、たとえば、(ID2,T,r2,H(K1;T|ID1|ID2))のようになる。
 第1のノード10は、保有している情報と第2のノード20から受け取った情報とを用いて共通鍵Ks1を生成する。さらに、第1のノード10は、乱数r1を生成し、この乱数r1にメッセージ認証用のハッシュ値を付加して第2のノード20に送信する(P48)。第2のノード20は、第1のノード10から乱数r1を受け取ることにより、共通鍵Ks1を生成する。第1のノード10から第2のノード20へのメッセージM47は、たとえば、(r1,H(K2;T|r2|r1))などになる。
 上述した例の場合、第1のノード10と第2のノード20とに設定される共通鍵Ks1は、たとえば、Ks1=(K2,H(K2;T|r2|r1))という形式で表される。ここでは、K2=H(K1;T|ID2)としている。
 図6に示すように2台の管理装置30,40を用いる場合であっても、第1のノード10と第2のノード20との間の通信に用いる共通鍵Ks1に有効期間Tを設定することが可能である。第1のノード10と第2のノード20との間の通信に際し、共通鍵Ks1の有効期間Tを超えると、この共通鍵Ks1は無効化される。他の構成および動作は実施形態1、実施形態2と同様であるから説明を省略する。
 上述した各実施形態は、第1のノード10が計測装置と併せていわゆるスマートメータを構成し、第2のノード20がいわゆるHEMSに対応している場合を想定している。したがって、需要家が使用する機器が通信機能を備えている場合、第2のノード20と機器とにより通信ネットワークが構築され、この通信ネットワークのゲートウェイとして第2のノード20が用いられる。ただし、第2のノード20がゲートウェイとなるHEMSであることは一例であって、需要家において使用される機器ごとに第2のノード20が付設される場合でも上述した技術は適用可能である。
 また、上述した各実施形態は、管理装置30が第1のノード10の管理主体により運営され、管理装置40が第2のノード20の管理主体により運営されている場合を想定しているが、管理装置40は、需要家に設置されていてもよい。このような通信ネットワークは、たとえば、管理装置40が無線LANのアクセスポイント、第1のノード10がHEMS、第2のノード20が機器となる無線LANなどに該当する。
 なお、上述した各実施形態において、管理装置30は、第2のノード20ではなく、第1のノード10と通信可能であってもよい。この場合、管理装置30は、第1のノード10の識別情報ID1および第2のノード20の識別情報ID2を、第1のノード10との通信によって取得すればよい。また、管理装置30は、第1のノード10と第2のノード20との両方と通信可能であってもよい。この場合、管理装置30は、第1のノード10の識別情報ID1を第1のノード10との通信によって取得し、第2の識別情報ID2を第2のノード20との通信によって取得すればよい。
 また、第2のノード20に、共通鍵を設定する契機となる事象を検出する手段が付設されてもよい。この場合、第2のノード20は、当該手段が事象を検出すると、第2のノード20に設定されている識別情報ID2を第1のノード10に送信する機能を有する。第1のノード10は、第2のノード20から識別情報ID2を受信すると、第1のノード10に設定されている識別情報ID1を、第2のノード20から受信した識別情報ID2と併せて管理装置30に送信する機能を有する。
 なお、上述した各実施形態は、第1のノード10が計測装置と併せて電力メータを構成し、第2のノード20がHEMSあるいは需要家で使用する機器に付設されている場合を例として説明したが、実施形態において説明した技術の用途は説明した内容に限定されない。
 本発明をいくつかの好ましい実施形態によって記載したが、本発明の本来の精神および範囲、すなわち請求の範囲を逸脱することなく、当業者によってさまざまな修正および変形が可能である。

Claims (14)

  1.  第1の識別情報および秘密鍵が設定された第1のノードと、
     前記第1のノードと通信可能であって第2の識別情報が設定された第2のノードと、
     前記第1のノードと前記第2のノードとの少なくとも一方と通信可能であって前記第1のノードの前記第1の識別情報および前記秘密鍵があらかじめ保管されている管理装置とを備え、
     前記管理装置は、
     前記第1のノードの前記第1の識別情報および前記第2のノードの前記第2の識別情報を通信によって取得し、取得した前記第1のノードの前記第1の識別情報を、前記管理装置にあらかじめ保管されている前記第1の識別情報と照合する照合部と、
     前記照合部が前記第2のノードに前記第1のノードとの通信を許可する場合に、前記管理装置に保管されている前記第1のノードの前記秘密鍵を用いて生成されるチケットであって、前記第1のノードに宛てた第1のチケット、および前記第2のノードに宛てた第2のチケットを発行するチケット発行部とを備え、
     前記第1のノードは、前記第1のノードに設定されている前記秘密鍵と、前記第1のチケットを認証用に用いて送信されたメッセージとを用いて、第1の共通鍵を生成する第1の共通鍵生成部を備え、
     前記第2のノードは、前記第2のチケットを用いて、前記第1のノードで生成された前記第1の共通鍵と一致する第2の共通鍵を生成する第2の共通鍵生成部を備える
     ことを特徴とする暗号鍵設定システム。
  2.  前記第1のノードは、1組の前記第1の共通鍵および前記第2の共通鍵のために第1の交換用のコードを生成し、かつ前記第1の交換用のコードを前記第2のノードに送信する機能を有し、
     前記第2のノードは、1組の前記第1の共通鍵および前記第2の共通鍵のために第2の交換用のコードを生成し、かつ前記第2の交換用のコードを前記第1のノードに送信する機能を有し、
     前記第1の共通鍵生成部は、前記第1のノードに設定されている前記秘密鍵と、前記第1の交換用のコードと、前記第1のチケットを認証用に用いて送信された前記メッセージに含めて前記第2のノードから受信した前記第2の交換用のコードとを用いて、前記第1の共通鍵を生成する機能を有し、
     前記第2の共通鍵生成部は、前記第2のチケットと、前記第2の交換用のコードと、前記第1のノードから受信した前記第1の交換用のコードとを用いて、前記第2の共通鍵を生成する機能を有する
     ことを特徴とする請求項1記載の暗号鍵設定システム。
  3.  前記第1の交換用のコードは、第1の乱数であり、
     前記第2の交換用のコードは、第2の乱数である
     ことを特徴とする請求項2記載の暗号鍵設定システム。
  4.  前記管理装置は、前記第2のノードと通信可能であり、
     前記第1のノードは、セキュアな通信路を通して、前記第1のノードに設定されている前記第1の識別情報を前記第2のノードに送信する機能を有し、
     前記第2のノードは、前記第1のノードから前記第1の識別情報を受信すると、前記第2のノードに設定されている前記第2の識別情報を、前記第1のノードから受信した前記第1の識別情報と併せて前記管理装置に送信する機能を有している
     ことを特徴とする請求項1~3のいずれか1項に記載の暗号鍵設定システム。
  5.  前記第2のノードは、セキュアな通信路を用いて、前記管理装置と通信する機能を有していることを特徴とする請求項4記載の暗号鍵設定システム。
  6.  前記第1のノードには、前記第1の共通鍵および前記第2の共通鍵を設定する契機となる事象を検出する手段が付設され、
     前記第1のノードは、当該手段が前記事象を検出すると、前記第1のノードに設定されている前記第1の識別情報を前記第2のノードに送信する機能を有し、
     前記第2のノードは、前記第1のノードから前記第1の識別情報を受信すると、前記第2のノードに設定されている前記第2の識別情報を、前記第1のノードから受信した前記第1の識別情報と併せて前記管理装置に送信する機能を有している
     ことを特徴とする請求項1~3のいずれか1項に記載の暗号鍵設定システム。
  7.  前記第2のノードには、前記第1の共通鍵および前記第2の共通鍵を設定する契機となる事象を検出する手段が付設され、
     前記第2のノードは、当該手段が前記事象を検出すると、前記第2のノードに設定されている前記第2の識別情報を前記第1のノードに送信する機能を有し、
     前記第1のノードは、前記第2のノードから前記第2の識別情報を受信すると、前記第1のノードに設定されている前記第1の識別情報を、前記第2のノードから受信した前記第2の識別情報と併せて前記管理装置に送信する機能を有している
     ことを特徴とする請求項1~3のいずれか1項に記載の暗号鍵設定システム。
  8.  前記管理装置における前記チケット発行部は、前記第1のノードに設定される前記第1の共通鍵および前記第2のノードに設定される前記第2の共通鍵の有効期間を定める機能と、少なくとも前記第1のチケットと併せて前記第1のノードに有効期間を通知する機能とを有し、
     前記第1のノードは、前記第1のチケットと併せて通知された前記有効期間を取得し、前記第1のノードに設定された前記第1の共通鍵を前記有効期間内の通信にのみ使用する機能を有する
     ことを特徴とする請求項1~7のいずれか1項に記載の暗号鍵設定システム。
  9.  前記第1のノードは、資源供給事業者から供給される資源の使用量を計測する計測装置に付設され、前記計測装置から計測データを取得する機能を有し、
     前記第2のノードは、前記資源の需要家が前記資源を用いて使用する機器との間で通信することにより、少なくとも前記機器による資源の消費量を管理する機能を有する
     ことを特徴とする請求項1~8のいずれか1項に記載の暗号鍵設定システム。
  10.  前記第1のノードは、資源供給事業者から供給される資源の使用量を計測する計測装置に付設され、前記計測装置から計測データを取得する機能を有し、
     前記第2のノードは、前記資源の需要家が前記資源を用いて使用する機器に付設され、少なくとも前記機器による資源の消費量を管理する機能を有する
     ことを特徴とする請求項1~8のいずれか1項に記載の暗号鍵設定システム。
  11.  前記資源供給事業者は電力会社であり、
     前記資源は電力である
     ことを特徴とする請求項9又は10記載の暗号鍵設定システム。
  12.  前記第1のチケットは、前記秘密鍵と前記第1の識別情報と前記第2の識別情報とを用いて生成される第1のハッシュ値であり、
     前記第2のチケットは、前記秘密鍵と前記第2の識別情報とを用いて生成される第2のハッシュ値である
     ことを特徴とする請求項1~11のいずれか1項に記載の暗号鍵設定システム。
  13.  請求項1~12のいずれか1項に記載の暗号鍵設定システムに用いられ、前記第1のノードとして機能することを特徴とする端末装置。
  14.  請求項1~12のいずれか1項に記載の暗号鍵設定システムに用いられ、前記第2のノードとして機能することを特徴とする端末装置。
PCT/JP2013/001374 2012-05-11 2013-03-06 暗号鍵設定システム、端末装置 WO2013168326A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109597 2012-05-11
JP2012109597A JP6050950B2 (ja) 2012-05-11 2012-05-11 暗号鍵設定システム、端末装置

Publications (1)

Publication Number Publication Date
WO2013168326A1 true WO2013168326A1 (ja) 2013-11-14

Family

ID=49550398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001374 WO2013168326A1 (ja) 2012-05-11 2013-03-06 暗号鍵設定システム、端末装置

Country Status (2)

Country Link
JP (1) JP6050950B2 (ja)
WO (1) WO2013168326A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190041A1 (ja) * 2014-06-10 2015-12-17 パナソニックIpマネジメント株式会社 通信システム及び通信方法
CN111526128A (zh) * 2020-03-31 2020-08-11 中国建设银行股份有限公司 一种加密管理的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150813A1 (ja) * 2009-06-23 2010-12-29 パナソニック電工株式会社 暗号鍵配布システム
JP2011188620A (ja) * 2010-03-08 2011-09-22 Toshiba Corp 制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150813A1 (ja) * 2009-06-23 2010-12-29 パナソニック電工株式会社 暗号鍵配布システム
JP2011188620A (ja) * 2010-03-08 2011-09-22 Toshiba Corp 制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. J. MENEZES ET AL., HANDBOOK OF APPLIED CRYPTOGRAPHY, 1997, pages 502 - 503 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190041A1 (ja) * 2014-06-10 2015-12-17 パナソニックIpマネジメント株式会社 通信システム及び通信方法
JP2015232788A (ja) * 2014-06-10 2015-12-24 パナソニックIpマネジメント株式会社 通信システム及び通信方法
CN111526128A (zh) * 2020-03-31 2020-08-11 中国建设银行股份有限公司 一种加密管理的方法和装置

Also Published As

Publication number Publication date
JP2013239773A (ja) 2013-11-28
JP6050950B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
CN1964258B (zh) 用于安全装置发现及引入的方法
CN1708942B (zh) 设备特定安全性数据的安全实现及利用
Kim et al. A secure smart-metering protocol over power-line communication
CN101772024B (zh) 一种用户身份确定方法及装置和系统
CN101005357A (zh) 一种更新认证密钥的方法和系统
US20130312072A1 (en) Method for establishing secure communication between nodes in a network, network node, key manager, installation device and computer program product
CN103714639A (zh) 一种实现对pos终端安全操作的方法及系统
CN103716168A (zh) 密钥管理方法及系统
CN102594558A (zh) 一种可信计算环境的匿名数字证书系统及验证方法
CN102656839A (zh) 用于保障至少一个密码钥在设备之间的协商的装置和方法
CN109474432A (zh) 数字证书管理方法及设备
CN106549502B (zh) 一种配电安全防护监控系统
CN103827636A (zh) 管理设施仪表通信的系统和方法
CN110147666A (zh) 物联网场景下的轻量级nfc身份认证方法、物联网通信平台
CN104125239B (zh) 一种基于数据链路加密传输的网络认证方法和系统
Premarathne et al. Secure and reliable surveillance over cognitive radio sensor networks in smart grid
JP2010049334A (ja) 情報収集システムおよび外部アクセス装置
CN102447705A (zh) 数字证书撤销方法及设备
JP2016535884A (ja) ネットワークエンドポイント内の通信の保護
WO2013168326A1 (ja) 暗号鍵設定システム、端末装置
KR101491553B1 (ko) 인증서 기반의 dms를 이용한 안전한 스마트그리드 통신 시스템 및 방법
Liu et al. A security-enhanced express delivery system based on NFC
KR101929355B1 (ko) 고유 일련번호 및 대칭키를 이용한 암복호화 시스템
US20220247560A1 (en) Key-management for advanced metering infrastructure
Park et al. Security bootstrapping for secure join and binding on the IEEE 802.15. 4-based LoWPAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788164

Country of ref document: EP

Kind code of ref document: A1