WO2013167986A2 - Compositions and methods for the treatment of epilepsy - Google Patents

Compositions and methods for the treatment of epilepsy Download PDF

Info

Publication number
WO2013167986A2
WO2013167986A2 PCT/IB2013/050740 IB2013050740W WO2013167986A2 WO 2013167986 A2 WO2013167986 A2 WO 2013167986A2 IB 2013050740 W IB2013050740 W IB 2013050740W WO 2013167986 A2 WO2013167986 A2 WO 2013167986A2
Authority
WO
WIPO (PCT)
Prior art keywords
disorder
formula
administration
compositions
independently
Prior art date
Application number
PCT/IB2013/050740
Other languages
French (fr)
Other versions
WO2013167986A3 (en
Inventor
Mahesh Kandula
Original Assignee
Mahesh Kandula
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahesh Kandula filed Critical Mahesh Kandula
Priority to EP13787779.1A priority Critical patent/EP2846795A2/en
Priority to JP2015510893A priority patent/JP2015526385A/en
Priority to AU2013257707A priority patent/AU2013257707A1/en
Priority to SG11201407309XA priority patent/SG11201407309XA/en
Priority to CA2873016A priority patent/CA2873016A1/en
Publication of WO2013167986A2 publication Critical patent/WO2013167986A2/en
Priority to PCT/IB2013/060667 priority patent/WO2014087367A2/en
Priority to ZA2014/08058A priority patent/ZA201408058B/en
Publication of WO2013167986A3 publication Critical patent/WO2013167986A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/272-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings

Abstract

The invention relates to the compounds of formula (I) and formula (II) or its pharmaceutical acceptable salts, as well as polymorphs, solvates, enantiomers, stereoisomers and hydrates thereof. The pharmaceutical compositions comprising an effective amount of compounds of formula (I) or formula (II); and methods for treating or preventing neurological diseases may be formulated for oral, buccal, rectal, topical, transdermal, transmucosal, intravenous, parenteral administration, syrup, or injection. Such compositions may be used to treatment of epilepsy, bipolar disorder, trigeminal neuralgia, attention-deficit hyperactivity disorder, partial seizures, adjunctive therapy for partial, myoclonic, tonic-clonic seizures and schizophrenia, neuropathic pain, seizures, Tourette syndrome, Alzheimer's disease, autism, bipolar disorder and anxiety disorder, bipolar disorder, mania, phantom limb syndrome, complex regional pain syndrome, paroxysmal extreme pain disorder, neuromyotoaia, intermittent explosive disorder, borderline personality disorder, myotonia congenita and post-traumatic stress disorder.

Description

COMPOSITIONS AND METHODS FOR THE
TREATMENT OF EPILEPSY
PRIORITY
[0001 ] The present application claims the benefit of Indian Provisional Patent Application No, 17 1 /CHE/2012 filed on Q8-May-20125 the entire disclosure of which is relied on for all purposes and is incorporated into this application by reference.
FIELD OF THE INVENTION
{00021 This disclosure generally relates to compounds and compositions for the treatment of epilepsy. More particularly, this invention relates to treating subjects with a pharmaceutically acceptable dose of compounds, crystals, stereoisomers, enantiomers, esters, salts, hydrates, prodrugs, or mixtures thereof.
BACKGROUND OF THE INVENTION j0003] Epilepsy is defined as a chronic neuroiogical condition characterized by recurrent, unprovoked seizures, it is one of the most common serious neurological disorders in the United States and often requires long-term management. Each year 150000 people in the United States are newly diagnosed as having epilepsy, with the cumulative lifetime incidence approaching 3%. The incidence is highest during the first year of life and in elderly persons. Although most people with epilepsy become seizure-free with appropriate therapy, 30% to 40% of patients will continue to have seizures despite the use of arrtiepileptic daigs either alone or in combination.
|00()4) Patients with uncontrolled seizures experience significant morbidity and mortality and face social stigma and discrimination as well, in the United States, only 17% of patients with new-onset epilepsy are initially seen by a neurologist. Furthermore, primary care physicians provide approximately 40% of the long-term management of epilepsy patients with or without initial consultation with a specialist. [0005] Unfortunately, a survey of general practitioners revealed that only 40% of responders felt confident in their knowledge of epilepsy and two thirds were unfamiliar with the new antiepiieptie daigs. A recent survey of 71 patients with epilepsy who are treated exclusively by general practitioners showed that 45% had experienced a seizure within the past year, 68% complained of drowsiness or difficulty in concentration with their current medications, and 28% were prescribed poly therapy.
10006) Prior to 1993, the choice of an anticonvulsant medication was limited to phenobarbetal, primidone, phenytoin, carbamazepine, and valproate. Although these "traditional" anticonvulsants have the advantage of familiarity as well as proven efficacy, many patients are left with refractory seizures as well as intolerable adverse effects. Since 1993, new medications have been approved by the US Food and Drug Administration (FDA), expanding treatment options The newer antiepiieptie drugs offer the potential advantages of fewer drug interactions, unique mechanisms of action, and a broader spectrum of activity. With more options, however, comes the challenge of determining what role the new antiepiieptie drugs play in optimizing treatment in addition to understanding important adverse effects and drug interactions of these increasingly prescri bed m edicati oris .
|0007] Managing acute pathology of often relies on the addressing underlying pathology and symptoms of the disease. There is currently a need in the art for new compositions to treatment of epi leps .
SUMMARY OF THE INVENTION
000SJ The present invention provides compounds, compositions containing these compounds and methods for using the same to treat, prevent and or ameliorate the effects of the conditions such as epilepsy. [0009] The invention herein provides compositions comprising of formula Ϊ or pharmaceutical acceptable salts thereof The invention also provides pharmaceutical compositions comprising one or more compounds of formula I or intermediates thereof and one or more of pharmaceutically acceptable carriers, vehicles or diluents. These compositions may be used in the treatment of epilepsy and its associated complications.
Figure imgf000004_0001
Formula I
[001.0] In certain embodiments, the present invention relates to the compounds and compositions of formula I, or pharmaceutically acceptable saits thereof.
Figure imgf000004_0002
Form la
Wherein, l independently represents , D, 
Figure imgf000005_0001
Figure imgf000006_0001
Figure imgf000007_0001
a is independently 2,3 or 7;
each b is independentl 3, 5 or 6;
e i independently 1, 2 or 6;
c and d are each independently H, D, -OH, -OD, Ct-C1t-alkyi, -NHZ or -COCH3.
[0011] In the illustrative embodiments, examples of compounds of formula Ϊ are as set forth below:
Figure imgf000008_0001
(I - )
{GO J 2} Accordingly, the invention also provides pharmaceutical compositions comprising one or more compounds of formula 11 or intermedi tes thereof and one or more of pharmaceutically acceptable carriers, vehicles or diluents These compositions may be used in the treatment of epilepsy and its associated complications.
Figure imgf000008_0002
Formula.
Wherein,
R independently represents. Hydrogen, D,
Figure imgf000008_0003
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0001
a is independently 2,3 or 7;
each b is independently 3, 5 or 6;
e is independently 1, 2 or 6;
c and d are each independently H, D, -OH, -OD, Ci-Cralkyl, - H? or -COCFfc. 0013] In the illustrative embodiments, examples of compounds of formula I are as set forth below:
Figure imgf000011_0002
(2-1 )
Figure imgf000012_0001
(2-2)
01 j Herein the application also provides a kit comprising any of the pharmaceutical compositions disclosed herein. The kit may comprise instructions for use in the treatment of epilepsy or its related complications. fOOJ SJ The application also discloses a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the compositions herein. In some aspects, the pharmaceutical composition is formulated for systemic administration, oral administration, sustained release, parenteral administration, injection, subdera al administration, or transdermal administration.
{0til6'| Herein, the application additionally provides kits comprising the pharmaceutical compositions described herein. The kits may further comprise instructions for use in the treatment of epilepsy or its related complications. 0017] The compositions described herein have several uses. The present application provides, for example, methods of treating a patient suffering from epiiepsy or its related complications manifested from metabolic conditions, chronic diseases or disorders; Hepatol ogy, Cancer, Neurological, Hematological, Orthopedic, Cardiovascular, Renal, Skin, Vascular or Ocular complications. DETAILED DESCRIPTION OF TH E INVENTION
Definitions 0018] As used herein, the following terms and phrases shall have the meanings set forth below. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art,
[0019] The compounds of the present invention can be present in the form of pharmaceutically acceptable salts. The compounds of the present invention can also be present in the form of pharmaceutically acceptable esters (i.e., the methyl and ethyl esters of the acids of formula 1 and formula 11 to be used as prodrugs). The compounds of the present invention can also be solvated, i.e. hydrated. The solvation can be affected in the course of the manufacturing process or can take place i.e. as a consequence of hygroscopic properties of an initially anhydrous compound of formula I and formula Π (hydration).
[0020] Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed "isomers " Isomers that differ in the arrangement of their atoms in space are termed "stereoisomers." Diastereomers are stereoisomers with opposite configuration at one or more chiral centers which are not enantiomers. Stereoisomers bearing one or more asymmetric centers that are non- superimposable mirror images of each other are termed "enantiomers." When a compound has an asymmetric center, for example, if a carbon atom is bonded to tour different groups, a pair of enanti mers is possible. An enantiomer can be characterized by the absolute configuration of its asymmetric center or centers and is described by the R- and S-sequencing rules of Cahn, IngoSd and Prelog, or by the maimer in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+} or (-)-isomers respectively), A chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a "racemic mixture" .
|002ϊ J As used herein, the term "metabolic condition" refers to an Inborn errors of metabolism {or genetic metabolic conditions) are genetic disorders that result from a defect in one or more metabolic pathways, specifically, the function of an enzyme is affected and is either deficient or completely absent.
|0022] in some embodiments, a molecular conjugate comprises of compounds selected from the group consisting of R-lipoic acid (CAS No. 1.200-22-2), saisalaie (CAS No. 552-94-3), acetylcysteine (CAS No. 616-91 -1), Eicosapeiitaenoic acid (CAS No. 10417- 94-4), Docosahexaenoic acid (CAS No. 62 J 7-54-5).
[0023] The term "polymorph" as used herein is art-recognized and refers to one crystal structure of a given compound.
[0024] The phrases "parenteral administration" and "administered parenteral ly" as used herei refer to modes of administration other than enteral and topical administration, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, mtrapericardia!, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradennai, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrastemai injection and infusion.
|0 25| A "patient," "subject," or "host" to be treated by the subject method may mean either a human or non-human animal, such as primates, mammals, and vertebrates.
|0026| The phrase "pharmaceutically acceptable" is art-recognized. In certain embodiments, the ter includes compositions, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
[0027] The phrase "pharmaceutically acceptable carrier" is art-recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, solvent or encapsulating material involved in carrying or transporting any subject composition, from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of a subject composition and not injurious to the patient. In certain embodiments, a pharmaceutically acceptable carrier is non-pyrogenic. Some examples of materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium car oxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes, (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) pol ols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering asents, such as magnesium hvdroxide and aluminum hvdroxide; ( 15) alsinic acid; (16) pyrogen-free water; (17) isotonic saline; ( 18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
|002ΐϊ J The term "prodrug" is intended to encompass compounds that, under physiological conditions, are converted into the therapeutically active agents of the present invention. A common method for making a prodrug is to include selected moieties that are hydrolyzed under physiological conditions to reveal the desired molecule. In other embodiments, the prodrug is converted by an enzymatic activity of the host animal. 0 29J T e term "prophylactic or therapeutic" treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment i s prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
(0030) The term "predicting" as used herein refers to assessing the probability related diseases patient will suffer from abnormalities or complication and/or terminal platelet aggregation or failure and/or death (i .e. mortal it}') within a defined time window (predictive window) in the future. The mortality may be caused by the central nervous system or complication. The predictive window is an interval in which the subject will develop one or more of the said complications according to the predicted probability. The predictive window may be the entire remaining lifespan of the subject upon analysis by the method of the present invention.
|003t| The term "treating" is art -recognized and includes preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; inhibiting the disease, disorder or condition, e.g., impeding its progress; and relieving the disease, disorder, or condition, e.g., causing regression of the disease, disorder and/or condition. Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiology is not affected, such as treating the neurological condition such as epilepsy, bipolar disorder, trigeminal neuralgia, attention-deficit hyperactivity disorder (ADHD), schizophrenia, neuropathic pain, seizures, bipolar disorder, mania, phantom limb syndrome, complex regional pain syndrome, paroxysmal extreme pain disorder, neuromyotonia, intermittent explosive disorder, borderline personality disorder, myotonia congenita and post-traumatic stress disorder of a subject by administration of an agent eveo though such agent does not treat the cause of the condition. T e term "treating", "treat" or "treatment" as used herein includes curative, preventative (e.g., prophylactic), adjunct and palliative treatment. j0032| The phrase "therapeutically effective amount" is an art-recognized term. In certain embodiments, the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment, in certain embodiments, the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time. The effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being admini stered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experi mentation.
[0033] in certain embodiments, the pharmaceutical compositions described herein are formulated in a manner such that said compositions will be delivered to a patient in a therapeutically effective amount, as part of a prophylactic or therapeutic treatment. The desired amount, of the composition to he administered to a patient, will depend on absorption, inacti ation, and excretion rates of the drug as eli as the delivery rate of the salts and compositions from the subject compositions. It is to be noted that dosage values may also vary with the severity of the condition to be alleviated, i is to be further understood that for any particular subject, specific dosage regimens should foe adjusted over time according to the individual need and the professional judgment of the person admi istering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
{003 | Additionally, the optimal concentration and/or quantities or amounts of any particular salt or composition may be adjusted to accommodate variations in the treatment parameters. Such treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition.
|0035] in certain embodiments, the dosage of the subject compositions provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials. For example, the maximum plasma coiicentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity may be used.
10036] When used with respect to a pharmaceutical composition or other material, the term "sustained release" is art-recognized. For example, a subject composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time. For example, in particular embodiments, upon contact with body fluids including blood, spinal fluid, mucus secretions, lymph or the like, one or more of the pharmaceutically acceptable excipienis may undergo gradual or delayed degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein, e.g., an therapeutic and/or biologically active salt and/or composition, for sustained or extended period (as compared to the release from a bolus). This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.
|0037| The phrases "systemic administration," "administered systemically," "peripheral administration" and "administered peripherally" axe art-recognized, and include the administrati n of a subject composition, therapeutic or other material at a site remote from the disease being treated. Administration of an agent for the disease being treated, even if the agent is subsequently distributed systenitcally, may be termed "local'" or "topical" or "regional" administration, other than directly into the central nervous system, e.g., by subcutaneous administration, such that it enters the patient's system and, thus, is subject to metabolism and other like processes. [0038] The phrase "therapeutically effective amount" is an art-recognized term. In certain embodiments,, the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to an medical treatment. In certain embodiments, the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for period of time. The effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.
[0039] The present disclosure also contempl tes prodrugs of the compositions disclosed herein, as well as pharmaceutically acceptable salts of said prodrugs.
[0040] This application also discloses a pharmaceutical composition comprising a pharmaceutically acceptable carri r and the composition of a com ound of Formula I and formula II may be formulated for systemic or topical or oral administration. The pharmaceutical composition may be also formulated for oral administration, oral solution, injection, subdermal admi istration, or transdermal administration. The pharmaceutical composition may further comprise at least one of a pharmaceutically acceptable stabilizer, diluent, surfactant, filler, binder, and lubricant.
[0041] In many embodiments, the pharmaceutical compositions described herein will incorporate the disclosed compounds and compositions (Formula I and Formula Π) to be delivered in an amount sufficient to deliver to a patien a therapeutically effective amount of a compound of formula Ϊ and formula Π or composition as part of a prophylactic or therapeutic treatment. The desired concentration of formula 1 and formula. H or its pharmaceutical acceptable salts will depend on absorption, inactivation, and excretion rates of the drag as well as the delivery rate of the salts and compositions from the subject compositions, it is to be noted thai dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
|0042J Additionally, the optimal concentration and/or quantities or amounts of any particular compound of formula I and formula II may be adjusted to accommodate variations in the treatment parameters. Such treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition.
|0043j The concentration and/or amount of any compound of formula I and formula II may be readily identified by routine screening in animals, e.g., rats, b screening a range of concentration and/or amounts of the material in question using appropriate assays. Known methods are also available to assay local tissue concentrations, diffusion rates of the salts or compositions, and local blood H w before and after administration of therapeutic formulations disclosed herein. One such method is niterodialysis, as reviewed by T. E, Robinson et al.s 19 1 , microdiaiysis in the neurosciences, Techniques, volume 7, Chapter 1. The methods reviewed by Robinson may be applied, in brief as follows, A microdiaiysis loop is placed in situ in a test animal. Dialysis fluid is pumped through the loop. When compounds with formula I and formula II such as those disclosed herein are injected adjacent to the loop, released drugs are collected in the dia!ysate in proportion to their local tissue concentrations. The progress of diffusion of the salts or compositions may be determined thereby with suitable calibration procedures using known concentrations of salts or compositions.
10044) in certain embodiments, the dosage of the subject compounds of formula ! and formula II provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials. For example, the maximum plasma concentration (Cm ax) and the area under the plasma concentration- time curve from time 0 to infinity may be used.
|0045| Generally, i carrying out the methods detailed in this application, an effective dosage for the compounds of Formulas 1 is in the range of about 0.0! mg kg day to about iOO mg/kg/day in single or divided doses, for instance 0.01 mg kg day to about 50 mg/kg/day in single or divided doses. The compounds of Formulas 1 may be administered at a dose of, for example, less than 0.2 mg/kg/day, 0.5 mg/kg/day, 1.0 mg kg day, 5 mg kg/day, 10 mg/kg day, 20 mg/kg/day, 30 mg kg/day, or 40 mg kg day. Compounds of Formula I and formula E may also be administered to a human patient at a. dose of, for example, between 0.1 nig and 1000 mg, between 5 mg and 80 mg, or less than 1.0, 9.0, 12.0, 20.0, 50.0, 75.0, 100, 300, 400, 500, 800, 1000, 2000, 5000 mg per day. In certain embodiments, the compositions herein are administered at an amount that is less than 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 1.0% of the compound of formula 1 and formula II required for the same therapeutic benefit,
1004 1 An effective amount of the compounds of formula ί and formula II described herein refers to the amount of one of said salts or compositions which is capable of inhibiting or preventing a disease.
[00471 An effective amount may be sufficient to prohibit, treat, alleviate., ameliorate, halt, restrain, slow or reverse the progression, or reduce the severity of a complication resulting from nerve damage or demyelizalion and/or elevated reactive oxidative^ iiiirosative species and/or abnormalities in neurotransmitter homeostasis' , in patients who are at risk for such complications. As such, these methods include both medical therapeutic (acute) and/or prophylactic (prevention) administration as appropriate. The amount and timing of compositions administered will, of course, be dependent on the subject being treated, on the severity of the affliction, on the manner of administration and on the judgment of the prescribing physician. Thus, because of patient-to-patient vaiiability, the dosages given above are a guideline and the physician may titrate doses of the drug to achieve the treatment that the physician considers appropriate for the patient. In considering the degree of treatment desired, the physician must balance a variety of factors such as age of the patient, presence of preexisting disease, as well as presence of other diseases.
|0048] The compositions provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parentera!ly, e.g., intravenously, subcutaneously or intramedullary.
Further, the compositions may be administered intranasally, as a rectal suppository, or using a "flash" formulation, i.e., allowing the medication, to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled release dosage forms, site specific drug delivery, transdermal drug delivery, patch (active/passi e) mediated drug delivery, by stereotactic injection, or in nanoparticies.
10049] The compositions .may be administered alone or in combination with pharmaceutically acceptable carriers, vehicles or diluents, in either single or multiple doses. Suitable pharmaceutical carriers, vehicles and diluents include inert solid diluents or fillers, sterile aqueous solutions and various organic solvents. The pharmaceutical compositions formed by combining the compositions and the pharmaceutically acceptable carriers, vehicles or diluents are then readily administered in a variet of dosage forms such as tablets, powders, lozenges, syrups, injectable solutions and the like. These pharmaceutical compositions can, if desired, contain additional ingredients such as flavorings, binders, excipients and the like. Thus, for purposes of oral administration, tablets containing various excipients such as L-arginine, sodium citrate, calcium carbonate and calcium phosphate may be employed along with various disintegrates such as starch, alginic acid and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelati and acacia. Additionally, lubricating agents such as magnesium stearate, sodium iauryl sulfate and talc are often useful for tabletting purposes. Solid com position of a similar type may also be employed as fillers in soft and hard filled gelatin capsules. Appropriate materials for this include lactose or milk sugar and high molecular weight polyethylene glycols. When aqueous suspensions or elixirs are desired for oral administration, the essential active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if desired, emulsifying or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin and combinations thereof. The compounds of formula 1 and formula II may also comprise entericaliy coated comprising of various excipients, as is well, known in the pharmaceutical art.
|0050] For parenteral administration, solutions of the compositions may be prepared in (for example) sesame or peanut oil, aqueous propylene glycol, or in sterile aqueous solutions may be employed. Such aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, the sterile aqueous media, employed are all readily avaiiable by standard techniques known to those skilled in the art. fOOSI j The formulations, for instance tablets, may contain e.g. 10 to 100, 50 to 250, I SO to 500 mg, or 350 to 800 mg e.g. 10, 50, 100, 300, 500, 700, 800 mg of the compounds of formula I and formula 11 disclosed herein, for instance, compounds of formula I and formula II or pharmaceutical acceptable salts of a compounds of Formula L j(M)52| Generally, a composition as described herein may be administered oral ly, or parenteraliy (e.g., intravenous, intramuscular, subcutaneous or intramedullary)- Topical administrati n may also be indicated, for example, where the patient is suffering from gastrointestinal disorder that prevent oral administration, or whenever the medication is best applied to the surface of a tissue or organ as determined by the attending physician. Localized administration may also be indicated, for example, when a high dose is desired at the target tissue or organ. For buccal administration the active composition may take the form of tablets or lozenges formulated in a conventional manner.
|0053] The dosage administered will be dependent upon the identity of the neurological disease; the type of host involved, including its age, health and weight, the kind of concurrent treatment, if any; the frequency of treatment and therapeutic ratio,
|0054| Illustratively, dosage levels of the administered active ingredients are; intravenous, 0.1 to about 200 mg/kg; intramuscular, 1 to about 500 mg kg; orally, 5 to about 1000 mg/kg; intranasal instillation, 5 to about 1000 mg kg; and aerosol, 5 to about 1000 mg/kg of host body weight.
|0055| Expressed in terms of concentration, an active ingredient can be present in the compositions of the present invention for localized use about the cutis, intranasal ly, pharyngolaryngea!ly, bronchi ally, hitravaghrally, rectally, or ocularly in a concentratio of from about 0.01 to about 50% w/w of the composition; preferably about 1 to about 20% w/w of the composition; and for parenteral use in a concentration of from about 0.05 to about 50% w/v of the composition and preferably from about 5 to about 20% w/v.
{0056} The compositions of the present invention are preferably presented for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, supposi ories, sterile parenteral solutions or suspensions, sterile non-parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient. For oral administration either solid or fluid unit dosage forms ca be prepared.
{0057} As discussed above, the tablet core contains one or more hydropMlic polymers. Suitable hydrophiHc polymers include, but are not limited to, water swellable cellulose derivatives, polyalkylene glycols, thermoplastic polyalkylene oxides, acrylic polymers, hydrocolloids, clays, gelling starches, swelling cross-linked polymers, and mixtures thereof. Examples of suitable water swellable cellulose derivatives include, but are not limited to, sodium carboxymethylcellulose, cross-linked bydroxypropylcellulose, hydroxypropyi cellulose (HPC), hydroxypropylmethylcellulose (HPMC), hydroxyisopropylcellulose, hydfoxyfautyiceiiulose, hydroxyphenylcellulose, hydroxyethylcellulose (HEC), hydroxy pentylcelhilose, hydroxypropylethylcellulose, hydroxypropylbutylcellulose, and hydroxypropylethylcellulose, and mixtures thereof. Examples of suitable poiyalkylene glycols include, but are not limited to, polyethylene glycol. Examples of suitable thermoplastic poiyalkylene oxides include, but are not limited to, poly(ethylene oxide). Examples of suitable acrylic polymers include, but are not limited to, potassium methacrylatedivinylbenzene copolymer, polymethylmethacrylate, high-molecular weight crosslinked acrylic acid homopolymers and copolymers such as those commercially available from Noveoo Chemicals under the tradename CARBOPOL!M. Examples of suitable bydrocolloids include, but are not limited to, alginates, agar, guar gum. locust bean gum, kapp cairageenan, iota carrageenan, tara, gum arable, tragacanth, pectin, xanthan gum, gellan gum, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, gum arabic, inulin, pectin, gelatin, whelan, rhamsan, zooglan, methyl an, chitin, cycl ©dextrin, chitosan, and mixtures thereof. Examples of suitable clays include, but are not limited to, smectites such as bentomte, kaolin, and laponite; magnesium tri silicate; magnesium aluminum silicate; and mixtures thereof. Examples of suitable gelling starches include, but are not limited to, acid hydrolyzed starches, swelling starches such as sodium starch glycolate and derivatives thereof, and mixtures thereof. Examples of suitabie swelling cross-linked polymers include, but are not limited to, cross-linked polyvinyl pyrrolidone, cross-linked agar, and cross-linked carboxymethylcellulose sodium, and mixtures thereof. j SSj The carrier may contain one or more suitable excipients for the formulation of tablets. Examples of suitable excipients include, but are not limited to, fillers, adsorbents, binders, disintegrants, lubricants, glidants, release-modifying excipients, superdisintegrants, antioxidants, and mixtures thereof. |005 ] Suitable binders include, but are not limited to, dry binders such as polyvinyl pyrrolidone and hydroxypropylmethylcellu!ose; wet binders such as water-soluble polymers, including hydroeolloids such as acacia, alginates, agar, guar gum, locust bean, carrageenan, car oxymethy!cellulose, tara, gum arabic, tragacanth, pectin, xanthan, gellan, gelatin, maltodextrin, galactomannan, pusstulan, laminarm, selerogluean, inu'lin, whelan, rhamsan, zooglan, niethylan, ch in, cyclodextrin, chitosan, polyvinyl pyrrolidone, celSulosics, sucrose, and starches; and mixtures thereof. Suitable ciisiiitegrants include, but are not limited to, sodium starch glycol ate, cross-linked, polyvinylpyrrolidone, cross-linked carboxymethyJcellulose, starches, microcrystailine cellulose, and mixtures thereof.
(0060) Suitable lubricants include, but are not limited to, long chain fatty acids and their salts, such as magnesium stearate and stearic acid, talc, giycerides waxes, and mixtures thereof. Suitable glidants include, but are not limited to, colloidal silicon dioxide. Suitable release-modifying excipients include, but are not liniited to, insoluble edible materials, pH-dependent polymers, and mixtures thereof.
[0061] Suitable insoluble edible materials for use as release-modifying excipients include, but are not liniited to, water-insoluble polymers and low-melting hydrophobic materials, copolymers thereof, and mixtures thereof. Examples of suitable water- insoluble polymers include, but are not limited to, ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, aerylates, methacryiates, acrylic acid copolymers, copolymers thereof, and mixtures thereof. Suitable low-melting hydrophobic materials include, but are not limited to, fats, fatty acid esters, phospholipids, waxes, and mixtures thereof. Examples of suitable fats include, but are not limited to, hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil, tree fatty acids and their salts, and mixtures thereof. Examples of suitable fatty acid esters include, but are not limited to, sucrose fatty acid esters, mono-, dk and triglycerides, glyceryl behenate, glyceryl palraitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl triiaurylate, glyceryl myristate, GlycoWax- 932, lauroyl macrogol-32 glycerides, stearoyl macrogol-32 glycerides, and mixtures thereof. Examples of suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositoi, phosphotidic acid, and mixtures thereof. Examples of suitable waxes include, but are not limited to, camauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microerystaiiine wax, and paraffin wax; fat-containing mixtures such as chocolate, and mixtures thereof. Examples of super disintegrants include, but are not limited to, croscarmellose sodium, sodium starch glycol ate and cross- linked povidone (crospovidone). In one embodiment the tablet, core contains up to about 5 percent by weight of such super disintegrant. 0062] Examples of antioxidants include, but are not limited to, tocopherols, ascorbic acid, sodium pyrosu!fite, butylhydrox oluene, butylated hydroxyani ole, edetic acid, and edetate salts, and mixtures thereof. Examples of preservatives include, but are not limited to, citric acid, tartaric acid, lactic acid, malic acid, acetic acid, benzoic acid, and sorbic acid, and mixtures thereof.
[0063] in one embodiment, the immediate release coating has an average thickness of at least 50 microns, such as from about 50 microns to about 2500 microns; e.g., from about 250 microns to about 1000 microns. In embodiment, the immediate release coating is typically compressed at a density of more than about 0.9 g/c-c, as measured by the weight and volume of that specific layer. j0ti6 | I one embodiment, the immediate release coating contains a first portion and a second portion, wherein at least one of the portions contains the second pharmaceutically active agent. In one embodiment, the portions contact each other at a center axis of the tablet. In one embodiment, the first portion includes the first pharmaceutically active agent and the second portion includes the second pharmaceutically active agent. |O065] In one embodiment, the first portion contains the first pharmaceutically active agent and the second portion contains the second pharmaceutically active agent. In one embodiment, one of the portions contains a third pharmaceutically active agent. In one embodiment one of the portions contains a second immediate release portion of the same pharmaceutically active agent as that contained in the tablet core.
|0066] In one embodiment, the outer coating portion is prepared as a dry blend of materials prior to addition to the coated tablet core. In another embodiment the outer coating portion is included of a dried granulation including the pharmaceutically active agent.
|0067] Formulations with different drug release mechanisms described above could be combined in a final dosage form containing single or multiple units. Examples of multiple units include multilayer tablets, capsules containing tablets, beads, or granules in a solid or liquid form. Typical, immediate release formulations include compressed tablets, gels, films, coatings, liquids and particles that can be encapsulated, for example, in a gelatin capsule. Many methods for preparing coati gs, covering or incorporating drugs, are known in the art
|0068] The immediate release dosage, unit, of the dosage form, i.e., a tablet, a plurality of drug-containing beads, granules or particles, or an outer layer of a coated core dosage form, contains a therapeutically effective quantity of the active agent with conventional pharmaceutical excipients. The immediate release dosage unit may or may not be coated, and may or may not be admixed with the delayed release dosage unit or units (as in an encapsulated mixture of immediate release drug-co.ntaj.ning granules, particles or beads and delayed release drug-containing granules or beads), 0069] Extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in "Remington— The Science and Practice of Pharmacy", 20th. Ed., Lippmcott Williams & Wilkins, Baltimore, Md., 2000). A diffusion sy stem typically consists of one of two types of devices, reservoir and matrix, which are well known and described in die art. The matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form, 0070] An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core; using coating or compression processes or in a multiple unit, system such as a capsule containing extended and immediate release beads.
[007.1.) Delayed release dosage formulations are created by coating a solid dosage form with a film of a. polymer which is insoluble in the acid environment of the stomach, but soluble in the neutral environment of small intestines. The delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material. The drug-containing composition may be a tablet for incorporation into a capsule, a tablet for use as an inner core in a "coated core" dosage form, or a plurality of drug-containing beads, particles or granules, for in corporation into either a tablet or capsule.
(0072) A pulsed release dosage form is one that mimics a multiple dosing profile without repeated dosing and typically allows at least a twofold reduction in dosing frequency as compared to the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form). A pulsed release profile is characterized by a time period of no release flag time) or reduced release followed by rapid dmg release.
(0073) Each dosage form contains a therapeutically effective amount of active agent. In one embodiment of dosage forms that mimic a twice daily dosing profile, approximately 30 wt. % to 70 wt. %, preferably 40 wt. % to 60 wt. %, of the total amount of active agent in the dosage form is released in the initial pulse, and, correspondingly approximately 70 wt. % to 3.0 wt. %, preferably 60 wt. % to 40 wt. %, of the total amount of active agent in the dosage form is released in the second pulse. For dosage forms mimicking the twice daily dosing profile, the second pulse is preferably released approximately 3 hours to less than 14 hours, and more preferably approximately 5 hours to Ϊ2 hours, following administration.
J0074| Another dosage form contains a compressed tablet or a capsule having a drug- containing immediate release dosage unit, a delayed release dosage unit and an optional second delayed release dosage unit. In this dosage form, th immediate release dosage unit contains a plurality of beads, granules particles that release drug substantially immediately following oral administration to provide an initial dose. The delayed release dosage unit contains a plurality of coated beads or granules, which release drug approximately 3 hours to 14 hours following oral administration to provide a second dose.
|0075J For purposes of transdermal (e.g., topical) admini tration, dilute sterile, aqueous or partially aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, may be prepared.
[0076] Methods of preparing various pharmaceutical compositions with a certain amount of one or more compounds of formula I and formula Π or other acti e agents are known, or will be apparent in light of this disclosure, to those skilled in this art. For examples of methods of preparing pharmaceutical compositions, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 1.9th Edition (1 95).
[0077] In addition, in certain embodiments, subject compositions of the present application maybe lyophilized or subjected to another appropriate drying technique such as spray drying. The subject compositions may be administered once, or may be divided into a number of smaller doses to be administered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage. [0078] Formulations useful in the meifiods provided herein include those sutiable for oral, nasal, topical (including buccal and sublingual ), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of a subject composition which may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated, and the particular mode of administration. j'0079| Methods of preparing these formulations or compositions include the step of bringing into association subject compositions with the carrier and, optionally, one or more accessory ingredients. In general, the formulatio s are prepared by uniformly and intimately bringing into association a subject composition, with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
[0080 J The compounds of formula I and formula Π described herein may be administered in inhalant or aerosol formulations. The inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy. The final, aerosol formulation may for example contain 0.005-90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01 -1.0% w/w, of medicament relative to the total weight of the formul ati on.
|0081] In solid dosage forms for oral administration (capsules, tablets, pills., dragees, powders, granules and the like), the subject composition is mixed with one or more pharmaceiiiicaiiy acceptable carriers and/or any of the following; (I) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxy methyl cellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, suc as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds, (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buttering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
}0082J Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the subject compositions, the liquid dosage fonns may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and ernu fters, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-buiylene glycol, oils (in particular, cottonseed, com, peanut, sunflower, soybean, olive, castor, and sesame oils), glycerol, tet.rahydrofu.ryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
|0083] Suspensions, in addition to the subject compositions, may contain suspending agents such as, or example, ethoxylaied isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalHne cellulose, aluminum metahydroxide, bentonite, agar- agar and tragacanth, and mixtures thereof. 0O&4) Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated eompound(s) and composition(s). Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate,
|0085| Dosage forms for transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants. A subject composition may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propel lams that may be required. For transdermal administration, the complexes may include lipophilic and hydrophilic groups to achieve the desired water solubility and transport properties.
10086} The ointments, pastes, creams and gels ma contain, in addition to subject compositions, other carriers, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacarith, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays may contain, in addition to a subject composition, excipie ts such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and poly amide powder, or mixtures of such substances. Sprays may additionally contain customary prope!lants, such as cb 1 orofi uorohy drocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
{0087} Methods of deli vering a composition or compositions via a transdermal patch are known in the art. Exemplary patches and methods of patch delivery are described in US Patent Nos. 6,974,588, 6,564,093, 6 12,716, 6,440,454, 6,267,983, 6,239, 180, and 6,103,275.
[0088} in another embodiment, a transdermal patch may comprise: substrate sheet comprising a composite film formed of a resin composition comprising 100 parts by weight of a polyvinyl ehloride-polyurethane composite and 2-10 parts by weight of a styrene-ethylene^mtylene-styrene copolymer, a first adhesive layer on the one side of the composite film, and a polyalkylene terephthalate film adhered to the one side of the composite film by means of the first adhesive layer, a primer layer which comprises a saturated polyester res n and is formed on the surface of the polyalkylene terephthalate film, and a second adhesive layer comprising a styrene-diene-styrene block copolymer containing a pharmaceutical agent layered on the primer layer. A method for the manufacture of the above-mentioned substrate sheet comprises preparing the above resin composition molding the resin composition into a composite film by a calendar process, and then adhering a polyalkylene terephthalate film on one side of the composite film by means of an adhesive layer thereby forming the substrate sheet, and forming a primer layer comprising a. saturated polyester resin on the outer surface of the polyalkylene terephthalate film
10089] Anothe type of patch comprises incorporating the drug directly in a pharmaceutically acceptable adhesive and laminating the drag-containing adhesive onto a suitable backing member, e.g. a polyester backing membrane. The drug should be present at a concentration which will not affect the adhesive properties, and at the same time deliver the required clinical dose.
100901 Transdermal patches may be passive or active. Passive transdermal drug delivery systems currently available, such as the nicotine, estrogen and nitroglycerine patches, deliver small -moiecuie drugs. Many of the newly developed proteins and peptide drugs are too large to be delivered through passive transdermal patches and may be delivered using technology such as electrical assist (iontophoresis) for large-molecule drugs.
|009l] Iontophoresis is a technique employed for enhancing the flux of ionized substances through membranes by application of electric current. One example of an iontophoretic membrane is given in U.S. Pat. No. 5,080.646 to Theeuwes. The principal mechanisms by which iontoph resis enhances molecular transport across the skin are (a) repelling a charged ion from an electrode of the same charge, (b) electroosmosis, the coiivective movement of solvent that occurs through a charged pore in response the preferential passage of counter-ions when an electric field is applied or (c) increase skin permeability due to application of electrical current.
10092} In some cases, it may be desirable to administer in the form of a kit, it may comprise a container for containing the separate compositions such as a divided bottle or a divided foil packet. Typical ly the kit comprises directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
[0093] An example of such a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a plastic materi al that may be transparent.
{0094} Methods and compositions for the treatment of epilepsy. Among other things, herein is provided a method of treating epilepsy, comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula Ϊ: 
Figure imgf000036_0001

Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000039_0001
a is independently 2,3 or 7;
each b is independently 3, 5 or 6;
e i s independently 1 , 2 or 6;
c and d are each independently H, D, -OH, -QD, C Cff-a1kyl -NH2 or -COC¾; 0095J Accordingly, Methods and compositions for the treatment of epilepsy Among other things, herein is provided a method of treating epilepsy, comprising administering to a patient in need thereof a therapeutically effective amount of compound of Foraiula 0:
Figure imgf000039_0002
Formula.11
Wherein,
R! iridependently represents, Hydrogen, D.
Figure imgf000040_0001
40
Figure imgf000041_0001
41
Figure imgf000042_0001
Figure imgf000043_0001
a is independently 2,3 or 7;
each b is independently 3, 5 or 6;
e is independently L 2 or 6;
c and d are each independently H, D, -OB, -OD, Ct-Q-alkyl, -Ni¾ or -COC¾.
Methods for using compounds of formula l nd formula II:
{0096 J The invention also includes methods for treating epilepsy and neurological disorders such as convulsions, partial seizures, or as art adjunctive therapy for partial, myoclonic, tonic-clonic seizures, mood-stabilizing agent, bipolar disorder, Tourette syndrome, Alzheimer's disease, autism, bipolar disorder and anxiety disorder, trigeminal neuralgia. It is also used for a variety of indications, including attention-deficit, hyperactivity disorder, schizophrenia, neuropathic pain, seizures, bipolar disorder, mania, phantom limb syndrome, comple regional pain syndrome, paroxysmal extreme pain disorder, neuromyotonia, intermittent explosive disorder, borderline personality disorder. Myotonia congenita and post-traumatic stress disorder. METHODS OF MAKING
|0O97] Examples of synthetic pathways use&i for making compounds of formula Ϊ and formula II are set forth in example below and generalized in scheme 1 through scheme 2:
Scheme-! :
Figure imgf000044_0001
Figure imgf000044_0002
Figure imgf000044_0003
Figure imgf000044_0004
|0098) Step-1 : Synthesis of compound 2;
Figure imgf000045_0001
0099] A mixture of n-buryllithium (44 mL, Q. H mol 2,5 M) and anhydrous Et20 (60 mL) was placed on an ice bath. A solution of 2~bromo~3~met.hylthiophene (17.7g, 0.10 mol) in anhydrous Et20 (25 mL) was added within 30 mm while the temperature was kept at 5-10 °C. Stirring was continued at 10 °C for another 15 min before the mixture was cooled to -70 °C. A solution of ethyl 4-bromobutyrate (7.8 g, 0.040 mol) in anhydrous Et-Q (25 mL) was added at such a rate io the 2~Uthio~3-methyUhiophene 2 that the temperature was kept below -65 °C. When the addition was complete the mixture was stirred at -70 °C for 2.5 h. Cold water (30 n l.) and cold aqueous 1 HC!(15 mL) were introduced successtveiv while the temperature was kept below 0 "(1 The reacti n mixture was stirred for 15 mm to allow the temperature to rise above 0 "C, and the phases were separated. The aqueous phase was extracted with EfeO (50 mL), and the combined organic phases were washed with cold water (25 mL) and brine (25 mL). After the solution was dried over anhydrous
Figure imgf000045_0002
the solvent was evaporated in vacuo to an oil which was dissolved in 2-propano! (100 mL). A 20% aqueous H2SO4 solution (10 mL) was added, and the mixture was stirred at room temperature for 3 h. The solvents were evaporated in vacuo to give a residue which was partitioned between CH2C12 (200 mL) and a saturated NaHC03 solution (50 mL). The phases were separated, and the aqueous phase (with pH 8-9) was extracted further with CH2C12 (50 mL), The combined organic phases were washed with water (50 ml), brine (50 mL), and dried ( a2S04). The solvent was evaporated in vacuo to give an oil which was purified on a silica gel column) to provide 3 (77% yield from ethyl 4-broniobuty ate) as an oil.
{'00100} Step-2: Synthesis of compound 5;
Figure imgf000046_0001
[001.01-1 Compound 3 (0.02 mo!) was dissolved in acetone (50 ml..), and ethyl 3- piperidine carhoxylate 4 (0.02 mol), Kl (0.002 mot), and K2CO3 (0.02 mol) were added to give a slurry which was stirred at ambient temperature for 44 . The reaction mixture was filtered, and the filtrate was washed with acetone, the combined filtrate was concentrated in vacuo to afford the desired ester 5 as gum. 00 -3 : Synthesis of compound 6:
Figure imgf000046_0002
[001 3} Compound 6(immol) was taken in RB and added THF, water (1 : 1 , 4+4 ml) and Lithium hydroxide monohydrate 2 mmoi at room, temperature and stirred the reaction mixture at rt for 4h. After completion of the reaction as indicated by TLC the mixture was acidified with 10% aqueous citric acid and added ethyl acetate. The layers wer separated and the organic layer was dried over ajSO.* and removed the solvent to get the product 6. 001041 Step-4: Synthesis of compound 8;
Figure imgf000046_0003
0 °C, h « { 1 5| Acid 7 ( 10 mmol) was taken in a RB added benzene and cooled to 0 "C and added thionyl chloride (13 mmol) dropw e and stirred the reaction mixture at same temperature for 4 h After completion of the reaction as indicated by TLC, benzene was distilled and the crude acid chloride 8 was used for the next step. 00106| Step-5 : Synthesis of compound 9:
Figure imgf000047_0001
[001071 In a RB acid 6 { 1 .0 mmol ) & anhydrous K2C03 (3.0 mmol) were suspended in dry DsvlF ( 1 0 vol) stir at room temperature for 30 min and then cooled to - 10 °C, acid chloride 8 ( .1.0 mmol) was added slowly drop wise over then was aliowed to stir al room temperature for 1 2 h. Reaction was monitored by TLC. On completion of the reaction, the reaction mixture was poured into water ( 10 mL) and extracted with diethyl ether (2 x 5 ml). The combined organic layers were washed with water (2 x 5 mL) followed by brine solution ( 10 mL), dried over anhydrous Na?SO,} and evaporated under reduced pressure. The crude was purified by column chromatography over 100-200 mesh silica gel to get the compound 9. Scheme-2:
Figure imgf000048_0001
65% overnight
Figure imgf000048_0002
[001.0S1 Step- 1 : Synthesis of compound 3
Figure imgf000048_0003
001091 ΊΌ a cold 0''C soiution of compound 1 (0.122 mol) in toluene (80 ml) was added anhydrous sodium sulphate (0.129 mol), and the mixture stirred at this temperature for lb. Powdered potassium hydroxide (0.335 mot) was gradually added followed by dropwise addition of 4-chlorobutyryt chloride 2 (0.122 mol) with vigorous stirring After completion of the reaction, the reaction mixture is filtered through ceiite. Organic extracts were dried over NajSCXt and concentrated in vacuo to give compound 3,
[001.10| Step-2: Synthesis of compound 4:
Figure imgf000049_0001
12 h, 76%
[0011.1 j Aqueous potassium hydroxide (0.017 mol in 10 ml water), tetra-n-buiyl ammonium bromide (0.0062 mol ) and compound 3 (0.0063 mol) in DCM (10 ml) was stirred for 30 min at room temperature and then added potassium permanganate (0.094 mol)and continued the stirring. After completion of reacti n filtered through ceiite bed and washed with water (10 ml). The aqueous later PH was adjusted to 3 using HCI (2 ml), added sodium phosphate(0.0152 mol) and toluene (25 mi ). The reaction mixture was extracted with DCM (2X25 mi). The organic layer was dried with Na?S04 and distilled under reduced pressure to compound 4 as oil. To this toluene (10 mi) was added and stirred at 0 °C for about 30 min. The solid was filtered and washed with toluene (5 ml) to afford the pure compound 4.
[00 12 j Step-3 : Synthesis of compound 5:
Figure imgf000049_0002
65% S
[00113j To a cold 0 "C solution of acid 4 (0.292 mol) and Et3N (0.307 mol) in anhydrous THF (20 mi) was added ethyl chloroform ate ( 0.304 mol) and the mixture stirred at 0 for 30 min. Ammonium hydroxide (25% w/v aqueous solution, 19 ml.136.0 moi) was added and the reaction mixture was stirred at room leiiiperature for l:2h. After the addition of ?CO;¾ (30,0 moi), the mixture was filtered and the volatile material ( solvent and Et¾N) distilled off in vacuo. The solid residue was extracted with DCM (3x50 ml) and combined extracts were dried over a2SC> and concentrated in vacuo, recrystallization from acetone gave compound 5 as white solid. 0011 1 Step-4: Synthesis of compound 7:
Figure imgf000050_0001
5 6 overnight 7
JOOl ISj Compound 5 {1 mmo!) in 2.5 ml of DC and 2.5 ml of C¾C is cooled to 0 °C . Lithium t-butoxide (LOM in hexanes, L I ramol) was added and the mixture was stirred at 0 °C for 15 min and then at room temperature for 10 min. The reaction mixture is re cooled to 0 °C and added 1 -chloroethyl chloro formate 6 (1 ,2 mmol) dropwise. The reaction mixture is stirred at 0 <JC for 15 min and then allowed to stir at room temperature overnight. After completion of reaction, the mixture is diluted with DCM and added water and the layers were separated. The organic layer is washed with water and brine, dried over N ^SO.* and concentrated in vacuo. Purification by silica gel chromatography afforded the compound 7.
|003 16J Step-5 : Synthesis of compound 9;
Figure imgf000050_0002
-1 0 °C
7 S
Figure imgf000050_0003
[00117 In a RB flask {lie acid 8 (1.2 mmol) & anhydrous K2CO3 (3.0 mniol) was taken in dry DMF (10 vol) stir at room temperature for 30 min and then cooled to -10 tJC, compound 7 (in DMF) was added slowly drop wise over 10 min. & then was allowed to stir at room temperature for 12 h. Reaction was monitored by TLC. On completion of the reaction, the reaction mixture was poured into water 00 raL) and extracted with diethyl ether (10 ml). The combined organic layers were washed with water (2 x 5mL) followed by brine solution ( 10 raL), dried over anhydrous
Figure imgf000051_0001
and evaporated under reduced pressure. The crude was purified by column chromatography over 1.00-200 mesh silica ge! to yield the product 9
EXAMPLES
}001 18) Blood and cerebrospinal fluid pharmacokinetics irt comparison of the levetiracetam and Formula II (2-1) in rats
The temporal pharmacokinetic interrelationship of levetiracetam and Formula II (2-1) in blood and cerebrospinal fluid (CSF) was studied after acute intraperitoneal administratio of levetiracetam and Formula II (2-1 ), (20, 40 and 80 mg kg), using an animal model that permits concurrent b!ood and CSF sampling in freely moving rats. After administration, levetiracetam and Formula II rapidly appeared in both serum (time to maximum concentration (Tmax) mean range 0.25-0.50 h and 0.47-0.89 respectively) and CSF (Tmax mean range 1.33-1 .92 h and 2, 14-2.83h respectively), suggesting ready penetration of the blood brain barrier. Both seatm and CSF levetiracetam and Formula II (2-1) concentrations rose essentially linearly and dose-dependently, suggesting that transport across the blood-brain barrier is not rate limiting.
Test Compounds Elimination half-life (tl/2) Elimination half-life (tl /2)
1 - Serum (Mean) Hours - CSF (Mean) Hours levetiracetam 1.8 - 2.8 4.4 - 4.9
Formula (2-1 ) j 2.3 - 3.4 4.8 - 5.6 [001.19} The term "sample" refers to a sample of a body fluid, to a sample of separated cells or to a sample from a tissue or an orgao. Samples of body fluids can be obtained by well known techniques and include, preferably, samples of blood, plasma, serum, or urine, more preferably, samples of blood, plasma or serum. Tissue or organ samples may be obtained from any tissue or organ by, e.g., biopsy. Separated cells may he obtained from the body fluids or the tissues or organs by separating techniques such as centrifugation or cell sorting. Preferably, cell-, tissue- or organ samples are obtained from those cells, tissues or organs which express or produce the peptides referred to herein.
Figure imgf000052_0001
[00120} The present disclosure provides among other things compositions and methods for treating epilepsy and their complications. While specific embodiments of the subject disclosure have been discussed, the above specification is illustrative and not restrictive. Many variations of the systems and methods herein will become apparent to those skilled in the art upon review of this specification. The full scope of the claimed systems and methods should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.
I CORPORATION BY REFERENCE
[00123 } All publications and patents mentioned herein, including those items listed above, are hereby incorporated by reference in their entirety as if each individual publication or patent was specificall and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.

Claims

CXAIMS
1. A compound of Formula I:
Figure imgf000053_0001
Formula ί
or a pharmaceutically acceptable salt, hydrate, polymorph, solvate, prodrug, enantiomer, or stereoisomer thereof;
Wherein, 1 independently represents H, D,
Figure imgf000053_0002
53
Figure imgf000054_0001
Figure imgf000054_0002
Figure imgf000055_0001
4 7 iO B J 9 55
Figure imgf000056_0001
Figure imgf000057_0001
a is independently 2,3 or 7;
each b i s i ndependentl 3, 5 or 6,
e i s independently 1, 2 or 6;
c and d are each independently H, D, -OH, ~GD, Ct-Ce-aJkyl, ~N¾ or -COCH3.
Figure imgf000057_0002
Formula. Π
or a pharmaceutically acceptable salt, hydrate, polymorph, solvate, prodrug, enantiomer, or stereoisomer thereof;
Wherein,
Rf each independently represents. Hydrogen, D,
Figure imgf000057_0003
57
Figure imgf000058_0001
independently represenis Acetyl (CH3CO-),
Figure imgf000059_0001
59
Figure imgf000060_0001
Figure imgf000060_0002
Figure imgf000061_0001
a is independently 2,3 or 7;
each b is independently 3, 5 or 6;
e is independently 1 , 2 or 6;
e and d are each independently H, D, -OR -OD, CrG>-alkyl, - H2 or -COC¾.
A Pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier
A Pharmaceutical composition comprising a compound of claim 2 and a pharmaceutically acceptable carrier.
The pharmaceutical composition of claim 3, which is formulated to treat the underlying etiology with an effective amount administering the patient in need by oral administration, delayed release or sustained release, iransmucosai, syrup, topical, parenteral administration, injection, subdermai, oral solution, rectal administration, buccal administration or transdermal administration.
The pharmaceutical composition of claim 4, which is formulated to treat the underlying etiology with an effective amount administering the patient in need by oral administration, delayed release or sustained release, transmucosal, syrup, topical, parenteral administration, injection, subdermai, oral solution, rectal administration, buccal administration or transdermal administration.
Compounds and compositions of claim 5 are formulated for the treatment of epilepsy, bipolar disorder, trigeminal neuralgia, attention-deficit hyperactivity disorder, partial seizures, adjunctive therap for partial, myoclonic, tonic-clonic seizures and schizophrenia, neuropathic pain, seizures, Tourette syndrome, Alzheimer's disease, autism, bipolar disorder and anxiety disorder, bipolar disorder, mania, phantom limb syndrome, complex regional pain syndrome, paroxysmal extreme pain disorder, neuromyoionia. intermittent explosive disorder, borderline personality disorder, myotonia congenita and post-traumatic stress disorder.
Compounds and compositions of claim 6 are formulated for the treatment of epilepsy, bipolar disorder, trigeminal neuralgia, attention-deficit hyperactivity disorder, partial seizures, adjunctive therapy for partial, myoclonic, tonic-clonic seizures and schizophrenia, neuropathic pain, seizures, Tourette syndrome, Alzheimer's disease, autism, bipolar disorder and anxiety disorder, bipolar disorder, mania, phantom limb syndrome, complex regional pain syndrome, paroxysmal extreme pain disorder, neuromyotonia, intermittent explosive disorder, borderline personality disorder, myotonia congenita and post-traumatic stress disorder,
A molecular conjugate of (R)« 1 -[4,4-ht s(3-meihy lthiophen-2-yi )but-3 -enyl] piperidine~3~carboxylic acid and R-Lipoic acid.
A molecular conjugate of (R)- 1 -[4,4-bi s(3-methyIthiophen-2-yl )but-3 -enyl] piperidine-3-carboxylic acid and eicosapentaenoic acid.
11. A molecular conjugate of (R)-i-[4,4-bis(3~memyh iophen-2-yl)but~3-enyI] piperidine-3-carboxylk acid and docosahexaenoic acid.
12. A molecular conjugate of (S.)-2-(2-oxopyrroIidin~ 1 -yl)butanamide and R-Lipoi c acsd.
13. A molecular conjugate of (S)-2-(2-oxopyrrolidin-l-yl)buianamide and eicosapentaenoic acid.
14 A molecular conjugate of (S)-2-(2-oxopyrrolidin~l-yl)buian amide and docosahexaenoic aci d.
PCT/IB2013/050740 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy WO2013167986A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13787779.1A EP2846795A2 (en) 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy
JP2015510893A JP2015526385A (en) 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy
AU2013257707A AU2013257707A1 (en) 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy
SG11201407309XA SG11201407309XA (en) 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy
CA2873016A CA2873016A1 (en) 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy
PCT/IB2013/060667 WO2014087367A2 (en) 2012-12-09 2013-12-05 Compositions and methods for the treatment of neurological diseases and its associated complications
ZA2014/08058A ZA201408058B (en) 2012-05-08 2014-11-04 Compositions and methods for the treatment of epilepsy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN1791/CHE/2012 2012-05-08
IN1791CH2012 2012-05-08

Publications (2)

Publication Number Publication Date
WO2013167986A2 true WO2013167986A2 (en) 2013-11-14
WO2013167986A3 WO2013167986A3 (en) 2015-06-18

Family

ID=54187089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/050740 WO2013167986A2 (en) 2012-05-08 2013-01-29 Compositions and methods for the treatment of epilepsy

Country Status (7)

Country Link
EP (1) EP2846795A2 (en)
JP (1) JP2015526385A (en)
AU (1) AU2013257707A1 (en)
CA (1) CA2873016A1 (en)
SG (1) SG11201407309XA (en)
WO (1) WO2013167986A2 (en)
ZA (1) ZA201408058B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522367A (en) * 2014-06-02 2017-08-10 ケトゲン インコーポレイテッド Compounds for the treatment of seizures and other central nervous system disorders and conditions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519334A (en) * 2012-05-07 2015-07-09 セリックスビオ プライヴェート リミテッド Prodrugs of antiplatelet drugs
SG11201407328TA (en) * 2012-07-03 2014-12-30 Cellix Bio Private Ltd Compositions and methods for the treatment of moderate to severe pain

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2171669T3 (en) * 1995-05-05 2002-09-16 Novo Nordisk As PHARMACEUTICAL COMPOSITION CONTAINING THIAGABINE HYDROCLORIDE AND ITS PREPARATION PROCEDURE.
WO2006062980A2 (en) * 2004-12-07 2006-06-15 Nektar Therapeutics Stable non-crystalline formulation comprising tiagabine
US8338621B2 (en) * 2005-12-21 2012-12-25 Ucb S.A. Process for the preparation of 2-oxo-1-pyrrolidine derivatives
US8785661B2 (en) * 2009-05-13 2014-07-22 Nektar Therapeutics Oligome-containing pyrrolidine compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522367A (en) * 2014-06-02 2017-08-10 ケトゲン インコーポレイテッド Compounds for the treatment of seizures and other central nervous system disorders and conditions
AU2019268209B2 (en) * 2014-06-02 2021-03-11 Ketogen Inc. Compounds for the treatment of seizures and other central nervous system disorders and conditions

Also Published As

Publication number Publication date
SG11201407309XA (en) 2014-12-30
EP2846795A2 (en) 2015-03-18
AU2013257707A1 (en) 2014-11-27
ZA201408058B (en) 2016-03-30
CA2873016A1 (en) 2013-11-14
JP2015526385A (en) 2015-09-10
WO2013167986A3 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2013167993A1 (en) Compositions and methods for the treatment of neurological degenerative disorders
WO2014087367A2 (en) Compositions and methods for the treatment of neurological diseases and its associated complications
WO2014068463A2 (en) Compositions and methods for the treatment of inflammation and metabolic disorders
WO2014087307A2 (en) Compositions and methods for the treatment of metabolic syndrome and diabetes
US9738631B2 (en) Compositions and methods for the treatment of neurological disorders
EP2846795A2 (en) Compositions and methods for the treatment of epilepsy
CA2873018A1 (en) Compositions and methods for the treatment of moderate to severe pain
WO2014195850A2 (en) Compositions and methods for the treatment of neurologic diseases and neurological disorders
WO2013168008A1 (en) Compositions and methods for the treatment of neurological diseases
WO2014068506A2 (en) Compositions and methods for the treatment of autoimmune diseases
US9346742B2 (en) Compositions and methods for the treatment of fibromyalgia pain
WO2014057439A2 (en) Compositions and methods for the treatment of neurological diseases and its associated complications
WO2014068459A2 (en) Compositions and methods for the treatment of pain and neurological diseases
WO2013168024A1 (en) Prodrugs of anti-platelet agents
US9242939B2 (en) Compositions and methods for the treatment of respiratory disorders
US9290486B1 (en) Compositions and methods for the treatment of epilepsy
WO2013167984A2 (en) Compositions and methods for the treatment of muscle pain
WO2014006528A2 (en) Compositions and methods for the treatment of neurological degenerative disorders
US9266823B2 (en) Compositions and methods for the treatment of parkinson&#39;s disease
WO2014118649A2 (en) Compositions and methods for the treatment of cardiovascular diseases
WO2014203198A2 (en) Compositions and methods for the treatment of neurological diseases and renal complications
WO2013167999A2 (en) Compositions and methods for the treatment of neurologic diseases
US9303038B2 (en) Compositions and methods for the treatment of epilepsy and neurological diseases
US9187427B2 (en) N-substituted nicotinamide compounds and compositions for the treatment migraine and neurologic diseases
WO2013168007A1 (en) Compositions and methods for the treatment of cardiovascular and neurological diseases

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref document number: 2873016

Country of ref document: CA

Ref document number: 2015510893

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013787779

Country of ref document: EP

NENP Non-entry into the national phase in:

Ref country code: DE

ENP Entry into the national phase in:

Ref document number: 2013257707

Country of ref document: AU

Date of ref document: 20130129

Kind code of ref document: A