WO2013167782A1 - Amphiphilic copolymers carrying alpha-tocopherol having antitumoural properties - Google Patents

Amphiphilic copolymers carrying alpha-tocopherol having antitumoural properties Download PDF

Info

Publication number
WO2013167782A1
WO2013167782A1 PCT/ES2013/070287 ES2013070287W WO2013167782A1 WO 2013167782 A1 WO2013167782 A1 WO 2013167782A1 ES 2013070287 W ES2013070287 W ES 2013070287W WO 2013167782 A1 WO2013167782 A1 WO 2013167782A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
poly
tocopherol
concentration
Prior art date
Application number
PCT/ES2013/070287
Other languages
Spanish (es)
French (fr)
Inventor
Raquel Palao Suay
Francisco Jesús PARRA RUIZ
María Rosa Aguilar de Armas
Mar Fernández Gutiérrez
Julio SAN ROMÁN DEL BARRIO
Juan Parra Cáceres
Original Assignee
Consejo Superior De Investigaciones Cientificas
Centro De Investigación Biomédica En Red En Bioingeniería, Biomateriales Y Nanomedicina (Ciber-Bbn)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Centro De Investigación Biomédica En Red En Bioingeniería, Biomateriales Y Nanomedicina (Ciber-Bbn) filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2013167782A1 publication Critical patent/WO2013167782A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • A61K31/787Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to the use of a family of amphiphilic copolymers that form polymeric micelles of nanometric or micrometric size and that are constituted by acrylic monomers derived from the alpha-tocopherol molecule and highly hydrophilic monomers.
  • This family of copolymers have "per se” antitumor activity, but they can also serve as vehicles for other active ingredients with antitumor effect.
  • the invention could be framed in the field of pharmaceutical chemistry and pharmacology.
  • anticancer treatments that currently exist in the market are characterized by their high toxicity due to their low specificity since they affect both tumor cells and healthy cells, especially if they are in active division.
  • new drugs has been directed towards drugs capable of selectively killing cancer cells (anticancer activity) and / or drugs capable of inhibiting tumor growth by preventing the development of the vasculature that irrigate (antiangiogenic activity) using as a strategy the search for differences between tumor cells and healthy cells.
  • alpha-tocopherol succinate known to be a "mitochondrially targeted anti-cancer drugs" therapeutic agent that induces selective apoptosis of tumor cells and not their healthy counterparts. In addition, it also induces apoptosis of growing endothelial cells and not of those quiescent. Therefore it can be said that it presents dual anti-cancer activity and antiangiogenic, which positions him as a potent chemotherapeutic agent.
  • alpha-tocopherol succinate is enhanced when it is conjugated with a hydrophilic polymer such as polyethylene glycol (TPGS) ("Vitamin E Analogs, a Novel Group of" Mitocans, "as Anticancer Agents: The Importance of Being Redox-Silent "Jiri Neuzil et al. Molecular Pharmacology 2007 vol. 71 no. 5 pp 1 185-1 199 DOI: 10.1 124 / mol.106.030122).
  • TPGS polyethylene glycol
  • This compound has been widely used as a surfactant in the stabilization of nanoparticles, but there are no formulations for proper medical administration.
  • Alpha-tocopherol succinate is highly hydrophobic, has low solubility in physiological media and is therefore difficult to administer. Therefore, the research interest in this field of application has focused on improving the solubility of hydrophobic drugs in physiological medium, by incorporating them into amphiphilic macromolecules that are capable of self-organization resulting in stable particles with a hydrophobic core and a cover hydrophilic The nature of the particles will also allow incorporating alpha-tocopherol into the particle, encapsulating other hydrophobic drugs.
  • Patent application US 201 1/0129540 A1 describes the modification of acrylic polymers to anchor alpha-tocopherol molecules by means of a spacer based on amino acids or peptides. It also describes the use of these systems as carriers of other hydrophobic drugs. But nevertheless, On the one hand, it does not detract from the possible anti-tumor activity of the "per se" systems and on the other, the grafting of alpha-tocopherol molecules in the system does not exceed 30% of the total monomers.
  • the modification of the polymers is carried out in a random and uncontrolled manner, without taking into account the microstructure of the macromolecules formed.
  • the present invention describes the use of a family of amphiphilic copolymers that form polymer micelles of micrometer or nanometer size and that are constituted by acrylic monomers derived from the alpha-tocopherol molecule and highly hydrophilic monomers.
  • This family of copolymers have a dual activity (anticancer and antiangiogenic) "per se", but they can also serve as vehicles for other active ingredients with antitumor effect.
  • "Copolymer” in the present invention is understood as a macromolecule composed of two or more different repetitive units, called monomers, which can be joined in different ways by means of chemical bonds. The monomers that form the copolymer can be distributed randomly or periodically.
  • amphiphilic copolymer refers to copolymers formed by lipophilic blocks linked with hydrophilic blocks.
  • vitamin E refers to a family comprising alpha-tocopherol, beta-tocopherol, gamma-tocopherol, delta-tocopherol, alpha-tocotrienol, beta-tocotrienol, gamma-tocotrienol and delta-tocotrienol.
  • alpha-tocopherol is the form that remains active in the body, making it the preferred form of vitamin E. It acts as a fat-soluble antioxidant that prevents lipid peroxidation of polyunsaturated fatty acids in cell membranes. Its formula is as follows:
  • ⁇ -TOCOPHEROL VITAMIN E
  • the compounds of the present invention have a dual proapoptotic activity of growing (antiangiogenic) and anticancer endothelial cells (decreases the cell viability of cancer cells without affecting their healthy homologs) provided by the alpha molecule. tocopherol, as shown in example 1 and 2 below.
  • the synergy between both anti-tumor capabilities is an additional advantage at the time of using them in anticancer treatments compared to the compounds currently used.
  • the alpha-tocopherol molecule is linked to an acrylic moiety by an enzymatically hydrolysable separator segment, R 2 , which prevents its accumulation in the organism, since it gives rise to products totally soluble in the physiological environment.
  • R 2 enzymatically hydrolysable separator segment
  • the compounds of the present invention have the ability to form micelles of micrometer and micrometer size, with hydrophobic core and hydrophilic cortex. They have an advantage to highlight, the size and morphology of the micelles can be modulated by controlling the molar composition and the concentration of these copolymers. Micelles of sizes between 5 and 300 nm are easily administered by injection, in the area where they are required.
  • the compounds of the present invention can be prepared in a wide range of molar compositions, all of which induce the death of growing endothelial cells (antiangiogenic capacity) at high concentrations and, some, also do so at relatively low concentrations. This last fact gives it an advantage over the compounds currently used since pharmaceutically the use of any medication at low concentrations is always beneficial.
  • the present invention relates to the use of a polymeric compound of formula (I):
  • Ri is selected from hydrogen and linear or branched d-Cs alkyl
  • R 2 is vitamin E or -X-vitamin E, where X is the group - [0- (CH 2 ) to -R3-
  • a and b have a value independently selected from 1 to 6,
  • c has a value selected from 1 to 6,
  • G is a hydrophilic monomer
  • a and b have a value independently selected from 2 to 6.
  • alkyl refers in the present invention to aliphatic, linear or branched chains, having 1 to 8 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, tert- butyl, sec-butyl, n-pentyl, etc.
  • the alkyl group has between 1 and 4 carbon atoms.
  • the alkyl radicals may be optionally substituted by one or more substituents such as halogen, hydroxyl, azide, carboxylic acid or a substituted or unsubstituted group selected from amino, amido, carboxylic ester, ether, thiol, acylamino or carboxamido, alkoxide, thiol , amino, acylamino, cyano, carboxylate, carboxamide, carboxy ester, aryl or heteroaryl or combinations of these groups.
  • substituents such as halogen, hydroxyl, azide, carboxylic acid or a substituted or unsubstituted group selected from amino, amido, carboxylic ester, ether, thiol, acylamino or carboxamido, alkoxide, thiol , amino, acylamino, cyano, carboxylate, carboxamide, carboxy ester, aryl or heteroaryl or combinations of these groups.
  • alkyl group When the alkyl group is substituted, it is preferably substituted by one or more amine, amide or ether groups, which in turn may or may not be substituted by alkyl, amide, cycloalkyl or ethers groups and these, in turn, may also be substituted or no.
  • the compounds of the present invention represented by formula (I) may include isomers, depending on the presence of multiple bonds (eg, Z, E), including optical isomers or enantiomers, depending on the presence of chiral centers.
  • the individual isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention.
  • the individual enantiomers or diastereoisomers, as well as mixtures thereof, can be separated by conventional techniques.
  • pharmaceutically acceptable salts indicates a formulation of a compound that does not cause significant irritation in an organism and does not impair the biological activity or properties of the compound.
  • Pharmaceutical salts can be obtained by reacting a compound of the invention with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-acid. -toluenesulfonic acid, salicylic acid and the like.
  • the compounds of the invention also include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds having said structure except for the substitution of a hydrogen for a deuterium or for Tritium, or the substitution of a carbon for a carbon enriched in 13 C or 1 C or a nitrogen enriched in 15 N, is within the scope of this invention.
  • vitamin E is alpha-tocopherol.
  • G is selected from the following group N- vinylpyrrolidone, 1-vinylimidazole and / V, / Vd ⁇ met ⁇ lacr ⁇ lam ⁇ da, / V-isopropylacrylamide, 2- hydroxyethylmethacrylate, 2-hydroxyethyl acrylate, polyethylene glycol methacrylate), polyethylene glycol acrylate), 2-hydroxypropyl methacrylate, N-ethylmorpholine methacrylate, acrylate / V-ethylmorpholine, methacrylate / V-hydroxyethyl pyrrolidone, / V-hydroxyethyl pyrrolidone acrylate and 2-vinylpyridine.
  • a has a value of 2. In a preferred embodiment b has a value of 2.
  • c is 1.
  • the compounds of formula (I) will preferably be in a pharmaceutically acceptable or substantially pure form, that is, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and not including material considered toxic at normal dosage levels.
  • the purity levels for the active ingredient are preferably greater than 50%, more preferably greater than 70%, and still more preferably greater than 90%. In a preferred embodiment, they are greater than 95% of the compound of formula (I) or its pharmaceutically acceptable isomers or salts.
  • the present invention relates to the polymeric compound of formula (
  • the compound of formula (II) is also called poly (VP-co-MTOS).
  • the alpha-tocopherol molecule binds through the hydroxyl group of the bicycles, so, in the polymeric compound of formula (II), the hydrogen of this hydroxyl group has disappeared and an ester group has formed.
  • the present invention relates to the polymeric compound of formula (III),
  • the compound of formula (III) is also called poly (VP-co-MVE).
  • the alpha-tocopherol molecule binds through the hydroxyl group of the bicycles, so, in the polymeric compound of formula (III), the hydrogen of this hydroxyl group has disappeared and an ester group has formed.
  • m has a value between 0.05 to 0.80.
  • m has a value between 0.1 to 0.2.
  • n has a value between 0.20 to 0.95.
  • n has a value between 0.8 to 0.9.
  • the present invention relates to the polymeric compound of formula (IV)
  • polymeric compound of formula (IV) is the polymeric compound of formula (II).
  • m has a value between 0.05 to 0.80. In a more preferred embodiment, m has a value between 0.1 to 0.2.
  • n has a value between 0.20 to 0.95.
  • n has a value between 0.8 to 0.9.
  • the present invention relates to the pharmaceutical composition comprising the compound of formula (IV) defined above and more preferably the compound of formula (II).
  • this composition further comprises a pharmaceutical vehicle.
  • compositions are those known to those skilled in matena and commonly used in the elaboration of therapeutic compositions.
  • the pharmaceutical composition comprises another active ingredient and more preferably an active ingredient with antitumor effect.
  • active ingredient is meant in the present invention a compound that contains at least one high purity chemical substance used in the prevention of a disease, or to prevent the occurrence of an unwanted physiological process.
  • the pharmaceutical composition is in an amount between 0.010 mg / ml and 1.25 mg / ml.
  • the invention relates to the use of the polymeric compound of formula (IV), more preferably the compound of formula (II) for the manufacture of a pharmaceutical composition.
  • the fifth aspect of the present invention relates to the process for obtaining a polymeric compound of formula (IV) comprising the following steps: a) Mixture of alpha-tocopherol with mono-2- (methacryloxy) ethyl succinate in the presence of a catalyst and a reaction activator. b) Mixture of the monomer obtained in step (a) with a hydrophilic monomer, in the presence of a reaction initiator.
  • the catalyst of step (a) is an amine.
  • the activator of step (a) is a measure.
  • reaction time of step (a) has a duration between 1 and 72 hours.
  • step (a) is performed at a temperature of 15 ° C to 60 ° C.
  • the hydrophilic monomer of step (b) is selected from the following group: / V-vinyl pyrrolidone, 1-vinylimidazole and N, N-dimethylacrylamide,
  • the hydrophilic monomer of step (b) is N-vinyl pyrrolidone, the compound of formula (II) being obtained.
  • the initiator of step (b) is a radical initiator.
  • the concentration of mono-2- (methacryloxy) ethyl succinate employed in (a) is between 0.01 and 20 equivalents.
  • the catalyst concentration employed in (a) is between 0.01 and 1 equivalent.
  • the concentration of reaction activator employed in (a) is between 0.9 and 1.6 equivalents. In another preferred embodiment, the concentration of monomer used in step (b) is between 0.01 and 10 M.
  • the concentration of initiator employed in step (b) is between 0.001 and 0.1 M.
  • the sixth aspect of the invention relates to a micellar particle comprising the polymeric compound of formula (I).
  • micrometric particle in the present invention refers to that polymeric micelle whose size can be micrometric or nanometric.
  • micellar particle is formed by the polymeric compound of formula (III). In a preferred embodiment the micellar particle is formed by the polymeric compound of formula (IV). In a preferred embodiment the micellar particle is formed by the polymeric compound of formula (II).
  • micellar particle formed by the polymeric compound of formula (I) comprises an active ingredient with antitumor effect.
  • micellar particles incorporate the active ingredient by encapsulation in the metric size micelles.
  • the active ingredient encapsulated in the micellar io particle is selected from the group comprising cyclosporine, colchicine, mitomycin C, mycophenolic acid, rapamycin, everolimus, tacrolimus, paclitaxel, QP-2, actinomycin, estradiols, dexamethasone, metharexate , cilostazol, prednisone, doxorubicin, ranpirnas, troglitazone, valsartan, pemirolast, C-MYC antisense, angiopeptin, vincristine, PCNA ribozyme, 2-15 chloro-deoxyadenosine, mTOR-directed compounds and fludarabine.
  • micellar particle described above also comprises a biomolecule.
  • the invention relates to the use of the micellar particle described above for the manufacture of a pharmaceutical composition.
  • micellar particle refers to a pharmaceutical composition for the treatment of lung, breast, liver, colon, skin and other types of cancer in which the mitochondrial activity of the cancer cells is altered
  • micellar particle as a pharmaceutical vehicle.
  • the eighth aspect of the present invention relates to the method of obtaining the micellar particle where any of the compounds Polymers of formula (I) described above are dissolved in an organic solvent and mixed with aqueous medium.
  • the organic solvent is miscible in water.
  • the water miscible organic solvent is selected from the group comprising dioxane, tetrahydrofuran and dimethylformamide.
  • the organic solvent is in a concentration of between 2 and 20 mg / ml.
  • the aqueous medium is in a concentration of between 0.02 and 3 mg / ml.
  • FIG. 1 Shows the synthesis scheme of methacrylic monomer derived from the alpha-tocopherol molecule (MTOS).
  • FIG. 2. Shows the 1 H-NMR spectrum (400 MHz, CDCI 3 ) of the methacrylic monomer derived from the alpha-tocopherol molecule (MTOS)
  • FIG. 3. Shows the 1 H-NMR spectrum (400 MHz, CDCI 3 ) of the poly (VP-co-MTOS) copolymer (95: 5)
  • FIG. 4 Shows the 1 H-NMR spectra (400 MHz, 1,4-dioxane-d 8 ) of the evolution of the vinyl protons during the copolymerization reaction of the poly (VP-co-MTOS) (70:30). The reaction was carried out in the resonance tube under the same reaction conditions as described in example 1, but using deuterated dioxane as solvent.
  • FIG. 5 It shows the variation of the particle size according to the composition of the copolymer (poly (VP-co-MTOS) 95: 5, 70:30 and 50:50) and its concentration during the nanoprecipitation process.
  • FIG. 6 Shows the scanning electron microscopy (SEM) (a) and atomic force microscopy (AFM) (b) images of nanoparticles obtained with methacrylic copolymers derived from the alpha-tocopherol and N-vinylpyrrolidone (VP) molecule called poly (VP-co-MTOS).
  • SEM scanning electron microscopy
  • AFM atomic force microscopy
  • FIG. 7 Shows the confocal microscopy images of HPMEC-ST1 human microvascular endothelial cells exposed for 5 hours and a half to poly (VP-co-MVE) particles (80:20) that encapsulated coumarin-6 inside.
  • FIG. 8 Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 80% confluence exposed to nanoparticles obtained with methacrylic copolymers derived from the alpha-tocopherol molecule (poly (VP-co-MTOS)) of Molar compositions 95: 5, 90: 10, 85:15, 80:20 and 70:30.
  • FIG. 14 Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 100% and 50% confluence exposed to polyparticles nanoparticles (VP-co-MTOS) 90: 10 and 80:20.
  • FIG. 16 Shows the results of the viability test of human breast adenocarcinoma cells MCF-7 exposed to poly (VP-co-MTOS) nanoparticles 95: 5, 90:10, 85:15, 80:20 and 70:30 .
  • FIG. 20 Shows the results of the viability test of human breast adenocarcinoma MCF-7 exposed to freshly prepared nanoparticles (poly (VP-co-MVE)) of 95: 5, 90: 10 and 85:15 molar compositions.
  • HMEpC human breast epithelial cells
  • MCF-7 breast adenocarcinoma cultures
  • poly (VP-co-MTOS) copolymers from the acrylic monomer carrying the alpha-tocopherol and vinyl pyrrolidone molecule as a highly hydrophilic monomer is described below.
  • the molar composition of the copolymers formed and their reactivity are checked, to confirm their ability to produce micelle-like polymeric self-assembled structures.
  • the method of preparing micella particles is described below and its size and morphology are determined, which vary according to the composition. molar copolymers of poly (VP-co-MTOS) and their concentration during the nanoprecipitation process.
  • the monomer was prepared by reacting the alpha-tocopherol molecule with mono-2- (methacryloxy) ethyl succinate (MES) in the presence of dimethylaminopyridine (DMAP) as a catalyst and dicyclohexyl carbodiimide (DCC) as a reaction activator.
  • MES mono-2- (methacryloxy) ethyl succinate
  • DMAP dimethylaminopyridine
  • DCC dicyclohexyl carbodiimide
  • Dichloromethane was used as solvent.
  • the reaction scheme is shown in Figure 1.
  • the alpha-tocopherol molecule (1 equivalent), the MES (1.3 equivalents) and the DMAP (0.1 equivalent) were introduced in 100 ml of dichloromethane.
  • DCC (1 equivalents) was added slowly, drop by drop, with constant stirring at room temperature. The reaction mixture was maintained for 24 hours under the same conditions. After 24 hours, the reaction mixture was filtered to remove solid by-products.
  • the DMAP and the unreacted alpha-tocopherol molecule were removed by successive extractions with solutions of NaOH and 1 N HCI and subsequently the solvent was removed under reduced pressure. The resulting medium was redissolved in hexane and washed 3 times with the same NaOH and HCI solutions used previously in order to improve the purification efficiency.
  • Copolymers were prepared by reacting the obtained MTOS monomer and N-vinyl-2-pyrrolidone (VP) as hydrophilic monomer from compositions in the VP: MTOS feed (% -molar) of 95: 5, 90:10, 85: 15, 80:20, 70:30, 50:50, 30:70 and 20:80.
  • VP N-vinyl-2-pyrrolidone
  • All polymers were prepared by radical polymerization at high conversion.
  • the reaction was carried out by dissolving the monomers in dioxane (0.25 M) using 2,2'-Azobisisobutyronitrile (AIBN) as initiator (1.5x10 "2 M).
  • AIBN 2,2'-Azobisisobutyronitrile
  • the prepared solution was deoxygenated by a stream of N 2 (g) for 30 minutes at room temperature
  • the reaction mixture was kept at 60 ° C inside an oven for 24 hours
  • the product obtained was purified by dialysis and lyophilized so that an amorphous powder was obtained white with yields shown in Table 1.
  • the molar composition of the copolymers prepared was calculated from their corresponding 1 H-NMR spectra.
  • Figure 3 shows as an example the spectrum of the copolymer prepared from molar fractions in the VP: MTOS feed of 95: 5. The disappearance of the 5 characteristic signals of the vinyl protons is observed. In addition, the widening of the signals as a consequence of the polymerization and with it, of the macromolecular nature of the synthesized polymers is appreciated.
  • the values of the normalized integrals of the characteristic signals of each monomer are considered. Specifically, the signals that appear in the range of 3-5 ppm corresponding to 3 protons of the VP and 4 protons of the MTOS (CH 2 -13 and CH 2 -14) and the signal at 0.86 ppm are taken into account corresponding to 12 protons of MTOS (CH 3 -4a ', CH 3 -8a', CH 3 -12a 'and 15 CH 3 -13').
  • Table 1 summarizes the MTOS composition values of the copolymers prepared together with the yields obtained in each case.
  • Table 1 also includes the molecular weights average in weight (M w ), in number (M n ) and the polydispersity index (Pdl) of the prepared copolymers. These results are obtained by size exclusion chromatography (SEC). For this, a Perkin-Elmer chromatograph equipped with a Socratic LC-250 series pump was used, connected to a Series 200 refractive index detector. The samples were eluted using three columns connected in series of polystyrene-divinylbenzene series (Polymer Laboratories) pore size of 10 3 , 10 4 and 10 5 A at 30 ° C. As eluent io tetrahydrofuran (THF) was used at a flow rate of 1 ml / min. For calibration, methyl polymethacrylate standards of molecular weight between 10,300 and 1,400,000 Da were used.
  • SEC size exclusion chromatography
  • Copolymerizations of the different products were carried out in an NMR system using deuterated dioxane as a solvent at 60 ° C.
  • the 20 reactions were carried out within the previous resonance tube deoxygenation with nitrogen and placing a capillary tube with dichlorobenzene inside which will serve as a reference signal.
  • Different concentrations of comonomers were studied in order to cover the entire range of concentrations, the total concentration of monomers being 0.25 M.
  • Nanoparticles were prepared from the poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers synthesized as described above by the nanoprecipitation method.
  • the copolymers (10mg / ml) were dissolved in a water-miscible organic solvent, in particular, dioxane. Then, this solution was added dropwise and with vigorous stirring, over the necessary amount of water to obtain a concentration of nanoparticles between 0.05 and 2.5 mg / ml.
  • nanoparticle solutions were prepared at a concentration of 2.5 mg / ml in PBS and the dioxane was removed by dialysis for 3 days.
  • the nanoparticles were loaded with coumarin-6 which was added in a concentration of 100 pg / ml in the dioxane solution.
  • the nanoparticle size distribution was determined by dynamic light scattering (DLS) using a Zetasizer Nano ZS equipment (Malvern Instruments) equipped with a He-Ne laser at 633 nm and with an angle of 173 °. The measurements were carried out in polystyrene cuvettes at room temperature, after sonication and filtration through a 0.45 pm membrane.
  • Table 2 summarizes the sizes and polydispersities obtained for the nanoparticles prepared at a concentration of 0.5 mg / ml.
  • Figure 5 compares the size of the particles as a function of the concentration of nanoparticles for three copolymers of different molar composition in the feed (VP: MTOS 95: 5, 70:30 and 50:50). The results obtained demonstrate that the size and morphology of the micelles can be modulated by controlling the molar composition of these copolymers and the concentration of nanoparticles in the medium.
  • copolymers poly (VP-co-MTOS)
  • Table 3 includes the results obtained from particle sizes and i or polydispersities for the nanoparticles prepared from the family of poly (VP-co-MVE) copolymers. It is observed that poly (VP-co-MVE) particles are comparatively larger and with values that are not significantly affected by changing the content of MVE in the copolymer. On the contrary, the particles formed from the poly (VP-co-MTOS) system 15 have a size that increases slightly with the increase in the amount of MTOS in the polymers.
  • HPMEC-ST1 human lung microvascular endothelial cells
  • HEPES-modified M-199 culture medium supplemented with 10% bovine fetal serum, 1% of a penicillin-streptomycin solution, 0.1% endothelial growth factor and 0.1% sodium heparin.
  • poly (VP-co-MTOS) and poly (VP-co-MVE) (1.25 mg / ml) particles are endocyted by the cells.
  • the particles of an HPMEC-ST1 culture with coumarin-6 are loaded in a solution of 100 mg / ml to be visualized by confocal fluorescence micrography. After 5 and a half hours of incubation it is observed that the particles accumulate around the nucleus, as shown in Figure 7.
  • the nanoparticles are capable of effectively encapsulating biomolecules, in this case taking as a model molecule Coumarin-6. Therefore, the particles may serve as vehicles for other chemotherapeutic drugs of high toxicity and difficult administration due to their hydrophobic structure, such as paclitaxel, simvastatin or doxorubicin.
  • the feasibility test was carried out by an MTT test.
  • This assay is based on the metabolic reduction of 3- (4,5-dimethylthiozol-2-lo) -2,5-diphenyltetrazole (MTT) bromide performed by the mitochondrial enzyme succinate dehydrogenase in a colored compound blue (formazan), allowing to determine the mitochondrial functionality of the treated cells.
  • MTT 3- (4,5-dimethylthiozol-2-lo) -2,5-diphenyltetrazole
  • the culture medium was exchanged for 50 ⁇ of the nanoparticle solutions that were kept in contact with the cells for 24 hours under the same conditions. After this period of time, the contents of the wells were removed and a solution of the MTT reagent was added which was allowed to act for 4 hours.
  • poly (VP-co-MVE) nanoparticles were prepared from poly (VP-co-MVE) copolymers for compositions in the VP: MVE (% -molar) 95: 5 feed. 90:10 and 85: 15. To that end, in all cases, solutions of the nanoaggregates in PBS at a concentration of 2.5 mg / ml were used, from which dilutions of a gradually lower concentration were prepared.
  • Figures 10, 1 1, 12 and 13 show the results of MTT tests obtained with HPMEC-ST1 cells at 50 and 100% confluence, for the polyparticles of poly (VP-co-MTOS) and poly (VP-co -MVE).
  • VP-co-MTOS poly
  • VP-co -MVE poly poly (VP-co -MVE)
  • Figures 14 and 15 compare the results obtained with cultures of endothelial cells at 100 and 50% confluence for the most active nanoparticles (poly (VP-co-MTOS) 90: 10 and 80:20 and poly (VP-co- MVE) 90: 10 and 85: 15). It is observed how the decrease in cell viability for highly proliferative cultures is significant for concentrations of nanoparticles equal to or greater than 0.078 mg / ml. In addition, the selectivity towards growing cells is greater in the case of nanoparticles based on poly (VP-co-MVE) copolymers. These results allow us to conclude that nanoparticles selectively affect the viability of highly proliferative endothelial cells giving these systems antiangiogenic capacity.
  • the culture medium used in the maintenance of this cell line was DMEM (Dulbeco's modified Eagle's Medium) with glucose, sodium pyruvate and L-glutamine (SIGMA D6429), supplemented with penicillin / streptomycin (SIGMA P0781), 1% of a non-essential amino acid solution (SIGMA M7145) and 10% fetal bovine serum (SBF; GIBCO 10270-106).
  • DMEM Dynabeco's modified Eagle's Medium
  • SIGMA D6429 glucose, sodium pyruvate and L-glutamine
  • SIGMA P0781 penicillin / streptomycin
  • SIGMA M7145 1%
  • SBF fetal bovine serum
  • poly (VP-co-MTOS) copolymers demonstrate that some compositions (eg 90: 10, 85: 15 and 80:20) significantly affect cell viability at relatively low concentrations (greater than 0.010 mg / ml), as seen in Figure 16. All the compositions tested significantly affect the cell viability of MCF-7 at high concentrations. Since the MTT assay measures the activity of the mitochondrial enzyme succinate dehydrogenase, we can state that poly (VP-co-MTOS) particles significantly affect the mitochondrial activity of these cells and induce their death at high concentrations, which demonstrates their action against this type of tumor cells. In addition, trials with human breast epithelial cells (HMEpC) were carried out.
  • HMEpC human breast epithelial cells
  • the culture medium used in the maintenance of this line was HuMEC Basal Serum Free Medium (GIBCO) supplemented with HuMEC supplemented kit (GIBCO), and 10% fetal bovine serum (SBF; GIBCO 10270-106).
  • An MTT assay was performed in order to determine the activity of the particles on these healthy cells, following the same working protocol as described above.
  • the results show that poly (VP-co-MTOS) copolymers (90: 10, 85: 15, 80:20 and 70:30) do not significantly affect the cell viability of HMEpC cells, as observed in the Figure 17. Since the MTT assay measures the activity of the mitochondrial enzyme succinate dehydrogenase, we can affirm that these particles do not significantly affect the mitochondrial activity of this type of healthy cells.
  • Figures 18 and 19 show the MTT test results obtained with MCF7 and HMEpC cells respectively, for poly (VP-co-MVE) copolymers, under the conditions described above.
  • Figure 18 shows a dose-dependent decrease in cell viability of MCF-7 cancer cells (the higher the concentration of particles, the lower the cell viability). The activity of the copolymers is greater, the higher the MVE content.
  • Figure 19 shows that the MVE carrier copolymers tested do not significantly affect the cellular viability of HMEpC in the range of compositions tested, except for the 90: 10 poly (VP-co-MVE) copolymer in concentration 1, 25 mg / ml whose viability is still greater than 80%.
  • the antitumor activity of these systems is affected both by the mode and by the storage time prior to their use in biocompatibility tests. It is important to keep the nanoparticle solutions in PBS at a temperature between 4-8 ° C and sterilize them previously by filtration.
  • the same biocompatibility tests were performed with MCF-7 cells using poly (VP-co-MVE) nanoparticles but, in this case, with a storage period short (less than a week). It should be noted that for the previous experiments the period of storage of the particles was greater (8 weeks).
  • the results obtained in the MTT test for nanoparticles tested after a short storage period of poly (VP-co-MVE) are shown in Figure 20.
  • a comparison of the cell viability obtained in MCF-7 cultures using nanoparticles with different storage periods is included in Figure 21. It is observed how the anticancer activity of the particles is significantly reduced when the particles are stored for long periods of time.
  • Figure 22 summarizes the results obtained for poly (VP-co-MTOS) and poly (VP-co-MVE) using cancer cell cultures (MCF-7) and their healthy homologs (HMEpC). It is observed how the particles affect the cell viability of breast adenocarcinoma cultures, while they do not do so in the case of human breast epithelial cells.
  • MCF-7 cancer cell cultures
  • HMEpC healthy homologs
  • Nanoparticles loaded with alpha-tocopherol succinate (10, 5 and 1% by weight) were prepared from the copolymers poly (VP-co-MTOS) (90: 10) and poly (VP-co-MVE) (85: 15) that have demonstrated greater anticancer activity in the different cell lines used. Again, the nanoprecipitation method was used so that the copolymers and succinate of alpha-tocopherol were dissolved in dioxane (10mg / ml). Then this solution is added dropwise and with vigorous stirring, on the necessary amount of PBS to obtain a final nanoparticle concentration of 2.5 mg / ml. Finally, dioxane was removed by dialysis for 3 days.
  • the size distribution of the nanoparticles was determined by dynamic light scattering (DLS) using a Zetasizer Nano ZS equipment (Malvern Instruments) equipped with a He-Ne laser at 633 nm and at an angle of 173 °. The measurements were carried out in polystyrene cuvettes at room temperature. Table 4 summarizes the sizes and polydispersities obtained in each case.
  • the culture medium used in the maintenance of this cell line was DMEM (Dulbeco's modified Eagle's Medium) with a high glucose content, sodium pyruvate and supplemented 2 mM L-glutamine (SIGMA D6429), 1% penicillin / streptomycin (SIGMA P0781) , 1% of a solution of nonessential amino acids (SIGMA M7145) and 10% fetal bovine serum (SBF; GIBCO 10270-106).
  • SIGMA D6429 2 mM L-glutamine
  • SIGMA P0781 penicillin / streptomycin
  • SIGMA M7145 1% of a solution of nonessential amino acids
  • SBF fetal bovine serum
  • poly (VP-co-MTOS) and poly (VP-co-MVE) polymer systems studied can be enhanced by encapsulating different chemotherapeutic drugs inside the polymeric nanoparticles that act as vehicles that release the drug in the localized area of the tumor.
  • poly (VP-co-MTOS) (90: 10) and poly (VP-co-MVE) (85: 15) particles loaded with alpha-tocopherol succinate were prepared, as described in the example 2.
  • in vitro biocompatibility MTT assays were performed using WiDr colon adenocarcinoma cell cultures, which were maintained under the same conditions described above.
  • squamous cell carcinoma larynx cells FaDu cell line; American Type Culture Collection-Cat. No. HTB-43; step 2 +
  • the culture medium used in the maintenance of this cell line was DMEM (Dulbeco's modified Eagle's Medium) with high glucose content, pyridoxine chloride and modified with 25 mM HEPES buffer.
  • Figure 28 shows the results obtained from the MTT assay with FaDu cell cultures exposed to poly (VP-co-MVE) nanoparticles.
  • the copolymers are more active and a 40% reduction in cell viability is achieved for the concentration of nanoparticles (poly (VP-co-MVE) 90:10 and 85: 15) tested higher (1, 25 mg / ml)
  • Poly (VP-co-MTOS) nanoparticles reduce cell viability up to 60 and 75% with an alpha-tocopherol succinate load of 5 and 10%, respectively.
  • poly (VP-co-MVE) particles decrease cell viability by 50% with the maximum bioactive drug load at a concentration of 1.25 mg / ml.

Abstract

The invention relates to the use of a family of amphiphilic copolymers that form polymeric micelles of a micrometric or nanometric size and consist of acrylic monomers derived from the alpha-tocopherol molecule and highly hydrophilic monomers. This family of copolymers exhibits an antitumoural activity per se, but they can also act as vehicles for other active principles having an antitumoural effect.

Description

COPOLÍMEROS ANFIFÍLICOS PORTADORES DE ALFA-TOCOFEROL CON ALFA-TOCOFEROL CARRYING AMPHIFOLIC COPOLYMERS WITH
PROPIEDADES ANTITUMORALES ANTITUMOR PROPERTIES
La presente invención se refiere al uso de una familia de copolímeros anfifílicos que forman micelas poliméricas de tamaño nanométrico o micrométrico y que están constituidos por monómeros acrílicos derivados de la molécula de alfa- tocoferol y monómeros altamente hidrofílicos. Esta familia de copolímeros presentan actividad antitumoral "per se", pero además pueden servir de vehículos para otros principios activos con efecto antitumoral. The present invention relates to the use of a family of amphiphilic copolymers that form polymeric micelles of nanometric or micrometric size and that are constituted by acrylic monomers derived from the alpha-tocopherol molecule and highly hydrophilic monomers. This family of copolymers have "per se" antitumor activity, but they can also serve as vehicles for other active ingredients with antitumor effect.
Por tanto, la invención se podría encuadrar en el campo de la química farmacéutica y la farmacología. Therefore, the invention could be framed in the field of pharmaceutical chemistry and pharmacology.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Los tratamientos anticancerígenos que existen actualmente en el mercado se caracterizan por su elevada toxicidad debido a su escasa especificidad ya que afectan tanto a células tumorales, como a células sanas, especialmente si se encuentran en división activa. De ahí que, en la actualidad, la investigación y el desarrollo de nuevos fármacos se haya dirigido hacía fármacos capaces de matar selectivamente células cancerígenas (actividad anticancerígena) y/o fármacos capaces de inhibir el crecimiento del tumor impidiendo el desarrollo de la vasculatura que lo irriga (actividad antiangiogénica) utilizando como estrategia la búsqueda de diferencias entre las células tumorales y las células sanas. The anticancer treatments that currently exist in the market are characterized by their high toxicity due to their low specificity since they affect both tumor cells and healthy cells, especially if they are in active division. Hence, at present, research and development of new drugs has been directed towards drugs capable of selectively killing cancer cells (anticancer activity) and / or drugs capable of inhibiting tumor growth by preventing the development of the vasculature that irrigate (antiangiogenic activity) using as a strategy the search for differences between tumor cells and healthy cells.
Un ejemplo de fármaco descubierto recientemente es el succinato del alfa- tocoferol, conocido por ser un agente terapéutico "mitocans" (del inglés mitochondrially targeted anticancer drugs) que induce la apoptosis selectiva de células tumorales y no de sus homologas sanas. Además, induce también la apoptosis de células endoteliales en crecimiento y no de aquellas quiescentes. Por ello puede decirse que presenta actividad dual anticancerígena y antiangiogénica, lo que le posiciona como un potente agente quimioterápico. Se ha demostrado que la actividad biológica del succinato del alfa-tocoferol se ve potenciada cuando se conjuga con un polímero hidrófilo como es el polietilenglicol (TPGS) ("Vitamin E Analogs, a Novel Group of "Mitocans," as Anticancer Agents: The Importance of Being Redox-Silent" Jiri Neuzil et al. Molecular Pharmacology 2007 vol. 71 no. 5 pp 1 185-1 199 DOI: 10.1 124/mol.106.030122). Este compuesto ha sido ampliamente utilizado como surfactante en la estabilización de nanopartículas, pero no existen formulaciones para su apropiada administración médica. En los últimos años han ¡do apareciendo algunas publicaciones que lo incorporan de forma estable en liposomas (Koudelka S, Masek J, Neuzil J, Turanek J (2010) Lyophilised liposome-based formulations of alfa-tocopheryl succinate: Preparation and physico-chemical characterisation. J Pharm Sci 99, 2434-2443), pero su actividad biológica no ha sido demostrada. También, se ha incorporado en la formulación de nanopartículas a base de poliésteres degradables. Sin embargo, en todas ellas se incorporaba una sola molécula de D-tocoferol por macromolécula. An example of a recently discovered drug is alpha-tocopherol succinate, known to be a "mitochondrially targeted anti-cancer drugs" therapeutic agent that induces selective apoptosis of tumor cells and not their healthy counterparts. In addition, it also induces apoptosis of growing endothelial cells and not of those quiescent. Therefore it can be said that it presents dual anti-cancer activity and antiangiogenic, which positions him as a potent chemotherapeutic agent. It has been shown that the biological activity of alpha-tocopherol succinate is enhanced when it is conjugated with a hydrophilic polymer such as polyethylene glycol (TPGS) ("Vitamin E Analogs, a Novel Group of" Mitocans, "as Anticancer Agents: The Importance of Being Redox-Silent "Jiri Neuzil et al. Molecular Pharmacology 2007 vol. 71 no. 5 pp 1 185-1 199 DOI: 10.1 124 / mol.106.030122). This compound has been widely used as a surfactant in the stabilization of nanoparticles, but there are no formulations for proper medical administration. In recent years there have been some publications stably incorporating it into liposomes (Koudelka S, Masek J, Neuzil J, Turanek J (2010) Lyophilised liposome-based formulations of alpha-tocopheryl succinate: Preparation and physico-chemical characterization J Pharm Sci 99, 2434-2443), but its biological activity has not been demonstrated. Also, it has been incorporated into the formulation of nanoparticles based on degradable polyesters. However, all of them incorporated a single molecule of D-tocopherol per macromolecule.
El succionato del alfa-tocoferol es altamente hidrófobo, presenta baja solubilidad en medios fisiológicos y por tanto, es difícil de administrar. Por ello, el interés investigador sobre este ámbito de aplicación se ha centrado en la mejora de la solubilidad de fármacos hidrófobos en medio fisiológico, mediante su incorporación en macromoléculas anfifílicas que sean capaces de autoorganizarse dando lugar a partículas estables con un núcleo hidrófobo y una cubierta hidrófila. La naturaleza de las partículas permitirá además de incorporar el alfa-tocoferol en la partícula, encapsular otros fármacos hidrófobos. Alpha-tocopherol succinate is highly hydrophobic, has low solubility in physiological media and is therefore difficult to administer. Therefore, the research interest in this field of application has focused on improving the solubility of hydrophobic drugs in physiological medium, by incorporating them into amphiphilic macromolecules that are capable of self-organization resulting in stable particles with a hydrophobic core and a cover hydrophilic The nature of the particles will also allow incorporating alpha-tocopherol into the particle, encapsulating other hydrophobic drugs.
La solicitud de patente US 201 1/0129540 A1 describe la modificación de polímeros acrílicos para anclar moléculas de alfa-tocoferol mediante un espaciador a base de aminoácidos o péptidos. También describe el uso de estos sistemas como portadores de otros fármacos hidrófobos. Sin embargo, por una parte, no descnbe la posible actividad antitumoral de los sistemas "per se" y por otra, el injerto de moléculas de alfa-tocoferol en el sistema no supera el 30% del total de monómeros. Además la modificación de los polímeros se lleva a cabo de forma aleatoria y descontrolada, sin tener en cuenta la microestructura de las macromoléculas formadas. Patent application US 201 1/0129540 A1 describes the modification of acrylic polymers to anchor alpha-tocopherol molecules by means of a spacer based on amino acids or peptides. It also describes the use of these systems as carriers of other hydrophobic drugs. But nevertheless, On the one hand, it does not detract from the possible anti-tumor activity of the "per se" systems and on the other, the grafting of alpha-tocopherol molecules in the system does not exceed 30% of the total monomers. In addition, the modification of the polymers is carried out in a random and uncontrolled manner, without taking into account the microstructure of the macromolecules formed.
Los siguientes artículos científicos 1 ) "Hydrophilic polymers dehved from vitamin E" B. Vázquez et al. J Biomater Appl (2000) 15 (2)1 18-139, M.A. 2) "Resorbable polyacrylic hydrogels derived from vitamin E and their application in the healing of tendons" Plasencia et al.J Mater Sci: Mater Med (1999) 10(10- 1 1 ) 641 -648 y 3) "Hydrophilic acrylic biomaterials derived from vitamin E with antioxidant properties" C. Ortiz et al J Biomed Mater Res (1999) 45(3) 184-191 describen derivados poliméricos acrílicos portadores de alfa-tocoferol de hasta un 20% del total de monómeros, donde el alfa-tocoferol está directamente unido al grupo acrílico del derivado polimé co. La aplicación de estos sistemas se orienta en relación con la capacidad antioxidante asociada al alfa-tocoferol incorporado. The following scientific articles 1) "Hydrophilic polymers dehved from vitamin E" B. Vázquez et al. J Biomater Appl (2000) 15 (2) 1 18-139, M.A. 2) "Resorbable polyacrylic hydrogels derived from vitamin E and their application in the healing of tendons" Plasencia et al. J Mater Sci: Mater Med (1999) 10 (10- 1 1) 641-648 and 3) "Hydrophilic acrylic biomaterials derived from vitamin E with antioxidant properties "C. Ortiz et al J Biomed Mater Res (1999) 45 (3) 184-191 describe acrylic polymeric derivatives carrying alpha-tocopherol of up to 20% of the total monomers, where alpha-tocopherol It is directly linked to the acrylic group of the polymer derivative. The application of these systems is oriented in relation to the antioxidant capacity associated with the incorporated alpha-tocopherol.
Por tanto, es de interés encontrar agentes antitumorales de alta actividad y especificidad que sean "per se" solubles en medios fisiológicos. Therefore, it is of interest to find antitumor agents of high activity and specificity that are "per se" soluble in physiological media.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
En la presente invención se describe el uso de una familia de copolímeros anfifílicos que forman micelas poliméricas de tamaño micrométrico o nanométrico y que están constituidos por monómeros acrílicos derivados de la molécula de alfa-tocoferol y monómeros altamente hidrofílicos. Esta familia de copolímeros presentan una actividad dual (anticancerígena y antiangiogénica) "per se", pero además pueden servir de vehículos para otros principios activos con efecto antitumoral. Se entiende por "copolímero" en la presente invención una macromolécula compuesta por dos o más unidades repetitivas distintas, denominadas monómeros, que se pueden unir de diferentes formas por medio de enlaces químicos. Los monómeros que forman el copolímero pueden distribuirse de forma aleatoria o periódica. The present invention describes the use of a family of amphiphilic copolymers that form polymer micelles of micrometer or nanometer size and that are constituted by acrylic monomers derived from the alpha-tocopherol molecule and highly hydrophilic monomers. This family of copolymers have a dual activity (anticancer and antiangiogenic) "per se", but they can also serve as vehicles for other active ingredients with antitumor effect. "Copolymer" in the present invention is understood as a macromolecule composed of two or more different repetitive units, called monomers, which can be joined in different ways by means of chemical bonds. The monomers that form the copolymer can be distributed randomly or periodically.
El término "copolímero anfifílico" se refiere a los copolímeros formados por bloques lipofílicos unidos con bloques hidrofílicos. The term "amphiphilic copolymer" refers to copolymers formed by lipophilic blocks linked with hydrophilic blocks.
En la presente invención el término vitamina E se refiere a una familia que comprende el alfa-tocoferol, beta-tocoferol, gamma-tocoferol, delta-tocoferol, alfa-tocotrienol, beta-tocotrienol, gamma- tocotrienol y delta-tocotrienol. De estos, el alfa-tocoferol es la forma que se mantiene activa en el organismo, por lo que es la forma preferida de vitamina E. Actúa como antioxidante liposoluble que impide la peroxidación lipídica de los ácidos grasos poliinsaturados en las membranas celulares. Su fórmula es la siguiente: In the present invention the term vitamin E refers to a family comprising alpha-tocopherol, beta-tocopherol, gamma-tocopherol, delta-tocopherol, alpha-tocotrienol, beta-tocotrienol, gamma-tocotrienol and delta-tocotrienol. Of these, alpha-tocopherol is the form that remains active in the body, making it the preferred form of vitamin E. It acts as a fat-soluble antioxidant that prevents lipid peroxidation of polyunsaturated fatty acids in cell membranes. Its formula is as follows:
Figure imgf000005_0001
Figure imgf000005_0001
α-TOCOFEROL (VITAMINA E) Los compuestos de la presente invención presentan una actividad dual proapoptótica de células endoteliales en crecimiento (antiangiogénica) y anticancerígena (disminuye la viabilidad celular de células cancerígenas sin afectar a sus homologas sanas) proporcionada por la molécula de alfa- tocoferol, tal y como se muestra más adelante en el ejemplo 1 y 2. La sinergia entre ambas capacidades antitumorales supone una ventaja adicional a la hora de emplearlos en tratamientos anticancerígenos en comparación con los compuestos empleados actualmente. α-TOCOPHEROL (VITAMIN E) The compounds of the present invention have a dual proapoptotic activity of growing (antiangiogenic) and anticancer endothelial cells (decreases the cell viability of cancer cells without affecting their healthy homologs) provided by the alpha molecule. tocopherol, as shown in example 1 and 2 below. The synergy between both anti-tumor capabilities is an additional advantage at the time of using them in anticancer treatments compared to the compounds currently used.
En la presente invención la molécula de alfa-tocoferol está unida a un resto acrílico por un segmento separador hidrolizable enzimáticamente, R2, que evita su acumulación en el organismo, pues da lugar a productos totalmente solubles en el medio fisiológico. La ventaja de estos monómeros acrílicos portadores de alfa-tocoferol es, por tanto, su solubilidad en medio fisiológico, lo que permite que puedan ser eliminados del organismo utilizando la vía metabólica más normal, siendo comúnmente eliminados por filtración a través del riñon. In the present invention the alpha-tocopherol molecule is linked to an acrylic moiety by an enzymatically hydrolysable separator segment, R 2 , which prevents its accumulation in the organism, since it gives rise to products totally soluble in the physiological environment. The advantage of these alpha-tocopherol-carrying acrylic monomers is, therefore, their solubility in physiological medium, which allows them to be eliminated from the organism using the most normal metabolic pathway, being commonly eliminated by filtration through the kidney.
Los compuestos de la presente invención tienen la capacidad de formar micelas de tamaño nanométrico y micrométrico, con núcleo hidrófobo y corteza hidrofílica. Presentan una ventaja a destacar, el tamaño y la morfología de las micelas se puede modular controlando la composición molar y la concentración de estos copolímeros. Las micelas de tamaños entre 5 y 300 nm son fácilmente administrares por inyección, en la zona donde son requeridos. The compounds of the present invention have the ability to form micelles of micrometer and micrometer size, with hydrophobic core and hydrophilic cortex. They have an advantage to highlight, the size and morphology of the micelles can be modulated by controlling the molar composition and the concentration of these copolymers. Micelles of sizes between 5 and 300 nm are easily administered by injection, in the area where they are required.
Los compuestos de la presente invención se pueden preparar en un amplio rango de composiciones molares, todas ellas inducen la muerte de células endoteliales en crecimiento (capacidad antiangiogénica) a altas concentraciones y, algunas, también lo hacen a concentraciones relativamente bajas. Este último hecho le confiere una ventaja con respecto a los compuestos empleados actualmente ya que farmacéuticamente el uso de cualquier medicamento a concentraciones bajas es siempre beneficioso. The compounds of the present invention can be prepared in a wide range of molar compositions, all of which induce the death of growing endothelial cells (antiangiogenic capacity) at high concentrations and, some, also do so at relatively low concentrations. This last fact gives it an advantage over the compounds currently used since pharmaceutically the use of any medication at low concentrations is always beneficial.
En un primer aspecto, la presente invención se refiere al uso de un compuesto polimérico de fórmula (I): In a first aspect, the present invention relates to the use of a polymeric compound of formula (I):
Figure imgf000007_0001
Figure imgf000007_0001
(i) donde Ri se selecciona de entre hidrógeno y alquilo d-Cs lineal o ramificado, (i) where Ri is selected from hydrogen and linear or branched d-Cs alkyl,
R2 es vitamina E o -X-vitamina E, donde X es el grupo - [0-(CH2)a-R3-
Figure imgf000007_0002
R 2 is vitamin E or -X-vitamin E, where X is the group - [0- (CH 2 ) to -R3-
Figure imgf000007_0002
donde a y b tienen un valor seleccionado independientemente de entre 1 a 6,  where a and b have a value independently selected from 1 to 6,
c tiene un valor seleccionado de entre 1 a 6,  c has a value selected from 1 to 6,
R3 y R4 se seleccionan independientemente de entre C=0, 0-C=0, NH- C=0, NH, -S-, S-C=0 y Si(R2)0, R 3 and R 4 are independently selected from C = 0, 0-C = 0, NH-C = 0, NH, -S-, SC = 0 and Si (R 2 ) 0,
G es un monómero hidrofílico; y  G is a hydrophilic monomer; Y
(m+n) es igual a 1 ,  (m + n) is equal to 1,
donde * se entiende como la repetición de los monómeros m y n, o sus isómeros o sales farmacéuticamente aceptables, para la fabricación de una composición farmacéutica para el tratamiento del cáncer de pulmón, mama, hígado, colón, piel y otros tipos de cáncer en los que la actividad mitocondrial de las células cancerígenas esté alterada. where * is understood as the repetition of the myn monomers, or their pharmaceutically acceptable isomers or salts, for the manufacture of a pharmaceutical composition for the treatment of lung, breast, liver, colon, skin and other cancers in which The mitochondrial activity of cancer cells is altered.
Preferiblemente, a y b tienen un valor seleccionado independientemente de entre 2 a 6. Preferably, a and b have a value independently selected from 2 to 6.
El término "alquilo" se refiere en la presente invención a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 8 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, i-propilo, n-butilo, tert-butilo, sec-butilo, n-pentilo, etc. Preferiblemente el grupo alquilo tiene entre 1 y 4 átomos de carbono. Los radicales alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno, hidroxilo, azida, ácido carboxílico o un grupo sustituido o no sustituido seleccionado de entre amino, amido, éster carboxílico, éter, tiol, acilamino o carboxamido, alcóxido, tiol, amino, acilamino, ciano, carboxilato, carboxamida, carboxiéster, arilo o heteroarilo o combinaciones de estos grupos. Cuando el grupo alquilo está sustituido, lo está preferentemente por uno o varios grupos amina, amida o éter, que a su vez pueden estar o no sustituidos por grupos alquilo, amida, cicloalquilo o éteres y estos a su vez, pueden estar igualmente sustituidos o no. The term "alkyl" refers in the present invention to aliphatic, linear or branched chains, having 1 to 8 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, tert- butyl, sec-butyl, n-pentyl, etc. Preferably the alkyl group has between 1 and 4 carbon atoms. The alkyl radicals may be optionally substituted by one or more substituents such as halogen, hydroxyl, azide, carboxylic acid or a substituted or unsubstituted group selected from amino, amido, carboxylic ester, ether, thiol, acylamino or carboxamido, alkoxide, thiol , amino, acylamino, cyano, carboxylate, carboxamide, carboxy ester, aryl or heteroaryl or combinations of these groups. When the alkyl group is substituted, it is preferably substituted by one or more amine, amide or ether groups, which in turn may or may not be substituted by alkyl, amide, cycloalkyl or ethers groups and these, in turn, may also be substituted or no.
Los compuestos de la presente invención representados por la fórmula (I) pueden incluir isómeros, dependiendo de la presencia de enlaces múltiples (por ejemplo, Z, E), incluyendo isómeros ópticos o enantiómeros, dependiendo de la presencia de centros quirales. Los isómeros, enantiómeros o diastereoisómeros individuales y las mezclas de los mismos caen dentro del alcance de la presente invención. Los enantiómeros o diastereoisómeros individuales, así como sus mezclas, pueden separarse mediante técnicas convencionales. The compounds of the present invention represented by formula (I) may include isomers, depending on the presence of multiple bonds (eg, Z, E), including optical isomers or enantiomers, depending on the presence of chiral centers. The individual isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention. The individual enantiomers or diastereoisomers, as well as mixtures thereof, can be separated by conventional techniques.
El término "sales farmacéuticamente aceptables" indica una formulación de un compuesto que no provoca irritación significativa en un organismo y no merma la actividad biológica ni las propiedades del compuesto. Las sales farmacéuticas pueden obtenerse por reacción de un compuesto de la invención con ácidos inorgánicos, por ejemplo el ácido clorhídrico, el ácido bromhídrico, el ácido sulfúrico, el ácido nítrico, el ácido fosfórico, el ácido metanosulfónico, el ácido etanosulfónico, el ácido p-toluenosulfónico, el ácido salicílico y similares. The term "pharmaceutically acceptable salts" indicates a formulation of a compound that does not cause significant irritation in an organism and does not impair the biological activity or properties of the compound. Pharmaceutical salts can be obtained by reacting a compound of the invention with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-acid. -toluenesulfonic acid, salicylic acid and the like.
A menos que se indique lo contrario, los compuestos de la invención también incluyen compuestos que difieren sólo en la presencia de uno o más átomos isotópicamente enriquecidos. Por ejemplo, compuestos que tienen dicha estructura, a excepción de la sustitución de un hidrógeno por un deuterio o por tritio, o la sustitución de un carbono por un carbono enriquecido en 13C o 1 C o un nitrógeno enriquecido en 15N, están dentro del alcance de esta invención. Unless otherwise indicated, the compounds of the invention also include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having said structure, except for the substitution of a hydrogen for a deuterium or for Tritium, or the substitution of a carbon for a carbon enriched in 13 C or 1 C or a nitrogen enriched in 15 N, is within the scope of this invention.
En una realización preferida, la vitamina E es alfa-tocoferol. In a preferred embodiment, vitamin E is alpha-tocopherol.
En una realización prefenda G se selecciona del siguiente grupo N- vinilpirrolidona, 1 -vinilimidazol y /V,/V-d¡met¡lacr¡lam¡da, /V-isopropilacrilamida, 2- hidroxietilmetacrilato, 2-hidroxietilacrilato, metacrilato de polietilenglicol ), acrilato de polietilenglicol), metacrilato de 2-hidroxipropilo, metacrilato de N- etilmorfolina, acrilato /V-etilmorfolina, metacrilato /V-hidroxietil pirrolidona, acrilato de /V-hidroxietil pirrolidona y 2-vinilpiridina. In one preferred embodiment G is selected from the following group N- vinylpyrrolidone, 1-vinylimidazole and / V, / Vd¡met¡lacr¡lam¡da, / V-isopropylacrylamide, 2- hydroxyethylmethacrylate, 2-hydroxyethyl acrylate, polyethylene glycol methacrylate), polyethylene glycol acrylate), 2-hydroxypropyl methacrylate, N-ethylmorpholine methacrylate, acrylate / V-ethylmorpholine, methacrylate / V-hydroxyethyl pyrrolidone, / V-hydroxyethyl pyrrolidone acrylate and 2-vinylpyridine.
En una realización prefenda a tiene un valor de 2. En una realización preferida b tiene un valor de 2. In one preferred embodiment a has a value of 2. In a preferred embodiment b has a value of 2.
En una realización preferida R3 es 0-C=0. In a preferred embodiment R 3 is 0-C = 0.
En una realización preferida R4 es C=0. In a preferred embodiment R 4 is C = 0.
En una realización preferida, c es 1 . In a preferred embodiment, c is 1.
Para su aplicación en terapia, los compuestos de fórmula (I), se encontrarán, preferentemente, en una forma farmacéuticamente aceptable o sustancialmente pura, es decir, que tiene un nivel de pureza farmacéuticamente aceptable excluyendo los aditivos farmacéuticos normales tales como diluyentes y portadores, y no incluyendo material considerado tóxico a niveles de dosificación normales. Los niveles de pureza para el principio activo son preferiblemente superiores al 50%, más preferiblemente superiores al 70%, y todavía más preferiblemente supenores al 90%. En una realización preferida, son superiores al 95% de compuesto de fórmula (I) o sus isómeros o sales farmacéuticamente aceptables. En una realización más preferida, la presente invención se refiere al compuesto polimérico de fórmula ( For their application in therapy, the compounds of formula (I), will preferably be in a pharmaceutically acceptable or substantially pure form, that is, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and not including material considered toxic at normal dosage levels. The purity levels for the active ingredient are preferably greater than 50%, more preferably greater than 70%, and still more preferably greater than 90%. In a preferred embodiment, they are greater than 95% of the compound of formula (I) or its pharmaceutically acceptable isomers or salts. In a more preferred embodiment, the present invention relates to the polymeric compound of formula (
Figure imgf000010_0001
Figure imgf000010_0001
a-tocoferol  a-tocopherol
(II) donde (m+n) es igual a 1 y * se entiende como la repetición de los monómeros m y n. (II) where (m + n) is equal to 1 and * is understood as the repetition of monomers m and n.
En la presente invención el compuesto de fórmula (II) también se denomina poli(VP-co-MTOS). La molécula de alpha-tocoferol se une a través del grupo hidroxilo del biciclo, por lo que, en el compuesto polimérico de fórmula (II), el hidrógeno de este grupo hidroxilo ha desaparecido y se ha formado un grupo éster. In the present invention the compound of formula (II) is also called poly (VP-co-MTOS). The alpha-tocopherol molecule binds through the hydroxyl group of the bicycles, so, in the polymeric compound of formula (II), the hydrogen of this hydroxyl group has disappeared and an ester group has formed.
En otra realización preferida, la presente invención se refiere al compuesto polimérico de fórmula (III), In another preferred embodiment, the present invention relates to the polymeric compound of formula (III),
Figure imgf000011_0001
Figure imgf000011_0001
donde (m+n) es igual a 1 y * se entiende como la repetición de los monómeros m y n. where (m + n) is equal to 1 and * is understood as the repetition of monomers m and n.
En la presente invención el compuesto de fórmula (III) también se denomina poli(VP-co-MVE). La molécula de alfa-tocoferol se une a través del grupo hidroxilo del biciclo, por lo que, en el compuesto polimérico de fórmula (III), el hidrógeno de este grupo hidroxilo ha desaparecido y se ha formado un grupo éster. In the present invention the compound of formula (III) is also called poly (VP-co-MVE). The alpha-tocopherol molecule binds through the hydroxyl group of the bicycles, so, in the polymeric compound of formula (III), the hydrogen of this hydroxyl group has disappeared and an ester group has formed.
En una realización preferida, m tiene un valor de entre 0,05 a 0,80. In a preferred embodiment, m has a value between 0.05 to 0.80.
En una realización más preferida, m tiene un valor de entre 0, 1 a 0,2. In a more preferred embodiment, m has a value between 0.1 to 0.2.
En una realización preferida, n tiene un valor de entre 0,20 a 0,95. In a preferred embodiment, n has a value between 0.20 to 0.95.
En una realización más preferida, n tiene un valor de entre 0,8 a 0,9. In a more preferred embodiment, n has a value between 0.8 to 0.9.
En un segundo aspecto, la presente invención se refiere al compuesto polimérico de fórmula (IV) In a second aspect, the present invention relates to the polymeric compound of formula (IV)
Figure imgf000012_0001
Figure imgf000012_0001
o sus isómeros o sales farmacéuticamente aceptables, . donde G esta descrito anteriormente y (m+n) es igual a 1 y * se entiende como la repetición de los monómeros m y n. or its pharmaceutically acceptable isomers or salts,. where G is described above and (m + n) is equal to 1 and * is understood as the repetition of monomers m and n.
En una realización preferida, el compuesto polimérico de fórmula (IV) es el compuesto polimérico de fórmula (II). In a preferred embodiment, the polymeric compound of formula (IV) is the polymeric compound of formula (II).
Figure imgf000012_0002
Figure imgf000012_0002
(II) En una realización preferida, m tiene un valor de entre 0,05 a 0,80. En una realización más preferida, m tiene un valor de entre 0, 1 a 0,2. (II) In a preferred embodiment, m has a value between 0.05 to 0.80. In a more preferred embodiment, m has a value between 0.1 to 0.2.
En una realización preferida, n tiene un valor de entre 0,20 a 0,95. In a preferred embodiment, n has a value between 0.20 to 0.95.
En una realización más preferida, n tiene un valor de entre 0,8 a 0,9. En un tercer aspecto, la presente invención se refiere a la composición farmacéutica que comprende el compuesto de fórmula (IV) definido anteriormente y más preferiblemente el compuesto de fórmula (II). In a more preferred embodiment, n has a value between 0.8 to 0.9. In a third aspect, the present invention relates to the pharmaceutical composition comprising the compound of formula (IV) defined above and more preferably the compound of formula (II).
En una realización preferida, esta composición además comprende un vehículo farmacéutico. In a preferred embodiment, this composition further comprises a pharmaceutical vehicle.
Los vehículos farmacéuticos que pueden ser utilizados en dichas composiciones son aquellos conocidos por los técnicos en la matena y utilizados habitualmente en la elaboración de composiciones terapéuticas. The pharmaceutical vehicles that can be used in said compositions are those known to those skilled in matena and commonly used in the elaboration of therapeutic compositions.
En otra realización preferida, la composición farmacéutica comprende otro principio activo y más preferiblemente un principio activo con efecto antitumoral. Por "principio activo" se entiende en la presente invención por un compuesto que contenga al menos una sustancia química de alta pureza utilizada en la prevención de una enfermedad, o para evitar la aparición de un proceso fisiológico no deseado. En una realización más preferida, la composición farmacéutica se encuentra en una cantidad de entre 0,010 mg/ml y 1 ,25 mg/ml. En un cuarto aspecto, la invención se refiere al uso del compuesto polimérico de fórmula (IV), más preferiblemente el compuesto de fórmula (II) para la fabricación de una composición farmacéutica. El quinto aspecto de la presente invención se refiere al procedimiento de obtención de un compuesto polimérico de fórmula (IV) que comprende las siguientes etapas: a) Mezcla del alfa-tocoferol con mono-2-(metacriloiloxi)etil succinato en presencia de un catalizador y un activador de la reacción. b) Mezcla del monómero obtenido en la etapa (a) con un monómero hidrofílico, en presencia de un iniciador de reacción. En una realización preferida, el catalizador de la etapa (a) es una amina. In another preferred embodiment, the pharmaceutical composition comprises another active ingredient and more preferably an active ingredient with antitumor effect. By "active ingredient" is meant in the present invention a compound that contains at least one high purity chemical substance used in the prevention of a disease, or to prevent the occurrence of an unwanted physiological process. In a more preferred embodiment, the pharmaceutical composition is in an amount between 0.010 mg / ml and 1.25 mg / ml. In a fourth aspect, the invention relates to the use of the polymeric compound of formula (IV), more preferably the compound of formula (II) for the manufacture of a pharmaceutical composition. The fifth aspect of the present invention relates to the process for obtaining a polymeric compound of formula (IV) comprising the following steps: a) Mixture of alpha-tocopherol with mono-2- (methacryloxy) ethyl succinate in the presence of a catalyst and a reaction activator. b) Mixture of the monomer obtained in step (a) with a hydrophilic monomer, in the presence of a reaction initiator. In a preferred embodiment, the catalyst of step (a) is an amine.
En una realización preferida, el activador de la etapa (a) es una ¡mida. In a preferred embodiment, the activator of step (a) is a measure.
En una realización preferida, el tiempo de reacción de la etapa (a) tiene una duración comprendida entre 1 y 72 horas. In a preferred embodiment, the reaction time of step (a) has a duration between 1 and 72 hours.
En una realización preferida, la etapa (a) se realiza a una temperatura de 15°C a 60°C. En una realización preferida, el monómero hidrofílico de la etapa (b) se selecciona del siguiente grupo: /V-vinilpirrolidona, 1 -vinilimidazol y N,N- dimetilacrilamida, In a preferred embodiment, step (a) is performed at a temperature of 15 ° C to 60 ° C. In a preferred embodiment, the hydrophilic monomer of step (b) is selected from the following group: / V-vinyl pyrrolidone, 1-vinylimidazole and N, N-dimethylacrylamide,
/V-isopropilacrilamida, 2-hidroxietilmetacrilato, 2-hidroxietilacrilato, metacrilato de polietilenglicol ), acrilato de polietilenglicol), metacrilato de 2-hidroxipropilo, metacrilato de /V-etilmorfolina, acrilato /V-etilmorfolina, metacrilato /V-hidroxietil pirrolidona, acrilato de /V-hidroxietil pirrolidona y 2-vinilpiridina. En una realización más preferida, el monómero hidrofílico de la etapa (b) es N- vinilpirrolidona, obteniéndose el compuesto de fórmula (II). / V-isopropylacrylamide, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, polyethylene glycol methacrylate), polyethylene glycol acrylate), 2-hydroxypropyl methacrylate, / V-ethylmorpholine methacrylate, acrylate / V-ethyl acrylate, v-ethyl acrylate of / V-hydroxyethyl pyrrolidone and 2-vinylpyridine. In a more preferred embodiment, the hydrophilic monomer of step (b) is N-vinyl pyrrolidone, the compound of formula (II) being obtained.
En una realización preferida, el iniciador de la etapa (b) es un iniciador radical. In a preferred embodiment, the initiator of step (b) is a radical initiator.
En otra realización preferida, la concentración de mono-2-(metacriloiloxi)etil succinato empleado en (a) está entre 0,01 y 20 equivalentes. In another preferred embodiment, the concentration of mono-2- (methacryloxy) ethyl succinate employed in (a) is between 0.01 and 20 equivalents.
En otra realización preferida, la concentración de catalizador empleado en (a) está entre 0,01 y 1 equivalentes. In another preferred embodiment, the catalyst concentration employed in (a) is between 0.01 and 1 equivalent.
En otra realización preferida, la concentración de activador de la reacción empleado en (a) está entre 0,9 y 1 ,6 equivalentes. En otra realización preferida, la concentración de monómero empleado en la etapa (b) está entre 0,01 y 10 M. In another preferred embodiment, the concentration of reaction activator employed in (a) is between 0.9 and 1.6 equivalents. In another preferred embodiment, the concentration of monomer used in step (b) is between 0.01 and 10 M.
En otra realización preferida, la concentración de iniciador empleado en la etapa (b) se encuentra entre 0,001 y 0,1 M. In another preferred embodiment, the concentration of initiator employed in step (b) is between 0.001 and 0.1 M.
El sexto aspecto de la invención se refiere a una partícula micelar que comprende el compuesto polimérico de fórmula (I). The sixth aspect of the invention relates to a micellar particle comprising the polymeric compound of formula (I).
El término "partícula micelar" en la presente invención se refiere a aquella micela polimérica cuyo tamaño puede ser micrométrico o nanométrico. The term "micellar particle" in the present invention refers to that polymeric micelle whose size can be micrometric or nanometric.
En una realización preferida la partícula micelar está formada por el compuesto polimérico de fórmula (III). En una realización preferida la partícula micelar está formada por el compuesto polimérico de fórmula (IV). En una realización preferida la partícula micelar está formada por el compuesto polimérico de fórmula (II). In a preferred embodiment the micellar particle is formed by the polymeric compound of formula (III). In a preferred embodiment the micellar particle is formed by the polymeric compound of formula (IV). In a preferred embodiment the micellar particle is formed by the polymeric compound of formula (II).
En otra realización preferida, la partícula micelar formada por el compuesto 5 polimérico de fórmula (I) comprende un principio activo con efecto antitumoral. In another preferred embodiment, the micellar particle formed by the polymeric compound of formula (I) comprises an active ingredient with antitumor effect.
Estas partículas micelares incorporan el principio activo mediante su encapsulación en las micelas de tamaño métrico.  These micellar particles incorporate the active ingredient by encapsulation in the metric size micelles.
En una realización más preferida, el principio activo encapsulado en la partícula i o micelar se selecciona del grupo que comprende ciclosporina, colchicina, mitomicina C, ácido micofenólico, rapamicina, everolimus, tacrolimus, paclitaxel, QP-2, actinomicina, estradioles, dexametasona, metatrexato, cilostazol, prednisona, doxorubicina, ranpirnas, troglitazona, valsartán, pemirolast, C-MYC antisentido, angiopeptina, vincristina, PCNA ribozima, 2- 15 cloro-desoxiadenosina, compuestos dirigidos a mTOR y fludarabina. In a more preferred embodiment, the active ingredient encapsulated in the micellar io particle is selected from the group comprising cyclosporine, colchicine, mitomycin C, mycophenolic acid, rapamycin, everolimus, tacrolimus, paclitaxel, QP-2, actinomycin, estradiols, dexamethasone, metharexate , cilostazol, prednisone, doxorubicin, ranpirnas, troglitazone, valsartan, pemirolast, C-MYC antisense, angiopeptin, vincristine, PCNA ribozyme, 2-15 chloro-deoxyadenosine, mTOR-directed compounds and fludarabine.
En una realización preferida, la partícula micelar descrita anteriormente, además comprende una biomolécula. In a preferred embodiment, the micellar particle described above also comprises a biomolecule.
20 En un séptimo aspecto, la invención se refiere al uso de la partícula micelar descrita anteriormente para la fabricación de una composición farmacéutica. In a seventh aspect, the invention relates to the use of the micellar particle described above for the manufacture of a pharmaceutical composition.
En una realización más preferida, el uso de la partícula micelar se refiere a una composición farmacéutica para el tratamiento del cáncer de pulmón, mama, 25 hígado, colón, piel y otros tipos de cáncer en los que la actividad mitocondrial de las células cancerígenas esté alterada. In a more preferred embodiment, the use of the micellar particle refers to a pharmaceutical composition for the treatment of lung, breast, liver, colon, skin and other types of cancer in which the mitochondrial activity of the cancer cells is altered
Otro aspecto de la presente invención se refiere al uso de la partícula micelar como vehículo farmacéutico. Another aspect of the present invention relates to the use of the micellar particle as a pharmaceutical vehicle.
30  30
El octavo aspecto de la presente invención se refiere al procedimiento de obtención de la partícula micelar donde cualquiera de los compuestos poliméricos de fórmula (I) descritos anteriormente se disuelve en un disolvente orgánico y se mezclan con medio acuoso. The eighth aspect of the present invention relates to the method of obtaining the micellar particle where any of the compounds Polymers of formula (I) described above are dissolved in an organic solvent and mixed with aqueous medium.
En una realización preferida, el disolvente orgánico es miscible en agua. In a preferred embodiment, the organic solvent is miscible in water.
En una realización más preferida el disolvente orgánico miscible en agua se selecciona del grupo que comprende dioxano, tetrahidrofurano y dimetilformamida. En una realización preferida, el disolvente orgánico se encuentra en una concentración de entre 2 y 20 mg/ml. In a more preferred embodiment the water miscible organic solvent is selected from the group comprising dioxane, tetrahydrofuran and dimethylformamide. In a preferred embodiment, the organic solvent is in a concentration of between 2 and 20 mg / ml.
En otra realización preferida, el medio acuoso se encuentra en una concentración de entre 0,02 y 3 mg/ml. In another preferred embodiment, the aqueous medium is in a concentration of between 0.02 and 3 mg / ml.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
FIG. 1. Muestra el esquema de la síntesis del monómero metacrílico derivado de la molécula de alfa-tocoferol (MTOS). FIG. 1. Shows the synthesis scheme of methacrylic monomer derived from the alpha-tocopherol molecule (MTOS).
FIG. 2. Muestra el espectro de 1H-RMN (400 MHz, CDCI3) del monómero metacrílico derivado de la molécula de alfa-tocoferol (MTOS) FIG. 3. Muestra el espectro de 1H-RMN (400 MHz, CDCI3) del copolímero poli(VP-co-MTOS) (95:5) FIG. 2. Shows the 1 H-NMR spectrum (400 MHz, CDCI 3 ) of the methacrylic monomer derived from the alpha-tocopherol molecule (MTOS) FIG. 3. Shows the 1 H-NMR spectrum (400 MHz, CDCI 3 ) of the poly (VP-co-MTOS) copolymer (95: 5)
FIG. 4. Muestra los espectros de 1H-RMN (400 MHz, 1 ,4-dioxano-d8) de la evolución de los protones vinílicos durante la reacción de copolimerización del poli(VP-co-MTOS) (70:30). La reacción se llevó a cabo en el tubo de resonancia en las mismas condiciones de reacción que las descritas en el ejemplo 1 , pero utilizando dioxano deuterado como disolvente. FIG. 4. Shows the 1 H-NMR spectra (400 MHz, 1,4-dioxane-d 8 ) of the evolution of the vinyl protons during the copolymerization reaction of the poly (VP-co-MTOS) (70:30). The reaction was carried out in the resonance tube under the same reaction conditions as described in example 1, but using deuterated dioxane as solvent.
FIG. 5. Muestra la variación del tamaño de partícula en función de la composición del copolímero (poli(VP-co-MTOS) 95:5, 70:30 y 50:50) y de su concentración durante el proceso de nanoprecipitación. FIG. 5. It shows the variation of the particle size according to the composition of the copolymer (poly (VP-co-MTOS) 95: 5, 70:30 and 50:50) and its concentration during the nanoprecipitation process.
FIG. 6. Muestra las imágenes de microscopía electrónica de barrido (SEM) (a) y microscopía de fuerza atómica (AFM) (b) de nanopartículas obtenidas con copolímeros metacrílicos derivados de la molécula de alfa-tocoferol y N- vinilpirrolidona (VP) denominados poli(VP-co-MTOS). FIG. 6. Shows the scanning electron microscopy (SEM) (a) and atomic force microscopy (AFM) (b) images of nanoparticles obtained with methacrylic copolymers derived from the alpha-tocopherol and N-vinylpyrrolidone (VP) molecule called poly (VP-co-MTOS).
FIG. 7. Muestra las imágenes de microscopía confocal de células endoteliales microvasculares humanas HPMEC-ST1 expuestas durante 5 horas y media a partículas poli(VP-co-MVE) (80:20) que encapsulaban cumarina-6 en su interior. FIG. 7. Shows the confocal microscopy images of HPMEC-ST1 human microvascular endothelial cells exposed for 5 hours and a half to poly (VP-co-MVE) particles (80:20) that encapsulated coumarin-6 inside.
FIG. 8. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 80% de confluencia expuestas a las nanopartículas obtenidas con copolímeros metacrílicos derivados de la molécula de alfa-tocoferol (poli(VP-co-MTOS)) de composiciones molares 95:5, 90: 10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 8. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 80% confluence exposed to nanoparticles obtained with methacrylic copolymers derived from the alpha-tocopherol molecule (poly (VP-co-MTOS)) of Molar compositions 95: 5, 90: 10, 85:15, 80:20 and 70:30. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 9. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 80% de confluencia expuestas a las nanopartículas obtenidas con copolímeros metacrílicos derivados de la molécula de alfa-tocoferol (poli(VP-co-MVE)) de composiciones molares 95:5, 90: 10 y 85: 15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 9. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 80% confluence exposed to nanoparticles obtained with methacrylic copolymers derived from the alpha-tocopherol molecule (poly (VP-co-MVE)) of molar compositions 95: 5, 90: 10 and 85: 15. MTT assay, the mean of cell viability is represented relative ± standard deviation (n = 8; * : p <0.05).
FIG. 10. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 50% de confluencia expuestas a las nanopartículas de poli(VP-co-MTOS) con composiciones molares 95:5, 90: 10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 10. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 50% confluence exposed to poly (VP-co-MTOS) nanoparticles with 95: 5, 90: 10, 85:15 molar compositions , 80:20 and 70:30. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 1 1 . Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 100% de confluencia expuestas a las nanopartículas de poli(VP-co-MTOS) con composiciones molares 95:5, 90: 10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. eleven . It shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 100% confluence exposed to poly (VP-co-MTOS) nanoparticles with 95: 5, 90: 10, 85:15, 80 molar compositions : 20 and 70:30. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 12. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 50% de confluencia expuestas a las nanopartículas de poli(VP-co-MVE) con composiciones molares 95:5, 90: 10 y 85: 15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 12. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 50% confluence exposed to poly (VP-co-MVE) nanoparticles with 95: 5, 90: 10 and 85: 15 molar compositions MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 13. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 100% de confluencia expuestas a las nanopartículas de poli(VP-co-MVE) con composiciones molares 95:5, 90: 10 y 85: 15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 14. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 100% y 50% de confluencia expuestas a las nanopartículas poli (VP-co- MTOS) 90: 10 y 80:20. Ensayo MTT, en cada punto se representa la media, el intervalo de confianza al 95% para la media (n=8), y los resultados obtenidos en el test de HSD de Tukey (*: p<0,05) efectuado para comparar los valores de viabilidad celular relativa medidos entre los cultivos de las dos estirpes celulares mantenidos con la misma concentración de partículas de cada uno de los sistemas incluidos en la figura. FIG. 13. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 100% confluence exposed to poly (VP-co-MVE) nanoparticles with 95: 5, 90: 10 and 85: 15 molar compositions MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented. FIG. 14. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 100% and 50% confluence exposed to polyparticles nanoparticles (VP-co-MTOS) 90: 10 and 80:20. Test MTT, at each point the mean is represented, the 95% confidence interval for the mean (n = 8), and the results obtained in the Tukey HSD test ( * : p <0.05) performed to compare the relative cell viability values measured between the cultures of the two cell lines maintained with the same concentration of particles from each of the systems included in the figure.
FIG. 15. Muestra los resultados del ensayo de viabilidad de células endoteliales microvasculares humanas HPMEC-ST1 a un 100% y 50% de confluencia expuestas a las nanopartículas poli (VP-co- MVE) 90: 10 y 85: 15. Ensayo MTT, en cada punto se representa la media, el intervalo de confianza al 95% para la media (n=8), y los resultados obtenidos en el test de HSD de Tukey (*: p<0,05) efectuado para comparar los valores de viabilidad celular relativa medidos entre los cultivos de las dos estirpes celulares mantenidos con la misma concentración de partículas de cada uno de los sistemas incluidos en la figura. FIG. 15. Shows the results of the viability test of HPMEC-ST1 human microvascular endothelial cells at 100% and 50% confluence exposed to poly (VP-co-MVE) nanoparticles 90: 10 and 85: 15. MTT test, in each point represents the mean, the 95% confidence interval for the mean (n = 8), and the results obtained in the Tukey HSD test ( * : p <0.05) performed to compare the feasibility values relative cell measured between the cultures of the two cell lines maintained with the same concentration of particles of each of the systems included in the figure.
FIG. 16. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de mama MCF-7 expuestas a las nanopartículas poli(VP-co-MTOS) 95:5, 90:10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 16. Shows the results of the viability test of human breast adenocarcinoma cells MCF-7 exposed to poly (VP-co-MTOS) nanoparticles 95: 5, 90:10, 85:15, 80:20 and 70:30 . MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 17. Muestra los resultados del ensayo de viabilidad de células epiteliales humanas de mama HMEpC expuestas a las nanopartículas poli(VP-co-MTOS) 95:5, 90:10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 17. Shows the results of the viability test of human HMEpC breast epithelial cells exposed to poly (VP-co-MTOS) nanoparticles 95: 5, 90:10, 85:15, 80:20 and 70:30. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 18. Muestra los resultados del ensayo de viabilidad de adenocarcinoma humano de mama MCF-7 expuestas a las nanopartículas (poli(VP-co-MVE)) de composiciones molares 95:5, 90:10 y 85: 15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 19. Muestra los resultados del ensayo de viabilidad de células epiteliales humanas de mama HMEpC expuestas a las nanopartículas (poli(VP-co-MVE)) de composiciones molares 95:5, 90:10 y 85:15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 18. Shows the results of the viability test of human breast adenocarcinoma MCF-7 exposed to nanoparticles (poly (VP-co-MVE)) of molar compositions 95: 5, 90:10 and 85: 15. MTT assay, se represents the mean relative cell viability ± standard deviation (n = 8; * : p <0.05). FIG. 19. Shows the results of the viability test of human HMEpC breast epithelial cells exposed to nanoparticles (poly (VP-co-MVE)) of molar compositions 95: 5, 90:10 and 85:15. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 20. Muestra los resultados del ensayo de viabilidad de adenocarcinoma humano de mama MCF-7 expuestas a las nanopartículas recién preparadas (poli(VP-co-MVE)) de composiciones molares 95:5, 90: 10 y 85:15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 20. Shows the results of the viability test of human breast adenocarcinoma MCF-7 exposed to freshly prepared nanoparticles (poly (VP-co-MVE)) of 95: 5, 90: 10 and 85:15 molar compositions. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 21. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de mama MCF-7 expuestas a las nanopartículas poli(VP-co- MVE) 95:5 y 90: 10 con distintos periodos de almacenaje previo a su utilización. Ensayo MTT, en cada punto se representa la media y el intervalo de confianza al 95% para la media (n=8). FIG. 21. It shows the results of the viability test of human breast adenocarcinoma cells MCF-7 exposed to poly (VP-co-MVE) nanoparticles 95: 5 and 90: 10 with different storage periods prior to use. MTT test, at each point the mean and 95% confidence interval for the mean are represented (n = 8).
FIG. 22 a y b. Muestra los resultados del ensayo de viabilidad de células epiteliales humanas de mama (HMEpC) y en cultivos de adenocarcinoma de mama (MCF-7) expuestas a las nanopartículas poli (VP-co-MTOS) 90:10 y 70:30, y poli(VP-co-MVE) 90: 10 y 85: 15. Ensayo MTT, en cada punto se representa la media, el intervalo de confianza al 95% para la media (n=8), y los resultados obtenidos en el test de HSD de Tukey (*: p<0,05) efectuado para comparar los valores de viabilidad celular relativa medidos entre los cultivos de las dos estirpes celulares mantenidos con la misma concentración de partículas de cada uno de los sistemas incluidos en la figura. FIG. 22 a and b. It shows the results of the viability test of human breast epithelial cells (HMEpC) and in breast adenocarcinoma cultures (MCF-7) exposed to poly (VP-co-MTOS) 90:10 and 70:30 nanoparticles, and poly (VP-co-MVE) 90: 10 and 85: 15. MTT test, at each point the mean is represented, the 95% confidence interval for the mean (n = 8), and the results obtained in the test Tukey HSD ( * : p <0.05) performed to compare the relative cell viability values measured between the cultures of the two cell lines maintained with the same particle concentration of each of the systems included in the figure.
FIG. 23. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de colon WiDr expuestas a las nanopartículas poli(VP-co-MTOS) 95:5, 90:10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 24. Muestra los resultados del ensayo de viabilidad de adenocarcinoma humano de colon WiDr expuestas a las nanopartículas (poli(VP-co-MVE)) de composiciones molares 95:5, 90:10 y 85: 15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 23. Shows the results of the viability test of human adenocarcinoma cells of the WiDr colon exposed to poly (VP-co-MTOS) nanoparticles 95: 5, 90:10, 85:15, 80:20 and 70:30. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented. FIG. 24. Shows the results of the viability test of human adenocarcinoma of the WiDr colon exposed to the nanoparticles (poly (VP-co-MVE)) of molar compositions 95: 5, 90:10 and 85: 15. MTT assay, the mean relative cell viability ± standard deviation (n = 8; * : p <0.05).
FIG. 25. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de colon WiDr expuestas a las nanopartículas poli(VP-co-MTOS) 90: 10 cargadas con succinato del -tocoferol (10, 5 y 1 %). Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 25. Shows the results of the viability test of human adenocarcinoma cells of the WiDr colon exposed to 90: 10 poly (VP-co-MTOS) nanoparticles loaded with -tocopherol succinate (10, 5 and 1%). MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 26. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de colon WiDr expuestas a las nanopartículas poli(VP-co-MVE) 85: 15 cargadas con succinato del -tocoferol (10, 5 y 1 %). Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 26. It shows the results of the viability test of human adenocarcinoma cells of the WiDr colon exposed to 85: 15 poly (VP-co-MVE) nanoparticles loaded with -tocopherol succinate (10, 5 and 1%). MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 27. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de laringe FaDu expuestas a las nanopartículas poli(VP-co-MTOS) 95:5, 90:10, 85:15, 80:20 y 70:30. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 28. Muestra los resultados del ensayo de viabilidad de adenocarcinoma humano de laringe FaDu expuestas a las nanopartículas (poli(VP-co-MVE)) de composiciones molares 95:5, 90:10 y 85: 15. Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 29. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de laringe FaDu expuestas a las nanopartículas poli(VP-co-MTOS) 90: 10 cargadas con succinato del -tocoferol (10, 5 y 1 %). Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 27. It shows the results of the feasibility test of FaDu human larynx adenocarcinoma cells exposed to poly (VP-co-MTOS) nanoparticles 95: 5, 90:10, 85:15, 80:20 and 70:30. MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented. FIG. 28. Shows the results of the FeDu human larynx adenocarcinoma viability test exposed to nanoparticles (poly (VP-co-MVE)) of 95: 5, 90:10 and 85: 15 molar compositions. MTT Assay, the mean relative cell viability ± standard deviation (n = 8; * : p <0.05). FIG. 29. It shows the results of the viability test of FaDu human larynx adenocarcinoma cells exposed to 90: 10 poly (VP-co-MTOS) nanoparticles loaded with -tocopherol succinate (10, 5 and 1%). MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
FIG. 30. Muestra los resultados del ensayo de viabilidad de células de adenocarcinoma humano de laringe FaDu expuestas a las nanopartículas poli(VP-co-MVE) 85: 15 cargadas con succinato del -tocoferol (10, 5 y 1 %). Ensayo MTT, se representa la media de la viabilidad celular relativa ± desviación estándar (n=8; *: p<0,05). FIG. 30. It shows the results of the feasibility test of FaDu human larynx adenocarcinoma cells exposed to 85: 15 poly (VP-co-MVE) nanoparticles loaded with -tocopherol succinate (10, 5 and 1%). MTT assay, the mean of the relative cell viability ± standard deviation (n = 8; * : p <0.05) is represented.
EJEMPLOS EXAMPLES
A continuación se ¡lustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto el uso como medicamento anticancerígeno del copolímero poli(VP-co-MTOS) perteneciente a la familia que se refiere la presente invención. The invention will now be illustrated by tests carried out by the inventors, which show the use as an anticancer drug of the poly (VP-co-MTOS) copolymer belonging to the family referred to in the present invention.
Primeramente se describe la síntesis del monómero derivado de la molécula de alfa-tocoferol a través de la cual la molécula de alfa-tocoferol queda unida a un resto acrílico del monómero por un elemento separador hidrolizable enzimáticamente. First, the synthesis of the monomer derived from the alpha-tocopherol molecule through which the alpha-tocopherol molecule is attached to an acrylic moiety of the monomer by an enzymatically hydrolyzable separator element is described.
Seguidamente se describe la síntesis de copolímeros poli(VP-co-MTOS) a partir del monómero acrílico portador de la molécula de alfa-tocoferol y vinilpirrolidona como monómero altamente hidrofílico. Se comprueba la composición molar de los copolímeros formados y su reactividad, para confirmar su capacidad para producir estructuras autoensambladas poliméricas tipo micela. A continuación se describe el método de preparación de partículas tipo micela y se determina su tamaño y morfología que varía en función de la composición molar de los copolímeros de poli(VP-co-MTOS) y de su concentración durante el proceso de nanoprecipitación. The synthesis of poly (VP-co-MTOS) copolymers from the acrylic monomer carrying the alpha-tocopherol and vinyl pyrrolidone molecule as a highly hydrophilic monomer is described below. The molar composition of the copolymers formed and their reactivity are checked, to confirm their ability to produce micelle-like polymeric self-assembled structures. The method of preparing micella particles is described below and its size and morphology are determined, which vary according to the composition. molar copolymers of poly (VP-co-MTOS) and their concentration during the nanoprecipitation process.
Por último, se llevan a cabo los ensayos de viabilidad, donde se demuestra la baja toxicidad de las nanopartículas de poli(VP-co-MTOS) en todo el gradiente composicional de los copolímeros preparados. Además, todas las composiciones ensayadas inducen la muerte de células endoteliales en crecimiento a altas concentraciones y, algunas, también lo hacen a concentraciones relativamente bajas. Además, se comparan los resultados de viabilidad obtenidos con cultivos de adenocarcinoma de mama MCF-7 y células epiteliales humanas de mama HMEpC. Con este ensayo se demuestra que los compuestos aquí descritos disminuyen significativamente la viabilidad celular de las células cancerígenas sin afectar prácticamente a las sanas en las concentraciones ensayadas. Finally, feasibility tests are carried out, where the low toxicity of poly (VP-co-MTOS) nanoparticles is demonstrated throughout the compositional gradient of the prepared copolymers. In addition, all the compositions tested induce the death of growing endothelial cells at high concentrations and, some, also do so at relatively low concentrations. In addition, the feasibility results obtained with MCF-7 breast adenocarcinoma cultures and human HMEpC breast epithelial cells are compared. This test demonstrates that the compounds described here significantly decrease the cell viability of cancer cells without practically affecting healthy ones in the concentrations tested.
Ejemplo 1 Example 1
Síntesis de un monomero metacrílico derivado de la molécula de alfa-tocoferol (MTOS) Synthesis of a methacrylic monomer derived from the alpha-tocopherol molecule (MTOS)
El monomero fue preparado por reacción de la molécula de alfa-tocoferol con mono-2-(metacriloiloxi)etil succinato (MES) en presencia de dimetilaminopiridina (DMAP) como catalizador y diciclohexil carbodiimida (DCC) como activador de la reacción. Se utilizó diclorometano como disolvente. El esquema de la reacción se muestra en la Figura 1 . The monomer was prepared by reacting the alpha-tocopherol molecule with mono-2- (methacryloxy) ethyl succinate (MES) in the presence of dimethylaminopyridine (DMAP) as a catalyst and dicyclohexyl carbodiimide (DCC) as a reaction activator. Dichloromethane was used as solvent. The reaction scheme is shown in Figure 1.
En un matraz de fondo redondo se introdujeron la molécula de alfa-tocoferol (1 equivalente), el MES (1 ,3 equivalentes) y la DMAP (0, 1 equivalente) en 100 mi de diclorometano. La DCC (1 ,4 equivalentes) fue añadida lentamente, gota a gota, con constante agitación a temperatura ambiente. La mezcla de reacción se mantuvo durante 24 horas en las mismas condiciones. Transcurridas 24 horas, la mezcla de reacción se filtró para eliminar los subproductos sólidos. La DMAP y la molécula de alfa-tocoferol que no reaccionan fueron eliminadas por sucesivas extracciones con disoluciones de NaOH y HCI 1 N y posteriormente se eliminó el disolvente a presión reducida. El medio resultante se redisolvió en hexano y se lavó 3 veces con las mismas disoluciones de NaOH y HCI utilizadas con anterioridad con el fin de mejorar la eficacia de la purificación. El rendimiento global de la reacción de fue de entre el 85 y 90%. En la figura 2 se muestra el espectro del MTOS con la asignación de las señales de resonancia que verifican la correcta síntesis del monómero. En el espectro se puede observar claramente las señales correspondientes a los protones vinílicos y a los protones del grupo (CH3) del grupo acrílico. Síntesis del copolímero portador de la molécula de alfa-tocoferol poli(VP-co- MTOS) In a round bottom flask, the alpha-tocopherol molecule (1 equivalent), the MES (1.3 equivalents) and the DMAP (0.1 equivalent) were introduced in 100 ml of dichloromethane. DCC (1.4 equivalents) was added slowly, drop by drop, with constant stirring at room temperature. The reaction mixture was maintained for 24 hours under the same conditions. After 24 hours, the reaction mixture was filtered to remove solid by-products. The DMAP and the unreacted alpha-tocopherol molecule were removed by successive extractions with solutions of NaOH and 1 N HCI and subsequently the solvent was removed under reduced pressure. The resulting medium was redissolved in hexane and washed 3 times with the same NaOH and HCI solutions used previously in order to improve the purification efficiency. The overall reaction yield was between 85 and 90%. Figure 2 shows the MTOS spectrum with the assignment of the resonance signals that verify the correct synthesis of the monomer. The signals corresponding to the vinyl protons and the protons of the group (CH 3 ) of the acrylic group can be clearly observed in the spectrum. Synthesis of the copolymer carrying the alpha-tocopherol poly molecule (VP-co-MTOS)
Se prepararon copolímeros por reacción del monómero MTOS obtenido y N- vinil-2-pirrolidona (VP) como monómero hidrofílico a partir de composiciones en la alimentación de VP:MTOS (%-molar) de 95:5, 90:10, 85:15, 80:20, 70:30, 50:50, 30:70 y 20:80. Copolymers were prepared by reacting the obtained MTOS monomer and N-vinyl-2-pyrrolidone (VP) as hydrophilic monomer from compositions in the VP: MTOS feed (% -molar) of 95: 5, 90:10, 85: 15, 80:20, 70:30, 50:50, 30:70 and 20:80.
Todos los polímeros fueron preparados por polimerización radical a alta conversión. La reacción se llevó a cabo por disolución de los monómeros en dioxano (0,25 M) utilizando 2,2'-Azobisisobutironitrilo (AIBN) como iniciador (1 ,5x10"2 M). La disolución preparada se desoxigenó mediante una corriente de N2 (g) durante 30 minutos a temperatura ambiente. La mezcla de reacción se mantuvo a 60 °C en el interior de un horno durante 24 horas. Finalmente, el producto obtenido se purificó por diálisis y liofilizó de forma que se obtuvo un polvo amorfo blanco con rendimientos que se recogen en la Tabla 1 . La composición molar de los copolímeros preparados se calculó a partir de sus correspondientes espectros de 1 H-RMN. En la figura 3 se muestra como ejemplo el espectro del copolímero preparado a partir de fracciones molares en la alimentación de VP:MTOS de 95:5. Se observa la desaparición de las 5 señales características de los protones vinílicos. Además, se aprecia el ensanchamiento de las señales como consecuencia de la polimerización y con ello, del carácter macromolecular de los polímeros sintetizados. All polymers were prepared by radical polymerization at high conversion. The reaction was carried out by dissolving the monomers in dioxane (0.25 M) using 2,2'-Azobisisobutyronitrile (AIBN) as initiator (1.5x10 "2 M). The prepared solution was deoxygenated by a stream of N 2 (g) for 30 minutes at room temperature The reaction mixture was kept at 60 ° C inside an oven for 24 hours Finally, the product obtained was purified by dialysis and lyophilized so that an amorphous powder was obtained white with yields shown in Table 1. The molar composition of the copolymers prepared was calculated from their corresponding 1 H-NMR spectra. Figure 3 shows as an example the spectrum of the copolymer prepared from molar fractions in the VP: MTOS feed of 95: 5. The disappearance of the 5 characteristic signals of the vinyl protons is observed. In addition, the widening of the signals as a consequence of the polymerization and with it, of the macromolecular nature of the synthesized polymers is appreciated.
Para el cálculo de las composiciones molares de los copolímeros, se i o consideran los valores de las integrales normalizadas de las señales características de cada monómero. En concreto, se tienen en cuenta las señales que aparecen en el intervalo de 3 - 5 ppm correspondientes a 3 protones de la VP y 4 protones del MTOS (CH2-13 y CH2-14) y la señal a 0,86 ppm correspondiente a 12 protones del MTOS (CH3-4a', CH3-8a', CH3-12a' y 15 CH3-13'). En la tabla 1 se resumen los valores de composiciones en MTOS de los copolímeros preparados junto con los rendimientos obtenidos en cada caso. For the calculation of the molar compositions of the copolymers, the values of the normalized integrals of the characteristic signals of each monomer are considered. Specifically, the signals that appear in the range of 3-5 ppm corresponding to 3 protons of the VP and 4 protons of the MTOS (CH 2 -13 and CH 2 -14) and the signal at 0.86 ppm are taken into account corresponding to 12 protons of MTOS (CH 3 -4a ', CH 3 -8a', CH 3 -12a 'and 15 CH 3 -13'). Table 1 summarizes the MTOS composition values of the copolymers prepared together with the yields obtained in each case.
Tabla 1 . Composición molar de MTOS en la alimentación (FMTOS) y en los distintos copolímeros preparados (Í TOS), rendimiento de las reacciones de 20 copolimerización, peso molecular promedio en número (Mn), en peso (Mw) e índice de polidispersidad {Pdl). Table 1 . Molar composition of MTOS in the feed (FMTOS) and in the different copolymers prepared (IT), yield of the copolymerization reactions, number average molecular weight (M n ), weight (M w ) and polydispersity index { Pdl).
FMTOS f TOS Rto (%) Mw-10 3 M„-10 3 Pdl FMTOS f TOS Rto (%) M w -10 3 M „-10 3 Pdl
0 0 85 35,0 14,2 2,2 0 0 85 35.0 14.2 2.2
5 7 69 55,6 30,5 1 ,8  5 7 69 55.6 30.5 1, 8
10 15 79 82, 1 46,8 1 ,8  10 15 79 82, 1 46.8 1, 8
15 28 79 89,3 46,9 1 ,9  15 28 79 89.3 46.9 1, 9
20 34 79 1 12,8 58,8 1 ,9  20 34 79 1 12.8 58.8 1, 9
30 46 83 106,0 58,2 1 ,8  30 46 83 106.0 58.2 1, 8
50 63 73 124,2 64, 1 1 ,9 70 82 75 123,8 48,0 2,5 50 63 73 124.2 64, 1 1, 9 70 82 75 123.8 48.0 2.5
80 90 63 164,3 58,8 2,8  80 90 63 164.3 58.8 2.8
100 100 60 262, 1 81 ,5 3,2  100 100 60 262, 1 81, 5 3.2
En la tabla 1 se incluyen también los pesos moleculares promedio en peso (Mw), en número (Mn) y el índice de polidispersidad (Pdl) de los copolímeros preparados. Estos resultados se obtienen mediante cromatografía de exclusión 5 por tamaños (SEC). Para ello, se utilizó un cromatógrafo Perkin-Elmer equipado con una bomba ¡socrática Serie LC-250, conectado a un detector de índice de refracción Serie 200. Las muestras se eluyeron empleando tres columnas conectadas en serie de poliestireno-divinilbenceno (Polymer Laboratories) de tamaño de poro de 103, 104 y 105 A a 30 °C. Como eluyente i o se utilizó tetrahidrofurano (THF) a un flujo de 1 ml/min. Para el calibrado se emplearon patrones de polimetacrilato de metilo de peso molecular entre 10.300 y 1 .400.000 Da. Table 1 also includes the molecular weights average in weight (M w ), in number (M n ) and the polydispersity index (Pdl) of the prepared copolymers. These results are obtained by size exclusion chromatography (SEC). For this, a Perkin-Elmer chromatograph equipped with a Socratic LC-250 series pump was used, connected to a Series 200 refractive index detector. The samples were eluted using three columns connected in series of polystyrene-divinylbenzene series (Polymer Laboratories) pore size of 10 3 , 10 4 and 10 5 A at 30 ° C. As eluent io tetrahydrofuran (THF) was used at a flow rate of 1 ml / min. For calibration, methyl polymethacrylate standards of molecular weight between 10,300 and 1,400,000 Da were used.
Para conocer la organización microestructural de las cadenas poliméricas y la 15 reactividad de cada uno de los monómeros se calcularon las relaciones de reactividad entre los monómeros por análisis cuantitativo de 1 H-RMN in situ. To know the microstructural organization of the polymer chains and the reactivity of each of the monomers, the reactivity ratios between the monomers were calculated by quantitative analysis of 1 H-NMR in situ.
Las copolimerizaciones de los distintos productos se llevaron a cabo dentro de un equipo de RMN utilizando dioxano deuterado como disolvente a 60 °C. Las 20 reacciones se realizaron dentro del tubo de resonancia previa desoxigenación con nitrógeno y situando dentro un tubo capilar con diclorobenceno que va a servir como señal de referencia. Se estudiaron distintas concentraciones de comonómeros con el fin de abarcar todo el intervalo de concentraciones, siendo la concentración total de monómeros de 0,25 M. Copolymerizations of the different products were carried out in an NMR system using deuterated dioxane as a solvent at 60 ° C. The 20 reactions were carried out within the previous resonance tube deoxygenation with nitrogen and placing a capillary tube with dichlorobenzene inside which will serve as a reference signal. Different concentrations of comonomers were studied in order to cover the entire range of concentrations, the total concentration of monomers being 0.25 M.
25  25
En la figura 4 se muestra una secuencia de espectros a distintos tiempos de la reacción de polimerización obtenida para el copolímero preparado con una alimentación VP:MTOS de 70:30. Para el cálculo de las concentraciones instantáneas de los monómeros se han integrado las señales Hi (6, 1 ppm) y Ai (7, 1 ppm) asignadas a los protones acrílicos y vinílicos de los monómeros VP y MTOS respectivamente. Los valores de las relaciones de reactividad obtenidos son r Tos= 1 ,2 y rVP= 0, 12. Con este procedimiento, se comprueba que el MTOS es casi 10 veces más reactivo que la VP y, por tanto, la gran diferencia de reactividad de los monómeros utilizados. Esto da lugar a cadenas macromoleculares con largas secuencias de uno y otro monómero y pocas cadenas de composición intermedia. Este gradiente composicional a lo largo de las cadenas macromoleculares junto con la diferente hidrofilia de los monómeros da lugar a estructuras autoensambladas poliméricas de tipo micelar. A sequence of spectra at different times of the polymerization reaction obtained for the copolymer prepared with a VP: MTOS feed of 70:30 is shown in Figure 4. To calculate the instantaneous concentrations of the monomers, the signals Hi (6, 1 ppm) and Ai have been integrated (7, 1 ppm) assigned to the acrylic and vinyl protons of the VP and MTOS monomers respectively. The values of the reactivity ratios obtained are r T os = 1, 2 and r VP = 0.12. With this procedure, it is verified that the MTOS is almost 10 times more reactive than the VP and, therefore, the large difference in reactivity of the monomers used. This results in macromolecular chains with long sequences of both monomers and few intermediate composition chains. This compositional gradient along the macromolecular chains together with the different hydrophilicity of the monomers gives rise to polymeric self-assembled structures of the micellar type.
Preparación de nanopartículas a partir de copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE) Preparation of nanoparticles from poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers
Se prepararon nanopartículas a partir de los copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE) sintetizados según se describe anteriormente mediante el método de nanoprecipitación. Para ello, se disolvieron los copolímeros (10mg/ml) en un disolvente orgánico miscible en agua, en concreto, el dioxano. A continuación, se añadió esta disolución gota a gota y con agitación vigorosa, sobre la cantidad necesaria de agua para obtener una concentración de nanopartículas entre 0,05 y 2,5 mg/ml. Nanoparticles were prepared from the poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers synthesized as described above by the nanoprecipitation method. For this, the copolymers (10mg / ml) were dissolved in a water-miscible organic solvent, in particular, dioxane. Then, this solution was added dropwise and with vigorous stirring, over the necessary amount of water to obtain a concentration of nanoparticles between 0.05 and 2.5 mg / ml.
Para los ensayos celulares, las disoluciones de nanopartículas se prepararon a una concentración de 2,5 mg/ml en PBS y el dioxano se eliminó por diálisis durante 3 días. Además, para los ensayos fluorescencia, las nanopartículas se cargaron con cumarina-6 que se añadió en una concentración de 100 pg/ml en la disolución de dioxano. La distribución de tamaños de las nanopartículas se determinó por dispersión de luz dinámica (DLS) usando un equipo Zetasizer Nano ZS (Malvern Instruments) equipado con un láser de He-Ne a 633 nm y con un ángulo de 173°. Las medidas se llevaron a cabo en cubetas de poliestireno a temperatura ambiente, previa sonicación y filtración a través de una membrana de 0,45 pm. For cell assays, nanoparticle solutions were prepared at a concentration of 2.5 mg / ml in PBS and the dioxane was removed by dialysis for 3 days. In addition, for fluorescence assays, the nanoparticles were loaded with coumarin-6 which was added in a concentration of 100 pg / ml in the dioxane solution. The nanoparticle size distribution was determined by dynamic light scattering (DLS) using a Zetasizer Nano ZS equipment (Malvern Instruments) equipped with a He-Ne laser at 633 nm and with an angle of 173 °. The measurements were carried out in polystyrene cuvettes at room temperature, after sonication and filtration through a 0.45 pm membrane.
En la tabla 2 se resumen los tamaños y polidispersidades obtenidas para las nanopartículas preparadas a una concentración de 0,5 mg/ml. Además, en la figura 5 se compara el tamaño de las partículas en función de la concentración de nanopartículas para tres copolímeros de distinta composición molar en la alimentación (VP:MTOS 95:5, 70:30 y 50:50). Los resultados obtenidos demuestran que el tamaño y la morfología de las micelas se puede modular controlando la composición molar de estos copolímeros y la concentración de nanopartículas en el medio. Table 2 summarizes the sizes and polydispersities obtained for the nanoparticles prepared at a concentration of 0.5 mg / ml. In addition, Figure 5 compares the size of the particles as a function of the concentration of nanoparticles for three copolymers of different molar composition in the feed (VP: MTOS 95: 5, 70:30 and 50:50). The results obtained demonstrate that the size and morphology of the micelles can be modulated by controlling the molar composition of these copolymers and the concentration of nanoparticles in the medium.
Tabla 2. Diámetro hidrodinámico y polidispersidad (Pdl) de las nanopartículas preparadas a una concentración de 0,5 mg/ml a partir de la familia de Table 2. Hydrodynamic diameter and polydispersity (Pdl) of nanoparticles prepared at a concentration of 0.5 mg / ml from the family of
copolímeros poli(VP-co-MTOS)  copolymers poly (VP-co-MTOS)
Diámetro hidrodinámico Hydrodynamic diameter
FMTOS ÍTOS Pdl  FMTOS ÍTOS Pdl
(nm)  (nm)
0, 136 ±  0, 136 ±
5 7 109,5 ± 6,5  5 7 109.5 ± 6.5
0,028  0.028
0,088 ±  0.088 ±
10 15 1 13,4 ± 1 ,5  10 15 1 13.4 ± 1.5
0,01 1  0.01 1
0,090 ±  0.090 ±
15 28 124,2 ± 5,0  15 28 124.2 ± 5.0
0,006  0.006
0,088 ±  0.088 ±
20 34 137,3 ± 6,7  20 34 137.3 ± 6.7
0,006  0.006
0,076 ±  0.076 ±
30 46 142,0 ± 3,3  30 46 142.0 ± 3.3
0,01 1  0.01 1
0,022 ±  0.022 ±
50 63 201 ,9 ± 1 ,2  50 63 201, 9 ± 1, 2
0,013 La morfología de las nanopartículas se observó mediante Microscopía Electrónica de Barrido (SEM, Philips XL 30 ESEM) y Microscopía de Fuerza Atómica (AFM) usando el modo de contacto intermitente (tapping). Para ello, se depositó una gota de la suspensión de nanopartículas a una dilución 1 :50 que 5 se dejó secar durante 24 horas sobre un disco de vidrio de 14 mm. En la figura 6 se incluyen las imágenes obtenidas de forma que se comprueba que las partículas son esféricas y no tienden a agregarse. 0.013 The morphology of the nanoparticles was observed by Scanning Electron Microscopy (SEM, Philips XL 30 ESEM) and Atomic Force Microscopy (AFM) using the intermittent contact mode (tapping). For this, a drop of the nanoparticle suspension was deposited at a 1: 50 dilution, which was allowed to dry for 24 hours on a 14 mm glass disk. Figure 6 includes the images obtained in such a way that it is verified that the particles are spherical and do not tend to aggregate.
En la tabla 3 se incluyen los resultados obtenidos de tamaños de partícula y i o polidispersidades para las nanopartículas preparadas a partir de la familia de copolímeros poli(VP-co-MVE). Se observa que las partículas de poli(VP-co- MVE) son comparativamente más grandes y con unos valores que no se ven significativamente afectados al cambiar el contenido de MVE en el copolímero. Por el contrario, las partículas formadas a partir del sistema poli(VP-co-MTOS) 15 presentan un tamaño que va aumentando ligeramente con el incremento de la cantidad de MTOS en los polímeros. Table 3 includes the results obtained from particle sizes and i or polydispersities for the nanoparticles prepared from the family of poly (VP-co-MVE) copolymers. It is observed that poly (VP-co-MVE) particles are comparatively larger and with values that are not significantly affected by changing the content of MVE in the copolymer. On the contrary, the particles formed from the poly (VP-co-MTOS) system 15 have a size that increases slightly with the increase in the amount of MTOS in the polymers.
Tabla 3. Diámetro hidrodinámico y polidispersidad (Pdl) de las nanopartículas preparadas a una concentración de 0,5 mg/ml a partir de la familia de Table 3. Hydrodynamic diameter and polydispersity (Pdl) of nanoparticles prepared at a concentration of 0.5 mg / ml from the family of
20 copolímeros poli(VP-co-MVE)  20 copolymers poly (VP-co-MVE)
Diámetro hidrodinámico Hydrodynamic diameter
FMVE flVlVE Pdl  FMVE flVlVE Pdl
(nm)  (nm)
0,091 ±  0.091 ±
5 8 142,5 ± 1 , 1  5 8 142.5 ± 1, 1
0,009  0.009
0,068 ±  0.068 ±
10 22 160,7 ± 1 ,5  10 22 160.7 ± 1.5
0,003  0.003
0, 197 ±  0, 197 ±
15 39 142,9 ± 4,3  15 39 142.9 ± 4.3
0,008  0.008
0,203 ±  0.203 ±
20 65 148,6 ± 2,9  20 65 148.6 ± 2.9
0,019 Ensayo de biocompatibilidad in vitro de los copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE). Estudio de su actividad antiangiogénica en células endoteliales en crecimiento. 0.019 In vitro biocompatibility test of poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers. Study of its antiangiogenic activity in growing endothelial cells.
Para los ensayos de viabilidad e inducción de la muerte celular de células endoteliales en crecimiento se utilizaron células endoteliales microvasculares de pulmón humano (HPMEC-ST1 ). Para ello, se prepararon cultivos celulares que se mantuvieron y multiplicaron a 37 °C en una atmósfera con un 5 % de CO2, utilizando como medio de cultivo M-199 modificado con HEPES, suplementado con un 10 % de suero fetal bovino, 1 % de una disolución de penicilina-estreptomicina, 0, 1 % de factor de crecimiento endotelial y 0,1 % de heparina sódica. En primer lugar se comprobó que las partículas de poli(VP-co-MTOS) y poli(VP-co-MVE) (1 .25 mg/ml) son endocitadas por las células. Para ello se cargan las partículas de un cultivo de HPMEC-ST1 con cumarina-6 en una disolución de 100 mg/ml para poder visualizarlas por micrografía confocal de fluorescencia. Tras 5 horas y media de incubación se observa que las partículas se acumulan alrededor del núcleo, tal y como se muestra en la figura 7. Además, estos resultados evidencian que las nanopartículas son capaces de encapsular eficazmente biomoléculas, en este caso tomando como molécula modelo la cumarina-6. Por ello, las partículas podrán servir de vehículos para otros fármacos quimioterápicos de alta toxicidad y difícil administración debido a su estructura hidrofóbica, tales como el paclitaxel, la simvastatina o la doxorrubicina. For the viability and induction assays of cell death of growing endothelial cells, human lung microvascular endothelial cells (HPMEC-ST1) were used. For this, cell cultures were prepared and maintained and multiplied at 37 ° C in an atmosphere with 5% CO2, using HEPES-modified M-199 culture medium, supplemented with 10% bovine fetal serum, 1% of a penicillin-streptomycin solution, 0.1% endothelial growth factor and 0.1% sodium heparin. First, it was found that the poly (VP-co-MTOS) and poly (VP-co-MVE) (1.25 mg / ml) particles are endocyted by the cells. For this, the particles of an HPMEC-ST1 culture with coumarin-6 are loaded in a solution of 100 mg / ml to be visualized by confocal fluorescence micrography. After 5 and a half hours of incubation it is observed that the particles accumulate around the nucleus, as shown in Figure 7. In addition, these results show that the nanoparticles are capable of effectively encapsulating biomolecules, in this case taking as a model molecule Coumarin-6. Therefore, the particles may serve as vehicles for other chemotherapeutic drugs of high toxicity and difficult administration due to their hydrophobic structure, such as paclitaxel, simvastatin or doxorubicin.
El ensayo de viabilidad se llevó a cabo mediante un ensayo MTT. Este ensayo se basa en la reducción metabólica del Bromuro de 3-(4,5-dimetilt¡azol-2-¡lo)- 2,5-difeniltetrazol (MTT) realizada por la enzima mitocondrial succinato- deshidrogenasa en un compuesto coloreado de color azul (formazan), permitiendo determinar la funcionabilidad mitocondrial de las células tratadas. Tras un periodo de crecimiento de 24 h en una atmósfera con un 5 % de CO2, se procedió al intercambio del medio de cultivo por 50 μΙ de las disoluciones de nanopartículas que se mantuvieron en contacto con las células durante 24 horas en las mismas condiciones. Finalizado este periodo de tiempo, se retiró el contenido de los pocilios y se añadió una disolución del reactivo MTT que se dejó actuar durante 4 horas. Finalmente, se vació el contenido de los pocilios para adicionar en cada uno de ellos 100 μΙ de una disolución de DMSO y proceder a realizar las lecturas de densidad óptica a 570 nm. Los ensayos de viabilidad se llevaron a cabo con cultivos al 80% de confluencia (células en crecimiento) con el fin de determinar si las composiciones resultaban tóxicas para este tipo de células y afectaban a la actividad mitocondrial in vitro. Las nanopartículas de poli(VP-co-MTOS) fueron preparadas a partir de los copolímeros poli(VP-co-MTOS) para las composiciones en la alimentación de VP:MTOS (%-molar) de 95:5, 90: 10, 85: 15, 80:20 y 70:30. Por otra parte, las nanopartículas poli(VP-co-MVE) fueron preparadas a partir de los copolímeros poli(VP-co-MVE) para las composiciones en la alimentación de VP:MVE (%-molar) de 95:5. 90:10 y 85: 15. Para ello, en todos los casos, se emplearon disoluciones de los nanoagregados en PBS a una concentración de 2,5 mg/ml, a partir de las cuales se prepararon diluciones de una concentración gradualmente menor. The feasibility test was carried out by an MTT test. This assay is based on the metabolic reduction of 3- (4,5-dimethylthiozol-2-lo) -2,5-diphenyltetrazole (MTT) bromide performed by the mitochondrial enzyme succinate dehydrogenase in a colored compound blue (formazan), allowing to determine the mitochondrial functionality of the treated cells. After a 24 h growth period in an atmosphere with 5% CO2, the culture medium was exchanged for 50 μΙ of the nanoparticle solutions that were kept in contact with the cells for 24 hours under the same conditions. After this period of time, the contents of the wells were removed and a solution of the MTT reagent was added which was allowed to act for 4 hours. Finally, the contents of the wells were emptied to add in each of them 100 μΙ of a DMSO solution and proceed to perform the optical density readings at 570 nm. The viability tests were carried out with 80% confluence cultures (growing cells) in order to determine if the compositions were toxic to this type of cells and affected mitochondrial activity in vitro. Poly (VP-co-MTOS) nanoparticles were prepared from poly (VP-co-MTOS) copolymers for compositions in the VP: MTOS (% -molar) feed of 95: 5, 90: 10, 85: 15, 80:20 and 70:30. On the other hand, poly (VP-co-MVE) nanoparticles were prepared from poly (VP-co-MVE) copolymers for compositions in the VP: MVE (% -molar) 95: 5 feed. 90:10 and 85: 15. To that end, in all cases, solutions of the nanoaggregates in PBS at a concentration of 2.5 mg / ml were used, from which dilutions of a gradually lower concentration were prepared.
Los resultados recopilados en las Figuras 8 y 9 muestran como la viabilidad celular de las células endoteliales a un 80% de confluencia disminuye a altas concentraciones de las nanopartículas ensayadas. Sólo concentraciones de nanopartículas de poli(VP-co-MTOS) y poli (VP-co-MVE) superiores a 0,078 mg/ml afectan significativamente a la viabilidad celular. Puesto que el ensayo MTT mide la actividad de la enzima mitocondrial succinato deshidrogenasa, podemos afirmar que las partículas afectan significativamente a la actividad mitocondrial de las células endoteliales en crecimiento e inducen su muerte a altas concentraciones, lo que demuestra su acción antiangiogénica. Con el objetivo de estudiar la selectividad de las nanopartículas hacía las células endoteliales en crecimiento, se llevaron a cabo también ensayos de viabilidad con cultivos de las mismas células pero a un 50% (células altamente proliferativas) y 100% (células quiescentes, en reposo) de confluencia. The results compiled in Figures 8 and 9 show how the cell viability of endothelial cells at 80% confluence decreases at high concentrations of the nanoparticles tested. Only concentrations of poly (VP-co-MTOS) and poly (VP-co-MVE) nanoparticles greater than 0.078 mg / ml significantly affect cell viability. Since the MTT assay measures the activity of the mitochondrial enzyme succinate dehydrogenase, we can state that the particles significantly affect the mitochondrial activity of growing endothelial cells and induce their death at high concentrations, demonstrating their antiangiogenic action. In order to study the selectivity of the nanoparticles towards the growing endothelial cells, feasibility tests were also carried out with cultures of the same cells but at 50% (highly proliferative cells) and 100% (quiescent cells, at rest ) of confluence.
Las figuras 10, 1 1 , 12 y 13 muestran los resultados de los ensayos MTT obtenidos con células HPMEC-ST1 a un 50 y 100% de confluencia, para las nanopartículas de poli(VP-co-MTOS) y poli(VP-co-MVE). Para ambos sistemas poliméricos se observa como la viabilidad celular de las células endoteliales altamente proliferativas (50% de confluencia, Figuras 10 y 12) disminuye significativamente. En concreto, se obtiene un descenso de un 70% y 60% en la viabilidad celular con las nanopartículas más activas de ambos sistemas poliméricos a una concentración de 1 ,25 y 0,625 mg/ml, respectivamente. Sin embargo, la viabilidad celular de las mismas células endoteliales en reposo (100% de confluencia, Figuras 1 1 y 13) sólo se ve afectada significativamente para las concentraciones de nanopartículas más altas. Figures 10, 1 1, 12 and 13 show the results of MTT tests obtained with HPMEC-ST1 cells at 50 and 100% confluence, for the polyparticles of poly (VP-co-MTOS) and poly (VP-co -MVE). For both polymer systems it is observed how the cell viability of highly proliferative endothelial cells (50% confluence, Figures 10 and 12) decreases significantly. Specifically, a 70% and 60% decrease in cell viability is obtained with the most active nanoparticles of both polymer systems at a concentration of 1, 25 and 0.625 mg / ml, respectively. However, the cell viability of the same resting endothelial cells (100% confluence, Figures 1 1 and 13) is only significantly affected for higher nanoparticle concentrations.
En las figuras 14 y 15 se comparan los resultados obtenidos con cultivos de células endoteliales a 100 y 50% confluencia para las nanopartículas más activas (poli(VP-co-MTOS) 90: 10 y 80:20 y poli(VP-co-MVE) 90: 10 y 85: 15). Se observa como el descenso en la viabilidad celular para cultivos altamente proliferativos es significativo para concentraciones de nanopartículas ¡guales o superiores a 0,078 mg/ml. Además, la selectividad hacía células en crecimiento es mayor en el caso de las nanopartículas basadas en los copolímeros poli(VP- co-MVE). Estos resultados permiten concluir que las nanopartículas afectan selectivamente a la viabilidad de células endoteliales altamente proliferativas dotando a estos sistemas capacidad antiangiogénica.  Figures 14 and 15 compare the results obtained with cultures of endothelial cells at 100 and 50% confluence for the most active nanoparticles (poly (VP-co-MTOS) 90: 10 and 80:20 and poly (VP-co- MVE) 90: 10 and 85: 15). It is observed how the decrease in cell viability for highly proliferative cultures is significant for concentrations of nanoparticles equal to or greater than 0.078 mg / ml. In addition, the selectivity towards growing cells is greater in the case of nanoparticles based on poly (VP-co-MVE) copolymers. These results allow us to conclude that nanoparticles selectively affect the viability of highly proliferative endothelial cells giving these systems antiangiogenic capacity.
Ensayo de biocompatibilidad in vitro de los copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE). Estudio de su actividad anticancerígena en células de adenocarcinoma humano de mama MCF7 Se llevaron a cabo ensayos con células tumorales de adenocarcinoma humano de mama (línea celular MCF7; Health Protection Agency Culture Collections - HPAC- Cat. No. 86012803; Lote No. 10K025, pase 9+) con el objetivo de estudiar la actividad anticancerígena de los copolímeros portadores del alfa- tocoferol. El medio de cultivo utilizado en el mantenimiento de esta línea celular fue DMEM (Dulbeco's modified Eagle's Médium) con glucosa, piruvato de sodio y L-glutamina (SIGMA D6429), suplementado con penicilina/estreptomicina (SIGMA P0781 ), un 1 % de una disolución de aminoácidos no esenciales (SIGMA M7145) y un 10% suero fetal bovino (SBF; GIBCO 10270-106). Se realizó un ensayo MTT con el fin de determinar la actividad de las partículas sobre estas células cancerígenas, siguiendo el mismo protocolo de trabajo que el descrito anteriormente. In vitro biocompatibility test of poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers. Study of its anticancer activity in human breast adenocarcinoma cells MCF7 Trials were carried out with human breast adenocarcinoma tumor cells (MCF7 cell line; Health Protection Agency Culture Collections - HPAC-Cat. No. 86012803; Lot No. 10K025, pass 9+) in order to study the anti-cancer activity of the copolymers carrying alpha-tocopherol. The culture medium used in the maintenance of this cell line was DMEM (Dulbeco's modified Eagle's Medium) with glucose, sodium pyruvate and L-glutamine (SIGMA D6429), supplemented with penicillin / streptomycin (SIGMA P0781), 1% of a non-essential amino acid solution (SIGMA M7145) and 10% fetal bovine serum (SBF; GIBCO 10270-106). An MTT test was performed in order to determine the activity of the particles on these cancer cells, following the same working protocol as described above.
Los resultados para los copolímeros poli(VP-co-MTOS) demuestran que algunas composiciones (e.g. 90: 10, 85: 15 y 80:20) afectan significativamente a la viabilidad celular a concentraciones relativamente bajas (superiores a 0,010 mg/ml), tal y como se observa en la figura 16. Todas las composiciones ensayadas afectan significativamente a la viabilidad celular de las MCF-7 a altas concentraciones. Puesto que el ensayo MTT mide la actividad de la enzima mitocondrial succinato deshidrogenasa, podemos afirmar que las partículas de poli(VP-co-MTOS) afectan significativamente a la actividad mitocondrial de estas células e inducen su muerte a altas concentraciones, lo que demuestra su acción contra este tipo de células tumorales. Además, se llevaron a cabo ensayos con células epiteliales humanas de mama (HMEpC). El medio de cultivo utilizado en el mantenimiento de esta línea fue HuMEC Basal Serum Free Médium (GIBCO) suplementado con HuMEC supplemented kit (GIBCO), y un 10% de suero fetal bovino (SBF; GIBCO 10270-106). Se realizó un ensayo MTT con el fin de determinar la actividad de las partículas sobre estas células sanas, siguiendo el mismo protocolo de trabajo que el descrito anteriormente. Los resultados demuestran que los copolímeros poli(VP-co-MTOS) (90: 10, 85: 15, 80:20 y 70:30) no afectan significativamente a la viabilidad celular de las células HMEpC, tal y como se observa en la figura 17. Puesto que el ensayo MTT mide la actividad de la enzima mitocondrial succinato deshidrogenasa, podemos afirmar que estas partículas no afectan significativamente a la actividad mitocondrial de este tipo de células sanas. The results for poly (VP-co-MTOS) copolymers demonstrate that some compositions (eg 90: 10, 85: 15 and 80:20) significantly affect cell viability at relatively low concentrations (greater than 0.010 mg / ml), as seen in Figure 16. All the compositions tested significantly affect the cell viability of MCF-7 at high concentrations. Since the MTT assay measures the activity of the mitochondrial enzyme succinate dehydrogenase, we can state that poly (VP-co-MTOS) particles significantly affect the mitochondrial activity of these cells and induce their death at high concentrations, which demonstrates their action against this type of tumor cells. In addition, trials with human breast epithelial cells (HMEpC) were carried out. The culture medium used in the maintenance of this line was HuMEC Basal Serum Free Medium (GIBCO) supplemented with HuMEC supplemented kit (GIBCO), and 10% fetal bovine serum (SBF; GIBCO 10270-106). An MTT assay was performed in order to determine the activity of the particles on these healthy cells, following the same working protocol as described above. The results show that poly (VP-co-MTOS) copolymers (90: 10, 85: 15, 80:20 and 70:30) do not significantly affect the cell viability of HMEpC cells, as observed in the Figure 17. Since the MTT assay measures the activity of the mitochondrial enzyme succinate dehydrogenase, we can affirm that these particles do not significantly affect the mitochondrial activity of this type of healthy cells.
Las figuras 18 y 19 muestran los resultados del ensayo MTT obtenidos con células MCF7 y HMEpC respectivamente, para los copolímeros poli(VP-co- MVE), en las condiciones descritas anteriormente. La figura 18 muestra una disminución dosis-dependiente de la viabilidad celular de las células cancerígenas MCF-7 (a mayor concentración de partículas, menor viabilidad celular). La actividad de los copolímeros es mayor, cuanto mayor es el contenido en MVE. Por último, la figura 19 muestra que los copolímeros portadores de MVE ensayados no afectan significativamente a la viabilidad celular de HMEpC en el rango de composiciones ensayado, salvo para el copolímero poli(VP-co-MVE) 90: 10 en concentración 1 ,25 mg/ml cuya viabilidad sigue siendo superior al 80%. La actividad antitumoral de estos sistemas se ve afectada tanto por el modo como por el tiempo de almacenaje previo a su utilización en los ensayos de biocompatibilidad. Es importante conservar las disoluciones de las nanopartículas en PBS a una temperatura entre 4 - 8 °C y esterilizarlas previamente mediante filtración. Para demostrar la influencia del proceso de conservación de las partículas, se llevaron a cabo ensayos los mismos ensayos de biocompatibilidad con las células MCF-7 utilizando nanopartículas de poli(VP-co-MVE) pero, en este caso, con un periodo de almacenaje corto (menos de una semana). Es preciso destacar que para los anteriores experimentos el periodo de almacenaje de las partículas fue mayor (8 semanas). En la figura 20 se muestran los resultados obtenidos en el ensayo MTT para nanopartículas ensayadas después de un periodo corto de almacenaje de poli(VP-co-MVE). Además, en la figura 21 se incluye una comparativa de la viabilidad celular obtenida en cultivos MCF-7 utilizando nanopartículas con distintos periodos de almacenaje. Se observa como la actividad anticancerígena de las partículas se reduce significativamente cuando las partículas se almacenan durante largos periodos de tiempo. Figures 18 and 19 show the MTT test results obtained with MCF7 and HMEpC cells respectively, for poly (VP-co-MVE) copolymers, under the conditions described above. Figure 18 shows a dose-dependent decrease in cell viability of MCF-7 cancer cells (the higher the concentration of particles, the lower the cell viability). The activity of the copolymers is greater, the higher the MVE content. Finally, Figure 19 shows that the MVE carrier copolymers tested do not significantly affect the cellular viability of HMEpC in the range of compositions tested, except for the 90: 10 poly (VP-co-MVE) copolymer in concentration 1, 25 mg / ml whose viability is still greater than 80%. The antitumor activity of these systems is affected both by the mode and by the storage time prior to their use in biocompatibility tests. It is important to keep the nanoparticle solutions in PBS at a temperature between 4-8 ° C and sterilize them previously by filtration. To demonstrate the influence of the particle preservation process, the same biocompatibility tests were performed with MCF-7 cells using poly (VP-co-MVE) nanoparticles but, in this case, with a storage period short (less than a week). It should be noted that for the previous experiments the period of storage of the particles was greater (8 weeks). The results obtained in the MTT test for nanoparticles tested after a short storage period of poly (VP-co-MVE) are shown in Figure 20. In addition, a comparison of the cell viability obtained in MCF-7 cultures using nanoparticles with different storage periods is included in Figure 21. It is observed how the anticancer activity of the particles is significantly reduced when the particles are stored for long periods of time.
La figura 22 resume los resultados obtenidos para poli(VP-co-MTOS) y poli(VP- co-MVE) utilizando cultivos de células cancerígenas (MCF-7) y sus homologas sanas (HMEpC). Se observa como las partículas afectan a la viabilidad celular de cultivos de adenocarcinoma de mama, mientras que no lo hacen en el caso de células epiteliales humanas de mama. Ejemplo 2 Figure 22 summarizes the results obtained for poly (VP-co-MTOS) and poly (VP-co-MVE) using cancer cell cultures (MCF-7) and their healthy homologs (HMEpC). It is observed how the particles affect the cell viability of breast adenocarcinoma cultures, while they do not do so in the case of human breast epithelial cells. Example 2
Preparación de nanopartículas cargadas con succinato del -tocoferol a partir de copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE) Una de los mayores atractivos de las nanopartículas preparadas es la posibilidad de combinar y mejorar su actividad antitumoral "per se" con la encapsulación de principios activos que altamente hidrofóbicos y, por tanto, difíciles de administrar. De esta forma, las nanopartículas poliméricas actúan como vehículo de estos fármacos con efecto antitumoral, permitiendo su dosificación controlada y mejorando su solubilidad en medio fisiológico. Preparation of nanoparticles loaded with -tocopherol succinate from poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers One of the major attractions of prepared nanoparticles is the possibility of combining and improving their antitumor activity " per se "with the encapsulation of active ingredients that are highly hydrophobic and therefore difficult to administer. In this way, polymeric nanoparticles act as a vehicle for these drugs with antitumor effect, allowing controlled dosing and improving their solubility in physiological medium.
Se prepararon nanopartículas cargadas con succinato del alfa-tocoferol (10, 5 y 1 % en peso) a partir de los copolímeros poli(VP-co-MTOS) (90: 10) y poli(VP- co-MVE) (85: 15) que han demostrado mayor actividad anticancerígena en las distintas líneas celulares utilizadas. Nuevamente, se utilizó el método de nanoprecipitación de forma que se disolvieron los copolímeros y el succinato del alfa-tocoferol en dioxano (10mg/ml). A continuación, esta disolución se añadió gota a gota y con agitación vigorosa, sobre la cantidad necesaria de PBS para obtener una concentración final de nanopartículas de 2,5 mg/ml. Finalmente, el dioxano se eliminó mediante diálisis durante 3 días. Nanoparticles loaded with alpha-tocopherol succinate (10, 5 and 1% by weight) were prepared from the copolymers poly (VP-co-MTOS) (90: 10) and poly (VP-co-MVE) (85: 15) that have demonstrated greater anticancer activity in the different cell lines used. Again, the nanoprecipitation method was used so that the copolymers and succinate of alpha-tocopherol were dissolved in dioxane (10mg / ml). Then this solution is added dropwise and with vigorous stirring, on the necessary amount of PBS to obtain a final nanoparticle concentration of 2.5 mg / ml. Finally, dioxane was removed by dialysis for 3 days.
La distribución de tamaños de las nanopartículas se determinó por dispersión de luz dinámica (DLS) usando un equipo Zetasizer Nano ZS (Malvern Instruments) equipado con un láser de He-Ne a 633 nm y con un ángulo de 173°. Las medidas se llevaron a cabo en cubetas de poliestireno a temperatura ambiente. En la tabla 4 se resumen los tamaños y polidispersidades obtenidas en cada caso. The size distribution of the nanoparticles was determined by dynamic light scattering (DLS) using a Zetasizer Nano ZS equipment (Malvern Instruments) equipped with a He-Ne laser at 633 nm and at an angle of 173 °. The measurements were carried out in polystyrene cuvettes at room temperature. Table 4 summarizes the sizes and polydispersities obtained in each case.
Tabla 4. Diámetro hidrodinámico y polidispersidad. (Pdl) de las nanopartículas cargadas con succinato del alfa-tocoferol a partir de los copolímeros poli(VP- co-MTOS) 90: 10 y poli(VP-co-MVE) 85: 15. Table 4. Hydrodynamic diameter and polydispersity. (Pdl) of the nanoparticles loaded with alpha-tocopherol succinate from the copolymers poly (VP-co-MTOS) 90: 10 and poly (VP-co-MVE) 85: 15.
Figure imgf000037_0001
Figure imgf000037_0001
Ensayo de biocompatibilidad in vitro de los copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE). Estudio de su actividad anticancerígena en células de adenocarcinoma humano de colon. In vitro biocompatibility test of poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers. Study of its anticancer activity in human colon adenocarcinoma cells.
Una vez confirmada las propiedades anticancerígenas de las nanopartículas basadas en derivados del alfa-tocoferol en células de adenocarcinoma de mama, se realizaron ensayos de biocompatibilidad in vitro con estas partículas utilizando otras líneas celulares para determinar si son también activas de forma que podrían utilizarse para el tratamiento de diferentes tipos de cánceres. Particularmente, ensayos de viabilidad con células tumorales de adenocarcinoma humano de colon se llevaron a cabo siguiendo el mismo protocolo de trabajo anteriormente descrito (línea celular WiDr; Health Protection Agency Culture Collections -HPAC- Cat. No.851 1 1501 ; pase 9+) para determinar si los copolímeros portadores del alfa también presentan una actividad anticancerígena óptima hacia este tipo de células. El medio de cultivo utilizado en el mantenimiento de esta línea celular fue DMEM (Dulbeco's modified Eagle's Médium) con alto contenido en glucosa, piruvato de sodio y suplementado 2 mM L-glutamina (SIGMA D6429), 1 % penicilina/estreptomicina (SIGMA P0781 ), un 1 % de una disolución de aminoácidos no esenciales (SIGMA M7145) y un 10% suero fetal bovino (SBF; GIBCO 10270-106). Los resultados obtenidos del ensayo MTT con células WiDr expuestas a los copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE) se resumen en las figuras 23 y 24, respectivamente. La viabilidad celular disminuye significativamente por debajo del 70% para las concentraciones de nanopartículas más altas (0,625 y 1 ,25 mg/ml). Once the anticancer properties of nanoparticles based on alpha-tocopherol derivatives in breast adenocarcinoma cells were confirmed, in vitro biocompatibility tests were performed with these particles using other cell lines to determine if they are also active so that they could be used to treat different types of cancers. Particularly, viability tests with human colon adenocarcinoma tumor cells were carried out following the same working protocol described above (WiDr cell line; Health Protection Agency Culture Collections -HPAC-Cat. No.851 1 1501; pass 9+) to determine if the alpha-bearing copolymers also have an optimal anticancer activity towards this type of cells. The culture medium used in the maintenance of this cell line was DMEM (Dulbeco's modified Eagle's Medium) with a high glucose content, sodium pyruvate and supplemented 2 mM L-glutamine (SIGMA D6429), 1% penicillin / streptomycin (SIGMA P0781) , 1% of a solution of nonessential amino acids (SIGMA M7145) and 10% fetal bovine serum (SBF; GIBCO 10270-106). The results obtained from the MTT assay with WiDr cells exposed to poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers are summarized in Figures 23 and 24, respectively. Cell viability decreases significantly below 70% for higher nanoparticle concentrations (0.625 and 1.25 mg / ml).
En el caso de los copolímeros poli(VP-co-MTOS), la reducción de la viabilidad alcanza valores hasta del 40 % para las nanopartículas más activas ((poli(VP- co-MTOS) 95:5 y 85: 15). Por el contrario, una disminución dosis-dependiente de la viabilidad celular se observa para los copolímeros poli(VP-co-MVE). En concreto, las nanopartículas de poli(VP-co-MVE) (85: 15) con mayor concentración de metacrilato de la vitamina E reducen la viabilidad celular un 50% con la concentración más alta de nanopartículas de 1 ,25 mg/ml. Por tanto, se puede concluir que estas nanopartículas poliméricas inducen la muerte de células de adenocarcinoma de colón a altas concentraciones, afectando significativamente a su actividad mitocondrial. Ensayo de biocompatibilidad in vitro y estudio de la actividad anticancerígena de las nanopartículas más activas (poli(VP-co-MTOS) 90:10 y poli(VP-co-MVE) 85:15) cargadas con succinato del alfa-tocoferol en células de adenocarcinoma humano de colon. In the case of poly (VP-co-MTOS) copolymers, the viability reduction reaches values up to 40% for the most active nanoparticles ((poly (VP-co-MTOS) 95: 5 and 85: 15). In contrast, a dose-dependent decrease in cell viability is observed for poly (VP-co-MVE) copolymers, specifically, poly (VP-co-MVE) nanoparticles (85: 15) with a higher concentration of Vitamin E methacrylate reduces cell viability by 50% with the highest concentration of nanoparticles of 1.25 mg / ml Therefore, it can be concluded that these polymeric nanoparticles induce the death of colon adenocarcinoma cells at high concentrations, significantly affecting their mitochondrial activity. In vitro biocompatibility test and study of the anticancer activity of the most active nanoparticles (poly (VP-co-MTOS) 90:10 and poly (VP-co-MVE) 85:15) loaded with alpha-tocopherol succinate in cells of human colon adenocarcinoma.
La actividad anticancerígena "per se" de los sistemas poliméricos poli(VP-co- MTOS) y poli(VP-co-MVE) estudiados puede potenciarse encapsulando diferentes fármacos quimiterapeúticos en el interior de las nanopartículas poliméricas que actúan como vehículos que liberan controladamente el fármaco en la zona localizada del tumor. En este caso, se prepararon partículas poli(VP- co-MTOS) (90: 10) y poli(VP-co-MVE) (85: 15) cargadas con succinato del alfa- tocoferol, tal y como se describe en el ejemplo 2. Para estudiar el efecto de estas partículas con succinato del alfa-tocoferol se realizaron ensayos MTT de biocompatibilidad in vitro utilizando cultivos de células de adenocarcinoma de colon WiDr, que se mantuvieron en las mismas condiciones anteriormente descritas. The "per se" anti-cancer activity of the poly (VP-co-MTOS) and poly (VP-co-MVE) polymer systems studied can be enhanced by encapsulating different chemotherapeutic drugs inside the polymeric nanoparticles that act as vehicles that release the drug in the localized area of the tumor. In this case, poly (VP-co-MTOS) (90: 10) and poly (VP-co-MVE) (85: 15) particles loaded with alpha-tocopherol succinate were prepared, as described in the example 2. To study the effect of these particles with alpha-tocopherol succinate, in vitro biocompatibility MTT assays were performed using WiDr colon adenocarcinoma cell cultures, which were maintained under the same conditions described above.
En las figuras 25 y 26 se resumen los resultados obtenidos del ensayo MTT con células WiDr expuestas a las nanopartículas cargadas con succinato del alfa-tocoferol. Para ambos sistemas poliméricos se observa una disminución dosis-dependiente de la viabilidad celular de forma que cuanto mayor es la carga de succinato del alfa-tocoferol en las partículas, menor es la viabilidad celular. En el caso de nanopartículas poli(VP-co-MTOS) (Figura 25), la viabilidad celular se reduce significativamente por debajo del 70 % a altas concentraciones para las partículas con un 5% de carga. Este efecto se observa incluso a concentraciones más bajas (hasta 0,078 mg/ml) para las partículas con un 10% de carga. En este caso, se observa una reducción de la viabilidad de hasta un 75% a la concentración de partículas más alta (1 ,25 mg/ml). Estos resultados son significativamente mejores que los obtenidos con las mismas partículas vacías. Por esto, podemos concluir que estas partículas afectan a viabilidad celular de esta línea celular de forma que la carga de las partículas con un fármaco bioactivo como es el succinato del alfa-tocoferol potencia la actividad anticancerígena de estos sistemas, probablemente por su dosificación controlada al medio donde ejerce su actividad terapéutica. The results obtained from the MTT assay with WiDr cells exposed to nanoparticles loaded with alpha-tocopherol succinate are summarized in Figures 25 and 26. For both polymer systems, a dose-dependent decrease in cell viability is observed so that the higher the alpha-tocopherol succinate load in the particles, the lower the cell viability. In the case of poly (VP-co-MTOS) nanoparticles (Figure 25), cell viability is significantly reduced below 70% at high concentrations for particles with a 5% charge. This effect is observed even at lower concentrations (up to 0.078 mg / ml) for particles with a 10% charge. In this case, a viability reduction of up to 75% is observed at the highest particle concentration (1.25 mg / ml). These results are significantly better than those obtained with the same empty particles. Therefore, we can conclude that these particles They affect the cell viability of this cell line so that the loading of the particles with a bioactive drug such as alpha-tocopherol succinate enhances the anti-cancer activity of these systems, probably due to their controlled dosage to the environment where they exert their therapeutic activity.
Los resultados de viabilidad celular para las partículas cargadas de poli(VP-co- MVE) (Figura 26) demuestran que su actividad anticancerígena hacia las células WiDr es significativa para concentraciones altas de las partículas (0,625 y 1 ,25 mg/ml) con el mayor contenido de succinato del alfa-tocoferol. En este caso, las partículas cargadas también afectan significativamente a la actividad mitocondrial de las células WiDr pero no se aprecian diferencias en el comportamiento de las mismas partículas sin carga. The results of cell viability for poly (VP-co-MVE) charged particles (Figure 26) demonstrate that their anti-cancer activity towards WiDr cells is significant for high concentrations of the particles (0.625 and 1.25 mg / ml) with the highest succinate content of alpha-tocopherol. In this case, the charged particles also significantly affect the mitochondrial activity of the WiDr cells but no differences are observed in the behavior of the same particles without charge.
Ensayo de biocompatibilidad in vitro de los copolímeros poli(VP-co-MTOS) y poli(VP-co-MVE). Estudio de su actividad anticancerígena en células de adenocarcinoma humano de laringe In vitro biocompatibility test of poly (VP-co-MTOS) and poly (VP-co-MVE) copolymers. Study of its anticancer activity in human larynx adenocarcinoma cells
Con el objetivo de profundizar en la actividad anticancerígena de los copolímeros portadores de alfa-tocoferol, se llevaron a cabo ensayos con células de laringe de carcinoma escamoso (línea celular FaDu; American Type Culture Collection- Cat. No.HTB-43; pase 2+) para determinar si las nanopartículas afectan a la viabilidad celular de cultivos FaDu. El medio de cultivo utilizado en el mantenimiento de esta línea celular fue DMEM (Dulbeco's modified Eagle's Médium) con alto contenido en glucosa, cloruro de piridoxina y modificado con 25 mM de tampón HEPES. Suplementado con 2 mM de L- glutamina (SIGMA D6429), 1 % de penicilina/estreptomicina (SIGMA P0781 ) y un 10% suero fetal bovino (SBF; GIBCO 10270-106). Nuevamente, la biocompatibilidad in vitro se cuantificó mediante un ensayo MTT, siguiendo el mismo protocolo de trabajo descrito anteriormente. In order to deepen the anti-cancer activity of alpha-tocopherol-bearing copolymers, tests were carried out with squamous cell carcinoma larynx cells (FaDu cell line; American Type Culture Collection-Cat. No. HTB-43; step 2 +) to determine whether nanoparticles affect the cell viability of FaDu cultures. The culture medium used in the maintenance of this cell line was DMEM (Dulbeco's modified Eagle's Medium) with high glucose content, pyridoxine chloride and modified with 25 mM HEPES buffer. Supplemented with 2 mM L-glutamine (SIGMA D6429), 1% penicillin / streptomycin (SIGMA P0781) and 10% fetal bovine serum (SBF; GIBCO 10270-106). Again, in vitro biocompatibility was quantified by an MTT assay, following the same working protocol described above.
Los resultados de biocompatibilidad in vitro para las nanopartículas de poli(VP- co-MTOS) demuestran su baja toxicidad para este tipo de células tumorales, tal y como se muestra en la figura 27. Para ninguna de las composiciones y concentraciones ensayadas se consigue una reducción de la viabilidad por debajo del 70% de forma que, en este caso, las partículas no afectan significativamente a la actividad mitocondrial de células tumorales de laringe. The in vitro biocompatibility results for poly nanoparticles (VP-co-MTOS) demonstrate their low toxicity for this type of tumor cells, such and as shown in Figure 27. For none of the compositions and concentrations tested, a viability reduction is achieved below 70% so that, in this case, the particles do not significantly affect the mitochondrial activity of tumor cells of larynx.
La figura 28 muestra los resultados obtenidos del ensayo MTT con cultivos de células FaDu expuestas a nanopartículas de poli(VP-co-MVE). En este caso, los copolímeros son más activos y se consigue una reducción de la viabilidad celular del 40% para la concentración de nanopartículas (poli(VP-co-MVE) 90:10 y 85: 15) más alta ensayada (1 ,25 mg/ml). Figure 28 shows the results obtained from the MTT assay with FaDu cell cultures exposed to poly (VP-co-MVE) nanoparticles. In this case, the copolymers are more active and a 40% reduction in cell viability is achieved for the concentration of nanoparticles (poly (VP-co-MVE) 90:10 and 85: 15) tested higher (1, 25 mg / ml)
Ensayo de biocompatibilidad in vitro y actividad anticanrígena de las nanopartículas más activas (poli(VP-co-MTOS) 90:10 y poli(VP-co-MVE) 85:15) cargadas con succinato del alfa-tocoferol en células de adenocarcinoma humano de laringe. In vitro biocompatibility test and anti-antigenic activity of the most active nanoparticles (poly (VP-co-MTOS) 90:10 and poly (VP-co-MVE) 85:15) loaded with alpha-tocopherol succinate in human adenocarcinoma cells of larynx
Se llevaron a cabo ensayos de biocompatibilidad in vitro en células de adenocarcinoma de laringe humano FaDu expuestas a partículas poli(VP-co- MTOS) (90: 10) y poli(VP-co-MVE) (85: 15) cargadas con succinato del alfa- tocoferol. El objetivo es determinar si presentan una óptima actividad anticancerígena, mejorando los resultados obtenidos con las mismas partículas sin carga. El ensayo MTT y el mantenimiento de los cultivos de FaDu se realizaron siguiendo los mismos protocolos anteriormente descritos. Los resultados recopilados en las figuras 29 y 30 demuestran que las partículas poli(VP-co-MTOS) (90: 10) y poli(VP-co-MVE) (85: 15) reducen significativamente la viabilidad celular de una forma dosis-dependiente (a mayor carga del fármaco bioactivo en las partículas, menor es la viabilidad) con las concentraciones más altas estudiadas (0,625 y 1 ,25 mg/ml). In vitro biocompatibility assays were performed on FaDu human larynx adenocarcinoma cells exposed to poly (VP-co-MTOS) (90: 10) and poly (VP-co-MVE) (85: 15) particles loaded with succinate of alpha-tocopherol. The objective is to determine if they have an optimal anticancer activity, improving the results obtained with the same particles without charge. The MTT assay and the maintenance of FaDu cultures were performed following the same protocols described above. The results compiled in Figures 29 and 30 show that the poly (VP-co-MTOS) (90: 10) and poly (VP-co-MVE) (85: 15) particles significantly reduce cell viability in a dose- dependent (the greater the load of the bioactive drug in the particles, the lower the viability) with the highest concentrations studied (0.625 and 1.25 mg / ml).
Las nanopartículas poli(VP-co-MTOS) (90: 10) reducen la viabilidad celular hasta un 60 y 75% con una carga del succinato del alfa-tocoferol del 5 y 10%, respectivamente. Por otra parte, las partículas poli(VP-co-MVE) (85: 15) disminuyen la viabilidad celular un 50 % con la máxima carga del fármaco bioactivo a una concentración de 1 ,25 mg/ml. Estos resultados evidencian que estas partículas afectan significativamente la actividad mitocondrial de células FaDu. Además, la carga de las partículas potencia su actividad anticancerígena. En concreto, las mismas partículas poli(VP-co-MTOS) (90: 10) vacías no afectaron significativamente a la viabilidad de estas células. Poly (VP-co-MTOS) nanoparticles (90: 10) reduce cell viability up to 60 and 75% with an alpha-tocopherol succinate load of 5 and 10%, respectively. On the other hand, poly (VP-co-MVE) particles (85: 15) decrease cell viability by 50% with the maximum bioactive drug load at a concentration of 1.25 mg / ml. These results show that these particles significantly affect the mitochondrial activity of FaDu cells. In addition, the particle charge enhances its anticancer activity. Specifically, the same empty poly (VP-co-MTOS) (90: 10) particles did not significantly affect the viability of these cells.

Claims

REIVINDICACIONES
1 .- Uso de un compuesto polimérico de fórmula (I), 1 .- Use of a polymeric compound of formula (I),
Figure imgf000043_0001
o sus isómeros o sales farmacéuticamente aceptables, donde Ri se selecciona de entre hidrógeno y alquilo d-Cs lineal o ramificado;
Figure imgf000043_0001
or its pharmaceutically acceptable isomers or salts, where Ri is selected from hydrogen and linear or branched d-Cs alkyl;
R2 es vitamina E o -X-vitamina E, donde X es el grupo - [0-(CH2)a-R3-
Figure imgf000043_0002
R 2 is vitamin E or -X-vitamin E, where X is the group - [0- (CH 2 ) to -R3-
Figure imgf000043_0002
donde a y b tienen un valor seleccionado independientemente de entre 1 a 6,  where a and b have a value independently selected from 1 to 6,
c tiene un valor seleccionado de entre 1 a 6,  c has a value selected from 1 to 6,
R3 y R4 se seleccionan independientemente de entre C=0, 0-C=0, NH-R 3 and R 4 are independently selected from C = 0, 0-C = 0, NH-
C=0, NH, -S-, S-C=0 y Si(R2)0, C = 0, NH, -S-, SC = 0 and Si (R 2 ) 0,
G es un monómero hidrofílico; y  G is a hydrophilic monomer; Y
(m+n) es igual a 1 ,  (m + n) is equal to 1,
donde * se entiende como la repetición de los monómeros m y n, para la fabricación de un composición farmacéutica para el tratamiento del cáncer de pulmón, mama, hígado, colon, piel y otros tipos de cáncer en los que la actividad mitocondrial de las células cancerígenas esté alterada. 2 - Uso según la reivindicación 1 donde la vitamina E es alfa-tocoferol. where * it is understood as the repetition of myn monomers, for the manufacture of a pharmaceutical composition for the treatment of lung, breast, liver, colon, skin and other cancers in which the mitochondrial activity of cancer cells is altered 2 - Use according to claim 1 wherein vitamin E is alpha-tocopherol.
3. - Uso según cualquiera de las reivindicaciones 1 ó 2 donde G se selecciona del siguiente grupo: /V-vinilpirrolidona, 1 -vinilimidazol y /V,/V-dimetilacrilamida, /V-isopropilacrilamida, 2-hidroxietilmetacrilato, 2-hidroxietilacrilato, metacnlato de polietilenglicol ), acnlato de polietilenglicol), metacnlato de 2-hidroxipropilo, metacrilato de /V-etilmorfolina, acrilato /V-etilmorfolina, metacrilato /V-hidroxietil pirrolidona, acnlato de /V-hidroxietil pirrolidona y 2-vinilpiridina. 3. - Use according to any of claims 1 or 2 wherein G is selected from the following group: / V-vinylpyrrolidone, 1-vinylimidazole and / V, / V-dimethylacrylamide, / V-isopropylacrylamide, 2-hydroxyethylmethacrylate, 2-hydroxyethyl acrylate, polyethylene glycol methaclate), polyethylene glycol acrylate), 2-hydroxypropyl methacrylate, / V-ethylmorpholine methacrylate, acrylate / V-ethylmorpholine, methacrylate / V-hydroxyethyl pyrrolidone, / V-hydroxyethyl pyrrolid and pyrrolid acrylate.
4. - Uso según cualquiera de las reivindicación 1 a 3, donde a es 2. 4. - Use according to any of claims 1 to 3, where a is 2.
5. - Uso según cualquiera de las reivindicaciones 1 a 4, donde R3 es 0-C=0. 5. - Use according to any of claims 1 to 4, wherein R 3 is 0-C = 0.
6. - Uso según cualquiera de las reivindicaciones 1 a 5 donde b es 2. 6. - Use according to any of claims 1 to 5 wherein b is 2.
7. - Uso según cualquiera de las reivindicaciones 1 a 6 donde R4 es C=0. 7. - Use according to any of claims 1 to 6 wherein R 4 is C = 0.
8. - Uso según cualquiera de las reivindicación 1 a 7, donde c es 1 . 8. - Use according to any of claims 1 to 7, wherein c is 1.
9. - Uso según cualquiera de las reivindicaciones 1 a 3, donde R2 es vitamina E. 9. - Use according to any of claims 1 to 3, wherein R 2 is vitamin E.
10. Uso según la reivindicación 1 , donde dicho compuesto es el compuesto de fórmula (II): 10. Use according to claim 1, wherein said compound is the compound of formula (II):
Figure imgf000045_0001
Figure imgf000045_0001
donde (m+n) es igual a 1 y * se entiende como la repetición de los monomeros m y n. where (m + n) is equal to 1 and * is understood as the repetition of the monomers m and n.
1 1 .- Uso según la reivindicación 1 , donde dicho compuesto es el compuesto de fórmula (III): 1 .- Use according to claim 1, wherein said compound is the compound of formula (III):
Figure imgf000045_0002
Figure imgf000045_0002
(III) (III)
donde (m+n) es igual a 1 y * se entiende como la repetición de los monomeros m y n. where (m + n) is equal to 1 and * is understood as the repetition of the monomers m and n.
12. - Uso según cualquiera de las reivindicaciones anteriores donde m tiene un valor de entre 0,05 a 0,80. 12. - Use according to any of the preceding claims wherein m has a value between 0.05 to 0.80.
13. - Uso según la reivindicación antenor donde m tiene un valor de entre 0, 1 a 0,2. 13. - Use according to the preceding claim wherein m has a value between 0.1 and 0.2.
14. - Uso según cualquiera de las reivindicaciones anteriores donde n tiene un valor de entre 0,20 a 0,95. 15.- Uso según la reivindicación anterior donde n tiene un valor de entre 0,8 a 0,9. 14. - Use according to any of the preceding claims wherein n has a value between 0.20 to 0.95. 15. Use according to the preceding claim wherein n has a value between 0.8 to 0.9.
- Compuesto polimérico de fórmula (IV), - Polymeric compound of formula (IV),
Figure imgf000046_0002
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0001
a-tocoferol  a-tocopherol
(IV) o sus isómeros o sales farmacéuticamente aceptables, donde G esta descrito en las reivindicaciones 1 o 3 y (m+n) es igual a 1 y * se entiende como la repetición de los monómeros m y n. - Compuesto polimérico, según la reivindicación anterior, de fórmula (II), (IV) or its pharmaceutically acceptable isomers or salts, wherein G is described in claims 1 or 3 and (m + n) is equal to 1 and * is understood as the repetition of monomers m and n. - Polymeric compound, according to the preceding claim, of formula (II),
Figure imgf000047_0001
Figure imgf000047_0001
(II) (II)
18. - Compuesto, según cualquiera de las reivindicaciones anteriores 16 o 17, donde m tiene un valor de entre 0,05 a 0,80. 18. - Compound according to any of the preceding claims 16 or 17, wherein m has a value between 0.05 to 0.80.
19. - Compuesto, según la reivindicación anterior, donde m tiene un valor de entre 0, 1 a 0,2. 19. - Compound according to the preceding claim, wherein m has a value between 0.1 to 0.2.
20. - Compuesto, según cualquiera de las reivindicaciones 16 a 19, donde n tiene un valor de entre 0,20 a 0,95. 20. - Compound according to any of claims 16 to 19, wherein n has a value between 0.20 to 0.95.
21 . - Compuesto, según la reivindicación anterior, donde n tiene un valor de entre 0,8 a 0,9. twenty-one . - Compound according to the preceding claim, wherein n has a value between 0.8 to 0.9.
22. - Composición farmacéutica que comprende el compuesto de fórmula (IV) descrito según cualquiera de las reivindicaciones 16 a 21 . 22. - Pharmaceutical composition comprising the compound of formula (IV) described according to any of claims 16 to 21.
23. - Composición farmacéutica, según la reivindicación anterior, que además comprende un vehículo farmacéutico. 23. - Pharmaceutical composition according to the preceding claim, further comprising a pharmaceutical vehicle.
24. - Composición farmacéutica, según cualquiera de las reivindicaciones 22 ó24. - Pharmaceutical composition according to any of claims 22 or
23, que además comprende otro principio activo con efecto antitumoral. 23, which also includes another active substance with antitumor effect.
25. - Composición farmacéutica según cualquiera de las reivindicaciones 22 a25. - Pharmaceutical composition according to any of claims 22 a
24, donde el compuesto de fórmula (IV) se encuentra en una cantidad entre 0,010 mg/ml y 1 ,25 mg/ml. 24, wherein the compound of formula (IV) is in an amount between 0.010 mg / ml and 1.25 mg / ml.
26. - Uso del compuesto polimérico de fórmula (IV), según cualquiera de las reivindicaciones 16 a 21 , para la fabricación de una composición farmacéutica. 26. - Use of the polymeric compound of formula (IV), according to any of claims 16 to 21, for the manufacture of a pharmaceutical composition.
27. - Procedimiento de obtención de un compuesto de fórmula (IV) según la cualquiera de las reivindicaciones 16 a 21 que comprende las siguientes etapas: a) Mezcla del alfa-tocoferol con mono-2-(metacriloiloxi)etil succinato en presencia de un catalizador y un activador de la reacción. b) Mezcla del monómero obtenido en la etapa a) con un monómero hidrofílico, en presencia de un iniciador de reacción. 27. - Method of obtaining a compound of formula (IV) according to any one of claims 16 to 21 comprising the following steps: a) Mixing the alpha-tocopherol with mono-2- (methacryloxy) ethyl succinate in the presence of a catalyst and a reaction activator. b) Mixture of the monomer obtained in step a) with a hydrophilic monomer, in the presence of a reaction initiator.
28. - Procedimiento, según la reivindicación 27, donde el catalizador de la etapa a) es una amina. 28. - Method according to claim 27, wherein the catalyst of step a) is an amine.
29. - Procedimiento, según cualquiera de las reivindicaciones 27 ó 28, donde el activador de la etapa a) es una ¡mida. 29. - Method according to any of claims 27 or 28, wherein the activator of step a) is a measure.
30.- Procedimiento, según cualquiera de las reivindicaciones 27 a 29, donde el tiempo de reacción de la etapa a) tiene una duración comprendida entre 1 y 72 horas. 30. Method according to any of claims 27 to 29, wherein the reaction time of step a) has a duration between 1 and 72 hours.
31 . - Procedimiento, según cualquiera de las reivindicaciones 27 a 30, donde la etapa a) se realiza a una temperatura de 15°C a 60°C. 31. - Method according to any of claims 27 to 30, wherein step a) is carried out at a temperature of 15 ° C to 60 ° C.
32. - Procedimiento según cualquiera de las reivindicaciones 27 a 31 donde el monómero hidrofílico de la etapa b) se selecciona del siguiente grupo: N- vinilpirrolidona, 1 -vinilimidazol y /V,/V-d¡met¡lacr¡lam¡da, /V-isopropilacrilamida, 2-hidroxietilmetacrilato, 2-hidroxietilacrilato, metacnlato de polietilenglicol ), acnlato de polietilenglicol), metacnlato de 2-hidroxipropilo, metacrilato de /V-etilmorfolina, acrilato /V-etilmorfolina, metacrilato /V-hidroxietil pirrolidona, acnlato de /V-hidroxietil pirrolidona y 2-vinilpiridina. 32. - Method according to any of claims 27 to 31 wherein the hydrophilic monomer of step b) is selected from the following group: N- vinyl pyrrolidone, 1-vinylimidazole and / V, / Vd¡met¡lacr¡lam¡da, / V-isopropylacrylamide, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, polyethylene glycol methaclate), polyethylene glycol acrylate), 2-hydroxypropyl methacrylate, / V-ethylmorpholine methacrylate, acrylate / V-ethyl acrylate, p-hydroxyl methacrylate / V-hydroxyethyl pyrrolidone and 2-vinylpyridine.
33. - Procedimiento según cualquiera de las reivindicaciones 27 a 31 donde el monómero hidrofílico de la etapa b) es /V-vinilpirrolidona. 33. - Process according to any of claims 27 to 31 wherein the hydrophilic monomer of step b) is / V-vinyl pyrrolidone.
34. - Procedimiento, según cualquiera de las reivindicaciones 27 a 33, donde el iniciador de la etapa b) es un iniciador radical. 34. - Method according to any of claims 27 to 33, wherein the initiator of step b) is a radical initiator.
35. - Procedimiento, según cualquiera de las reivindicaciones 27 a 34 donde la concentración de mono-2-(metachloilox¡)etil succinato empleado en (a) está entre 0,01 y 20 equivalentes. 35. - Method according to any one of claims 27 to 34 wherein the concentration of mono-2- (metachloilox¡) ethyl succinate employed in (a) is between 0.01 and 20 equivalents.
36. - Procedimiento, según cualquiera de las reivindicaciones 27 a 35, donde la concentración de catalizador empleado en (a) está entre 0,01 y 1 equivalentes. 36. - Method according to any of claims 27 to 35, wherein the concentration of catalyst employed in (a) is between 0.01 and 1 equivalent.
37. - Procedimiento, según cualquiera de las reivindicaciones 27 a 36, donde la concentración de activador de la reacción empleado en (a) está entre 0,9 y 1 ,6 equivalentes. 37. - Method according to any of claims 27 to 36, wherein the concentration of the activator of the reaction employed in (a) is between 0.9 and 1.6 equivalent.
38. - Procedimiento, según cualquiera de las reivindicaciones 27 a 37, donde la concentración de monómero empleado en la etapa (b) está entre 0,01 y 10 M. 38. - Method according to any of claims 27 to 37, wherein the concentration of monomer used in step (b) is between 0.01 and 10 M.
39.- Procedimiento, según cualquiera de las reivindicaciones 27 a 38, donde la concentración de iniciador empleado en la etapa (b) se encuentra entre 0,001 y 0, 1 M. 40.- Partícula micelar que comprende el compuesto de fórmula (I) descrito según cualquiera de las reivindicaciones 1 a 25. 39.- Method according to any of claims 27 to 38, wherein the concentration of initiator used in step (b) is between 0.001 and 0.1 M. 40.- Micellar particle comprising the compound of formula (I) described according to any of claims 1 to 25.
41 . - Partícula, según la reivindicación 40, donde dicho compuesto es el compuesto de fórmula (III). 41. - Particle according to claim 40, wherein said compound is the compound of formula (III).
42. - Partícula, según la reivindicación 40, donde dicho compuesto es el compuesto de fórmula (IV). 42. - Particle according to claim 40, wherein said compound is the compound of formula (IV).
43. - Partícula, según la reivindicación anterior, donde dicho compuesto es el compuesto de fórmula (II) 43. - Particle according to the preceding claim, wherein said compound is the compound of formula (II)
44. - Partícula, según cualquiera de las reivindicaciones 40 a 43 que además comprende un principio activo con efecto antitumoral. 45.- Partícula, según la reivindicación 44, donde el principio activo se selecciona del grupo que comprende ciclosporina, colchicina, mitomicina C, ácido micofenólico, rapamicina, everolimus, tacrolimus, paclitaxel, QP-2, actinomicina, estradioles, dexametasona, metatrexato, cilostazol, prednisona, doxorubicina, ranpirnas, troglitazona, valsartán, pemirolast, C-MYC antisentido, angiopeptina, vincristina, PCNA ribozima, 2-cloro-desoxiadenosina, compuestos dirigidos a mTOR y fludarabina. 44. - Particle according to any of claims 40 to 43 which further comprises an active ingredient with antitumor effect. 45.- Particle according to claim 44, wherein the active ingredient is selected from the group comprising cyclosporine, colchicine, mitomycin C, mycophenolic acid, rapamycin, everolimus, tacrolimus, paclitaxel, QP-2, actinomycin, estradiols, dexamethasone, metharexate, cilostazol, prednisone, doxorubicin, ranpirnas, troglitazone, valsartan, pemirolast, C-MYC antisense, angiopeptin, vincristine, PCNA ribozyme, 2-chloro-deoxyadenosine, compounds targeting mTOR and fludarabine.
46. - Uso de la partícula, según cualquiera de las reivindicaciones 40 a 45 para la fabricación de una composición farmacéutica. 46. - Use of the particle according to any of claims 40 to 45 for the manufacture of a pharmaceutical composition.
47. - Uso de la partícula, según cualquiera de las reivindicaciones 40 a 45 para la fabricación de una composición farmacéutica para el tratamiento del cáncer de pulmón, mama, hígado, colón, piel y otros tipos de cáncer en los que la actividad mitocondrial de las células cancerígenas esté alterada. 47. - Use of the particle according to any of claims 40 to 45 for the manufacture of a pharmaceutical composition for the treatment of cancer. of lung, breast, liver, colon, skin and other types of cancer in which the mitochondrial activity of cancer cells is altered.
48. - Uso de la partícula, según cualquiera de las reivindicaciones 40 a 45, como vehículo farmacéutico. 48. - Use of the particle, according to any of claims 40 to 45, as a pharmaceutical vehicle.
49. - Procedimiento de obtención de la partícula, según cualquiera de las reivindicaciones 40 a 45 donde el compuesto polimérico de fórmula (I) se disuelve en un disolvente orgánico y se mezcla con medio acuoso. 49. - Procedure for obtaining the particle according to any of claims 40 to 45 wherein the polymeric compound of formula (I) is dissolved in an organic solvent and mixed with aqueous medium.
50. - Procedimiento, según la reivindicación 49, donde el disolvente orgánico es miscible en agua. 50. - Process according to claim 49, wherein the organic solvent is miscible in water.
51 . - Procedimiento, según cualquiera de las reivindicaciones 49 ó 50, donde el disolvente orgánico miscible en agua se selecciona del grupo que comprende dioxano, tetrahidrofurano y dimetilformamida. 51. - Process according to any of claims 49 or 50, wherein the water miscible organic solvent is selected from the group comprising dioxane, tetrahydrofuran and dimethylformamide.
52. - Procedimiento, según cualquiera de las reivindicaciones 49 a 51 , donde el disolvente orgánico se encuentra en una concentración de entre 2 y 20 mg/ml. 52. - Method according to any of claims 49 to 51, wherein the organic solvent is in a concentration between 2 and 20 mg / ml.
53. - Procedimiento según cualquiera de las reivindicaciones 49 a 52 donde el medio acuoso se encuentra en una concentración de entre 0,02 y 3 mg/ml. 53. - Method according to any of claims 49 to 52 wherein the aqueous medium is in a concentration between 0.02 and 3 mg / ml.
PCT/ES2013/070287 2012-05-07 2013-05-07 Amphiphilic copolymers carrying alpha-tocopherol having antitumoural properties WO2013167782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230679A ES2433248B1 (en) 2012-05-07 2012-05-07 ALFA-TOCOFEROL CARRYING AMPHIFILIC COPOLYMERS WITH ANTITUMOR PROPERTIES
ESP201230679 2012-05-07

Publications (1)

Publication Number Publication Date
WO2013167782A1 true WO2013167782A1 (en) 2013-11-14

Family

ID=49550189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070287 WO2013167782A1 (en) 2012-05-07 2013-05-07 Amphiphilic copolymers carrying alpha-tocopherol having antitumoural properties

Country Status (2)

Country Link
ES (1) ES2433248B1 (en)
WO (1) WO2013167782A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721636A (en) * 2018-06-08 2018-11-02 陕西师范大学 Join the drug delivery materials and its preparation method and application with dual responsiveness of selenium key connection
EP3884963A1 (en) * 2020-03-26 2021-09-29 Consejo Superior de Investigaciones Científicas (CSIC) Naproxen/dexamethasone-based nanoparticles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2735638B2 (en) * 2018-06-18 2021-01-18 Alodia Farm S L AUTO-ASSOCIATED FUNCTIONAL ACRYLIC COPOLYMERS AND TERPOLYMERS AND THEIR USE AS VEHICLES FOR BIOACTIVE COMPOUNDS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869703A (en) * 1997-07-12 1999-02-09 Pacific Corporation Nonionic vitamin E derivatives and a method for the preparation thereof, and polymeric ampliphilic vesicles made therefrom
WO2005107813A1 (en) * 2004-05-06 2005-11-17 Samyang Corporation Delivery system for bioactive agents on the basis of a polymeric drug carrier comprising an amphiphilic block polymer and a polylacticacid derivative
US20080045559A1 (en) * 2003-10-29 2008-02-21 Sonus Pharmaceuticals, Inc. Tocopherol-modified therapeutic drug compounds
US20110129540A1 (en) * 2009-11-26 2011-06-02 Flamel Technologies Polymer of acrylic or methacrylic type comprising alpha-tocopherol grafts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869703A (en) * 1997-07-12 1999-02-09 Pacific Corporation Nonionic vitamin E derivatives and a method for the preparation thereof, and polymeric ampliphilic vesicles made therefrom
US20080045559A1 (en) * 2003-10-29 2008-02-21 Sonus Pharmaceuticals, Inc. Tocopherol-modified therapeutic drug compounds
WO2005107813A1 (en) * 2004-05-06 2005-11-17 Samyang Corporation Delivery system for bioactive agents on the basis of a polymeric drug carrier comprising an amphiphilic block polymer and a polylacticacid derivative
US20110129540A1 (en) * 2009-11-26 2011-06-02 Flamel Technologies Polymer of acrylic or methacrylic type comprising alpha-tocopherol grafts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. VAZQUEZ ET AL.: "Hydrophilic polymers derived from vitamin E", J. BIOMATER. APPL., vol. 14, no. 4, 2000, pages 367 - 388 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108721636A (en) * 2018-06-08 2018-11-02 陕西师范大学 Join the drug delivery materials and its preparation method and application with dual responsiveness of selenium key connection
CN108721636B (en) * 2018-06-08 2021-03-02 陕西师范大学 Drug delivery material with dual responsiveness connected by diselenide bond and preparation method and application thereof
EP3884963A1 (en) * 2020-03-26 2021-09-29 Consejo Superior de Investigaciones Científicas (CSIC) Naproxen/dexamethasone-based nanoparticles

Also Published As

Publication number Publication date
ES2433248B1 (en) 2015-03-10
ES2433248A1 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
Yang et al. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells
Figueiredo et al. Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy
Zhao et al. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: an efficient drug delivery system for overcoming multidrug resistance
Huang et al. Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery
ES2375740T3 (en) NON-TOXIC, NON-BIODEGRADABLE, BIOCOMPATIBLE, USEFUL POLICY FOR PHARMACEUTICAL COMPOSITIONS WITH NANOPART� CULAS.
RU2523714C2 (en) Polymer systems of delivering active substances
Sun et al. Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20 (S)-camptothecin delivery and antitumor efficacy
Yi et al. A co-delivery system based on a reduction-sensitive polymeric prodrug capable of loading hydrophilic and hydrophobic drugs for combination chemotherapy
US20180214563A1 (en) Immunostimulatory nanocarrier
Lancelot et al. Nanostructures based on ammonium-terminated amphiphilic Janus dendrimers as camptothecin carriers with antiviral activity
Chu et al. Preparation and evaluation of teniposide-loaded polymeric micelles for breast cancer therapy
Tang et al. Targeted delivery of docetaxel via Pi-Pi stacking stabilized dendritic polymeric micelles for enhanced therapy of liver cancer
Kang et al. pH-responsive polymer–drug conjugates as multifunctional micelles for cancer-drug delivery
WO2018057649A1 (en) Tagged poly(ester amide urethane)s, nanoparticles formed from same, and uses thereof
Tao et al. Cross-linked micelles of graftlike block copolymer bearing biodegradable ε-caprolactone branches: a novel delivery carrier for paclitaxel
Hu et al. A redox prodrug micelle co-delivering camptothecin and curcumin for synergetic B16 melanoma cells inhibition
Ding et al. Disulfide-cleavage-and pH-triggered drug delivery based on a vesicle structured amphiphilic self-assembly
Zheng et al. Hydrophobized SN38 to redox-hypersensitive nanorods for cancer therapy
TW201321018A (en) Functionalized nanoparticles base on polymers for therapy applications
Cheng et al. Hydrogen-bonded supramolecular micelle-mediated drug delivery enhances the efficacy and safety of cancer chemotherapy
Hu et al. Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy
He et al. Folate‐decorated arginine‐based poly (ester urea urethane) nanoparticles as carriers for gambogic acid and effect on cancer cells
Callari et al. Drug induced self-assembly of triblock copolymers into polymersomes for the synergistic dual-drug delivery of platinum drugs and paclitaxel
Liénard et al. Design of naturally inspired jellyfish-shaped cyclopolylactides to manage osteosarcoma cancer stem cells fate
WO2013167782A1 (en) Amphiphilic copolymers carrying alpha-tocopherol having antitumoural properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13788356

Country of ref document: EP

Kind code of ref document: A1