WO2013167518A2 - Silicon nitride ceramic and method for the production thereof - Google Patents

Silicon nitride ceramic and method for the production thereof Download PDF

Info

Publication number
WO2013167518A2
WO2013167518A2 PCT/EP2013/059357 EP2013059357W WO2013167518A2 WO 2013167518 A2 WO2013167518 A2 WO 2013167518A2 EP 2013059357 W EP2013059357 W EP 2013059357W WO 2013167518 A2 WO2013167518 A2 WO 2013167518A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
additive
nitride ceramic
sintering
ceramic
Prior art date
Application number
PCT/EP2013/059357
Other languages
German (de)
French (fr)
Other versions
WO2013167518A3 (en
Inventor
Karl Berroth
Frank STEGNER
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2013167518A2 publication Critical patent/WO2013167518A2/en
Publication of WO2013167518A3 publication Critical patent/WO2013167518A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a sintered silicon nitride ceramic, which in particular forms a component of a rolling or sliding bearing. Furthermore, the invention relates to a method for producing such
  • Silicon nitride ceramic Sintered silicon nitride ceramics are a frequently used material in mechanical and plant engineering, in the chemical industry, in foundry technology, in electronics, and because of their high strength, fracture toughness, wear, corrosion and thermal shock resistance as well as their low density and low thermal expansion in aerospace engineering.
  • EP 0 587 1 19 B1 shows a silicon nitride sintered body with a high content
  • Methods are 2.0% to 7.5% by weight of one or more
  • Rare earth elements in the form of the respective oxide as an additive added to the silicon nitride.
  • yttria and yttria are preferred embodiments.
  • Alumina is used as a single additive. In these embodiments, sintering takes place over a period of six hours at a temperature of 1,900 ° C.
  • a sintered body based on silicon nitride is known, which is intended for use in a rolling bearing. In the production of the sintered body, it is preferable to add 6% of yttrium oxide as an additive to the silicon nitride.
  • DE 602 18 549 T2 shows a roller bearing element with a silicon nitride
  • Sintered body which in addition to silicon nitride also 1 mass% to 10 mass%
  • Rolling element takes place after completion of the sintering preferably a Hot isostatic pressing treatment (HIP) in a non-oxidizing atmosphere of at least 300 atm (30 MPa) and at a temperature of 1,600 ° C to 1,880 ° C.
  • HIP Hot isostatic pressing treatment
  • Magnesium oxide powder can be used as additives for sintering.
  • the alumina powder and the alumina powder can be used as additives for sintering.
  • the alumina powder and the alumina powder can be used as additives for sintering.
  • Alumina powder and the magnesium oxide powder are for three to ten
  • DE 37 34 274 A1 shows an electrically insulating, ceramic sintered body, which preferably consists of a silicon nitride ceramic.
  • the spinel MgAI 2 O 4 is added as an additive.
  • DE 40 13 923 A1 shows a method for producing a silicon nitride powder, in which a spinel rare earth element oxide is preferably used as a sintering aid.
  • the spinel structure MgO ⁇ Al2O3 is used as a sintering additive.
  • the object of the present invention is a silicon nitride ceramic and a method for the production thereof
  • Silicon nitride ceramic which is designed in particular as a component of a rolling or sliding bearing, for example as a bearing ring or as a rolling element.
  • the method first comprises a step in which silicon nitride Si3N is provided.
  • the silicon nitride is preferably provided as a powder.
  • a first additive is provided as a sintering additive, which is a
  • the first additive is a perovskite-type chemical compound having a structure such as CaTiO 3. This structure is already present before a sintering process, so that the first additive can be described as presynthesized.
  • the first additive also acts as a sintering aid.
  • Process are the silicon nitride, the first additive and possibly further
  • Additives / additives mixed into a mixture.
  • the mixture is then formed into a green body, which is then sintered to a silicon nitride ceramic.
  • the sintering can be done for example by gas pressure sintering or by a hot pressing process.
  • Perovskits a particularly homogeneous distribution of liquid phase sintering necessary elements in the Si3N ceramic is achieved. This results in a particularly advantageous sintering behavior, which it u. a. allows to dispense with a hot isostatic sintering compaction of Si3N ceramic. Instead, it is possible
  • a particular advantage of the method according to the invention is also that oxidic compounds / elements can be used as sintering additives during the production process, which have hygroscopic properties in intrinsic form (eg La 2 O 3 , Nd 2 O 3 , P ⁇ Os) and themselves therefore
  • the first additive to be used according to the invention in the form of a presensitized perovskite does not prove to be hygroscopic, but is also stable in an aqueous environment.
  • the mixing of the silicon nitride powder and the at least first additive and the further treatment can therefore also be carried out on an aqueous basis, so that it is possible to dispense with a much more expensive and dangerous solvent-based preparation.
  • a drying of the ground mixture is preferably carried out to a fine, free-flowing granules.
  • Granules to the green body is preferably carried out by pressing into a mold.
  • the first additive has the following general chemical formula:
  • RE is at least one
  • Rare earth metal while M stands for at least one metal. Furthermore, 0.4 ⁇ x ⁇ 1, 6.
  • x 1, so that there is a stoichiometrically balanced chemical compound REMO3.
  • x ⁇ 1 more preferably x ⁇ 0.8.
  • x> 1 particularly preferably x> 1, 2.
  • Perovskitstrukur is modified if necessary, so that at least one perovskite-like structure is present, which is within the scope of the invention.
  • the component M is preferably selected from the group formed by Al, Fe, Cr and Mn, wherein the component M may comprise one or more of these metals. Particularly preferably, the component M comprises at least aluminum Al.
  • the component RE particularly preferably comprises at least neodymium Nd.
  • the first additive has the formula NdxAl 2-x O 3 , which is a concretization of the abovementioned general chemical formula.
  • the first additive has the formula NdAIO3, which is a
  • the additive has the following general chemical formula:
  • RE 1 stands for a first rare earth metal
  • the first additive is preferably provided in the form of particles which have an average primary particle size of less than 1 ⁇ m. These are therefore nanoscale primary particles, which are preferably formed as nanoparticles are.
  • the phar particles can also be present in particular as granules or agglomerates.
  • the average primary particle size of the first additive is preferably from about 10 nm to several 100 nm
  • the primary particle size of the first additive is preferably less than 500 nm.
  • the average primary particle size of the first additive is preferably more than 50 nm.
  • the proportion of the first additive is preferably between 10% by weight and 30% by weight of the mixture.
  • the proportion of the first additive is preferably between 10 wt .-% and 15 wt .-%, more preferably between 12 wt .-% and 13.5 wt .-% of the mixture. Basically, a share of more than
  • the proportion of the silicon nitride is preferably between 60 wt .-% and 95 wt .-%, more preferably between
  • no further additive of the mixture is added in addition to the first additive.
  • Silicon nitride only the first additive only the first additive.
  • the exclusive use of the The first additive as an additive ensures that the first additive is extremely homogeneously distributed in the mixture.
  • Method is provided in addition to the first additive, a second additive and added to the mixture.
  • the second additive is preferably in the form of primary particles, which have an average primary particle size of less than 1 ⁇ .
  • the second additive is preferably such chemical
  • this second additive is preferably selected from the group of oxides and nitrides of the elements Ti, Hf, Zr, Mo, Ta, Nb and Cr and the oxides and nitrides of the rare earth metals.
  • the second additive may comprise several of the compounds mentioned.
  • the proportion of the second additive is preferably at most 5 wt .-% of the mixture.
  • a third additive is provided and added to the mixture.
  • the third additive can be added both when using the first and second additive as well as when using the first additive alone.
  • the third additive is preferably present in the form of primary particles, which an average
  • Primary particle size of less than 1 ⁇ have.
  • the third additive is preferably such chemical
  • the third additive is preferably MgO, Al 2 O 3, Y 2 O 3 or AlN.
  • the third additive is preferred by a spinel or by a garnet educated.
  • the third additive may comprise several of said compounds.
  • the proportion of the third additive is preferably at most 5 wt .-% of the
  • the sintering is carried out at a temperature between 1 .500 ° C and 2,000 ° C, more preferably between 1 .700 ° C and 1 .900 ° C. In alternative preferred embodiments, the sintering is carried out at a temperature of between 1, 700 ° C and 2000 ° C.
  • the duration of sintering is preferably between one minute and 60 minutes, more preferably between 20 minutes and 30 minutes. In alternative preferred embodiments, the duration for sintering is between one hour and four hours, more preferably between two hours and three hours.
  • the provision of the particles of the first additive preferably takes place in that the substance of the first additive is precipitated from a liquid phase.
  • the provision of the particles of the first additive preferably takes place in that a
  • Primary particle size and a specific surface can be achieved by the subsequent grinding of coarser particles.
  • the sintering of the green body is preferably carried out by sintering
  • the silicon nitride ceramic produced according to the invention is already densely sintered to a large extent without pores and has high-quality microstructures and properties, preference is given to none
  • Hot isostatic pressing performed.
  • An advantage of the method according to the invention is that no or only a thin sintered skin of the silicon nitride ceramic is formed. The while sintering
  • resulting sintered skin has a thickness which is preferably less than 0.5 mm, more preferably less than 0.2 mm and more preferably less than 0.1 mm.
  • Silicon nitride ceramic is also preferably no measure is taken to reduce the oxygen content in the edge region of the silicon nitride ceramic, such as, for example, a deoxidation treatment before sintering.
  • a further object of the invention is a silicon nitride ceramic, which is obtainable by the method according to the invention.
  • a further subject of the invention is a silicon nitride ceramic which is sintered and, in addition to silicon nitride, comprises a grain boundary phase which is formed by a chemical compound of silicon nitride and a first additive having a perovskite structure.
  • the silicon nitride is preferably crystallized in the form of ⁇ -Si3N-stalk crystals.
  • the grain boundary phase is preferably formed in a glass-like manner between the ⁇ -Si 3 N stalk crystals.
  • the grain boundary phase preferably has the general chemical formula RE a Si b McO d N e , in which RE is a rare earth metal and M is a metal, where a, b, c, d and e are greater than zero.
  • the silicon nitride ceramic according to the invention has in terms of their
  • composition in particular with regard to the chemical composition of the bound in the grain boundary phase first additive and optionally further
  • the average particle size of the first additive preferably less than 1 ⁇ , more preferably less than 500 nm. Further for example, the average particle size of the first additive is more than 50 nm.
  • bonded first additive is preferably similar to the chemical composition of the first additive, which is preferably used according to the inventive method.
  • the chemical composition of any other additives present in the sintered silicon nitride ceramic is preferably the same
  • the silicon nitride ceramic according to the invention is characterized in that it has a high strength and at the same time good fracture toughness. So is the
  • 3-point bending strength of the silicon nitride ceramic according to the invention preferably at least 800 MPa, more preferably more than 900 MPa.
  • the crack toughness according to Niihara is at the same time at least 6 MPa "0.5 , preferably more than 7 MPa " 0.5 , particularly preferably about 7.5 to 8.7 MPa "0.5
  • the compressive strength of the silicon nitride ceramic according to the invention is preferably at least 2500 MPa, more preferably more than 3,000 MPa.
  • the silicon nitride ceramic according to the invention preferably has a morphology with predominantly acicular ⁇ -Si 3 N crystals, which are present in the glassy or
  • the needle-shaped crystals ensure a high fracture toughness and damage tolerance of the
  • the needle-shaped crystals have a large relative length. Accordingly, the acicular crystals have a length and a diameter whose ratio is on average preferably greater than 4, more preferably greater than 8.
  • at least one-tenth of the needle-shaped crystals of the silicon nitride ceramic according to the invention has a length and a
  • Diameter the ratio is greater than 10, more preferably greater than 20.
  • the silicon nitride ceramic according to the invention is preferably formed without pores, without being subjected to a hot isostatic pressing or a comparable
  • Preferred embodiments of the silicon nitride ceramic according to the invention have a sintered skin which is less than 0.5 mm, more preferably less than 0.2 mm and more preferably less than 0.1 mm thick, without the sintering skin being reduced by a measure after sintering ,
  • the silicon nitride ceramic according to the invention is preferably designed as a component of a bearing, for example as a component of a sliding bearing or a roller bearing.
  • Silicon nitride ceramic according to the invention at least comprises, also one
  • the component of the bearing is formed by the silicon nitride ceramic according to the invention.
  • the silicon nitride ceramic according to the invention is preferably designed as a bearing ring or as a rolling element.
  • Fig. 1 a micrograph of a preferred embodiment of a
  • FIG. 3 shows a micrograph of the silicon nitride ceramic according to the invention in a higher resolution
  • FIG. 4 shows a micrograph of the silicon nitride ceramic according to the prior art in a higher resolution; a micrograph of a cross-sectional area of the edge region of the preferred embodiment of the invention
  • Silicon nitride ceramic according to the prior art.
  • Silicon nitride powder prepared in aqueous medium with the addition of appropriate additives, such as a condenser and a defoamer.
  • Fluidized bed granulation The granules produced were then processed by the molding processes of a cold isostatic pressing (CIP) or a uniaxial dry pressing with cold isostatic densification into green bodies and if necessary in terms of geometry, dimensional accuracy, tolerance and surface quality by machining processes, such as drilling, turning, milling, grinding, etc. reworked as close to final contour as possible in the green state. Subsequently, a thermal debinding step was carried out to remove all the organic components which are disadvantageous for the subsequent sintering but which are necessary for shaping.
  • CIP cold isostatic pressing
  • a uniaxial dry pressing with cold isostatic densification into green bodies and if necessary in terms of geometry, dimensional accuracy, tolerance and surface quality by machining processes, such as drilling, turning, milling, grinding, etc. reworked as close to final contour as possible in the green state.
  • a thermal debinding step was carried out to remove all the organic components which are disadvantageous for the subsequent sintering but
  • the sintering of the moldings was then carried out depending on the type of sintering additive used and sintering additive content at temperatures between 1 .700 ° C and 1 .900 ° C in a gas pressure sintering furnace under non-oxidizing atmosphere with temporary application of a gas pressure of 0.5 MPa to 10 MPa.
  • the density of the ceramic was determined by comparing the samples or the determined by the measurement method according to Archimedes component density and the
  • Helium pycnometry measured on a very pulverulent material sample determined true density of the silicon nitride material determined. From the produced ceramic samples or components were subsequently
  • Test specimen for the determination of the 3- or 4-point bending strength according to DIN EN 843-1 worked out and subjected to the measurement.
  • the determination of the modulus of elasticity was carried out by evaluating the stress-strain ratio from the 3- or 4-point bending test according to the standard DIN EN 843-2,
  • the hardness test was carried out by Vickers HV20 hardness impressions according to the DIN EN 843-4 standard on finely polished material ground sections.
  • the fracture toughness test was carried out by measuring the cracks coming from the corners of the hardness impressions and calculating according to the formula for the fracture toughness K
  • the statistical evaluation of all determined mechanical characteristics was carried out according to the DIN EN 843-5 standard issued for monolithic ceramics.
  • one RExAl 2-x O 3 was used as the first additive, where RE is a rare earth metal and 0.4 ⁇ x ⁇ 1, 6.
  • This is a perovskite structure, which in the context of the invention is stoichiometric in the case of x 1 (see Table 1),
  • Table 1 shows various proportions of rare earth oxides REO and
  • Alumina AI2O3 for the inventive provision of various proportions of the first additive, each having a stoichiometric composition for the
  • Table 2 shows various proportions of rare earth oxides REO and
  • the data in Table 2 are in% by weight.
  • Table 3 shows various proportions of rare earth oxides REO and
  • Alumina AI2O3 for the provision according to the invention of various proportions of the first additive, each having a substoichiometric composition (x 0.8) for gas pressure sintering.
  • the data in Table 3 are in% by weight.
  • Table 4 shows various concentrations of the elements Nd, Al and O as well as concentrations of neodymium oxide and alumina for the invention particularly preferred provision of NdAIO3 as the first additive for gas pressure sintering.
  • the data in Table 4 are in% by weight.
  • Fig. 1 shows a micrograph of a preferred embodiment of a
  • silicon nitride ceramic of the present invention (Example No. 6 in Table 5) prepared by the addition of a first additive having a perovskite structure and can be described by the formula NdxAl 2-x O3 with 0.4 ⁇ x ⁇ 1.6.
  • This chemical compound NdxAl 2-x O3 did not first form during sintering, but was added in this form as an additive to the silicon nitride before sintering. It is thus a presynthesized additive.
  • the silicon nitride ceramic shown is approximately free of pores and homogeneously sintered.
  • the very few, black dots, however, indicate small residual pores 01 in the material.
  • the white microstructure constituents in the polished section are due to the introduction of a third additive as coloring agent, which forms crystallized grains 02 having a size of 1 ⁇ m to 2 ⁇ m.
  • FIG. 2 shows a prior art silicon nitride ceramic which has been subjected to hot isostatic pressing (HIP) with about 12% by weight of sintering additive content, so that it has a comparatively high compressive strength of more than
  • HIP hot isostatic pressing
  • the silicon nitride ceramic according to the invention shown in FIG. 1 was not subjected to a hot isostatic pressing process, so that it was produced much less laboriously and yet has a comparable structure to the silicon nitride ceramic produced in accordance with the prior art shown in FIG. 2.
  • Silicon nitride ceramics also have a compressive strength of about 3,000 MPa, and also the fracture toughness reaches approximately the same at 6.9 MPa "0.5
  • the prior art silicon nitride ceramic shown in Fig. 2 also has a dyeing additive included in the silicon nitride ceramic in the form of crystallized grains 03, which are recognizable as white dots.
  • the grains 03 have a size of about 1 ⁇ to 2 ⁇ on. Despite sintering and densification by hot isostatic pressing (HIP) are also in the Microstructure of this silicon nitride ceramic fine residual pores 04 with approximately similar frequency and size as in Fig. 1 recognizable.
  • HIP hot isostatic pressing
  • Fig. 3 shows a further microsection of the preferred embodiment of
  • Silicon nitride ceramic according to the invention in a higher resolution.
  • the micrograph shows a scale of 10 ⁇ .
  • the silicon nitride ceramic has a morphology with acicular ⁇ -Si 3 N crystals 06 which are present in the structure in a three-dimensional and statistically oriented manner, resulting in a quasi-isotropic microstructure and the quasi-isotropic properties of the ceramic.
  • the needle-shaped crystals are surrounded by the glassy or semi-crystalline grain boundary and filling phase formed from the first and optionally third additive and the SiO 2 fraction of the starting Si 3 N powder.
  • Filling phase is formed by a chemical compound of silicon nitride and the first additive having a perovskite structure.
  • Crystals 06 have a length and a diameter whose ratio is in many cases more than 10 and occasionally up to 24.
  • the needle-shaped crystals 06 cause a high fracture toughness and thus damage tolerance of
  • FIG. 4 shows a further micrograph of the prior art silicon nitride ceramic shown in FIG. 2 in a higher resolution. It is the same resolution as in Fig. 3, to the invention shown in Fig. 3
  • Silicon nitride ceramic to compare with the prior art.
  • the silicon nitride ceramic according to the prior art shown in FIG. 4 predominantly has only short acicular ⁇ -Si 3 N crystals 07, so that in contrast to
  • Silicon nitride ceramic according to the invention only a significantly reduced
  • Silicon nitride ceramic has no or only a very thin sinter skin on its surface 08, without having to remove or reduce a sinter skin for this purpose by means of a hard-machining step.
  • FIG. 6 shows, in comparison to FIG. 5, a cross-sectional area of a silicon nitride ceramic according to the prior art. This silicon nitride ceramic has on its surface on a sintered skin 09, which must be removed for many applications by a subsequent hard machining, but significantly increases the manufacturing cost.
  • Table 6 shows various proportions of rare earth oxides REO and
  • Alumina AI2O3 for the inventive provision of various proportions of the first additive, each having a stoichiometric composition (x 1, 0) for hot pressing.
  • the data in Table 6 are in% by weight.
  • Table 7 shows various proportions of rare earth oxides REO and
  • Alumina AI2O3 for the provision according to the invention of various proportions of the first additive, each having a superstoichiometric composition (x 1, 2) for hot pressing.
  • the data in Table 7 are in wt .-%.
  • Table 8 shows various proportions of rare earth oxides REO and
  • Alumina AI2O3 for the provision according to the invention of various proportions of the first additive, each having a substoichiometric composition (x 0.8) for hot pressing.
  • the data in Table 8 are in% by weight.
  • Table 9 shows various concentrations of the elements Nd, Al and O as well as concentrations of neodymium oxide and alumina to the invention particularly preferred provision of NdAIO3 as the first additive for hot pressing.
  • the data in Table 9 are in wt .-%.
  • Table 9 Representative examples Nos. 8 to 11 for the property values of the ceramic materials hot-pressed according to the present invention are shown in Table 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a sintered silicon nitride ceramic, which consists of, in particular, a component of a rolling or sliding bearing. The invention also relates to a method for producing said type of silicon nitride ceramic. The method comprises a first step in which silicon nitride Si3N4 is prepared. Then, a first additive which has a perovskite structure is prepared. Said first additive has a perovskite-type chemical compound having a structure such as CaTiO3. Said structure is already present prior to the sintering process such that the first additive can be referred to as presynthesized. The first additive is also a sintering aid. In a further step of the claimed method, the silicon nitride and the first additive are mixed to form a mixture. The mixture is subsequently formed into a green compact which is sintered to form a silicon nitride ceramic.

Description

Siliziumnitridkeramik sowie Verfahren zu deren Herstellung  Silicon nitride ceramics and process for their preparation
Die vorliegende Erfindung betrifft eine gesinterte Siliziumnitridkeramik, welche insbesondere eine Komponente eines Wälz- oder Gleitlagers bildet. Im Weiteren betrifft die Erfindung ein Verfahren zur Herstellung einer solchen The present invention relates to a sintered silicon nitride ceramic, which in particular forms a component of a rolling or sliding bearing. Furthermore, the invention relates to a method for producing such
Siliziumnitridkeramik. Gesinterte Siliziumnitridkeramiken sind wegen ihrer hohen Festigkeit, Risszähigkeit, Verschleiß-, Korrosions- und Temperaturwechselbeständigkeit sowie wegen ihrer geringen Dichte und ihrer geringen thermischen Ausdehnung ein häufig verwendeter Werkstoff im Maschinen- und Anlagenbau, in der chemischen Industrie, in der Gießereitechnik, in der Elektronik sowie in der Luft- und Raumfahrttechnik. Silicon nitride ceramic. Sintered silicon nitride ceramics are a frequently used material in mechanical and plant engineering, in the chemical industry, in foundry technology, in electronics, and because of their high strength, fracture toughness, wear, corrosion and thermal shock resistance as well as their low density and low thermal expansion in aerospace engineering.
Die EP 0 587 1 19 B1 zeigt einen Siliziumnitrid-Sinterkörper mit hoher EP 0 587 1 19 B1 shows a silicon nitride sintered body with a high content
Wärmeleitfähigkeit und ein Verfahren zu dessen Herstellung. Gemäß diesem Thermal conductivity and a method for its production. According to this
Verfahren werden 2,0 Gew.-% bis 7,5 Gew.-% eines oder mehrere Methods are 2.0% to 7.5% by weight of one or more
Seltenerdelemente in Form des jeweiligen Oxides als Additiv dem Siliziumnitrid beigefügt. Bei bevorzugten Ausführungsformen werden Yttriumoxid und Rare earth elements in the form of the respective oxide as an additive added to the silicon nitride. In preferred embodiments, yttria and
Aluminiumoxid als einzelne Additive verwendet. Bei diesen Ausführungsformen erfolgt ein Sintern über eine Dauer von sechs Stunden bei einer Temperatur von 1 .900°C. Aus der DE 39 38 644 A1 ist ein Sinterkörper auf der Basis von Siliziumnitrid bekannt, welcher zur Verwendung in einem Wälzlager vorgesehen ist. Bei der Herstellung des Sinterkörpers werden bevorzugt 6 % Yttriumoxid als Additiv dem Siliziumnitrid beigegeben. Die DE 602 18 549 T2 zeigt ein Wälzlagerelement mit einem Siliziumnitrid- Alumina is used as a single additive. In these embodiments, sintering takes place over a period of six hours at a temperature of 1,900 ° C. From DE 39 38 644 A1 a sintered body based on silicon nitride is known, which is intended for use in a rolling bearing. In the production of the sintered body, it is preferable to add 6% of yttrium oxide as an additive to the silicon nitride. DE 602 18 549 T2 shows a roller bearing element with a silicon nitride
Sinterkörper, welcher neben Siliziumnitrid auch 1 Masse-% bis 10 Masse-% Sintered body, which in addition to silicon nitride also 1 mass% to 10 mass%
Seltenerdmetalle in Form von Oxiden enthält. Zur Herstellung dieses Contains rare earth metals in the form of oxides. For the production of this
Wälzlagerelementes erfolgt nach Vollendung des Sinterns bevorzugt eine heißisostatische Pressbehandlung (HIP) in einer nichtoxidierenden Atomsphäre von mindestens 300 Atm (30 MPa)und bei einer Temperatur von 1 .600°C bis 1 .860°C. Rolling element takes place after completion of the sintering preferably a Hot isostatic pressing treatment (HIP) in a non-oxidizing atmosphere of at least 300 atm (30 MPa) and at a temperature of 1,600 ° C to 1,880 ° C.
Aus der DE 23 53 093 B2 ist ein Verfahren zur Herstellung einer gesinterten Keramik auf Siliziumnitridbasis bekannt, bei welchem Aluminiumoxidpulver und From DE 23 53 093 B2 a method for producing a sintered ceramic based on silicon nitride is known in which alumina powder and
Magnesiumoxidpulver als Additive zum Sintern verwendet werden. Gemäß einer bevorzugten Ausführungsform werden das Aluminiumoxidpulver und das  Magnesium oxide powder can be used as additives for sintering. According to a preferred embodiment, the alumina powder and the
Magnesiumoxidpulver bereits vor dem Sintern zur Reaktion gebracht. Das Magnesium oxide powder already reacted before sintering. The
Aluminiumoxidpulver und das Magnesiumoxidpulver werden für drei bis zehn Alumina powder and the magnesium oxide powder are for three to ten
Stunden bei einer Temperatur von 1 .600°C bis 1 .800°C erhitzt, um Spinelle zu erzeugen. Anschließend werden die Spinelle sehr fein pulverisiert, um eine Hours at a temperature of 1 .600 ° C to 1 .800 ° C to produce spinels. Then the spinels are finely pulverized to a
Teilchengröße von weniger als 50 μιτι zu erzielen. Particle size of less than 50 μιτι to achieve.
Die DE 37 34 274 A1 zeigt einen elektrisch isolierenden, keramischen Sinterkörper, welcher bevorzugt aus einer Siliziumnitridkeramik besteht. Bei der Herstellung des gesinterten Körpers wird der Spinell MgAI2O4 als Additiv beigemengt. DE 37 34 274 A1 shows an electrically insulating, ceramic sintered body, which preferably consists of a silicon nitride ceramic. In the production of the sintered body, the spinel MgAI 2 O 4 is added as an additive.
Die DE 40 13 923 A1 zeigt ein Verfahren zur Herstellung eines Siliziumnitridpulvers, bei welchem bevorzugt ein Spinell-Seltenerdelementoxid als Sinterhilfe verwendet wird. DE 40 13 923 A1 shows a method for producing a silicon nitride powder, in which a spinel rare earth element oxide is preferably used as a sintering aid.
Die DE 694 27 510 T2 zeigt ein Verfahren zur Herstellung eines Sinters auf DE 694 27 510 T2 discloses a method for producing a sinter
Siliziumnitridbasis. Bei diesem Verfahren wird die Spinellstruktur MgO AI2O3 als Sinterzusatz verwendet. Silicon nitride. In this method, the spinel structure MgO Al2O3 is used as a sintering additive.
Die Aufgabe der vorliegenden Erfindung besteht ausgehend vom Stand der Technik darin, eine Siliziumnitridkeramik und ein Verfahren zu deren Herstellung The object of the present invention, starting from the prior art therein, is a silicon nitride ceramic and a method for the production thereof
bereitzustellen, wobei eine vergleichsweise aufwandärmere Herstellung zu einer Siliziumnitridkeramik führt, welche sowohl eine hohe Festigkeit und Risszähigkeit, eine weitestgehend porenfreie Struktur als auch eine geringere Sinterhaut aufweist. Die genannte Aufgabe wird gelöst durch ein Verfahren gemäß dem beigefügten Anspruch 1 sowie durch Siliziumnitridkeramiken gemäß den beigefügten to provide, with a comparatively aufwandärmere production leads to a Siliziumnitridkeramik, which has both a high strength and fracture toughness, a largely non-porous structure and a lower sintered skin. The above object is achieved by a method according to the appended claim 1 and by silicon nitride ceramics according to the attached
nebengeordneten Ansprüchen 7 und 8. Das erfindungsgemäße Verfahren dient der Herstellung einer gesinterten independent claims 7 and 8. The inventive method is used to produce a sintered
Siliziumnitridkeramik, welche insbesondere als Komponente eines Wälz- oder Gleitlagers ausgebildet ist, beispielsweise als ein Lagerring oder als ein Wälzkörper. Das Verfahren umfasst zunächst einen Schritt, in welchem Siliziumnitrid Si3N bereitgestellt wird. Das Siliziumnitrid wird bevorzugt als Pulver bereitgestellt.  Silicon nitride ceramic, which is designed in particular as a component of a rolling or sliding bearing, for example as a bearing ring or as a rolling element. The method first comprises a step in which silicon nitride Si3N is provided. The silicon nitride is preferably provided as a powder.
Weiterhin wird ein erstes Additiv als Sinteradditiv bereitgestellt, welches eine Furthermore, a first additive is provided as a sintering additive, which is a
Perowskitstrukur aufweist. Es handelt sich bei dem ersten Additiv somit um eine chemische Verbindung vom Perowskit-Typ, welche eine Struktur wie CaTiO3 aufweist. Diese Struktur liegt bereits vor einem Sintervorgang vor, sodass das erste Additiv als vorsynthetisiert bezeichnet werden kann. Das erste Additiv fungiert im Weiteren als Sinterhilfe. In einem weiteren Schritt des erfindungsgemäßen  Having perovskite structure. Thus, the first additive is a perovskite-type chemical compound having a structure such as CaTiO 3. This structure is already present before a sintering process, so that the first additive can be described as presynthesized. The first additive also acts as a sintering aid. In a further step of the invention
Verfahrens werden das Siliziumnitrid, das erste Additiv sowie ggf. weitere Process are the silicon nitride, the first additive and possibly further
Additive/Zusätze zu einer Mischung vermischt. Die Mischung wird anschließend zu einem Grünling geformt, welcher daraufhin zu einer Siliziumnitridkeramik gesintert wird. Das Sintern kann beispielsweise durch ein Gasdrucksintern oder durch einen Heißpressprozess erfolgen. Dabei wird neben dem Siliziumnitrid auch das ersteAdditives / additives mixed into a mixture. The mixture is then formed into a green body, which is then sintered to a silicon nitride ceramic. The sintering can be done for example by gas pressure sintering or by a hot pressing process. Here, in addition to the silicon nitride and the first
Additiv zu einem Bestandteil der Siliziumnitridkeramik und bildet dabei eine glasartige Binder-, Füll- und Korngrenzphase aus. Additive to a component of the silicon nitride ceramic and forms a glassy binder, filling and grain boundary phase.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass durch die Verwendung des ersten Additivs in Form eines vorsynthetisierten An essential advantage of the method according to the invention is that the use of the first additive in the form of a presynthesized
Perowskits eine besonders homogene Verteilung der zum Flüssigphasensintern nötigen Elemente in der Si3N -Keramik erreicht wird. Daraus resultiert ein besonders vorteilhaftes Sinterverhalten, welches es u. a. ermöglicht, auf eine heißisostatische Sinterverdichtung der Si3N -Keramik zu verzichten. Stattdessen lässt sich  Perovskits a particularly homogeneous distribution of liquid phase sintering necessary elements in the Si3N ceramic is achieved. This results in a particularly advantageous sintering behavior, which it u. a. allows to dispense with a hot isostatic sintering compaction of Si3N ceramic. Instead, it is possible
erfindungsgemäß eine Si3N -Keramik mit etwa gleichwertigem Gefüge und According to the invention a Si3N ceramic with approximately equivalent structure and
Eigenschaften auch über einen weniger aufwändigen Gasdrucksinter- oder  Properties also over a less complex Gasdrucksinter- or
Heißpressprozess herstellen. Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht außerdem darin, dass während des Herstellungsprozesses oxidische Verbindungen/Elemente als Sinteradditive Verwendung finden können, die in intrinsischer Form hygroskopische Eigenschaften aufweisen (z. B. La2O3, Nd2O3, P^Os) und sich deshalb Produce hot pressing process. A particular advantage of the method according to the invention is also that oxidic compounds / elements can be used as sintering additives during the production process, which have hygroscopic properties in intrinsic form (eg La 2 O 3 , Nd 2 O 3 , P ^ Os) and themselves therefore
normalerweise nicht wässrig dispergieren lassen. Das erfindungsgemäß zu verwendende erste Additiv in Form eines vorsynthetisierten Perowskits erweist sich hingegen nicht als hygroskopisch, sondern ist auch in wässriger Umgebung stabil. Das Mischen des Siliziumnitridpulvers und des zumindest ersten Additivs sowie die weitere Aufbereitung können deshalb auch auf wässriger Basis erfolgen, sodass auf eine wesentlich teurere und gefährlichere lösungsmittelbasierte Aufbereitung verzichtet werden kann. normally do not allow to disperse aqueous. The first additive to be used according to the invention in the form of a presensitized perovskite, on the other hand, does not prove to be hygroscopic, but is also stable in an aqueous environment. The mixing of the silicon nitride powder and the at least first additive and the further treatment can therefore also be carried out on an aqueous basis, so that it is possible to dispense with a much more expensive and dangerous solvent-based preparation.
Bevorzugte Ausführungsformen des Verfahrens sehen weiterhin einen Preferred embodiments of the method further provide a
Nassmahlprozess für die Mischung vor, mit dem die gewünschte Feinheit, Wet grinding process for the mixture before, with which the desired fineness,
Homogenität und Oberflächenqualität der Mischung erreicht und gezielt eingestellt werden kann. Nachfolgend erfolgt bevorzugt ein Trocknen der gemahlenen Mischung zu einem feinen, gut rieselfähigen Granulat. Das anschließende Formen des Homogeneity and surface quality of the mixture can be achieved and targeted. Subsequently, a drying of the ground mixture is preferably carried out to a fine, free-flowing granules. The subsequent shaping of the
Granulates zum Grünling erfolgt bevorzugt durch ein Pressen in eine Form. Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens weist das erste Additiv die folgende allgemeine chemische Formel auf: Granules to the green body is preferably carried out by pressing into a mold. In preferred embodiments of the method according to the invention, the first additive has the following general chemical formula:
RExM2-xO3 In dieser allgemeinen chemischen Formel steht RE für mindestens ein RE x M 2- xO 3 In this general chemical formula, RE is at least one
Seltenerdmetall, während M für mindestens ein Metall steht. Weiterhin gilt 0,4 < x < 1 ,6.  Rare earth metal, while M stands for at least one metal. Furthermore, 0.4 <x <1, 6.
Bei bevorzugten Ausführungsformen ist x = 1 , sodass eine stöchiometrisch ausgeglichene chemische Verbindung REMO3 vorliegt. In preferred embodiments, x = 1, so that there is a stoichiometrically balanced chemical compound REMO3.
Bei alternativen bevorzugten Ausführungsformen ist x < 1 , besonders bevorzugt x < 0,8. Bei weiteren alternativen bevorzugten Ausführungsformen ist x > 1 , besonders bevorzugt x > 1 ,2. Die genannten Ausführungsformen führen zu einer Über- bzw. Unterstöchiometrie des ersten Additivs, durch welche die In alternative preferred embodiments, x <1, more preferably x <0.8. In further alternative preferred embodiments, x> 1, particularly preferably x> 1, 2. The embodiments mentioned lead to an over or understoichiometry of the first additive, by which the
Perowskitstrukur ggf. modifiziert wird, sodass zumindest noch eine perowskitartige Struktur vorliegt, die im Rahmen der Erfindung liegt. Perovskitstrukur is modified if necessary, so that at least one perovskite-like structure is present, which is within the scope of the invention.
Die Komponente M ist bevorzugt aus der durch AI, Fe, Cr und Mn gebildeten Gruppe ausgewählt, wobei die Komponente M eine oder mehrere dieser Metalle umfassen kann. Besonders bevorzugt umfasst die Komponente M zumindest Aluminium AI. Besonders bevorzugt umfasst die Komponente RE zumindest Neodym Nd. The component M is preferably selected from the group formed by Al, Fe, Cr and Mn, wherein the component M may comprise one or more of these metals. Particularly preferably, the component M comprises at least aluminum Al. The component RE particularly preferably comprises at least neodymium Nd.
Bei besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens weist das erste Additiv die Formel NdxAI2-xO3 auf, welche eine Konkretisierung der oben angegebenen allgemeinen chemischen Formel darstellt. In particularly preferred embodiments of the process according to the invention, the first additive has the formula NdxAl 2-x O 3 , which is a concretization of the abovementioned general chemical formula.
Bei weiteren besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens weist das erste Additiv die Formel NdAIO3 auf, welche eine In further particularly preferred embodiments of the method according to the invention, the first additive has the formula NdAIO3, which is a
Konkretisierung der oben angegebenen allgemeinen chemischen Formel darstellt. Specification of the general chemical formula given above.
Gemäß einer weiteren bevorzugten Ausführungsform weist das Additiv die folgende allgemeine chemische Formel auf:
Figure imgf000007_0001
According to another preferred embodiment, the additive has the following general chemical formula:
Figure imgf000007_0001
In dieser allgemeinen chemischen Formel steht RE1 für ein erstes Seltenerdmetall, während RE" für ein zweites vom ersten Seltenerdmetall verschiedenes In this general chemical formula, RE 1 stands for a first rare earth metal, while RE "stands for a second one different from the first rare earth metal
Seltenerdmetall steht. Weiterhin gilt u + v + w = 2 und 0,4 < (u + v) < 1 ,6 sowie  Rare earth metal stands. Furthermore, u + v + w = 2 and 0.4 <(u + v) <1, 6 and
0 < w < 0,4.  0 <w <0.4.
Das erste Additiv wird bevorzugt in Form von Partikeln bereitgestellt, die eine durch- schnittliche Primärpartikelgröße von weniger als 1 μιτι aufweisen. Es handelt sich somit um nanoskalige Primärpartikel, welche bevorzugt als Nanopartikel ausgebildet sind. Die Phmärpartikel können insbesondere auch als Granulate oder Agglomerate vorliegen. The first additive is preferably provided in the form of particles which have an average primary particle size of less than 1 μm. These are therefore nanoscale primary particles, which are preferably formed as nanoparticles are. The phar particles can also be present in particular as granules or agglomerates.
Die durchschnittliche Primärpartikelgröße des ersten Additivs beträgt bevorzugt einige 10 nm bis einige 100 nm. Folglich beträgt die durchschnittliche The average primary particle size of the first additive is preferably from about 10 nm to several 100 nm
Primärpartikelgröße des ersten Additivs bevorzugt weniger als 500 nm. Im Weiteren beträgt die durchschnittliche Primärpartikelgröße des ersten Additivs bevorzugt mehr als 50 nm. Der Anteil des ersten Additivs beträgt bevorzugt zwischen 10 Gew.-% und 30 Gew.- % an der Mischung. Weiterhin beträgt der Anteil des ersten Additivs bevorzugt zwischen 10 Gew.-% und 15 Gew.-%, besonders bevorzugt zwischen 12 Gew.-% und 13,5 Gew.-% an der Mischung. Grundsätzlich ist ein Anteil von mehr als  Preferably, the primary particle size of the first additive is preferably less than 500 nm. Furthermore, the average primary particle size of the first additive is preferably more than 50 nm. The proportion of the first additive is preferably between 10% by weight and 30% by weight of the mixture. Furthermore, the proportion of the first additive is preferably between 10 wt .-% and 15 wt .-%, more preferably between 12 wt .-% and 13.5 wt .-% of the mixture. Basically, a share of more than
10 Gew.-% eines Additivs zur Verwendung als Sinterhilfe vergleichsweise hoch. 10 wt .-% of an additive for use as a sintering aid comparatively high.
Dieser hohe Anteil führt zu einem vergleichsweise großen Anteil einer Glasphase in der gesinterten Siliziumnitridkeramik. Der größere Anteil der Glasphase gewährleistet neben einer verbesserten Sinterbarkeit eine höhere Elastizität, eine erhöhte This high proportion leads to a comparatively large proportion of a glass phase in the sintered silicon nitride ceramic. The greater proportion of the glass phase ensures, in addition to an improved sinterability, a higher elasticity, an increased
Zähigkeit und eine verbesserte Schadenstoleranz. Bei alternativen bevorzugten Ausführungsformen beträgt der Anteil des erstenToughness and improved damage tolerance. In alternative preferred embodiments, the proportion of the first
Additivs zwischen 3 Gew.-% und 10 Gew.-% an der Mischung. Dieser Anteil wirkt sich vorteilhaft auf die Festigkeit, die Härte, die Korrosionsbeständigkeit und die Hochtemperatureigenschaften aus. Der Anteil des Siliziumnitrids beträgt bevorzugt zwischen 60 Gew.-% und 95 Gew.-%, besonders bevorzugt zwischen Additive between 3 wt .-% and 10 wt .-% of the mixture. This proportion has an advantageous effect on strength, hardness, corrosion resistance and high-temperature properties. The proportion of the silicon nitride is preferably between 60 wt .-% and 95 wt .-%, more preferably between
80 Gew.-% und 90 Gew.-% an der Mischung.  80 wt .-% and 90 wt .-% of the mixture.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird neben dem ersten Additiv kein weiteres Additiv der Mischung beigefügt. Somit enthalten dieIn preferred embodiments of the method according to the invention, no further additive of the mixture is added in addition to the first additive. Thus, the included
Mischung, der Grünling und die gesinterte Siliziumnitridkeramik neben dem Mixture, the green compact and the sintered silicon nitride ceramic next to the
Siliziumnitrid jeweils nur das erste Additiv. Die ausschließliche Verwendung des ersten Additivs als Additiv gewährleistet, dass das erste Additiv äußerst homogen in der Mischung verteilt ist. Silicon nitride only the first additive. The exclusive use of the The first additive as an additive ensures that the first additive is extremely homogeneously distributed in the mixture.
Bei alternativen bevorzugten Ausführungsformen des erfindungsgemäßen In alternative preferred embodiments of the invention
Verfahrens wird neben den ersten Additiv ein zweites Additiv bereitgestellt und der Mischung beigegeben. Method is provided in addition to the first additive, a second additive and added to the mixture.
Auch das zweite Additiv liegt bevorzugt in Form von Primärpartikeln vor, welche eine durchschnittliche Primärpartikelgröße von weniger als 1 μιτι aufweisen. Also, the second additive is preferably in the form of primary particles, which have an average primary particle size of less than 1 μιτι.
Bei dem zweiten Additiv handelt es sich bevorzugt um solche chemischen The second additive is preferably such chemical
Verbindungen, welche bereits gemäß dem Stand der Technik dem Siliziumnitrid als Sinteradditiv, Einfärbemittel oder zur Bildung einer weiteren Phase zugesetzt werden. Insbesondere ist dieses zweite Additiv bevorzugt ausgewählt aus der Gruppe der Oxide und Nitride der Elemente Ti, Hf, Zr, Mo, Ta, Nb und Cr sowie der Oxide und Nitride der Seltenerdmetalle. Auch kann das zweite Additiv mehrere der genannten Verbindungen umfassen. Compounds which are already added according to the prior art, the silicon nitride as a sintering additive, colorants or to form a further phase. In particular, this second additive is preferably selected from the group of oxides and nitrides of the elements Ti, Hf, Zr, Mo, Ta, Nb and Cr and the oxides and nitrides of the rare earth metals. Also, the second additive may comprise several of the compounds mentioned.
Der Anteil des zweiten Additivs beträgt bevorzugt höchstens 5 Gew.-% an der Mischung. The proportion of the second additive is preferably at most 5 wt .-% of the mixture.
Bei weiteren alternativen bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird ein drittes Additiv bereitgestellt und der Mischung beigegeben. Das dritte Additiv kann sowohl bei Verwendung des ersten und zweiten Additivs als auch bei alleinigem Einsatz des ersten Additives zugesetzt werden. Auch das dritte Additiv liegt bevorzugt in Form von Primärpartikeln vor, welche eine durchschnittliche In further alternative preferred embodiments of the method according to the invention, a third additive is provided and added to the mixture. The third additive can be added both when using the first and second additive as well as when using the first additive alone. Also, the third additive is preferably present in the form of primary particles, which an average
Primärpartikelgröße von weniger als 1 μιτι aufweisen. Primary particle size of less than 1 μιτι have.
Bei dem dritten Additiv handelt es sich bevorzugt um solche chemischen The third additive is preferably such chemical
Verbindungen, die gemäß dem Stand der Technik als Additiv verwendet werden.Compounds used according to the prior art as an additive.
Bevorzugt handelt es sich bei dem dritten Additiv um MgO, AI2O3, Y2O3 oder AIN. Alternativ ist das dritte Additiv bevorzugt durch einen Spinell oder durch einen Granat gebildet. Auch kann das dritte Additiv mehrere der genannten Verbindungen umfassen. The third additive is preferably MgO, Al 2 O 3, Y 2 O 3 or AlN. Alternatively, the third additive is preferred by a spinel or by a garnet educated. Also, the third additive may comprise several of said compounds.
Der Anteil des dritten Additivs beträgt bevorzugt höchstens 5 Gew.-% an der The proportion of the third additive is preferably at most 5 wt .-% of the
Mischung. Mixture.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens erfolgt das Sintern bei einer Temperatur zwischen 1 .500°C und 2.000°C, besonders bevorzugt zwischen 1 .700°C und 1 .900°C. Bei alternativen bevorzugten Ausführungsformen erfolgt das Sintern bei einer Temperatur zwischen 1 .700°C und 2000°C. In preferred embodiments of the method according to the invention, the sintering is carried out at a temperature between 1 .500 ° C and 2,000 ° C, more preferably between 1 .700 ° C and 1 .900 ° C. In alternative preferred embodiments, the sintering is carried out at a temperature of between 1, 700 ° C and 2000 ° C.
Mit dem erfindungsgemäßen Verfahren können kurze Zeiten zum Sintern realisiert werden. Daher beträgt die Dauer des Sinterns bevorzugt zwischen einer Minute und 60 Minuten, besonders bevorzugt zwischen 20 Minuten und 30 Minuten. Bei alternativen bevorzugten Ausführungsformen beträgt die Dauer zum Sintern zwischen einer Stunde und vier Stunden, besonders bevorzugt zwischen zwei Stunden und drei Stunden. With the method according to the invention, short times for sintering can be realized. Therefore, the duration of sintering is preferably between one minute and 60 minutes, more preferably between 20 minutes and 30 minutes. In alternative preferred embodiments, the duration for sintering is between one hour and four hours, more preferably between two hours and three hours.
Das Bereitstellen der Partikel des ersten Additivs erfolgt bevorzugt dadurch, dass der Stoff des ersten Additivs aus einer flüssigen Phase gefällt wird. Alternativ erfolgt das Bereitstellen der Partikel des ersten Additivs bevorzugt dadurch, dass eine The provision of the particles of the first additive preferably takes place in that the substance of the first additive is precipitated from a liquid phase. Alternatively, the provision of the particles of the first additive preferably takes place in that a
Flammenpyrolyse des Stoffes des ersten Additivs vorgenommen wird. Für beide Bereitstellungsvarianten des ersten Additivs kann eine bevorzugte Flame pyrolysis of the substance of the first additive is made. For both deployment variants of the first additive, a preferred
Primärpartikelgröße und eine spezifische Oberfläche durch das nachträgliche Mahlen gröberer Partikel erreicht werden. Primary particle size and a specific surface can be achieved by the subsequent grinding of coarser particles.
Das Sintern des Grünlings erfolgt bevorzugt durch ein Sintern unter The sintering of the green body is preferably carried out by sintering
Gasdruckatmosphäre oder über ein Heißpressen. Da die erfindungsgemäß hergestellte Siliziumnitridkeramik bereits weitgehend porenfrei dichtgesintert ist und hochwertige Gefüge und Eigenschaften aufweist, wird bevorzugt kein Gas pressure atmosphere or via a hot press. Since the silicon nitride ceramic produced according to the invention is already densely sintered to a large extent without pores and has high-quality microstructures and properties, preference is given to none
heißisostatisches Pressen (HIP) durchgeführt. Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass keine oder nur eine dünne Sinterhaut der Siliziumnitridkeramik entsteht. Die beim Sintern Hot isostatic pressing (HIP) performed. An advantage of the method according to the invention is that no or only a thin sintered skin of the silicon nitride ceramic is formed. The while sintering
entstehende Sinterhaut weist eine Dicke auf, die bevorzugt weniger als 0,5 mm, besonders bevorzugt weniger als 0,2 mm und weiter bevorzugt weniger als 0,1 mm beträgt. Somit bedarf es keiner Maßnahme zum nachträglichen Verringern der Sinterhaut. Daher erfolgt bevorzugt keine Maßnahme zur nachträglichen resulting sintered skin has a thickness which is preferably less than 0.5 mm, more preferably less than 0.2 mm and more preferably less than 0.1 mm. Thus, there is no need for a measure to subsequently reduce the sinter skin. Therefore, preferably no measure for subsequent
Verringerung der Sinterhaut, wie beispielsweise ein Schleifen der Reduction of the sinter skin, such as a grinding of the
Siliziumnitridkeramik. Auch erfolgt bevorzugt keine Maßnahme zur Verringerung des Sauerstoffgehaltes im Randbereich der Siliziumnitridkeramik, wie beispielsweise eine Desoxidierungsbehandlung vor dem Sintern. Silicon nitride ceramic. Also preferably no measure is taken to reduce the oxygen content in the edge region of the silicon nitride ceramic, such as, for example, a deoxidation treatment before sintering.
Einen weiteren Gegenstand der Erfindung bildet eine Siliziumnitridkeramik, die durch das erfindungsgemäße Verfahren erhältlich ist. Einen weiteren Gegenstand der Erfindung bildet eine Siliziumnitridkeramik, die gesintert ist und neben Siliziumnitrid eine Korngrenzphase umfasst, die durch eine chemische Verbindung aus Siliziumnitrid und einem eine Perowskitstruktur aufweisenden ersten Additiv gebildet ist. Das Siliziumnitrid ist bevorzugt in Form von ß-Si3N -Stängelkristallen kristallisiert. Die Korngrenzphase ist bevorzugt glasartig zwischen den ß-Si3N -Stängelkristallen ausgebildet. Die Korngrenzphase weist bevorzugt die allgemeine chemische Formel REaSibMcOdNe auf, in welcher RE für ein Seltenerdmetall und M für ein Metall steht, wobei a, b, c, d und e größer als Null sind. Another object of the invention is a silicon nitride ceramic, which is obtainable by the method according to the invention. A further subject of the invention is a silicon nitride ceramic which is sintered and, in addition to silicon nitride, comprises a grain boundary phase which is formed by a chemical compound of silicon nitride and a first additive having a perovskite structure. The silicon nitride is preferably crystallized in the form of β-Si3N-stalk crystals. The grain boundary phase is preferably formed in a glass-like manner between the β-Si 3 N stalk crystals. The grain boundary phase preferably has the general chemical formula RE a Si b McO d N e , in which RE is a rare earth metal and M is a metal, where a, b, c, d and e are greater than zero.
Die nachfolgende Beschreibung bevorzugter Ausführungsformen bezieht sich auf beide der oben genannten erfindungsgemäßen Siliziumnitridkeramiken. The following description of preferred embodiments relates to both of the above silicon nitride ceramics according to the invention.
Die erfindungsgemäße Siliziumnitridkeramik weist hinsichtlich ihrer The silicon nitride ceramic according to the invention has in terms of their
Zusammensetzung, insbesondere hinsichtlich der chemischen Zusammensetzung des in der Korngrenzenphase gebundenen ersten Additivs sowie ggf. weitere Composition, in particular with regard to the chemical composition of the bound in the grain boundary phase first additive and optionally further
Additive und ihrer quantitativen Zusammensetzung bevorzugt auch diejenigenAdditives and their quantitative composition also favor those
Merkmale auf, welche für das erfindungsgemäße Verfahren als bevorzugt Characteristics, which are preferred for the inventive method
angegeben sind. So beträgt die durchschnittliche Partikelgröße des ersten Additivs bevorzugt weniger als 1 μιτι, besonders bevorzugt weniger als 500 nm. Weiterhin beträgt die durchschnittliche Partikelgröße des ersten Additivs bevorzugt mehr als 50 nm. Die chemische Zusammensetzung des in der Korngrenzenphase are indicated. Thus, the average particle size of the first additive preferably less than 1 μιτι, more preferably less than 500 nm. Further For example, the average particle size of the first additive is more than 50 nm. The chemical composition of the grain boundary phase
gebundenen ersten Additivs gleicht bevorzugt der chemischen Zusammensetzung des ersten Additivs, welches gemäß dem erfindungsgemäßen Verfahren bevorzugt zu verwenden ist. Die chemische Zusammensetzung der ggf. in der gesinterten Siliziumnitridkeramik vorhandenen weiteren Additive gleicht bevorzugt der bonded first additive is preferably similar to the chemical composition of the first additive, which is preferably used according to the inventive method. The chemical composition of any other additives present in the sintered silicon nitride ceramic is preferably the same
chemischen Zusammensetzung der weiteren Additive, welche gemäß dem chemical composition of the other additives, which according to the
erfindungsgemäßen Verfahren bevorzugt zu verwenden sind. Die erfindungsgemäße Siliziumnitridkeramik zeichnet sich dadurch aus, dass sie eine hohe Festigkeit bei gleichzeitig guter Risszähigkeit aufweist. So beträgt die Preferred methods of the invention are to be used. The silicon nitride ceramic according to the invention is characterized in that it has a high strength and at the same time good fracture toughness. So is the
3-Punkt-Biegefestigkeit der erfindungsgemäßen Siliziumnitridkeramik bevorzugt mindestens 800 MPa, besonders bevorzugt mehr als 900 MPa. Die Risszähigkeit nach Niihara beträgt gleichzeitig mindestens 6 MPam"0,5, bevorzugt mehr als 7 MPam"0,5, besonders bevorzugt ca. 7,5 bis 8,7 MPam"0,5. Die Druckfestigkeit der erfindungsgemäßen Siliziumnitridkeramik beträgt bevorzugt mindestens 2.500 MPa, besonders bevorzugt mehr als 3.000 MPa. 3-point bending strength of the silicon nitride ceramic according to the invention preferably at least 800 MPa, more preferably more than 900 MPa. The crack toughness according to Niihara is at the same time at least 6 MPa "0.5 , preferably more than 7 MPa " 0.5 , particularly preferably about 7.5 to 8.7 MPa "0.5 The compressive strength of the silicon nitride ceramic according to the invention is preferably at least 2500 MPa, more preferably more than 3,000 MPa.
Die erfindungsgemäße Siliziumnitridkeramik weist bevorzugt eine Morphologie mit überwiegend nadeiförmigen ß-Si3N -Kristallen auf, die in der glasartigen bzw. The silicon nitride ceramic according to the invention preferably has a morphology with predominantly acicular β-Si 3 N crystals, which are present in the glassy or
teilkristallinen Korngrenzphase eingebettet sind. Die nadeiförmigen Kristalle gewährleisten eine hohe Risszähigkeit und Schadenstoleranz der semi-crystalline grain boundary phase are embedded. The needle-shaped crystals ensure a high fracture toughness and damage tolerance of the
Siliziumnitridkeramik. Dabei weisen die nadeiförmigen Kristalle eine große relative Länge auf. Demzufolge besitzen die nadeiförmigen Kristalle eine Länge und einen Durchmesser, deren Verhältnis im Durchschnitt bevorzugt größer als 4, besonders bevorzugt größer als 8 ist. Bevorzugt weist zumindest ein Zehntel der nadeiförmigen Kristalle der erfindungsgemäßen Siliziumnitridkeramik eine Länge und einen Silicon nitride ceramic. The needle-shaped crystals have a large relative length. Accordingly, the acicular crystals have a length and a diameter whose ratio is on average preferably greater than 4, more preferably greater than 8. Preferably, at least one-tenth of the needle-shaped crystals of the silicon nitride ceramic according to the invention has a length and a
Durchmesser auf, deren Verhältnis größer als 10, besonders bevorzugt größer als 20 ist. Diameter, the ratio is greater than 10, more preferably greater than 20.
Die erfindungsgemäße Siliziumnitridkeramik ist bevorzugt porenfrei ausgebildet, ohne dass sie einem heißisostatischen Pressen oder einem vergleichbaren The silicon nitride ceramic according to the invention is preferably formed without pores, without being subjected to a hot isostatic pressing or a comparable
Verfahren unterzogen wurde. Bevorzugte Ausführungsformen der erfindungsgemäßen Siliziumnitridkeramik weisen eine Sinterhaut auf, die weniger als 0,5 mm, besonders bevorzugt weniger als 0,2 mm und weiter bevorzugt weniger als 0,1 mm dick ist, ohne dass die Sinterhaut durch eine Maßnahme nach dem Sintern reduziert wurde. Was subjected to the procedure. Preferred embodiments of the silicon nitride ceramic according to the invention have a sintered skin which is less than 0.5 mm, more preferably less than 0.2 mm and more preferably less than 0.1 mm thick, without the sintering skin being reduced by a measure after sintering ,
Die erfindungsgemäße Siliziumnitridkeramik ist bevorzugt als eine Komponente eines Lagers ausgebildet, beispielsweise als Komponente eines Gleitlagers oder eines Wälzlagers. Somit bildet eine Komponente eines Lagers, welche die The silicon nitride ceramic according to the invention is preferably designed as a component of a bearing, for example as a component of a sliding bearing or a roller bearing. Thus, a component of a bearing forming the
erfindungsgemäße Siliziumnitridkeramik zumindest umfasst, ebenfalls einen Silicon nitride ceramic according to the invention at least comprises, also one
Gegenstand der Erfindung. Im einfachsten Fall ist die Komponente des Lagers durch die erfindungsgemäße Siliziumnitridkeramik gebildet. Subject of the invention. In the simplest case, the component of the bearing is formed by the silicon nitride ceramic according to the invention.
Die erfindungsgemäße Siliziumnitridkeramik ist bevorzugt als ein Lagerring oder als ein Wälzkörper ausgebildet. The silicon nitride ceramic according to the invention is preferably designed as a bearing ring or as a rolling element.
Weitere Vorteile, Einzelheiten und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung im Vergleich zum Stand der Technik, unter Bezugnahme auf die jeweiligen Tabellen und Zeichnung. Es zeigen: Further advantages, details and developments of the invention will become apparent from the following description of preferred embodiments of the invention in comparison with the prior art, with reference to the respective tables and drawings. Show it:
Fig. 1 : ein Schliffbild einer bevorzugten Ausführungsform einer Fig. 1: a micrograph of a preferred embodiment of a
erfindungsgemäßen Siliziumnitridkeramik;  silicon nitride ceramic according to the invention;
Fig. 2: ein Schliffbild einer Siliziumnitridkeramik gemäß dem Stand der 2: a micrograph of a silicon nitride ceramic according to the prior art
Technik;  Technology;
Fig. 3: ein Schliffbild der erfindungsgemäßen Siliziumnitridkeramik in einer höheren Auflösung; 3 shows a micrograph of the silicon nitride ceramic according to the invention in a higher resolution;
Fig. 4: ein Schliffbild der Siliziumnitridkeramik gemäß dem Stand der Technik in einer höheren Auflösung; ein Schliffbild einer Querschnittsfläche vom Randbereich der bevorzugten Ausführungsform der erfindungsgemäßen 4 shows a micrograph of the silicon nitride ceramic according to the prior art in a higher resolution; a micrograph of a cross-sectional area of the edge region of the preferred embodiment of the invention
Siliziumnitridkeramik; und ein Schliffbild einer Querschnittsfläche vom Randbereich der  silicon nitride; and a microsection of a cross-sectional area from the edge region of
Siliziumnitridkeramik gemäß dem Stand der Technik.  Silicon nitride ceramic according to the prior art.
Im Folgenden werden zunächst einige Beispiele für Ausführungsformen der The following are some examples of embodiments of the
Erfindung erläutert, bei welchen ein gasdruckgesinterter Werkstoff hergestellt wird. Invention explained in which a gas-pressure sintered material is produced.
Zur Herstellung erfindungsgemäßer Siliziumnitridkeramiken wurden zunächst Materialmischungen gemäß den Tabellen 1 bis 4 durch Dispergierung des For the production of silicon nitride ceramics according to the invention, first of all material mixtures according to Tables 1 to 4 were obtained by dispersing the
Siliziumnitridpulvers in wässrigem Medium unter Zusatz entsprechender Additive, wie einem Verflüssiger und einem Entschäumer hergestellt. Zur Einstellung der Silicon nitride powder prepared in aqueous medium with the addition of appropriate additives, such as a condenser and a defoamer. To set the
Sinteraktivität wurden diese Suspensionen anschließend in einer Attritormühle auf die gewünschte Kornfeinheit und spezifischen Oberfläche gemahlen.  Sintering activity, these suspensions were then ground in an attritor mill to the desired particle size and specific surface area.
Die für eine anschließende Formgebung und Grünbearbeitung nötigen Bindemittel, Weichmacher und Presshilfsmittel wurden anschließend der Suspension zugesetzt und diese nochmals homogenisiert. Die Weiterverarbeitung der Materialmischung zu einem feinen, gut rieselfähigen und verpressbaren Granulat erfolgte im Anschluss durch Verdüsen und Trocknung der Suspension mittels Sprüh- bzw. The necessary for a subsequent shaping and green working binders, plasticizers and pressing aids were then added to the suspension and this homogenized again. The further processing of the material mixture to a fine, free-flowing and compressible granules was carried out by spraying and drying the suspension by means of spraying or
Wirbelschichtgranulation. Die hergestellten Granulate wurden anschließend über die Formgebungsverfahren eines kaltisostatischen Pressens (CIP) bzw. eines uniaxialen Trockenpressens mit kaltisostatischer Nachverdichtung zu Grünkörpern verarbeitet und bei Bedarf hinsichtlich Geometrie, Maßhaltigkeit, Toleranz und Oberflächengüte durch spanende Verfahren, wie Bohren, Drehen, Fräsen, Schleifen usw. im Grünzustand möglichst endkonturnah nachbearbeitet. Anschließend erfolgte ein thermischer Entbinderungsschritt zum Entfernen aller für das anschließende Sintern nachteiligen, für die Formgebung jedoch nötigen organischen Bestandteile. Das Sintern der Formkörper erfolgte danach je nach verwendetem Sinteradditivtyp und Sinteradditivgehalt bei Temperaturen zwischen 1 .700 °C und 1 .900 °C in einem Gasdrucksinterofen unter nichtoxidierender Atmosphäre mit zeitweisem Aufbringen eines Gasdruckes von 0,5 MPa bis 10 MPa. Die Dichte der Keramik wurde durch Gegenrechnung der Proben bzw. der mit der Messmethode nach Archimedes ermittelten Bauteildichte und der über Fluidized bed granulation. The granules produced were then processed by the molding processes of a cold isostatic pressing (CIP) or a uniaxial dry pressing with cold isostatic densification into green bodies and if necessary in terms of geometry, dimensional accuracy, tolerance and surface quality by machining processes, such as drilling, turning, milling, grinding, etc. reworked as close to final contour as possible in the green state. Subsequently, a thermal debinding step was carried out to remove all the organic components which are disadvantageous for the subsequent sintering but which are necessary for shaping. The sintering of the moldings was then carried out depending on the type of sintering additive used and sintering additive content at temperatures between 1 .700 ° C and 1 .900 ° C in a gas pressure sintering furnace under non-oxidizing atmosphere with temporary application of a gas pressure of 0.5 MPa to 10 MPa. The density of the ceramic was determined by comparing the samples or the determined by the measurement method according to Archimedes component density and the
Heliumpyknometriemessung an einer feinstpulverisierten Werkstoffprobe ermittelten Reindichte des Siliziumnitridwerkstoffes ermittelt. Aus den hergestellten Keramikproben bzw. -bauteilen wurden anschließend Helium pycnometry measured on a very pulverulent material sample determined true density of the silicon nitride material determined. From the produced ceramic samples or components were subsequently
Prüfkörper für die Ermittlung der 3- bzw. 4-Punkt-Biegefestigkeit gemäß DIN EN 843- 1 herausgearbeitet und der Messung unterzogen.  Test specimen for the determination of the 3- or 4-point bending strength according to DIN EN 843-1 worked out and subjected to the measurement.
Die Ermittlung des E-Moduls erfolgte durch Auswertung des Spannungs-Dehnungs- Verhältnisses aus der 3- bzw. 4-Punkt-Biegeprüfung gemäß der Norm DIN EN 843-2,The determination of the modulus of elasticity was carried out by evaluating the stress-strain ratio from the 3- or 4-point bending test according to the standard DIN EN 843-2,
Verfahren A. Procedure A.
Die Prüfung der Härte erfolgte durch Vickers-HV20-Härteeindrücke gemäß der Norm DIN EN 843-4 an feinpolierten Werkstoffanschliffen. The hardness test was carried out by Vickers HV20 hardness impressions according to the DIN EN 843-4 standard on finely polished material ground sections.
Die Prüfung der Risszähigkeit erfolgte durch das Ausmessen der von den Ecken der Härteeindrücke ausgehenden Risse und Berechnung gemäß der Formel für die Risszähigkeit K|C nach Niihara. Die statistische Auswertung aller ermittelten mechanischen Kennwerte erfolgte nach der für monolithische Keramiken erlassenen Norm DIN EN 843-5. Zur Herstellung der erfindungsgemäßen Siliziumnitridkeramiken wurde bevorzugt jeweils ein RExAI2-xO3 als erstes Additiv verwendet, wobei RE ein Seltenerdemetall ist und 0,4 < x < 1 ,6. Dabei handelt es sich um eine Perowskitstrukur, welche im Rahmen der Erfindung stöchiometrisch im Falle von x = 1 (vgl. Tabelle 1 ), The fracture toughness test was carried out by measuring the cracks coming from the corners of the hardness impressions and calculating according to the formula for the fracture toughness K | C to Niihara. The statistical evaluation of all determined mechanical characteristics was carried out according to the DIN EN 843-5 standard issued for monolithic ceramics. In order to produce the silicon nitride ceramics according to the invention, preferably one RExAl 2-x O 3 was used as the first additive, where RE is a rare earth metal and 0.4 <x <1, 6. This is a perovskite structure, which in the context of the invention is stoichiometric in the case of x = 1 (see Table 1),
überstöchiometrisch im Falle von x > 1 (vgl. Tabelle 2) oder unterstochiometrisch im Falle von x < 1 (vgl. Tabelle 3) dem Siliziumnitrid in unterschiedlichen superstoichiometric in the case of x> 1 (see Table 2) or substoichiometric in the case of x <1 (see Table 3) the silicon nitride in different
Konzentrationen zugesetzt wurde. Concentrations were added.
Tabelle 1 zeigt verschiedene Anteile von Seltenerdmetalloxiden REO und Table 1 shows various proportions of rare earth oxides REO and
Aluminiumoxid AI2O3 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils stöchiometrischer Zusammensetzung für das Alumina AI2O3 for the inventive provision of various proportions of the first additive, each having a stoichiometric composition for the
Gasdrucksintern. Die Angaben in Tabelle 1 sind in Gew.-%. Gas pressure sintering. The data in Table 1 are in% by weight.
Sinter10,0 13,5 15 17,5 additiv-Sinter10.0 13.5 15 17.5 additive-
Anteil proportion of
Anteile Anteile Anteile Anteile Shares Shares Shares Shares
RE REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3RE REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3
La 7,62 2,38 10,28 3,22 1 1 ,42 3,58 13,33 4,17La 7,62 2,38 10,28 3,22 1 1, 42 3,58 13,33 4,17
Ce 7,64 2,36 10,32 3,18 1 1 ,46 2,04 13,37 4,13Ce 7.64 2.36 10.32 3.18 1 1, 46 2.04 13.37 4.13
Pr 7,64 2,36 10,31 3,19 1 1 ,46 2,04 13,37 4,13Pr 7.64 2.36 10.31 3.19 1 1, 46 2.04 13.37 4.13
Nd 7,67 2,33 10,36 3,14 1 1 ,51 1 ,99 13,43 4,07Nd 7.67 2.33 10.36 3.14 1 1, 51 1, 99 13.43 4.07
Dy 7,85 2,15 10,60 2,90 1 1 ,78 1 ,72 13,74 3,76Dy 7,85 2,15 10,60 2,90 1 1, 78 1, 72 13,74 3,76
Yb 7,94 2,06 10,73 2,77 1 1 ,92 1 ,58 13,90 3,60Yb 7.94 2.06 10.73 2.77 1 1, 92 1, 58 13.90 3.60
Tabelle 1 Table 1
Tabelle 2 zeigt verschiedene Anteile von Seltenerdmetalloxiden REO und Table 2 shows various proportions of rare earth oxides REO and
Aluminiumoxid AI2O3 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils überstöchiometrischer Zusammensetzung (x = 1 ,2) für das Gasdrucksintern. Die Angaben in Tabelle 2 sind in Gew.-%. Gesamt- gehalt Alumina AI2O3 for the inventive provision of various proportions of the first additive, each with a stoichiometric composition (x = 1, 2) for gas pressure sintering. The data in Table 2 are in% by weight. Total salary
Sinteradditive  sintering additives
10 Gew.-% 13,5 Gew.-% 15 Gew.-% 17,5 Gew.-% 10% by weight 13.5% by weight 15% by weight 17.5% by weight
Äquivalent equivalent to
auf Basis  based
der Oxide  the oxides
REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3REO AI 2 O 3 REO AI2O3 REO AI2O3 REO AI2O3
Element element
La 8,27 1,73 11,17 2,33 12,41 2,59 14,48 3,02La 8,27 1,73 11,17 2,33 12,41 2,59 14,48 3,02
Ce 8,29 1,71 11,20 2,30 12,44 2,56 14,51 2,99Ce 8,29 1,71 11,20 2,30 12,44 2,56 14,51 2,99
Pr 8,29 1,71 11,19 2,31 12,44 2,56 14,51 2,99Pr 8,29 1.71 11.19 2.31 12.44 2.56 14.51 2.99
Nd 8,32 1,68 11,23 2,27 12,48 2,52 14,56 2,94Nd 8.32 1.68 11.23 2.27 12.48 2.52 14.56 2.94
Dy 8,46 1,54 11,42 2,08 12,69 2,31 14,80 2,70Dy 8.46 1.54 11.42 2.08 12.69 2.31 14.80 2.70
Yb 8,53 1,47 11,51 1,99 12,79 2,21 14,93 2,57Yb 8.53 1.47 11.51 1.99 12.79 2.21 14.93 2.57
Tabelle 2 Table 2
Tabelle 3 zeigt verschiedene Anteile von Seltenerdmetalloxiden REO und Table 3 shows various proportions of rare earth oxides REO and
Aluminiumoxid AI2O3 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils unterstochiometrischer Zusammensetzung (x = 0,8) für das Gasdrucksintern. Die Angaben in Tabelle 3 sind in Gew.-%. Alumina AI2O3 for the provision according to the invention of various proportions of the first additive, each having a substoichiometric composition (x = 0.8) for gas pressure sintering. The data in Table 3 are in% by weight.
Gesamt- gehalt Total salary
Sinteradditive 10 Gew. -% 13,5 Gew.-% 15 Gew. -% 17,5 Gew.-% Sintering additives 10% by weight 13.5% by weight 15% by weight 17.5% by weight
Äquivalent equivalent to
auf Basis  based
der Oxide REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3 the oxides REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3
Element element
La 6,81 3,19 9,19 4,31 10,21 4,79 11,91 5,59La 6,81 3,19 9,19 4,31 10,21 4,79 11,91 5,59
Ce 10,92 5,41 11,15 5,65 10,25 4,75 11,96 5,54Ce 10.92 5.41 11.15 5.65 10.25 4.75 11.96 5.54
Pr 10,91 5,42 11,15 5,65 10,25 4,75 11,96 5,54Pr 10,91 5,42 11,15 5,65 10,25 4,75 11,96 5,54
Nd 10,98 5,35 11,21 5,59 10,31 4,69 12,03 5,47Nd 10,98 5,35 11,21 5,59 10,31 4,69 12,03 5,47
Dy 11,30 5,03 11,54 5,26 10,64 4,36 12,41 5,09Dy 11,30 5,03 11,54 5,26 10,64 4,36 12,41 5,09
Yb 11,47 4,86 11,71 5,09 10,81 4,19 12,61 4,89Yb 11.47 4.86 11.71 5.09 10.81 4.19 12.61 4.89
Tabelle 3 Table 3
Tabelle 4 zeigt verschiedene Konzentrationen der Elemente Nd, AI und O sowie Konzentrationen von Neodymoxid und Aluminiumoxid zu der erfindungsgemäß besonders bevorzugten Bereitstellung von NdAIO3 als das erste Additiv für das Gasdrucksintern. Die Angaben in Tabelle 4 sind in Gew.-%. Table 4 shows various concentrations of the elements Nd, Al and O as well as concentrations of neodymium oxide and alumina for the invention particularly preferred provision of NdAIO3 as the first additive for gas pressure sintering. The data in Table 4 are in% by weight.
Vorgabe Element- Berechnung der Aus- konzentration gangsmetalloxideGuideline Element calculation of the concentration of transition metal oxides
Anteil proportion of
in % Nd AI O Nd2O3 AI2O3 in% Nd Al O Nd 2 O 3 Al 2 O 3
Anteil % 10,0 6,58 1 ,23 2,19 7,67 2,33 erstes 13,50 8,88 1 ,67 2,95 10,36 3,14Share% 10.0 6.58 1, 23 2.19 7.67 2.33 First 13.50 8.88 1, 67 2.95 10.36 3.14
Additiv in 15,0 9,87 1 ,85 3,28 1 1 ,51 3,49Additive in 15.0 9.87 1, 85 3.28 1 1, 51 3.49
Si3N4 17,5 1 1 ,52 2,16 3,82 13,43 4,07 Si 3 N 4 17.5 1 1, 52 2.16 3.82 13.43 4.07
Tabelle 4  Table 4
Repräsentative Beispiele Nr. 1 bis 7 für die Eigenschaftswerte erfindungsgemäß gasdruckgesinterter Keramikwerkstoffe sind in Tabelle 5 aufgeführt. Representative Examples Nos. 1 to 7 for the property values of gas pressure sintered ceramics according to the present invention are shown in Table 5.
Figure imgf000019_0001
Figure imgf000019_0001
Tabelle 5  Table 5
Die Auswertung des Gefüges, der Mikrostruktur und der Sinterhaut am Rand des Werkstoffes erfolgte durch die Herstellung feinpolierter Werkstoff- und The evaluation of the structure, the microstructure and the sinter skin at the edge of the material was carried out by the production of finely polished material and
Bauteilanschliffe und Analyse mittels Auflicht- bzw. Rasterelektronenmikroskopie. Partial grinding and analysis by means of incident light or scanning electron microscopy.
Fig. 1 zeigt ein Schliffbild einer bevorzugten Ausführungsform einer Fig. 1 shows a micrograph of a preferred embodiment of a
erfindungsgemäßen Siliziumnitridkeramik (Beispiel Nr. 6 in Tabelle 5), die durch den Zusatz eines ersten Additivs hergestellt wurde, welches eine Perowskitstruktur aufweist und mit der Formel NdxAI2-xO3 mit 0,4 < x < 1 ,6 beschrieben werden kann. Diese chemische Verbindung NdxAI2-xO3 ist nicht erst während des Sinterns entstanden, sondern wurde in dieser Form als Additiv dem Siliziumnitrid vor dem Sintern beigegeben. Es handelt sich somit um ein vorsynthetisiertes Additiv. silicon nitride ceramic of the present invention (Example No. 6 in Table 5) prepared by the addition of a first additive having a perovskite structure and can be described by the formula NdxAl 2-x O3 with 0.4 <x <1.6. This chemical compound NdxAl 2-x O3 did not first form during sintering, but was added in this form as an additive to the silicon nitride before sintering. It is thus a presynthesized additive.
Im Schliffbild ist ein Maßstab von 50 μιτι dargestellt. Die gezeigte Siliziumnitridkeramik ist annähernd porenfrei und homogen gesintert. Die sehr wenigen, schwarzen Punkte deuten dagegen auf kleine Restporen 01 im Werkstoff hin. Die weißen Gefügebestandteile im Anschliff sind auf das Einbringen eines dritten Additivs als Einfärbem ittel zurückzuführen, das kristallisierte Körner 02 mit einer Größe von 1 μιτι bis 2 μιτι ausbildet. In the micrograph a scale of 50 μιτι is shown. The silicon nitride ceramic shown is approximately free of pores and homogeneously sintered. The very few, black dots, however, indicate small residual pores 01 in the material. The white microstructure constituents in the polished section are due to the introduction of a third additive as coloring agent, which forms crystallized grains 02 having a size of 1 μm to 2 μm.
Fig. 2 zeigt eine Siliziumnitridkeramik gemäß dem Stand der Technik, welche mit ca. 12 Gew.-% Sinteradditivgehalt einem heißisostatischen Pressen (HIP) unterzogen wurde, sodass sie eine vergleichsweise hohe Druckfestigkeit von mehr als FIG. 2 shows a prior art silicon nitride ceramic which has been subjected to hot isostatic pressing (HIP) with about 12% by weight of sintering additive content, so that it has a comparatively high compressive strength of more than
3.000 MPa, eine 3-Punkt-Biegefestigkeit größer 900 MPa und eine Risszähigkeit von 6,5 MPam"0,5 bis 7,0 MPam"0,5 aufweist. Hingegen wurde die in Fig. 1 gezeigte erfindungsgemäße Siliziumnitridkeramik keinem heißisostatischen Pressvorgang unterzogen, sodass sie weit weniger aufwändig hergestellt wurde und dennoch eine vergleichbare Struktur wie die in Fig. 2 gezeigte gemäß dem Stand der Technik aufwändig hergestellte Siliziumnitridkeramik aufweist. Die erfindungsgemäße 3,000 MPa, a 3-point bending strength greater than 900 MPa and a fracture toughness of 6.5 MPam "0.5 to 7.0 MPam " 0.5 . By contrast, the silicon nitride ceramic according to the invention shown in FIG. 1 was not subjected to a hot isostatic pressing process, so that it was produced much less laboriously and yet has a comparable structure to the silicon nitride ceramic produced in accordance with the prior art shown in FIG. 2. The inventive
Siliziumnitridkeramik besitzt ebenfalls eine Druckfestigkeit von etwa 3.000 MPa, und auch die Risszähigkeit erreicht mit 6,9 MPam"0,5 annähernd gleiche Silicon nitride ceramics also have a compressive strength of about 3,000 MPa, and also the fracture toughness reaches approximately the same at 6.9 MPa "0.5
Eigenschaftswerte. Die etwas geringere Biegefestigkeit von 835 MPa der Property values. The slightly lower flexural strength of 835 MPa
erfindungsgemäßen Keramik nach Beispiel 6 ist auf den deutlich höheren Ceramic according to Example 6 of the invention is on the much higher
Sinteradditivzusatz zurückführbar.  Sinteradditivzusatz traceable.
Die in Fig. 2 gezeigte Siliziumnitridkeramik gemäß dem Stand der Technik weist ebenfalls ein Einfärbe-Additiv auf, welches in der Siliziumnitridkeramik in Form von kristallisierten Körnern 03 eingeschlossen ist, die als weiße Punkte erkennbar sind.The prior art silicon nitride ceramic shown in Fig. 2 also has a dyeing additive included in the silicon nitride ceramic in the form of crystallized grains 03, which are recognizable as white dots.
Die Körner 03 weisen eine Größe von etwa 1 μιτι bis 2 μιτι auf. Trotz des Sinterns und der Verdichtung durch ein Heißisostatisches Pressen (HIP) sind auch im Gefügebild dieser Siliziumnitridkeramik feine Restporen 04 mit etwa ähnlicher Häufigkeit und Größe wie in Fig. 1 erkennbar. The grains 03 have a size of about 1 μιτι to 2 μιτι on. Despite sintering and densification by hot isostatic pressing (HIP) are also in the Microstructure of this silicon nitride ceramic fine residual pores 04 with approximately similar frequency and size as in Fig. 1 recognizable.
Fig. 3 zeigt ein weiteres Schliffbild der bevorzugten Ausführungsform der Fig. 3 shows a further microsection of the preferred embodiment of
erfindungsgemäßen Siliziumnitridkeramik in einer höheren Auflösung. Im Schliffbild ist ein Maßstab von 10 μιτι dargestellt. In diesem Schliffbild wird deutlich, dass die Siliziumnitridkeramik eine Morphologie mit nadeiförmigen ß-Si3N -Kristallen 06 aufweist, die dreidimensional und statistisch orientiert im Gefüge vorliegen, sodass sich ein quasi-isotropes Gefüge und die quasi-isotropen Eigenschaften der Keramik ergeben. Umgeben sind die nadeiförmigen Kristalle von der aus dem erstem und ggf. dritten Additiv und dem SiO2-Anteil des Si3N -Ausgangspulvers gebildeten, glasartigen oder teilkristallinen Korngrenz- und Füllphase. Die Korngrenz- und Silicon nitride ceramic according to the invention in a higher resolution. The micrograph shows a scale of 10 μιτι. In this micrograph it becomes clear that the silicon nitride ceramic has a morphology with acicular β-Si 3 N crystals 06 which are present in the structure in a three-dimensional and statistically oriented manner, resulting in a quasi-isotropic microstructure and the quasi-isotropic properties of the ceramic. The needle-shaped crystals are surrounded by the glassy or semi-crystalline grain boundary and filling phase formed from the first and optionally third additive and the SiO 2 fraction of the starting Si 3 N powder. The grain boundary and
Füllphase ist durch eine chemische Verbindung aus Siliziumnitrid und dem eine Perowskitstruktur aufweisenden ersten Additiv gebildet ist. Die nadeiförmigen Filling phase is formed by a chemical compound of silicon nitride and the first additive having a perovskite structure. The needle-shaped
Kristalle 06 besitzen eine Länge und einen Durchmesser, deren Verhältnis in vielen Fällen mehr als 10 und vereinzelt bis zu 24 beträgt. Die nadeiförmigen Kristalle 06 bewirken eine hohe Risszähigkeit und damit Schadenstoleranz der Crystals 06 have a length and a diameter whose ratio is in many cases more than 10 and occasionally up to 24. The needle-shaped crystals 06 cause a high fracture toughness and thus damage tolerance of
Siliziumnitridkeramik, sodass diese eine in-situ erzeugte Faserverstärkung darstellen. Fig. 4 zeigt ein weiteres Schliffbild der in Fig. 2 gezeigten Siliziumnitridkeramik gemäß dem Stand der Technik in einer höheren Auflösung. Es handelt sich um die gleiche Auflösung wie in Fig. 3, um die in Fig. 3 gezeigte erfindungsgemäße Silicon nitride ceramic, so that they represent an in-situ generated fiber reinforcement. FIG. 4 shows a further micrograph of the prior art silicon nitride ceramic shown in FIG. 2 in a higher resolution. It is the same resolution as in Fig. 3, to the invention shown in Fig. 3
Siliziumnitridkeramik mit dem Stand der Technik vergleichen zu können. Die in Fig. 4 gezeigte Siliziumnitridkeramik gemäß dem Stand der Technik weist überwiegend nur kurze nadeiförmige ß-Si3N -Kristalle 07 auf, sodass im Gegensatz zur Silicon nitride ceramic to compare with the prior art. The silicon nitride ceramic according to the prior art shown in FIG. 4 predominantly has only short acicular β-Si 3 N crystals 07, so that in contrast to
erfindungsgemäßen Siliziumnitridkeramik nur ein deutlich verringerter Silicon nitride ceramic according to the invention only a significantly reduced
Faserverstärkungseffekt gegeben ist. Fiber reinforcement effect is given.
Fig. 5 zeigt ein Schliffbild einer Querschnittsfläche der erfindungsgemäßen 5 shows a micrograph of a cross-sectional area of the invention
Siliziumnitridkeramik. Die gezeigte Siliziumnitridkeramik weist an ihrer Oberfläche 08 keine bzw. nur eine sehr dünne Sinterhaut auf, ohne dass hierfür eine Sinterhaut durch einen Hartbearbeitungsschritt entfernt bzw. reduziert werden müsste. Fig. 6 zeigt im Vergleich zu Fig. 5 eine Querschnittsfläche einer Siliziumnitridkeramik gemäß dem Stand der Technik. Diese Siliziumnitridkeramik weist an ihrer Oberfläche eine Sinterhaut 09 auf, welche für viele Anwendungen durch eine nachträgliche Hartbearbeitung entfernt werden muss, die jedoch den Fertigungsaufwand deutlich erhöht. Silicon nitride ceramic. The silicon nitride ceramic shown has no or only a very thin sinter skin on its surface 08, without having to remove or reduce a sinter skin for this purpose by means of a hard-machining step. FIG. 6 shows, in comparison to FIG. 5, a cross-sectional area of a silicon nitride ceramic according to the prior art. This silicon nitride ceramic has on its surface on a sintered skin 09, which must be removed for many applications by a subsequent hard machining, but significantly increases the manufacturing cost.
Im Folgenden werden einige Beispiele für Ausführungsformen der Erfindung erläutert, bei welchen ein heißgepresster Werkstoff hergestellt wird. Die Materialmischungen für die heißgepressten Werkstoffvariantenwurden wurden analog zu dem bereits für das Gasdrucksintern beschriebenen, erfindungsgemäßen Verfahrensweg hergestellt, jedoch unter Zugabe eines geringeren Gehaltes an Bindemittel vor der Granulation. Das rieselfähige Pulvermaterial wurde im Anschluss in eine Heißpressform gefüllt und bei Temperaturen zwischen 1 .700 °C und 2.000 °C unter Aufbringung eines axialen bzw. uniaxialen Pressdruckes von 5 MPa bis 40 MPa verdichtet. In the following, some examples of embodiments of the invention in which a hot-pressed material is produced will be explained. The material blends for the hot-pressed material variants were prepared analogously to the inventive process route already described for gas-pressure sintering, but with the addition of a lower content of binder before granulation. The free-flowing powder material was then filled in a hot press mold and compressed at temperatures between 1 .700 ° C and 2,000 ° C with application of an axial or uniaxial pressing pressure of 5 MPa to 40 MPa.
Tabelle 6 zeigt verschiedene Anteile von Seltenerdmetalloxiden REO und Table 6 shows various proportions of rare earth oxides REO and
Aluminiumoxid AI2O3 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils stöchiometrischer Zusammensetzung (x = 1 ,0) für das Heißpressen. Die Angaben in Tabelle 6 sind in Gew.-%. Alumina AI2O3 for the inventive provision of various proportions of the first additive, each having a stoichiometric composition (x = 1, 0) for hot pressing. The data in Table 6 are in% by weight.
Gesamt- gehalt Total salary
Sinteradditive 3 Gew.-% 5 Gew.-% 8 Gew.-% 10 Gew.-% Sintering additives 3% by weight 5% by weight 8% by weight 10% by weight
Äquivalent equivalent to
auf Basis  based
der Oxide REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3 the oxides REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3
Element element
La 2,28 0,72 3,81 1 ,19 6,09 1 ,91 7,62 2,38 La 2.28 0.72 3.81 1, 19 6.09 1, 91 7.62 2.38
Ce 2,29 0,71 3,82 1 ,18 6,1 1 1 ,89 7,64 2,36Ce 2.29 0.71 3.82 1, 18 6.1 1 1, 89 7.64 2.36
Pr 2,29 0,71 3,82 1 ,18 6,1 1 1 ,89 7,64 2,36Pr 2.29 0.71 3.82 1, 18 6.1 1 1, 89 7.64 2.36
Nd 2,30 0,70 3,84 1 ,16 6,14 1 ,86 7,67 2,33Nd 2.30 0.70 3.84 1, 16 6.14 1, 86 7.67 2.33
Dy 2,36 0,64 3,93 1 ,07 6,28 1 ,72 7,85 2,15Dy 2.36 0.64 3.93 1, 07 6.28 1, 72 7.85 2.15
Yb 2,38 0,62 3,97 1 ,03 6,36 1 ,64 7,94 2,06Yb 2.38 0.62 3.97 1, 03 6.36 1, 64 7.94 2.06
Tabelle 6 Table 6
Tabelle 7 zeigt verschiedene Anteile von Seltenerdmetalloxiden REO und Table 7 shows various proportions of rare earth oxides REO and
Aluminiumoxid AI2O3 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils überstöchiometrischer Zusammensetzung (x = 1 ,2) für das Heißpressen. Die Angaben in Tabelle 7 sind in Gew.-%. Alumina AI2O3 for the provision according to the invention of various proportions of the first additive, each having a superstoichiometric composition (x = 1, 2) for hot pressing. The data in Table 7 are in wt .-%.
Gesamt- gehalt Sinteradditive 3 Gew.-% 5 Gew.-% 8 Gew.-% 10 Gew.-%Total content of sintering additives 3% by weight 5% by weight 8% by weight 10% by weight
Äquivalent equivalent to
auf Basis  based
der Oxide REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3 the oxides REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3
Element element
La 2,48 0,52 4,14 0,86 6,62 1 ,38 8,27 1 ,73La 2.48 0.52 4.14 0.86 6.62 1, 38 8.27 1, 73
Ce 2,49 0,51 4,15 0,85 6,63 1 ,37 8,29 1 ,71Ce 2.49 0.51 4.15 0.85 6.63 1, 37 8.29 1, 71
Pr 2,49 0,51 4,15 0,85 6,63 1 ,37 8,29 1 ,71Pr 2.49 0.51 4.15 0.85 6.63 1, 37 8.29 1.71
Nd 2,50 0,50 4,16 0,84 6,66 1 ,34 8,32 1 ,68Nd 2.50 0.50 4.16 0.84 6.66 1, 34 8.32 1, 68
Dy 2,54 0,46 4,23 0,77 6,77 1 ,23 8,46 1 ,54Dy 2.54 0.46 4.23 0.77 6.77 1, 23 8.46 1, 54
Yb 2,56 0,44 4,26 0,74 6,82 1 ,18 8,53 1 ,47Yb 2.56 0.44 4.26 0.74 6.82 1, 18 8.53 1, 47
Tabelle 7 Table 7
Tabelle 8 zeigt verschiedene Anteile von Seltenerdmetalloxiden REO und Table 8 shows various proportions of rare earth oxides REO and
Aluminiumoxid AI2O3 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils unterstochiometrischer Zusammensetzung (x = 0,8) für das Heißpressen. Die Angaben in Tabelle 8 sind in Gew.-%. Alumina AI2O3 for the provision according to the invention of various proportions of the first additive, each having a substoichiometric composition (x = 0.8) for hot pressing. The data in Table 8 are in% by weight.
Gesamt- gehalt Total salary
Sinteradditive 3 Gew.-% 5 Gew.-% 8 Gew.-% 10 Gew.-% Sintering additives 3% by weight 5% by weight 8% by weight 10% by weight
Äquivalent equivalent to
auf Basis  based
der Oxide REO AI2O3 REO AI2O3 REO AI2O3 REO AI2O3 the oxides REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3 REO Al 2 O 3
Element element
La 2,04 0,96 3,40 1 ,60 5,44 2,56 6,81 3,19La 2.04 0.96 3.40 1, 60 5.44 2.56 6.81 3.19
Ce 3,28 1 ,62 5,46 2,71 10,79 5,28 10,92 5,41Ce 3.28 1, 62 5.46 2.71 10.79 5.28 10.92 5.41
Pr 3,27 1 ,63 5,46 2,71 10,78 5,29 10,91 5,42Pr 3,27 1, 63 5,46 2,71 10,78 5,29 10,91 5,42
Nd 3,29 1 ,61 5,49 2,68 10,85 5,22 10,98 5,35Nd 3,29 1, 61 5,49 2,68 10,85 5,22 10,98 5,35
Dy 3,39 1 ,51 5,65 2,51 1 1 ,17 4,90 1 1 ,30 5,03Dy 3,39 1, 51 5,65 2,51 1 1, 17 4,90 1 1, 30 5,03
Yb 3,44 1 ,46 5,74 2,43 1 1 ,34 4,73 1 1 ,47 4,86Yb 3.44 1, 46 5.74 2.43 1 1, 34 4.73 1 1, 47 4.86
Tabelle 8 Table 8
Tabelle 9 zeigt verschiedene Konzentrationen der Elemente Nd, AI und O sowie Konzentrationen von Neodymoxid und Aluminiumoxid zu der erfindungsgemäß besonders bevorzugten Bereitstellung von NdAIO3 als das erste Additiv für das Heißpressen. Die Angaben in Tabelle 9 sind in Gew.-%. Table 9 shows various concentrations of the elements Nd, Al and O as well as concentrations of neodymium oxide and alumina to the invention particularly preferred provision of NdAIO3 as the first additive for hot pressing. The data in Table 9 are in wt .-%.
Figure imgf000025_0001
Figure imgf000025_0001
Tabelle 9 Repräsentative Beispiele Nr. 8 bis 1 1 für die Eigenschaftswerte der erfindungsgemäß heißgepressten Keramikwerkstoffe sind in Tabelle 10 aufgeführt.Table 9 Representative examples Nos. 8 to 11 for the property values of the ceramic materials hot-pressed according to the present invention are shown in Table 10.
Figure imgf000026_0001
Figure imgf000026_0001
Tabelle 10 Table 10
Bezugszeichenliste LIST OF REFERENCE NUMBERS
01 - Restporen 01 - residual pores
02 - kristallisierte Körner eines Einfärbemittels 02 - crystallized grains of a colorant
03 - kristallisierte Körner eines Einfärbe-Additivs03 - crystallized grains of a colorant additive
04 - Restporen 04 - residual pores
05 - - 05 - -
0 6 - nadelförmige ß-Si3N -Kristalle 0 6 - acicular β-Si3N crystals
07 - kurze nadelförmige ß-Si3N -Kristalle  07 - short acicular β-Si3N crystals
08 - Oberfläche  08 - surface
0 9 - Sinterhaut  0 9 - sinter skin

Claims

Patentansprüche claims
Verfahren zur Herstellung einer Siliziumnitridkeramik, folgende Schritte umfassend: Method for producing a silicon nitride ceramic, comprising the following steps:
- Bereitstellen von Siliziumnitrid;  - Providing silicon nitride;
- Bereitstellen eines ersten Additivs, welches eine Perowskitstruktur aufweist; Providing a first additive having a perovskite structure;
- Mischen des Siliziumnitrides und des ersten Additivs zu einer Mischung;Mixing the silicon nitride and the first additive into a mixture;
- Formen der Mischung zu einem Grünling; und - forming the mixture into a green compact; and
- Sintern des Grünlings zu einer Siliziumnitridkeramik.  - sintering of the green compact into a silicon nitride ceramic.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das erste Additiv die folgende allgemeine chemische Formel aufweist: A method according to claim 1, characterized in that the first additive has the following general chemical formula:
RExM2-xO3, RE x M 2- xO 3 ,
wobei  in which
RE mindestens ein Seltenerdmetall umfasst,  RE comprises at least one rare earth metal,
M mindestens ein Metall umfasst, und wobei 0,4 < x < 1 ,6.  M comprises at least one metal, and wherein 0.4 <x <1, 6.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass x gleich 1 ist. A method according to claim 2, characterized in that x is equal to 1.
Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass M aus der durch AI, Fe, Cr und Mn gebildeten Gruppe ausgewählt ist. A method according to claim 2 or 3, characterized in that M is selected from the group formed by Al, Fe, Cr and Mn.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das erste Additiv die Formel NdxAI2-xO3 aufweist. A method according to claim 4, characterized in that the first additive has the formula NdxAI 2-x O3.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das erste Additiv in Form von Primärpartikeln mit einer durchschnittlichen Primärpartikelgröße von weniger als 1 μιτι bereitgestellt wird. Method according to one of claims 1 to 5, characterized in that the first additive is provided in the form of primary particles having an average primary particle size of less than 1 μιτι.
7. Siliziumnitridkeramik, erhältlich durch ein Verfahren nach einem der Ansprüche 1 bis 6. 7. silicon nitride ceramic, obtainable by a method according to one of claims 1 to 6.
8. Siliziumnitridkeramik, die gesintert ist und zumindest folgende Bestandteile aufweist: 8. Silicon nitride ceramic which is sintered and has at least the following constituents:
- Siliziumnitrid; und  - silicon nitride; and
- eine Korngrenzphase, die durch eine chemische Verbindung aus  a grain boundary phase formed by a chemical compound
Siliziumnitrid und einem eine Perowskitstruktur aufweisenden ersten Additiv gebildet ist.  Silicon nitride and a perovskite having a first additive is formed.
9. Siliziumnitridkeramik nach Anspruch 8, dadurch gekennzeichnet, dass das 9. silicon nitride ceramic according to claim 8, characterized in that the
Siliziumnitrid überwiegend in Form von Stangelkristallen kristallisiert ist, wobei zumindest ein Zehntel der Stangelkristalle eine Länge und einen Durchmesser aufweisen, deren Verhältnis größer als 10 ist.  Silicon nitride is crystallized predominantly in the form of Stangelkristallen, wherein at least one tenth of the Stangelkristalle have a length and a diameter whose ratio is greater than 10.
10. Komponente eines Wälz- oder Gleitlagers in Form eines Lagerringes oder eines Wälzkörpers, welche durch eine Siliziumnitridkeramik nach einem der 10. Component of a rolling or sliding bearing in the form of a bearing ring or a rolling element, which by a silicon nitride ceramic according to one of
Ansprüche 7 bis 9 gebildet ist.  Claims 7 to 9 is formed.
PCT/EP2013/059357 2012-05-10 2013-05-06 Silicon nitride ceramic and method for the production thereof WO2013167518A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012207802A DE102012207802A1 (en) 2012-05-10 2012-05-10 Silicon nitride ceramics and process for their preparation
DE102012207802.9 2012-05-10

Publications (2)

Publication Number Publication Date
WO2013167518A2 true WO2013167518A2 (en) 2013-11-14
WO2013167518A3 WO2013167518A3 (en) 2014-01-03

Family

ID=48470919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/059357 WO2013167518A2 (en) 2012-05-10 2013-05-06 Silicon nitride ceramic and method for the production thereof

Country Status (2)

Country Link
DE (1) DE102012207802A1 (en)
WO (1) WO2013167518A2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353093B2 (en) 1972-10-24 1977-07-28 K.K. Toyota Chuo Kenkyusho, Nagoya, Aichi (Japan) Process for the production of sintered molded bodies based on silicon nitride
DE3734274A1 (en) 1986-10-09 1988-04-21 Nippon Denso Co ELECTRICALLY INSULATING, CERAMIC, SINTERED BODY
DE3938644A1 (en) 1988-11-21 1990-05-23 Ngk Spark Plug Co Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength
DE4013923A1 (en) 1989-06-07 1990-12-13 Denki Kagaku Kogyo Kk SILICON NITRIDE POWDER, SILICIUM NITRIDE SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF
EP0587119B1 (en) 1992-09-08 1998-01-07 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body and method of producing the same
DE69427510T2 (en) 1993-10-25 2001-10-04 Toshiba Kawasaki Kk Sinter based on silicon nitride
DE60218549T2 (en) 2001-01-12 2007-11-22 Kabushiki Kaisha Toshiba Abrasion resistant silicon nitride component and method of making the component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141313A (en) * 1977-05-16 1978-12-09 Tokyo Shibaura Electric Co Method of making sintered ceramics
JPS6077173A (en) * 1983-09-30 1985-05-01 工業技術院長 Silicon nitride sintered body and manufacture
JPS60186469A (en) * 1984-03-02 1985-09-21 日本セメント株式会社 Manufacture of silicon nitride sintered body
US4654315A (en) * 1985-04-08 1987-03-31 Gte Products Corporation Low dielectric loss silicon nitride based material
CH685051A5 (en) * 1993-04-15 1995-03-15 Lonza Ag Silicon nitride sintered abrasive grain and process for its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353093B2 (en) 1972-10-24 1977-07-28 K.K. Toyota Chuo Kenkyusho, Nagoya, Aichi (Japan) Process for the production of sintered molded bodies based on silicon nitride
DE3734274A1 (en) 1986-10-09 1988-04-21 Nippon Denso Co ELECTRICALLY INSULATING, CERAMIC, SINTERED BODY
DE3938644A1 (en) 1988-11-21 1990-05-23 Ngk Spark Plug Co Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength
DE4013923A1 (en) 1989-06-07 1990-12-13 Denki Kagaku Kogyo Kk SILICON NITRIDE POWDER, SILICIUM NITRIDE SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF
EP0587119B1 (en) 1992-09-08 1998-01-07 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body and method of producing the same
DE69427510T2 (en) 1993-10-25 2001-10-04 Toshiba Kawasaki Kk Sinter based on silicon nitride
DE60218549T2 (en) 2001-01-12 2007-11-22 Kabushiki Kaisha Toshiba Abrasion resistant silicon nitride component and method of making the component

Also Published As

Publication number Publication date
WO2013167518A3 (en) 2014-01-03
DE102012207802A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
EP2513010B1 (en) Ceramic composite material consisting of the predominant components alumina and zirconia and a dispersoide phase
DE3610041C2 (en) Zirconia based ceramic with alumina, spinel, mullite or spinel and mullite and with improved hydrothermal and thermal stability
EP1070686B1 (en) Liquid phase sintered silicon carbide shaped bodies having improved fracture toughness as well as high electrical resistance and method of making them
DE112009000280B4 (en) Polycrystalline MgO sintered body and MgO sputtering target
EP3468939B1 (en) Zirconia ceramic, cellular body therefrom and process for the manufacture of the zirconia ceramic
EP2819973B1 (en) Process for producing a shaped sintered ceramic body composed of y2o3-stabilized zirconium oxide
DE2810134A1 (en) ZIRCONIUM OXIDE CERAMICS WITH A FINE-GRAY AND THERMALLY STABLE STRUCTURE AND HIGH THERMAL SHOCK RESISTANCE, MOLDED BODIES MANUFACTURED FROM THEM, METHOD FOR MANUFACTURING THE MOLDED BODIES AND THEIR USE
DE3010545C2 (en) Sintered ceramics, in particular for cutting tools, and processes for producing the same
EP3027579B1 (en) Sintered ball
DE102010063286A1 (en) Ceramic composite consisting of the main components aluminum oxide and zirconium oxide
DE102012021906A1 (en) Ceramic composite material for metallurgy-material-affecting conservation, comprises composite obtained by mixing substance portions of silicon nitride and zirconium oxide, and surface layer obtained by heat-treating composite
DE112007000218B4 (en) Process for producing a carbonaceous silicon carbide ceramic
EP2462080B1 (en) Alpha-alumina based sintermaterial and process for the manufactiure of high-density, fine - crystalline formed body from said material and use thereof
EP1529021B1 (en) Highly shock-resistant ceramic material
DE102009046036B4 (en) Process for the preparation of redispersible high-purity nanospinell powders and redispersible high-purity nanospin powder
WO2013167518A2 (en) Silicon nitride ceramic and method for the production thereof
DE102012012227A1 (en) Producing silicon carbide based ceramic sintered body that is useful e.g. for fabricating semiconductors, comprises sintering powder body in inert gas atmosphere, and performing gas pressure sintering in nitrogen-containing atmosphere
WO2013167519A2 (en) Silicon nitride ceramic and method for the production thereof
EP3230233B1 (en) Alpha/beta-sialon having improved sintering activity and high edge strength
DE102012200654A1 (en) Slurry useful e.g. for producing or coating medical implants or technical engineering parts, comprises liquid medium having dispersed solid zirconium dioxide particles that are doped with magnesium oxide exhibiting monoclinic modification
EP0693465B1 (en) Method for the production of sintered materials based on silicon nitride/boron nitride
EP2595939B1 (en) Erodible ceramic material
EP1028927B1 (en) Silicon nitride ceramic with a high mechanical stability at room temperature and above
DE3612177A1 (en) Shaped sintered body, process for its manufacture and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13724190

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13724190

Country of ref document: EP

Kind code of ref document: A2