WO2013166570A1 - Dispositivos de exibição configuráveis para compensar aberrações visuais - Google Patents

Dispositivos de exibição configuráveis para compensar aberrações visuais Download PDF

Info

Publication number
WO2013166570A1
WO2013166570A1 PCT/BR2013/000154 BR2013000154W WO2013166570A1 WO 2013166570 A1 WO2013166570 A1 WO 2013166570A1 BR 2013000154 W BR2013000154 W BR 2013000154W WO 2013166570 A1 WO2013166570 A1 WO 2013166570A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
compensate
emitted
display devices
reflecting
Prior art date
Application number
PCT/BR2013/000154
Other languages
English (en)
French (fr)
Inventor
Manuel Menezes De Oliveira Neto
Vitor Fernando PAMPLONA
Original Assignee
Universidade Federal Do Rio Grande Do Sul-Ufrgs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal Do Rio Grande Do Sul-Ufrgs filed Critical Universidade Federal Do Rio Grande Do Sul-Ufrgs
Publication of WO2013166570A1 publication Critical patent/WO2013166570A1/pt

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B21/00Teaching, or communicating with, the blind, deaf or mute
    • G09B21/001Teaching or communicating with blind persons
    • G09B21/008Teaching or communicating with blind persons using visual presentation of the information for the partially sighted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • the invention of the configurable display device to compensate for visual aberrations is directly applied to any type of electronic device having a digital screen.
  • electronic devices include, but are not limited to, video monitors, televisions, watches, alarm clocks, car dashboards, fitness equipment, cell phone devices, calculators, blood pressure monitors, tablets, digital displays. miscellaneous gadgets, video game consoles, e-readers, etc.
  • This technology can be used by manufacturers of LCD panels, televisions, computer monitors, and any products that use a digital screen. Manufacturers of this type of product have a special interest in using the present invention as they can make the technology available directly on their 3D LCD panels. Any manufacturer of TVs, video monitors, mobile phones, tablets, and other digital tools are also potential candidates to include this technology in their products.
  • the invention solves the problem of displaying content (text, data, images, graphics, etc.) for people with vision problems that imply reduced visual acuity.
  • the invention allows these people to be able to interpret such contents without the need for prostheses (glasses, contact lenses) or surgery.
  • the new screen uses a system light fields (individually directed light rays) to produce a correction that improves the visual acuity of its users.
  • Light field displays (known as light-field displays) are known in the academic community and have been described in the literature. Light field screens are devices that have the ability to display an image using means to reflect or emit light and means to control the direction in which light is emitted or reflected.
  • the means for reflecting, refracting or emitting light consists of a pixel back panel that emits or refracts light, and the means for controlling the direction in which light is emitted, refracted or reflected is formed by a front panel (which can be configured to be opaque to fully transparent to light) or a micro lens array.
  • a front panel which can be configured to be opaque to fully transparent to light
  • a micro lens array a micro lens array.
  • the screens are configurable to the conditions of each individual, and the same screen can be used by several users at different times or at the same time.
  • the screens are programmable through software, and adapt to the conditions of different users by providing parameters that describe the characteristics of each user.
  • software programming is done on any state of the art screen, where the software controls screen content that can be dynamically changed through frame by frame display.
  • the software modifies the displayed content to compensate for the visual impairment of a specific user.
  • the new screen uses a light field system, which can be obtained, for example, by composing two pixel panels (which may be LCD, AMOLED, or other technology) positioned at a distance from each other.
  • the invention may be practiced through a pixel panel with an array of micro lenses positioned in front of the panel.
  • the means for reflecting or emitting light is comprised of a light-emitting panel and the means for controlling the direction in which light is emitted or reflected is formed by an array of micro-lenses positioned in front of the panel.
  • a third variant of the solution would use a panel of light-directing nano components (nano antennas).
  • the approach of the invention creates a kind of hologram that fits the viewer's visual conditions.
  • the screen compensates for refractive errors (eg, nearsightedness, farsightedness, presbyopia, astigmatism, and high-order aberrations) and prevents light scattering on pathways that reach a cataract.
  • refractive errors eg, nearsightedness, farsightedness, presbyopia, astigmatism, and high-order aberrations
  • the goal is to relieve the wearer of the need to wear corrective lenses when observing the digital screen, and / or postpone the need for eye surgery.
  • the same technique can be applied for static prints on a support material, including plastic, paper, fabric, wood, among others.
  • the feature of the invention that makes it different from previously available solutions is the adaptation of the device to compensate for the user's vision problem.
  • the device presents the user with an image that appears distorted (1), such as shown in Figure 1 to an individual without visual impairment but who is perceived without distortion (2) by the user for whom the image was
  • Figure 1 illustrates the perceptions of an individual with reduced visual acuity (2.5 degrees of farsightedness) by observing a conventional (monitor) screen image (1) and observing a compensated (distorted) image for their specific visual condition, displayed on a screen object of the present invention (2).
  • Figure 2 depicts the principle used by the present invention to form a retinal focus image of an individual exhibiting variations in its refractive power at different optical points / pathways in the eye.
  • This figure features a configuration formed by two LCD panels: the rear panel (3) and the front panel (4), separated by a distance m (note that light field screens already exist prior to this invention).
  • Light emitted by six pixels (represented by circles) located on the back panel passes through a set of lit pixels on the front panel. This defines a set of rays that reach the observer's cornea (5).
  • the rays from the three pixels at the top of the back panel converge at point k1 over the cornea.
  • the rays originating from the three pixels at the bottom of the rear panel converge to at point k2 over the cornea.
  • These rays are reflected by the cornea and pass through the opening of the pupil (p), pass through the lens (6), and then reach the observer's retina (7).
  • the distance a represents the axial length of the eye, measured from the cornea to the retina, while t represents the distance between the cornea and the front panel.
  • Points k1 and k2 have different focal lengths (which is an optical aberration), represented by fk1 and fk2, respectively.
  • the distance jk1 is the distance at which all points on a plane viewed through k1 appear in focus on the retina. Such a plan is indicated by Ik1.
  • Ik2 represents the plane in conjunction with the retina with respect to the optical power of point k2.
  • S1 is the distance between the lowest (sixth) pixel on the back panel and the horizontal (imaginary) line that runs through the center of the pupil.
  • S2 is the distance from the front panel aperture through which light from the sixth pixel from the rear panel passes with respect to the same horizontal line.
  • Figure 3 describes how a beam of light exiting the front panel (8) at an angle of ⁇ (alpha) degrees to the horizontal and at a distance S2 from the horizontal line passing through the center of the pupil reaches the corneal assembly.
  • crystalline (9) at a distance k from the center of the pupil.
  • the optical power of the observer's eye has a focal length of f (k).
  • This ray is then refracted and reaches the observer's retina (10) at a distance R from the horizontal line passing through the center of the pupil.
  • the distance from the front panel to the corneal-crystalline joint is represented by t, while a is the axial length of the eye (distance from the cornea to the retina).
  • Figure 4 shows the contents of the front and rear panels for the projection of a letter G (upper case) approximately 0.9 mm in size on the retina of a 5 degree myopia observer.
  • the sparsely distributed small light dots (11) represent the small openings in the front panel, while the midtone regions (12) represent the content displayed on the back panel.
  • Figure 5 shows the result of the simulation of the same letter G presented in Figure 4, this time considering that the observer has 5 degrees of myopia and one caratara.
  • This illustration considers the case of the invention using a single panel with a lenticular matrix (micro lens array). Light regions (13) represent the content displayed on the panel, while small circles (14) indicate unused regions to prevent corresponding rays from reaching a cataract.
  • the approach of the invention can be described as the projection of anisotropic patterns at different depths according to the spatially distributed aberrations in the observer's eye. These optical aberrations are represented as focal lengths on an aberration map. Projected patterns are anisotropic images placed at the right spot in focus for a given optical power of the aberration map.
  • Figure 2 shows two image planes (I_k1 and I_k2) each for a particular point of the cornea (k1 and k2). Since the optical power of point k1 is greater than the optical power of point k2, the plane I_k2 should be placed farther from the eye relative to the plane I_k1 and enlarged accordingly. Note how individual light rays from respective objects in each image plane are integrated into the retina, as shown in Figure 2, (7).
  • the system is multi-depth.
  • the method divides the light field from an object into several parts and positions them at various depths, making sure that they are only seen through the region of the eye that has a certain optical aberration. Paths of light that pass through opacities, such as cataracts, are avoided. The end result is a light field to be displayed at a given distance from the eye.
  • the invention dispenses with the need for wearing glasses, contact lenses, and / or performing refractive surgery.
  • the light field screens described above let you create images that respect the limits of the user's focal length range, and that are set specifically for the user's characteristics. This eliminates the need for contact lenses or glasses to see the content displayed on the screen more clearly.
  • the innovative features of the invention derive from the ability to control the direction of the rays exiting each monitor pixel and reaching the user's eye region delimited by its pupil. Since visual aberrations vary spatially on the surface of the eye, the present invention controls the direction of the incident light at each point of the pupil. Such directions are calculated so that light rays from various points on the monitor converge to form a clear image on the user's retina (as illustrated in Figure 2). This requires a map describing the optical power of each point on the surface of the eye in the region bounded by the pupil. Such a map is assumed as input to configure the present invention, and can be obtained using existing equipment and techniques. The present invention does not generate such maps.
  • the invention is comprised of a light field display (which may be constructed, for example, using two LCD or AMOLED panels, or other technology) and software that controls the two panels.
  • the software calculates, for each content to be projected on the retina, which back panel pixels should be illuminated in combination with the front panel pixels that should be rendered translucent.
  • the software calculates which pixels of the panel must be illuminated.
  • the rear panel (3) displays the various components of the contents to be shown, while the front panel (4) controls the openings through which the rays from the rear panel (3) can proceed toward in the user's eye.
  • the combination of the illuminated positions on the back panel (3) and the unblocked positions on the front panel (4) controls the direction of the rays reaching the various points in the viewer's pupil, allowing a clear image to be formed on his retina.
  • the whole process of configuring the two panels is controlled by the software, which uses as a parameter for configuration the map that describes the optical power of each point in the region delimited by the observer's pupil.
  • the software determines which panel pixels should be lit to project the desired image onto the user's retina.
  • an observer's eye position and orientation tracking device allows the observer to observe dynamically updated content from different points of view, creating an effect similar to observing a hologram.
  • the two panels are LCD modules (or AMOLED, or other technology) that can be purchased independently at specialty stores. Together (and positioned at some distance from each other), they allow the projection of light rays in a set of directions, while each pixel on a conventional monitor emits light of almost equal intensity in all directions. This ability to project light rays in specific directions is used to project images created specifically for their visual condition into the user's eye. By tracking the user's eye position, it is possible to dynamically update the contents displayed on the rear panel (3) and the openings on the front panel (4), creating an effect similar to observing a hologram.
  • LCD modules or AMOLED, or other technology
  • the software implements a two-step algorithm: (i) an association between light rays exiting the device at a given angle (S2, k) and retinal positions (R) (as in Figure 3); and (ii) a normalization in intensity between the rays that make up a single point on the retina.
  • an expected retinal image (l_Retina), a bark map, and a cataract map that characterizes the user's eye
  • the method produces a light field to be shown on a light field screen.
  • f (k) is the focal length at position k at the eye aperture
  • variable t is the distance from the light field viewfinder to the eye
  • variable a is an axial length of the eye.
  • f (k) is calculated from the map of aberrations or through interpolation of user prescription data.
  • the energy I reaching the retina at an x-point of R is the integral of the energy received by all visible corneal points through a p-diameter pupil that reaches x:
  • IRetine (R) ⁇ integral ILightfield [S2 (R, k), k] * h (k) dk, where the function S2 (k, R) is obtained by solving the previous equation for S2.
  • IRetine (R) is the accumulated intensity at the R point on the retina.
  • ILightfield (S2, k) is the intensity emitted by the light field through point k on the cornea from position S2 (indicated in Figure 3).
  • h (k) is a binary visibility function for opacities (cataracts).
  • the intensity of each ray of the light field is the intensity of the retina divided by the number of input rays n (R) at each position of the retina R:
  • Cataract-affected areas are removed using the binary function h (k), which is based on the cataract density function c (k), given as input and measurement with traditional ophthalmic equipment.
  • Circles (14) shown in Figure 5 highlight that light rays are being blocked because of the above function.
  • the method calculates the R position for each pair of rays and light (S2, k) by applying the equation (Eq. 1).
  • the access numbers r (R) at each retinal point R are calculated and stored. Given the desired retinal image, I Retina, we define ILightfield (S2, k) from the input image IRetina (R) and apply the second equation (Eq. 2) to normalize the intensity of each radius defined by (S2, k). ).
  • a light field screen can be constructed using a dual stack of LCDs or with an LCD plus a lenticular array (micro lens array).
  • Figure 4 describing the invention shows examples of the contents of the back panel (3) and front panel (4) for a monitor consisting of two LCDs.
  • Figure 5 shows the contents of the back panel [shown in Figure 2 (3)], used with a lenticular matrix (micro lens matrix).
  • the invention may also be practiced statically by printing on sheets of paper, plastic and the like. But the impession on a single sheet of paper would not work, because light would be reflected on the paper diffusely (in all directions). This would be equivalent to having a single layer monitor (single panel).
  • For printing to work Statically on paper it is necessary to use two layers of paper (or ink on the paper), one layer at the back (reflecting or emitting light) and another layer at the front (which is controlling the directions in which light from the back paper could escape). ). In this case the configuration of the invention would be similar to the use of two panels. However, two points must be stressed.
  • the first point is that the setting would be static, ie, could not be dynamically modified over time to: update the displayed content; or to adjust to changes in the position of the observer's head; or to accommodate observers with other disabilities, for example.
  • the second point is that a light efficiency problem may occur. This problem is related to how light would reach the back panel (or layer of ink or paper) to be reflected. One possibility to increase the luminous efficiency would be to illuminate the backsheet from behind, causing the light to pass through the rear panel and reach the holes in the front panel. This is the working principle of LCD monitors, which have a light box behind the LCD layer itself. Using light field screens solves the points discussed above. In other words, the use of two panels allows dynamic configuration combined with greater luminous efficiency.
  • the invention also supports display for two eyes from the same deformed image.
  • the invention may also be practiced by dynamically configuring the panels by a screen that multiplies the contents between the two eyes. For example, if the system generates images at the rate of 60 frames per second, it could toggle the display of specific content for each eye, which would each receive 30 frames per second alternately.
  • the invention becomes monocular. Since both eyes of the same person are in different positions and often require different optical corrections, multiplexing for both eyes is an important aspect of the practice of the invention.
  • a method is introduced where a person may software-adjust a screen to change its configuration until the user deems it appropriate for his visual impairment.
  • the display device is a traditional monitor and it is assumed that it is possible to correct the image without changing the direction of the light rays.
  • the invention proposed here has as a first differential the control of the direction of light rays and this control is a requirement for the correctness of a given image to be perfectly adequate to compensate for a person's visual deficiencies.
  • the invention proposed here has as a second differential the specific consideration of user disability data for which the image will be corrected. Or namely: the invention proposed here takes into account whether the person has myopia, hyperopia, cataract, etc. as a disability and makes the correction for the specific case. In addition, you can correct different specific cases for the left and right eye by simultaneously displaying specific eye-specific content or alternating frames appropriate for each eye.
  • the modulation device alters a light wave in terms of phase and wavelength or causes diffraction.
  • changing a light wave in terms of phase and wavelength or diffracting a ray of light does not change the direction of that ray of light.
  • the invention proposed here has differential with respect to this prior art.
  • the invention proposed here has as a first differential the control of the direction of light rays and this control is a requirement for the correctness of a given image to be perfectly adequate to compensate for a person's visual deficiencies.
  • the invention proposed here has as a second differential the specific consideration of user disability data for which the image will be corrected.
  • the invention proposed here takes into account whether the person has myopia, hyperopia, cataract, etc. as a disability and makes the correction for the specific case.
  • Figure 4 shows the contents of the front and rear panels for projecting a letter G (upper case) approximately 0.9 mm in size on the retina of a observer with 5 degrees of myopia.
  • the sparsely distributed small light dots (11) represent the small openings in the front panel, while the midtone regions (12) represent the content displayed on the back panel. Note that the combination of both front panel and rear panel settings allows you to control the direction of light rays, as shown in Figure 2.
  • Figure 5 shows the result of the simulation of the same letter G shown in Figure 4, this time considering that the observer has 5 degrees of myopia and a character .
  • This illustration considers the case of the invention using a single panel with a lenticular matrix (micro lens array). Light regions (13) represent the content displayed on the panel, while small circles (14) indicate unused regions to prevent corresponding rays from reaching a cataract. Note that the combination of both panel and micro lens array configurations allows you to control the direction of light rays, as shown in Figure 2.
  • the invention may be practiced on any device, programmable or otherwise, capable of displaying an image using means to reflect or emit light and means to control the direction in which light is emitted or reflected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

A invenção contempla o uso de meios para refietir, refratar ou emitir luz e de meios para controlar a direção em que a luz é emitida, refratada ou refletida, que são configurados para exibir imagens que compensam deficiências visuais de seus usuários. Destaca-se nesse sentido, o uso de dois painéis, um para emissão ou reflexão de luz, e outro para controle de direção de emissão da luz. A configuração conjunta destes dois painéis permite a compensação de deficiências visuais do usuário. A tecnologia pode ser utilizada por fabricantes de painéis de LCDs e aplicada em telas de televisores, monitores de vídeo de computador, de notebooks, de netbooks, tablets, relógios digitais, calculadoras, consoles de jogos eletrônicos, e-readers, telefones celulares e telefone sem fio e mostradores digitais de aparelhos eletroeletrônicos em geral.

Description

Relatório Descritivo da patente de invenção
DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR
ABERRAÇÕES VISUAIS
A invenção do dispositivo de exibição configurável para compensar aberrações visuais é diretamente aplicada a qualquer tipo de aparelho eletronico que possua uma tela digital. Exemplos destes tipos de dispositivos eletrônicos incluem, mas não estão limitados a monitores de vídeo, televisores, relógios, despertadores, painéis de automóveis, equipamentos de academias de ginástica, aparelhos de telefone celulares, calculadoras, monitores de pressão arterial, tablets, mostradores digitais de aparelhos diversos, consoles de jogos eletrônicos, e-readers, etc.
Esta tecnologia pode ser utilizada por fabricantes de painéis de LCDs, televisores, monitores de computador, e quaisquer produtos que utilizem uma tela digital. Fabricantes deste tipo de produtos tem especial interesse em utilizar o presente invento, pois podem disponibilizar a tecnologia diretamente em seus painéis de LCD 3D. Qualquer fabricante de TVs, monitores de vídeo, telefones celulares, tablets, e outras ferramentas digitais também são candidatos em potencial a incluir esta tecnologia em seus produtos.
A invenção resolve o problema de exibição de conteúdos (textos, dados, imagens, gráficos, etc.) para pessoas com problemas de visão que implicam em uma reduzida acuidade visual. A invenção permite que estas pessoas possam interpretar tais conteúdos sem a necessidade do uso de próteses (óculos, lentes de contato) ou cirurgias. A nova tela utiliza um sistema de campos de luz (raios de luz direcionados individualmente) para produzir uma correção que melhora a acuidade visual de seus usuários. As telas de campos de luz (conhecidos como light-field displays) são conhecidas na comunidade académica e já foram descritas na literatura. As telas de campos de luz são dispositivos que tem a capacidade para exibir uma imagem utilizando meios para refletir ou emitir luz e meios para controlar a direção em que a luz é emitida ou refletida. Nas telas de campos de luz, os meios para refletir, refratar ou emitir luz são compostos por um painel traseiro de pixels que emite ou refrata luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida são formados por um painel dianteiro (que pode ser configurado para se tornar desde opaco a totalmente transparente a luz) ou por uma matriz de micro lentes. Esta é, entretanto, a primeira vez que as telas de campos de luz são usadas com a finalidade de melhorar a acuidade visual de indivíduos. A acuidade visual é aumentada significativamente quando a tela é visualizada pelo portador de deficiência visual para a qual a tela foi configurada para corrigir. A invenção suporta condições como miopia, hipermetropia, astigmatismo e presbiopia, além de aberrações de alta ordem e cataratas, e combinações destas. As telas são configuráveis às condições de cada indivíduo, sendo que uma mesma tela pode ser utilizada por vários usuários em tempos diferentes ou ao mesmo tempo. As telas são programáveis através de software, e se adaptam às condições de diferentes usuários por meio do provimento de parâmetros que descrevem as características de cada usuário. Note que a programação por software é feita em qualquer tela estado da arte, onde o software controla o conteúdo da tela que pode ser alterado dinâmicamente através de exibição quadro a quadro. No caso da invenção, o software modifica o conteúdo exibido para que compense a deficiência visual de um usuário específico.
O problema que a invenção resolve era resolvido antes, com o uso de óculos, lentes de contato, ou cirurgias. Na literatura académica é possível encontrar lentes de contato com óptica adaptativa e outros tipos de materiais ópticos que corrigem de alguma forma a visão. Entretanto, não há registro de dispositivo/tela/monitor capaz de se adaptar às aberrações visuais presentes nos olhos de um indivíduo.
As soluções disponíveis anteriormente para o problema que a invenção resolve não eram plenamente satisfatórias pelos seguintes motivos. O uso de óculos é indesejável em algumas situações como no caso de uso de dispositivos apoiados na cabeça (e.g., monitores portáteis utilizados em aplicações de realidade virtual e realidade aumentada, os quais são comumente chamados de head-mounted displays), durante a prática de esportes, etc. Considere também como exemplo o caso de uma pessoa que utiliza óculos de leitura apenas. Esta pessoa precisa usar os óculos a cada vez que faz uso de seu celular ou consulta o relógio. A invenção, aplicada a estes aparelhos, possibilita o seu uso sem óculos. Neste caso, os óculos poderiam ser utilizados apenas em situações de uso mais prolongado, evitando-se o inconveniente de colocá-los e retirá-los sistematicamente.
A invenção resolve o problema do seguinte modo. A nova tela utiliza um sistema de campos de luz, o qual pode ser obtido, por exemplo, pela composição de dois painéis de pixels (que podem ser de LCD, AMOLED, ou outra tecnologia) posicionados a certa distância, um à frente do outro. Alternativamente, a invenção pode ser praticada através de um painel de pixels com uma matriz de micro-lentes posicionadas à frente do painel. Neste caso, os meios para refletir ou emitir luz são compostos por um painel que emite luz e os meios para controlar a direção em que a luz é emitida ou refletida são formados por uma matriz de micro-lentes posicionadas à frente do painel. Uma terceira variante da solução utilizaria um painel de nano componentes que direcionam luz (nano antenas).
A abordagem da invenção cria uma espécie de holograma que se ajusta às condições visuais do observador. A tela compensa erros de refração (por exemplo, miopia, hipermetropia, presbiopia, astigmatismo e aberrações de alta ordem) e evita a dispersão de luz em caminhos que atinjam uma catarata. O objetivo é libertar o usuário da necessidade do uso de lentes corretivas quando este observa a tela digital, e/ou adiar a necessidade de realização de cirurgias no olho. Note que a mesma técnica pode ser aplicada para impressões estáticas sobre um material suporte, incluindo plástico, papel, tecido, madeira, entre outros. Assim, o modo proposto de resolver o problema difere das soluções disponíveis anteriormente. A característica da invenção que a torna diferente das soluções disponíveis anteriormente é a adaptação do dispositivo de modo a compensar o problema de visão do usuário. Assim, o dispositivo apresenta ao usuário uma imagem que parece distorcida (1), como mostrado na Figura 1 , a um indivíduo sem deficiência visual, mas que é percebida sem distorção (2) pelo usuário para o qual a imagem foi criada (com o objetivo de compensar sua deficiência visual).
A invenção será mais bem compreendida com o auxílio das seguintes figuras.
A Figura 1 ilustra as percepções de um indivíduo com acuidade visual reduzida (2,5 graus de hipermetropia) ao observar uma imagem em tela (monitor) convencional (1) e ao observar uma imagem compensada (distorcida) para a sua condição visual específica, exibida em uma tela objeto da presente invenção (2).
A Figura 2 descreve o principio utilizado pela presente invenção para formar uma imagem em foco na retina de um invidíduo que apresenta variações em seu poder refrativo em diferentes pontos/caminhos óticos no olho. Esta figura caracteriza uma configuração formada por dois painéis de LCD: o painel de trás (3) e o painel frontal (4), separados por uma distância m (note que as telas de campos de luz já existem anteriormente a esta invenção). A luz emitida por seis pixels (representados por círculos) localizados no painel de trás passa através de um conjunto de pixels acesos no painel frontal. Isto define um conjunto de raios que atingem a córnea (5) do observador. Os raios originados nos três pixels na parte superior do painel de trás convergem no ponto k1 sobre a córnea. Por sua vez, os raios originados a partir dos três pixels na parte inferior do painel traseiro convergem para no ponto k2 sobre a córnea. Estes raios são ref ratados pela córnea e passam pela abertura da pupila (p), atravessam o cristalino (6), e então atingem a retina (7) do observador. A distância a representa o comprimento axial do olho, medido da córnea até a retina, enquanto t representa a distância entre a córnea e o painel frontal. Enumerando-se os pixels do painel de trás, de cima para baixo, percebe-se que os raios provenientes do primeiro e do quarto pixels convergem para um mesmo ponto na retina, percorrendo caminhos que passam por k1 e k2, respectivamente. De modo análogo, os raios provenientes do segundo e quinto pixels convergem para um outro ponto na retina. A mesma situação ocorre para os raios provenientes do terceiro e do sexto pixels. Os pontos k1 e k2 possuem distâncias focais diferentes (que constitui uma aberração óptica), representadas por fk1 e fk2, respectivamente. A distância jk1 é a distância na qual todos os pontos em um plano visto através de k1 aparecem em foco na retina. Tal plano é indicado por Ik1. De modo análogo, Ik2 representa o plano conjugado com a retina com relação ao poder ótico do ponto k2. S1 é a distância entre o pixel mais abaixo (sexto) no painel de trás e a linha horizontal (imaginária) que passa pelo centro da pupila. S2 é a distância da abertura no painel frontal pela qual passa a luz proveniente do sexto pixel proveniente do painel de trás com relação à mesma linha horizontal. A partir das explicações acima, percebe-se que a partir do conhecimento do poder ótico associado aos diversos caminhos entre a córnea e a retina, e da especificação de uma imagem a ser projetada na retina, é possível definir uma combinação de pixels que devem ser acesos no painel de trás e que devem ser tornados translúcidos no painel frontal de modo a obter o efeito desejado. A Figura 3 descreve como um raio de luz que sai do painel frontal (8) com um ângulo de α (alfa) graus com relação à horizontal e a uma distância S2 da linha horizontal, que passa pelo centro da pupila, atinge o conjunto córnea-cristalino (9) a uma distância k do centro da pupila. Neste ponto, o poder ótico do olho do observador tem uma distância focal de f(k). Este raio é então refratado e atinge a retina (10) do observador a uma distância R da linha horizontal que passa pelo centro da pupila. A distância do painel frontal até o conjunto córnea-cristalino é representada por t, enquanto a é o comprimento axial do olho (distância da córnea até a retina).
A Figura 4 mostra os conteúdos dos painéis frontal e traseiro para a projeção de uma letra G (maiúscula) com tamanho aproximado de 0.9 mm na retina de um observador com 5 graus de miopia. Os pequenos pontos claros (11) distribuídos espassadamente representam as pequenas aberturas no painel frontal, enquanto que as regiões com tom intermediário (12) representam o conteúdo exibido no painel de trás.
A Figura 5 mostra o resultado da simulação da mesma letra G apresentada na Figura 4, desta vez considerando que o observador tem 5 graus de miopia e uma caratara. Esta ilustração considera o caso do invento utilizando um único painel com uma matriz lenticular (matriz de micro-lentes). As regiões claras (13) representam o conteúdo exibido no painel, enquanto os pequenos círculos (14) indicam regiões não utilizadas para evitar que os raios correspondentes atinjam uma catarata.
A abordagem da invenção pode ser descrita como a projeção de padrões anisotrópicos em profundidades diferentes de acordo com as aberrações espacialmente distribuídas no olho do observador. Estas aberrações ópticas são representadas como distâncias focais em um mapa de aberração. Os padrões projetados são imagens anisotrópicas colocados no ponto certo em foco para um determinado poder óptico do mapa de aberrações. A Figura 2 mostra dois planos de imagem (I_k1 e I_k2), cada um para um determinado ponto da córnea (k1 e k2). Uma vez que o poder óptico do ponto k1 é maior do que o poder óptico do ponto k2, o plano I_k2 deve ser colocado mais distante do olho em relação ao plano I_k1 e ampliado apropriadamente. Note como os raios de luz individuais a partir de objetos respectivos em cada plano de imagem são integrados na retina, conforme mostrado na Figura 2, (7).
Como essas imagens são colocadas em profundidades múltiplas para criar uma única imagem em foco na retina, dizemos que o sistema é multi- profundidade. O método divide o campo de luz proveniente de um objeto em várias partes e as posiciona em diversas profundidades, certificando-se de que estas são vistas apenas através da região do olho que tem determinada aberração óptica. Os caminhos de luz que passam por opacidades, tais como cataratas, são evitados. O resultado final é um campo de luz a ser exibido a uma dada distância do olho.
A invenção dispensa a necessidade de uso de óculos, lentes de contato, e/ou a realização de cirurgia refrativa.
As telas de campos de luz descritas acima permitem criar imagens que respeitam os limites da faixa de distância focal do usuário, e que são configuradas especificamente para as características do mesmo. Com isso, dispensa-se a necessidade do uso de lentes de contato ou óculos para enxergar com maior nitidez o conteúdo exibido na tela.
As características inovadoras da invenção decorrem da possibilidade de se controlar a direção dos raios que saem de cada pixel do monitor e atingem a região do olho do usuário delimitada pela sua pupila. Considerando que as aberrações visuais variam espacialmente na superfície do olho, a presente invenção controla a direção da luz incidente em cada ponto da pupila. Tais direções são calculadas para que os raios de luz vindos de vários pontos do monitor convirjam para formar uma imagem nítida na retina do usuário (conforme ilustrado na Figura 2). Para tanto, é preciso dispor de um mapa que descreve o poder óptico de cada ponto da superfície do olho na região delimitada pela pupila. Tal mapa é assumido como entrada para configurar a presente invenção, e pode ser obtido com o uso de equipamentos e técnicas já existentes. A presente invenção não gera tais mapas.
A invenção é composta por uma tela de campos de luz (a qual pode ser construída, por exemplo, utilizando dois painéis de LCD ou AMOLED, ou outra tecnologia) e software que controla os dois painéis. O software calcula, para cada conteúdo que se pretende projetar na retina, quais pixels do painel traseiro devem ser iluminados em combinação com os pixels do painel dianteiro que devem ser tornados translúcidos. No caso de se usar uma matriz de micro-lentes, como estas são fixas, o software calcula quais pixels do painel devem ser iluminados. Conforme demonstrado na Figura 2, o painel de trás (3) exibe os diversos componentes dos conteúdos a serem mostrados, enquando o painel frontal (4) controla as aberturas através das quais os raios provenientes do painel de trás (3) podem prosseguir em direção ao olho do usuário. Assim, a combinação das posições iluminadas no painal de trás (3) e das posições não bloqueadas no painel frontal (4) controla as direções dos raios que atingem os diversos pontos na pupila do observador, permitindo a formação de uma imagem nítida em sua retina. Todo o processo de configuração dos dois painéis é controlado pelo software, o qual utiliza como parâmetro para configuração o mapa que descreve o poder óptico de cada ponto na região delimitada pela pupila do observador.
No caso da invenção ser praticada com o uso de um painel com uma matriz de micro-lentes, o software determina quais pixels do painel devem ser acesos para projetar sobre a retina do usuário a imagem desejada.
A utilização de um equipamento para rastreamento da posição e orientação do olho do observador permite que este observe os conteúdos atualizados dinamicamente de diferentes pontos de vista, criando um efeito semelhante ao da observação de um holograma.
Na Figura 2, os dois painéis (de trás (3) e frontal (4)) são módulos de LCD (ou AMOLED, ou outra tecnologia) que podem ser comprados independentes em lojas especializadas. Juntos (e posicionados a certa distância um do outro), eles permitem a projeção de raios de luz em um conjunto de direções, enquanto que cada pixel de um monitor convencional emite luz com uma intensidade quase igual em todas as direções. Esta habilidade de projetar raios de luz em direções específicas é usada para projetar no olho do usuário imagens criadas especificamente para a sua condição visual. Ao realizar o rastreamento da posição do olho do usuário, é possível atualizar dinamicamente os contéudos exibidos no painel de trás (3) e as aberturas no painel frontal (4), criando um efeito semelhante a da observação de um holograma.
O software implementa um algoritmo de dois passos principais: (i) uma associação entre raios de luz saindo do dispositivo em um dado ângulo (S2, k) e posições da retina (R) (conforme a Figura 3); e (ii) uma normalização na intensidade entre os raios que compõem um único ponto na retina. Recebendo como entrada: uma imagem esperada na retina (l_Retina), um mapa de aberrações, e um mapa de catarata que caracteriza o olho do usuário, o método produz um campo luz para ser mostrado em uma tela de campos de luz.
Usando ótica geométrica e o modelo de lente fina, a relação entre um raio a partir de um ponto S2 na tela em um ângulo α e no ponto da retina R é dada pela seguinte fórmula (onde os elementos são indicados na Figura 3):
k = S2 + tan α t
R(S2, k) = a (-k/f(k) + tan a) + k (Eq. 1),
onde f(k) é a distância focal na posição k na abertura do olho, a variável t é a distância a partir do visor campo de luz para o olho, e a variável a é um comprimento axial do olho. f(k) é calculado a partir do mapa de aberrações ou através da interpolação de dados de prescrição do usuário. A variável a é essencialmente um fator de escala, medido para o usuário específico (alternativamente, pode-se usar a=23,8 milímetros, que é o valor médio de um comprimento axial do olho humano). A energia I que atinge a retina em um ponto x de R é a integral da energia recebida por todos os pontos da córnea visíveis através de uma pupila com diâmetro p e que atingem x:
IRetina (R) = \integral ILightfield [S2 (R, k), k] * h(k) dk, onde a função S2(k,R) é obtida resolvendo a equação anterior para S2. IRetina(R) é a intensidade acumulada no ponto R sobre a retina. ILightfield(S2, k) é a intensidade emitida pelo campo de luz através do ponto k na córnea a partir da posição S2 (indicada na Figura 3). h(k) é uma função visibilidade binária para opacidades (cataratas).
A utilização de muitos raios de luz para formar cada pixel na retina (mapeamento muitos-para-um) aumenta o brilho, mas requer um passo de normalização. A intensidade de cada raio do campo de luz é a intensidade da retina dividida pelo número de raios de entrada n(R) em cada posição da retina R:
ILightfield(S2, k) = IRetina(R) / n(R) (Eq. 2),
Remove-se as áreas afetadas por catarata usando a função binária h(k), que é baseada na função de densidade da catarata c(k), dada como entrada e medida com equipamentos oftalmológicos tradicionais. Um limiar H define a densidade de catarata em que os efeitos deixam de ser perceptíveis: h(k) = 1 se c(k) <H,
h(k) = 0 se c(k) >= H,
Círculos (14) indicados na Figura 5 destacam que os raios de luz estão sendo bloqueados por causa da função acima.
Dada uma configuração de tela, mapas de aberração f(k), e mapas de catarata h(k), o método calcula a posição R para cada par de raios e luz (S2, k) aplicando a equação (Eq. 1)
Os números de acessos r(R) a cada ponto da retina R são calculados e armazenados. Dada a imagem desejada na retina, I Retina, definimos ILightfield (S2, k) a partir da imagem de entrada IRetina(R) e aplicamos a segunda equação (Eq. 2) para normalizar a intensidade da cada raio definido por (S2, k). Uma tela de campos de luz pode ser construída usando uma pilha dupla de LCDs ou com um LCD mais uma matriz lenticular (matriz de micro-lentes). A Figura 4 que descreve a invenção mostra exemplos dos conteúdos do painel de trás (3) e do painel frontal (4) para o caso de um monitor formado por dois LCDs. A Figura 5 mostra o conteúdo do painel de trás [mostrado na Figura 2 (3)], utilizado com uma matriz lenticular (matriz de micro- lentes).
Percebe-se que a invenção pode também ser praticada de forma estática, através de impressão em folhas de papel, plástico e outros. Porém a impessão em uma única folha papel não funcionaria, pois a luz seria refletida no papel de forma difusa (em todas as direções). Isto seria equivalente a ter um monitor com uma única camada (único painel). Para que a impressão funcione de forma estática em papel é necessário utilizar duas camadas de papel (ou de tinta sobre o papel), uma camada atrás (refletindo ou emitindo luz) e outra camada na frente (esta controlando as direções em que a luz do papel de trás poderia escapar). Neste caso a configuração da invenção seria semelhante a do uso de dois painéis. Entretanto, dois pontos devem ser ressaltados. O primeiro ponto é que a configuração seria estática, i.e., não poderia ser modificada dinamicamente ao longo do tempo para: atualizar os conteúdos exibidos; ou para se ajustar a mudanças de posição da cabeça do observador; ou para acomodar observadores com outras deficiências, por exemplo. O segundo ponto é que pode ocorrer um problema de eficência luminosa. Este problema é relacionado ao modo como a luz atingiria o painel (ou camada de tinta ou papel) de trás para ser refletida. Uma possibilidade para aumentar a eficiência luminosa seria iluminar a folha de trás por trás, fazendo com que a luz atravesse o painel traseiro e atinja os furos no painel dianteiro. Este é o principio de funcionamento dos monitores de LCDs, que possuem uma iluminação difusa (light box) por trás da camada de LCD propriamente dita. O uso de telas de campos de luz resolve os pontos discutidos acima. Ou seja: o uso de dois painéis permite a configuração dinâmica aliada a uma maior eficiência luminosa.
Note que a correção é feita para um olho, devido às peculiaridades das condições refrativas de cada olho, e de suas diferentes posições relativas com relação aos painéis. A invenção também suporta a exibição para dois olhos a partir de uma mesma imagem deformada. Alternativamente, a invenção pode ser praticada também pela configuração dos painéis dinamicamente por uma tela que multiplexe os conteúdos entre os dois olhos. Por exemplo, se o sistema gerar imagens à taxa de 60 quadros por segundo poderia alternar a exibição de conteúdo especifico para cada um dos olhos, os quais receberiam cada um, alternadamente, 30 quadros a cada segundo. Este é um aspecto importante para a prática da invenção, visto que sem contemplar esta multiplexação da configuração da correção, a invenção torna-se monocular. Considerando-se que os dois olhos de uma mesma pessoa encontram-se em posições diferentes e frequentemente requerem correções óticas diferentes, a exibição multiplexada para os dois olhos, é um aspecto importante para a prática da invenção.
Em uma anterioridade em relação à invenção aqui proposta é introduzido um método onde uma pessoa pode ajustar por meio de software uma tela para mudar a sua configuração até que o usuário considere adequado para a sua deficiência visual. Porém esta anterioridade não menciona meios para controlar a direção da luz. O dispositivo de exibição é um monitor tradicional e assume-se que é possível corrigir a imagem sem modificar a direção dos raios de luz. A invenção aqui proposta tem como um primeiro diferencial o controle da direção dos raios de luz e este controle é requisito para que a correção de uma determinada imagem seja perfeitamente adequada para compensar as deficiências visuais de uma pessoa. A invenção aqui proposta tem como um segundo diferencial a consideração específica dos dados sobre a deficiência do usuário para o qual a imagem será corrigida. Ou seja: o invento aqui proposto leva em conta se a pessoa tem como deficiência miopia, hipermetropia, catarata, etc e faz a correção para o caso específico. Além disso, pode corrigir casos específicos distintos para o olho esquerdo e o direito através da exibição simultânea de conteúdo específico para cada olho ou exibição alternada de quadros adequados a cada olho.
Outra anterioridade em relação à invenção aqui proposta é baseada em um dispositivo portátil manual (handheld device) enquanto a invenção aqui proposta pode ser utilizada em qualquer equipamento de exibição, independente de seu tamanho ou material. Segundo a anterioridade citada, o dispositivo de modulação altera uma onda de luz em termos de fase e comprimento de onda ou provoca difração. Notem que a alteração de uma onda de luz em termos de fase e comprimento de onda ou ainda a difração de um raio de luz não modificam a direção deste raio de luz. Novamente, a invenção aqui proposta tem diferencial em relação a esta anterioridade. A invenção aqui proposta tem como um primeiro diferencial o controle da direção dos raios de luz e este controle é requisito para que a correção de uma determinada imagem seja perfeitamente adequada para compensar as deficiências visuais de uma pessoa. A invenção aqui proposta tem como um segundo diferencial a consideração específica dos dados sobre a deficiência do usuário para o qual a imagem será corrigida. Ou seja: o invento aqui proposto leva em conta se a pessoa tem como deficiência miopia, hipermetropia, catarata, etc e faz a correção para o caso específico. Além disso, pode corrigir casos específicos distintos para o olho esquerdo e o direito através da exibição simultânea de conteúdo específico para cada olho ou exibição alternada de quadros adequados a cada olho.
Um exemplo das características de alteração de imagem pela invenção aqui proposta pode ser vista na Figura 4. A Figura 4 mostra os conteúdos dos painéis frontal e traseiro para a projeção de uma letra G (maiúscula) com tamanho aproximado de 0.9 mm na retina de um observador com 5 graus de miopia. Os pequenos pontos claros (11) distribuídos espassadamente representam as pequenas aberturas no painel frontal, enquanto que as regiões com tom intermediário (12) representam o conteúdo exibido no painel de trás. Note que a combinação das duas configurações, tanto do painel frontal quanto do painel de trás permite o controle da direção dos raios de luz, conforme ilustrado na Figura 2.
Outro exemplo das características de alteração de imagem pela invenção aqui proposta pode ser vista na Figura 5. A Figura 5 mostra o resultado da simulação da mesma letra G apresentada na Figura 4, desta vez considerando que o observador tem 5 graus de miopia e uma caratara. Esta ilustração considera o caso do invento utilizando um único painel com uma matriz lenticular (matriz de micro-lentes). As regiões claras (13) representam o conteúdo exibido no painel, enquanto os pequenos círculos (14) indicam regiões não utilizadas para evitar que os raios correspondentes atinjam uma catarata. Note que a combinação das duas configurações, tanto do painel quanto da matriz de micro-lentes permite o controle da direção dos raios de luz, conforme ilustrado na figura 2. A invenção pode ser praticada em qualquer dispositivo, programável ou não, que tenha capacidade para exibir uma imagem utilizando meios para refletir ou emitir luz e meios para controlar a direção em que a luz é emitida ou refletida.

Claims

REIVINDICAÇÕES
1. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" tendo capacidade para exibir imagens utilizando meios para refletir, retratar ou emitir luz e meios para controlar a direção em que a luz é emitida, refratada ou refletida caracterizado pelos meios para refletir, retratar ou emitir luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem configurados para exibir imagens de modo que compensem a deficiência visual de um usuário específico.
2. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 1 caracterizado pelos meios para refletir, retratar ou emitir luz e os meios para controlar a direção em que a luz é emitida ou refletida serem configurados dinâmicamente para compensar a deficiência visual de um usuário específico.
3. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 2 caracterizado pelos meios para refletir, refratar ou emitir luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem configurados dinâmicamente através de software para compensar a deficiência visual de um usuário específico.
4. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 3 caracterizado pelo software utilizar informações sobre a deficiência visual de um usuário específico.
5. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 4 caracterizado pelos meios para refletir, refratar ou emitir luz e os meios para controlar a direção em que a luz é emitida, retratada ou refletida serem configurados dinâmicamente para compensar as deficiências visuais do olho esquerdo e as deficiências visuais do olho direito, simultaneamente ou alternadamente.
6. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 5 caracterizado pelos meios para refletir, refratar ou emitir luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem configurados dinamicamente para exibir imagens para cada um dos olhos para compensar a deficiência visual de um usuário específico que tenha deficiências distintas em seus olhos esquerdo e direito.
7. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 1 caracterizado pelos meios para refletir, refratar ou emitir luz serem compostos por um ou mais painéis de pixels para controlar a direção em que a luz de cada pixel é emitida, refletida ou refratada eletronicamente.
8. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 1 caracterizado pelos meios para refletir, refratar ou emitir luz serem compostos por um painel traseiro que emite ou é transparente a luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem formados por um painel dianteiro que pode ser configurado para se tornar opaco ou transparente a luz, com escalas intermediárias.
9. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 1 caracterizado pelos meios para refletir, retratar ou emitir luz serem compostos por um painel traseiro que emite ou é transparente a luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem formados por uma matriz de micro-lentes posicionadas à frente do painel traseiro.
10. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 1 caracterizado pelos meios para refletir, refratar ou emitir luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem configurados estaticamente para compensar a deficiência visual de um usuário específico.
11. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 10 caracterizado pelos meios para refletir, refratar ou emitir luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem formados por transferência ou gravação de imagens para um ou mais materiais de suporte.
12. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 10 caracterizado pelos meios para refletir, refratar ou emitir luz serem formados por transferência ou gravação de imagens para um ou mais materiais de suporte que emite, reflete, ou transmite luz e os meios para controlar a direção em que a luz é emitida, refratada ou refletida serem formados por uma matriz de micro- lentes posicionadas à frente dos meios para refletir, refratar ou emitir luz .
13. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 11 ou 12 caracterizado pelo material de suporte ser papel, plástico, tecido, madeira ou acetato.
14. "DISPOSITIVOS DE EXIBIÇÃO CONFIGURÁVEIS PARA COMPENSAR ABERRAÇÕES VISUAIS" de acordo com a reivindicação 1 caracterizado pelos meios para refletir, refratar ou emitir luz serem compostos por um painel de nano componentes para controlar a direção em que a luz de cada pixel é emitida, refletida ou refratada eletronicamente.
PCT/BR2013/000154 2012-05-08 2013-05-07 Dispositivos de exibição configuráveis para compensar aberrações visuais WO2013166570A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR1020120108844 2012-05-08
BR102012010884-4A BR102012010884B1 (pt) 2012-05-08 2012-05-08 Dispositivos de exibição configuráveis para compensar aberrações visuais

Publications (1)

Publication Number Publication Date
WO2013166570A1 true WO2013166570A1 (pt) 2013-11-14

Family

ID=49550005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000154 WO2013166570A1 (pt) 2012-05-08 2013-05-07 Dispositivos de exibição configuráveis para compensar aberrações visuais

Country Status (2)

Country Link
BR (1) BR102012010884B1 (pt)
WO (1) WO2013166570A1 (pt)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094963A1 (en) * 2014-12-18 2016-06-23 Halgo Pty Limited Replicating effects of optical lenses
WO2019171334A1 (en) * 2018-03-09 2019-09-12 Evolution Optiks Limited Vision correction system and method, light field display and light field shaping layer and alignment therefor
US10474235B1 (en) 2018-10-22 2019-11-12 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US10564831B2 (en) 2015-08-25 2020-02-18 Evolution Optiks Limited Vision correction system, method and graphical user interface for implementation on electronic devices having a graphical display
US10636116B1 (en) 2018-10-22 2020-04-28 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US10761604B2 (en) 2018-10-22 2020-09-01 Evolution Optiks Limited Light field vision testing device, adjusted pixel rendering method therefor, and vision testing system and method using same
US10860099B2 (en) 2018-10-22 2020-12-08 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and adjusted vision perception system and method using same addressing astigmatism or similar conditions
US10936064B2 (en) 2018-10-22 2021-03-02 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and adjusted vision perception system and method using same addressing astigmatism or similar conditions
US11287883B2 (en) 2018-10-22 2022-03-29 Evolution Optiks Limited Light field device, pixel rendering method therefor, and adjusted vision perception system and method using same
US11327563B2 (en) 2018-10-22 2022-05-10 Evolution Optiks Limited Light field vision-based testing device, adjusted pixel rendering method therefor, and online vision-based testing management system and method using same
US11353699B2 (en) 2018-03-09 2022-06-07 Evolution Optiks Limited Vision correction system and method, light field display and light field shaping layer and alignment therefor
US11487361B1 (en) 2019-11-01 2022-11-01 Evolution Optiks Limited Light field device and vision testing system using same
US11500460B2 (en) 2018-10-22 2022-11-15 Evolution Optiks Limited Light field device, optical aberration compensation or simulation rendering
US11500461B2 (en) 2019-11-01 2022-11-15 Evolution Optiks Limited Light field vision-based testing device, system and method
US11635617B2 (en) 2019-04-23 2023-04-25 Evolution Optiks Limited Digital display device comprising a complementary light field display or display portion, and vision correction system and method using same
US11693239B2 (en) 2018-03-09 2023-07-04 Evolution Optiks Limited Vision correction system and method, light field display and light field shaping layer and alignment therefor
US11789531B2 (en) 2019-01-28 2023-10-17 Evolution Optiks Limited Light field vision-based testing device, system and method
US11823598B2 (en) 2019-11-01 2023-11-21 Evolution Optiks Limited Light field device, variable perception pixel rendering method therefor, and variable perception system and method using same
US11902498B2 (en) 2019-08-26 2024-02-13 Evolution Optiks Limited Binocular light field display, adjusted pixel rendering method therefor, and vision correction system and method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9839352B2 (en) 2015-08-15 2017-12-12 Smart EyeDeas I, LLC System, method and apparatus for enabling corneal topography mapping by smartphone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953249B1 (en) * 2001-01-29 2005-10-11 Maguire Jr Francis J Method and devices for displaying images for viewing with varying accommodation
US20120206445A1 (en) * 2011-02-14 2012-08-16 Sony Corporation Display device and display method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953249B1 (en) * 2001-01-29 2005-10-11 Maguire Jr Francis J Method and devices for displaying images for viewing with varying accommodation
US20120206445A1 (en) * 2011-02-14 2012-08-16 Sony Corporation Display device and display method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094963A1 (en) * 2014-12-18 2016-06-23 Halgo Pty Limited Replicating effects of optical lenses
US10564831B2 (en) 2015-08-25 2020-02-18 Evolution Optiks Limited Vision correction system, method and graphical user interface for implementation on electronic devices having a graphical display
US11262901B2 (en) 2015-08-25 2022-03-01 Evolution Optiks Limited Electronic device, method and computer-readable medium for a user having reduced visual acuity
WO2019171334A1 (en) * 2018-03-09 2019-09-12 Evolution Optiks Limited Vision correction system and method, light field display and light field shaping layer and alignment therefor
US11693239B2 (en) 2018-03-09 2023-07-04 Evolution Optiks Limited Vision correction system and method, light field display and light field shaping layer and alignment therefor
US11353699B2 (en) 2018-03-09 2022-06-07 Evolution Optiks Limited Vision correction system and method, light field display and light field shaping layer and alignment therefor
US10761604B2 (en) 2018-10-22 2020-09-01 Evolution Optiks Limited Light field vision testing device, adjusted pixel rendering method therefor, and vision testing system and method using same
US11762463B2 (en) 2018-10-22 2023-09-19 Evolution Optiks Limited Light field device, optical aberration compensation or simulation rendering method and vision testing system using same
US10860099B2 (en) 2018-10-22 2020-12-08 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and adjusted vision perception system and method using same addressing astigmatism or similar conditions
US10884495B2 (en) 2018-10-22 2021-01-05 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US10936064B2 (en) 2018-10-22 2021-03-02 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and adjusted vision perception system and method using same addressing astigmatism or similar conditions
US10642355B1 (en) 2018-10-22 2020-05-05 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US11287883B2 (en) 2018-10-22 2022-03-29 Evolution Optiks Limited Light field device, pixel rendering method therefor, and adjusted vision perception system and method using same
US11327563B2 (en) 2018-10-22 2022-05-10 Evolution Optiks Limited Light field vision-based testing device, adjusted pixel rendering method therefor, and online vision-based testing management system and method using same
US10636116B1 (en) 2018-10-22 2020-04-28 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US11966507B2 (en) 2018-10-22 2024-04-23 Evolution Optiks Limited Light field vision testing device, adjusted pixel rendering method therefor, and vision testing system and method using same
US11500460B2 (en) 2018-10-22 2022-11-15 Evolution Optiks Limited Light field device, optical aberration compensation or simulation rendering
US11841988B2 (en) 2018-10-22 2023-12-12 Evolution Optiks Limited Light field vision-based testing device, adjusted pixel rendering method therefor, and online vision-based testing management system and method using same
US11619995B2 (en) 2018-10-22 2023-04-04 Evolution Optiks Limited Light field vision-based testing device, adjusted pixel rendering method therefor, and online vision-based testing management system and method using same
US10699373B1 (en) 2018-10-22 2020-06-30 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US10474235B1 (en) 2018-10-22 2019-11-12 Evolution Optiks Limited Light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US11726563B2 (en) 2018-10-22 2023-08-15 Evolution Optiks Limited Light field device, pixel rendering method therefor, and adjusted vision perception system and method using same
US11789531B2 (en) 2019-01-28 2023-10-17 Evolution Optiks Limited Light field vision-based testing device, system and method
US11635617B2 (en) 2019-04-23 2023-04-25 Evolution Optiks Limited Digital display device comprising a complementary light field display or display portion, and vision correction system and method using same
US11899205B2 (en) 2019-04-23 2024-02-13 Evolution Optiks Limited Digital display device comprising a complementary light field display or display portion, and vision correction system and method using same
US11902498B2 (en) 2019-08-26 2024-02-13 Evolution Optiks Limited Binocular light field display, adjusted pixel rendering method therefor, and vision correction system and method using same
US11823598B2 (en) 2019-11-01 2023-11-21 Evolution Optiks Limited Light field device, variable perception pixel rendering method therefor, and variable perception system and method using same
US11500461B2 (en) 2019-11-01 2022-11-15 Evolution Optiks Limited Light field vision-based testing device, system and method
US11487361B1 (en) 2019-11-01 2022-11-01 Evolution Optiks Limited Light field device and vision testing system using same

Also Published As

Publication number Publication date
BR102012010884B1 (pt) 2021-12-07
BR102012010884A2 (pt) 2016-04-12

Similar Documents

Publication Publication Date Title
WO2013166570A1 (pt) Dispositivos de exibição configuráveis para compensar aberrações visuais
US11204641B2 (en) Light management for image and data control
US10634912B2 (en) See-through near eye optical module
US20230400693A1 (en) Augmented reality display comprising eyepiece having a transparent emissive display
US10275024B1 (en) Light management for image and data control
EP2652542B1 (en) Collimating display with pixel lenses
US6529331B2 (en) Head mounted display with full field of view and high resolution
KR101928764B1 (ko) 하나 이상의 반사 광학 표면이 수반된 헤드 장착 디스플레이 장치
BRPI0711791A2 (pt) mÉtodo para otimizar e/ou fabricar lentes de àculos
JP2008509438A (ja) 可変固定視距離で走査される光表示装置
JPH03214872A (ja) 眼鏡型網膜直接表示装置
ES2836790T3 (es) Método y sistema para la mejora de una prescripción oftálmica
CN110770636B (zh) 具有矫正视力缺陷、增强视力和感知能力的可穿戴图像处理和控制系统
JP7374934B2 (ja) シースルーニアアイ光モジュール
EP4089468A1 (en) Light field near-eye display device and method of light field near-eye display
CN205751379U (zh) 显示装置
CN108711369A (zh) 一种平光屏幕和vr眼镜
KR20140020338A (ko) 복안형 표시장치
TWI798842B (zh) 光場近眼顯示裝置以及光場近眼顯示方法
CN215833694U (zh) 用于展示眼科镜片的光学设计的装置
AU2015249168B2 (en) Collimating display with pixel lenses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787317

Country of ref document: EP

Kind code of ref document: A1