WO2013165208A1 - Coil and rotary machine comprising same - Google Patents

Coil and rotary machine comprising same Download PDF

Info

Publication number
WO2013165208A1
WO2013165208A1 PCT/KR2013/003852 KR2013003852W WO2013165208A1 WO 2013165208 A1 WO2013165208 A1 WO 2013165208A1 KR 2013003852 W KR2013003852 W KR 2013003852W WO 2013165208 A1 WO2013165208 A1 WO 2013165208A1
Authority
WO
WIPO (PCT)
Prior art keywords
core wire
coil
core
rotary
conductive
Prior art date
Application number
PCT/KR2013/003852
Other languages
French (fr)
Korean (ko)
Inventor
안행수
김정숙
최유심
최영미
Original Assignee
에스이티주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스이티주식회사 filed Critical 에스이티주식회사
Publication of WO2013165208A1 publication Critical patent/WO2013165208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation

Definitions

  • the present invention relates to a coil and a rotor having the same, and more particularly, a coil provided in a rotor such as a generator having a rotating rotor and converting mechanical rotational force into electrical energy or an electric motor converting electrical energy into mechanical rotational force and a rotor having the same. It is about.
  • rotors such as generators that convert mechanical rotational energy into electrical energy or electric motors that convert electrical energy into mechanical rotational energy have been devised in various forms.
  • the stator is composed of a stator core and a coil wound around the core, and a magnet is installed in the yoke to continuously change the magnetic flux density passing through the coil.
  • the rotor is rotated by providing a magnetic field to a magnet or an electromagnet installed in the yoke.
  • the coil wound on the existing stator core uses a relatively thick copper wire, so there is a big problem in that the weight is large but the drop rate is low.
  • the thickness of the copper wire may be thinned, but as the thickness becomes thinner, breakage of the copper wire may occur in the process of winding the copper wire, and there is a problem of being easily damaged or deformed in an excessive operating environment of the rotor.
  • the conventional coil has a problem in that the coil is deteriorated by heat due to heat or iron loss due to the operation of the rotor, the power generation performance is lowered.
  • the present invention is to solve the conventional problems as described above in the coil is provided in the rotor to form a magnetic field or induced current, in which the optical fiber and carbon nanotubes are combined instead of the conventional copper wire used for the coil
  • it is possible to increase the spot ratio of the coil, to significantly reduce the overall weight of the rotor, and to reduce the heat loss caused by iron loss and driving. It is an object of the present invention to provide a coil that can be eliminated and a rotor having the same.
  • a coil according to the present invention for achieving the above object is characterized in that it comprises a core wire, a covering surrounding the core wire and having an insulating property, and a first conductive portion formed of a material having electrical conductivity between the core wire and the coating. do.
  • the first conductive portion is characterized in that it comprises a carbon nanotube.
  • the first conductive portion is formed by including one or two or more selected from silver, copper, gold, zinc, nickel, chromium, titanium powder having a particle diameter of the micrometer to nanometer.
  • the core wire is formed of an optical fiber having a core and a cladding surrounding the core.
  • a blocking part interposed between the core wire and the first conductive part to insulate the first conductive part and the core wire and to block heat transfer from the first conductive part to the core wire.
  • a second conductive part including carbon nanotubes is further provided between the core wire and the blocking part.
  • the rotor according to the present invention for achieving the above object is a rotor including a rotating yoke formed in an annular shape and a rotating shaft coupled to the center of the rotating yoke, and formed to surround the outer side of the rotating yoke and the rotating yoke
  • a stator including a fixed yoke portion spaced apart from each other at a predetermined interval with respect to a portion, and a coil wound around at least one side of the rotating yoke portion or the fixed yoke portion, wherein the coil includes a core wire and the core wire.
  • a first conductive part formed of a material having electrical conductivity between the core wire and the coating.
  • the first conductive portion is characterized in that it comprises a carbon nanotube.
  • the first conductive portion is formed by including one or two or more selected from silver, copper, gold, zinc, nickel, chromium, titanium powder having a particle diameter of the micrometer to nanometer.
  • the core wire is formed of an optical fiber having a core and a cladding surrounding the core.
  • a conductive part flowing through the surface of the carbon nanotube and the conductive powder by applying a combination of the optical fiber, the carbon nanotube and the conductive powder in place of the copper wire forming the coil of the existing rotor The increased cross-sectional area of the battery not only accommodates a large amount of electrical energy, but also maintains a stable structure that is not easily damaged or deformed even in excessive operating environments, and can significantly reduce the overall weight of the rotor, There is an advantage that can solve the heat problem caused by.
  • FIG. 1 is an exploded perspective view of the rotor according to the present invention.
  • FIG. 2 is a cutaway perspective view of the coil shown in FIG. 1.
  • FIG. 2 is a cutaway perspective view of the coil shown in FIG. 1.
  • FIG. 3 is an enlarged perspective view of the coil shown in FIG.
  • FIG. 4 is a partial cutaway perspective view of a coil according to a second embodiment of the present invention.
  • FIG. 5 is a partial cutaway perspective view of a coil according to a third embodiment of the present invention.
  • FIG. 6 is a partial cutaway perspective view of a coil according to a fourth embodiment of the present invention.
  • FIG. 1 and 2 show a rotor according to the invention.
  • the rotor described below applies an inner rotor type generator structure in which a rotor in which permanent magnets are disposed is installed inside, and the rotor rotates with respect to a stator in which a plurality of coils are disposed to face the permanent magnet.
  • the rotor 1 according to the present invention includes a rotor 100 and a stator 200.
  • the rotor 100 includes a plurality of permanent magnets 110 and a rotating yoke portion 120 and the rotating yoke portion 120 formed in an annular shape so that the permanent magnets 110 may be disposed at predetermined intervals along the circumferential direction.
  • Rotation axis 150 is coupled to the center of the.
  • the rotary yoke unit 120 is disposed adjacent to each other along the circumferential surface of the support yoke 130 fixed to the rotation shaft 150 and the support yoke 130, and is coupled to and detached from the support yoke 130. It includes a plurality of divided yoke 140 formed.
  • On the outer circumferential surface of the support yoke 130 is a circumference of the support yoke 130 with a plurality of coupling grooves 131 introduced into the center of the support yoke 130 facing the rotation shaft 150 so as to engage and detach the split yoke 140. It is spaced apart along the direction.
  • the coupling groove 131 has a predetermined height at the bottom of the support yoke 130 from the upper surface of the support yoke 130 so that the split yoke 140 to be described later does not escape downward from the support yoke 130. It is formed to a point spaced apart by a dove-tail (dove-tail) structure in which the space is expanded as it is introduced into the inside.
  • a dove-tail dove-tail
  • Split yoke 140 is to couple the permanent magnets 110 for providing the magnetic force to the support yoke 130, the permanent magnets 110 are respectively coupled to one side, sliding to the coupling groove 131 on the other side
  • the coupling protrusion 141 is formed to protrude in a shape corresponding to the coupling groove 131.
  • the coupling protrusion 141 also has a length corresponding to the length of the coupling groove 131 is formed.
  • the split yoke 140 and the support yoke 130 are made of a magnetic material that is magnetized in the same direction as the magnetic pole direction of the permanent magnet 110 when exposed to the magnetic field generated by the permanent magnet (110).
  • the stator 200 is formed to surround the rotary yoke unit 120 and has a fixed yoke unit 210 installed on the inner circumferential surface to be spaced a predetermined distance from the rotary yoke unit 120, and installed on the rotary yoke unit 120. It includes a coil 250 disposed on one side of the fixed yoke portion 210 to face the permanent magnet 110.
  • the fixed yoke portion 210 is provided with a main body 220 fixed to the inner circumferential surface of the motor housing provided with a receiving space therein, and detachably coupled to the main body 220, and the coil 250 to be described later with the permanent magnet 110. It includes an iron core 230 located inside the main body 220 to be opposed to.
  • the main body 220 is formed in an annular shape, and a hollow portion is formed in the center to allow the rotor 100 to enter, and the inner circumferential surface of the hollow portion allows the iron core 230 to be described later to be coupled to the main body 220.
  • 221 extends up and down.
  • the iron core 230 serves as a passage through which the magnetic force flux passes so that the magnetic force flux generated from the coil 250 can be concentrated and provided to the permanent magnet 110, and is formed in a 'T' shape.
  • a locking projection 231 having a dove-tail structure is formed to correspond to the inlet groove 221 of the main body 220, the other end of the pole 232 is formed in an arc shape It is extended.
  • the coil 250 is wound around the bobbin 270 and has a core 260, an insulating sheath surrounding the core 260, and a material having electrical conductivity between the core 260 and the sheath 264.
  • the first conductive portion 263 is formed.
  • the bobbin 270 is formed of an insulating material and has a body 271 having an insertion hole formed therein for inserting the iron core 230 therein, and larger than a diameter of the body 271 at both ends of the body 271.
  • a flange 272 extended to have a diameter.
  • the core wire 260 may apply any one selected from optical fiber or aramid fiber, carbon fiber, and flon fiber.
  • the first conductive portion 263 may include carbon nanotubes, or may include metal powder having high electrical conductivity and having a particle size of micrometers to nanometers.
  • the rotor 1 according to the present invention having the structure as described above has been described as an example applied to a generator for converting mechanical rotational energy into electrical energy, but is not limited to the generator and conversely applied as an electric motor for converting electrical energy into mechanical rotational energy. Of course you can.
  • the rotor 1 according to the present invention is applied to an electric motor, it may be implemented by applying single-phase or three-phase power to the coil to rotate the rotor.
  • the present invention can be applied to a coil used in a transformer for raising or lowering a voltage as well as a generator and a motor.
  • FIG. 3 shows a first embodiment of a coil 250 according to the invention, which is installed in the rotor 1 shown in FIGS. 1 and 2.
  • the coil 250 includes a core wire 260, a sheath 264 surrounding the outside of the cladding 262, and a first conductive portion 263 formed between the core wire 260 and the sheath 264.
  • the core wire 260 has an optical fiber including a core 261 and a cladding 262 surrounding the outside of the core 261.
  • the core wire 260 may be an optical fiber, but alternatively, a selected one of aramid fibers, carbon fibers, and flon fibers having a strength equal to or greater than that of metal may be applied.
  • the first conductive portion 263 has high electrical and thermal conductivity, and includes carbon nanotubes having a strength of 100 times or more than steel of the same thickness.
  • the carbon nanotubes included in the first conductive portion 263 may be formed of a single-walled carbon nanotube (SWNT) or a multi-walled carbon nanotube (MWNT).
  • the first conductive portion 263 may be formed by mixing with a polymer material such as carbon nanotubes, polyethylene terephthalate (PET), polycarbonate (PC), and the like.
  • a polymer material such as carbon nanotubes, polyethylene terephthalate (PET), polycarbonate (PC), and the like.
  • the first conductive portion 263 is made of graphene (graphene), fullerene (fullerene), or copper (Cu), lead (Pb), silver (Ag), having a particle diameter of the micrometer to nanometer, Gold (Au), platinum (Pt), chromium (Cr), nickel (Ni), palladium (Pd), titanium (Ti) powder may be made of any one or two or more selected.
  • the first conductive portion 263 may be formed by coating the aforementioned metal powder on the outer circumferential surface of the core wire 260.
  • the sheath 264 is formed to surround the outside of the first conductive portion 263 so that the first conductive portion 263 does not come into contact with each other when the coil 250 is wound around the bobbin 270, and is made of an insulating material. .
  • the sheath 264 is formed thin so that the thickness of the coil 250 can be reduced, and preferably formed of a material having low thermal conductivity.
  • the coil 250 having the first conductive portion 263 may significantly reduce the weight of the coil in the rotor by combining carbon nanotubes having an electrical conductivity similar to copper to the optical fiber, compared to the conventional copper wire.
  • the optical fiber has a thickness almost equal to that of the conventional optical fiber, there is an advantage whether it can be wound more times than using a conventional copper wire.
  • the coil 350 may include a first conductive part 363 and a core wire 360 between the core wire 360 and the first conductive part 363 as shown in FIG. 4. Is further provided, and a blocking unit 365 is further provided to block heat from being transferred from the first conductive portion 363 to the core wire 360.
  • the blocking part 365 is formed of a material having low thermal conductivity and having electrical insulation.
  • the blocking part may be made of a material such as foam rubber, calcium silicate, cork, glass wool, quartz cotton, diatomaceous earth, magnesia powder, calcium silicate pearlite, which are used as a general heat insulating material.
  • the blocking unit 365 transmits heat generated from the iron core as the operating heat or the direction of the magnetic force changes rapidly as the rotation shaft 150 rotates at a high speed to the inside of the coil 350, that is, the core wire 360. This prevents the coil 350 from being damaged or deformed. Since the existing coils are overlapped with copper wires, heat due to operating heat or iron loss continuously accumulates inside the coil, and it is difficult to discharge the accumulated heat to the outside, thereby degrading the power generation performance of the coil due to deterioration.
  • the coil 350 of the present invention can transfer heat from the first conductive portion 363 having a high thermal conductivity to the adjacent sheath 364 by the sheath 364 even though the coil 350 is overlapped, so that heat is easily discharged from the inside to the outside.
  • the heat transfer is blocked to the core wire 360 side by the blocking unit 365 to prevent the deformation of the coil 350.
  • the coil is formed of a core wire 460 and a core wire 460 including a core 461 and a cladding 462 surrounding the core 461.
  • the second conductive portion 466 is made of carbon nanotubes as described in the first embodiment of the coil 250 described with reference to FIG. 3.
  • the first conductive portion 463 and the second conductive portion 466 are formed in double around the core 461, so that an increase in power generation can be expected, and the first conductive portion 463 and the first conductive portion 463 are formed.
  • heat transfer is blocked from the outside of the coil 450 to the inside by the blocking portion 465 formed between the two conductive portions 466, the first conductive portion 463 and the sheath 464 are separated from each other. Through heat transfer is made easy.
  • Figure 6 shows another embodiment of a coil according to the present invention.
  • the coil 550 surrounds the insulated core wire 560 and the core wire 560 and has an insulating sheath 564 and a first conductive portion 563 formed of carbon nanotubes between the core wire 560 and the sheath 564. It includes.
  • the core wire 560 may be an optical fiber, or alternatively, a selected one of aramid fibers, carbon fibers, and flon fibers having a strength equal to or greater than that of metal may be applied.
  • the first conductive portion 563 may be formed of carbon nanotubes as shown in FIGS. 3 to 5, but alternatively, a metal having excellent conductivity such as copper, lead, silver, and gold is CVD on the outer circumferential surface of the core wire 560. It may be formed by vapor deposition using a technique or by coating the outer peripheral surface of the core wire containing the metal powder as described above.
  • the core portion 560 and the first conductive portion 563 may be provided with a blocking portion formed of a material having an insulating property and low thermal conductivity, between the core wire 560 and the blocking portion carbon nano
  • the second conductive part formed of a tube may be further provided.
  • the coil has a structure in which one core wire is wound.
  • the coil in which two or more core wires are braided may be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

The present invention relates to a coil and a rotary machine comprising same, and comprises: a rotor comprising a rotary yoke portion, which is formed in a ring shape, and a rotary shaft, which is coupled to the center of the rotary yoke portion; a stator which is formed so as to surround the outside of the rotary yoke portion, and comprises a fixed yoke portion that is installed with a specific distance apart from the rotary yoke portion; and the coil which is wound on the rotary yoke portion and/or the fixed yoke portion, wherein the coil comprises a core wire, a coating which surrounds the core wire and has insulation properties, and a first conductive portion which is formed between the core wire and the coating. According to the coil and the rotary machine comprising same of the present invention, a stable structure that is not easily damaged or deformed can be maintained even under extreme movement conditions, the total weight of the rotary machine can be significantly reduced, and heat generation problems due to iron loss and driving can be resolved by applying a combination of optical fiber and carbon nanotubes instead of a copper wire that comprises the coil in existing rotary machines.

Description

코일 및 이를 구비한 회전기Coil And Rotator With The Same
본 발명은 코일 및 이를 구비한 회전기에 관한 것으로 더욱 상세하게는 회전하는 로터를 가지며 기계적 회전력을 전기에너지로 바꾸는 발전기 또는 전기에너지를 기계적 회전력으로 바꾸는 전동기와 같은 회전기에 구비된 코일 및 이를 구비한 회전기에 관한 것이다.The present invention relates to a coil and a rotor having the same, and more particularly, a coil provided in a rotor such as a generator having a rotating rotor and converting mechanical rotational force into electrical energy or an electric motor converting electrical energy into mechanical rotational force and a rotor having the same. It is about.
종래부터 기계적 회전에너지를 전기에너지로 바꾸는 발전기 또는 전기에너지를 기계적 회전에너지로 바꾸는 전동기와 같은 회전기들이 다양한 형태로 안출되어 왔다. Conventionally, rotors such as generators that convert mechanical rotational energy into electrical energy or electric motors that convert electrical energy into mechanical rotational energy have been devised in various forms.
이러한 종래의 회전기는 스테이터(Stator)가 대부분 스테이터 코어(Core)와, 코어에 감기는 코일(coil)로 구성되어 있고, 요크(Yoke)에 자석을 설치하고 코일을 통과하는 자속밀도를 연속적으로 변화시킴으로써 유도전류를 발생하거나 이와 반대로 코일에 전류를 인가하여 요크에 설치된 자석 또는 전자석에 자기장을 제공하여 로터를 회전시키도록 되어 있다.In the conventional rotor, the stator is composed of a stator core and a coil wound around the core, and a magnet is installed in the yoke to continuously change the magnetic flux density passing through the coil. In order to generate an induced current or vice versa, the rotor is rotated by providing a magnetic field to a magnet or an electromagnet installed in the yoke.
그러나 기존의 스테이터 코어에 권취되는 코일은 비교적 굵기가 굵은 구리선을 사용하고 있어 중량은 크지만 점적률이 낮은 큰 문제점이 있다. 코일의 점적률을 높이기 위하여 구리선의 굵기를 가늘게 할 수 있으나 굵기가 얇아짐에 따라 구리선을 권취하는 과정에서 구리선의 끊어짐이 발생할 수 있고, 회전기의 과도한 동작 환경에서 쉽게 손상되거나 변형되는 문제가 있다. However, the coil wound on the existing stator core uses a relatively thick copper wire, so there is a big problem in that the weight is large but the drop rate is low. In order to increase the spot ratio of the coil, the thickness of the copper wire may be thinned, but as the thickness becomes thinner, breakage of the copper wire may occur in the process of winding the copper wire, and there is a problem of being easily damaged or deformed in an excessive operating environment of the rotor.
또한, 기존의 코일은 회전기의 작동에 따른 열 또는 철손에 의한 열에 의해 코일이 열화되어 발전성능이 저하되는 문제점이 있다.In addition, the conventional coil has a problem in that the coil is deteriorated by heat due to heat or iron loss due to the operation of the rotor, the power generation performance is lowered.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로 회전기에 구비되어 자계를 형성하거나 유도전류가 발생하는 코일에 있어서, 코일에 사용되는 기존의 구리선을 대신하여 광파이버와 탄소 나노튜브를 결합시킨 것을 적용함으로써, 과도한 동작 환경에서도 쉽게 손상되거나 변형되지 않는 안정적인 구조를 유지할 수 있을 뿐만 아니라 코일의 점적률을 높일 수 있고, 회전기의 전체적인 중량을 현저하게 감소시킬 수 있으며, 철손 및 구동에 의한 발열 문제를 해소할 수 있는 코일 및 이를 구비한 회전기를 제공하는 데 그 목적이 있다.The present invention is to solve the conventional problems as described above in the coil is provided in the rotor to form a magnetic field or induced current, in which the optical fiber and carbon nanotubes are combined instead of the conventional copper wire used for the coil In addition to maintaining a stable structure that is not easily damaged or deformed even in an excessive operating environment, it is possible to increase the spot ratio of the coil, to significantly reduce the overall weight of the rotor, and to reduce the heat loss caused by iron loss and driving. It is an object of the present invention to provide a coil that can be eliminated and a rotor having the same.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 코일은 심선과, 상기 심선을 감싸며 절연성을 갖는 피복과, 상기 심선과 상기 피복 사이에 전기 전도성을 갖는 소재로 형성된 제1전도부를 구비하는 것을 특징으로 한다.A coil according to the present invention for achieving the above object is characterized in that it comprises a core wire, a covering surrounding the core wire and having an insulating property, and a first conductive portion formed of a material having electrical conductivity between the core wire and the coating. do.
상기 제1전도부는 탄소 나노튜브를 포함하여 형성된 것을 특징으로 한다.The first conductive portion is characterized in that it comprises a carbon nanotube.
상기 제1전도부는 마이크로미터 내지 나노미터의 입경을 갖는 은, 구리, 금, 아연, 니켈, 크롬, 티타늄 파우더 중 선택된 하나 또는 둘 이상을 포함하여 형성된 것을 특징으로 한다.The first conductive portion is formed by including one or two or more selected from silver, copper, gold, zinc, nickel, chromium, titanium powder having a particle diameter of the micrometer to nanometer.
상기 심선은 코어와, 상기 코어를 감싸는 클래딩을 구비하는 광파이버로 형성된 것을 특징으로 한다.The core wire is formed of an optical fiber having a core and a cladding surrounding the core.
상기 심선과 상기 제1전도부 사이에 개재되어 상기 제1전도부와 상기 심선을 절연하고 상기 제1전도부로부터 상기 심선으로 열전달을 차단하는 차단부를 구비하는 것을 특징으로 한다.And a blocking part interposed between the core wire and the first conductive part to insulate the first conductive part and the core wire and to block heat transfer from the first conductive part to the core wire.
상기 심선과 상기 차단부 사이에는 탄소 나노튜브를 포함하여 이루어진 제2전도부가 더 구비된 것을 특징으로 한다.A second conductive part including carbon nanotubes is further provided between the core wire and the blocking part.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 회전기는 환 형상으로 형성된 회전요크부와 상기 회전요크부의 중심에 결합된 회전축을 포함하는 로터와, 상기 회전요크부의 외측을 감싸도록 형성되고 상기 회전요크부에 대하여 소정간격으로 이격되게 설치되는 고정요크부를 포함하는 스테이터와, 상기 회전요크부 또는 상기 고정요크부 중 적어도 일 측에 감기는 코일을 구비한 회전기에 있어서, 상기 코일은 심선과, 상기 심선을 감싸며 절연성을 갖는 피복과, 상기 심선과 상기 피복 사이에 전기전도성을 갖는 소재로 형성된 제1전도부를 구비하는 것을 특징으로 한다.The rotor according to the present invention for achieving the above object is a rotor including a rotating yoke formed in an annular shape and a rotating shaft coupled to the center of the rotating yoke, and formed to surround the outer side of the rotating yoke and the rotating yoke A stator including a fixed yoke portion spaced apart from each other at a predetermined interval with respect to a portion, and a coil wound around at least one side of the rotating yoke portion or the fixed yoke portion, wherein the coil includes a core wire and the core wire. And a first conductive part formed of a material having electrical conductivity between the core wire and the coating.
상기 제1전도부는 탄소 나노튜브를 포함하여 형성된 것을 특징으로 한다.The first conductive portion is characterized in that it comprises a carbon nanotube.
상기 제1전도부는 마이크로미터 내지 나노미터의 입경을 갖는 은, 구리, 금, 아연, 니켈, 크롬, 티타늄 파우더 중 선택된 하나 또는 둘 이상을 포함하여 형성된 것을 특징으로 한다.The first conductive portion is formed by including one or two or more selected from silver, copper, gold, zinc, nickel, chromium, titanium powder having a particle diameter of the micrometer to nanometer.
상기 심선은 코어와, 상기 코어를 감싸는 클래딩을 구비하는 광파이버로 형성된 것을 특징으로 한다.The core wire is formed of an optical fiber having a core and a cladding surrounding the core.
상기 심선과 상기 제1전도부 사이에 개재되어 상기 제1전도부와 상기 심선을 절연하고 상기 제1전도부로부터 상기 심선으로 열전달을 차단하는 차단부가 구비되고, 상기 심선과 상기 차단부 사이에는 탄소 나노튜브를 포함하여 이루어진 제2전도부가 더 구비된 것을 특징으로 한다.A blocking part interposed between the core wire and the first conductive part to insulate the first conductive part and the core wire and to block heat transfer from the first conductive part to the core wire, and a carbon nanotube between the core wire and the blocking part. It characterized in that it further comprises a second conductive portion made.
본 발명에 따른 코일 및 이를 구비한 회전기에 의하면 기존 회전기의 코일을 이루고 있는 구리선을 대신하여 광파이버와 탄소 나노튜브 및 도전성 파우더를 결합시킨 것을 적용함으로써, 탄소 나노튜브와 도전성 파우더의 표면을 통해 흐르는 전도부의 단면적이 증가하여 많은 양의 전기에너지를 수용할 수 있을 뿐만 아니라, 과도한 동작 환경에서도 쉽게 손상되거나 변형되지 않는 안정적인 구조를 유지할 수 있고, 회전기의 전체적인 중량을 현저하게 감소시킬 수 있으며 철손 및 구동에 의한 발열 문제를 해소할 수 있는 장점이 있다.According to the coil according to the present invention and a rotor having the same, a conductive part flowing through the surface of the carbon nanotube and the conductive powder by applying a combination of the optical fiber, the carbon nanotube and the conductive powder in place of the copper wire forming the coil of the existing rotor The increased cross-sectional area of the battery not only accommodates a large amount of electrical energy, but also maintains a stable structure that is not easily damaged or deformed even in excessive operating environments, and can significantly reduce the overall weight of the rotor, There is an advantage that can solve the heat problem caused by.
도 1은 본 발명에 따른 회전기의 분리사시도.1 is an exploded perspective view of the rotor according to the present invention.
도 2는 도 1에 도시된 코일의 절개사시도.FIG. 2 is a cutaway perspective view of the coil shown in FIG. 1. FIG.
도 3은 도 2에 도시된 코일의 확대사시도.3 is an enlarged perspective view of the coil shown in FIG.
도 4는 본 발명의 제2실시 예에 따른 코일의 부분절개사시도.4 is a partial cutaway perspective view of a coil according to a second embodiment of the present invention;
도 5는 본 발명의 제3실시 예에 따른 코일의 부분절개사시도.5 is a partial cutaway perspective view of a coil according to a third embodiment of the present invention;
도 6은 본 발명의 제4실시 예에 따른 코일의 부분절개사시도.6 is a partial cutaway perspective view of a coil according to a fourth embodiment of the present invention;
이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 회전기에 대하여 상세하게 설명한다. Hereinafter, a rotor according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1 및 도 2에는 본 발명에 따른 회전기가 도시되어 있다. 이하에서 설명하는 회전기는 영구자석들이 배치된 로터가 내측에 설치되고, 영구자석과 대향되게 복수의 코일들이 배치된 스테이터에 대하여 로터가 회전하면서 발전하도록 된 이너로터형 발전기 구조를 적용하였다.1 and 2 show a rotor according to the invention. The rotor described below applies an inner rotor type generator structure in which a rotor in which permanent magnets are disposed is installed inside, and the rotor rotates with respect to a stator in which a plurality of coils are disposed to face the permanent magnet.
도 1 및 도 2를 참조하면, 본 발명에 따른 회전기(1)는 로터(100)와 스테이터(200)를 포함한다. 1 and 2, the rotor 1 according to the present invention includes a rotor 100 and a stator 200.
로터(100)는 복수의 영구자석(110)들과, 영구자석(110)들이 원주방향을 따라 소정간격으로 배치될 수 있게 환 형상으로 형성된 회전요크부(120) 및 상기 회전요크부(120)의 중심에 결합된 회전축(150)을 포함한다.The rotor 100 includes a plurality of permanent magnets 110 and a rotating yoke portion 120 and the rotating yoke portion 120 formed in an annular shape so that the permanent magnets 110 may be disposed at predetermined intervals along the circumferential direction. Rotation axis 150 is coupled to the center of the.
회전요크부(120)는 회전축(150)에 고정되어 있는 지지요크(130)와, 상기 지지요크(130)의 원주면을 따라 상호 인접하게 배치되며 상기 지지요크(130)에 결합 및 분리가능하게 형성된 복수의 분할요크(140)들을 포함한다.The rotary yoke unit 120 is disposed adjacent to each other along the circumferential surface of the support yoke 130 fixed to the rotation shaft 150 and the support yoke 130, and is coupled to and detached from the support yoke 130. It includes a plurality of divided yoke 140 formed.
지지요크(130)의 외주면에는 분할요크(140)를 결합 및 분리가능하도록 회전축(150)을 향하는 지지요크(130)의 중심으로 인입된 복수의 결합홈(131)이 지지요크(130)의 원주방향을 따라 이격 형성되어 있다. On the outer circumferential surface of the support yoke 130 is a circumference of the support yoke 130 with a plurality of coupling grooves 131 introduced into the center of the support yoke 130 facing the rotation shaft 150 so as to engage and detach the split yoke 140. It is spaced apart along the direction.
도면에 도시되어 있지 않지만 상기 결합홈(131)은 후술하는 분할요크(140)가 지지요크(130)로부터 하방으로 이탈하지 않도록 지지요크(130)의 상면으로부터 지지요크(130)의 저면에서 소정높이로 이격된 지점까지 형성되며 내측으로 인입될수록 공간이 확장되는 도브-테일(dove-tail) 구조로 형성되어 있다.Although not shown in the drawing, the coupling groove 131 has a predetermined height at the bottom of the support yoke 130 from the upper surface of the support yoke 130 so that the split yoke 140 to be described later does not escape downward from the support yoke 130. It is formed to a point spaced apart by a dove-tail (dove-tail) structure in which the space is expanded as it is introduced into the inside.
분할요크(140)는 자기력을 제공하기 위한 영구자석(110)들을 지지요크(130)에 결합시키기 위한 것으로 일 측에 영구자석(110)들이 각각 결합되어 있고, 타 측에는 결합홈(131)에 슬라이딩 가능하게 결합홈(131)과 대응하는 형상으로 돌출된 결합돌기(141)가 형성되어 있다. 상기의 결합돌기(141) 또한 결합홈(131)이 형성된 길이에 대응하는 길이를 갖는다. Split yoke 140 is to couple the permanent magnets 110 for providing the magnetic force to the support yoke 130, the permanent magnets 110 are respectively coupled to one side, sliding to the coupling groove 131 on the other side The coupling protrusion 141 is formed to protrude in a shape corresponding to the coupling groove 131. The coupling protrusion 141 also has a length corresponding to the length of the coupling groove 131 is formed.
상기 분할요크(140)와 지지요크(130)는 영구자석(110)에서 발생하는 자기장에 노출되었을 때 영구자석(110)의 자극방향과 동일한 방향으로 자화되는 자성체로 이루어진다.The split yoke 140 and the support yoke 130 are made of a magnetic material that is magnetized in the same direction as the magnetic pole direction of the permanent magnet 110 when exposed to the magnetic field generated by the permanent magnet (110).
스테이터(200)는 회전요크부(120)를 감싸도록 형성되고 내주면에는 상기 회전요크부(120)에 대하여 소정간격 이격되게 설치되는 고정요크부(210)와, 상기 회전요크부(120)에 설치된 영구자석(110)과 대향하도록 상기 고정요크부(210)의 일 측에 배치되는 코일(250)을 포함한다.The stator 200 is formed to surround the rotary yoke unit 120 and has a fixed yoke unit 210 installed on the inner circumferential surface to be spaced a predetermined distance from the rotary yoke unit 120, and installed on the rotary yoke unit 120. It includes a coil 250 disposed on one side of the fixed yoke portion 210 to face the permanent magnet 110.
고정요크부(210)는 내부에 수용공간이 마련된 전동기 하우징의 내주면에 고정되는 본체(220)와, 본체(220)와 결합 분리가능하게 설치되며 후술하는 코일(250)을 영구자석(110)과 대향되게 위치하도록 본체(220)의 내측에 위치시키는 철심(230)을 포함한다.The fixed yoke portion 210 is provided with a main body 220 fixed to the inner circumferential surface of the motor housing provided with a receiving space therein, and detachably coupled to the main body 220, and the coil 250 to be described later with the permanent magnet 110. It includes an iron core 230 located inside the main body 220 to be opposed to.
상기 본체(220)는 환 형상으로 형성되고 중앙에는 로터(100)가 진입할 수 있도록 중공부가 형성되어 있으며, 중공부의 내주면에는 후술하는 철심(230)을 본체(220)에 결합시킬 수 있게 인입홈(221)이 상하로 연장되어 있다.The main body 220 is formed in an annular shape, and a hollow portion is formed in the center to allow the rotor 100 to enter, and the inner circumferential surface of the hollow portion allows the iron core 230 to be described later to be coupled to the main body 220. 221 extends up and down.
상기 철심(230)은 코일(250)에서 발생하는 자기력선속을 영구자석(110)으로 집중하여 제공할 수 있도록 자기력선속이 통과하는 통로 역할을 하는 것으로, 'T'자 형상으로 형성되어 있다.The iron core 230 serves as a passage through which the magnetic force flux passes so that the magnetic force flux generated from the coil 250 can be concentrated and provided to the permanent magnet 110, and is formed in a 'T' shape.
상기 철심(230)의 일 단에는 본체(220)의 인입홈(221)과 대응하도록 도브-테일 구조를 갖는 걸림돌기(231)가 형성되어 있고, 타 단에는 원호 형상으로 형성된 폴(232)이 확장형성되어 있다. At one end of the iron core 230, a locking projection 231 having a dove-tail structure is formed to correspond to the inlet groove 221 of the main body 220, the other end of the pole 232 is formed in an arc shape It is extended.
코일(250)은 보빈(270)에 권취된 것으로 심선(260)과, 심선(260)을 감싸는 절연성을 갖는 피복(264)과, 심선(260)과 피복(264) 사이에 전기 전도성을 갖는 소재로 형성된 제1전도부(263)를 구비한다. The coil 250 is wound around the bobbin 270 and has a core 260, an insulating sheath surrounding the core 260, and a material having electrical conductivity between the core 260 and the sheath 264. The first conductive portion 263 is formed.
상기 보빈(270)은 절연 소재로 형성되어 있고, 내부에는 철심(230)을 삽입할 수 있게 삽입홀이 형성된 바디(271)와, 바디(271)의 양단에서 상기 바디(271)의 직경보다 큰 직경을 갖도록 확장 형성된 플랜지(272)를 포함한다.The bobbin 270 is formed of an insulating material and has a body 271 having an insertion hole formed therein for inserting the iron core 230 therein, and larger than a diameter of the body 271 at both ends of the body 271. A flange 272 extended to have a diameter.
상기 심선(260)은 광파이버 또는 아라미드섬유, 탄소섬유, 플론섬유 중 어느 선택된 하나를 적용할 수 있다.The core wire 260 may apply any one selected from optical fiber or aramid fiber, carbon fiber, and flon fiber.
제1전도부(263)는 탄소 나노튜브를 포함하여 이루어지거나, 높은 전기전도성을 가지며 마이크로미터 내지 나노미터의 입도를 갖는 금속 파우더를 포함하여 이루어 질수 있다.The first conductive portion 263 may include carbon nanotubes, or may include metal powder having high electrical conductivity and having a particle size of micrometers to nanometers.
상기의 코일(250)을 이루는 구성요소들에 대한 설명은 하기의 실시 예에서 더욱 상세하게 설명하기로 한다.Description of the components constituting the coil 250 will be described in more detail in the following embodiments.
상술한 바와 같은 구조를 갖는 본 발명에 따른 회전기(1)는 기계적 회전에너지를 전기에너지로 변환하는 발전기에 적용한 예로 설명하였으나, 발전기에 한정하지 않으며 이와 반대로 전기에너지를 기계적 회전에너지로 바꾸는 전동기로 적용할 수 있음은 물론이다. 본 발명에 따른 회전기(1)를 전동기로 적용하는 경우에는 로터를 회전시키기 위하여 코일에 단상 또는 3상 전원을 인가함으로써 구현될 수 있다. 또한, 발전기 및 전동기 뿐만 아니라 전압을 승합하거나 강하시키는 트랜스에 사용되는 코일에 적용할 수도 있다.The rotor 1 according to the present invention having the structure as described above has been described as an example applied to a generator for converting mechanical rotational energy into electrical energy, but is not limited to the generator and conversely applied as an electric motor for converting electrical energy into mechanical rotational energy. Of course you can. When the rotor 1 according to the present invention is applied to an electric motor, it may be implemented by applying single-phase or three-phase power to the coil to rotate the rotor. In addition, the present invention can be applied to a coil used in a transformer for raising or lowering a voltage as well as a generator and a motor.
도 3에는 도 1 및 도 2에 도시된 회전기(1)에 설치되어 있는 본 발명에 따른 코일(250)의 제1실시 예가 도시되어 있다. FIG. 3 shows a first embodiment of a coil 250 according to the invention, which is installed in the rotor 1 shown in FIGS. 1 and 2.
코일(250)은 심선(260)과, 클래딩(262)의 외측을 감싸는 피복(264) 및 상기 심선(260)과 피복(264) 사이에 형성된 제1전도부(263)로 구성된다. The coil 250 includes a core wire 260, a sheath 264 surrounding the outside of the cladding 262, and a first conductive portion 263 formed between the core wire 260 and the sheath 264.
상기의 심선(260)은 코어(261)와, 상기 코어(261)의 외측을 감싸는 클래딩(262)을 구비하는 광파이버를 적용하였다. 상기 심선(260)은 광파이버를 적용할 수도 있지만, 이와는 다르게 금속과 같거나 그 이상의 강도를 갖는 아라미드섬유, 탄소섬유, 플론섬유 중 선택된 것을 적용할 수 있다.The core wire 260 has an optical fiber including a core 261 and a cladding 262 surrounding the outside of the core 261. The core wire 260 may be an optical fiber, but alternatively, a selected one of aramid fibers, carbon fibers, and flon fibers having a strength equal to or greater than that of metal may be applied.
상기 제1전도부(263)는 전기 및 열전도율이 높고, 같은 굵기의 강철보다 100배 이상의 강도를 갖는 탄소 나노튜브를 포함하여 이루어져 있다. 상기 제1전도부(263)에 포함된 탄소 나노튜브는 단일벽 탄소나노튜브(SWNT) 또는 다중벽 탄소 나노튜브(MWNT)로 이루어질 수 있다. The first conductive portion 263 has high electrical and thermal conductivity, and includes carbon nanotubes having a strength of 100 times or more than steel of the same thickness. The carbon nanotubes included in the first conductive portion 263 may be formed of a single-walled carbon nanotube (SWNT) or a multi-walled carbon nanotube (MWNT).
이와 다르게, 상기의 제1전도부(263)는 탄소 나노튜브와 폴리에틸렌테레프탈레이드(PET), 폴리카보네이트(PC) 등과 같은 고분자 재료와 혼합 조성하여 이루어질 수도 있다.Alternatively, the first conductive portion 263 may be formed by mixing with a polymer material such as carbon nanotubes, polyethylene terephthalate (PET), polycarbonate (PC), and the like.
또한, 상기 제1전도부(263)는 그래핀(graphene), 풀러린(fullerene)을 포함하여 이루어지거나, 마이크로미터 내지 나노미터의 입경을 갖는 구리(Cu), 납(Pb), 은(Ag), 금(Au), 백금(Pt), 크롬(Cr), 니켈(Ni), 팔라듐(Pd), 티타늄(Ti) 파우더 중 선택된 어느 하나 또는 둘 이상을 포함하여 이루어질 수 있다. 상기 제1전도부(263)는 상기에서 언급한 금속 파우더를 심선(260)의 외주면에 코팅하여 형성할 수 있다.In addition, the first conductive portion 263 is made of graphene (graphene), fullerene (fullerene), or copper (Cu), lead (Pb), silver (Ag), having a particle diameter of the micrometer to nanometer, Gold (Au), platinum (Pt), chromium (Cr), nickel (Ni), palladium (Pd), titanium (Ti) powder may be made of any one or two or more selected. The first conductive portion 263 may be formed by coating the aforementioned metal powder on the outer circumferential surface of the core wire 260.
상기 피복(264)은 코일(250)을 보빈(270)에 권취할 때 제1전도부(263)가 서로 맞닿지 않도록 제1전도부(263)의 외측을 감싸도록 형성되어 있고, 절연 소재로 이루어져 있다. 상기 피복(264)은 코일(250)의 두께를 작게 할 수 있도록 얇게 형성되며, 열전도율이 낮은 소재로 형성하는 것이 바람직하다.The sheath 264 is formed to surround the outside of the first conductive portion 263 so that the first conductive portion 263 does not come into contact with each other when the coil 250 is wound around the bobbin 270, and is made of an insulating material. . The sheath 264 is formed thin so that the thickness of the coil 250 can be reduced, and preferably formed of a material having low thermal conductivity.
상기의 제1전도부(263)를 갖는 코일(250)은 광파이버에 구리와 비슷한 전기전도율을 갖는 탄소 나노튜브를 결합함으로써 종래의 구리선을 이용한 것에 비하여 회전기에서 코일이 차지하는 중량을 현저하게 감소시킬 수 있으며, 기존의 광파이버와 거의 대등한 굵기를 가지므로 종래의 구리선을 이용한 것보다 많은 횟수로 권취할 수 있든 장점이 있다.The coil 250 having the first conductive portion 263 may significantly reduce the weight of the coil in the rotor by combining carbon nanotubes having an electrical conductivity similar to copper to the optical fiber, compared to the conventional copper wire. In addition, since the optical fiber has a thickness almost equal to that of the conventional optical fiber, there is an advantage whether it can be wound more times than using a conventional copper wire.
한편, 본 발명에 따른 코일의 제2실시 예로서, 코일(350)은 도 4에 도시된 바와 같이 심선(360)과 제1전도부(363) 사이에는 제1전도부(363)와 심선(360)을 절연하고, 제1전도부(363)로부터 심선(360)으로 열이 전달되는 것을 차단하는 차단부(365)가 더 구비되어 있다. Meanwhile, as the second embodiment of the coil according to the present invention, the coil 350 may include a first conductive part 363 and a core wire 360 between the core wire 360 and the first conductive part 363 as shown in FIG. 4. Is further provided, and a blocking unit 365 is further provided to block heat from being transferred from the first conductive portion 363 to the core wire 360.
상기 차단부(365)는 열 전도율이 낮으면서 전기적으로 절연성을 갖는 소재로 형성되어 있다. 일 예로 상기 차단부는 통상의 단열재로 사용되는 거품고무, 규산칼슘, 코르크, 유리솜, 석영솜, 규조토, 마그네시아분말, 규산칼슘 펄라이트와 같은 소재로 이루어질 수 있다.The blocking part 365 is formed of a material having low thermal conductivity and having electrical insulation. For example, the blocking part may be made of a material such as foam rubber, calcium silicate, cork, glass wool, quartz cotton, diatomaceous earth, magnesia powder, calcium silicate pearlite, which are used as a general heat insulating material.
상기 차단부(365)는 회전축(150)이 고속으로 회전함에 따른 작동열 또는 자기력의 방향이 급격하게 변화함에 따른 철심에서 발생하는 열이 코일(350)의 내측으로 즉, 심선(360)으로 전달되어 코일(350)이 손상되거나 형상이 변형되는 것을 방지한다. 기존의 코일은 구리선이 중첩되어 있으므로 작동열 또는 철손에 의한 열이 지속적으로 코일 내부에 누적되며 누적된 열을 외부로 방출하기 어려워 열화에 의한 코일의 발전성능이 저하되는 문제가 있다.The blocking unit 365 transmits heat generated from the iron core as the operating heat or the direction of the magnetic force changes rapidly as the rotation shaft 150 rotates at a high speed to the inside of the coil 350, that is, the core wire 360. This prevents the coil 350 from being damaged or deformed. Since the existing coils are overlapped with copper wires, heat due to operating heat or iron loss continuously accumulates inside the coil, and it is difficult to discharge the accumulated heat to the outside, thereby degrading the power generation performance of the coil due to deterioration.
이에 반하여 본 발명의 코일(350)은 중첩되어 있어도 열전도율이 높은 제1전도부(363)와, 피복(364)에 의해 인접하는 피복(364)으로 열을 전달할 수 있으므로 내부로부터 외부로 열 방출이 용이하며, 차단부(365)에 의해서 심선(360) 측으로는 열전달이 차단되어 코일(350)의 형상 변형을 방지할 수 있다.On the contrary, the coil 350 of the present invention can transfer heat from the first conductive portion 363 having a high thermal conductivity to the adjacent sheath 364 by the sheath 364 even though the coil 350 is overlapped, so that heat is easily discharged from the inside to the outside. The heat transfer is blocked to the core wire 360 side by the blocking unit 365 to prevent the deformation of the coil 350.
한편, 본 발명에 따른 코일의 제3실시 예로서, 코일은 도 5에 도시된 바와 같이 코어(461), 코어(461)를 감싸는 클래딩(462)으로 이루어진 심선(460), 심선(460)을 감싸는 제1전도부(463), 제1전도부를 감싸는 피복(464), 클래딩(462)과 제1전도부(463) 사이에 형성된 차단부(465) 및 클래딩(462)과 차단부(465) 사이에 형성된 제2전도부(466)를 포함할 수 있다.On the other hand, as a third embodiment of the coil according to the present invention, as shown in FIG. 5, the coil is formed of a core wire 460 and a core wire 460 including a core 461 and a cladding 462 surrounding the core 461. The first conductive portion 463 to wrap, the covering 464 surrounding the first conductive portion, the blocking portion 465 formed between the cladding 462 and the first conductive portion 463, and the cladding 462 and the blocking portion 465. It may include a second conductive portion 466 formed.
상기 제2전도부(466)는 도 3을 참조로 설명된 코일(250)의 제1실시 예에서 설명한 바와 같은 탄소 나노튜브로 이루어져 있다. The second conductive portion 466 is made of carbon nanotubes as described in the first embodiment of the coil 250 described with reference to FIG. 3.
상기와 같은 구조를 갖는 코일은 제1전도부(463)와 제2전도부(466)가 코어(461)를 중심으로 2중으로 형성되어 있어 발전량의 증대를 기대할 수 있고, 제1전도부(463)와 제2전도부(466) 사이에 형성되어 있는 차단부(465)에 의해 코일(450)의 외부에서 내부로는 열전달이 차단되지만, 코일(450) 상호 간에는 제1전도부(463)와 피복(464)을 통해 열전달이 용이하게 이루어진다.In the coil having the structure described above, the first conductive portion 463 and the second conductive portion 466 are formed in double around the core 461, so that an increase in power generation can be expected, and the first conductive portion 463 and the first conductive portion 463 are formed. Although heat transfer is blocked from the outside of the coil 450 to the inside by the blocking portion 465 formed between the two conductive portions 466, the first conductive portion 463 and the sheath 464 are separated from each other. Through heat transfer is made easy.
한편, 도 6에는 본 발명에 따른 코일의 다른 실시 예가 도시되어 있다.On the other hand, Figure 6 shows another embodiment of a coil according to the present invention.
상기 코일(550)은 절연성을 갖는 심선(560)과 심선(560)을 감싸며 절연성을 갖는 피복(564) 및 심선(560)과 피복(564) 사이에 탄소 나노튜브로 형성된 제1전도부(563)를 포함한다.The coil 550 surrounds the insulated core wire 560 and the core wire 560 and has an insulating sheath 564 and a first conductive portion 563 formed of carbon nanotubes between the core wire 560 and the sheath 564. It includes.
상기 심선(560)은 광파이버를 적용할 수도 있고, 이와는 다르게 금속과 같거나 그 이상의 강도를 갖는 아라미드섬유, 탄소섬유, 플론섬유 중 선택된 것을 적용할 수 있다.The core wire 560 may be an optical fiber, or alternatively, a selected one of aramid fibers, carbon fibers, and flon fibers having a strength equal to or greater than that of metal may be applied.
상기 제1전도부(563)는 도 3 내지 도 5에 도시된 바와 같이 탄소 나노튜브로 형성할 수도 있으나, 이와는 다르게 구리, 납, 은, 금 등 전도성이 우수한 금속을 심선(560)의 외주면에 CVD기법을 이용하여 증착 형성하거나 상술한 바와 같은 금속 파우더가 함유된 모재를 심선의 외주면에 코팅하여 형성할 수도 있다.The first conductive portion 563 may be formed of carbon nanotubes as shown in FIGS. 3 to 5, but alternatively, a metal having excellent conductivity such as copper, lead, silver, and gold is CVD on the outer circumferential surface of the core wire 560. It may be formed by vapor deposition using a technique or by coating the outer peripheral surface of the core wire containing the metal powder as described above.
한편, 도면에 도시되어 있지 않지만, 상기 심선(560)과 제1전도부(563) 사이에는 절연성을 갖고 열전도율이 낮은 소재로 형성된 차단부가 구비될 수 있고, 심선(560)과 차단부 사이에는 탄소 나노튜브로 형성된 제2전도부가 더 구비될 수도 있다. On the other hand, although not shown in the drawings, the core portion 560 and the first conductive portion 563 may be provided with a blocking portion formed of a material having an insulating property and low thermal conductivity, between the core wire 560 and the blocking portion carbon nano The second conductive part formed of a tube may be further provided.
그리고, 상기에서 설명한 실시 예들에서의 코일은 하나의 심선을 권취한 구조를 적용하였지만, 이와 다르게 둘 이상의 심선들을 꼰 형태의 케이블을 권취한 구조를 적용할 수도 있다.In the above-described embodiments, the coil has a structure in which one core wire is wound. Alternatively, the coil in which two or more core wires are braided may be applied.
이상에서 설명한 본 발명에 따른 코일 및 이를 구비한 회전기는 도면에 도시된 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다.The coil and the rotator having the same according to the present invention described above have been described with reference to one embodiment shown in the drawings, but this is only an example, and those skilled in the art can make various modifications and equivalents therefrom. It will be appreciated that other embodiments are possible.
따라서 본 발명의 진정한 기술적인 보호범위는 첨부된 청구범위에 의해서 정해져야 할 것이다.Therefore, the true technical protection scope of the present invention will be defined by the appended claims.

Claims (11)

  1. 심선과;Core wire;
    상기 심선을 감싸며 절연성을 갖는 피복과;A sheath covering the core wire and having insulation;
    상기 심선과 상기 피복 사이에 전기 전도성을 갖는 소재로 형성된 제1전도부;를 구비하는 것을 특징으로 하는 코일.And a first conductive portion formed of a material having electrical conductivity between the core wire and the coating.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1전도부는 탄소 나노튜브를 포함하여 형성된 것을 특징으로 하는 코일.The first conductive portion is a coil, characterized in that formed including carbon nanotubes.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1전도부는 마이크로미터 내지 나노미터의 입경을 갖는 은, 구리, 금, 아연, 니켈, 크롬, 티타늄 파우더 중 선택된 하나 또는 둘 이상을 포함하여 형성된 것을 특징으로 하는 코일.The first conductive part is a coil, characterized in that formed containing one or two or more selected from silver, copper, gold, zinc, nickel, chromium, titanium powder having a particle diameter of micrometer to nanometer.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 심선은 코어와, 상기 코어를 감싸는 클래딩을 구비하는 광파이버로 형성된 것을 특징으로 하는 코일.The core wire is a coil, characterized in that formed of an optical fiber having a core and a cladding surrounding the core.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 심선과 상기 제1전도부 사이에 개재되어 상기 제1전도부와 상기 심선을 절연하고 상기 제1전도부로부터 상기 심선으로 열전달을 차단하는 차단부가 더 구비된 것을 특징으로 하는 코일.A coil further comprising a blocking part interposed between the core wire and the first conductive part to insulate the first conductive part and the core wire and to block heat transfer from the first conductive part to the core wire.
  6. 제5항에 있어서,The method of claim 5,
    상기 심선과 상기 차단부 사이에는 탄소 나노튜브를 포함하여 형성된 제2전도부가 더 구비된 것을 특징으로 하는 코일.A coil further comprising a second conductive portion formed between the core wire and the blocking portion, including carbon nanotubes.
  7. 환 형상으로 형성된 회전요크부와 상기 회전요크부의 중심에 결합된 회전축을 포함하는 로터와, 상기 회전요크부의 외측을 감싸도록 형성되고 상기 회전요크부에 대하여 소정간격으로 이격되게 설치되는 고정요크부를 포함하는 스테이터와, 상기 회전요크부 또는 상기 고정요크부 중 적어도 일 측에 감기는 코일을 구비한 회전기에 있어서,A rotor including a rotating yoke formed in an annular shape and a rotating shaft coupled to a center of the rotating yoke, and a fixed yoke formed to surround the outer side of the rotating yoke and spaced apart from the rotating yoke at a predetermined interval. In the rotor having a stator and a coil wound on at least one side of the rotary yoke portion or the fixed yoke portion,
    상기 코일은 심선과, 상기 심선을 감싸며 절연성을 갖는 피복과, 상기 심선과 상기 피복 사이에 전기전도성을 갖는 소재로 형성된 제1전도부를 구비하는 것을 특징으로 하는 회전기.And the coil comprises a core wire, a sheath covering the core wire and having an insulating property, and a first conductive part formed of a material having electrical conductivity between the core wire and the sheath.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1전도부는 탄소 나노튜브를 포함하여 형성된 것을 특징으로 하는 회전기.And the first conductive portion is formed including carbon nanotubes.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제1전도부는 마이크로미터 내지 나노미터의 입경을 갖는 은, 구리, 금, 아연, 니켈, 크롬, 티타늄 파우더 중 선택된 하나 또는 둘 이상을 포함하여 형성된 것을 특징으로 하는 회전기.The first conductive part is a rotator, characterized in that formed by one or more selected from silver, copper, gold, zinc, nickel, chromium, titanium powder having a particle diameter of micrometer to nanometer.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 7 to 9,
    상기 심선은 코어와, 상기 코어를 감싸는 클래딩을 구비하는 광파이버로 형성된 것을 특징으로 하는 회전기.And the core wire is formed of an optical fiber having a core and a cladding surrounding the core.
  11. 제7항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 7 to 9,
    상기 심선과 상기 제1전도부 사이에 개재되어 상기 제1전도부와 상기 심선을 절연하고 상기 제1전도부로부터 상기 심선으로 열전달을 차단하는 차단부와, 상기 심선과 상기 차단부 사이에는 탄소 나노튜브를 포함하여 이루어진 제2전도부가 구비된 것을 특징으로 하는 회전기.A blocking part interposed between the core wire and the first conductive part to insulate the first conductive part and the core wire and to block heat transfer from the first conductive part to the core wire, and a carbon nanotube between the core wire and the blocking part. Rotor, characterized in that provided with a second conductive portion made.
PCT/KR2013/003852 2012-05-03 2013-05-03 Coil and rotary machine comprising same WO2013165208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0046681 2012-05-03
KR1020120046681A KR101315386B1 (en) 2012-05-03 2012-05-03 A coil and a rotary machine which has it

Publications (1)

Publication Number Publication Date
WO2013165208A1 true WO2013165208A1 (en) 2013-11-07

Family

ID=49514548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003852 WO2013165208A1 (en) 2012-05-03 2013-05-03 Coil and rotary machine comprising same

Country Status (2)

Country Link
KR (1) KR101315386B1 (en)
WO (1) WO2013165208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233897A1 (en) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Electromagnetically excitable coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168067A (en) * 1993-12-15 1995-07-04 Toshiba Corp Optical fiber
US20100122832A1 (en) * 2008-11-17 2010-05-20 Leonid Bukshpun Self-healing electrical communication paths
KR20120031451A (en) * 2010-09-24 2012-04-03 프리스케일 세미컨덕터, 인크. Polymer core wire
KR20120038495A (en) * 2009-07-16 2012-04-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Insulated composite power cable and method of making and using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100012590A (en) * 2008-07-29 2010-02-08 동신대학교산학협력단 Nano coaxially shielded cable prepared and process thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07168067A (en) * 1993-12-15 1995-07-04 Toshiba Corp Optical fiber
US20100122832A1 (en) * 2008-11-17 2010-05-20 Leonid Bukshpun Self-healing electrical communication paths
KR20120038495A (en) * 2009-07-16 2012-04-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Insulated composite power cable and method of making and using same
KR20120031451A (en) * 2010-09-24 2012-04-03 프리스케일 세미컨덕터, 인크. Polymer core wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018233897A1 (en) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Electromagnetically excitable coil
CN110741453A (en) * 2017-06-21 2020-01-31 罗伯特·博世有限公司 Electromagnetically excitable coil
CN110741453B (en) * 2017-06-21 2022-10-04 罗伯特·博世有限公司 Electromagnetically excitable coil

Also Published As

Publication number Publication date
KR101315386B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
RU2608386C2 (en) High-speed turbine
EP3479464B1 (en) Homopolar motor for a flywheel energy storage system
WO2012039545A1 (en) Electric motor-driven compressor for vehicle
CN111403102B (en) Superconducting conductor support with high heat dissipation efficiency
WO2019045341A1 (en) Improved multi-stage high-voltage generator having multiple coil stators
CN212486335U (en) Structure for weakening shaft current in motor
WO2013165208A1 (en) Coil and rotary machine comprising same
WO2013032122A1 (en) Axial-flux-type permanent magnet synchronous generator and motor
WO2014010978A1 (en) Armature unit and rotary machine comprising same
CN108110928B (en) High-voltage ultra-high-speed permanent magnet synchronous motor
WO2019027197A1 (en) Improved high-voltage power generator having single coil stator
WO2018110714A1 (en) Coil structure of coreless generator
WO2018117555A1 (en) Generator using two rotors capable of using rotating shaft or fixed shaft
CN1272244A (en) Device for rotating electric machine
WO2013085124A1 (en) Generator for producing electric power by rotating field magnet having reduced load
CN214069673U (en) Wireless electricity transmission collector ring with compact structure and electricity transmission equipment
CN219779384U (en) Collecting ring, electric energy conversion device and wind generating set
CN220252917U (en) Optical fiber composite overhead phase wire
CN215770662U (en) Cross-linked polyethylene insulated flame-retardant overhead cable
CN217984687U (en) Stator core, motor and automation equipment
CN220086593U (en) Conductive slip ring
CN215990043U (en) Anti-interference antistatic power cable protection tube
CN208622466U (en) PVC insulated wire cable
CN110048578A (en) A kind of pair of rotating disc type electric machine structure
CN216487362U (en) Silicon rubber insulation shielding control cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT ON 26.02.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13784546

Country of ref document: EP

Kind code of ref document: A1