WO2013164500A1 - System for managing the power of led luminaires - Google Patents

System for managing the power of led luminaires Download PDF

Info

Publication number
WO2013164500A1
WO2013164500A1 PCT/ES2013/000112 ES2013000112W WO2013164500A1 WO 2013164500 A1 WO2013164500 A1 WO 2013164500A1 ES 2013000112 W ES2013000112 W ES 2013000112W WO 2013164500 A1 WO2013164500 A1 WO 2013164500A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
luminaire
power
charge
luminaires
Prior art date
Application number
PCT/ES2013/000112
Other languages
Spanish (es)
French (fr)
Other versions
WO2013164500A8 (en
Inventor
Axelle VERGES
Alessandro Caviasca
Oscar SACRISTA
Jordi VERDAGUER
Eduardo VILA
Original Assignee
Jvv Grup Montajes Y Desarrollos De Proyectos Electricos, S.L.
Studio Intinerante Arquitectura, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jvv Grup Montajes Y Desarrollos De Proyectos Electricos, S.L., Studio Intinerante Arquitectura, S.L. filed Critical Jvv Grup Montajes Y Desarrollos De Proyectos Electricos, S.L.
Publication of WO2013164500A1 publication Critical patent/WO2013164500A1/en
Publication of WO2013164500A8 publication Critical patent/WO2013164500A8/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a system for the management of power in autonomous electrical consumption, and for the rationalization of energy consumption, formed by an autonomous source of renewable energy, for example solar, and a consumption of variable electrical power, for example , although not exclusively, one or several LED luminaires.
  • the system involves computing means (a microprocessor) implemented with an MPPT algorithm of the type of current efficiency, which allows at all times to store the maximum power in the battery, at a voltage such that the power is maximum for the radiant power captured by the panels at all times.
  • computing means a microprocessor
  • MPPT algorithm of the type of current efficiency
  • Photovoltaic solar panels have a complex relationship between their operating environment and the maximum power they can produce.
  • the behavior of the solar panel is not linear, which is characterized by the filling factor, FF, which is defined as the ratio between the maximum removable power of the solar panel and the product VQ C I SC . (maximum voltage and maximum intensity, respectively, of the first quadrant; see Fig. 1).
  • FF filling factor
  • a photovoltaic panel has an approximately exponential relationship between current and voltage.
  • MPP Maximum Power Point
  • This point corresponds to the "knees" - as it is called on the slang - of the curve of Fig. 1, in which a value of current l max and voltage V max .
  • Fig. 1 only two curves are shown: a lower nocturnal curve (N), for a solar irradiation (for example W / m 2 ) null or very low and a diurnal upper curve (D), in which the intensity supplied It has positive values, up to a V oc value of the voltage, changing the direction current from this value. For each value of solar irradiation there is a characteristic D curve.
  • N a lower nocturnal curve
  • D diurnal upper curve
  • MPPT Maximum Power Point Tracking
  • the MPPT or follower of the maximum power point, is a DC / DC converter controlled by a microcontroller that carries an integrated algorithm to maximize the production of a panel, some work with sensors that monitor radiation and temperature, for example: when the temperature from the panel increases, the voltage that is capable of supplying the module decreases, but at the same time the intensity also increases. If the MPPT control decreases the voltage, causing a rise in intensity, the power remains substantially constant. The same, but vice versa, is applicable when the radiation on the photovoltaic solar panel decreases, in cold conditions, clouds, sunrise and sunset. The earnings can be between 20% and 40%.
  • MPPT devices use different types of algorithms, for example MPPT of the current efficiency type, which allows to store the maximum power in the battery at all times, at a voltage such that the power is maximum for the radiant power captured by the panels at every moment.
  • the MPPT of the present invention uses such an algorithm.
  • the captured electrical energy is delivered to a battery, managed by the MPPT, and the battery feeds the electrical consumption (luminaires, irrigation controls, small motors, ...) and the surplus over consumption is stored in the battery.
  • These known systems of which many embodiments are known, have drawbacks.
  • the first is that in the absence of demand, excess energy can be sent to electricity consumption, either from the battery or directly from the solar panels. This is the case of a luminaire that stays on all night unnecessarily. If it is an autonomous luminaire, for example in an urban space, without power supply, the battery is discharged and cannot power other devices, for example, the next day is cloudy.
  • the consumptions are programmed statically, that is, a fixed electric power is assigned to each time slot to be delivered to the luminaire (or other consumptions) from the battery, without taking into account the actual present conditions or in terms of availability of Radiant energy, no state of charge of the battery, nor demand of real power required by the luminaire.
  • the present invention aims to provide a system that allows to solve these problems, rationalize energy consumption and adapt to the real demand and in a predictable way both the battery charge and the energy delivery. Explanation of the invention.
  • the object of the present invention is a system for the management of instantaneous power in luminaires powered by an autonomous system of photovoltaic solar energy, comprising photovoltaic solar panels that charge a battery, which feeds the luminaires, which in Its essence is characterized in that it integrates, in a single device, two functionalities: - First computing means with an MPPT algorithm of the type of current efficiency, which allows at all times the first functionality to store in a battery the maximum power from the solar panels, and - a few second computing means, provided with data inputs on the state of charge of the battery, and a predictive algorithm that has the functionality of calculating the power to be delivered from the battery to the luminaire, depending on the day of the year and time, geographic coordinates, and battery charge status.
  • the first computing means and the second computing means can be integrated in a single microcontroller, or each of them can be made in an independent microcontroller.
  • the system of the invention further comprises means for providing the geographic coordinates of the system.
  • the system comprises memory means for storing historical data, such as for example: daily solar charge, duration in night hours, total power absorbed every day, total power consumed by the luminaires every day, energy in the batteries before and after charging, duration of consumption, and because said predictive algorithm is adapted to calculate the power to be delivered, also based on historical values for said day and said time.
  • historical data such as for example: daily solar charge, duration in night hours, total power absorbed every day, total power consumed by the luminaires every day, energy in the batteries before and after charging, duration of consumption, and because said predictive algorithm is adapted to calculate the power to be delivered, also based on historical values for said day and said time.
  • the two microcontrollers will have continuous communication with each other for the exchange of variables.
  • means are provided to gradually decrease the light intensity as the battery discharge occurs, by decreasing voltage, to allow the luminaire to never turn off during operation.
  • this comprises GPRS communication means.
  • the system comprises a presence sensor, to cause a temporary increase in the luminous intensity of the luminaires.
  • the system of the invention may comprise communication ports, such as Bluetooth®, wired RS232, Ethernet®, GPRS, etc., for data downloading or for entering data for programming control features.
  • communication ports such as Bluetooth®, wired RS232, Ethernet®, GPRS, etc.
  • Radiofrequency synchronization means of a luminaire with other similar luminaires are provided.
  • the luminaires are LED luminaires whose light intensity is regulated by pulse width modulation (PWM).
  • PWM pulse width modulation
  • the technical principles and rules of the present invention can also be applied in consumptions other than luminaires, for example irrigation controls, small engines, traffic camera systems, etc. Brief description of the drawings
  • Fig. 1 is a characteristic curve lV of a standard photovoltaic solar panel
  • Fig. 2 is a block diagram of the system architecture of the present invention
  • Fig. 3 is an illustrative graph of the light flow as a function of time for when a presence or movement sensor is activated, in the case of a luminaire
  • Fig. is a graph illustrating the programming of the time of the luminous flux for different battery charge levels, also in the case of a luminaire
  • Fig. 5 is a perspective view showing a device housing the systems of the present invention in a housing, and illustrating the different connections to the luminaire, solar panels, battery, other consumptions and ports I / O for communications and peripherals.
  • the objective of the present invention is to provide a microcontroller management system 100 integrated in a PV 1 luminaire, regulated by PWM (pulse width modulation).
  • the system 100 will be responsible for managing the ignition and instantaneous power in the LED luminaire 1 and its luminous level. Other LED consumption 7 can also be managed, for example signaling or indication.
  • the system will determine the nighttime hours and act accordingly to carry out proper power-up management.
  • the luminaires 1 are powered by an autonomous solar energy system based on photovoltaic solar panels 2 that charge a 12 / 24V battery 3, which in turn feeds the luminaires 1.
  • the system includes:
  • - memory means 6 for storing historical data, for example a programmable double erasable EEPROM memory.
  • the data can be: daily solar charge, duration at night, total power absorbed every day, total power consumed by the luminaires every day, battery power 3 before and after charging, duration of consumption, etc,
  • a second microcontroller 5 equipped with data inputs on the state of charge of the battery 3, and provided with a predictive algorithm that calculates the power to be delivered from the battery 3 to the luminaire 1, based on the day of the year and the time , of the historical values for said day and said hour, of the geographical coordinates, and of the state of charge of the battery 3.
  • Fig. 2 the block diagram of the system 100 can be seen.
  • the first microcontroller 4 is connected to the solar panels 2, through a charge shunt 21, and with the battery 3 by means of an outlet 31
  • the microcontroller 4 manages the energy supply to the battery by means of an MPPT algorithm of current efficiency.
  • One of the central points of the algorithm is the ability to decrease Gradually the light intensity in the luminaire 1 as the discharge of the battery 3 occurs, by means of a decrease in voltage, to allow the luminaire 1 to never turn off during operation (see Fig. 4).
  • the system 100 comprises a series of I / O 8 and communication ports, such as Bluetooth, wired RS232, Ethernet, GPRS, etc., for data downloading or for data entry and for programming control features.
  • the system generates its own table of historical values to supply the calculation database. These parameters are: daily solar charge, the value of the battery before and after charging Energy consumption, consumption duration, etc.
  • the radiated power in solar panels 2 is an instantaneous power variable in time and depends on the existing solar radiation.
  • the algorithm follows that variation to obtain maximum load power.
  • the basic operation is as follows. The process begins to demand current from solar panel 2 and is increasing. Upon reaching its maximum point, the solar panel 2 lowers the voltage and the algorithm detects it and stops increasing the current request. When radiation variations occur (for example when passing a cloud over) the system 100 reduces the current request to maintain the maximum power point (MPPT, "Maximum PowerPoint Tracking '). See Fig. 1
  • the charge acts on the MPPT microcontroller 4 of the solar panels 2 and allows to increase the charging efficiency of the battery 3 by 30% compared to traditional constant current methods.
  • the fall of the system is anticipated as the consumption is not extreme at times when the load does not meet the established forecasts.
  • the calculation of the discharge or consumption acts on the luminaire microcontroller 5, which executes the predictive algorithm.
  • Each calculation block acts on an independent microcontroller to make the instant calculation more powerful.
  • the microcontrollers there is a continuous communication of variable exchange. The sum of these two blocks allows to achieve a system that guarantees the maximum possible energy efficiency.
  • the operation of the predictive algorithm executed in the second microcontroller is explained below:
  • MCP Maximum consumption allowed
  • EBH Historic Battery Status
  • the battery consumption is set from the duration of the night.
  • the dynamic algorithmic programming criteria can be the following
  • the consumption curve will be:
  • the system may comprise a presence sensor (PRESENCE SENSOR in Fig. 2), movement or noise, to cause "requests” to temporarily increase the flux (light intensity) of the luminaires 1, interrupting the previous algorithm momentarily and returning to its execution after a certain period of time. See Fig. 3, in which some of these requests are exemplified.
  • this algorithmic allows to decrease the light intensity in percentage as the battery is discharged (voltage decrease) to allow the luminaire to never turn off during operation.
  • the system of the invention allows to manage and prolong the life of the batteries by reducing the number of charge and discharge cycles by means of the previous dynamic programming in operating hours.
  • the system "compacts" the functions of regulation of charge / discharge of batteries and regulation of the light intensity in a single electronic device.
  • the system will have two NTC temperature probes: a first probe 31 in the battery (NTC1 TE P_BAT PROBE in Fig. 2) and a second probe in the electronic device board (NTC2 TE P_PLACA PROBE in Fig. 2) integrated in the I / O 8.
  • the first temperature probe NTC 31 of the battery will allow to adapt the charging voltage to the temperature variation, guaranteeing optimal use of the battery.
  • the COMMS output / input allows you to connect different external wireless connection modules such as Bluetooth, RS232 cable, Ethernet or GPRS for data download or for programming control features.
  • a radio frequency electronics to synchronize the different luminaires through transceivers to connect and disconnect. It will also have switches for the configuration of the "master" and all slaves that will be assigned an identification number.
  • the electronic components of the board will be chosen in extended temperature range.
  • a "switch of 8" allows you to select the capacity of the batteries measured in amps (A), in addition to being able to select whether a presence sensor is desired or not, and select other operating modes (possible extension).
  • An entry is planned to integrate presence or movement sensors. If you have presence sensors, there will be another mode of operation adapted to the lighting needs specified for each application.
  • the device allows customization of the application.
  • an optional input is also provided in the I / O block 8, in order to add optional components (expansion bus).
  • the data obtained during the day is stored through the monitoring or monitoring system, as explained more above.
  • the data saved through this monitoring or monitoring system can be downloaded to analyze the operation and have a history of the equipment.
  • the download can be accessed remotely via GPRS or other communication channels.
  • a signaling or indication LED 7 installed on one of the faces of the waterproof housing 10 (Fig. 5) and powered by a "shunt" 71 are used to give different information of a light type.
  • solar panels could be replaced by wind turbines or wind turbines, these being also included in the scope of the invention as long as their principles can be applied.

Abstract

The invention relates to a system for managing power in LED luminaires (1) powered by a standalone photovoltaic solar energy system with photovoltaic solar panels (2) which charge a battery (3), which powers the luminaires (1). The system integrates, in a single device, a microprocessor provided with an MPPT algorithm, which makes it possible at all times to store in the battery (3) the maximum power from the solar panels (2), and a second microprocessor provided with data entries on the state of charge of the battery (3), and a predictive algorithm which calculates the power to be delivered from the battery (3) to the luminaire (1), according to one or more of the following pieces of data: date and time, geographical coordinates and state of charge of the battery (3).

Description

D E S C R I P C I O N  D E S C R I P C I O N
"Sistema para la gestión de la potencia de luminarias LED" Sector técnico de la invención  "System for power management of LED luminaires" Technical sector of the invention
La presente invención se refiere a un sistema para la gestión de la potencia en consumos eléctricos autónomos, y para la racionalización del consumo energético, formado por una fuente autónoma de energía renovable, por ejemplo solar, y un consumo de potencia eléctrica variable, por ejemplo, aunque no exclusivamente, una o varias luminarias LED. The present invention relates to a system for the management of power in autonomous electrical consumption, and for the rationalization of energy consumption, formed by an autonomous source of renewable energy, for example solar, and a consumption of variable electrical power, for example , although not exclusively, one or several LED luminaires.
El sistema comporta unos medios de computación (un microprocesador) implementados con un algoritmo MPPT del tipo de eficiencia en corriente, que permite en todo momento almacenar el máximo de potencia en la batería, a una tensión tal que la potencia es máxima para la potencia radiante captada por los paneles en cada momento. The system involves computing means (a microprocessor) implemented with an MPPT algorithm of the type of current efficiency, which allows at all times to store the maximum power in the battery, at a voltage such that the power is maximum for the radiant power captured by the panels at all times.
Antecedentes de la invención Background of the invention
Los paneles solares fotovoltaicos presentan una relación compleja entre su ambiente operativo y la potencia máxima que pueden producir. El comportamiento del panel solar no es lineal, lo cual es caracterizado mediante el factor de relleno, FF, que se define como el cociente entre la máxima potencia extraíble del panel solar y el producto VQC ISC. (voltaje máximo e intensidad máxima, respectivamente, del primer cuadrante; ver Fig. 1). Para cada conjunto de condiciones operativas, los paneles solares presentan un único punto en que los valores de corriente (I) y voltaje (V) del panel proporcionan una salida de potencia máxima. Estos valores corresponden a un valor concreto de la resistencia de carga igual a V / 1, conforme a la Ley de Ohm. La potencia vendrá dada por P=V I. Un panel fotovoltaico presenta una relación aproximadamente exponencial entre corriente y voltaje. A partir de la teoría básica de circuitos, la potencia entregada a o desde un dispositivo es óptima (un máximo) cuando la derivada (o sea la pendiente) dl/dV de la curva l-V es igual al cociente l V (siendo dP/dV=0). Este punto es conocido como Punto de Máxima Potencia (MPP, por sus siglas en inglés), y se corresponde con las "rodillas" -como se denomina en el argot- de la curva de la Fig. 1 , en las que se verifica un valor de la corriente lmax y de voltaje Vmax . Photovoltaic solar panels have a complex relationship between their operating environment and the maximum power they can produce. The behavior of the solar panel is not linear, which is characterized by the filling factor, FF, which is defined as the ratio between the maximum removable power of the solar panel and the product VQ C I SC . (maximum voltage and maximum intensity, respectively, of the first quadrant; see Fig. 1). For each set of operating conditions, solar panels have a unique point where the current (I) and voltage (V) values of the panel provide maximum power output. These values correspond to a specific value of the load resistance equal to V / 1, in accordance with Ohm's Law. The power will be given by P = V I. A photovoltaic panel has an approximately exponential relationship between current and voltage. From the basic circuit theory, the power delivered to or from a device is optimal (a maximum) when the derivative (ie the slope) dl / dV of the curve lV It is equal to the quotient l V (where dP / dV = 0). This point is known as Maximum Power Point (MPP), and corresponds to the "knees" - as it is called on the slang - of the curve of Fig. 1, in which a value of current l max and voltage V max .
En esta Fig. 1 se muestran únicamente dos curvas: una curva inferior nocturna (N), para un irradiación solar (por ejemplo W/m2) nulo o muy baja y una curva superior diurna (D), en la que la intensidad suministrada tiene valores positivo, hasta un valor Voc del voltaje, cambiando la corriente de sentido a partir de este valor. Para cada valor de irradiación solar existe una curva D característica. In this Fig. 1 only two curves are shown: a lower nocturnal curve (N), for a solar irradiation (for example W / m 2 ) null or very low and a diurnal upper curve (D), in which the intensity supplied It has positive values, up to a V oc value of the voltage, changing the direction current from this value. For each value of solar irradiation there is a characteristic D curve.
En muchas aplicaciones es importante el seguimiento de este MPP, para mantener en el máximo la entrega de potencia. Para ello, son conocidos los dispositivos de seguimiento del punto de máxima potencia (MPPT, ó "Máximum Power Point Tracking", en idioma inglés). In many applications it is important to track this MPP, to keep the maximum power delivery. For this, the maximum power point tracking devices (MPPT, or "Maximum Power Point Tracking", in English language) are known.
El MPPT, o seguidor del punto de máxima potencia, es un convertidor DC/DC controlado por un microcontrolador que lleva un algoritmo integrado para maximizar la producción de un panel, algunos funcionan con sensores que monitorizan radiación y temperatura, por ejemplo: cuando la temperatura del panel aumenta, decae la tensión que es capaz de subministrar el modulo, pero al mismo tiempo aumenta también la intensidad. Si el control del MPPT hace disminuir el voltaje, provocando una subida de la intensidad, la potencia se mantiene sensiblemente constante. Lo mismo, pero a la inversa, es aplicable cuando disminuye la radiación sobre el panel solar fotovoltaico, en condiciones de frío, nubes, salida y puesta del sol. Las ganancias pueden ser de entre el 20% y el 40%. The MPPT, or follower of the maximum power point, is a DC / DC converter controlled by a microcontroller that carries an integrated algorithm to maximize the production of a panel, some work with sensors that monitor radiation and temperature, for example: when the temperature from the panel increases, the voltage that is capable of supplying the module decreases, but at the same time the intensity also increases. If the MPPT control decreases the voltage, causing a rise in intensity, the power remains substantially constant. The same, but vice versa, is applicable when the radiation on the photovoltaic solar panel decreases, in cold conditions, clouds, sunrise and sunset. The earnings can be between 20% and 40%.
Los dispositivos MPPT se sirven de diferentes tipos de algoritmos, por ejemplo MPPT del tipo de eficiencia en corriente, que permite en todo momento almacenar el máximo de potencia en la batería, a una tensión tal que la potencia es máxima para la potencia radiante captada por los paneles en cada momento. El MPPT de la presente invención utiliza un algoritmo de este tipo. La energía eléctrica captada es entregada a una batería, gestionado mediante el MPPT, y la batería alimenta el consumo eléctrico (luminarias, controles de riego, pequeños motores,...) y el excedente sobre el consumo queda almacenado en la batería. Estos sistemas conocidos, de los que se conocen muchas realizaciones presentan inconvenientes. El primero es que en ausencia de demanda, puede enviarse al consumo eléctrico un exceso de energía, ya sea desde la batería o directamente desde laos paneles solares. Es el caso de un luminaria que permanece encendida toda la noche innecesariamente. Si se trata de una luminaria autónoma, por ejemplo en un espacio urbano, sin alimentación de red eléctrica, la batería se descarga y no puede alimentar otros dispositivos se, por ejemplo, el día siguiente amanece nublado. MPPT devices use different types of algorithms, for example MPPT of the current efficiency type, which allows to store the maximum power in the battery at all times, at a voltage such that the power is maximum for the radiant power captured by the panels at every moment. The MPPT of the present invention uses such an algorithm. The captured electrical energy is delivered to a battery, managed by the MPPT, and the battery feeds the electrical consumption (luminaires, irrigation controls, small motors, ...) and the surplus over consumption is stored in the battery. These known systems, of which many embodiments are known, have drawbacks. The first is that in the absence of demand, excess energy can be sent to electricity consumption, either from the battery or directly from the solar panels. This is the case of a luminaire that stays on all night unnecessarily. If it is an autonomous luminaire, for example in an urban space, without power supply, the battery is discharged and cannot power other devices, for example, the next day is cloudy.
Por otra parte, los consumos se programan estáticamente, es decir se asigna a cada franja horaria una potencia eléctrica fija a entregar a la luminaria (u otros consumos) desde la batería, sin tener en cuenta las condiciones presentes reales ni en cuanto a disponibilidad de energía radiante, ni estado de carga de la batería, ni demanda de potencia real necesaria requerido por la luminaria. On the other hand, the consumptions are programmed statically, that is, a fixed electric power is assigned to each time slot to be delivered to the luminaire (or other consumptions) from the battery, without taking into account the actual present conditions or in terms of availability of Radiant energy, no state of charge of the battery, nor demand of real power required by the luminaire.
Finalmente, para un emplazamiento geográfico concreto de la luminaria existen datos históricos y condiciones geoclimáticas controlables que harían predictible la disponibilidad de energía radiante para cada día del año concreto. Además, las características de consumo de una instalación concreta también podrían ser predictibles. No obstante en los dispositivos actuales de luminarias fotovoltaicas autónomas no se conoce que aporten esta funcionalidad de predictibilidad, sino que desde la batería entregan toda la potencia demandada por el consumo o fijada para el mismo si tener en cuenta las circunstancias prácticas reales o predictibles. Finally, for a specific geographical location of the luminaire there are historical data and controllable geo-climatic conditions that would make the availability of radiant energy predictable for each day of the specific year. In addition, the consumption characteristics of a particular installation could also be predictable. However, in current autonomous photovoltaic luminaire devices it is not known that they provide this predictability functionality, but that from the battery they deliver all the power demanded by the consumption or set for it if taking into account the real or predictable practical circumstances.
En definitiva, la energía no es acumulada ni consumida con eficacia. La presente invención tiene por finalidad proporcionar un sistema que permita dar solución a estos inconvenientes, racionalizar el consumo energético y adaptar a la demanda real y de un modo predictible tanto la carga de la batería como la entrega de energía. Explicación de la invención In short, energy is not accumulated or consumed effectively. The present invention aims to provide a system that allows to solve these problems, rationalize energy consumption and adapt to the real demand and in a predictable way both the battery charge and the energy delivery. Explanation of the invention.
A tal finalidad, el objeto de la presente invención es un sistema para la gestión de la potencia instantánea en luminarias alimentadas por un sistema autónomo de energía solar fotovoltaica, que comprende paneles solares fotovoltaicos que cargan una batería, la cual alimenta las luminarias, que en su esencia se caracteriza porque integra, en único dispositivo, dos funcionalidades: - unos primeros medios de computación con un algoritmo MPPT del tipo de eficiencia en corriente, que permite en todo momento la primera funcionalidad almacenar en una batería el máximo de potencia procedente de los paneles solares, y - unos segundos medios de computación, dotados de entradas de datos sobre el estado de carga de la batería, y de un algoritmo predictivo que tiene la funcionalidad de calcular la potencia a entregar de la batería a la luminaria, en función del día del año y la hora, de las coordenadas geográficas, y del estado de carga de la batería. To this end, the object of the present invention is a system for the management of instantaneous power in luminaires powered by an autonomous system of photovoltaic solar energy, comprising photovoltaic solar panels that charge a battery, which feeds the luminaires, which in Its essence is characterized in that it integrates, in a single device, two functionalities: - First computing means with an MPPT algorithm of the type of current efficiency, which allows at all times the first functionality to store in a battery the maximum power from the solar panels, and - a few second computing means, provided with data inputs on the state of charge of the battery, and a predictive algorithm that has the functionality of calculating the power to be delivered from the battery to the luminaire, depending on the day of the year and time, geographic coordinates, and battery charge status.
Los primeros medios de computación y los segundos medios de computación pueden estar integrados em un único microcontrolador, o bien cada uno de ellos puede estar realizado en un microcontrolador independiente. Preferentemente, el sistema de la invención comprende adicionalmente medios para proporcionar las coordenadas geográficas del sistema. The first computing means and the second computing means can be integrated in a single microcontroller, or each of them can be made in an independent microcontroller. Preferably, the system of the invention further comprises means for providing the geographic coordinates of the system.
Según una realización preferida, el sistema comprende medios de memoria para almacenamiento de datos históricos, tales como por ejemplo: carga solar diaria, duración en horas de la noche, potencia total absorbida cada día, potencia total consumida por las luminarias cada día, energía en las baterías antes y después de la carga, duración del consumo, y porque dicho algoritmo predictivo está adaptado para calcula la potencia a entregar, también en función de los valores históricos para dicho día y dicha hora. According to a preferred embodiment, the system comprises memory means for storing historical data, such as for example: daily solar charge, duration in night hours, total power absorbed every day, total power consumed by the luminaires every day, energy in the batteries before and after charging, duration of consumption, and because said predictive algorithm is adapted to calculate the power to be delivered, also based on historical values for said day and said time.
Preferentemente los dos microcontroladores tendrán una comunicación continua entre sí para el intercambio de variables. Preferably, the two microcontrollers will have continuous communication with each other for the exchange of variables.
De acuerdo con otra realización preferida, se proporcionan medios para disminuir gradualmente la intensidad lumínica a medida que se produce la descarga de la batería, mediante diminución de voltaje, para permitir que la luminaria no se apague nunca durante su funcionamiento. In accordance with another preferred embodiment, means are provided to gradually decrease the light intensity as the battery discharge occurs, by decreasing voltage, to allow the luminaire to never turn off during operation.
Según otra característica del sistema de la presente invención, éste comprende medios de comunicación GPRS. De acuerdo con otra realización preferida de la invención, el sistema comprende un sensor de presencia, para provocar un aumento temporal de la intensidad lumínica de las luminarias. According to another feature of the system of the present invention, this comprises GPRS communication means. According to another preferred embodiment of the invention, the system comprises a presence sensor, to cause a temporary increase in the luminous intensity of the luminaires.
El sistema de la invención puede comprender puertos de comunicaciones, tales como Bluetooth®, RS232 cableada, Ethernet®, GPRS, etc., para la descarga de datos o para introducción de datos para la programación de las características de control. The system of the invention may comprise communication ports, such as Bluetooth®, wired RS232, Ethernet®, GPRS, etc., for data downloading or for entering data for programming control features.
Se han previsto medios de sincronización por radiofrecuencia de una luminaria con otras luminarias análogas. Radiofrequency synchronization means of a luminaire with other similar luminaires are provided.
Preferiblemente, las luminarias son luminarias de LEDs cuya intensidad lumínica es regulada mediante modulación en ancho de pulso (PWM). No obstante, los principios y reglas técnicas de la presente invención también pueden ser aplicados en consumos diferentes de las luminarias, por ejemplo controles de riego, pequeños motores, sistemas de cámaras de tráfico, etc. Breve descripción de los dibujos Preferably, the luminaires are LED luminaires whose light intensity is regulated by pulse width modulation (PWM). However, the technical principles and rules of the present invention can also be applied in consumptions other than luminaires, for example irrigation controls, small engines, traffic camera systems, etc. Brief description of the drawings
A continuación de hará la descripción detallada de un modo de realización preferido, aunque no exclusivo, del sistema de la presente invención, para cuya mejor comprensión de acompaña de unos dibujos, dados meramente a título de ejemplo ilustrativo no limitativo, en los cuales: la Fig. 1 es una curva característica l-V de un panel solar fotovoltaico estándar; la Fig. 2 es un diagrama de bloques de la arquitectura del sistema de la presente invención; la Fig. 3 es una gráfica ilustrativa del flujo lumínico en función el tiempo para cuando se activa un sensor de presencia o movimiento, en el caso de una luminaria; la Fig. es una gráfica que ilustra la programación de la en el tiempo del flujo lumínico para diferentes niveles de carga de la batería, también en el caso de una luminaria; y la Fig. 5 es una vista en perspectiva que muestra un dispositivo que aloja en una carcasa los sistemas de la presente invención, y en que se ilustran las diferentes conexiones a la luminaria, los paneles solares, la batería, otros consumos y los puertos de E/S para comunicaciones y periféricos.  Next, it will make the detailed description of a preferred, but not exclusive, embodiment of the system of the present invention, for whose better understanding it accompanies some drawings, given merely by way of non-limiting illustrative example, in which: Fig. 1 is a characteristic curve lV of a standard photovoltaic solar panel; Fig. 2 is a block diagram of the system architecture of the present invention; Fig. 3 is an illustrative graph of the light flow as a function of time for when a presence or movement sensor is activated, in the case of a luminaire; Fig. is a graph illustrating the programming of the time of the luminous flux for different battery charge levels, also in the case of a luminaire; and Fig. 5 is a perspective view showing a device housing the systems of the present invention in a housing, and illustrating the different connections to the luminaire, solar panels, battery, other consumptions and ports I / O for communications and peripherals.
Descripción de unos modos de realización de la invención Description of embodiments of the invention
El objetivo de la presente invención es proporcionar un sistema 100 de gestión por microcontrolador integrado en una luminaria FV 1 , regulada por PWM (modulación en ancho de pulso). El sistema 100 se encargará de gestionar el encendido y la potencia instantánea en la luminaria LED 1 y su nivel luminoso. También pueden gestionarse otros consumos LED 7, por ejemplo de señalización o indicación. El sistema determinará las horas de nocturnidad y actuará en consecuencia para efectuar una gestión de encendido adecuada. Las luminarias 1 son alimentadas por un sistema autónomo de energía solar a base de paneles solares fotovoltaicos 2 que cargan una batería 3 de 12/24V, la cual alimenta a su vez las luminarias 1. The objective of the present invention is to provide a microcontroller management system 100 integrated in a PV 1 luminaire, regulated by PWM (pulse width modulation). The system 100 will be responsible for managing the ignition and instantaneous power in the LED luminaire 1 and its luminous level. Other LED consumption 7 can also be managed, for example signaling or indication. The system will determine the nighttime hours and act accordingly to carry out proper power-up management. The luminaires 1 are powered by an autonomous solar energy system based on photovoltaic solar panels 2 that charge a 12 / 24V battery 3, which in turn feeds the luminaires 1.
El sistema comprende: The system includes:
- un primer microcontrolador 4 con un algoritmo MPPT del tipo de eficiencia en corriente, que permite en todo momento almacenar en la batería 3 el máximo de potencia procedente de los paneles solares 2, - a first microcontroller 4 with an MPPT algorithm of the current efficiency type, which allows the maximum power from the solar panels 2 to be stored at battery 3 at all times,
- medios para proporcionar las coordenadas geográficas del sistema 100, que pueden ser pre-programados en fábrica o mediante GPS o un sistema de posicionamiento equivalente, - means for providing the geographical coordinates of the system 100, which can be pre-programmed at the factory or by GPS or an equivalent positioning system,
- medios de memoria 6 para almacenamiento de datos históricos, por ejemplo una memoria programable doblemente borrable EEPROM. Los datos pueden ser: carga solar diaria, duración en horas de la noche, potencia total absorbida cada día, potencia total consumida por las luminarias cada día, energía en la batería 3 antes y después de la carga, duración del consumo, etc, - memory means 6 for storing historical data, for example a programmable double erasable EEPROM memory. The data can be: daily solar charge, duration at night, total power absorbed every day, total power consumed by the luminaires every day, battery power 3 before and after charging, duration of consumption, etc,
- un segundo microcontrolador 5 dotado de entradas de datos sobre el estado de carga de la batería 3, y provisto de un algoritmo predictivo que calcula la potencia a entregar de la batería 3 a la luminaria 1 , en función del día del año y la hora, de los valores históricos para dicho día y dicha hora, de las coordenadas geográficas, y del estado de carga de la batería 3. - a second microcontroller 5 equipped with data inputs on the state of charge of the battery 3, and provided with a predictive algorithm that calculates the power to be delivered from the battery 3 to the luminaire 1, based on the day of the year and the time , of the historical values for said day and said hour, of the geographical coordinates, and of the state of charge of the battery 3.
En la Fig. 2 se puede ver el diagrama de bloques del sistema 100. El primer microcontrolador 4 está conectado con los paneles solares 2, a través de un "shunt" de carga 21 , y con la batería 3 por medio de una salida 31. El microcontrolador 4 gestiona mediante algoritmo MPPT de eficacia en corriente el aporte de energía a la batería 3. El segundo microcontrolador 5, que contiene el algoritmo predictivo para la gestión de la alimentación de la luminaria 1 (descarga de la batería), está comunicado con la luminaria 1 y la batería 3. Uno de los puntos centrales del algoritmo es la capacidad para disminuir gradualmente la intensidad lumínica en la luminaria 1 a medida que se produce la descarga de la batería 3, mediante diminución de voltaje, para permitir que la luminaria 1 no se apague nunca durante su funcionamiento (ver Fig. 4). El sistema 100 comprende una serie de E/S 8 y puertos de comunicaciones, tales como Bluetooth, RS232 cableada, Ethernet, GPRS, etc., para la descarga de datos o para introducción de datos y para la programación de las características de control. In Fig. 2 the block diagram of the system 100 can be seen. The first microcontroller 4 is connected to the solar panels 2, through a charge shunt 21, and with the battery 3 by means of an outlet 31 The microcontroller 4 manages the energy supply to the battery by means of an MPPT algorithm of current efficiency. The second microcontroller 5, which contains the predictive algorithm for the management of the power supply of the luminaire 1 (battery discharge), is communicated with the luminaire 1 and the battery 3. One of the central points of the algorithm is the ability to decrease Gradually the light intensity in the luminaire 1 as the discharge of the battery 3 occurs, by means of a decrease in voltage, to allow the luminaire 1 to never turn off during operation (see Fig. 4). The system 100 comprises a series of I / O 8 and communication ports, such as Bluetooth, wired RS232, Ethernet, GPRS, etc., for data downloading or for data entry and for programming control features.
Existen 5 variables para el cálculo del algoritmo predictivo: 1- Coordenadas Geográficas There are 5 variables for the calculation of the predictive algorithm: 1- Geographic Coordinates
Con las coordenadas geográficas de la ubicación del dispositivo, se puede predecir que radiación promedio tendrá durante todo el año, a partir de los históricos que se disponen en la base de datos de la Nasa. 2- Fecha Actual  With the geographical coordinates of the location of the device, it can be predicted that the average radiation will have throughout the year, from the historical data available in the Nasa database. 2- Current Date
Con la fecha actual (recuperada del reloj interno del segundo microcontrolador 5) y los datos del punto anterior, se puede saber la energía obtenible de día con los paneles solares y por lo tanto de la energía que se puede consumir durante la noche.  With the current date (recovered from the internal clock of the second microcontroller 5) and the data of the previous point, the energy obtainable by day with the solar panels and therefore the energy that can be consumed during the night can be known.
3- Acumulados Históricos 3- Historical Accumulated
El sistema genera su propia tabla de valores históricos para abastecer la base de datos de cálculo. Estos parámetros son: la carga solar diaria, el valor de la batería antes y después de la carga El consumo de energía, la duración de consumo, etc  The system generates its own table of historical values to supply the calculation database. These parameters are: daily solar charge, the value of the battery before and after charging Energy consumption, consumption duration, etc.
4- Estado Batería Actual El estado de la batería 3, en todo momento es importante por si hay días en que la radiación solar no llega a los promedios, ya sea por inclemencias del tiempo o otras causas. Este dato permite proteger a la batería 3, que es el punto más delicado de la instalación para evitar una descarga que deje el sistema 100 sin suministro. 4- Current Battery Status The state of the battery 3, at all times is important in case there are days when solar radiation does not reach the averages, either due to inclement weather or other causes. This data allows to protect the battery 3, which is the most delicate point of the installation to avoid a discharge that leaves the system 100 without supply.
5- Potencia radiada en los paneles solares 5- Radiated power in solar panels
La potencia radiada en los paneles solares 2 es una potencia instantánea variable en el tiempo y depende de la radiación solar existente. El algoritmo va siguiendo esa variación para obtener la máxima potencia de carga.  The radiated power in solar panels 2 is an instantaneous power variable in time and depends on the existing solar radiation. The algorithm follows that variation to obtain maximum load power.
El funcionamiento básico es el siguiente. El proceso empieza a demandar corriente al panel solar 2 y va incrementando. Al llegar a su máximo punto, el panel solar 2 hace bajar la tensión y el algoritmo lo detecta y deja de incrementar la petición de corriente. Cuando se producen variaciones de radiación (por ejemplo al pasar una nube por encima) el sistema 100 reduce la petición de corriente para mantener el punto de máxima potencia (MPPT, "Máximum PowerPoint Tracking'). Ver Fig. 1 The basic operation is as follows. The process begins to demand current from solar panel 2 and is increasing. Upon reaching its maximum point, the solar panel 2 lowers the voltage and the algorithm detects it and stops increasing the current request. When radiation variations occur (for example when passing a cloud over) the system 100 reduces the current request to maintain the maximum power point (MPPT, "Maximum PowerPoint Tracking '). See Fig. 1
Con estas variables se efectúan dos bloques de cálculos: el cálculo de carga de la batería y el cálculo de descarga (o consumo). El de carga actúa sobre el microcontrolador MPPT 4 de los paneles solares 2 y permite aumentar la eficiencia de carga de la batería 3 un 30% respecto a los métodos tradicionales de corriente constante. Para el cálculo de descarga o consumo, se prevé la caída del sistema al no extremar el consumo en momentos que la carga no satisface las previsiones establecidas. El cálculo de la descarga o consumo actúa sobre el microcontrolador 5 de luminaria, que ejecuta el algoritmo predictivo. With these variables two blocks of calculations are made: the calculation of battery charge and the calculation of discharge (or consumption). The charge acts on the MPPT microcontroller 4 of the solar panels 2 and allows to increase the charging efficiency of the battery 3 by 30% compared to traditional constant current methods. For the calculation of discharge or consumption, the fall of the system is anticipated as the consumption is not extreme at times when the load does not meet the established forecasts. The calculation of the discharge or consumption acts on the luminaire microcontroller 5, which executes the predictive algorithm.
Cada bloque de cálculo actúa sobre un microcontrolador independiente para hacer más potente el cálculo instantáneo. Entre los microcontroladores existe una comunicación continua de intercambio de variables. La suma de estos dos bloques permite conseguir un sistema que garantice la máxima eficiencia energética posible. A continuación se explica el funcionamiento del algoritmo predictivo ejecutado en el segundo microcontrolador: Each calculation block acts on an independent microcontroller to make the instant calculation more powerful. Among the microcontrollers there is a continuous communication of variable exchange. The sum of these two blocks allows to achieve a system that guarantees the maximum possible energy efficiency. The operation of the predictive algorithm executed in the second microcontroller is explained below:
Este algoritmo se descompone en dos pasos secuenciales: This algorithm is broken down into two sequential steps:
1. Cálculo del consumo instantáneo 1. Calculation of instant consumption
2. Repartición de la carga durante la noche  2. Distribution of cargo overnight
1. Cálculo del consumo instantáneo 1. Calculation of instant consumption
Explicación de variables: Explanation of variables:
MCP (Máximo consumo permitido): Se determina a partir de la radiación promedio del lugar donde está ubicado el sistema. Se mide en porcentaje teniendo un rango que va del 10% al 25%. MCP (Maximum consumption allowed): It is determined from the average radiation of the place where the system is located. It is measured as a percentage having a range from 10% to 25%.
EBH (Estado Batería Histórico). Es el estado de carga promedio de la batería en los 5 días anteriores. Se determina justo antes de hacerse de noche. Se mide en porcentaje teniendo un rango que va de 40% hasta 100% EBH (Historic Battery Status). It is the average state of charge of the battery in the previous 5 days. It is determined just before nightfall. It is measured in percentage having a range from 40% to 100%
Cl (Consumo instantáneo). Se determina a partir de la variación que a sufrido el estado de carga de la batería al finalizar el día comparado con el EBH. Se mide en porcentaje teniendo un rango que va de 5% hasta MCP. Cl (Instant consumption). It is determined from the variation that the state of charge of the battery has suffered at the end of the day compared to EBH. It is measured in percentage having a range that goes from 5% to MCP.
Ejemplo de cálculo 1 Calculation example 1
Así, por ejemplo si el sistema tiene las variables siguiente: Thus, for example if the system has the following variables:
- Cl = 13% (por la noche se consumirá un 13% de la carga que tiene la batería)  - Cl = 13% (13% of the battery charge will be consumed at night)
- MCP = 22%: (que como mucho se puede consumir un 22% de la carga de la batería)  - MCP = 22%: (that at most 22% of the battery charge can be consumed)
- EBH = 80% (la batería está cargada hasta el 80% de su capacidad) En estas condiciones, - EBH = 80% (the battery is charged up to 80% of its capacity) In these conditions,
- Si la batería pasa de 80% a 75% el Cl se decrementa en un 1% pasando a 12%- If the battery goes from 80% to 75% the Cl decreases by 1% to 12%
- Si la batería pasa de 80% a 85% se mantiene el Cl en 13%. Si durante 4 días seguidos, la batería va aumentando su estado de carga, el Cl se incrementa un- If the battery goes from 80% to 85%, the Cl is maintained at 13%. If for 4 days in a row, the battery increases its state of charge, the Cl increases by
0,4% pasando a 13,4%. 0.4% going to 13.4%.
Ejemplo de cálculo 1 Así, por ejemplo si el sistema tiene las variables siguiente: Calculation example 1 Thus, for example if the system has the following variables:
- Cl = 22% (por la noche se consumirá un 22% de la carga que tiene la batería)  - Cl = 22% (22% of the battery charge will be consumed at night)
- MCP = 22% (que como mucho se puede consumir un 22% de la carga de la batería)  - MCP = 22% (which at most can consume 22% of the battery charge)
- EBH = 80% (la batería está cargada hasta el 80% de su capacidad)  - EBH = 80% (the battery is charged up to 80% of its capacity)
En estas condiciones, In these conditions,
-Si la batería pasa de 80% a 75% el Cl disminuye en un 1% pasando a 21% -If the battery goes from 80% to 75% the Cl decreases by 1% going to 21%
-Si la batería pasa de 80% a 85% se mantiene el Cl en 22%. Si durante 4 días seguidos, la batería va aumentando su estado, Cl no se puede incrementar ya que ha llegado al máximo permitido MCP. -If the battery goes from 80% to 85%, the Cl is maintained at 22%. If, for 4 days in a row, the battery increases its status, Cl cannot be increased since it has reached the maximum allowed MCP.
Así, el consumo de batería se fija a partir de la duración de la noche. Thus, the battery consumption is set from the duration of the night.
En verano se podrá consumir diariamente hasta un 25% de la capacidad de la batería, mientras que en invierno hasta un 10% de su capacidad. In summer you can consume up to 25% of the battery capacity daily, while in winter up to 10% of its capacity.
Con estos límites superiores, el consumo lo determinará el estado actual de la batería respecto a los 5 últimos días y su tendencia. Así se obtiene el parámetro llamado Consumo Instantáneo (Cl) que depende del histórico de la capacidad de la batería. 2. Repartición de la carga durante la noche With these upper limits, the consumption will be determined by the current state of the battery with respect to the last 5 days and its trend. This gives the parameter called Instant Consumption (Cl) that depends on the historical capacity of the battery. 2. Distribution of cargo overnight
Una vez conocido Cl, se determina cómo se reparte esta carga a lo largo de la noche. Inicialmente se da máxima potencia lumínica a la luminaria (durante dos horas si es posible) para ir reduciendo paulatinamente. En la Fig. 4 se ilustra un caso en que el flujo máximo de iluminación se mantiene durante 1 hora para una carga de la batería del 15%, 2 horas para una carga de la batería del 30%, 3 horas para una carga de la batería del 45%, y así sucesivamente hasta mantener 6 h para una carga del 90 %. Posteriormente la iluminación de la luminaria LED (o la descarga de la batería) disminuye paulatinamente, excepto en el caso de la carga de la batería se mantenga al 100%. Once Cl is known, it is determined how this load is distributed throughout the night. Initially, the luminaire is given maximum light power (for two hours if possible) to gradually reduce it. A case in which the maximum illumination flux is maintained for 1 hour for a 15% battery charge, 2 hours for a 30% battery charge, 3 hours for a battery charge is illustrated in Fig. 4 45% battery, and so on until maintaining 6 h for a 90% charge. Subsequently, the illumination of the LED luminaire (or the discharge of the battery) decreases gradually, except in the case of battery charging, it is maintained at 100%.
Los criterios de programación algorítmica dinámica pueden ser los siguientes The dynamic algorithmic programming criteria can be the following
Figure imgf000014_0001
Figure imgf000014_0001
Ejemplo - 1 (verano): Example - 1 (summer):
Cl = 20% Cl = 20%
La carga de la batería es de 80% (EBH = 80%)  The battery charge is 80% (EBH = 80%)
Con una Batería de 210Ah (Capacidad Total de la Batería CTB = 210) Con una carga que consume 4A (IL Intensidad Load = 4A)  With a 210Ah Battery (Total Battery Capacity CTB = 210) With a load that consumes 4A (IL Load Intensity = 4A)
Con una noche que dura 10h  With a night that lasts 10h
Si CF es el Consumo Final, entonces la curva de consumo será : CF = Cl * EBH * CTB = 20% * 80% * 210A = 33,6A Las 2 primeras horas 4Ah de consumo (100%) 33,6A - 4A * 2 = 25,6A Dividido en 8h => 25,6A/8h = 3,2A Las 8 restantes: 3,2A de consumo (80%) Ejemplo - 2 (invierno) If CF is the Final Consumption, then the consumption curve will be: CF = Cl * EBH * CTB = 20% * 80% * 210A = 33.6A The first 2 hours 4Ah of consumption (100%) 33.6A - 4A * 2 = 25.6A Divided into 8h => 25.6A / 8h = 3.2A The remaining 8: 3.2A consumption (80%) Example - 2 (winter)
Cl = 12% Cl = 12%
La carga de la batería es de 70% (EBH = 70%)  The battery charge is 70% (EBH = 70%)
Con una Batería de 210Ah (Capacidad Total de la Batería CTB = 210) With a 210Ah Battery (Total Battery Capacity CTB = 210)
Con una carga que consume 4A (IL Intensidad Load = 4A) With a load that consumes 4A (IL Load Intensity = 4A)
Con una noche que dura 14h  With a night that lasts 14h
La curva de consumo será:  The consumption curve will be:
El consumo final es (CF): The final consumption is (CF):
CF = Cl * EBH * CTB = 12% * 70% * 21 OA = 17.64A Las 2 primeras horas 2,8Ah de consumo (70%) 17,64A - 2,8A * 2 = 12.04A Dividido en 12h => 12,04A/12h = 1A CF = Cl * EBH * CTB = 12% * 70% * 21 OA = 17.64A The first 2 hours 2.8Ah of consumption (70%) 17.64A - 2.8A * 2 = 12.04A Divided into 12h => 12 , 04A / 12h = 1A
Las 12 restantes: 1A de consumo (25%) The remaining 12: 1A of consumption (25%)
El sistema puede comprender un sensor de presencia (SENSOR DE PRESENCIA en la Fig. 2), movimiento o ruido, para provocar "peticiones" aumento temporal del flujo (intensidad lumínica) de las luminarias 1 , interrumpiendo el anterior algoritmo momentáneamente y retornando a su ejecución tras pasados un determinado periodo de tiempo. Ver Fig. 3, en que se ejemplifican algunas de estas peticiones. De esta manera, esta algorítmica permite disminuir la intensidad lumínica porcentualmente a medida que la batería se descargue (disminución de voltaje) para permitir que la luminaria no se apague nunca durante su funcionamiento. El sistema de la invención permite administrar y prolongar la vida útil de las baterías reduciendo el número de ciclos de carga y descarga mediante la anterior programación dinámica en horas de funcionamiento. El sistema "compacta" las funciones de regulación de carga/descarga de baterías y regulación de la intensidad lumínica en un único dispositivo electrónico. The system may comprise a presence sensor (PRESENCE SENSOR in Fig. 2), movement or noise, to cause "requests" to temporarily increase the flux (light intensity) of the luminaires 1, interrupting the previous algorithm momentarily and returning to its execution after a certain period of time. See Fig. 3, in which some of these requests are exemplified. In this way, this algorithmic allows to decrease the light intensity in percentage as the battery is discharged (voltage decrease) to allow the luminaire to never turn off during operation. The system of the invention allows to manage and prolong the life of the batteries by reducing the number of charge and discharge cycles by means of the previous dynamic programming in operating hours. The system "compacts" the functions of regulation of charge / discharge of batteries and regulation of the light intensity in a single electronic device.
Esta unión de ambas funciones permite la rápida implementación de automatismos totalmente autónomos (luminarias, riego, controles autónomos,...). La integración de un mini ordenador permite la rápida programación y adaptación de cualquier equipo a sus requisitos. This union of both functions allows the rapid implementation of fully autonomous automatisms (luminaires, irrigation, autonomous controls, ...). The integration of a mini computer allows the rapid programming and adaptation of any equipment to your requirements.
Además, todo ello permite que los dispositivos del sistema de la invención se presente integrado en una carcasa estanca 10 de aluminio, con un elevado nivel de estanqueidad y rigidez. No se requiere de cuadro eléctrico de protección, pues el cableado del sistema se efectúa en el interior de la carcasa 10. In addition, all this allows the devices of the system of the invention to be present integrated in an aluminum tight housing 10, with a high level of tightness and rigidity. No electrical protection panel is required, as the system is wired inside the housing 10.
Existe la posibilidad de conectar una fuente de alimentación AC/DC 81 externa con el objetivo de cargar la batería desde la red eléctrica en los momentos de carga mínima. Para que la fuente de alimentación externa no consuma nada mientras funcione el sistema fotovoltaico, la unidad de control controlará el encendido de la fuente mediante un relé. En caso de peligrar la capacidad de carga de la batería, el sistema activará la fuente permitiendo la carga de la batería a través de la red. Una vez esté cargada, el sistema desconectará la fuente volviendo a su estado autónomo fotovoltaico. Aunque ello queda fuera del alcance de la invención. El sistema dispondrá de dos sondas de temperatura NTC: una primera sonda 31 en la batería (NTC1 SONDA TE P_BAT en la Fig. 2) y una segunda sonda en la placa del dispositivo electrónico (NTC2 SONDA TE P_PLACA en la Fig. 2) integrada en la E/S 8. La primera sonda de temperatura NTC 31 de la batería permitirá adaptar la tensión de carga a la variación de temperatura, garantizando un uso óptimo de la batería. There is the possibility of connecting an external AC / DC 81 power supply in order to charge the battery from the mains at minimum load times. So that the external power supply does not consume anything while the photovoltaic system is operating, the control unit will control the source ignition by means of a relay. If the battery's charge capacity is compromised, the system will activate the source allowing the battery to be charged through the network. Once charged, the system will disconnect the source returning to its autonomous photovoltaic state. Although this is outside the scope of the invention. The system will have two NTC temperature probes: a first probe 31 in the battery (NTC1 TE P_BAT PROBE in Fig. 2) and a second probe in the electronic device board (NTC2 TE P_PLACA PROBE in Fig. 2) integrated in the I / O 8. The first temperature probe NTC 31 of the battery will allow to adapt the charging voltage to the temperature variation, guaranteeing optimal use of the battery.
La salida/entrada de COMMS permite conectar diferentes módulos de conexión inalámbrica externos como Bluetooth, RS232 por cable, Ethernet o GPRS para la descarga de datos o para la programación de las características de control. The COMMS output / input allows you to connect different external wireless connection modules such as Bluetooth, RS232 cable, Ethernet or GPRS for data download or for programming control features.
Una electrónica de radiofrecuencia para sincronizar las diferentes luminarias mediante transceptores para realizar la conexión y desconexión. Así mismo dispondrá de unos interruptores para la configuración de la "máster" y todas las esclavas que se les asignará un número identificador. A radio frequency electronics to synchronize the different luminaires through transceivers to connect and disconnect. It will also have switches for the configuration of the "master" and all slaves that will be assigned an identification number.
Los componentes electrónicos de la placa serán elegidos en rango de temperatura extendida. Un "switch de 8" permite seleccionar la capacidad de las baterías medidas en amperios (A), además de poder seleccionar si se desea sensor de presencia o no, y seleccionar otros modos de funcionamiento (posible ampliación). The electronic components of the board will be chosen in extended temperature range. A "switch of 8" allows you to select the capacity of the batteries measured in amps (A), in addition to being able to select whether a presence sensor is desired or not, and select other operating modes (possible extension).
Se prevé una entrada para poder integrar sensores de presencia o movimiento. En el caso que disponga de sensores de presencia, existirá otro modo de funcionamiento adaptado a las necesidades lumínicas especificadas para cada aplicación. El dispositivo permite la personalización de la aplicación. An entry is planned to integrate presence or movement sensors. If you have presence sensors, there will be another mode of operation adapted to the lighting needs specified for each application. The device allows customization of the application.
Además también se prevé una entrada opcional (INPUT OPCIONAL, en la Fig. 2) en el bloque E/S 8, para poder agregar componentes opcionales (bus de expansión). In addition, an optional input (OPTIONAL INPUT, in Fig. 2) is also provided in the I / O block 8, in order to add optional components (expansion bus).
En la citada memoria EEPROM se almacena los datos obtenidos durante el día mediante el sistema de seguimiento o monitorización, según se ha explicado más arriba. Los datos guardados mediante este sistema de seguimiento o monitorización podrán ser descargados para analizar el funcionamiento y tener un historial de los equipos. En las futuras revisiones del proyecto se podrá acceder remotamente a la descarga vía GPRS u otras vías de comunicación. In the aforementioned EEPROM memory, the data obtained during the day is stored through the monitoring or monitoring system, as explained more above. The data saved through this monitoring or monitoring system can be downloaded to analyze the operation and have a history of the equipment. In future revisions of the project, the download can be accessed remotely via GPRS or other communication channels.
Unos LED 7 de señalización o indicación instalados en una de las caras de la carcasa estanca 10 (Fig. 5) y alimentados por un "shunt" 71 sirven para dar diferente información de tipo luminoso.  A signaling or indication LED 7 installed on one of the faces of the waterproof housing 10 (Fig. 5) and powered by a "shunt" 71 are used to give different information of a light type.
Descrita suficientemente la naturaleza de la presente invención, se hace constar que cuanto no altere su principio queda bajo el alcance de protección de las reivindicaciones. En este sentido, un experto en la materia entenderá que las luminarias LED podrían ser substituidas por otros consumos análogos o equivalentes, tales como por ejemplo: Describing sufficiently the nature of the present invention, it is noted that whatever does not alter its principle is within the scope of protection of the claims. In this sense, one skilled in the art will understand that LED luminaires could be replaced by other similar or equivalent consumptions, such as for example:
- sistemas de riego, - irrigation systems,
- ordenadores portátiles autónomos,  - stand-alone laptops,
- sistemas de depuración de aguas residuales mediante osmosis inversa, - cámaras de tráfico autónomas,  - wastewater purification systems using reverse osmosis, - autonomous traffic chambers,
- pequeños motores o bombas, etc.  - small engines or pumps, etc.
Asimismo, los paneles solares podrían ser substituidos por aerogeneradores o turbinas eólicas, quedando éstas también comprendidas en el alcance de la invención en tanto que se puedan aplicar sus principios. Likewise, solar panels could be replaced by wind turbines or wind turbines, these being also included in the scope of the invention as long as their principles can be applied.

Claims

R E I V I N D I C A C I O N E S
1.- Sistema para la gestión de la potencia en luminarias (1) alimentadas por un sistema autónomo de energía solar fotovoltaica con paneles solares fotovoltaicos (2) que cargan una batería (3), la cual alimenta las luminarias (1), caracterizado porque el sistema (100) integra: 1.- System for power management in luminaires (1) powered by an autonomous system of photovoltaic solar energy with photovoltaic solar panels (2) that charge a battery (3), which feeds the luminaires (1), characterized in that the system (100) integrates:
- unos primeros medios de computación, dotados de un algoritmo MPPT, que permite en todo momento almacenar en la batería (3) el máximo de potencia procedente de los paneles solares (2), y - first computing means, equipped with an MPPT algorithm, which allows the maximum power from the solar panels (2) to be stored in the battery (3), and
- unos segundos medios de computación, dotados de entradas de datos sobre el estado de carga de la batería (3), y de un algoritmo predictivo que calcula la potencia a entregar de la batería (3) a la luminaria (1), en función de al menos uno de los siguientes datos: día del año y la hora, las coordenadas geográficas, y del estado de carga de la batería (3). - second computing means, provided with data inputs on the state of charge of the battery (3), and a predictive algorithm that calculates the power to be delivered from the battery (3) to the luminaire (1), depending on of at least one of the following data: day of the year and time, geographic coordinates, and battery charge status (3).
2 - Sistema según la reivindicación 1 , caracterizado porque dichos primeros medios de computación están constituidos en un primer microcontrolador (4), y dichos segundos medios de computación están constituidos en un segundo microcontrolador (5). 2 - System according to claim 1, characterized in that said first computing means are constituted in a first microcontroller (4), and said second computing means is constituted in a second microcontroller (5).
3. - Sistema según la reivindicación 1 , caracterizado porque dichos primeros medios de computación y dichos segundos medios de computación están integrados en un único microcontrolador. 3. - System according to claim 1, characterized in that said first computing means and said second computing means are integrated in a single microcontroller.
4. - Sistema según la reivindicación 1 , caracterizado porque comprende medios para proporcionar las coordenadas geográficas del sistema (100). 4. - System according to claim 1, characterized in that it comprises means for providing the geographical coordinates of the system (100).
5.- Sistema según la reivindicación 1 , caracterizado porque comprende además medios de memoria (6) para almacenamiento de datos históricos, tales como por ejemplo: carga solar diaria, duración en horas de la noche, potencia total absorbida cada día, potencia total consumida por la luminaria (1) cada día, energía en la batería (3) antes y después de la carga, duración del consumo, y porque dicho algoritmo predictivo está adaptado para calcula la potencia a entregar, también en función de los valores históricos para dicho día y dicha hora. 5. System according to claim 1, characterized in that it further comprises memory means (6) for storing historical data, such as for example: daily solar charge, duration at night, total power absorbed each day, total power consumed by the luminaire (1) every day, energy in the battery (3) before and after charging, duration of consumption, and because said predictive algorithm is adapted to calculate the power to be delivered, also based on historical values for said day and said time.
6.- Sistema según la reivindicación 2, caracterizado porque los dos microcontroladores (4, 5) tienen una comunicación continua para el intercambio de variables. 6. System according to claim 2, characterized in that the two microcontrollers (4, 5) have a continuous communication for the exchange of variables.
7. - Sistema según la reivindicación 1 , caracterizado porque comprende medios para disminuir gradualmente la intensidad lumínica a medida que se produce la descarga de la batería (3), mediante diminución de voltaje, para permitir que la luminaria (1) no se apague nunca durante su funcionamiento. 7. - System according to claim 1, characterized in that it comprises means to gradually decrease the light intensity as the discharge of the battery (3) occurs, by means of voltage reduction, to allow the luminaire (1) to never turn off during its operation.
8. - Sistema según la reivindicación 1 , caracterizado porque comprende medios de comunicación GPRS. 8. - System according to claim 1, characterized in that it comprises GPRS communication means.
9. - Sistema según la reivindicación 1 , caracterizado porque comprende un sensor de presencia, para provocar un aumento temporal de la intensidad lumínica de la luminaria (1). 9. - System according to claim 1, characterized in that it comprises a presence sensor, to cause a temporary increase in the luminous intensity of the luminaire (1).
10. - Sistema según la reivindicación 1 , caracterizado porque comprende puertos de comunicaciones, tales como Bluetooth, RS232 cableada, Ethernet, GPRS, etc., para la descarga de datos o para introducción de datos para la programación de las características de control. 10. - System according to claim 1, characterized in that it comprises communication ports, such as Bluetooth, wired RS232, Ethernet, GPRS, etc., for downloading data or for entering data for programming control features.
11. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios de sincronización por radiofrecuencia de una luminaria (1) con otras luminarias análogas. 11. - System according to any one of the preceding claims, characterized in that it comprises means for radiofrequency synchronization of a luminaire (1) with other similar luminaires.
12.- Sistema según un cualquiera de las reivindicaciones anteriores, caracterizado porque la luminaria (1) es una luminaria de LEDs cuya intensidad lumínica es regulada mediante modulación en ancho de pulso (PWM). 12. System according to any one of the preceding claims, characterized in that the luminaire (1) is a LED luminaire whose light intensity is regulated by pulse width modulation (PWM).
PCT/ES2013/000112 2012-05-03 2013-05-02 System for managing the power of led luminaires WO2013164500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201200486 2012-05-03
ES201200486A ES2432840B1 (en) 2012-05-03 2012-05-03 System for power management of LED luminaires

Publications (2)

Publication Number Publication Date
WO2013164500A1 true WO2013164500A1 (en) 2013-11-07
WO2013164500A8 WO2013164500A8 (en) 2014-01-16

Family

ID=49514235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000112 WO2013164500A1 (en) 2012-05-03 2013-05-02 System for managing the power of led luminaires

Country Status (2)

Country Link
ES (1) ES2432840B1 (en)
WO (1) WO2013164500A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2299372A1 (en) * 2006-09-28 2008-05-16 Bebitec, S.L. Lighting system has multiple luminaries of public lighting system with respective public lighting lamps of light emitting diode, and controller device associated with each lamp is provided in each light for on and off operation
CN202663627U (en) * 2012-05-10 2013-01-09 浙江晶日照明科技有限公司 Controller for processing switching on time of solar street lamp and service life of storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2299372A1 (en) * 2006-09-28 2008-05-16 Bebitec, S.L. Lighting system has multiple luminaries of public lighting system with respective public lighting lamps of light emitting diode, and controller device associated with each lamp is provided in each light for on and off operation
CN202663627U (en) * 2012-05-10 2013-01-09 浙江晶日照明科技有限公司 Controller for processing switching on time of solar street lamp and service life of storage battery

Also Published As

Publication number Publication date
ES2432840B1 (en) 2014-09-09
ES2432840A1 (en) 2013-12-05
WO2013164500A8 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
EP2907219B1 (en) Hybrid power source lighting and energy system for operation in harsh and/or remote locations
US10094525B2 (en) Battery powered lighting system
CA2989192C (en) System and method for charging autonomously powered devices using variable power source
ES2955972T3 (en) Heating device that integrates a battery and an inverter to inject energy from the battery to the electrical power source
ES2948562T3 (en) Hybrid Solar Power Supply Control System
US20160156220A1 (en) Solar powered and batttery operated systems and methods for controlling the same
US20160094088A1 (en) Lighting unit having energy harvesting power management system
ES2371215T3 (en) A PHOTOVOLTAIC SYSTEM.
ES2870621T3 (en) Method of dynamically controlling a piece of electrical equipment
WO2011083186A1 (en) Compact photovoltaic solar light with energy self-sufficiency
Ahmed et al. Design of a solar powered LED street light: Effect of panel's mounting angle and traffic sensing
CN202496108U (en) Solar LED modular street light
CN102387626A (en) Storage-battery-powered lighting controller capable of making ends meet
ES2635647B2 (en) SYSTEM AND METHOD OF USE OF ELECTRICAL ENERGY EXCEDENTS FROM AN INSTALLATION WITH RENEWABLE ELECTRICAL GENERATION
JP2016127617A (en) Photovoltaic power generation system
KR102163719B1 (en) Sunlight street lamp and method for operating thereof
CN205283233U (en) Highway tunnel lighting system
Gouws et al. Prototype super-capacitor photovoltaic streetlight with xLogic superRelay functionality
WO2013164500A1 (en) System for managing the power of led luminaires
Vieira et al. An IoT based smart utility pole and street lighting system
KR101183189B1 (en) A street lights equipped with by self-generation power system
CN203661378U (en) Solar street lamp control device
KR101133774B1 (en) System and method for managing self generating device
JP2016144301A (en) Power storage system by photovoltaic power generation
KR101472907B1 (en) Structure of pole type street lamp using the light of the sun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784886

Country of ref document: EP

Kind code of ref document: A1