WO2013163923A1 - 独立集电器的内馈发电机 - Google Patents

独立集电器的内馈发电机 Download PDF

Info

Publication number
WO2013163923A1
WO2013163923A1 PCT/CN2013/074385 CN2013074385W WO2013163923A1 WO 2013163923 A1 WO2013163923 A1 WO 2013163923A1 CN 2013074385 W CN2013074385 W CN 2013074385W WO 2013163923 A1 WO2013163923 A1 WO 2013163923A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator winding
winding
current collector
slip ring
power
Prior art date
Application number
PCT/CN2013/074385
Other languages
English (en)
French (fr)
Inventor
屈维谦
宫小龙
Original Assignee
屈湘竹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012101352687A external-priority patent/CN102638134B/zh
Priority claimed from CN2012201966218U external-priority patent/CN202488288U/zh
Application filed by 屈湘竹 filed Critical 屈湘竹
Publication of WO2013163923A1 publication Critical patent/WO2013163923A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/42Asynchronous induction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine

Definitions

  • the present invention relates to the field of electrical machines and, in particular, to an internal feed generator of an independent current collector. Background technique
  • wind turbines generally use doubly-fed wind turbines, which are mainly composed of asynchronous generators and bidirectional converters for wound rotors.
  • the stator winding of the generator is directly connected to the power grid and generates power thereto.
  • the rotor winding is connected to the additional power source through a current collector composed of a slip ring and a brush, and the rotor is connected to an additional power source in addition to the mechanical power input to the wind. It also performs a certain power exchange with the additional power supply depending on the speed change. Due to the structure and principle of the above-mentioned doubly-fed wind power generator, the following problems and deficiencies are exposed in actual operation:
  • the slip ring of the collector is fixed on the rotor shaft of the generator and has a cantilever beam structure. Therefore, due to the harmonic torque of the generator and other unbalanced torque, the slip ring is shaken together with the rotor shaft, and The brush generates sparks to form a spark, which causes the ablation of the slip ring and the wear of the brush to increase.
  • the diameter of the slip ring is limited by the diameter of the rotor shaft of the generator, and the linear speed of the rotation of the slip ring is correspondingly increased. As a result, the wear of the brush is severe, and the service life of the brush is shortened.
  • the above collector faults will lead to reduced reliability of generator operation and increased maintenance costs, especially in the special environment of wind power generation.
  • the stator power generation and the additional power supply of the rotor are combined. Therefore, the generator's power generation voltage must be reduced.
  • the current doubly-fed wind power generation generally adopts 690V, which leads to the generator's fixed and rotor current increase. Large, transmission line losses increase, and power generation efficiency decreases.
  • the rotor When the generator is in the sub-synchronous power generation state, the rotor must absorb a certain additional power from the external power source. The power, which ultimately feeds back the power through the stator coils, causes unnecessary cycles and losses in additional power, increases the power load and heat generation of the stator windings, and reduces power generation efficiency.
  • the converter device is directly connected to the additional power supply. Due to the nonlinearity of the converter device, the current of the rotor winding and the external power supply is greatly changed, causing harmonic pollution of the power grid.
  • a primary object of the present invention is to provide an internal feed generator of an independent current collector to solve the above problem of the diameter of the existing doubly-fed wind turbine slip ring being limited by the diameter of the generator rotor shaft.
  • the present invention adopts an independent current collector, that is, the current collector is no longer fixed on the rotor shaft of the generator, but becomes a structurally independent individual, and then passes The coupling of the mechanical coupling and the cable connects the independent current collector and the generator body into one body.
  • the current collector comprises: a coupling, mechanically connected with a rotor shaft of the generator body; a slip ring shaft, connected with the coupling, synchronously rotating with the rotor shaft of the generator body, and an independent current collector when the generator body rotates Synchronous rotation with the generator, wherein the slip ring and the rotor winding cable are relatively stationary, so that the two can be fixedly coupled; the slip ring is disposed on the slip ring shaft and connected to the outlet of the rotor winding; the brush is in close contact with the slip ring
  • the stationary conductive device is mounted on a fixed collector plate, and the rotor winding is finally led out by the collector plate of the brush.
  • the coupling of the individual current collector has a shock absorbing damper to absorb the vibration of the rotor shaft.
  • Slip ring shaft A simple-supported beam structure with dual bearings to increase the ability to suppress jitter.
  • the slip ring shaft only carries the load of the slip ring, independent of the generator load, so the diameter of the slip ring shaft is smaller than the generator rotor shaft, reducing the linear speed of the slip ring.
  • the coupling is a flange coupling with shock absorbing cushion.
  • slip ring shaft is a double bearing simply supported beam structure.
  • the current collector is provided with a plurality of parallel slip rings per phase to meet the need for a large current in the rotor.
  • the shaft diameter of the slip ring shaft is smaller than the diameter of the rotating shaft of the generator body.
  • the stator core of the internal feed generator body includes a first stator winding and a second stator winding, and the two stator windings are placed in the same slot and insulated from each other, and the electromagnetic induction relationship therebetween.
  • the first stator winding is connected to the grid to feed the electrical energy of the generator to the grid.
  • the induced potential of the second stator winding is designed according to the rotor potential and the speed regulation range, and is connected to the rotor through the converter device. A certain power exchange is performed between the second stator winding and the rotor.
  • the second stator winding When the wind turbine is in a subsynchronous operation state, the second stator winding outputs a certain electric power to the rotor through the converter device; and when the wind turbine is in a super synchronous operation state The second stator winding then absorbs part of the electrical power of the rotor through the converter. The power of the second stator winding is due to the first stator winding. Finally, the power generated by the first stator winding is equal to the sum of the power of the rotor and the second stator. The result is the input mechanical power minus the loss, which does not include unnecessary. Additional power.
  • first stator winding and the second stator winding are arranged in the same slot on the stator core, and the second stator winding is located on the top of the first stator winding.
  • the rated output voltage of the first stator winding is 6 kV or 10 kV.
  • the second stator winding is further connected with a compensation filter, the compensator includes: a series inductor connected in series between the compensation capacitor and the second stator winding; and a compensation capacitor connected to the series inductor by using a delta connection. The goal is to improve the power factor of the generator and to suppress current harmonics in the second stator winding.
  • an internal feed generator of an independent current collector comprising: a generator body including a stator and a rotor, wherein the stator comprises: a first stator winding connected to the power grid; a second stator winding, connected to the first network end of the bidirectional converter; the rotor comprises: a rotor winding electrically connected to the slip ring of the current collector, and a current collector disposed between the second network end of the bidirectional converter and the rotor winding
  • the current collector includes: a coupling, mechanically coupled to the shaft of the generator body; a slip ring shaft coupled to the coupling and synchronously rotating with the shaft of the generator body; a slip ring disposed on the shaft of the slip ring, and the rotor The outlet of the winding is connected; the brush is matched with the slip ring, the second end of the bidirectional converter is connected, the bidirectional converter is connected to the second stator winding and the current collector.
  • first stator winding and the second stator winding are arranged in the same slot on the stator core, and the second stator winding is located on the top of the first stator winding.
  • the first stator winding has a rated output voltage of 6 kV or 10 kV.
  • the winding manner of the first stator winding is a winding mode of the two-pole motor.
  • the coupling is a flange coupling with shock absorbing cushion.
  • slip ring shaft is a double bearing simply supported beam structure.
  • the current collector is provided with a plurality of slip rings per phase, and the plurality of slip rings are operated in parallel.
  • the shaft diameter of the slip ring shaft is smaller than the diameter of the rotating shaft of the generator body.
  • the bidirectional converter when the wind power generator is in a subsynchronous operating state, the bidirectional converter is used to rectify and invert the output of the second stator winding to provide slip power to the rotor winding; when the wind power generator is in a super synchronous operation state The bidirectional converter is used to rectify and invert the output of the rotor winding to provide slip power to the second stator winding.
  • the above-mentioned internal feed wind power generator further includes a compensator connected to the second stator winding and capacitive at a power frequency, the compensator includes: a series inductor connected in series between the compensation capacitor and the second stator winding; the compensation capacitor Use a delta connection to connect to the series inductor.
  • the current collector is independently disposed between the rotor winding and the bidirectional converter, and the diameter of the slip ring is no longer limited by the size of the wind turbine main shaft, so that the structure is more reasonable, and the slip can be reduced.
  • the diameter of the ring reduces the linear velocity, thereby overcoming the serious wear of the slip ring and the brush, improving the operational reliability, the first stator winding outputs electric energy to the grid, and there is no direct connection and power exchange between the rotor winding and the grid, thereby The unnecessary cycle and loss of slip power are avoided, and the power generation efficiency is improved.
  • FIG. 1 is a schematic diagram of an internal feed generator of an independent current collector according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a winding connection in an internal feed generator of an independent current collector according to an embodiment of the present invention
  • FIG. 3 is a schematic view of a current collector in an internal feed generator of an independent current collector according to an embodiment of the present invention.
  • the internal feed generator of the independent current collector provided by the embodiment of the present invention is an internal feed wind power generator provided with an independent current collector.
  • an independent current collector is set, that is, The current collector is no longer fixed above the rotor shaft of the generator, but is set independently and then passed The connection of the mechanical coupling and the lead connects the independent current collector and the generator body into one body.
  • the current collector comprises: a coupling, mechanically connected with a rotor shaft of the generator body; a slip ring shaft, connected with the coupling, synchronously rotating with the rotor shaft of the generator body, and an independent current collector when the generator body rotates Synchronous rotation with the generator, wherein the slip ring and the rotor winding lead are relatively stationary, so that the two can be fixedly coupled; the slip ring is disposed on the slip ring shaft and connected to the outlet of the rotor winding; the brush is in close contact with the slip ring
  • the stationary conductive device is mounted on a fixed collector plate, and the rotor winding is finally led out by the collector plate of the brush.
  • the coupling of the individual current collector has a shock absorbing damper to absorb the vibration of the rotor shaft.
  • the slip ring shaft uses a double-bearing simply supported beam structure to improve the ability to suppress jitter.
  • the slip ring shaft only carries the load of the slip ring, independent of the generator load, so the diameter of the slip ring shaft is smaller than the generator rotor shaft, reducing the linear speed of the slip ring.
  • the coupling can be a flange coupling with shock absorbing buffer;
  • the slip ring shaft can be a double bearing simply supported beam structure;
  • the collector can be provided with multiple parallel slip rings per phase to meet the high current of the rotor need.
  • the shaft diameter of the slip ring shaft is smaller than the diameter of the shaft of the generator body to reduce the linear speed of the slip ring.
  • the stator core of the internal feed generator body of the embodiment of the invention comprises a first stator winding and a second stator winding, wherein the two stator windings are slotted and insulated from each other, and the electromagnetic induction relationship therebetween.
  • the first stator winding is connected to the grid to feed the electrical energy of the generator to the grid.
  • the induced potential of the second stator winding is designed according to the rotor potential and the speed regulation range, and is connected to the rotor through the converter device. A certain power exchange is performed between the second stator winding and the rotor.
  • the second stator winding When the wind turbine is in a subsynchronous operation state, the second stator winding outputs a certain electric power to the rotor through the converter device; and when the wind turbine is in a super synchronous operation state The second stator winding then absorbs part of the electrical power of the rotor through the converter.
  • the power of the second stator winding is due to the first stator winding, and finally, the first The power generated by the stator winding is equal to the sum of the power of the rotor and the second stator. The result is the input mechanical power minus the loss, which does not include unnecessary additional power.
  • first stator winding and the second stator winding are arranged on the stator core in the same slot, and the second stator winding is located on the top of the first stator winding;
  • the rated output voltage of the first stator winding is 6kV or 10kV, Voltage, reduce current, reduce power loss of generator and line;
  • second stator winding can also be connected with compensation filter,
  • the compensator includes: series inductance, series between compensation capacitor and second stator winding, compensation capacitor use Delta connection, connected to series inductance. The goal is to improve the power factor of the generator and to suppress current harmonics in the second stator winding.
  • the internal feed generator of the independent current collector mainly includes: a generator body 1 including a stator and a rotor, wherein The stator comprises a first stator winding W1 and a second stator winding W3, wherein the first stator winding W1 is connected to the grid for outputting electrical energy to the grid, and the second stator winding W3 is connected to the first network end of the bidirectional converter 3
  • the rotor comprises a rotor winding W2 connected to the second network end of the bidirectional converter 3 through a slip ring and a brush of the current collector, and the rotor winding W2 and the second stator winding W3 are under the control of the bidirectional converter 3, ensuring Constant sub-winding W1 constant-frequency output electric energy; bidirectional converter 3, two sides of the bi-directional converter 3 are respectively connected with the second stator winding W3 and the rotor winding W2 for converting
  • the rotor winding W2 of the generator body 1 is connected to the second stator winding W3 via the bidirectional converter 3, and the second stator winding W3 and the rotor winding W2 generate a slip energy exchange, when the rotational speed of the generator shaft is lower than the synchronous speed, that is, When the wind turbine is in a subsynchronous operating state, the second stator winding W3 provides slip power to the rotor winding W2.
  • the second stator winding W3 absorbs the slip power from the rotor winding W2, thereby ensuring that the motor always runs in the power generating state.
  • the power generation electric power of the internal feed generator of the independent current collector of the embodiment of the present invention is the wind power input power, and the absorption or output slip of the doubly-fed generator from the grid side is improved.
  • the problem of power thus avoiding the unnecessary looping and loss of slip power.
  • the second stator winding W3 While controlling the active slip power, the second stator winding W3 also supplies a certain inductive excitation current to the rotor winding W2 to improve the power factor of the wind turbine.
  • FIG. 2 is a schematic diagram of winding connection in an internal feed generator of an independent current collector according to an embodiment of the present invention.
  • the relationship between the first stator winding W1 and the second stator winding W3 is substantially the same as the electromagnetic induction relationship of the transformer.
  • the first stator winding W1 corresponds to the primary winding of the transformer
  • the second stator winding W3 corresponds to the secondary winding of the transformer.
  • the induced voltage of the second stator winding W3 is flexibly designed according to the rated voltage of the rotor and the speed regulation range.
  • the delta connection or the star connection can be selected.
  • the second stator winding W3 and the first stator winding W1 have the same number of poles and phases, are arranged on the stator core in the same slot, and the second stator winding W3 is located on the top of the first stator winding W1, and the two are insulated from each other. .
  • An embodiment of the present invention provides a current collector 2 of an internal feed generator of an independent current collector disposed between the rotor winding W2 and the bidirectional converter 3, and FIG. 3 is an internal feed generator of an independent current collector according to an embodiment of the present invention.
  • the current collector 2 includes: a coupling 5, mechanically coupled to the shaft of the generator body 1; a slip ring shaft, coupled to the coupling 5, with the generator body 1
  • the rotating shaft rotates synchronously, and the shaft diameter is smaller than the diameter of the rotating shaft of the generator body 1; the slip ring 6 is disposed on the slip ring shaft and electrically connected to the outgoing line of the rotor winding W2; and the brush 7 is electrically connected to the bidirectional converter 3 , Match settings with slip ring 6.
  • the current collector 2 is independently disposed outside the generator body 1 to ensure that the diameter of the slip ring 6 is not affected by the size of the shaft of the generator body, so that the structural parameters of the current collector 2 can be designed according to the optimal operation effect, so that the wind power generator structure More reasonable. In addition, because the collector 2 is external, it is convenient for daily maintenance and saves operating costs.
  • Coupling 5 is a flange coupling with shock absorbing cushion to ensure that the rotor winding W2 rotates synchronously with the slip ring 6 provided on the slip ring shaft. The rotor winding W2 and the slip ring 6 of the current collector 2 are directly electrically connected.
  • the slip ring shaft of the current collector 2 is a simple-supported beam structure of a double bearing, which can act as a shock absorbing buffer and does not cause a fire due to poor contact between the slip ring and the brush.
  • the slip ring shaft of the current collector 2 and the slip ring 6 are integrally mounted and then integrally formed to have high precision coaxiality to reduce the wear of the brush and the slip ring.
  • the current collector 2 adopts the slip ring 6 with a smaller diameter.
  • the current collector 2 can be provided with a plurality of slip rings 6 per phase, and a plurality of matching brushes are operated in parallel to increase the rated current carrying capacity.
  • the number of poles of the stator winding of the generator body 1 is preferably 2 poles. In this case, the volume, weight and material cost of the generator are reduced under the same rated power.
  • the embodiment of the present invention provides that the rated voltage of the first stator winding W1 of the internal feed generator of the independent collector can be set according to the rated voltage of the power grid, and can be wound into a high voltage winding according to requirements, and the rated output voltage is 6kV or 10kV, or Winding is a low-voltage winding with a rated output voltage of 690V. Since the grid does not need to provide additional power to the rotor winding W2, the wind turbine can use the high-voltage winding to directly output power to the high-voltage grid, thereby reducing the generating current and thus causing Loss.
  • the embodiment of the present invention provides a compensator 4 for an internal feed generator of an independent current collector, which is a capacitive load under a power frequency condition, and is composed of a low voltage compensation capacitor and a series inductance, and the series inductance of the compensator is connected in series to the second stator winding W3 and Between the low voltage compensation capacitors, when the generator is working, the second stator winding W3 has a capacitive reactive current passing through the compensator 4, so that the second stator winding W3 generates capacitive reactive power compensation power, thereby improving the power factor of the generator.
  • the compensator 4 can also provide a low reactance bypass for the higher harmonic currents in the second stator winding W3, acting as a filter.
  • the connection method of the low-voltage compensation capacitor can be done by delta connection.
  • the bidirectional converter 3 is composed of two rectified inverter reversible three-phase converters, which can be divided into a second stator winding side converter and a rotor winding side converter according to the connection relationship.
  • the second stator winding side converter is connected to the leading end of the second stator winding W3 through the first network end of the bidirectional converter 3
  • the rotor winding side converter is connected to the rotor through the second network end of the bidirectional converter 3
  • the basic working principle of the internal feed generator of the independent current collector is:
  • the second stator winding W3 provides the slip power to the rotor winding W2.
  • the rotor winding W2 outputs the slip power to the second stator winding W3.
  • the bidirectional converter 3 also causes the rotor to generate an excitation current component by controlling the rotor winding current ahead of the rotor potential to improve the power factor of the asynchronous power generation.
  • the rotating magnetic field generated by the alternating current in the first stator winding W1 causes the second stator winding W3 to induce the power frequency potential E3, and through the electromagnetic induction and the second The stator winding W3 forms a power exchange.
  • the mechanical input power PM of the generator body 1 is provided by the wind motive.
  • the second stator winding W3 is controlled by the voltage and frequency of the bidirectional converter 3, and the slip is supplied to the rotor winding W2. Power P es .
  • the second stator winding W3 is in an energy absorbing state from the rotor winding W2, and the rotor winding W2 is in an output energy state.
  • the first stator winding W1 supplies power to the second stator winding W3, and on the other hand, generates electromagnetic power generated from the rotor winding W2, so the power P1 of the stator is the sum of the rotor power and the second stator winding W3.
  • the rotor winding W2 needs to feed the slip power P es in the mechanical power into the second stator winding W3 through the converter controller 3, and the remaining
  • the power generated by the internal feed generator of the independent collector provided in this embodiment is output only by the first stator winding W1, and the rotor winding W2 does not generate electricity externally.
  • the power generation active power of the first stator winding W1 is the mechanical power input by the wind, and the slip power of the speed control is not included, thereby avoiding the unnecessary circulation of the slip power in the grid and the rotor and the grid. The loss, power generation efficiency is improved.
  • the current collector 2 is independently disposed between the rotor winding and the bidirectional converter, and the diameter of the slip ring 6 is no longer limited by the size of the main shaft of the generator body, so that the structure is more reasonable and can be reduced.
  • the diameter of the small slip ring 6 reduces the linear velocity, thereby overcoming the serious wear of the slip ring and the brush, improving the operational reliability, the first stator winding W1 outputs electric energy to the grid, and there is no direct connection between the rotor winding W2 and the grid. And power exchange, thus avoiding unnecessary looping and loss of slip power, and improving power generation efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种独立集电器的内馈发电机,以解决双馈发电机存在的以下问题:滑环以悬臂梁形式固定在转子轴上易抖动而打火;滑环线速度高导致滑环和电刷可靠性差;转差功率无谓循环使发电效率低;输出电压低引起损耗大。所述独立集电器的内馈发电机包括:发电机本体、集电器和双向变流器,其中发电机本体的定子包括:连接电网的第一定子绕组、连接双向变流器的第一网端的第二定子绕组;集电器设置于双向变流器的第二网端与转子绕组之间;双向变流器,与第二定子绕组和集电器连接。所述独立集电器的内馈发电机减小滑环直径降低了线速度提高了可靠性,简支梁结构有效解决了滑环抖动产生的打火问题,通过第二定子绕组提高了发电效率。

Description

独立集电器的内馈发电机
技术领域
本发明涉及电机领域, 特別地, 涉及一种独立集电器的内馈发电机。 背景技术
目前, 风力发电机普遍采用双馈风力发电机, 主要由绕线转子的异步发电 机和双向变流器组成。 发电机的定子绕组直接与电网连接并向其发电, 转子绕 组则要通过由滑环和电刷构成的集电器再经过双向变流器与附加电源相连, 转 子除了输入风力的机械功率之外, 还根据转速变化的情况, 和附加电源进行一 定的功率交换。 由于上述的双馈风力发电机的结构和原理, 实际运行中暴露出 以下问题和不足:
1、 集电器的滑环固定在发电机的转子轴之上, 而且呈悬臂梁结构, 因此受 发电机谐波转矩以及其它不平衡转矩的作用, 使滑环随转子轴一起抖动, 并和 电刷产生打火形成火花, 从而造成滑环的烧蚀和电刷的磨损加剧; 另外, 滑环 的直径受发电机转子轴直径的限制而较大, 滑环旋转的线速度相应增高, 由此 导致电刷的磨损严重, 缩短电刷使用寿命。 以上的集电器缺陷将导致发电机运 行的可靠性降低, 維护成本加大, 特別在风力发电的特殊环境下, 问题显得尤 为突出。
2、 为了避免附加变压器, 而将定子发电电源和转子的附加电源合一, 为此 只得降低发电机的发电电压, 例如目前双馈风力发电普遍采用 690V, 从而导致 发电机的定、 转子电流增大, 输电线路损耗增大, 发电效率降低。 为实现高压 发电, 就需要在半导体变流控制装置和电源之间设置变压器, 造成成本提高。
3、 当发电机处于亚同步发电状态时, 转子须从外电源中吸收一定的附加电 功率, 最终通过定子线圈回馈电源, 由此造成附加功率的无谓循环和损耗, 加 重了定子绕组的功率负荷和发热, 而且降低了发电效率。
4、 变流装置直接和附加电源相连, 由于变流装置的非线性, 致使转子绕组 和外接电源的电流产生较大崎变, 引起电网的谐波污染。
上述的技术不足和缺陷目前都尚未有公开的解决方案。
特別是针对现有技术中风力发电机滑环的直径受发电机转子轴直径的限制 缺陷, 目前没有提出有效的解决方案。 发明内容
本发明的主要目的是提供一种独立集电器的内馈发电机, 以解决上述现有 双馈风力发电机滑环的直径受发电机转子轴直径的限制的问题。
另外通过对技术方案的优化, 解决了上述现有双馈风力发电机各项技术不 足和缺陷。
首先说明集电器问题的解决方案。 为了克服集电器的滑环抖动所引起的打 火缺陷, 本发明采用了独立集电器, 即集电器不再固定在发电机的转子轴之上, 而是成为一个结构独立的个体, 然后, 通过机械联轴器和电缆的联接, 将独立 集电器和发电机本体联系成一体。 该集电器包括: 联轴器, 与发电机本体的转 子轴机械连接; 滑环轴, 与联轴器连接, 随发电机本体的转子轴同步旋转, 当 发电机本体旋转运行时, 独立集电器和发电机同步旋转, 其中的滑环和转子绕 组电缆相对静止, 因此两者能够固定联接; 滑环, 设置在滑环轴上, 与转子绕 组的出线连接; 电刷, 与滑环紧密接触的静止导电器件, 安装在固定的集电板 上, 转子绕组最终由电刷的集电板引出。
独立集电器的联轴器带有减震緩冲器, 以吸收转子轴的抖动。 滑环轴采用 双轴承的简支梁结构, 以提高抑制抖动的能力。 滑环轴仅仅承载滑环的载荷, 与发电机载荷无关, 因此滑环轴的直径较比发电机转子轴减小, 降低了滑环的 线速度。 以上的技术措施, 有效地克服了现行集电器的缺陷, 延长了滑环、 电 刷的使用寿命, 也提高了发电机的运行可靠性。 基于这一优点, 本发电机适于 制造为二极的高转速发电机。
进一步地, 联轴器为带有减震緩冲的法兰联轴器。
进一步地, 滑环轴为双轴承简支梁结构。
进一步地, 集电器每相设置多个并联滑环, 以满足转子中通过大电流的需 要。
进一步地, 滑环轴的轴直径小于发电机本体的转轴的直径。
然后说明发电机的内馈技术方案。 内馈发电机本体的定子铁心上含有第一 定子绕组和第二定子绕组, 两个定子绕组同槽篏放, 并相互绝缘, 二者之间为 电磁感应的关系。 第一定子绕组和电网相连, 将发电机的电能馈入电网。 第二 定子绕组的感应电势根据转子电势和调速范围设计, 并通过变流装置与转子相 连。 第二定子绕组和转子之间进行一定的功率交换, 当风力发电机处于亚同步 运行状态时, 第二定子绕组通过变流装置向转子输出一定的电功率; 而当风力 发电机处于超同步运行状态时, 第二定子绕组则通过变流装置吸收转子的部分 电功率。 第二定子绕组的功率缘于第一定子绕组, 最终, 第一定子绕组的发电 功率等于转子和第二定子的功率之和, 结果即为扣除损耗的输入机械功率, 其 中不含无谓的附加功率。
进一步地, 第一定子绕组和第二定子绕组在定子铁芯上同槽布置, 第二定 子绕组位于第一定子绕组的顶部。
进一步地, 第一定子绕组的额定输出电压为 6kV 或 10kV。 进一步地, 第二定子绕组还接有补偿滤波器, 该补偿器包括: 串联电感, 串联在补偿电容和第二定子绕组之间; 补偿电容, 使用三角形接线方式, 与串 联电感连接。 目的是改善发电机的功率因数和抑制第二定子绕组的电流谐波。
根据本发明的一个方面, 提供了一种独立集电器的内馈发电机, 该内馈发 电机包括: 发电机本体, 包括定子和转子, 其中, 定子包括: 第一定子绕组, 连接电网; 第二定子绕组, 连接双向变流器的第一网端; 转子包括: 转子绕组, 与集电器的滑环电连接, 集电器, 设置于双向变流器的第二网端与转子绕组之 间, 该集电器包括: 联轴器, 与发电机本体的转轴机械连接; 滑环轴, 与联轴 器连接, 随发电机本体的转轴同步旋转; 滑环, 设置在滑环轴上, 与转子绕组 的出线连接; 电刷, 与滑环匹配设置, 连接双向变流器的第二网端, 双向变流 器, 与第二定子绕组和集电器连接。
进一步地, 第一定子绕组和第二定子绕组在定子铁芯上同槽布置, 第二定 子绕组位于第一定子绕组的顶部。
进一步地, 第一定子绕组的额定输出电压为 6kV 或 10kV。
进一步地, 第一定子绕组的绕线方式为二极电机的绕线方式。
进一步地, 联轴器为带有减震緩冲的法兰联轴器。
进一步地, 滑环轴为双轴承简支梁结构。
进一步地, 集电器每相设置多个滑环, 多个滑环并联运行。
进一步地, 滑环轴的轴直径小于发电机本体的转轴的直径。
进一步地, 当风力发电机处于亚同步运行状态时, 双向变流器用于将第二 定子绕组的输出进行整流、 逆变, 向转子绕组提供转差功率; 当风力发电机处 于超同步运行状态时, 双向变流器用于将转子绕组的输出进行整流、 逆变, 向 第二定子绕组提供转差功率。 进一步地, 上述内馈风力发电机还包括补偿器, 与第二定子绕组连接, 在 工频下为容性, 补偿器包括: 串联电感, 串联在补偿电容和第二定子绕组之间; 补偿电容, 使用三角形接线方式, 与串联电感连接。
根据本发明的技术方案, 在转子绕组和双向变流器之间独立设置集电器, 其滑环的直径便不再受风力发电机主轴尺寸的限制, 使结构更趋合理, 可以通 过减小滑环的直径降低了线速度, 从而克服了滑环和电刷磨损严重, 提高了运 行可靠性, 第一定子绕组向电网输出电能, 转子绕组与电网之间没有直接的连 接和功率交换, 从而避免了转差功率的无谓循环和损耗, 提高了发电效率。 附图说明
说明书附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1 是根据本发明实施例的独立集电器的内馈发电机的示意图;
图 2 是根据本发明实施例的独立集电器的内馈发电机中绕组连接示意图; 图 3 是根据本发明实施例的独立集电器的内馈发电机中集电器的示意图。 具体实施方式
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征 可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。
本发明的实施例提供的独立集电器的内馈发电机是设置有独立集电器的内 馈风力发电机, 为了克服集电器的滑环抖动所引起的打火缺陷, 设置了独立集 电器, 即集电器不再固定在发电机的转子轴之上, 而是独立设置, 然后, 通过 机械联轴器和引线的连接, 将独立集电器和发电机本体联系成一体。 该集电器 包括: 联轴器, 与发电机本体的转子轴机械连接; 滑环轴, 与联轴器连接, 随 发电机本体的转子轴同步旋转, 当发电机本体旋转运行时, 独立集电器和发电 机同步旋转, 其中的滑环和转子绕组引线相对静止, 因此两者能够固定联接; 滑环, 设置在滑环轴上, 与转子绕组的出线连接; 电刷, 与滑环紧密接触的静 止导电器件, 安装在固定的集电板上, 转子绕组最终由电刷的集电板引出。
独立集电器的联轴器带有减震緩冲器, 以吸收转子轴的抖动。 滑环轴采用 双轴承的简支梁结构, 以提高抑制抖动的能力。 滑环轴仅仅承载滑环的载荷, 与发电机载荷无关, 因此滑环轴的直径较比发电机转子轴减小, 降低了滑环的 线速度。 以上的技术措施, 有效地克服了现行集电器的缺陷, 延长了滑环、 电 刷的使用寿命, 也提高了发电机的运行可靠性。 基于这一优点, 本发电机适于 制造为二极的高转速发电机。 其中, 联轴器可以为带有减震緩冲的法兰联轴器; 滑环轴可以为双轴承简支梁结构; 集电器每相可以设置多个并联滑环, 以满足 转子大电流的需要。 滑环轴的轴直径小于发电机本体的转轴的直径, 以减少滑 环的线速度。
为了实现发电机的内馈技术方案。 本发明实施例的内馈发电机本体的定子 铁心上含有第一定子绕组和第二定子绕组, 两个定子绕组通槽篏放, 并相互绝 缘, 二者之间为电磁感应的关系。 第一定子绕组和电网相连, 将发电机的电能 馈入电网。 第二定子绕组的感应电势根据转子电势和调速范围设计, 并通过变 流装置与转子相连。 第二定子绕组和转子之间进行一定的功率交换, 当风力发 电机处于亚同步运行状态时, 第二定子绕组通过变流装置向转子输出一定的电 功率; 而当风力发电机处于超同步运行状态时, 第二定子绕组则通过变流装置 吸收转子的部分电功率。 第二定子绕组的功率缘于第一定子绕组, 最终, 第一 定子绕组的发电功率等于转子和第二定子的功率之和, 结果即为扣除损耗的输 入机械功率, 其中不含无谓的附加功率。 其中, 第一定子绕组和第二定子绕组 在定子铁芯上同槽布置, 第二定子绕组位于第一定子绕组的顶部; 第一定子绕 组的额定输出电压为 6kV 或 10kV, 通过提高电压, 减小电流, 减低发电机和 线路的功率损耗; 第二定子绕组还可以接有补偿滤波器, 该补偿器包括: 串联 电感, 串联在补偿电容和第二定子绕组之间, 补偿电容使用三角形接线方式, 与串联电感连接。 目的是改善发电机的功率因数和抑制第二定子绕组的电流谐 波。
图 1 是根据本发明实施例的独立集电器的内馈发电机的示意图, 如图 1 所 示, 该独立集电器的内馈发电机主要包括: 发电机本体 1, 包括定子和转子, 其 中, 定子包括第一定子绕组 W1 和第二定子绕组 W3, 其中, 第一定子绕组 W1 与电网连接, 用于向电网输出电能, 第二定子绕组 W3 连接双向变流器 3 的第 一网端, 转子包括转子绕组 W2, 通过集电器的滑环和电刷连接至双向变流器 3 的第二网端, 转子绕组 W2 和第二定子绕组 W3 在双向变流器 3 的控制下, 保 证第一定子绕组 W1 恒频输出电能; 双向变流器 3, 该双向变流器 3 的两侧分 別与第二定子绕组 W3 和转子绕组 W2 连接, 用于转换第二定子绕组 W3 和转 子绕组 W2 之间的电能。
发电机本体 1 的转子绕组 W2 经由双向变流器 3 与第二定子绕组 W3 连 接, 第二定子绕组 W3 和转子绕组 W2 产生转差电能交换, 当发电机转轴的转 速低于同步转速, 也就是风力发电机处于亚同步工作状态时, 第二定子绕组 W3 向转子绕组 W2提供转差功率。 当发电机转速高于同步转速, 也就是风力发电 机处于超同步工作状态时, 第二定子绕组 W3 从转子绕组 W2 吸收转差功率, 从而保证电机始终运行于发电状态。 发电机本体 1 的转子绕组 W2和电网之间 没有直接的电连接和功率交换。 由第一定子绕组 W1 单独向电网输出电能。 在 忽略定子绕组损耗和激磁损耗的理论情况下, 本发明实施例的独立集电器的内 馈发电机的发电电功率即为风力机械输入功率, 改进了双馈发电机从电网侧吸 收或输出转差功率的问题, 从而避免了转差功率的无谓循环和损耗。 在控制有 功的转差功率的同时, 第二定子绕组 W3 还向转子绕组 W2 提供一定的感性激 磁电流, 以改善风力发电机的功率因数。
图 2 是根据本发明实施例的独立集电器的内馈发电机中绕组连接示意图, 如图所示, 第一定子绕组 W1 和第二定子绕组 W3 的关系与变压器的电磁感应 关系大致相同, 第一定子绕组 W1 相当于变压器的原边绕组, 第二定子绕组 W3 则相当于变压器的副边绕组。 第二定子绕组 W3 的感应电压根据转子额定电压 和调速范围灵活进行设计, 可以选择三角形接法或者星形接法。 第二定子绕组 W3 和第一定子绕组 W1 的极数和相数相同, 在定子铁芯上同槽布置, 第二定 子绕组 W3 位于所述第一定子绕组 W1 的顶部, 两者相互绝缘。
本发明实施例提供独立集电器的内馈发电机的集电器 2 设置于所述转子绕 组 W2和双向变流器 3 之间, 图 3 是根据本发明实施例的独立集电器的内馈发 电机中集电器的示意图, 如图 3 所示, 该集电器 2 包括: 联轴器 5, 与发电机 本体 1 的转轴机械连接; 滑环轴, 与联轴器 5 连接, 随发电机本体 1 的转轴同 步旋转, 轴直径小于所述发电机本体 1 的转轴的直径; 滑环 6, 设置在滑环轴 上, 与转子绕组 W2 的出线电连接; 电刷 7, 与双向变流器 3 电连接, 与滑环 6 匹配设置。 该集电器 2 独立设置于发电机本体 1 之外, 从而保证滑环 6 的直 径不受发电机本体转轴尺寸影响, 从而可以按照最优运行效果设计集电器 2 的 结构参数, 使风力发电机结构更趋合理。 另外由于集电器 2 外置, 便于日常的 維护, 节省了运行成本。 联轴器 5 为带有减震緩冲的法兰联轴器, 以保证转子绕组 W2 和设置在滑 环轴上的滑环 6 同步旋转。 转子绕组 W2 和集电器 2 的滑环 6 直接电气连接。 集电器 2 的滑环轴为双轴承的简支梁结构, 既可以起减震緩冲的作用, 也不会 因为滑环与电刷接触不良而打火。 集电器 2 的滑环轴和滑环 6—体安装, 然后 整体加工成型, 从而具有高精度的同轴度, 以减小电刷和滑环的磨损。 为了降 低滑环与电刷接触面的线速度, 减小机械磨损, 集电器 2 采用直径较小的滑环 6, 当单一滑环 6 的负荷电流不能满足发电机转子绕组 W2 额定电流需求时, 集电器 2 每相可以设置多个滑环 6, 多个与之配合的电刷并联运行提高额定载 流量。 发电机本体 1 的定子绕组极数优选为 2 极。 这种情况下, 在额定功率相 同的条件下, 发电机的体积、 重量以及材料成本降低。
本发明实施例提供独立集电器的内馈发电机的第一定子绕组 W1 的额定电 压可以根据电网的额定电压设置, 根据需要可以绕制为高压绕组, 额定输出电 压取 6kV或 10kV, 也可以绕制为额定输出电压为 690V 的低压绕组, 由于电网 也不需要向转子绕组 W2 提供附加电源, 从而风力发电机可以利用高压绕组直 接向高压电网输出电能, 从而减小了发电电流以及由此引起的损耗。
本发明实施例提供独立集电器的内馈发电机的补偿器 4,在工频情况下为容 性负载, 由低压补偿电容器和串联电感构成, 补偿器的串联电感串联在第二定 子绕组 W3 和低压补偿电容器之间, 当发电机工作时, 第二定子绕组 W3 有容 性无功电流通过补偿器 4, 使第二定子绕组 W3 产生容性无功补偿功率, 从而 提高发电机的功率因数。 同时, 补偿器 4 还可以为第二定子绕组 W3 中的高次 谐波电流提供了低电抗的旁路, 起到滤波器的作用。 低压补偿电容器的连接方 式可以使用三角接线方式。
异步发电机发电运行, 必须满足两个基本条件: 1、 机械转速 n 高于理想转 速 nQ, 2、 电磁转矩 T 和机械转速反向。 为此, 使本发明的实施例的内馈风力发 电机正常运行, 必须要通过调速控制以满足 n>nQ, 并控制转子绕组有功电流的 方向, 以使其与转子开路电势的方向相反。 本实施例的独立集电器的内馈发电 机是通过第二定子绕组 W3 进行反馈和变流控制来实现以上条件的。 双向变流 器 3 由两个整流逆变可逆的三相变流器组成, 这两个三相变流器按照连接关系 可以分为第二定子绕组侧变流器和转子绕组侧变流器, 其中, 第二定子绕组侧 变流器通过双向变流器 3 的第一网端连接第二定子绕组 W3 的引出端, 转子绕 组侧变流器通过双向变流器 3 的第二网端连接转子绕组 W2 的引出端。
本发明实施例提供独立集电器的内馈发电机的基本工作原理为: 当风力发 电机亚同步发电运行时, 第二定子绕组 W3 向转子绕组 W2 提供转差功率。 当 风力发电机超同步发电时, 转子绕组 W2 向第二定子绕组 W3 输出转差功率。 另外, 双向变流器 3 还通过转子绕组电流超前于转子电势的控制使转子产生激 磁电流分量, 以提高异步发电的功率因数。 当发电机本体 1 的第一定子绕组 W1 接通电源时, 第一定子绕组 W1 内交流电流产生的旋转磁场使第二定子绕 组 W3 感应出工频电势 E3,并且通过电磁感应与第二定子绕组 W3 形成功率交 换。 发电机本体 1 的机械输入功率 PM 由风力原动机提供, 当发电机处于亚同 步发电状态时, 第二定子绕组 W3通过双向变流器 3 的电压和频率进行控制, 向转子绕组 W2 供出转差功率 Pes。 第二定子绕组 W3 处于从转子绕组 W2 吸 收能量状态, 而转子绕组 W2 处于输出能量状态。转子发电的电磁功率一Pem (以 电动功率为参考正方向) 为机械功率一 PM 与第二定子绕组 W3 提供的转差功 率一 Pes之和, 即一 Pem=— (PM+Pes)。 第一定子绕组 Wl —方面向第二定子绕组 W3 供电, 另一方面又从转子绕组 W2 得到发电的电磁功率, 所以定子的功率 P1 为转子发电功率与第二定子绕组 W3 电动功率之和, 即 Pl =— Pem+Pes =— PM, 那么在忽略损耗的情况下, 输出和吸收的转差功率在定子中抵消, 也就是 第二电子绕组 W3 提供了发电机运行中的附加电源, 从而, 第一定子绕组 W1 的发电功率仅为机械输入功率, 而不像如双馈发电机含有转差功率 Pes, 于是避 免了转差功率的无谓循环, 以及由此引起的功率损耗。
当本实施例提供的独立集电器的内馈发电机处于超同步发电时, 转子绕组 W2需要将机械功率中的转差功率 Pes 通过变流控制器 3馈入第二定子绕组 W3, 余下的转子电磁功率经电磁感应传输给第一定子绕组 W1,转子绕组 W2 的发电 电磁功率为机械功率 PM 与转差功率 Pes 之差, 即一 Pem=— (PM— Pes), 定子功 率为转子绕组 W2与第二定子绕组 W3的发电功率之和, 即 Pi=— (Pem+Pes) = — PM, 发电机的发电功率仍为机械输入功率而不含转差功率。
由此可见, 本实施例提供的独立集电器的内馈发电机的发电功率只由第一 定子绕组 W1输出, 转子绕组 W2不对外发电。 另外, 第一定子绕组 W1的发电 有功功率为风力输入的机械功率, 其中不含调速控制的转差功率, 从而避免了 转差功率在电网一转子一定子一电网的无谓循环及其引起的损耗, 发电效率得 以提高。
根据本发明的技术方案, 在转子绕组和双向变流器之间独立设置集电器 2, 其滑环 6 的直径便不再受发电机本体主轴尺寸的限制, 使结构更趋合理, 可以 通过减小滑环 6 的直径降低了线速度, 从而克服了滑环和电刷磨损严重, 提高 了运行可靠性, 第一定子绕组 W1 向电网输出电能, 转子绕组 W2 与电网之间 没有直接的连接和功率交换, 从而避免了转差功率的无谓循环和损耗, 提高了 发电效率。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种独立集电器的内馈发电机, 其特征在于, 包括:
发电机本体, 包括定子和转子, 其中,
所述定子包括: 第一定子绕组, 连接电网; 第二定子绕组, 连接双向变流 器的第一网端;
所述转子包括: 转子绕组, 与集电器的滑环电连接,
所述集电器, 设置于所述双向变流器的第二网端与所述转子绕组之间, 包 括:
联轴器, 与所述发电机本体的转轴机械连接;
滑环轴, 与所述联轴器连接, 随所述发电机本体的转轴同步旋转; 滑环, 设置在所述滑环轴上, 与所述转子绕组的出线连接;
电刷, 与所述滑环匹配设置, 连接所述双向变流器的第二网端,
所述双向变流器, 与所述第二定子绕组和所述集电器连接。
2. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述第一定子绕组和 第二定子绕组在定子铁芯上同槽布置, 所述第二定子绕组位于所述第一定子绕 组的顶部。
3. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述第一定子绕组的 额定输出电压为 6kV 或 10kV。
4. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述第一定子绕组的 绕线方式为二极电机的绕线方式。
5. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述联轴器为带有减 震緩冲的法兰联轴器。
6. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述滑环轴为双轴承 简支梁结构。
7. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述集电器每相设置 多个所述滑环, 所述多个所述滑环并联运行。
8. 根据权利要求 1 所述的内馈发电机, 其特征在于, 所述滑环轴的轴直径 小于所述发电机本体的转轴的直径。
9. 根据权利要求 1 至 8 中任一项所述的内馈发电机, 其特征在于, 当所述风力发电机处于亚同步运行状态时, 所述双向变流器用于将所述第 二定子绕组的输出进行整流、 逆变, 向所述转子绕组提供转差功率;
当所述风力发电机处于超同步运行状态时, 所述双向变流器用于将所述转 子绕组的输出进行整流、 逆变, 向所述第二定子绕组提供转差功率。
10. 根据权利要求 1 至 8 中任一项所述的内馈风力发电机, 其特征在于, 还包括补偿器, 与所述第二定子绕组连接, 在工频下为容性, 所述补偿器包括: 串联电感, 串联在补偿电容和所述第二定子绕组之间;
补偿电容, 使用三角形接线方式, 与所述串联电感连接。
PCT/CN2013/074385 2012-05-02 2013-04-19 独立集电器的内馈发电机 WO2013163923A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210135268.7 2012-05-02
CN2012101352687A CN102638134B (zh) 2012-05-02 2012-05-02 独立集电器的内馈发电机
CN2012201966218U CN202488288U (zh) 2012-05-02 2012-05-02 独立集电器的内馈发电机
CN201220196621.8 2012-05-02

Publications (1)

Publication Number Publication Date
WO2013163923A1 true WO2013163923A1 (zh) 2013-11-07

Family

ID=49514205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074385 WO2013163923A1 (zh) 2012-05-02 2013-04-19 独立集电器的内馈发电机

Country Status (1)

Country Link
WO (1) WO2013163923A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119369A1 (en) * 2002-12-18 2004-06-24 Radtke David E. Collector ring assembly for rotor shaft of electrical machine
CN101127429A (zh) * 2007-07-13 2008-02-20 保定北方调速有限公司 一种电机转子绕线用集电装置
CN201868971U (zh) * 2010-11-26 2011-06-15 山东电力研究院 内双馈风力发电机
CN102638134A (zh) * 2012-05-02 2012-08-15 屈湘竹 独立集电器的内馈发电机
CN202488288U (zh) * 2012-05-02 2012-10-10 屈湘竹 独立集电器的内馈发电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040119369A1 (en) * 2002-12-18 2004-06-24 Radtke David E. Collector ring assembly for rotor shaft of electrical machine
CN101127429A (zh) * 2007-07-13 2008-02-20 保定北方调速有限公司 一种电机转子绕线用集电装置
CN201868971U (zh) * 2010-11-26 2011-06-15 山东电力研究院 内双馈风力发电机
CN102638134A (zh) * 2012-05-02 2012-08-15 屈湘竹 独立集电器的内馈发电机
CN202488288U (zh) * 2012-05-02 2012-10-10 屈湘竹 独立集电器的内馈发电机

Similar Documents

Publication Publication Date Title
CN100585987C (zh) 直驱式电励磁双凸极容错风力发电机
CN101487453B (zh) 变速恒频风力发电装置
CN102709945B (zh) 一种鼠笼发电机直驱式可储能风力发电系统
WO2014032668A1 (en) Connection system for power generation system with dc output
CN110336326B (zh) 一种定子回路单独直配高压电网的双馈风力/水力发电系统
CN101871433A (zh) 具有储能装置的变速恒频风力发电装置
CN102290937A (zh) 一种双轴承支撑的大型直驱双定子开关磁阻风力发电机
CN107681828B (zh) 一种双转子调速风力发电系统及其控制方法
CN102044924A (zh) 内双馈风力发电机
Shukla et al. Power electronics applications in wind energy conversion system: A review
CN201344102Y (zh) 一种风力发电机
CN100463328C (zh) 旋转电磁型能量变换装置
CN102638134B (zh) 独立集电器的内馈发电机
CN107317457A (zh) 一种永磁耦合调速电机
CN201903629U (zh) 交流变压型励磁同步风力发电实验装置
CN207053364U (zh) 一种永磁耦合调速电机
Samoylenko et al. Semiconductor power electronics for synchronous distributed generation
CN202488288U (zh) 独立集电器的内馈发电机
CN102280968A (zh) 大型直驱盘式开关磁阻风力发电机及其系统
CN101546981B (zh) 一种带电动机启动方式的垂直风力发电机
WO2013163923A1 (zh) 独立集电器的内馈发电机
CN102723739B (zh) 风力发电系统
CN106532777A (zh) 一种新型高压直流风力发电机组及组网
CN102163896A (zh) 一种无刷双馈电机
WO2005074104A1 (fr) Moteur c.a. triphase a vitesse variable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784955

Country of ref document: EP

Kind code of ref document: A1