WO2013162099A1 - Electrolytic material for solid oxide fuel cell, and method for manufacturing electrolyte for solid oxide fuel cell - Google Patents

Electrolytic material for solid oxide fuel cell, and method for manufacturing electrolyte for solid oxide fuel cell Download PDF

Info

Publication number
WO2013162099A1
WO2013162099A1 PCT/KR2012/003218 KR2012003218W WO2013162099A1 WO 2013162099 A1 WO2013162099 A1 WO 2013162099A1 KR 2012003218 W KR2012003218 W KR 2012003218W WO 2013162099 A1 WO2013162099 A1 WO 2013162099A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
fuel cell
solid oxide
oxide fuel
powder
Prior art date
Application number
PCT/KR2012/003218
Other languages
French (fr)
Korean (ko)
Inventor
임경태
이희락
박진성
이충환
김병섭
Original Assignee
주식회사케이세라셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사케이세라셀 filed Critical 주식회사케이세라셀
Publication of WO2013162099A1 publication Critical patent/WO2013162099A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte material for a solid oxide fuel cell and a method for producing an electrolyte for a solid oxide fuel cell using the same, and more particularly, to an electrolyte material for a multi-component solid oxide fuel cell having a perovskite structure and a solid oxide fuel cell using the same. It relates to a method for producing an electrolyte.
  • a fuel cell is a power generation system that can obtain electrical energy and thermal energy by using hydrogen, which is spotlighted as the future infinite clean energy, as a fuel.
  • solid oxide fuel cells SOFCs
  • ceramic oxygen ion conductors use chemical energy of fuel gas and oxygen gas such as hydrogen, natural gas and biogas at a high temperature of about 550 to 1000 ° C. It is a future power generation system that directly converts electrical energy and thermal energy through electrochemical reactions.
  • SOFCs are attracting attention as the next generation of environmentally friendly power supplies because they have the highest power conversion efficiency and few pollutant emissions except water, among other fuel cell types.
  • SOFC has the advantage of being able to use various hydrocarbon-based fuels such as natural gas in addition to high-purity hydrogen without reformer as it generates its own fuel reforming in comparison with polymer electrolyte fuel cells. This has the advantage of being high.
  • the SOFC unit cell is composed of an electrolyte, a porous cathode (anode), and a fuel anode (cathode).
  • Oxygen in the air is converted into oxygen ions through the cathode (anode) of the SOFC, and the oxygen ions thus converted are diffused through the electrolyte to combine with hydrogen in the fuel gas at the anode (cathode) to generate electricity. Water is discharged.
  • the electrolyte in which oxygen ions diffuse and move is advantageous as the oxygen ion conductivity is higher, and it is important to secure a high sintered density so that air gas or fuel gas does not permeate.
  • the electrolyte serving as the support of the unit cell has high mechanical properties.
  • Yttria Stabilized Zirconia is a material widely used as an electrolyte for SOFC.
  • YSZ is a material with high oxygen ion conductivity and has properties suitable for being used stably as an electrolyte of SOFC.
  • YSZ when YSZ is used, there is a problem of operating at a high temperature of 1000 ° C. or higher in order to increase ion conductivity.
  • the crystal structure of the perovskite oxide is basically represented by ABO 3 structure, where A is a cationic element having a large ion radius and B is a relatively small cationic element.
  • the conventional perovskite electrolyte has a La atom and Based on the LaGaO 3 material composed of Ga atoms at the B lattice point, a part of La having a trivalent oxidation number is replaced by 10-20 mol% with Sr having a divalent oxidation number, and a part of Ga having a trivalent oxidation number is divalent. It is an electrolyte composition in which oxygen ion vacancy was formed by substituting 15-20 mol% with Mg which has oxidation water.
  • an LSGMC electrolyte in which part of Mg is replaced with Co having a smaller ion radius than Mg is now commercialized.
  • LSGM electrolytes and LSGMC electrolytes generally have a high sintering temperature of 1400 ° C. or higher and are highly reactive with NiO, the anode component of SOFC.
  • the LSGM electrolyte and the LSGMC electrolyte are coated on the anode support, which is NiO as the main component, and simultaneously sintered at 1400 ° C. or higher, there is a problem of deteriorating the output of the unit cell by forming a LaNiO 3 reaction product having a very poor conductivity from 1350 ° C.
  • Both cathode and electrolyte materials used in SOFC cells have an exponential increase in electrochemical properties as the operating temperature increases. Therefore, as the driving temperature of SOFC is increased, high output can be obtained.
  • the stack is configured to produce actual power by stacking single cells and several cells manufactured by high temperature sintering by forming different kinds of ceramic materials in a multilayer structure. Stacks operate at high temperatures, causing a variety of problems. Representative problems include high temperature reaction with electrolyte and electrode material, deterioration of electrode characteristics due to continuous shrinkage of porous electrode, difficulty of high temperature sealing treatment using glass material, and high temperature oxidation of heat-resistant metal separator applied in flat panel cells. Destruction of the unit cell itself due to the volatility of chromium (Cr) or decrease in stack output.
  • Cr chromium
  • An object of the present invention is to provide an electrolyte for a solid oxide fuel cell that can lower the operating temperature of the fuel cell by allowing the electrolyte for the solid oxide fuel cell to be manufactured through the electrolyte material for the solid oxide fuel cell for low temperature sintering.
  • the electrolyte for a solid oxide fuel cell of the present invention for achieving the above object is made of a five-component ceramic sintered body containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components. Can be.
  • composition of the lanthanum, strontium, gallium, magnesium and zinc components may be configured as shown in the following formula.
  • La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1 ⁇ x ⁇ 0.2, 0.15 ⁇ y ⁇ 0.19, 0.01 ⁇ z ⁇ 0.05).
  • the method for producing an electrolyte for a solid oxide fuel cell of the present invention for achieving the above object by mixing a powder having a lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components
  • the method may include preparing a raw material powder, uniformly mixing the raw material powder prepared above, pulverizing and preparing a powder particle size, and sintering the synthesized raw powder at a predetermined temperature.
  • the raw powder may have a composition of La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1 ⁇ x ⁇ 0.2, 0.15 ⁇ y ⁇ 0.19, 0.01 ⁇ z ⁇ 0.05).
  • the raw powder may be sintered at a temperature of 1200 °C ⁇ 1350 °C.
  • the powder having magnesium and zinc components may be at least one selected from water-insoluble oxide, water-soluble nitrate, water-soluble chloride, and water-soluble acetate powder.
  • the present invention has the effect of lowering the high sintering temperature of the perovskite-based electrolyte material previously used.
  • by improving the oxygen ion conductivity at the same temperature as the existing perovskite-based electrolyte material by providing an electrolyte having a high density suitable for the solid oxide fuel cell, it is possible to secure a high output density at the same temperature.
  • by providing an electrolyte for a solid oxide fuel cell operable at a low temperature there is an effect that can solve the high temperature durability problem, which is the biggest disadvantage of the solid oxide fuel cell.
  • FIG. 1 is a scanning electron micrograph of an electrolyte material for a solid oxide fuel cell manufactured according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a powder particle size distribution constituting electrolyte materials according to the amount of zinc added in the electrolyte material according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing an electrolyte material for a solid oxide fuel cell according to an embodiment of the present invention in order.
  • FIG. 5 is a scanning electron micrograph of the fracture surface of the sintered compact of Comparative Example and Example 2.
  • FIG. 6 is a scanning electron micrograph of the fracture surface of the sintered compact of Comparative Example and Example 2.
  • FIG. 7 is a scanning electron microscope photograph of the surface of the specimen of Example 2.
  • FIG. 1 is a scanning electron micrograph of an electrolyte material for a solid oxide fuel cell manufactured according to an embodiment of the present invention.
  • the electrolyte material for a solid oxide fuel cell of the present invention is preferably made of a five-component ceramic sintered body containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components.
  • the electrolyte material for a solid oxide fuel cell of the present invention has a composition of the lanthanum, strontium, gallium, magnesium and zinc components as shown in the following formula (1).
  • La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1 ⁇ x ⁇ 0.2, 0.15 ⁇ y ⁇ 0.19, 0.01 ⁇ z ⁇ 0.05)
  • the crystal structure of the perovskite oxide is basically a material having a structure of ABO 3 , where A is a cationic element having a large ion radius and B is a relatively small cationic element.
  • the conventional perovskite electrolyte has a portion of La having a trivalent oxidation number based on a LaGaO 3 material composed of La atoms at A lattice points and Ga atoms at B lattice points to 10-20 mole% as Sr having divalent oxidation numbers. It is an electrolyte composition in which oxygen ion vacancy was formed by substituting 15% by mol% of Ga having trivalent oxidized water with Mg having divalent oxidized water.
  • an LSGMC electrolyte in which a part of Mg is replaced with Co, Fe, or the like having a smaller ion radius than Mg has been commercialized.
  • Conventional LSGM and LSGMC electrolytes have a high sintering temperature of 1400 ° C. or higher and high reactivity with NiO, which is a cathode component, to form a cathode support unit cell.
  • the LaNiO 3 reaction product which is extremely poor in conductivity, was formed from 1350 ° C. or higher, thereby deteriorating unit cell output.
  • the ion radius is larger than that of Mg, which is a constituent element of LSGM, and a small amount of Zn, which is a divalent oxide, is substituted for Mg to prepare an electrolyte material for a solid oxide fuel cell.
  • Zn zinc
  • the introduction of zinc (Zn) showed a sintering density of 95% or more suitable as an electrolyte even under sintering conditions of 1400 ° C. or less, which are the sintering temperatures of the conventional LSGM and LSGMC electrolytes.
  • the electrolyte material of the present invention can be sintered at a temperature lower than the sintering temperature of the conventional LSGM and LSGMC electrolytes, thereby suppressing the reaction with NiO, the anode component, and thus, may help to improve the output of the unit cell.
  • FIG. 2 A particle size distribution of an electrolyte material for a solid oxide fuel cell according to a preferred embodiment of the present invention is shown in FIG. 2.
  • 'D10' shown in FIG. 2 shows the particle size distribution of particles located at 10% from the smallest particles when the particles of the entire electrolyte material are arranged in order from smallest to smallest.
  • 'D50' is the distribution of particles located from 50% to the smallest particles when particles of the entire electrolyte material are arranged in order from smallest to smallest
  • 'D90' is 90% from the smallest particles. Indicates the distribution of these.
  • the particle size of the powder constituting the electrolyte material according to a preferred embodiment of the present invention is about 0.3 ⁇ 1.3 ⁇ m It can be seen that.
  • FIG. 3 is a flowchart illustrating a method of manufacturing an electrolyte material for a solid oxide fuel cell according to an embodiment of the present invention in order.
  • a raw powder is prepared, wherein the raw powder includes lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg), and zinc (Zn). It contains (S10).
  • each powder containing each component is mixed in a predetermined container.
  • each powder containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components is weighed by a calculated amount in consideration of the composition of the final target electrolyte material. Put together in a container and mix.
  • the component composition of the raw powder is La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1 ⁇ x ⁇ 0.2, 0.15 ⁇ y ⁇ 0.19, 0.01 ⁇ z ⁇ 0.05) as shown in the above formula (1).
  • the present invention is prepared by substituting Zn for a portion of Mg in La, Sr, Ga, and Mg constituting a conventional LSGM electrolyte.
  • the electrical conductivity and sintered density of the electrolyte material according to the substitutional solid solution of Zn is improved compared with the conventional LSGM.
  • the value is negligible and does not mean much.
  • the powder having magnesium and zinc components may be at least one selected from water-insoluble oxide, water-soluble nitrate-based, water-soluble chloride and water-soluble acetate powders.
  • a powder having a magnesium component in order to prepare a raw powder a powder having a molecular formula of MgO, Mg (NO 3 ) 2 xH 2 O, MgCl 2 , or (CH 3 COO) 2 Mg may be selectively used. This is possible.
  • a powder having a zinc component may also be selectively used as a powder having any molecular formula of ZnO, Zn (NO 3 ) 2 xH 2 O, ZnCl 2 , Zn (CH 3 CO 2 ) 2 .
  • any powder containing magnesium or zinc as a main component can be used.
  • the raw powder prepared as described above is pulverized to have a proper and uniform particle size as well as to be mixed with each powder uniformly (S20).
  • a ball mill may be performed for uniform mixing and pulverization of the raw powder.
  • the raw material powder is put in a predetermined container, a solvent such as ethanol is put in the container, and then a plurality of ceramic balls (balls), which serve to mix and pulverize powder, are put in a ball mill while rotating the container.
  • the time for performing the ball mill may be about 2 hours to 36 hours. Of course, the ball mill time is preferably adjusted until analyzing the size of the crushed particles to obtain a particle size of the desired size.
  • the raw powder is not only uniformly mixed with the powder containing each component through the ball mill process, but also finely pulverized particles.
  • the ball mill may be performed more than once, and the raw powder slurry prepared by performing the first ball mill may be dried in a hot air dryer.
  • the dried slurry is further synthesized by further performing a calcined crystallization heat treatment at 1100 ⁇ 1300 °C.
  • Wet ball milling is performed once again to increase the sintering activation in the electrolyte sintering step by miniaturizing the particle size of the raw powder which is synthesized after calcination heat treatment and crystallization occurs.
  • the ball mill can be performed in the same manner as described above.
  • the calcined synthetic raw material particles may be final milled to about 0.3 ⁇ 1.3 ⁇ m as described above.
  • the raw material powder synthesized above is molded and sintered (S30).
  • the prepared raw powder can be molded into a disk using a pressure molding method.
  • the synthesis of the raw material powder can be carried out by selecting an appropriate method, the raw material powder thus formed is sintered at a temperature of 1350 °C or less.
  • the low-temperature sintering at 1200 ⁇ 1350 ° C and the sintering at the temperature can maintain the density and mechanical properties of the raw material powder.
  • Sintering can be suitably selected according to the sintering density desired to be obtained within the range of 5 hours-20 hours.
  • the sintered body obtained by sintering in this way can be used as an electrolyte for a solid oxide fuel cell, and in this case, it can be manufactured as a solid oxide fuel cell by coating the anode on one side of the electrolyte and heat treatment by coating the cathode on the opposite side. Molding in the form of a disk described above may be carried out for use in the evaluation of the characteristics of the sintered body.
  • the slurry which was uniformly mixed and pulverized by a ball mill, was completely dried at a temperature of 70 ° C. in a hot air dryer for drying, and then synthesized by calcining heat treatment at 1200 ° C. for 10 hours. Powders synthesized by calcining heat treatment were again milled again by ball milling in the same manner as in the case of homogeneous mixing and grinding.
  • Examples 1 to 5 were prepared as shown in Table 1 below. Examples 1 to 5 were different in their composition and their compositions are shown in Table 1, respectively.
  • pure LSGM powder was prepared using only La 2 O 3 (99.99%), SrCO 3 (99.9%), Ga 2 O 3 (99.99%), and MgO (99.9%).
  • the raw material powders of Examples and Comparative Examples were formed in the form of a flat disk having a size of 40 mm ⁇ 40 mm by uniaxial pressure molding. Molded and sintered to prepare a final electrolyte sintered body. X-ray diffraction analysis was performed in the same manner as the synthetic powder for the crystal structure analysis of each example, and the surface and the fracture surface were observed to observe the sintering characteristics of the specimen. In addition, each specimen was processed into a bar shape having a width of 2.5 mm, a length of 2.5 mm, and a length of 25 mm, and oxygen ion conductivity analysis was performed using a DC 4-terminal method.
  • Figure 4 is a result analyzed by X-ray diffraction analysis to confirm the crystallinity of the raw material powder synthesized in Comparative Examples and Examples 1 to 5 shown in Table 1. As confirmed in FIG. 4, Comparative Examples and Examples showed the same crystal structure, and it can be seen that the same level of secondary phase peaks were observed.
  • Example 5 is a photograph of the fracture surface of the sintered body of Comparative Example and Example 2 by scanning electron microscopy. It is shown. This shows that in the examples of the present invention and the comparative examples, similar microstructures are exhibited at general sintering temperatures regardless of the solid solution of Zn.
  • Figure 6 is a photograph of the fracture surface of the sintered body of Comparative Example and Example 2 by scanning electron microscopy, by sintering at 1300 °C for 10 hours by the method of the present invention after making each specimen The results are shown.
  • the comparative example that is, the conventional LSGM electrolyte can be seen that a large amount of pores appearing in a white sphere on the photo when compared to Example 2 when sintered at low temperatures.
  • Example 2 of the present invention when sintered at low temperature, it can be seen that the structure is dense and the number of pores is smaller than in the conventional.
  • FIG. 7 is a scanning electron microscope photograph of the surface of the specimen of Example 2, which is the same as in FIG. 6 without breaking. The results also show a structure in which the powders are densely sintered as shown in FIG. 6. At this time, the average grain size is about 2 ⁇ 3um distribution.
  • FIGS. 8 and 9 are graphs showing the results of X-ray diffraction analysis to determine the crystal structures of Comparative Example and Example 2, respectively. At this time, each specimen was subjected to X-ray diffraction analysis in powder form. In this case, it can be seen that the result of the comparative example is increased in the secondary material compared with Example 2. This shows that the substitution solid solution effect of Zn can produce less secondary phase even at low synthesis temperature, which can be expected to lower the sintering temperature.
  • powder was synthesized by calcining at a temperature of 1200 ° C., but in the case of substituting Zn for a part of Mg of LSGM as in the present invention, the secondary phase was suppressed compared to conventional LSGM while lowering the calcining synthesis temperature to 1100 ° C. as described above. You can see that you can.
  • the sintering temperature of the electrolyte is higher than 1400 ° C.
  • the anode and the electrolyte cannot be sintered at the same time.
  • the electrolyte material according to the embodiment of the present invention capable of low temperature sintering of 1350 ° C. or less
  • the anode and the electrolyte are sintered simultaneously.
  • the fuel cell can be manufactured as a fuel cell, thereby suppressing reactivity with NiO, simplifying the manufacturing process, and consequently, achieving an economic effect by reducing energy.
  • FIG. 10 is a graph showing the results of measuring oxygen ion conductivity after preparing raw powders of Comparative Examples and Examples shown in Table 1 and sintering at 1300 ° C. to prepare specimens. As shown in FIG. 10, the ion conductivity measurement results of Examples 1 to 3 in which Zn was substituted and dissolved in LSGM showed about 20% higher oxygen ion conductivity than the comparative example of pure LSGM.
  • the present invention there is an effect of lowering the high sintering temperature of the conventional perovskite-based electrolyte material, and not only improves oxygen ion conductivity at the same temperature as the existing perovskite-based electrolyte material, but also applies to the solid oxide fuel cell.
  • an electrolyte having a suitable density it is possible to secure a high output density at the same temperature.
  • an electrolyte for a solid oxide fuel cell operable at a low temperature there is an effect that can solve the high temperature durability problem, which is the biggest disadvantage of the solid oxide fuel cell.
  • since high oxygen ion conductivity can be ensured even at low temperatures, it can be used as a low-temperature electrolyte for fuel cells.
  • the electrolyte material for a solid oxide fuel cell as described above and a method for manufacturing an electrolyte for a solid oxide fuel cell using the same are not limited to the configuration and operation of the embodiments described above.
  • the above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to an electrolytic material for a multi-component solid oxide fuel cell having a perovskite structure and to a method for manufacturing an electrolyte for a solid oxide fuel cell using the electrolytic material. Provided are an electrolytic material for a solid oxide fuel cell, made from a 5-component ceramics sintered body comprising lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components, and a method for manufacturing an electrolytic material for a solid oxide fuel cell using the electrolytic material.

Description

고체산화물 연료전지용 전해질 재료 및 이를 이용한 고체산화물 연료전지용 전해질의 제조방법Electrolyte material for solid oxide fuel cell and manufacturing method of electrolyte for solid oxide fuel cell using same
본 발명은 고체산화물 연료전지용 전해질 재료 및 이를 이용한 고체산화물 연료전지용 전해질의 제조방법에 관한 것으로, 더욱 상세하게는 페롭스카이트 구조를 갖는 다성분계 고체산화물 연료전지용 전해질 재료 및 이를 이용하여 고체산화물 연료전지용 전해질을 제조하는 방법에 관한 것이다.The present invention relates to an electrolyte material for a solid oxide fuel cell and a method for producing an electrolyte for a solid oxide fuel cell using the same, and more particularly, to an electrolyte material for a multi-component solid oxide fuel cell having a perovskite structure and a solid oxide fuel cell using the same. It relates to a method for producing an electrolyte.
연료전지는 미래 무한 청정에너지로 각광받고 있는 수소를 연료로 사용하여 전기에너지와 열에너지를 얻을 수 있는 발전시스템이다. 그 중에서도 세라믹 산소 이온 전도체를 전해질로 사용하는 고체산화물 연료전지(Solid Oxide Fuel Cell, SOFC)는 550~1000℃ 정도의 고온에서 수소, 천연가스, 바이오가스 등의 연료가스와 산소가스의 화학에너지를 전기화학반응을 통하여 직접 전기에너지와 열에너지로 변환시키는 미래 발전 시스템이다. 이러한 SOFC는 여러 연료전지 유형 중에서 가장 높은 전력 변환 효율과 물 이외에는 공해 물질 배출이 거의 없어 환경 친화적인 차세대 전력 공급 장치로서 주목받고 있다. 또한 고온의 폐열을 가스터빈 발전 시스템의 구동 에너지로서 사용할 수 있어 미국, 일본 , 유럽 등의 선진국에서는 SOFC와 가스터빈을 이용한 복합발전시스템이 미래에 가장 유망한 분산 발전시스템으로 인정하고 상용화 개발을 위해 국가적 지원을 하고 있다. SOFC는 고분자 전해질형 연료전지와 비교하여 연료극에서 자체적으로 연료개질이 발생하므로 고순도 수소 이외에도 천연가스 등과 같은 각종 탄화수소계 연료를 개질기 없이 사용할 수 있다는 장점이 있으며, 백금 계열의 귀금속 촉매 전극이 필요 없어 경제성이 높다는 장점이 있다. SOFC 단전지는 전해질과 다공성 공기극(양극) 및 연료극(음극)으로 구성된다.A fuel cell is a power generation system that can obtain electrical energy and thermal energy by using hydrogen, which is spotlighted as the future infinite clean energy, as a fuel. Among them, solid oxide fuel cells (SOFCs) using ceramic oxygen ion conductors as electrolytes use chemical energy of fuel gas and oxygen gas such as hydrogen, natural gas and biogas at a high temperature of about 550 to 1000 ° C. It is a future power generation system that directly converts electrical energy and thermal energy through electrochemical reactions. These SOFCs are attracting attention as the next generation of environmentally friendly power supplies because they have the highest power conversion efficiency and few pollutant emissions except water, among other fuel cell types. In addition, high-temperature waste heat can be used as driving energy of gas turbine power generation system.In developed countries such as the US, Japan, and Europe, the combined power generation system using SOFC and gas turbine is recognized as the most promising distributed power generation system in the future. I am supporting. SOFC has the advantage of being able to use various hydrocarbon-based fuels such as natural gas in addition to high-purity hydrogen without reformer as it generates its own fuel reforming in comparison with polymer electrolyte fuel cells. This has the advantage of being high. The SOFC unit cell is composed of an electrolyte, a porous cathode (anode), and a fuel anode (cathode).
SOFC의 공기극(양극)을 통해 공기 중의 산소가 산소 이온으로 변환되고, 이와 같이 변환된 산소 이온은 전해질을 통해 확산 이동하여 연료극(음극)에서 연료가스 중의 수소와 결합하여 전기를 생성시키며 그 반응생성물로 물이 배출된다. 이와 같이 산소 이온이 확산 이동하는 전해질은 산소 이온 전도성이 높을수록 유리하며 공기 가스 또는 연료 가스가 투과되지 않도록 높은 소결밀도를 확보하는 것이 중요하다. 또한, 단전지의 지지체 역할을 하는 전해질은 높은 기계적 특성을 갖는 것이 유리하다. Oxygen in the air is converted into oxygen ions through the cathode (anode) of the SOFC, and the oxygen ions thus converted are diffused through the electrolyte to combine with hydrogen in the fuel gas at the anode (cathode) to generate electricity. Water is discharged. As such, the electrolyte in which oxygen ions diffuse and move is advantageous as the oxygen ion conductivity is higher, and it is important to secure a high sintered density so that air gas or fuel gas does not permeate. In addition, it is advantageous that the electrolyte serving as the support of the unit cell has high mechanical properties.
현재 SOFC용 전해질로 널리 사용되는 물질로는 YSZ(Yttria Stabilized Zirconia)이 있다. YSZ는 높은 산소 이온 전도성을 가진 물질로서 SOFC의 전해질로 안정적으로 사용되기에 적합한 특성을 가지고 있다. 그러나, YSZ를 이용하는 경우 이온전도성을 높이기 위해 1000℃ 이상의 고온에서 작동해야 하는 문제점이 있다.Currently, Yttria Stabilized Zirconia (YSZ) is a material widely used as an electrolyte for SOFC. YSZ is a material with high oxygen ion conductivity and has properties suitable for being used stably as an electrolyte of SOFC. However, when YSZ is used, there is a problem of operating at a high temperature of 1000 ° C. or higher in order to increase ion conductivity.
또한, 페롭스카이트계 산화물의 결정구조는 기본적으로 ABO3 구조로 표현하며 여기서 A는 이온 반경이 큰 양이온 원소이고 B는 상대적으로 작은 양이온 원소로서 종래의 페롭스카이트계 전해질은 A 격자점에 La 원자와 B 격자점에 Ga 원자로 구성한 LaGaO3 물질을 기초로 하여 3가 산화수를 갖는 La의 일부를 2가 산화수를 갖는 Sr으로 10~20몰 %로 치환하고, 3가 산화수를 갖는 Ga의 일부를 2가 산화수를 갖는 Mg로 15~20몰 %로 치환하여 산소 이온 공공을 형성시킨 전해질 조성물이다. 이러한 페롭스카이트계 전해질을 LSGM(La1-xSrxGa1-yMgyO3-z, X=0.1~0.2, Y=0.15~0.2) 전해질이라고 부른다. 또한 LSGM 전해질의 산소 이온 전도성을 더욱 향상시키기 위해 Mg의 일부를 Mg보다 이온 반경이 작은 Co로 치환시킨 LSGMC 전해질도 현재 상용화되었다. 그러나, LSGM 전해질 및 LSGMC 전해질은 통상 소결 온도가 1400℃ 이상으로 높고 SOFC의 연료극 구성 성분인 NiO와 반응성이 매우 높다. 때문에 NiO가 주요 성분인 연료극지지체 위에 LSGM 전해질 및 LSGMC 전해질을 코팅하여 1400℃ 이상에서 동시 소결할 경우 1350℃에서부터 전도성이 매우 열악한 LaNiO3 반응 생성물을 형성시켜 단전지의 출력을 악화시키는 문제점이 있었다.In addition, the crystal structure of the perovskite oxide is basically represented by ABO 3 structure, where A is a cationic element having a large ion radius and B is a relatively small cationic element. The conventional perovskite electrolyte has a La atom and Based on the LaGaO 3 material composed of Ga atoms at the B lattice point, a part of La having a trivalent oxidation number is replaced by 10-20 mol% with Sr having a divalent oxidation number, and a part of Ga having a trivalent oxidation number is divalent. It is an electrolyte composition in which oxygen ion vacancy was formed by substituting 15-20 mol% with Mg which has oxidation water. Such perovskite-based electrolytes are called LSGM (La 1-x Sr x Ga 1-y Mg y O 3-z , X = 0.1-0.2, Y = 0.15-0.2) electrolyte. In addition, to further improve the oxygen ion conductivity of the LSGM electrolyte, an LSGMC electrolyte in which part of Mg is replaced with Co having a smaller ion radius than Mg is now commercialized. However, LSGM electrolytes and LSGMC electrolytes generally have a high sintering temperature of 1400 ° C. or higher and are highly reactive with NiO, the anode component of SOFC. Therefore, when the LSGM electrolyte and the LSGMC electrolyte are coated on the anode support, which is NiO as the main component, and simultaneously sintered at 1400 ° C. or higher, there is a problem of deteriorating the output of the unit cell by forming a LaNiO 3 reaction product having a very poor conductivity from 1350 ° C.
SOFC용 단전지에 적용되는 공기극 소재와 전해질 소재는 모두 작동 온도가 증가할수록 거의 지수함수적으로 전기화학적 특성이 증가한다. 때문에 SOFC의 구동 온도를 증가시킬수록 높은 출력을 얻을 수 있으나 서로 다른 이종의 세라믹 물질을 다층 구조로 형성하여 고온 소결을 통해 제조된 단전지 및 여러 개의 단전지를 적층하여 실제 전력을 생산하도록 구성되는 스택(stack)은 고온에서 작동하기 때문에 여러가지 문제점이 야기된다. 대표적인 문제점으로는 전해질 및 전극 물질과의 고온 반응, 다공성 전극의 지속적인 수축으로 인한 전극 특성 열화, 유리 물질을 이용한 고온 밀봉 처리의 난점과 평판형 단전지의 경우에는 적용된 내열 금속 분리판의 고온 산화와 크롬(Cr)의 휘발성으로 인한 단전지 자체의 파괴 또는 스택 출력의 저하 등이 있다. Both cathode and electrolyte materials used in SOFC cells have an exponential increase in electrochemical properties as the operating temperature increases. Therefore, as the driving temperature of SOFC is increased, high output can be obtained. However, the stack is configured to produce actual power by stacking single cells and several cells manufactured by high temperature sintering by forming different kinds of ceramic materials in a multilayer structure. Stacks operate at high temperatures, causing a variety of problems. Representative problems include high temperature reaction with electrolyte and electrode material, deterioration of electrode characteristics due to continuous shrinkage of porous electrode, difficulty of high temperature sealing treatment using glass material, and high temperature oxidation of heat-resistant metal separator applied in flat panel cells. Destruction of the unit cell itself due to the volatility of chromium (Cr) or decrease in stack output.
이러한 문제점을 해결하는 근본적인 방법은 작동 온도를 낮추는 것이다. 그러나 작동 온도를 낮출 경우 전극 및 전해질 물질의 전기화학적 특성이 급격히 하락하여 목표하는 출력을 기대할 수 없게 된다. 따라서 낮은 구동 온도에서도 고온 구동에서와 동일한 전기화학적 특성을 갖는 전해질 물질이 필요하다.The fundamental way to solve this problem is to lower the operating temperature. However, if the operating temperature is lowered, the electrochemical properties of the electrode and electrolyte materials will drop sharply and the desired output will not be expected. Therefore, there is a need for an electrolyte material having the same electrochemical properties as at high temperature driving even at low driving temperatures.
본 발명은 저온 소결용 고체산화물 연료전지용 전해질 재료를 통해 고체산화물 연료전지용 전해질을 제조할 수 있도록 함으로써 연료전지의 작동온도를 낮출 수 있는 고체산화물 연료전지용 전해질을 제공하는데 그 목적이 있다. 또한, 고체산화물 연료전지의 작동온도를 낮추면서도 전해질의 전기화학적 특성과 고체산화물 연료전지용 전해질로서 적합한 소결밀도, 즉 치밀도를 유지할 수 있는 고체산화물 연료전지용 전해질을 제공하는데에 또 다른 목적이 있다.An object of the present invention is to provide an electrolyte for a solid oxide fuel cell that can lower the operating temperature of the fuel cell by allowing the electrolyte for the solid oxide fuel cell to be manufactured through the electrolyte material for the solid oxide fuel cell for low temperature sintering. In addition, it is another object to provide an electrolyte for a solid oxide fuel cell capable of maintaining the sintering density, that is, the density, suitable as an electrochemical property of the electrolyte and an electrolyte for the solid oxide fuel cell, while lowering the operating temperature of the solid oxide fuel cell.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않는다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above.
상기 과제를 달성하기 위한 본 발명의 고체산화물 연료전지용 전해질은, 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 포함하는 5성분계 세라믹스 소결체로 이루어질 수 있다.The electrolyte for a solid oxide fuel cell of the present invention for achieving the above object is made of a five-component ceramic sintered body containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components. Can be.
구체적으로, 상기 란탄, 스트론튬, 갈륨, 마그네슘 및 아연 성분의 조성은 하기 화학식과 같이 구성되는 것을 특징으로 할 수 있다.Specifically, the composition of the lanthanum, strontium, gallium, magnesium and zinc components may be configured as shown in the following formula.
<화학식><Formula>
La1-xSrxGa1-y-zMgyZnzO2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)할 수 있다.La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1 ≦ x ≦ 0.2, 0.15 ≦ y ≦ 0.19, 0.01 ≦ z ≦ 0.05).
상기 과제를 달성하기 위한 본 발명의 고체산화물 연료전지용 전해질의 제조방법은, 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 갖는 분말을 혼합하여 원료분말을 준비하는 단계와, 상기에서 준비된 원료분말을 균일하게 혼합하고 설정된 분말입자 크기를 갖도록 분쇄하여 합성하는 단계와, 상기에서 합성된 원료분말을 설정된 온도에서 소결하는 단계를 포함할 수 있다.The method for producing an electrolyte for a solid oxide fuel cell of the present invention for achieving the above object, by mixing a powder having a lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components The method may include preparing a raw material powder, uniformly mixing the raw material powder prepared above, pulverizing and preparing a powder particle size, and sintering the synthesized raw powder at a predetermined temperature.
구체적으로, 상기 원료분말은, La1-xSrxGa1-y-zMgyZnzO2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)의 조성을 가질 수 있다.Specifically, the raw powder may have a composition of La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1 ≦ x ≦ 0.2, 0.15 ≦ y ≦ 0.19, 0.01 ≦ z ≦ 0.05).
상기 소결하는 단계에서, 상기 원료분말을 1200℃~1350℃의 온도에서 소결할 수 있다.In the sintering step, the raw powder may be sintered at a temperature of 1200 ℃ ~ 1350 ℃.
상기 원료분말을 준비하는 단계에서, 상기 마그네슘과 상기 아연 성분을 갖는 분말은 비수용성 산화물계, 수용성 질산염계, 수용성 염화물계, 수용성 아세트산염계 분말 중 선택된 1종 이상일 수 있다.In preparing the raw material powder, the powder having magnesium and zinc components may be at least one selected from water-insoluble oxide, water-soluble nitrate, water-soluble chloride, and water-soluble acetate powder.
이상에서 설명한 바와 같이 본 발명은 기존에 사용되던 페롭스카이트계 전해질 재료의 높은 소결온도를 낮출 수 있는 효과가 있다. 또한, 기존 페롭스카이트계 전해질 재료와 동일온도에서 산소 이온 전도도를 향상시킬 뿐 아니라 고체산화물 연료전지에 적합한 치밀도를 확보한 전해질을 제공함으로써 동일 온도에서 높은 출력밀도를 확보할 수 있는 효과가 있다. 또한, 저온에서 작동가능한 고체산화물 연료전지용 전해질을 제공함으로써, 고체산화물 연료전지의 가장 큰 단점인 고온 내구성 문제를 해결할 수 있는 효과가 있다. As described above, the present invention has the effect of lowering the high sintering temperature of the perovskite-based electrolyte material previously used. In addition, by improving the oxygen ion conductivity at the same temperature as the existing perovskite-based electrolyte material, by providing an electrolyte having a high density suitable for the solid oxide fuel cell, it is possible to secure a high output density at the same temperature. In addition, by providing an electrolyte for a solid oxide fuel cell operable at a low temperature, there is an effect that can solve the high temperature durability problem, which is the biggest disadvantage of the solid oxide fuel cell.
도 1은 본 발명의 일실시예에 의해 제조된 고체산화물 연료전지용 전해질 재료의 주사전자현미경 사진이다. 1 is a scanning electron micrograph of an electrolyte material for a solid oxide fuel cell manufactured according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 전해질 재료에서 아연 첨가량에 따라 전해질 재료들을 구성하는 분말 입도 분포를 나타낸 그래프이다.2 is a graph showing a powder particle size distribution constituting electrolyte materials according to the amount of zinc added in the electrolyte material according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 고체산화물 연료전지용 전해질 재료의 제조방법을 순서에 따라 도시한 순서도이다.3 is a flowchart illustrating a method of manufacturing an electrolyte material for a solid oxide fuel cell according to an embodiment of the present invention in order.
도 4는 비교예와 실시예 1 내지 실시예 5의 X-선 회절 분석 결과이다.4 is an X-ray diffraction analysis of Comparative Examples and Examples 1 to 5.
도 5는 비교예와 실시예 2의 소결체의 파단면의 주사전자현미경 사진이다.5 is a scanning electron micrograph of the fracture surface of the sintered compact of Comparative Example and Example 2. FIG.
도 6은 비교예와 실시예 2의 소결체의 파단면의 주사전자현미경 사진이다.6 is a scanning electron micrograph of the fracture surface of the sintered compact of Comparative Example and Example 2. FIG.
도 7은 실시예 2의 시편의 표면을 관찰한 주사전자현미경 사진이다.7 is a scanning electron microscope photograph of the surface of the specimen of Example 2. FIG.
도 8과 도 9는 각각 비교예와 실시예 2의 결정구조를 알아보기 위하여 X-선 회절분석을 실시한 결과를 나타낸 그래프이다.8 and 9 are graphs showing the results of X-ray diffraction analysis to determine the crystal structures of Comparative Example and Example 2, respectively.
도 10은 비교예와 실시예들의 산소 이온 전도도를 측정한 결과를 도시한 그래프이다.10 is a graph showing the results of measuring oxygen ion conductivity of Comparative Examples and Examples.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호로 표시한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Like elements in the figures are denoted by the same reference numerals wherever possible. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 1은 본 발명의 일실시예에 의해 제조된 고체산화물 연료전지용 전해질 재료의 주사전자현미경 사진이다. 1 is a scanning electron micrograph of an electrolyte material for a solid oxide fuel cell manufactured according to an embodiment of the present invention.
본 발명의 고체산화물 연료전지용 전해질 재료는 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 포함하는 5성분계 세라믹스 소결체로 이루어지는 것이 바람직하다. The electrolyte material for a solid oxide fuel cell of the present invention is preferably made of a five-component ceramic sintered body containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components.
구체적으로, 본 발명의 고체산화물 연료전지용 전해질 재료는 상기 란탄, 스트론튬, 갈륨, 마그네슘 및 아연 성분의 조성을 하기 화학식 1과 같이 구성하였다.Specifically, the electrolyte material for a solid oxide fuel cell of the present invention has a composition of the lanthanum, strontium, gallium, magnesium and zinc components as shown in the following formula (1).
<화학식 1><Formula 1>
La1-xSrxGa1-y-zMgyZnzO2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)
일반적으로, 페롭스카이트계 산화물의 결정구조는 기본적으로 ABO3 의 구조를 가지는 물질로서, A는 이온 반경이 큰 양이온 원소이고 B는 상대적으로 작은 양이온 원소이다. 종래의 페롭스카이트계 전해질은 A 격자점에 La 원자와 B 격자점에 Ga 원자로 구성한 LaGaO3 물질을 기초로 하여 3가 산화수를 갖는 La의 일부를 2가 산화수를 갖는 Sr으로 10~20몰 %로 치환하고, 3가 산화수를 갖는 Ga의 일부를 2가 산화수를 갖는 Mg로 15~20몰 %로 치환하여 산소 이온 공공을 형성시킨 전해질 조성물이다. 이러한 페롭스카이트계 전해질을 LSGM(La1-xSrxGa1-yMgyO3-z, X=0.1~0.2, Y=0.15~0.2)이라고 부른다. 또한, LSGM 전해질의 산소 이온 전도성을 더욱 향상시키기 위해 Mg의 일부를 Mg보다 이온 반경이 작은 Co, Fe 등으로 치환시킨 LSGMC 전해질도 상용화되고 있다. 종래의 LSGM 전해질 및 LSGMC 전해질은 통상 소결 온도가 1400℃ 이상으로 높고 연료극 구성 성분인 NiO와 반응성이 매우 높아 연료극지지체형 단전지로 구성할 경우 NiO가 주요 성분인 연료극지지체 위에 전해질을 코팅 후 1400℃ 이상에서 동시 소결할 경우 1350℃ 이상에서부터 전도성이 매우 열악한 LaNiO3 반응 생성물을 형성시켜 단전지 출력을 악화시켰다.In general, the crystal structure of the perovskite oxide is basically a material having a structure of ABO 3 , where A is a cationic element having a large ion radius and B is a relatively small cationic element. The conventional perovskite electrolyte has a portion of La having a trivalent oxidation number based on a LaGaO 3 material composed of La atoms at A lattice points and Ga atoms at B lattice points to 10-20 mole% as Sr having divalent oxidation numbers. It is an electrolyte composition in which oxygen ion vacancy was formed by substituting 15% by mol% of Ga having trivalent oxidized water with Mg having divalent oxidized water. Such perovskite-based electrolytes are referred to as LSGMs (La 1-x Sr x Ga 1-y Mg y O 3-z , X = 0.1-0.2, Y = 0.15-0.2). In addition, in order to further improve the oxygen ion conductivity of the LSGM electrolyte, an LSGMC electrolyte in which a part of Mg is replaced with Co, Fe, or the like having a smaller ion radius than Mg has been commercialized. Conventional LSGM and LSGMC electrolytes have a high sintering temperature of 1400 ° C. or higher and high reactivity with NiO, which is a cathode component, to form a cathode support unit cell. When co-sintering at, the LaNiO 3 reaction product, which is extremely poor in conductivity, was formed from 1350 ° C. or higher, thereby deteriorating unit cell output.
이와 같은 문제를 해결하기 위하여 본 발명에서는 종래 LSGM의 구성 원소인 Mg보다 이온 반경이 크며 2가 산화물인 Zn을 Mg 대신 소량 치환 고용시켜 고체산화물 연료전지용 전해질 재료로 제조하였다. 아연(Zn)의 도입을 통해 종래의 LSGM 전해질 및 LSGMC 전해질의 소결온도인 1400℃ 이하의 소결 조건에서도 전해질로서 적합한 95% 이상의 소결 밀도를 나타냈다. 그러므로 본 발명의 전해질 재료는 종래의 LSGM 전해질 및 LSGMC 전해질의 소결온도보다 낮은 온도에서 소결이 가능하여 연료극 성분인 NiO와의 반응이 억제되므로 단전지의 출력 향상에 도움을 줄 수 있다.In order to solve this problem, in the present invention, the ion radius is larger than that of Mg, which is a constituent element of LSGM, and a small amount of Zn, which is a divalent oxide, is substituted for Mg to prepare an electrolyte material for a solid oxide fuel cell. The introduction of zinc (Zn) showed a sintering density of 95% or more suitable as an electrolyte even under sintering conditions of 1400 ° C. or less, which are the sintering temperatures of the conventional LSGM and LSGMC electrolytes. Therefore, the electrolyte material of the present invention can be sintered at a temperature lower than the sintering temperature of the conventional LSGM and LSGMC electrolytes, thereby suppressing the reaction with NiO, the anode component, and thus, may help to improve the output of the unit cell.
본 발명의 바람직한 실시예에 따른 고체산화물 연료전지용 전해질 재료의 입도 분포는 도 2에 도시하였다. 도 2에 나타낸 'D10'은 전체 전해질 재료의 입자를 입자 크기가 작은 것에서 큰 순서대로 배열하였을 때 가장 작은 입자에서부터 10% 에 위치하는 입자들의 입도 분포를 나타낸 것이다. 또한, 'D50'은 전체 전해질 재료의 입자를 입자 크기가 작은 것에서 큰 순서대로 배열하였을 때 가장 작은 입자에서부터 50%에 위치하는 입자들의 분포, 'D90'은 가장 작은 입자에서부터 90%에 위치하는 입자들의 분포를 나타낸다. A particle size distribution of an electrolyte material for a solid oxide fuel cell according to a preferred embodiment of the present invention is shown in FIG. 2. 'D10' shown in FIG. 2 shows the particle size distribution of particles located at 10% from the smallest particles when the particles of the entire electrolyte material are arranged in order from smallest to smallest. In addition, 'D50' is the distribution of particles located from 50% to the smallest particles when particles of the entire electrolyte material are arranged in order from smallest to smallest, and 'D90' is 90% from the smallest particles. Indicates the distribution of these.
따라서, 도 2는 본 발명의 실시예에 따른 전해질 재료에서 아연 첨가량에 따라 전해질 재료들을 구성하는 분말 입자들의 크기 분포를 나타내는 것이다. 도 2를 참고하면 치환 고용된 아연 성분의 조성비는 입도분포에는 큰 영향을 미치지 않는 것을 알 수 있으며, 본 발명의 바람직한 실시예에 따른 전해질 재료를 구성하는 분말들의 입자 크기는 약 0.3~1.3㎛ 정도임을 알 수 있다.2 shows the size distribution of the powder particles constituting the electrolyte materials according to the amount of zinc added in the electrolyte material according to the embodiment of the present invention. Referring to Figure 2 it can be seen that the composition ratio of the substituted solid solution zinc component does not significantly affect the particle size distribution, the particle size of the powder constituting the electrolyte material according to a preferred embodiment of the present invention is about 0.3 ~ 1.3㎛ It can be seen that.
도 3은 본 발명의 실시예에 따른 고체산화물 연료전지용 전해질 재료의 제조방법을 순서에 따라 도시한 순서도이다.3 is a flowchart illustrating a method of manufacturing an electrolyte material for a solid oxide fuel cell according to an embodiment of the present invention in order.
본 발명의 고체산화물 연료전지용 전해질 재료를 제조하기 위해서 먼저 원료분말을 준비하는데, 이때 원료분말은 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 함유한다(S10). 이와같이 각 성분을 함유한 각각의 분말을 소정의 용기에 혼합한다. 이때 최종 목표하는 전해질 재료의 성분 조성을 고려하여 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 함유한 각각의 분말을 계산된 양만큼 칭량하여 소정의 용기에 함께 넣어 혼합한다.To prepare an electrolyte material for a solid oxide fuel cell of the present invention, first, a raw powder is prepared, wherein the raw powder includes lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg), and zinc (Zn). It contains (S10). Thus, each powder containing each component is mixed in a predetermined container. At this time, each powder containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components is weighed by a calculated amount in consideration of the composition of the final target electrolyte material. Put together in a container and mix.
이때 원료분말의 성분 조성은 상술한 화학식 1과 같은 La1-xSrxGa1-y-zMgyZnzO2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)이다. At this time, the component composition of the raw powder is La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05) as shown in the above formula (1).
본 발명은 종래의 LSGM 전해질을 구성하는 La, Sr, Ga, Mg 에서 Mg의 일부를 Zn으로 치환 고용시켜 제조되는 것이다. The present invention is prepared by substituting Zn for a portion of Mg in La, Sr, Ga, and Mg constituting a conventional LSGM electrolyte.
이때 바람직한 Zn의 첨가량이 상술한 조성비를 벗어나는 경우, 즉 상기 조성을 나타낸 식에서 Zn의 조성비를 나타내는 z값이 0.01 미만인 경우에는 Zn의 치환 고용에 따른 전해질 재료의 전기전도도 및 소결밀도가 종래 LSGM에 비해 향상되는 값이 미미하여 큰 의미가 없다. 또한, 0.05를 초과하는 경우에는 결정성의 저하로 종래 LSGM보다 향상된 전도도를 확보하지 못하므로 이를 초과하지 않는 것이 바람직하다.At this time, when the preferred amount of Zn is out of the above-described composition ratio, that is, when the z value representing the composition ratio of Zn in the formula showing the composition is less than 0.01, the electrical conductivity and sintered density of the electrolyte material according to the substitutional solid solution of Zn is improved compared with the conventional LSGM. The value is negligible and does not mean much. In addition, when exceeding 0.05, it is preferable not to exceed the conductivity because the conductivity is lowered than the conventional LSGM due to a decrease in crystallinity.
또한, 각각의 성분을 가지는 소정의 분말을 준비함에 있어 마그네슘과 아연 성분을 갖는 분말의 종류는 비수용성 산화물계, 수용성 질산염계, 수용성 염화물계, 수용성 아세트산염계 분말 중 선택된 1종 이상인 것이 가능하다. 예를 들어, 원료분말을 준비하기 위하여 마그네슘 성분을 가지는 분말을 선택할 때 MgO, Mg(NO3)2xH2O, MgCl2, (CH3COO)2Mg 중 어떠한 분자식을 갖는 분말이든 선택적으로 사용이 가능하다. 또한, 아연 성분을 가지는 분말 역시 ZnO, Zn(NO3)2xH2O, ZnCl2, Zn(CH3CO2)2 중 어떠한 분자식을 갖는 분말이든 선택적으로 사용이 가능하다. 물론, 상기 예로 들지 않은 분자식을 갖고 있더라도 비수용성 산화물계와 더불어 수용성 질산염계, 수용성 염화물계, 수용성 아세트산염계 분말로서 마그네슘이나 아연을 주성분으로 하는 분말은 어떠한 것이든 사용이 가능하다.In preparation of the predetermined powder having each component, the powder having magnesium and zinc components may be at least one selected from water-insoluble oxide, water-soluble nitrate-based, water-soluble chloride and water-soluble acetate powders. For example, to select a powder having a magnesium component in order to prepare a raw powder, a powder having a molecular formula of MgO, Mg (NO 3 ) 2 xH 2 O, MgCl 2 , or (CH 3 COO) 2 Mg may be selectively used. This is possible. In addition, a powder having a zinc component may also be selectively used as a powder having any molecular formula of ZnO, Zn (NO 3 ) 2 xH 2 O, ZnCl 2 , Zn (CH 3 CO 2 ) 2 . Of course, even if it has a molecular formula not mentioned above, as the water-soluble nitrate-based, water-soluble chloride-based, water-soluble acetate-based powder, as well as the water-insoluble oxide-based powder, any powder containing magnesium or zinc as a main component can be used.
이와 같이 준비된 원료분말은 각 분말이 균일하게 혼합되어야 할 뿐 아니라 적정하고 균일한 입자 크기를 갖도록 분쇄한 후 합성한다(S20). 원료분말의 균일혼합 및 분쇄를 위해 볼밀(ball mill)을 실시할 수 있다. 볼밀을 위해 원료분말을 소정의 용기에 넣고 에탄올 등의 용매를 용기에 넣은 후 분말들을 혼합 및 분쇄하는 역할을 하는 세라믹 볼(Ball)을 복수 개 넣어 용기를 회전시키면서 볼밀을 실시한다. 볼밀을 수행하는 시간은 2시간~36시간 정도일 수 있다. 물론 분쇄된 입자들의 크기를 분석하여 원하는 크기의 입자 크기를 얻을 때까지 볼밀 시간은 조정되는 것이 바람직하다. 이때 원료분말은 볼밀 과정을 통해 각각의 성분을 함유했던 분말들이 균일하게 혼합될 뿐 아니라 입자들이 보다 미세하게 분쇄된다. 이때 볼밀은 한번 이상 수행될 수 있으며 최초 볼밀을 수행하여 제조된 원료분말 슬러리는 열풍건조기 등에서 건조할 수 있다. 또한, 건조된 슬러리는 다시 1100~1300℃에서 하소 결정화 열처리를 더 수행하여 합성한다. 하소 열처리 후 합성되어 결정화가 일어난 원료분말의 입자 크기를 미세화시켜 전해질 소결 단계에서 소결 활성화를 증대시키도록 다시 한번 습식 볼밀을 수행한다. 이때의 볼밀은 상술한 방법과 동일하게 수행할 수 있다. 하소 처리한 합성 원료분말 입자들은 상술한 바와 같이 약 0.3~1.3㎛ 정도로 최종 분쇄되는 것일 수 있다.The raw powder prepared as described above is pulverized to have a proper and uniform particle size as well as to be mixed with each powder uniformly (S20). A ball mill may be performed for uniform mixing and pulverization of the raw powder. For the ball mill, the raw material powder is put in a predetermined container, a solvent such as ethanol is put in the container, and then a plurality of ceramic balls (balls), which serve to mix and pulverize powder, are put in a ball mill while rotating the container. The time for performing the ball mill may be about 2 hours to 36 hours. Of course, the ball mill time is preferably adjusted until analyzing the size of the crushed particles to obtain a particle size of the desired size. At this time, the raw powder is not only uniformly mixed with the powder containing each component through the ball mill process, but also finely pulverized particles. In this case, the ball mill may be performed more than once, and the raw powder slurry prepared by performing the first ball mill may be dried in a hot air dryer. In addition, the dried slurry is further synthesized by further performing a calcined crystallization heat treatment at 1100 ~ 1300 ℃. Wet ball milling is performed once again to increase the sintering activation in the electrolyte sintering step by miniaturizing the particle size of the raw powder which is synthesized after calcination heat treatment and crystallization occurs. At this time, the ball mill can be performed in the same manner as described above. The calcined synthetic raw material particles may be final milled to about 0.3 ~ 1.3㎛ as described above.
이후 상기에서 합성된 원료분말을 성형하여 소결한다(S30). 제조된 원료분말은 가압 성형법을 이용하여 디스크 형태로 성형할 수 있다. 이때 합성된 원료분말은 성형하는 것은 적절한 방법을 선택하여 실시할 수 있으며, 이와 같이 성형된 원료분말은 1350℃ 이하의 온도에서 소결한다. 이때 바람직하게는 1200~1350℃에서 저온 소결하는 것이 좋으며 상기 온도에서 소결하는 것이 원료분말의 치밀도와 기계적 특성을 유지할 수 있다. 소결은 5시간~20시간의 범위 내에서 얻고자 하는 소결밀도에 따라 적절히 선택하여 실시할 수 있다. Thereafter, the raw material powder synthesized above is molded and sintered (S30). The prepared raw powder can be molded into a disk using a pressure molding method. At this time, the synthesis of the raw material powder can be carried out by selecting an appropriate method, the raw material powder thus formed is sintered at a temperature of 1350 ℃ or less. At this time, it is preferable that the low-temperature sintering at 1200 ~ 1350 ° C and the sintering at the temperature can maintain the density and mechanical properties of the raw material powder. Sintering can be suitably selected according to the sintering density desired to be obtained within the range of 5 hours-20 hours.
이와 같이 소결하여 얻은 소결체는 고체산화물 연료전지용 전해질로 사용할 수 있으며, 이러한 경우에는 전해질의 한쪽면에 연료극을 코팅하고 반대쪽면에 공기극을 코팅하여 열처리함으로써 고체산화물 연료전지로 제조할수 있다. 상술한 디스크 형태로 성형하는 것은 소결체의 특성평가에 사용하기 위해 실시하는 것일 수 있다.The sintered body obtained by sintering in this way can be used as an electrolyte for a solid oxide fuel cell, and in this case, it can be manufactured as a solid oxide fuel cell by coating the anode on one side of the electrolyte and heat treatment by coating the cathode on the opposite side. Molding in the form of a disk described above may be carried out for use in the evaluation of the characteristics of the sintered body.
<실시예><Example>
La2O3(99.99%), SrCO3(99.9%), Ga2O3(99.99%), MgO(99.9%), ZnO(99.9%)을 이용하여 상기 각각의 분말들을 전자저울로 칭량하여 준비한다. 준비된 각각의 분말을 소정의 용기에 넣고 용매로 에탄올을 첨가한 후 24시간 동안 직경 5mm의 부분 안정화 지르코니아 볼을 이용하여 볼밀(Ball mill)하여 각각의 분말들이 균일하게 혼합되면서 동시에 입자 크기가 보다 미세해지도록 분쇄하였다. 실시예와 비교예에서는 혼합된 분말의 총 중량은 240~250g, 그리고 용매로 사용된 에탄올은 300~400L로 하여 배합하였다. 볼밀을 통해 균일혼합 및 분쇄 처리가 완료된 슬러리는 건조를 위해 열풍건조기 내에서 70℃의 온도에서 완전 건조한 후, 다시 1200℃에서 10시간 동안 하소 결정화 열처리하여 합성하였다. 하소 열처리하여 합성된 분말들은 다시 균일혼합 및 분쇄 시와 동일한 방법으로 볼밀하여 다시 한번 미분쇄 처리하였다.Prepared by weighing the respective powders with electronic balance using La 2 O 3 (99.99%), SrCO 3 (99.9%), Ga 2 O 3 (99.99%), MgO (99.9%), ZnO (99.9%) do. Each prepared powder was placed in a predetermined container, ethanol was added as a solvent, and then ball milled using a partially stabilized zirconia ball having a diameter of 24 mm for 24 hours to uniformly mix the respective powders and at the same time have a finer particle size. It was ground to break. In Examples and Comparative Examples, the total weight of the mixed powder was 240-250 g, and the ethanol used as the solvent was 300-400 L. The slurry, which was uniformly mixed and pulverized by a ball mill, was completely dried at a temperature of 70 ° C. in a hot air dryer for drying, and then synthesized by calcining heat treatment at 1200 ° C. for 10 hours. Powders synthesized by calcining heat treatment were again milled again by ball milling in the same manner as in the case of homogeneous mixing and grinding.
이와 같은 방법에 의하여 하기 표 1과 같이 실시예 1 내지 실시예 5의 전해질 재료를 제조하였다. 실시예 1 내지 실시예 5는 그 성분 조성을 달리하였으며 그 조성은 하기 표 1에 각각 도시하였다.By the above method, the electrolyte materials of Examples 1 to 5 were prepared as shown in Table 1 below. Examples 1 to 5 were different in their composition and their compositions are shown in Table 1, respectively.
한편 비교예는 La2O3(99.99%), SrCO3(99.9%), Ga2O3(99.99%), MgO(99.9%)만을 이용하여 순수 LSGM 분말을 제조하여 사용하였다.Meanwhile, in the comparative example, pure LSGM powder was prepared using only La 2 O 3 (99.99%), SrCO 3 (99.9%), Ga 2 O 3 (99.99%), and MgO (99.9%).
표 1
구 분 성분 조성
비교예 La0.8Sr0.2Ga0.8Mg0.2O2.8
실시예1 La0.8Sr0.2Ga0.8Mg0.19Zn0.01O2.8
실시예2 La0.8Sr0.2Ga0.8Mg0.18Zn0.02O2.8
실시예3 La0.8Sr0.2Ga0.8Mg0.17Zn0.03O2.8
실시예4 La0.8Sr0.2Ga0.8Mg0.16Zn0.04O2.8
실시예5 La0.8Sr0.2Ga0.8Mg0.15Zn0.05O2.8
Table 1
division Ingredient composition
Comparative example La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 2.8
Example 1 La 0.8 Sr 0.2 Ga 0.8 Mg 0.19 Zn 0.01 O 2.8
Example 2 La 0.8 Sr 0.2 Ga 0.8 Mg 0.18 Zn 0.02 O 2.8
Example 3 La 0.8 Sr 0.2 Ga 0.8 Mg 0.17 Zn 0.03 O 2.8
Example 4 La 0.8 Sr 0.2 Ga 0.8 Mg 0.16 Zn 0.04 O 2.8
Example 5 La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Zn 0.05 O 2.8
표 1에 도시한 비교예 및 실시예1 내지 실시예 5의 전해질 재료의 특성 평가를 위하여 실시예와 비교예 각각의 원료분말들을 일축 가압 성형법을 이용하여 가로 40mm × 세로 40mm 크기의 평판 디스크 형태로 성형하여 소결하여 최종 전해질 소결체를 제조하였다. 각 실시예의 결정구조 분석을 위해 합성 분말과 동일하게 X-선 회절분석을 하였으며 시편의 소결 특성을 관찰하기 위해 표면과 파단면을 관찰하였다. 또한, 각 시편들을 가로 2.5mm, 세로 2.5mm, 길이 25mm의 바(bar) 형상으로 가공하여 직류 4-단자법을 이용하여 산소 이온 전도도 분석을 실시하였다.In order to evaluate the characteristics of the electrolyte materials of Comparative Examples and Examples 1 to 5 shown in Table 1, the raw material powders of Examples and Comparative Examples were formed in the form of a flat disk having a size of 40 mm × 40 mm by uniaxial pressure molding. Molded and sintered to prepare a final electrolyte sintered body. X-ray diffraction analysis was performed in the same manner as the synthetic powder for the crystal structure analysis of each example, and the surface and the fracture surface were observed to observe the sintering characteristics of the specimen. In addition, each specimen was processed into a bar shape having a width of 2.5 mm, a length of 2.5 mm, and a length of 25 mm, and oxygen ion conductivity analysis was performed using a DC 4-terminal method.
도 4는 표 1에 도시한 비교예와 실시예 1~실시예 5에서 합성된 원료분말의 결정성을 확인하고자 X-선 회절 분석을 통해 분석한 결과이다. 도 4에 확인한 바와 같이, 비교예와 실시예들은 동일한 결정구조를 나타냈으며, 동일한 수준의 이차상 피크가 관찰되었음을 알 수 있다.Figure 4 is a result analyzed by X-ray diffraction analysis to confirm the crystallinity of the raw material powder synthesized in Comparative Examples and Examples 1 to 5 shown in Table 1. As confirmed in FIG. 4, Comparative Examples and Examples showed the same crystal structure, and it can be seen that the same level of secondary phase peaks were observed.
도 5는 비교예와 실시예 2의 소결체의 파단면을 주사전자현미경으로 관찰한 사진으로서, 종래 LSGM의 일반적인 소결온도인 1430℃에서 10시간 동안 소결하여 각각의 시편을 제작한 후 관찰한 결과를 나타낸 것이다. 이는 본 발명의 실시예와 비교예에서 Zn의 고용과 관계없이 일반적 소결온도에서도 유사한 미세구조를 나타냄을 보여준다.5 is a photograph of the fracture surface of the sintered body of Comparative Example and Example 2 by scanning electron microscopy. It is shown. This shows that in the examples of the present invention and the comparative examples, similar microstructures are exhibited at general sintering temperatures regardless of the solid solution of Zn.
또한, 도 6은 비교예와 실시예 2의 소결체의 파단면을 주사전자현미경으로 관찰한 사진으로서, 본 발명의 방법에 의해 1300℃에서 10시간 동안 저온 소결하여 각각의 시편을 제작한 후 관찰한 결과를 나타낸 것이다. 도 6과 같이 비교예, 즉 종래의 LSGM 전해질은 저온에서 소결하였을 때 사진상에 흰색 구형으로 나타나는 기공이 실시예 2에 비해 다량 나타나는 것을 확인할 수 있다. 이와 대비하여 본 발명의 실시예 2는 저온 소결하였을 때 조직이 종래에 비하여 치밀하고 기공의 수도 적은 것을 알 수 있다.In addition, Figure 6 is a photograph of the fracture surface of the sintered body of Comparative Example and Example 2 by scanning electron microscopy, by sintering at 1300 ℃ for 10 hours by the method of the present invention after making each specimen The results are shown. As shown in Figure 6, the comparative example, that is, the conventional LSGM electrolyte can be seen that a large amount of pores appearing in a white sphere on the photo when compared to Example 2 when sintered at low temperatures. In contrast, Example 2 of the present invention, when sintered at low temperature, it can be seen that the structure is dense and the number of pores is smaller than in the conventional.
도 7은 도 6과 동일한 실시예 2의 시편을 파단하지 않고 표면을 관찰한 주사전자현미경 사진으로서, 이 결과 역시 도 6에서 보는 바와 같이 분말들이 치밀하게 소결된 조직을 보여주고 있다. 이때 평균 결정립 크기는 2~3um 정도의 분포를 보인다.FIG. 7 is a scanning electron microscope photograph of the surface of the specimen of Example 2, which is the same as in FIG. 6 without breaking. The results also show a structure in which the powders are densely sintered as shown in FIG. 6. At this time, the average grain size is about 2 ~ 3um distribution.
도 8과 도 9는 각각 비교예와 실시예 2의 결정구조를 알아보기 위하여 X-선 회절분석을 실시한 결과를 나타낸 그래프이다. 이때 각 시편은 분말 형태로 X-선 회절분석을 실시하였다. 이때 비교예의 결과는 실시예 2와 비교하여 이차상 물질들이 증가한 것을 알 수 있다. 이는 Zn의 치환 고용 효과가 낮은 합성 온도에서도 이차상을 덜 생성시킬 수 있음을 보여주는 것으로 이를 통하여 소결 온도 역시 낮출 수 있을 것으로 예상할 수 있다. 기존에는 1200℃의 온도에서 하소하여 분말을 합성하였으나 본 발명과 같이 LSGM의 Mg의 일부를 Zn으로 치환하는 경우 상술한 결과와 같이 하소 합성 온도를 1100℃로 낮추면서도 이차상의 생성을 종래 LSGM보다 억제할 수 있음을 확인할 수 있다. 8 and 9 are graphs showing the results of X-ray diffraction analysis to determine the crystal structures of Comparative Example and Example 2, respectively. At this time, each specimen was subjected to X-ray diffraction analysis in powder form. In this case, it can be seen that the result of the comparative example is increased in the secondary material compared with Example 2. This shows that the substitution solid solution effect of Zn can produce less secondary phase even at low synthesis temperature, which can be expected to lower the sintering temperature. Conventionally, powder was synthesized by calcining at a temperature of 1200 ° C., but in the case of substituting Zn for a part of Mg of LSGM as in the present invention, the secondary phase was suppressed compared to conventional LSGM while lowering the calcining synthesis temperature to 1100 ° C. as described above. You can see that you can.
종래에는 전해질의 소결온도가 1400℃이상으로 높기 때문에, 연료극과 전해질을 동시에 소결하지 못하였으나, 1350℃ 이하의 저온 소결이 가능한 본 발명의 실시예에 의한 전해질 재료를 이용하면 연료극과 전해질을 동시에 소결하여 연료전지로 제조할 수 있으므로 NiO와의 반응성을 억제시키고, 제조 공정이 간단해질 뿐 아니라, 이에 따른 에너지 절감으로 경제적 효과를 얻을 수 있다.Conventionally, since the sintering temperature of the electrolyte is higher than 1400 ° C., the anode and the electrolyte cannot be sintered at the same time. However, when the electrolyte material according to the embodiment of the present invention capable of low temperature sintering of 1350 ° C. or less, the anode and the electrolyte are sintered simultaneously. In this way, the fuel cell can be manufactured as a fuel cell, thereby suppressing reactivity with NiO, simplifying the manufacturing process, and consequently, achieving an economic effect by reducing energy.
도 10은 표 1에 나타낸 비교예와 실시예들의 원료분말을 제조하고 1300℃에서 소결하여 시편을 제작한 후, 각각의 산소 이온 전도도를 측정한 결과를 도시한 그래프이다. 도 10에 도시한 바와 같이, LSGM에 Zn을 치환 고용한 실시예 1 내지 실시예 3의 이온 전도도 측정결과가 순수한 LSGM인 비교예에 비하여 약 20% 이상 향상된 산소 이온 전도성을 보였다. 이는 고체산화물 연료전지의 작동온도 범위인 600℃ 이상에서 나타난 결과로서, 현재 고체산화물 연료전지용 전해질로 가장 널리 사용 중인 YSZ 전해질과 동일한 수준의 0.03~0.04S/cm 정도의 이온 전도도를 나타내는 것으로 확인되어, 본 발명의 실시예에 의한 전해질 재료는 650℃에서도 충분히 사용이 가능한 저온용 전해질로 사용할 수 있음을 알 수 있다. FIG. 10 is a graph showing the results of measuring oxygen ion conductivity after preparing raw powders of Comparative Examples and Examples shown in Table 1 and sintering at 1300 ° C. to prepare specimens. As shown in FIG. 10, the ion conductivity measurement results of Examples 1 to 3 in which Zn was substituted and dissolved in LSGM showed about 20% higher oxygen ion conductivity than the comparative example of pure LSGM. This is a result of the operating temperature range of the solid oxide fuel cell above 600 ℃, it is confirmed that the ionic conductivity of 0.03 ~ 0.04S / cm of the same level as the YSZ electrolyte which is the most widely used electrolyte for the solid oxide fuel cell It can be seen that the electrolyte material according to the embodiment of the present invention can be used as a low-temperature electrolyte that can be sufficiently used even at 650 ° C.
이와 같이 본 발명에 의하면 기존에 사용되던 페롭스카이트계 전해질 재료의 높은 소결온도를 낮출 수 있는 효과가 있으며, 기존 페롭스카이트계 전해질 재료와 동일온도에서 산소 이온 전도도를 향상시킬 뿐 아니라 고체산화물 연료전지에 적합한 치밀도를 확보한 전해질을 제공함으로써 동일 온도에서 높은 출력밀도를 확보할 수 있는 효과가 있다. 또한, 저온에서 작동가능한 고체산화물 연료전지용 전해질을 제공함으로써, 고체산화물 연료전지의 가장 큰 단점인 고온 내구성 문제를 해결할 수 있는 효과가 있다. 뿐만 아니라, 저온에서도 높은 산소 이온 전도도를 확보할 수 있으므로 연료전지의 저온용 전해질로 사용할 수 있는 효과가 있다. Thus, according to the present invention, there is an effect of lowering the high sintering temperature of the conventional perovskite-based electrolyte material, and not only improves oxygen ion conductivity at the same temperature as the existing perovskite-based electrolyte material, but also applies to the solid oxide fuel cell. By providing an electrolyte having a suitable density, it is possible to secure a high output density at the same temperature. In addition, by providing an electrolyte for a solid oxide fuel cell operable at a low temperature, there is an effect that can solve the high temperature durability problem, which is the biggest disadvantage of the solid oxide fuel cell. In addition, since high oxygen ion conductivity can be ensured even at low temperatures, it can be used as a low-temperature electrolyte for fuel cells.
상기와 같은 고체산화물 연료전지용 전해질 재료 및 이를 이용한 고체산화물 연료전지용 전해질의 제조방법은 위에서 설명된 실시예들의 구성과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 다양한 변형이 이루어질 수 있도록 구성될 수도 있다.The electrolyte material for a solid oxide fuel cell as described above and a method for manufacturing an electrolyte for a solid oxide fuel cell using the same are not limited to the configuration and operation of the embodiments described above. The above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.

Claims (6)

  1. 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 포함하는 5성분계 세라믹스 소결체로 이루어지는 고체산화물 연료전지용 전해질 재료.An electrolyte material for a solid oxide fuel cell comprising a five-component ceramic sintered body containing lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg), and zinc (Zn) components.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 란탄, 스트론튬, 갈륨, 마그네슘 및 아연 성분의 조성은 하기 화학식과 같이 구성되는 것을 특징으로 하는 고체산화물 연료전지용 전해질 재료.The composition of the lanthanum, strontium, gallium, magnesium and zinc components is as shown in the following formula.
    <화학식><Formula>
    La1-xSrxGa1-y-zMgyZnzO2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)
  3. 란탄(La), 스트론튬(Sr), 갈륨(Ga), 마그네슘(Mg) 및 아연(Zn) 성분을 갖는 분말을 혼합하여 원료분말을 준비하는 단계;Preparing a raw powder by mixing a powder having a lanthanum (La), strontium (Sr), gallium (Ga), magnesium (Mg) and zinc (Zn) components;
    상기에서 준비된 원료분말을 균일하게 혼합하고 설정된 분말입자 크기를 갖도록 분쇄하여 합성하는 단계; 및 Uniformly mixing the prepared raw powder and pulverizing to have a set powder particle size and synthesizing; And
    상기에서 합성된 원료분말을 설정된 온도에서 소결하는 단계;를 포함하는 고체산화물 연료전지용 전해질의 제조방법.Sintering the synthesized raw material powder at a set temperature; Method for producing an electrolyte for a solid oxide fuel cell comprising a.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 원료분말은,The raw material powder,
    La1-xSrxGa1-y-zMgyZnzO2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05)의 조성을 가지는 고체산화물 연료전지용 전해질의 제조방법.La 1-x Sr x Ga 1-yz Mg y Zn z O 2.8 (0.1≤x≤0.2, 0.15≤y≤0.19, 0.01≤z≤0.05) A method for producing an electrolyte for a solid oxide fuel cell.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 소결하는 단계에서,In the sintering step,
    상기 원료분말을 1200℃~1350℃의 온도에서 소결하는 고체산화물 연료전지용 전해질의 제조방법.A method for producing an electrolyte for a solid oxide fuel cell, wherein the raw material powder is sintered at a temperature of 1200 ° C to 1350 ° C.
  6. 청구항 3에 있어서,The method according to claim 3,
    상기 원료분말을 준비하는 단계에서,In the step of preparing the raw powder,
    상기 마그네슘과 상기 아연 성분을 갖는 분말은 비수용성 산화물계, 수용성 질산염계, 수용성 염화물계, 수용성 아세트산염계 분말 중 선택된 1종 이상인 고체산화물 연료전지용 전해질의 제조방법.The magnesium and the zinc-containing powder is at least one selected from water-insoluble oxide, water-soluble nitrate, water-soluble chloride, and water-soluble acetate-based powder.
PCT/KR2012/003218 2012-04-25 2012-04-26 Electrolytic material for solid oxide fuel cell, and method for manufacturing electrolyte for solid oxide fuel cell WO2013162099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120042945A KR101381643B1 (en) 2012-04-25 2012-04-25 Electrolyte materials for solid oxide fuel cell and preparing method of electrolyte for solid oxide fuel cell using the same
KR10-2012-0042945 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013162099A1 true WO2013162099A1 (en) 2013-10-31

Family

ID=49483375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003218 WO2013162099A1 (en) 2012-04-25 2012-04-26 Electrolytic material for solid oxide fuel cell, and method for manufacturing electrolyte for solid oxide fuel cell

Country Status (2)

Country Link
KR (1) KR101381643B1 (en)
WO (1) WO2013162099A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995396A (en) * 2020-07-20 2020-11-27 南昌航空大学 Method for utilizing oxygen ion conductivity of magnesium modified sodium niobate ceramic
CN115763916A (en) * 2022-10-24 2023-03-07 合肥学院 Ga and Mg co-doped apatite lanthanum silicate solid electrolyte material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102095269B1 (en) 2018-09-07 2020-04-01 한양대학교 산학협력단 Method for light sintering of ceramic film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332122A (en) * 2000-03-15 2001-11-30 Mitsubishi Materials Corp Oxide ion conducting material, its manufacturing method, and fuel cell using it
JP2004339035A (en) * 2003-05-19 2004-12-02 Nissan Motor Co Ltd Lanthanum gallate sintered compact, method for producing the same, and use of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332122A (en) * 2000-03-15 2001-11-30 Mitsubishi Materials Corp Oxide ion conducting material, its manufacturing method, and fuel cell using it
JP2004339035A (en) * 2003-05-19 2004-12-02 Nissan Motor Co Ltd Lanthanum gallate sintered compact, method for producing the same, and use of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HA, S. B. ET AL.: "Effect of oxide additives on the sintering behavior and electrical properties of strontium- and magnesium-doped lanthanum gallate", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 30, no. 12, September 2010 (2010-09-01), pages 2593 - 2601, XP027107080 *
LEE, J. G. ET AL.: "Coprecipitation synthesis and characterization of La0.8Sr0.2Ga0.8-xMg0.2Cox02.8 for intermediate temperature solid oxide fuel cell electrolytes", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 12, no. 1, January 2010 (2010-01-01), pages 769 - 774 *
SEBASTIAN, L. ET AL.: "La0.9Sr0.1 Ga0.8M0.203-8 (M = Mn, Co, Ni, Cu or Zn): Transition metal-substituted derivatives of lanthanum-strontium-gallium-magnesium (LSGM) perovskite oxide ion conductor", BULL. MATER. SCI., vol. 23, no. 3, June 2000 (2000-06-01), pages 169 - 173 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995396A (en) * 2020-07-20 2020-11-27 南昌航空大学 Method for utilizing oxygen ion conductivity of magnesium modified sodium niobate ceramic
CN115763916A (en) * 2022-10-24 2023-03-07 合肥学院 Ga and Mg co-doped apatite lanthanum silicate solid electrolyte material and preparation method thereof

Also Published As

Publication number Publication date
KR20130120009A (en) 2013-11-04
KR101381643B1 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
Montenegro-Hernandez et al. Thermal stability of Ln2NiO4+ δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes
Fabbri et al. Materials challenges toward proton-conducting oxide fuel cells: a critical review
EP2830137B1 (en) Fuel cell and cathode material
WO2014168071A1 (en) Air electrode material and fuel battery cell
US20130295484A1 (en) Material for solid oxide fuel cell, cathode for solid oxide fuel cell and solid oxide fuel cell including the same, and method of manufacture thereof
KR20130099704A (en) Functional layer material for solid oxide fuel cell, functional layer manufactured using the material and solid oxide fuel cell including the functional layer
Baek et al. PdO-doped BaZr0. 8Y0. 2O3− δ electrolyte for intermediate-temperature protonic ceramic fuel cells
Kuo et al. Assessment of thermochemically stable apatite La10 (SiO4) 6O3 as electrolyte for solid oxide fuel cells
US20120135331A1 (en) Cathode
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
EP3309882B1 (en) Cathode composition, cathode and fuel cell including same
Li et al. Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO3 based perovskites
Zamudio-García et al. Effect of Zn addition on the structure and electrochemical properties of co-doped BaCe0. 6Zr0. 2Ln0. 2O3-δ (Ln= Y, Gd, Yb) proton conductors
WO2013162099A1 (en) Electrolytic material for solid oxide fuel cell, and method for manufacturing electrolyte for solid oxide fuel cell
US20220045336A1 (en) Powder for solid oxide fuel cell air electrode, and method for manufacturing said powder for solid oxide fuel cell air electrode
KR20130075529A (en) Solid oxide electrode, solid oxide fuel cell containing solid oxide electrode, and preparation method thereof
Norman et al. Influence of transition or lanthanide metal doping on the properties of Sr0. 6Ba0. 4Ce0. 9M0. 1O3-δ (M= In, Pr or Ga) electrolytes for proton-conducting solid oxide fuel cells
CN101222059A (en) B-position omission perovskite anode material used for solid-oxide fuel battery
JP4191821B2 (en) Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte
KR101666713B1 (en) High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
KR20120123639A (en) Cathode material for fuel cell, cathode for fuel cell and solid oxide fuel cell including the material
CN101794885A (en) Intermediate-temperature solid oxide fuel cell (LSCF) cathode material with brownmillerite structure
CN117999679A (en) Electrode and electrochemical cell
EP3203563B1 (en) Electrolyte membrane, fuel cell including same, battery module including fuel cell, and method for manufacturing electrolyte membrane
Cheng et al. Composite LSF-YSZ and LSCrF-YSZ electrode scaffolds for infiltrated SOFC cathodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 1 EPC EPO FORM 1205A DATED 09 03 2015

122 Ep: pct application non-entry in european phase

Ref document number: 12875260

Country of ref document: EP

Kind code of ref document: A1