WO2013162054A1 - Composition for controlling chromatin structure - Google Patents
Composition for controlling chromatin structure Download PDFInfo
- Publication number
- WO2013162054A1 WO2013162054A1 PCT/JP2013/062737 JP2013062737W WO2013162054A1 WO 2013162054 A1 WO2013162054 A1 WO 2013162054A1 JP 2013062737 W JP2013062737 W JP 2013062737W WO 2013162054 A1 WO2013162054 A1 WO 2013162054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- histone
- polymer
- dna
- chromatin
- gene encoding
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/46—Vector systems having a special element relevant for transcription elements influencing chromatin structure, e.g. scaffold/matrix attachment region, methylation free island
Definitions
- the present invention relates to a composition for controlling a chromatin structure and a method for controlling a chromatin structure using the composition.
- Epigenetics contributes to the expression of proteins that regulate the function of epigenetic cells (genetics), and epigenetics contributes to the regulation of gene transcription and translation. Furthermore, since epigenetics is controlled by proteins, it is thought that the genetic-epigenetics-protein integrated regulation mechanism related to life functions plays a central role in life phenomena.
- Individuals also have a genetic phenomenon that passes the genome to the next generation through germ cells. These can basically be understood as epigenetic life phenomena in which cells having the same genome change into cells having different properties.
- the individuality of a wide variety of cells is determined by the gene expression pattern of the cells.
- the total number of genes on the genome is 30,000, about 10,000 genes are expressed in one differentiated cell, and the remaining genes are inactivated.
- by selectively utilizing genes on the genome it means that cell personality is established, maintained, and erased epigenetically.
- DNA methylation, chromatin, protein modification / demodification, and transcriptional regulators play important roles in gene regulation.
- new molecular groups and functional complexes such as DNA methylases, methylated DNA binding proteins, histone modifying enzymes, chromatin structure factors, chromatin remodeling factors, chromatin insulators (chromatin boundaries), etc.
- chromatin boundaries chromatin boundaries
- Chromatin Structure Eukaryotic chromosomal DNA has a higher-order structure called chromatin.
- Chromatin is a structure in which nucleosome repeat structures are connected in a spiral. Nucleosomes are connected to each other via a linker DNA not wound around histones, and become packed 30 nm chromatin fibers.
- the nucleosome has a structure in which DNA of 146 base pairs is wound around a histone octamer composed of two molecules of H2A, H2B, H3, and H4 histone proteins. For example, when DNA in a single human cell is stretched, it becomes about 1.8 m, and this DNA is wound around a histone protein to form a chromatin structure.
- Chromatin is condensed and stored in the nucleus of the cell. Highly condensed chromatin is called heterochromatin.
- histone proteins have been modified with various chemical substances such as acetyl and methyl groups, but their roles are not known and have not received much attention.
- a complex mechanism works in the process of histone methylation and the formation of heterochromatin by recognizing methyl groups.
- Two types of fission yeast HP1 proteins that are slightly different in shape are known. One has a function of promoting heterochromatinization and the other has a function of suppressing heterochromatinization. It has been found that heterochromatin cannot be formed and maintained unless two types of HP1 having opposite functions are gathered in a certain balance. It is not clear why such a complicated mechanism is necessary.
- Histone-modified histones are proteins having many basic amino acids such as lysine and arginine, and are tightly bound to anionic DNA.
- the N-terminus of histone is called histone tail and exists a little away from the nucleosome core. Histones undergo various modifications mainly at this N-terminal part.
- chromatin structural changes due to histone modifications play an important role in the induction of transcription.
- transcription coactivators such as PCAF and CBP / p300 are recruited.
- the transcription coactivator has histone acetylase (Histone Acetyl Transferase: HAT) activity and acetylates surrounding histones. This triggers the recruitment of chromatin remodeling factors, induces chromatin remodeling, and initiates transcription by basic transcription factors and RNA polymerase.
- histone acetylase Histone Acetyl Transferase: HAT
- HAT histone acetylase
- acetylation of histones H3K9 and K14 is known as acetylation that correlates well with transcription induction.
- HDAC histone deacetylase
- Histone methylation is induced by histone methyltransferase (HMT).
- HMT histone methyltransferase
- HP1 Heterochromatin Protein 1
- HP1 recognizes and binds methylated K9.
- HP1 recruits DNA methylase and HDAC, and HP1 aggregates to convert the surrounding chromatin region into a closed state. It is known that gene silencing occurs through such a mechanism.
- the methylation of histone H3K4 is known to correlate with the activation of transcription.
- DNA methylation Methylation modification of eukaryotic genomic DNA has evolved as a mechanism to control the expression of genetic information. Methylation of genomic DNA is one of the epigenetic factors, but its state is the process of newly methylating the base sequence to draw a pattern, maintaining it in the process of cell growth, and deleting it as necessary Determined as the sum.
- five genes have been reported so far as DNA methyltransferases and homologous molecules involved in DNA methylation modification (Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, Dnmt3L).
- Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, Dnmt3L DNA methylation modification
- DNA methylation modification controls its expression without changing the base sequence that is the substance of the gene, that is, without changing the amino acid sequence information encoded by the gene.
- the methylation pattern on the genome once attached is stably inherited to the next generation cells.
- methylation modification also has reversibility that can be removed if necessary. In understanding the mechanism of expression control of genetic information, it is important to understand how methylation of genomic DNA is regulated.
- cytosine base (C) of genomic DNA is subjected to methylation modification.
- the degree of cytosine methylation modification in the genome increased at the same time that the base amount of the genome increased when it evolved into a vertebrate.
- Vertebrate genomic DNA methylation is added to cytosine bases in the CpG sequence followed by cytosine bases followed by guanine bases.
- mouse genomic DNA about 80% of the CpG sequence is methylated. This methyl group is transferred from S-adenosyl-L-methionine by the action of DNA methyltransferase.
- CpG islands When looking at the mouse genome, regions with relatively high G + C content are scattered in islands, which are called CpG islands. In many cases, they become promoters of housekeeping genes and become hypomethylated. is there. In general, the promoter region of a transcribed gene is in a hypomethylated state, and the inactive gene is highly methylated. When a transcription factor binding motif present in the promoter region is methylated, most transcription factors except for some transcription factors such as Sp1 cannot bind to DNA. There is also a protein that specifically recognizes and binds to methylated DNA, and transcription is inhibited through this methylated DNA binding protein and histone modification. DNA methylation functions as a kind of memory for silencing genes over the long term.
- the object of the present invention is to provide a method for artificially controlling the chromatin structure and a composition for use in the method.
- the present inventors have found that the chromatin structure is formed by administering a carrier containing a specific polymer or two or more substances that control acetylation or methylation of histones. As a result, the present invention has been conceived.
- the present invention includes the following embodiments as preferred embodiments. [Aspect 1] The following
- an expression vector comprising a gene encoding a histone acetylase; ii) an expression vector comprising a gene encoding a histone methylase; iii) an expression vector comprising a gene encoding a histone deacetylase; iv) an expression vector comprising a gene encoding a histone demethylase; v) histone acetylation inhibitors; vi) histone deacetylation inhibitors; vii) a histone methylation inhibitor; and viii) a composition for controlling a chromatin structure, comprising a carrier containing two or more substances selected from the group consisting of histone demethylation inhibitors.
- composition according to any one of aspects 1-4, wherein the carrier comprises polyester, calcium phosphate, or polyamino acid.
- the carrier comprises polyester, calcium phosphate, or polyamino acid.
- the carrier further comprises an expression vector comprising a gene encoding a DNA demethylase, an expression vector comprising a gene encoding a DNA methylase, or a DNA methylase inhibitor
- an expression vector comprising a gene encoding a DNA demethylase
- an expression vector comprising a gene encoding a DNA methylase
- a DNA methylase inhibitor The composition according to claim 1.
- a method for controlling a chromatin structure by administering the composition according to any one of aspects 1-6 in vitro, ex vivo, or in vivo.
- the present invention makes it possible to artificially control the chromatin structure. Thereby, the expression can be controlled more easily without manipulating the base sequence of the gene.
- FIG. 1 shows the results of examining the formation of an artificial chromatin model (DNA / core histone complex) by agarose electrophoresis.
- FIG. 2 shows the results of examining the relaxation effect of the chromatin structure by the polymer by the fluorescence intensity after agarose electrophoresis.
- FIG. 3 shows the results of examining the translation activity for the relaxation effect of chromatin structure by polymer PAA.
- FIG. 4 shows the results of examining the translational activity for the relaxation effect of the chromatin structure by the polymers CM-PVIm and PMAA.
- FIG. 5 shows the content of coenzyme A (CoA) in the calcium phosphate complex of the present invention.
- CoA coenzyme A
- FIG. 6 shows the result of examining the change in the amount of acetyllysine in each histone by Western blotting when the calcium phosphate complex of the present invention was used.
- CaP calcium phosphate complex
- CoA Coenzyme
- SIRT2 Plasmid DNA containing the SIRT2 gene
- DNA Plasmid DNA AA: Anacardic acid
- FIG. 7A shows the results of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA- ⁇ -CD, (C) differential interference image, and (D) A- C images are combined. [FIG. 7B] FIG.
- FIG. 7 shows the results of confocal microscope observation of Example 12.
- 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA- ⁇ -CD, (C) differential interference image, and (D) A- C images are combined.
- FIG. 7C shows the result of confocal microscope observation of Example 12.
- 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA- ⁇ -CD, (C) differential interference image, and (D) A- C images are combined.
- FIG. 7D FIG.
- 7 shows the result of confocal microscope observation of Example 12.
- 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA- ⁇ -CD, (C) differential interference image, and (D) A- C images are combined.
- the present invention relates to a composition for controlling chromatin structure and a method for controlling chromatin using the composition.
- composition of the present invention is 1) A polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers, and having any of the following main chain skeletons;
- an expression vector comprising a gene encoding a histone acetylase; ii) an expression vector comprising a gene encoding a histone methylase; iii) an expression vector comprising a gene encoding a histone deacetylase; iv) an expression vector comprising a gene encoding a histone demethylase; v) histone acetylation inhibitors; vi) histone deacetylation inhibitors; vii) a histone methylation inhibitor; and viii) a carrier that includes two or more substances selected from the group consisting of histone demethylation inhibitors.
- Polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers The polymer of the present invention is a group consisting of amphoteric polymers, anionic polymers, and nonionic polymers. Selected from.
- the polymer of the present invention has a repeating structure of any of the following main chain skeletons.
- a particularly preferred skeleton structure is — (CH 2 —CH) —. From the applicability to living bodies, the following skeletal structure
- the number of repeats of the main chain skeleton is not particularly limited. It is determined appropriately according to the skeleton structure, side chain structure, and the like.
- Amphoteric polymer is a polymer that has both anionic and cationic substituents in the side chain and is neutral as a whole, or both an anionic part and a cationic part in the side chain. It is a polymer having a substituent having a neutrality as a whole. Since an amphoteric polymer has both an anionic part and a cationic part in one molecule, it has both characteristics. In addition, by balancing the charge of the anion and cation, it may have a nonionic characteristic (giving biocompatibility). The type of the anionic part and the cationic part contained in the amphoteric polymer may be one each or plural kinds.
- the “anionic group” as a side chain in the amphoteric polymer may have the following structure, for example.
- A is a linker part that binds the anionic part and the main chain part.
- the linker moiety may be branched, an alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 carbon atom; a carbocyclic ring, preferably a carbocyclic ring having 5 to 7 carbon atoms.
- Preferred is a 6-membered ring; or a heterocycle containing nitrogen, oxygen or sulfur, preferably a 5-7-membered heterocycle, more preferably a 5-membered heterocycle.
- the alkyl group, carbocycle or heterocyclic ring may be optionally substituted with one or more alkyl groups, aryl groups, halogen groups, various anionic groups and the like.
- an embodiment in which a ring such as a carbocycle or a heterocycle is substituted with an anionic group such as —COOH is also included.
- the linker is selected from an ethyl group, an imidazolyl group, or other functional group having a quaternary nitrogen.
- the “cationic group” as a side chain in the amphoteric polymer includes the following embodiments.
- R 1 , R 2 and R 3 are an optionally branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms]
- the “substituent having both an anionic part and a cationic part of the side chain” includes, for example, the following embodiments.
- a nitrogen-containing heterocyclic ring for example, an embodiment in which one nitrogen atom of an imidazole group is bonded to the main chain and the other nitrogen atom is substituted with an anionic group.
- the anionic group can be appropriately selected from those described above.
- One embodiment of the anionic substituent of the nitrogen atom in the amphoteric polymer is a carboxymethyl group.
- the amphoteric polymer includes carboxymethylated polyvinyl imidazole as one embodiment.
- Anionic polymer is a polymer having an anionic group in the side chain.
- the “anionic group” in the anionic polymer can be appropriately selected from the anionic groups described above for the amphoteric polymer.
- the anionic group includes a carboxyl group, a carboxy group, a phosphate group, a sulfonate group, a nitrate group, and a boronic acid group.
- the anionic polymer contains polyacrylic acid, polymethacrylic acid, polyglutamic acid, carboxylmethylated polyhistidine, or polyaspartic acid.
- a spacer may be included in order to prevent repulsion of the main chain skeleton and side chain substituents in the anionic polymer.
- the spacer is not particularly limited as long as it has a property of not having an anionic group or having a large hydrophobic group.
- polyethylene diamine, polyethylene glycol (PEG) and the like can be used.
- Nonionic polymer is a polymer having neither an anionic part nor a cationic part.
- a nonionic polymer can also act on chromatin and control the structure of chromatin as long as it satisfies the condition that it has hydrogen bonding properties or hydrophobic bonding properties.
- Nonionic polymers include polymers having hydrogen bonding properties such as polyethylene glycol (PEG) and sugar chains.
- the polymer contained in the composition of the present invention may be a block copolymer, graft copolymer, or dendrimer of the above-identified amphoteric polymer, anionic polymer, or nonionic polymer.
- the “block copolymer” means a copolymer having a molecular structure in which two or more kinds of polymers are connected by covalent bonds to form a long chain.
- the “graft copolymer” means a copolymer having a molecular structure in which another polymer is bonded in a branched manner to a certain polymer.
- the “dendrimer body” means a dendritic polymer having a structure regularly branched from the center. The dendrimer body is composed of a central molecule called a core and a side chain part called a dendron.
- the high molecular weight of the present invention is not particularly limited, but is preferably 10,000-2,000,000, more preferably 25,000-1,000,000.
- cyclodextrin derivatives such as cyclodextrin and Me ⁇ cyclodextrin are bound to the polymer used in the present invention.
- a cationic polymer may be used together with an amphoteric polymer, an anionic polymer, a nonionic polymer, or a carrier.
- a “cationic polymer” is a polymer having a cationic group in the side chain.
- the “cationic group” in the cationic polymer can be appropriately selected from the cationic groups described above for the amphoteric polymer.
- the cationic polymer is a single-chain stearylamine, a double-chain cationic lipid, N- [1- (2,3-dioleoyloxy) propyl] -N, N, N- Contains trimethylammonium methylsulfate (DOTAP).
- Carrier The composition of the present invention comprises: i) an expression vector comprising a gene encoding a histone acetylase; ii) an expression vector comprising a gene encoding a histone methylase; iii) an expression vector comprising a gene encoding a histone deacetylase; iv) an expression vector comprising a gene encoding a histone demethylase; v) histone acetylation inhibitors; vi) histone deacetylation inhibitors; viii) a histone methylation inhibitor; and viii) a carrier that includes two or more substances selected from the group consisting of histone demethylation inhibitors.
- composition of the present invention includes an embodiment containing both the polymer and the carrier.
- I) -viii) are all substances involved in acetylation, deacetylation, methylation, or demethylation of histones of chromatin.
- Histones are thought to be neutralized when the amino group of lysine residues is acetylated, and the interaction between nucleosomes is relaxed. Therefore, the chromatin structure is relaxed by histone acetylation, and transcription is activated.
- deacetylation condenses the chromatin structure.
- i) and vi) have the effect of relaxing the chromatin structure.
- iii) and v) have structures that condense chromatin structures.
- histone methylation is known to condense chromatin and form heterochromatin when H3K9 is methylated, and is thought to depend on position.
- transcription is activated when histone H3K4 is methylated.
- a carrier that includes two or more substances includes an embodiment that includes two or more substances in one carrier and an embodiment that includes two or more substances in two or more carriers. .
- the composition may contain two or more genes, or a combination of a gene and a compound (inhibitor).
- the carrier of the present invention has the condition that it is non-toxic or low-toxic and can be applied to a living body, can contain an expression vector and / or an inhibitor, and can carry the substance i) -viii) to the nucleus of the cell.
- Any known carrier can be used as long as it satisfies the requirements.
- the carrier includes polyester, calcium phosphate, or polyamino acid.
- Polymer is a polycondensate of polyhydric carboxylic acid and polyalcohol, and is generally produced by reacting (dehydrating and condensing) polyalcohol and polycarboxylic acid.
- the polyester includes a biodegradable polymer such as polylactic acid, polyglycolic acid, and polylactic acid-polyglycolic acid copolymer.
- “Calcium phosphate” has low toxicity and biodegradability.
- Sodium phosphate and the like can be used in the present invention as having the same function.
- Polyamino acid is a polymer in which a plurality of amino acids are amide-bonded, and is also called a polypeptide. Amino acids are components of biological proteins, and polyamino acids are non-toxic or hypotoxic. Acetylated polylysine (AcPLL), hyperbranched polylysine (highly branched polylysine), dendritic polylysine (DPK) as described in the examples herein may also be used as the carrier of the present invention. Furthermore, polylysine can also act as a histone acetylation inhibitor by the action of histone acetylase on polylysine in the nucleus of the cell. In contrast, acetylated polylysine can act as a histone deacetylation inhibitor.
- Histone acetylase is an enzyme that promotes acetylation of histone lysine side chains.
- HAT is known, and for example, the amino acid sequence of a protein and the base sequence of a gene encoding the protein are known in humans and the like.
- KAT2B human histone acetylase
- KAT2B may also be called “CAF”.
- Histone methylase is an enzyme that promotes methyl groups in histones. Histone methylases are known, and for example, the amino acid sequence of a protein and the base sequence of a gene encoding the protein are known in humans and the like. For example, the nucleotide sequence of the mutant (G9a) gene of human histone methylase (EHMT2) is disclosed in accession number NM_006709 of NCBI Data Bank.
- Histone deacetylase is an enzyme that hydrolyzes the acetyl group of the lysine side chain of histone and converts it into lysine. HDAC is known.
- the amino acid sequence of a protein and the base sequence of a gene encoding the protein are known.
- the nucleotide sequence of the human histone deacetylase (HDAC3) gene is disclosed in NCBI Data Bank Accession No. NM — 029678.
- the nucleotide sequence of the human histone deacetylase (SIRT2) gene is disclosed in NCBI Data Bank, Accession No. NM — 034146.
- Histone demethylase is an enzyme that hydrolyzes a methyl group bound to histone.
- the amino acid sequence of the enzyme encoded by each gene is preferably a natural protein sequence.
- mutants thereof can also be used in the present invention. Specifically, it preferably has at least 80%, 85%, 90%, 95%, 97%, 99% sequence homology to the natural amino acid sequence or the base sequence encoding the amino acid.
- the percent identity between two sequences may be determined by visual inspection and mathematical calculation.
- the percent identity of two protein sequences can be determined by Needleman, S .; B. And Wunsch, C.I. D. (J. Mol. Biol., 48: 443-453, 1970) and determined by comparing sequence information using the GAP computer program available from the University of Wisconsin Genetics Computer Group (UWGCG). May be.
- Preferred default parameters for the GAP program include: (1) Henikoff, S .; And Henikoff, J. et al. G. (Proc. Natl. Acad. Sci. USA, 89: 10915-10919, 1992), scoring matrix, blossum 62; (2) 12 gap weights; (3) 4 gap length weights; And (4) no penalty for end gaps.
- a natural amino acid sequence may have an amino acid sequence in which one or more amino acid residues are deleted, added, or substituted.
- a gene encoding a protein having an amino acid sequence homologous to such a natural protein and having the same function as a natural enzyme can also be used in the present invention.
- the number of amino acids that can be changed is, but is not limited to, 1 to 100 amino acid residues, 1 to 80 amino acid residues, 1 to 50 amino acid residues, 1 to 30 amino acid residues, 1 to 20 amino acid residues, 1 to 15 amino acid residues, 1 to 10 amino acid residues, and 1 to 5 amino acid residues.
- the number of amino acid residues that can be modified by a known site-directed mutagenesis method for example, 1 to 10 amino acid residues, 1 to 8, 1 to 5, 1 to 3 amino acid residues is more preferable.
- a known vector such as a plasmid vector, a virus vector, or a cosmid vector for expressing a gene can be used.
- a vector that is non-toxic or less toxic to the living body is preferable.
- the composition of the present invention is intended to express two or more types of genes, two or more types of expression vectors containing each gene may be used, or two or more types of genes may be used in one expression vector. You may use what was included.
- histone acetylation inhibitor a known one can be used. Examples include coenzyme A (CoA), anacardic acid (AA), curcumin, MB-3.
- CoA coenzyme A
- AA anacardic acid
- curcumin MB-3.
- histone deacetylation inhibitor a known one can be used.
- valproic acid VPA
- TSA trichostatin A
- vorinostat MS-275.
- Histone deacetylation inhibitors are known to exert activity on cancer cells such as cell cycle arrest, differentiation induction, and apoptosis, and affect the proliferation of cancer cells.
- ketocin a known one can be used.
- histone demethylation inhibitor a known one can be used.
- tranylcypromine a known one can be used.
- tranylcypromine a known one can be used.
- the inhibitor may be included in a carrier together with the expression vector to constitute a composition, or may be administered directly (for example, in a medium or in a living body) separately from the carrier.
- the present invention includes a method for controlling chromatin structure by administering the above-described composition of the present invention in vitro, ex vivo, or in vivo.
- a composition containing both the polymer and the carrier may be administered, or an embodiment in which two types of compositions, a composition containing the polymer and a composition containing the carrier, are administered is also included.
- Control of chromatin structure refers to relaxation or condensing of chromatin structure.
- the phrase “relaxing” the chromatin structure means that the higher-order structure in a state where the chromatin is condensed is loosened, and the transcription of the gene is facilitated, that is, the transcription is activated and turned on.
- Condensation of the chromatin structure means that, contrary to relaxation, it takes a higher-order structure in which chromatin is condensed and is in an off state in which transcription is difficult to occur.
- Chromatin “relaxation” and “condensation” can be examined, for example, by measuring gene transcription and / or translation activity.
- the transcriptional and / or translational activity of the gene can be confirmed using a known method.
- fluorescence can be measured by expression of a fluorescent protein. Or you may confirm by observing a chromatin structure more directly.
- the dosage of the polymer and carrier of the present invention is not particularly limited. Those skilled in the art can appropriately determine the amount depending on the type of polymer, carrier, substance contained in the carrier, the condition of the administration target, and the like.
- the amphoteric polymer and the anionic polymer of the present invention are used, the number of anions and the ratio of DNA in the chromatin structure may affect the magnitude of the effect of relaxation of the chromatin structure.
- the number of anions of the polymer is twice that of the DNA in the chromatin structure. It was observed that the chromatin structure was most relaxed.
- DNA methylation is also known to be involved in the control of the expression of genetic information. Specifically, transcription is inactivated by methylation of the chromatin structure, and transcription is activated by demethylation. Thus, in addition to histone modification, more powerful, complex or flexible control over gene expression is possible by controlling DNA methyl modification.
- the carrier may further contain an expression vector containing a gene encoding a DNA demethylase, an expression vector containing a gene encoding a DNA methylase, or a DNA methylase inhibitor. Good.
- DNA methyltransferase and its homologous molecules (Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, Dnmt3L).
- the base sequences and encoded amino acid sequences of these genes are known and disclosed as NCBI data bank accession numbers NM_001130823, NM_176085, NM_022552, NM_001207055, and NM_013369, respectively.
- the known expression vectors described above regarding the gene encoding histone acetylase and the like can be used.
- a known “DNA methylase inhibitor” can be used.
- Example 1 Production of Artificial Chromatin
- an artificial chromatin model imitating the chromatin structure was produced.
- Plasmid DNA differs from chromosomal DNA in that it is circular and has a low molecular weight. However, since it is easy to handle and the gene to be expressed can be incorporated arbitrarily, it has advantages such as easy evaluation of gene expression, so it was used in this example.
- the ratio of DNA and core histone in the in vitro chromatin formation reaction is important, and in general, it is necessary to perform titration every time new DNA and histone are prepared.
- the histone / DNA weight ratio at which no free DNA was observed and only the complex band could be confirmed was determined as the optimum weight ratio.
- Example 3 the artificial chromatin produced in this example was used.
- the optimum concentration for relaxing the chromatin structure of the polymer was determined by agarose gel electrophoresis. Then, the relaxation activity of the chromatin structure of each polymer was indirectly evaluated by evaluating the translation activity at the optimum concentration.
- the pGL3 plasmid DNA was cultured in large quantities using E. coli. Purification was performed using a plasmid DNA replication kit (Qiagen), and the amount of the obtained plasmid was calculated from the absorbance. Absorbance was measured using a UV / Vis spectrophotometer (manufactured by JASCO Corporation).
- the UV / Vis spectrophotometer is a device that performs spectral absorption using light having a wavelength from the ultraviolet to the visible region (200 nm to 780 nm) causing electronic energy transition of molecules.
- the obtained plasmid DNA concentration was as follows when three samples were measured. In the experimental system using the translation system of Example 3 and later, the experiment was performed using the higher concentration (0.6 mg / mL), and in the experimental system using agarose gel electrophoresis, the lower concentration (0.24 mg / mL). Went.
- Example 2 Synthesis of Polymer
- a polymer for use in chromatin control was synthesized. Considering the fact that it has a carboxyl group that allows efficient endosome escape by the proton sponge effect and cell membrane fusion activity, the following five anionic and amphoteric polymers were selected in this example.
- CM-PVIm carboxymethylated polyvinyl imidazole
- V-65 (2,2'-azobis (2,4-dimethylvaleronitrile)
- Centrifugation was performed at 2600 rpm for 5 min to remove the supernatant acetone. After dissolving in a small amount of DMF, reprecipitation with 80 mL of acetone, centrifugation, and removal of the supernatant were performed again. Acetone was volatilized by allowing to stand for 24 hours in a fume hood. The obtained product was dissolved in H 2 O (20 mL), and then dialyzed for 2 days using a MWCO: 1000 dialysis membrane. The material obtained by lyophilization was recovered. The yield was 57.97 mg and the yield was 19.32%.
- CM-PVIm Carboxymethylated Polyvinylimidazole
- PVIm Polyvinylimidazole (30 mg) synthesized as described above was dissolved in H 2 O (8 mL). 40 mg of iodoacetic acid was dissolved in H 2 O (2 mL). Triethylamine (TEA, 44 ⁇ L, 0.32 mmol) was added to the PVIm aqueous solution, and then an iodoacetic acid aqueous solution was added, followed by stirring at 40 ° C. for 24 hours (FIG. 2-2). After dialysis using MWCO: 1000 for 2 days, the substance obtained by lyophilization was recovered.
- TEA Triethylamine
- PVIm and CM-PVIm each confirmed the structure by 1 H-NMR. Specifically, 3 mg of PVIm was dissolved in 700 ⁇ L of heavy water and measured.
- CM-PVIm was measured as follows. 3 mg of CM-PVIm was added to heavy DMSO, and a few drops of trifluoroacetic acid were added to break hydrogen bonds. Furthermore, in order to exchange counter ions, ammonium hexafluorophosphate (NH 4 PF 6 ) was added and measured. In either case, the synthesis of the target compound was confirmed.
- the synthesized polymer was purified by reprecipitation by dropping it into acetone. Then, it vacuum-dried at 50 degreeC for 12 hours. However, the polymer is very easy to gel and encloses acetone as a reprecipitation solvent. Therefore, the dried polymer was dissolved in deionized water, dialyzed in water for 2 days using a membrane having a molecular weight cut-off (MWCO) of 1,000, and recovered by lyophilization.
- MWCO molecular weight cut-off
- CM-PLH carboxymethylated polyhistidine
- PHL Poly-L-histidine
- I-CH 2 COOH iodoacetic acid
- the solution was dissolved in 8 mL of H 2 O and 2 mL, and the aqueous solution was adjusted to pH 4.5 to 5 with 1N NaOH and stirred at room temperature for 24 hours. Thereafter, iodoacetic acid (40 mg) dissolved in H 2 O (0.2 mL) was further added, and the aqueous solution was kept at pH 4.5 to 5 and again stirred at room temperature for 24 hours. Then, the same operation was performed and reaction was performed for a total of 3 days.
- the resulting aqueous solution was dialyzed against a MWCO: 1000 dialysis membrane for 3 days (adding 5 mL PBS ( ⁇ ) ( ⁇ 20) in 1 L of H 2 O), and then with H 2 O alone before collecting the sample. Time dialysis was performed. Thereafter, a white powder was recovered by lyophilization.
- the number average molecular weight was estimated to be about 6000 by GFC, and the carboxymethyl group modification rate was estimated to be about 50 mol% by 1 H NMR.
- Example 3 Artificial Chromatin Relaxation Experiment with Polymer
- an artificial chromatin relaxation experiment with a polymer was performed.
- CM-PVIm carboxymethylated polyvinylimidazole
- PMMA polymethacrylic acid
- CM-PLH carboxymethylated polyhistidine
- CM-PVIm amphoteric polymer
- the artificial chromatin added with CM-PVIm had lower fluorescence intensity than that without addition. It is considered that the amphoteric polymer is relaxed by a mechanism different from that of the anionic polymer. Anionic polymers interact only with histones and weaken DNA-histone interactions, whereas amphoteric polymers interact with histones at anion sites and between DNA and histones by interacting with cation sites on DNA. Relax the interaction. For this reason, it is presumed that the amphoteric polymer is unlikely to intercalate ethidium bromide and the fluorescence intensity has been lowered.
- the translation activity evaluation was performed using the TNT (registered trademark) Quick Coupled Translation / Translation System to evaluate the relaxation ability as follows.
- Reaction component (translation system) TNT (registered trademark) Quick Master Mix 40 ⁇ L, methionine 1 mM 1 ⁇ L, artificial chromatin 2.2 ⁇ L, Each polymer (CMPVIm (1 mg / mL), PAA (0.1 mg / mL), PMAA (0.15 mg / mL)), Add nuclease-free water for a total volume of 50 ⁇ L
- the reaction components were put into an Eppendorf tube, and all components were pipetted. Thereafter, the cells were incubated at 30 ° C. for 90 minutes, and the relaxation ability was evaluated by measuring the luminescence intensity with a luminometer.
- Translational activity was evaluated at a concentration suggested to be most relaxed by agarose gel electrophoresis. First, it was confirmed that the translation activity of artificial chromatin was lower than that of the positive control naked DNA, and it was found that the transcription-inactive artificial chromatin was successfully produced. If the transcriptionally inactive form, that is, the aggregated heterochromatin can be relaxed, the exposed DNA region increases, and as a result, transcription and translation are promoted, and the relaxation ability was evaluated by this experimental system. The results are shown in FIGS.
- FIG. 3 shows the results of PAA having two molecular weights of molecular weights MW 25,000 and 1,000,000. Both showed high translation activity, but MW 1,000,000 was slightly higher.
- FIG. 4 shows the translational activity of CM-PVIm and PMAA. All showed translational activity, but a significantly higher effect was confirmed particularly with CM-PVIm. Regarding these anionic polymers, it is considered that the higher the anionic charge density, the more relaxed.
- Example 4 Calcium Phosphate Complex This example describes the preparation of a calcium phosphate complex comprising a plasmid containing the gene encoding histone deacetylase (HDAC) and coenzyme A, a histone acetylase inhibitor.
- HDAC histone deacetylase
- a TE solution (pH 7.6) was prepared by dissolving 1 mM Tris-HCl and 0.1 mM EDTA in millipore.
- As the plasmid a plasmid in which a gene encoding histone deacetylase HDAC3 is inserted into the pCMV-SPORT6 vector and a plasmid in which a gene encoding DNA methylase (DNMT3a) is inserted into the pCMV-SPORT6 vector are used. It was.
- the base sequence of the pCMV-SPORT6 vector is shown in SEQ ID NO: 2.
- solution A 2.5M CaCl 2 solution and 0.1 mg / ml plasmid solution were mixed at a ratio of 1: 9 (solution A).
- Polyglutamic acid and coenzyme A were added to 100 ⁇ l of solution A so as to be 10 ⁇ g and 0, 1, 2, 5, 10 ⁇ g, respectively (solution B).
- Hepes / phosphate solution 140 mM NaCl, 50 mM HEPES, and 6 mM Na 2 HPO 4 were dissolved in millipore to prepare a Hepes / phosphate solution (pH 7.1). Next, an equal amount of Hepes / phosphate solution was added to Solution B, stirred for several minutes, and then allowed to stand at 37 ° C. for 24 hours to receive a calcium phosphate complex. The prepared complex was recovered by centrifugation (10000 rpm, 15 minutes).
- Example 5 Gene Expression Evaluation Using Calcium Phosphate Complex
- gene expression evaluation when the calcium phosphate complex prepared in Example 4 was used was examined.
- pGL3 encoding a luciferase gene as a plasmid species was included in the calcium phosphate complex.
- 1 ⁇ 10 4 Cells of HepG2 cells were seeded on a 96-well plate and cultured for 24 hours. After exchanging the medium, the prepared complex was added to the medium and cultured for 24 hours so that the amount of plasmid was about 200 ng / well.
- Lipofectin a commercially available gene transfer carrier, was used as a control. After the medium change, the cells were further cultured for 48 hours.
- cell lysate was obtained by adding 100 ⁇ l of cell lysis to all wells and pipetting. 100 ⁇ l of lysate luciferase substrate was added, and luminescence intensity was measured using AccuFLEX Lumi400 (ALOKA).
- Example 6 Western Blot Measurement to HepG2 Cells
- histone acetylation when the calcium phosphate complex of the present invention and histone deacetylation inhibitor were administered to cells was measured by Western blot.
- the complex used this time contains a gene encoding histone deacetylase (SIRT2) instead of the plasmid containing the gene encoding histone deacetylase (HDAC) in "Example 4 calcium phosphate complex”.
- SIRT2 histone deacetylase
- HDAC histone deacetylase
- HepG2 cells were seeded on 96-well plates at 5 ⁇ 10 5 cells, cultured for 24 hours, then changed to a medium containing 3 ⁇ M of histone deacetylation inhibitor valproic acid (VPA), and further cultured for 24 hours.
- VPA histone deacetylation inhibitor valproic acid
- the prepared complex was added to Well and cultured for 24 hours.
- Anacardic acid (AA) was used as a control.
- NP40 buffer was added to all the wells by 100 ⁇ and pipetting was performed. Subsequently, cell lysate was obtained by centrifuging (15000 rpm, 5 minutes) to remove insoluble substances and collecting the supernatant. The collected supernatant solution was mixed with 2 ⁇ SB buffer at a ratio of 1: 1 and boiled at 95 ° C. for 5 minutes to prepare a sample for Western blotting.
- the result of Western blot measurement is shown in FIG.
- the leftmost lane is a plasmid DNA containing a gene encoding calcium phosphate (CaP), coenzyme A (CoA), SIRT2, a plasmid DNA that has no effect on this experiment, and a sample to which no anacardic acid is added. is there.
- the second lane from the left is a sample to which plasmid DNA was added using CaP. Compared with the sample to which nothing was added, it was confirmed that CaP had no effect on histone acetylation since no difference was observed.
- the middle lane is a sample to which only AA is added as a control.
- the bands of acetylated histones H3 and H4 are thinner than the two samples on the left, it was confirmed that the evaluation of the amount of acetylation in this experiment was established.
- the second sample from the right is a sample into which plasmid DNA containing a gene encoding SIRT2 is introduced using CaP. It was confirmed that the amount of acetylated histone decreased due to the expression of SIRT2.
- the rightmost lane is a sample into which a plasmid containing a gene encoding CoA and SIRT2 was introduced using CaP. Compared with all samples, the band was the thinnest, and it was confirmed that CoA and SIRT2 acted to strongly deacetylate.
- H3-K9, -K18, -K27, H4-K5, -K8, and -K12 were used as acetylated histone antibodies, it is considered that the amount of acetylation decreased.
- the amino group was quantified using a fluorescence spectrophotometer to confirm that the reaction was progressing.
- the acetylation rate and maltose binding rate were calculated by 1 H NMR. As a result, the acetylation rate was calculated to be 29.3%, and the binding rate of amino group and maltose was calculated to be 39%.
- Example 8 Synthesis of Hyperbranched Polylysine This example describes the synthesis of hyperbranched polylysine (DMF solvent).
- HBTU (379 mg, 1.0 mmol) and HOBt ⁇ H 2 O (153 mg, 1.0 mmol) were added to a mixed solution of L-lysine (208 mg, 1 mmol), TEA (154 ⁇ L, 1.1 mmol) and DMF in 15 mL, and water was added for 15 hours. The bath was stirred under the condition of 40 ° C. Then, it stirred at room temperature for 14 days.
- the pre-reaction solution was also white and cloudy, but even after stirring for 15 hours using a water bath, the reaction mixture was suspended in white. DMF and DMSO were added to the reaction mixture obtained by stirring for 15 hours, and it was confirmed whether or not it dissolved. Dilution with DMF did not change the solubility. On the other hand, when DMSO was added and diluted, the solution was successfully dissolved when the solution was diluted 4 times.
- the DMF solvent was dialyzed and lyophilized to confirm that it was ready, and a white powder was obtained. Since hyperbranched PLL is water-soluble, in order to remove impurities insoluble in water, the obtained white powder was dissolved in water and freeze-dried again to recover the product. When the molecular weight of the synthesized product was measured by the aqueous GFC, it was suggested that the hyperbranched PLL was synthesized although it was a small amount. Further, when 1 H NMR analysis was performed, a peak different from that of L-Lycine was observed.
- Example 10 Gene Introduction Using a Carrier Containing Four Elements of Histone Acetylase DNA, Histone Deacetylase Inhibitor, Polylactic Acid, and Cationic Lipid
- histone acetylase DNA, histone deacetylation Gene transfer was performed using a carrier containing four elements of an enzyme inhibitor, polylactic acid, and cationic lipid, and the function of the carrier, histone acetylation amount and cell differentiation rate were evaluated.
- cationic lipids there are compounds having various alkyl chain lengths as cationic lipids. In this study, however, a single chain having an alkyl chain length of 16 to 18 has low cytotoxicity and excellent intracellular introduction efficiency. Alternatively, a double-chain cationic lipid was selected. In this example, single-chain stearylamine or double-chain cationic lipid N- [1- (2,3-dioleoyloxy) propyl] -N, N, N-trimethylammonium methylsulfate An example using (DOTAP) is shown. A DNA encoding histone acetylase (CAF) and a cationic lipid were dissolved in ethanol so that the charge ratio was 1: 1, and incubated at 37 ° C. for 1 h.
- CAF histone acetylase
- TSA histone deacetylase inhibitor
- PHA polylactic acid
- TSA histone deacetylase inhibitor
- it was incubated at 37 ° C. for 1 h. After the incubation, the sample was dialyzed for 4 days using a MWCO1000 dialysis membrane. Finally, the dialyzed sample was freeze-dried for 3 days to obtain a white powder. The presence of DNA in the carrier was confirmed by gene expression evaluation by luciferase assay.
- the luciferase assay was performed according to the following procedure. HepG2 cells were seeded at 1 ⁇ 10 5 c cells / ml in 96-well plates and incubated at 37 ° C. for 24 hours. A carrier containing plasmid DNA encoding luciferase was added to HepG2 cells and incubated at 37 ° C. for 48 hours. After completion of the incubation, the HepG2 cells were collected and lysed with a cell lysis solution (manufactured by Promega, attached to the luciferase assay system, “Cell Culture lysis reagent”). The gene expression level was measured by adding a substrate to the lysate and using a luminometer. Inhibitors in the carrier were evaluated for activity using an HDAC activity analysis kit.
- HL60 Human myeloid leukemia cells
- the prepared carrier was added to HL60 cells and incubated at 37 ° C. for 48, 96, 192 hours.
- NBT staining which is a technique for specifically staining granulocytes.
- the cells were lysed with a cell lysis solution to obtain a protein solution.
- the washed PVDF membrane was subjected to a primary antibody reaction.
- primary antibodies Ac-H3K9, K18, K27 (manufactured by Cell Signaling technology Japan) and ⁇ -actin as a control were used.
- the primary antibody was used after being diluted 1000 times with a washing solution.
- the PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution.
- a secondary antibody reaction was performed.
- horseradish peroxidase (HRP) was used.
- HRP antibody was used after being diluted 5000 times with a washing solution.
- the PVDF membrane was immersed in the diluted antibody solution and left for 6 hours.
- epigenetics modification was controlled by simultaneously promoting epigenetics modification by gene introduction and suppressing reverse reaction by an inhibitor. It was found that anti-cancer therapy is possible by promoting histone acetylation among epigenetic modifications.
- Example 11 Gene Introduction Using a Carrier Containing Four Elements of Histone Acetylase DNA, Histone Deacetylase Inhibitor, Calcium Phosphate, and Polyglutamic Acid
- histone acetylase DNA, histone deacetylase inhibition Genes were introduced using a carrier containing 4 elements of a drug, polylactic acid, and cationic lipid, and the function of the carrier, histone acetylation amount and cell differentiation rate were evaluated.
- the recovered protein solution was incubated at 95 ° C. for 5 minutes using a reducing agent in order to cleave the disulfide bond of the protein.
- the prepared sample was subjected to SDS-PAGE using a 15% polyacrylamide gel.
- the PVDF membrane hydrophilized with methanol and the migrated gel were superposed, and the protein was transferred from the gel to the PVDG membrane.
- the transferred PVDF membrane was soaked in 5% skim milk and allowed to stand for 1 hour. Thereafter, the PVDF membrane was cleaned using a cleaning solution.
- the washed PVDF membrane was subjected to a primary antibody reaction.
- primary antibodies Ac-H3K9, K18, and K27 antibodies (Cell Signaling Technology Japan) and a control anti- ⁇ -actin antibody were used.
- the primary antibody was used after being diluted 1000 times with a washing solution.
- the PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution.
- a secondary antibody reaction was performed.
- an anti-horseradish peroxidase (HRP) antibody was used as the secondary antibody.
- the HRP antibody was used after being diluted 5000 times with a washing solution.
- the PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution.
- luminescence detection was performed using ECL Prime Western Blotting Detection System (manufactured by GE Healthcare Japan) as a detection reagent. The detection reagent was dropped on the PVDF membrane and allowed to stand for 5 minutes. Thereafter, the PVDF film was subjected to chemiluminescence detection using an ATTO imaging device AE-9300 Ez-Capture MG.
- HL60 cell line 11-2 HL60 cell line
- Human myeloid leukemia cells HL60 were seeded in 12-well plates at a cell concentration of 1 ⁇ 10 5 cells / ml and incubated at 37 ° C. for 24 hours.
- CaP / CAF plasmid DNA / TSA / PLE complex was added to HL60 cells and incubated at 37 ° C. for 48 hours.
- One of the cells after completion of the incubation was evaluated for cell differentiation rate by NBT staining, which is a technique for specifically staining granulocytes.
- the cells were lysed with a cell lysis solution to obtain a protein solution.
- epigenetics modification was controlled by simultaneously promoting epigenetics modification by gene introduction and suppressing reverse reaction by an inhibitor. It was found that anti-cancer therapy is possible by promoting histone acetylation among epigenetic modifications.
- Example 12 Control of Chromatin Structure Using Anionic Polymer
- PLD-EDA- ⁇ -CD Polyaspartic acid-ethylenediamine- ⁇ -cyclodextrin
- N-Boc-EDA N-butoxycarbonylethylenediamine
- HeLa cells were seeded in 12 well plates at 5 ⁇ 10 4 cells / well and incubated at 37 ° C., 5% CO 2 . After 8 hours, the medium was changed, and 100 ⁇ g / well of PLD-EDA- ⁇ -CD was added. After further incubation for 16 hours under the same conditions and aspiration of all the medium, plasmid DNA encoding histone acetylase (HAT) was mixed with lipofectin at a charge ratio (+/ ⁇ ) of 1 and in phosphate buffer for 1 hour. The complex prepared by incubating with was added (DNA amount 1 ⁇ g / well).
- HAT histone acetylase
- the cells were incubated for 48 hours under the same conditions, the medium was aspirated, washed with PBS ( ⁇ ), and cell lysate was recovered by adding 75 ⁇ L / well of 5 ⁇ cell lysis solution. 200 ⁇ L of PBS ( ⁇ ) was added to the collected lysate, and centrifugation was performed at 5000 ⁇ g for 10 minutes to remove insoluble protein. 200 ⁇ L of the supernatant was incubated for 5 minutes at 95 ° C. using a reducing agent to cleave the disulfide bonds of the protein.
- the PVDF membrane was washed with 1 ⁇ TBS-T as described above, and incubated in 3 mL of 1 ⁇ TBS-T containing 3 ⁇ L of HRP-conjugated secondary antibody derived from rabbit for 6 hours. After washing with 1 ⁇ TBS-T, color development with alkaline phosphatase was performed, and a band was detected with a CS analyzer at an exposure time of 4 minutes.
- FIG. 7A-FIG. 7D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA- ⁇ -CD, (C) differential interference image, and (D) A- C images are combined.
- FIG. 7 shows that PLD-EDA- ⁇ -CD is localized in the cell nucleus region.
- PLD-EDA not subjected to CD modification was not observed to be localized in the nucleus.
- the “EDA” moiety is a spacer to prevent repulsion between the anionic polymer (PLD) and the intercellular membrane
- the “CD” moiety is rich in lipids through interaction with plasma membrane cholesterol. It is thought that it is functioning because the polymer stays in the region.
- (2) Change in the amount of acetyl histone by Western blot (KSB102) The amount of acetylation of histones H3 and H4 in HeLa cells is 3.9 times higher in the case of adding HAT / lipofectin than in the case of adding no anionic polymer / HAT / lipofectin complex. The amount increased, and the addition of HAT / lipofectin after addition of the anionic polymer showed a 4.7-fold increase in acetylation relative to the control.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The purpose of the present invention is to provide a composition for controlling a chromatin structure. A composition of the present invention contains: (1) a polymer which is selected from the group consisting of amphoteric polymers, anionic polymers and nonionic polymers having a specific main chain skeleton; or (2) a carrier which encloses two or more kinds of substances selected from the group consisting of expression vectors containing a gene such as a gene encoding histone acetyltransferase and inhibitors such as histone acetylation inhibitors.
Description
本発明は、クロマチン構造を制御するための組成物及び、当該組成物を用いたクロマチン構造の制御方法に関する。
The present invention relates to a composition for controlling a chromatin structure and a method for controlling a chromatin structure using the composition.
エピジェネティクス
細胞の働きを調節するタンパク質の発現には、遺伝子の転写・翻訳が関わっており(ジェネティクス)、遺伝子の転写・翻訳の調節にはエピジェネティクスが寄与している。さらにエピジェネティクスは、タンパク質により制御されていることから、生命機能に関わるジェネティクス−エピジェネティクス−タンパク質の統合的調節機構は、生命現象の中心的役割を担っていると考えられる。 Epigenetics contributes to the expression of proteins that regulate the function of epigenetic cells (genetics), and epigenetics contributes to the regulation of gene transcription and translation. Furthermore, since epigenetics is controlled by proteins, it is thought that the genetic-epigenetics-protein integrated regulation mechanism related to life functions plays a central role in life phenomena.
細胞の働きを調節するタンパク質の発現には、遺伝子の転写・翻訳が関わっており(ジェネティクス)、遺伝子の転写・翻訳の調節にはエピジェネティクスが寄与している。さらにエピジェネティクスは、タンパク質により制御されていることから、生命機能に関わるジェネティクス−エピジェネティクス−タンパク質の統合的調節機構は、生命現象の中心的役割を担っていると考えられる。 Epigenetics contributes to the expression of proteins that regulate the function of epigenetic cells (genetics), and epigenetics contributes to the regulation of gene transcription and translation. Furthermore, since epigenetics is controlled by proteins, it is thought that the genetic-epigenetics-protein integrated regulation mechanism related to life functions plays a central role in life phenomena.
ひとつの受精卵が増殖分化することで、組織・器官そしてひとつの個体を形成する過程が発生であり、その後、個体は成長し、時間経過とともに老化し、時には癌や生活習慣病などの病気を患うこともある。しかし、細胞や組織の異常が起こっても、自然治癒又は医療を受けることで再生されることがある。また、個体は生殖細胞を通して次の世代にゲノムを伝える遺伝現象がある。これらは、基本的に、同じゲノムをもつ細胞が性質の異なる細胞に変化するというエピジェネティックな生命現象であると理解することができる。
A fertilized egg proliferates and differentiates, and the process of forming tissues / organs and an individual occurs.The individual grows and then ages with time, sometimes causing diseases such as cancer and lifestyle-related diseases. You may suffer. However, even if cell or tissue abnormality occurs, it may be regenerated by receiving natural healing or medical treatment. Individuals also have a genetic phenomenon that passes the genome to the next generation through germ cells. These can basically be understood as epigenetic life phenomena in which cells having the same genome change into cells having different properties.
多種多様の細胞の個性はその細胞の遺伝子発現のパターンで決められると考えられている。ゲノム上の総遺伝子数を3万個とすると、ひとつの分化細胞では、約1万個の遺伝子が発現し、残りの遺伝子は不活性化されている。つまり、ゲノム上の遺伝子を選択的に活用することによって、細胞個性がエピジェネティックに確立・維持・消去されることを意味している。
It is considered that the individuality of a wide variety of cells is determined by the gene expression pattern of the cells. When the total number of genes on the genome is 30,000, about 10,000 genes are expressed in one differentiated cell, and the remaining genes are inactivated. In other words, by selectively utilizing genes on the genome, it means that cell personality is established, maintained, and erased epigenetically.
エピジェネティクスの制御システムには、DNAのメチル化、クロマチン、タンパク質の修飾・脱修飾、転写調節因子が遺伝子制御に重要な役割を果たしている。現在までに、DNAメチル化酵素、メチル化DNA結合タンパク質、ヒストン修飾酵素、クロマチン構造因子、クロマチンリモデリング因子、クロマチンインスレーター(クロマチンの境界)等の新しい分子群や機能的な複合体が相次いで発見されている。これらのエピジェネティクス機構によって、遺伝子制御とクロマチン構造の形成がなされるのである。さらに、ゲノム上の個々の遺伝子は、組織特異的に、分化特異的に、状況特異的に発現していることは、遺伝子が独立して制御される仕組みがあることを示している。
In the epigenetic control system, DNA methylation, chromatin, protein modification / demodification, and transcriptional regulators play important roles in gene regulation. To date, new molecular groups and functional complexes such as DNA methylases, methylated DNA binding proteins, histone modifying enzymes, chromatin structure factors, chromatin remodeling factors, chromatin insulators (chromatin boundaries), etc. Has been discovered. These epigenetic mechanisms lead to gene regulation and formation of chromatin structures. Furthermore, expression of individual genes on the genome in a tissue-specific, differentiation-specific, and situation-specific manner indicates that there is a mechanism in which the genes are independently controlled.
クロマチン構造
真核生物の染色体DNAはクロマチンとよばれる高次構造をとっている。クロマチンは、ヌクレオソームの繰り返し構造がらせん状につながったものである。ヌクレオソーム同士はヒストンに巻きついていないリンカーDNAを介してつながっており、さらにパックされた30nmクロマチンファイバーとなる。ヌクレオソームは、H2A、H2B、H3、H4ヒストンタンパク質が2分子からなるヒストンオクタマーに146塩基対のDNAが約2回巻きついた構造をとっている。例えば、ヒトの1個の細胞にあるDNAを引き伸ばすと、約1.8mにもなり、このDNAはヒストンタンパク質に巻き付いてクロマチン構造をつくっている。クロマチンが凝縮して、細胞の核の中に収納されている。高度に凝縮したクロマチンは、ヘテロクロマチンと呼ばれている。 Chromatin Structure Eukaryotic chromosomal DNA has a higher-order structure called chromatin. Chromatin is a structure in which nucleosome repeat structures are connected in a spiral. Nucleosomes are connected to each other via a linker DNA not wound around histones, and become packed 30 nm chromatin fibers. The nucleosome has a structure in which DNA of 146 base pairs is wound around a histone octamer composed of two molecules of H2A, H2B, H3, and H4 histone proteins. For example, when DNA in a single human cell is stretched, it becomes about 1.8 m, and this DNA is wound around a histone protein to form a chromatin structure. Chromatin is condensed and stored in the nucleus of the cell. Highly condensed chromatin is called heterochromatin.
真核生物の染色体DNAはクロマチンとよばれる高次構造をとっている。クロマチンは、ヌクレオソームの繰り返し構造がらせん状につながったものである。ヌクレオソーム同士はヒストンに巻きついていないリンカーDNAを介してつながっており、さらにパックされた30nmクロマチンファイバーとなる。ヌクレオソームは、H2A、H2B、H3、H4ヒストンタンパク質が2分子からなるヒストンオクタマーに146塩基対のDNAが約2回巻きついた構造をとっている。例えば、ヒトの1個の細胞にあるDNAを引き伸ばすと、約1.8mにもなり、このDNAはヒストンタンパク質に巻き付いてクロマチン構造をつくっている。クロマチンが凝縮して、細胞の核の中に収納されている。高度に凝縮したクロマチンは、ヘテロクロマチンと呼ばれている。 Chromatin Structure Eukaryotic chromosomal DNA has a higher-order structure called chromatin. Chromatin is a structure in which nucleosome repeat structures are connected in a spiral. Nucleosomes are connected to each other via a linker DNA not wound around histones, and become packed 30 nm chromatin fibers. The nucleosome has a structure in which DNA of 146 base pairs is wound around a histone octamer composed of two molecules of H2A, H2B, H3, and H4 histone proteins. For example, when DNA in a single human cell is stretched, it becomes about 1.8 m, and this DNA is wound around a histone protein to form a chromatin structure. Chromatin is condensed and stored in the nucleus of the cell. Highly condensed chromatin is called heterochromatin.
遺伝子が活性化される、即ちオンになるには、このような凝縮したクロマチン構造が緩み、ヒストンが外れたり位置がずれたりしてDNAの二重らせんがほどかれる必要がある。ほどかれることにより、遺伝子の塩基配列が転写されて、RNAとして読み取られる状態になる。
In order for the gene to be activated, that is, turned on, such a condensed chromatin structure must be loosened, the histones may be removed or displaced, and the DNA double helix must be unwound. By unwinding, the base sequence of the gene is transcribed and is read as RNA.
ヒストンタンパク質に、アセチル基やメチル基などさまざまな化学物質が付く修飾が行われていることが知られているが、その役割は分からず、あまり注目されていなかった。近年、ヒストンの特定の場所にアセチル基が付くと、クロマチン構造が緩み、遺伝子がオンになり得る状態になることが示された。ヒストンのメチル化と、メチル基を認識してヘテロクロマチンが形成される過程については、その過程で複雑な仕組みが働いていることが発見されている。分裂酵母のHP1タンパク質には、少しだけ形が異なった2種類のものが知られている。一方はヘテロクロマチン化を促進させ、もう一方は逆にヘテロクロマチン化を抑制する機能を有する。機能が正反対の2種類のHP1が、ある一定のバランスで集まらないと、ヘテロクロマチンが形成・維持されないことが見出されている。なぜこのような複雑な仕組みが必要なのか、明らかにされていない。
It is known that histone proteins have been modified with various chemical substances such as acetyl and methyl groups, but their roles are not known and have not received much attention. In recent years, it has been shown that when an acetyl group is attached to a specific place of histone, the chromatin structure is loosened and the gene can be turned on. It has been discovered that a complex mechanism works in the process of histone methylation and the formation of heterochromatin by recognizing methyl groups. Two types of fission yeast HP1 proteins that are slightly different in shape are known. One has a function of promoting heterochromatinization and the other has a function of suppressing heterochromatinization. It has been found that heterochromatin cannot be formed and maintained unless two types of HP1 having opposite functions are gathered in a certain balance. It is not clear why such a complicated mechanism is necessary.
ヒトのような高等生物では、ヒストンではなくDNAを直接メチル化することで遺伝子を強く抑え込む仕組みも存在する。このDNAメチル化もヒストン修飾と密接に関連していることが分かってきた。
In higher organisms such as humans, there is a mechanism that strongly suppresses genes by directly methylating DNA instead of histones. This DNA methylation has also been found to be closely related to histone modifications.
ヒストン修飾
ヒストンはリジンやアルギニンなどの塩基性アミノ酸を多数持つタンパク質で、アニオン性であるDNAと堅く結合している。ヒストンのN末端はヒストンテールとよばれ、ヌクレオソームコアから少し離れて存在している。ヒストンは主にこのN末端の部分で様々な修飾を受ける。 Histone-modified histones are proteins having many basic amino acids such as lysine and arginine, and are tightly bound to anionic DNA. The N-terminus of histone is called histone tail and exists a little away from the nucleosome core. Histones undergo various modifications mainly at this N-terminal part.
ヒストンはリジンやアルギニンなどの塩基性アミノ酸を多数持つタンパク質で、アニオン性であるDNAと堅く結合している。ヒストンのN末端はヒストンテールとよばれ、ヌクレオソームコアから少し離れて存在している。ヒストンは主にこのN末端の部分で様々な修飾を受ける。 Histone-modified histones are proteins having many basic amino acids such as lysine and arginine, and are tightly bound to anionic DNA. The N-terminus of histone is called histone tail and exists a little away from the nucleosome core. Histones undergo various modifications mainly at this N-terminal part.
近年、転写誘導の際に、ヒストン修飾によるクロマチン構造変化が重要な働きをすることが知られてきている。まず、DNA結合性転写活性化因子が、標的遺伝子に結合すると、PCAFやCBP/p300などの転写コアクチベーターがリクルートされる。転写コアクチベーターはヒストンアセチル化酵素(Histone Acetyl Transferase: HAT)活性をもっており、周辺のヒストンをアセチル化する。これが引き金となり、クロマチンリモデリング因子がリクルートされ、クロマチンのリモデリングが誘導され、基本転写因子とRNAポリメラーゼによる転写が開始する。特に、転写誘導とよく相関するアセチル化として、ヒストンH3K9とK14のアセチル化が知られている。ヒストンのリジン残基のアミノ基がアセチル化されると、アミノ基の正電荷が中和され、ヌクレオソーム間の相互作用が緩むと考えられている。さらに、ヒストンはアセチル化以外にもメチル化やリン酸化などの修飾を受け、転写の制御・サイレンシング・クロマチン凝縮などを引き起こすことが知られている。
In recent years, it has been known that chromatin structural changes due to histone modifications play an important role in the induction of transcription. First, when a DNA-binding transcription activator binds to a target gene, transcription coactivators such as PCAF and CBP / p300 are recruited. The transcription coactivator has histone acetylase (Histone Acetyl Transferase: HAT) activity and acetylates surrounding histones. This triggers the recruitment of chromatin remodeling factors, induces chromatin remodeling, and initiates transcription by basic transcription factors and RNA polymerase. In particular, acetylation of histones H3K9 and K14 is known as acetylation that correlates well with transcription induction. It is believed that when the amino group of a lysine residue of histone is acetylated, the positive charge of the amino group is neutralized and the interaction between nucleosomes is relaxed. In addition to his acetylation, histones are known to undergo modifications such as methylation and phosphorylation to cause transcriptional control, silencing, and chromatin condensation.
ヒストンを修飾する酵素としては、上述したHAT以外に脱アセチル化を触媒とするヒストン脱アセチル化酵素(HistoneDeAcetylase:HDAC)がある。細胞内ではHDACの活性が優位であり、クロマチンは通常脱アセチル化状態に保たれており、転写因子の働きで必要な時だけアセチル化され、開くと考えられる。
As an enzyme that modifies histone, there is histone deacetylase (HDAC) that catalyzes deacetylation in addition to HAT described above. The activity of HDAC is dominant in the cell, and chromatin is normally kept in a deacetylated state, and is thought to be acetylated and opened only when necessary by the action of a transcription factor.
ヒストンのメチル化は、ヒストンメチル化酵素(HistoneMethylTransferase: HMT)によって誘導される。現在、よく解析されているのはヒストンH3K9のメチル化である。メチル化されたK9をHP1(Heterochromatin Protein 1)が認識して結合する。HP1はDNAメチル化酵素やHDACをリクルートし、また、HP1同士が集合化することにより、周辺クロマチン領域を閉じた状態に変換する。このような機構により、遺伝子座のサイレンシングが起こることが知られている。一方、ヒストンH3K4のメチル化は、反対に、転写の活性化と相関することが知られている。
Histone methylation is induced by histone methyltransferase (HMT). Currently, the methylation of histone H3K9 is well analyzed. HP1 (Heterochromatin Protein 1) recognizes and binds methylated K9. HP1 recruits DNA methylase and HDAC, and HP1 aggregates to convert the surrounding chromatin region into a closed state. It is known that gene silencing occurs through such a mechanism. On the other hand, the methylation of histone H3K4 is known to correlate with the activation of transcription.
一般に、メチル化反応とは逆の脱メチル化反応は非常に起こりにくいと考えられていたが、近年ヒストンの脱メチル化酵素も報告された。
In general, it was thought that a demethylation reaction opposite to the methylation reaction hardly occurred, but in recent years, a histone demethylase was also reported.
DNAメチル化
真核生物ゲノムDNAのメチル化修飾は遺伝情報の発現を制御する機構として進化を遂げてきた。ゲノムDNAのメチル化はエピジェネティックな要因の一つであるが、その状態は塩基配列を新たにメチル化して模様を描く、細胞が増殖する過程で維持する、必要に応じて消去するという過程の総和として決定される。特にDNAのメチル化修飾に関わるDNAメチルトランスフェラーゼとその相同分子としてこれまで5つの遺伝子が報告されている(Dnmt1、Dnmt2、Dnmt3a、Dnmt3b、Dnmt3L)。しかし、ゲノムのどの領域がどのように認識されてメチル化されるのかについては、これからの解決されるべき問題が多く残されている。 DNA methylation Methylation modification of eukaryotic genomic DNA has evolved as a mechanism to control the expression of genetic information. Methylation of genomic DNA is one of the epigenetic factors, but its state is the process of newly methylating the base sequence to draw a pattern, maintaining it in the process of cell growth, and deleting it as necessary Determined as the sum. In particular, five genes have been reported so far as DNA methyltransferases and homologous molecules involved in DNA methylation modification (Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, Dnmt3L). However, there are many problems to be solved in the future regarding how and what regions of the genome are recognized and methylated.
真核生物ゲノムDNAのメチル化修飾は遺伝情報の発現を制御する機構として進化を遂げてきた。ゲノムDNAのメチル化はエピジェネティックな要因の一つであるが、その状態は塩基配列を新たにメチル化して模様を描く、細胞が増殖する過程で維持する、必要に応じて消去するという過程の総和として決定される。特にDNAのメチル化修飾に関わるDNAメチルトランスフェラーゼとその相同分子としてこれまで5つの遺伝子が報告されている(Dnmt1、Dnmt2、Dnmt3a、Dnmt3b、Dnmt3L)。しかし、ゲノムのどの領域がどのように認識されてメチル化されるのかについては、これからの解決されるべき問題が多く残されている。 DNA methylation Methylation modification of eukaryotic genomic DNA has evolved as a mechanism to control the expression of genetic information. Methylation of genomic DNA is one of the epigenetic factors, but its state is the process of newly methylating the base sequence to draw a pattern, maintaining it in the process of cell growth, and deleting it as necessary Determined as the sum. In particular, five genes have been reported so far as DNA methyltransferases and homologous molecules involved in DNA methylation modification (Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, Dnmt3L). However, there are many problems to be solved in the future regarding how and what regions of the genome are recognized and methylated.
DNAのメチル化修飾は、遺伝子の実体である塩基配列を変えることなく、すなわち、遺伝子のコードするアミノ酸配列情報を変えることなくその発現を制御する。また、いったん付けられたゲノム上のメチル化模様は安定に次世代の細胞に受け継がれる。一方でメチル化修飾は必要に応じてはずされる可逆性ももっている。遺伝情報の発現制御機構を理解するうえで、ゲノムDNAのメチル化がどのように調節されているのかを理解することは重要である。
DNA methylation modification controls its expression without changing the base sequence that is the substance of the gene, that is, without changing the amino acid sequence information encoded by the gene. In addition, the methylation pattern on the genome once attached is stably inherited to the next generation cells. On the other hand, methylation modification also has reversibility that can be removed if necessary. In understanding the mechanism of expression control of genetic information, it is important to understand how methylation of genomic DNA is regulated.
真核生物では一部の生物の例外を除いてゲノムDNAのシトシン塩基(C)の5位がメチル化修飾をうける。動物では脊椎動物に進化を遂げたときゲノムの塩基量が増加したのと時を同じくしてゲノム中のシトシンメチル化修飾の程度が増えた。脊椎動物のゲノムDNAのメチル化はシトシン塩基の次にグアニン塩基が続くCpG配列中のシトシン塩基に付加される。マウスのゲノムDNAではCpG配列の約80%がメチル化修飾を受けている。このメチル基はS−アデノシル−L−メチオニンからDNAメチルトランスフェラーゼの働きで転移される。
In eukaryotes, with the exception of some organisms, the 5th position of cytosine base (C) of genomic DNA is subjected to methylation modification. In animals, the degree of cytosine methylation modification in the genome increased at the same time that the base amount of the genome increased when it evolved into a vertebrate. Vertebrate genomic DNA methylation is added to cytosine bases in the CpG sequence followed by cytosine bases followed by guanine bases. In mouse genomic DNA, about 80% of the CpG sequence is methylated. This methyl group is transferred from S-adenosyl-L-methionine by the action of DNA methyltransferase.
マウスのゲノムを俯瞰してみると、G+C含量が相対的に高い領域が島状に散在しこれをCpGアイランドと呼ぶが、多くの場合、ハウスキーピング遺伝子のプロモーターとなっていて低メチル化状態にある。一般に、転写されている遺伝子のプロモーター領域は低メチル化状態にあり、不活性な遺伝子は高度にメチル化されている。プロモーター領域に存在する転写因子の結合モチーフがメチル化されると、Sp1など一部の転写因子を除いてほとんどの転写因子はDNAに結合できなくなる。また、メチル化されたDNAを特異的に認識して結合するタンパク質が存在し、このメチル化DNA結合タンパク質とヒストン修飾を介して転写が阻害される。DNAメチル化は長期的に遺伝子をサイレンシングするための一種の記憶として機能している。
When looking at the mouse genome, regions with relatively high G + C content are scattered in islands, which are called CpG islands. In many cases, they become promoters of housekeeping genes and become hypomethylated. is there. In general, the promoter region of a transcribed gene is in a hypomethylated state, and the inactive gene is highly methylated. When a transcription factor binding motif present in the promoter region is methylated, most transcription factors except for some transcription factors such as Sp1 cannot bind to DNA. There is also a protein that specifically recognizes and binds to methylated DNA, and transcription is inhibited through this methylated DNA binding protein and histone modification. DNA methylation functions as a kind of memory for silencing genes over the long term.
メチル化されたDNAを特異的に認識して結合するタンパク質の多くはヒストン脱アセチル化酵素を含む転写抑制複合体の一員か、あるいはこれら複合体と結合して、最終的にはヒストンを脱アセチル化、メチル化することにより転写を抑制する。DNAメチル化とヒストン修飾には密接な関係が存在することは確かであるが、お互いの間の相互作用に関わる分子機構についてはわからないことがまだまだ多く、解決されるべき重要課題である。
Many proteins that specifically recognize and bind to methylated DNA are either members of the transcriptional repression complex that contains histone deacetylases, or bind to these complexes and eventually deacetylate histones. Transcription is suppressed by methylation and methylation. Although it is certain that there is a close relationship between DNA methylation and histone modification, there are still many unknowns regarding the molecular mechanisms involved in the interaction between them, and this is an important issue to be solved.
以上、クロマチン構造変化の制御はヒストン又はDNAの修飾が関与していると考えられているが詳細は明らかではない。クロマチン構造を人為的に制御するための手段も確立していない。
As described above, it is considered that the control of chromatin structural change involves histone or DNA modification, but the details are not clear. No means for artificially controlling the chromatin structure has been established.
本願発明は、クロマチン構造を人為的に制御する方法及び当該方法に使用するための組成物を提供することを目的とする。
The object of the present invention is to provide a method for artificially controlling the chromatin structure and a composition for use in the method.
本発明者らは、上記問題解決のため鋭意研究に努めた結果、特定の高分子、あるいは、ヒストンのアセチル化若しくはメチル化を制御する2種類以上の物質を含む担体の投与により、クロマチン構造が制御されることを見出し、本願発明を想到した。
As a result of diligent research to solve the above problems, the present inventors have found that the chromatin structure is formed by administering a carrier containing a specific polymer or two or more substances that control acetylation or methylation of histones. As a result, the present invention has been conceived.
本発明は、好ましい態様として以下の態様を含む。
[態様1] 以下の The present invention includes the following embodiments as preferred embodiments.
[Aspect 1] The following
[態様1] 以下の The present invention includes the following embodiments as preferred embodiments.
[Aspect 1] The following
1)両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される、高分子であって、以下のいずれかの主鎖骨格を有する高分子;
1) A polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers, and having one of the following main chain skeletons:
2)
i)ヒストンアセチル化酵素をコードする遺伝子を含む発現ベクター;
ii)ヒストンメチル化酵素をコードする遺伝子を含む発現ベクター;
iii)ヒストン脱アセチル化酵素をコードする遺伝子を含む発現ベクター;
iv)ヒストン脱メチル化酵素をコードする遺伝子を含む発現ベクター;
v)ヒストンアセチル化阻害剤;
vi)ヒストン脱アセチル化阻害剤;
vii)ヒストンメチル化阻害剤;及び
viii)ヒストン脱メチル化阻害剤
からなるグループから選択される、2種類またはそれ以上の物質を包摂する担体を含む、クロマチン構造を制御するための組成物。
[態様2]
2)
i) an expression vector comprising a gene encoding a histone acetylase;
ii) an expression vector comprising a gene encoding a histone methylase;
iii) an expression vector comprising a gene encoding a histone deacetylase;
iv) an expression vector comprising a gene encoding a histone demethylase;
v) histone acetylation inhibitors;
vi) histone deacetylation inhibitors;
vii) a histone methylation inhibitor; and viii) a composition for controlling a chromatin structure, comprising a carrier containing two or more substances selected from the group consisting of histone demethylation inhibitors.
[Aspect 2]
クロマチン構造を弛緩するための、態様1に記載の組成物。
[態様3] The composition according toaspect 1, for relaxing chromatin structure.
[Aspect 3]
[態様3] The composition according to
[Aspect 3]
高分子が、
a)カルボキシメチル化ポリビニルイミダゾール、
b)ポリアクリル酸、ポリメタクリル酸、ポリグルタミン酸、カルボキシルメチル化ポリヒスチジン、若しくはポリアスパラギン酸、又は
c)PEG又は糖鎖
あるいは、これらのブロック共重合体、グラフト共重合体、又はデンドリマー体、から選択される、態様1又は2に記載の高分子。
[態様4] Polymer
a) carboxymethylated polyvinylimidazole,
b) from polyacrylic acid, polymethacrylic acid, polyglutamic acid, carboxylmethylated polyhistidine, or polyaspartic acid, or c) PEG or sugar chain, or a block copolymer, graft copolymer, or dendrimer thereof. The polymer according to aspect 1 or 2, which is selected.
[Aspect 4]
a)カルボキシメチル化ポリビニルイミダゾール、
b)ポリアクリル酸、ポリメタクリル酸、ポリグルタミン酸、カルボキシルメチル化ポリヒスチジン、若しくはポリアスパラギン酸、又は
c)PEG又は糖鎖
あるいは、これらのブロック共重合体、グラフト共重合体、又はデンドリマー体、から選択される、態様1又は2に記載の高分子。
[態様4] Polymer
a) carboxymethylated polyvinylimidazole,
b) from polyacrylic acid, polymethacrylic acid, polyglutamic acid, carboxylmethylated polyhistidine, or polyaspartic acid, or c) PEG or sugar chain, or a block copolymer, graft copolymer, or dendrimer thereof. The polymer according to
[Aspect 4]
高分子の分子量が、10,000−2,000,000である、態様1−3のいずれか1項に記載の組成物。
[態様5] The composition according to any one of aspects 1-3, wherein the molecular weight of the polymer is 10,000-2,000,000.
[Aspect 5]
[態様5] The composition according to any one of aspects 1-3, wherein the molecular weight of the polymer is 10,000-2,000,000.
[Aspect 5]
担体が、ポリエステル、リン酸カルシウム、又はポリアミノ酸を含む、態様1−4のいずれか1項に記載の組成物。
[態様6] The composition according to any one of aspects 1-4, wherein the carrier comprises polyester, calcium phosphate, or polyamino acid.
[Aspect 6]
[態様6] The composition according to any one of aspects 1-4, wherein the carrier comprises polyester, calcium phosphate, or polyamino acid.
[Aspect 6]
担体が、さらに、DNA脱メチル化酵素をコードする遺伝子を含む発現ベクター、DNAメチル化酵素をコードする遺伝子を含む発現ベクター、あるいは、DNAメチル化酵素阻害剤、を含む、態様1−5のいずれか1項に記載の組成物。
[態様7] Any of aspects 1-5, wherein the carrier further comprises an expression vector comprising a gene encoding a DNA demethylase, an expression vector comprising a gene encoding a DNA methylase, or a DNA methylase inhibitor The composition according toclaim 1.
[Aspect 7]
[態様7] Any of aspects 1-5, wherein the carrier further comprises an expression vector comprising a gene encoding a DNA demethylase, an expression vector comprising a gene encoding a DNA methylase, or a DNA methylase inhibitor The composition according to
[Aspect 7]
態様1−6のいずれか1項に記載の組成物をin vitro、ex vivo又はin vivoで投与することにより、クロマチン構造を制御する方法。
A method for controlling a chromatin structure by administering the composition according to any one of aspects 1-6 in vitro, ex vivo, or in vivo.
本発明により、クロマチン構造を人為的に制御することが可能になった。これにより、遺伝子の塩基配列を操作することなく、より容易にその発現の制御が可能となる。
The present invention makes it possible to artificially control the chromatin structure. Thereby, the expression can be controlled more easily without manipulating the base sequence of the gene.
[図1] 図1は、人工クロマチンモデル(DNA/コアヒストン複合体)の形成をアガロース電気泳動で調べた結果を示す。
[図2] 図2は、高分子によるクロマチン構造の弛緩効果を、アガロース電気泳動後の蛍光強度で調べた結果を示す。
[図3] 図3は、高分子PAAによるクロマチン構造の弛緩効果について、翻訳活性を調べた結果を示す。
[図4] 図4は、高分子CM−PVIm及びPMAAによるクロマチン構造の弛緩効果について、翻訳活性を調べた結果を示す。
[図5] 図5は、本発明のリン酸カルシウム複合体中のコエンザイムA(CoA)の含有量を示す。
[図6] 図6は、本発明のリン酸カルシウム複合体を用いた場合の、各ヒストンにおけるアセチルリジン量の変化をウエスタンブロットで調べた結果を示す。
CaP:カルシウムリン酸複合体;
CoA:コエンザイムA
SIRT2:SIRT2遺伝子を含むプラスミドDNA
DNA:プラスミドDNA
AA:アナカルジン酸
[図7A] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。
[図7B] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。
[図7C] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。
[図7D] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。 FIG. 1 shows the results of examining the formation of an artificial chromatin model (DNA / core histone complex) by agarose electrophoresis.
[FIG. 2] FIG. 2 shows the results of examining the relaxation effect of the chromatin structure by the polymer by the fluorescence intensity after agarose electrophoresis.
[FIG. 3] FIG. 3 shows the results of examining the translation activity for the relaxation effect of chromatin structure by polymer PAA.
[FIG. 4] FIG. 4 shows the results of examining the translational activity for the relaxation effect of the chromatin structure by the polymers CM-PVIm and PMAA.
FIG. 5 shows the content of coenzyme A (CoA) in the calcium phosphate complex of the present invention.
[FIG. 6] FIG. 6 shows the result of examining the change in the amount of acetyllysine in each histone by Western blotting when the calcium phosphate complex of the present invention was used.
CaP: calcium phosphate complex;
CoA: Coenzyme A
SIRT2: Plasmid DNA containing the SIRT2 gene
DNA: Plasmid DNA
AA: Anacardic acid [FIG. 7A] FIG. 7 shows the results of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[FIG. 7B] FIG. 7 shows the results of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[FIG. 7C] FIG. 7 shows the result of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[FIG. 7D] FIG. 7 shows the result of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[図2] 図2は、高分子によるクロマチン構造の弛緩効果を、アガロース電気泳動後の蛍光強度で調べた結果を示す。
[図3] 図3は、高分子PAAによるクロマチン構造の弛緩効果について、翻訳活性を調べた結果を示す。
[図4] 図4は、高分子CM−PVIm及びPMAAによるクロマチン構造の弛緩効果について、翻訳活性を調べた結果を示す。
[図5] 図5は、本発明のリン酸カルシウム複合体中のコエンザイムA(CoA)の含有量を示す。
[図6] 図6は、本発明のリン酸カルシウム複合体を用いた場合の、各ヒストンにおけるアセチルリジン量の変化をウエスタンブロットで調べた結果を示す。
CaP:カルシウムリン酸複合体;
CoA:コエンザイムA
SIRT2:SIRT2遺伝子を含むプラスミドDNA
DNA:プラスミドDNA
AA:アナカルジン酸
[図7A] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。
[図7B] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。
[図7C] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。
[図7D] 図7は、実施例12の共焦点顕微鏡観察の結果を。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。 FIG. 1 shows the results of examining the formation of an artificial chromatin model (DNA / core histone complex) by agarose electrophoresis.
[FIG. 2] FIG. 2 shows the results of examining the relaxation effect of the chromatin structure by the polymer by the fluorescence intensity after agarose electrophoresis.
[FIG. 3] FIG. 3 shows the results of examining the translation activity for the relaxation effect of chromatin structure by polymer PAA.
[FIG. 4] FIG. 4 shows the results of examining the translational activity for the relaxation effect of the chromatin structure by the polymers CM-PVIm and PMAA.
FIG. 5 shows the content of coenzyme A (CoA) in the calcium phosphate complex of the present invention.
[FIG. 6] FIG. 6 shows the result of examining the change in the amount of acetyllysine in each histone by Western blotting when the calcium phosphate complex of the present invention was used.
CaP: calcium phosphate complex;
CoA: Coenzyme A
SIRT2: Plasmid DNA containing the SIRT2 gene
DNA: Plasmid DNA
AA: Anacardic acid [FIG. 7A] FIG. 7 shows the results of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[FIG. 7B] FIG. 7 shows the results of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[FIG. 7C] FIG. 7 shows the result of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
[FIG. 7D] FIG. 7 shows the result of confocal microscope observation of Example 12. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined.
本発明は、クロマチン構造を制御するための組成物、及び当該組成物を用いたクロマチンを制御する方法に関する。
The present invention relates to a composition for controlling chromatin structure and a method for controlling chromatin using the composition.
本願発明の組成物は、
1)両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される、高分子であって、以下のいずれかの主鎖骨格を有する高分子; The composition of the present invention is
1) A polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers, and having any of the following main chain skeletons;
1)両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される、高分子であって、以下のいずれかの主鎖骨格を有する高分子; The composition of the present invention is
1) A polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers, and having any of the following main chain skeletons;
2)
i)ヒストンアセチル化酵素をコードする遺伝子を含む発現ベクター;
ii)ヒストンメチル化酵素をコードする遺伝子を含む発現ベクター;
iii)ヒストン脱アセチル化酵素をコードする遺伝子を含む発現ベクター;
iv)ヒストン脱メチル化酵素をコードする遺伝子を含む発現ベクター;
v)ヒストンアセチル化阻害剤;
vi)ヒストン脱アセチル化阻害剤;
vii)ヒストンメチル化阻害剤;及び
viii)ヒストン脱メチル化阻害剤
からなるグループから選択される、2種類またはそれ以上の物質を包摂する担体を含む。
2)
i) an expression vector comprising a gene encoding a histone acetylase;
ii) an expression vector comprising a gene encoding a histone methylase;
iii) an expression vector comprising a gene encoding a histone deacetylase;
iv) an expression vector comprising a gene encoding a histone demethylase;
v) histone acetylation inhibitors;
vi) histone deacetylation inhibitors;
vii) a histone methylation inhibitor; and viii) a carrier that includes two or more substances selected from the group consisting of histone demethylation inhibitors.
1.両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される、高分子
本願発明の高分子は、両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される。 1. Polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers The polymer of the present invention is a group consisting of amphoteric polymers, anionic polymers, and nonionic polymers. Selected from.
本願発明の高分子は、両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される。 1. Polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers The polymer of the present invention is a group consisting of amphoteric polymers, anionic polymers, and nonionic polymers. Selected from.
本発明の高分子は、以下のいずれかの主鎖骨格の繰り返し構造を有する。
The polymer of the present invention has a repeating structure of any of the following main chain skeletons.
特に好ましい骨格構造は、−(CH2−CH)−である。生体への適用性から、以下の骨格構造
A particularly preferred skeleton structure is — (CH 2 —CH) —. From the applicability to living bodies, the following skeletal structure
主鎖骨格の繰り返し数は特に限定されない。骨格構造、側鎖構造等に応じて適宜決定される。
The number of repeats of the main chain skeleton is not particularly limited. It is determined appropriately according to the skeleton structure, side chain structure, and the like.
「両性高分子」とは、側鎖にアニオン性基とカチオン性基の双方の置換基を有し、全体では中性である高分子、あるいは、側鎖にアニオン性部分とカチオン性部分の双方を有する置換基を有し、全体では中性である高分子である。両性高分子は、一分子内にアニオン性部分とカチオン性部分の双方を有するため、双方の特徴を有する。また、アニオンとカチオンの電荷のバランスがとれることにより、非イオン性(生体適合性の付与)の特徴も有しうる。両性高分子に含まれるアニオン性部分とカチオン性部分の種類は各々1種類ずつであっても、複数種類含んでもよい。
"Amphoteric polymer" is a polymer that has both anionic and cationic substituents in the side chain and is neutral as a whole, or both an anionic part and a cationic part in the side chain. It is a polymer having a substituent having a neutrality as a whole. Since an amphoteric polymer has both an anionic part and a cationic part in one molecule, it has both characteristics. In addition, by balancing the charge of the anion and cation, it may have a nonionic characteristic (giving biocompatibility). The type of the anionic part and the cationic part contained in the amphoteric polymer may be one each or plural kinds.
両性高分子中の側鎖としての「アニオン性基」は、例えば、以下のような構造を有しうる。
The “anionic group” as a side chain in the amphoteric polymer may have the following structure, for example.
Aは、アニオン性部分と主鎖部分を結合するリンカー部分である。リンカー部分は、枝分かれしていてもよい、炭素数1−10、好ましくは炭素数1−5、より好ましくは炭素数1のアルキル基;炭素環、好ましくは炭素数5−7の炭素環、より好ましくは6員環;あるいは、窒素、酸素若しくは硫黄を含む複素環、好ましくは5−7員の複素環、より好ましくは5員の複素環である。アルキル基、炭素環又は複素環は、所望により1ないし複数のアルキル基、アリール基、ハロゲン基、各種アニオン性基等により置換されていてもよい。例えば、炭素環、複素環等の環が、−COOH等のアニオン性基で置換された態様も含む。
A is a linker part that binds the anionic part and the main chain part. The linker moiety may be branched, an alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 carbon atom; a carbocyclic ring, preferably a carbocyclic ring having 5 to 7 carbon atoms. Preferred is a 6-membered ring; or a heterocycle containing nitrogen, oxygen or sulfur, preferably a 5-7-membered heterocycle, more preferably a 5-membered heterocycle. The alkyl group, carbocycle or heterocyclic ring may be optionally substituted with one or more alkyl groups, aryl groups, halogen groups, various anionic groups and the like. For example, an embodiment in which a ring such as a carbocycle or a heterocycle is substituted with an anionic group such as —COOH is also included.
一態様として、リンカーはエチル基、イミダゾリル基、あるいは、その他の4級窒素を有する官能基から選択される。
In one embodiment, the linker is selected from an ethyl group, an imidazolyl group, or other functional group having a quaternary nitrogen.
両性高分子中の側鎖としての「カチオン性基」には、以下のような態様が含まれる。
The “cationic group” as a side chain in the amphoteric polymer includes the following embodiments.
R1、R2及びR3は、枝分かれしていてもよい、炭素数1−10、好ましくは炭素数1−5のアルキル基である]
R 1 , R 2 and R 3 are an optionally branched alkyl group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms]
「側鎖のアニオン性部分とカチオン性部分の双方を有する置換基」は、例えば、以下のような態様が含まれる。
The “substituent having both an anionic part and a cationic part of the side chain” includes, for example, the following embodiments.
一例として、窒素を含む複素環、例えば、イミダゾ−ル基の1つの窒素原子が主鎖結合し、もう一方の窒素原子がアニオン性基で置換されている態様を含む。アニオン性基は、上述したものから適宜選択しうる。両性高分子中の、窒素原子のアニオン性置換基の一態様は、カルボキシメチル基である。
As an example, a nitrogen-containing heterocyclic ring, for example, an embodiment in which one nitrogen atom of an imidazole group is bonded to the main chain and the other nitrogen atom is substituted with an anionic group. The anionic group can be appropriately selected from those described above. One embodiment of the anionic substituent of the nitrogen atom in the amphoteric polymer is a carboxymethyl group.
両性高分子は、一態様として、カルボキシメチル化ポリビニルイミダゾールを含む。
The amphoteric polymer includes carboxymethylated polyvinyl imidazole as one embodiment.
「アニオン性高分子」は、側鎖にアニオン性基を有する高分子である。アニオン性高分子中の「アニオン性基」は、両性高分子に関して上述したアニオン性基から適宜選択しうる。
“Anionic polymer” is a polymer having an anionic group in the side chain. The “anionic group” in the anionic polymer can be appropriately selected from the anionic groups described above for the amphoteric polymer.
アニオン性基は一態様として、カルボキシル基、カルボキシ基、リン酸基、スルホン酸基、硝酸基、ボロン酸基を含む。
As an embodiment, the anionic group includes a carboxyl group, a carboxy group, a phosphate group, a sulfonate group, a nitrate group, and a boronic acid group.
アニオン性高分子は一態様として、ポリアクリル酸、ポリメタクリル酸、ポリグルタミン酸、カルボキシルメチル化ポリヒスチジン、又はポリアスパラギン酸を含む。
As an embodiment, the anionic polymer contains polyacrylic acid, polymethacrylic acid, polyglutamic acid, carboxylmethylated polyhistidine, or polyaspartic acid.
なお、アニオン性高分子を用いる場合、アニオン性高分子中の主鎖骨格と側鎖の置換基の反発を防ぐためにスペーサーを含んでもよい。スペーサーとしては、アニオン性基を持たない、若しくは大きな疎水基を持たない、という性質を有するものであれば特に限定されない、例えば、ポリエチレンジアミン、ポリエチレングリコール(PEG)などが使用されうる。
When an anionic polymer is used, a spacer may be included in order to prevent repulsion of the main chain skeleton and side chain substituents in the anionic polymer. The spacer is not particularly limited as long as it has a property of not having an anionic group or having a large hydrophobic group. For example, polyethylene diamine, polyethylene glycol (PEG) and the like can be used.
「非イオン性高分子」は、アニオン性部分、カチオン性部分のいずれも有しない高分子である。非イオン性高分子も、水素結合性、あるいは疎水結合性を有する、という条件を満たすものであれば、クロマチンに作用し、クロマチンの構造を制御しうる。非イオン性高分子は、ポリエチレングリコール(PEG)、糖鎖など水素結合性を有する高分子等が含まれる。
“Nonionic polymer” is a polymer having neither an anionic part nor a cationic part. A nonionic polymer can also act on chromatin and control the structure of chromatin as long as it satisfies the condition that it has hydrogen bonding properties or hydrophobic bonding properties. Nonionic polymers include polymers having hydrogen bonding properties such as polyethylene glycol (PEG) and sugar chains.
本願発明の組成物に含まれる高分子は、上記特定した両性高分子、アニオン性高分子、又は非イオン性高分子の、ブロック共重合体、グラフト共重合体、又はデンドリマー体であってもよい。「ブロック共重合体」は、2種類以上の高分子が共有結合でつながり長い連鎖になった分子構造の共重合体を意味する。「グラフト共重合体」は、ある高分子に、別種の高分子が枝状に結合した分子構造の共重合体を意味する。「デンドリマー体」は、中心から規則的に分岐した構造を有する樹状の高分子を意味する。デンドリマー体は、コアと呼ばれる中心分子とデンドロンと呼ばれる側鎖部分から構成される。
The polymer contained in the composition of the present invention may be a block copolymer, graft copolymer, or dendrimer of the above-identified amphoteric polymer, anionic polymer, or nonionic polymer. . The “block copolymer” means a copolymer having a molecular structure in which two or more kinds of polymers are connected by covalent bonds to form a long chain. The “graft copolymer” means a copolymer having a molecular structure in which another polymer is bonded in a branched manner to a certain polymer. The “dendrimer body” means a dendritic polymer having a structure regularly branched from the center. The dendrimer body is composed of a central molecule called a core and a side chain part called a dendron.
本発明の高分子量は、特に限定されないが、好ましくは10,000−2,000,000、より好ましくは、25,000−1,000,000である。
The high molecular weight of the present invention is not particularly limited, but is preferably 10,000-2,000,000, more preferably 25,000-1,000,000.
限定されるわけではないが、本発明で利用する高分子にシクロデキストリン、Meβシクロデキストリン等のシクロデキストリン誘導体などを結合させるとさらに好ましい。
Although not necessarily limited, it is more preferable that cyclodextrin derivatives such as cyclodextrin and Meβ cyclodextrin are bound to the polymer used in the present invention.
なお、追加成分として、カチオン性高分子を、両性高分子、アニオン性高分子、又は非イオン性高分子、あるいは、担体とともに用いてもよい。「カチオン性高分子」は、側鎖にカチオン性基を有する高分子である。カチオン性高分子中の「カチオン性基」は、両性高分子に関して上述したカチオン性基から適宜選択しうる。カチオン性高分子は一態様として、1本鎖であるステアリルアミン、二本鎖のカチオン性脂質であるN−[1−(2,3−ジオレイオイルオキシ)プロピル]−N,N,N−トリメチル アンモニウム メチル硫酸(DOTAP)を含む。
As an additional component, a cationic polymer may be used together with an amphoteric polymer, an anionic polymer, a nonionic polymer, or a carrier. A “cationic polymer” is a polymer having a cationic group in the side chain. The “cationic group” in the cationic polymer can be appropriately selected from the cationic groups described above for the amphoteric polymer. In one embodiment, the cationic polymer is a single-chain stearylamine, a double-chain cationic lipid, N- [1- (2,3-dioleoyloxy) propyl] -N, N, N- Contains trimethylammonium methylsulfate (DOTAP).
2.担体
本発明の組成物は、
i)ヒストンアセチル化酵素をコードする遺伝子を含む発現ベクター;
ii)ヒストンメチル化酵素をコードする遺伝子を含む発現ベクター;
iii)ヒストン脱アセチル化酵素をコードする遺伝子を含む発現ベクター;
iv)ヒストン脱メチル化酵素をコードする遺伝子を含む発現ベクター;
v)ヒストンアセチル化阻害剤;
vi)ヒストン脱アセチル化阻害剤;
vii)ヒストンメチル化阻害剤;及び
viii)ヒストン脱メチル化阻害剤
からなるグループから選択される、2種類またはそれ以上の物質を包摂する担体を含むものでもよい。 2. Carrier The composition of the present invention comprises:
i) an expression vector comprising a gene encoding a histone acetylase;
ii) an expression vector comprising a gene encoding a histone methylase;
iii) an expression vector comprising a gene encoding a histone deacetylase;
iv) an expression vector comprising a gene encoding a histone demethylase;
v) histone acetylation inhibitors;
vi) histone deacetylation inhibitors;
viii) a histone methylation inhibitor; and viii) a carrier that includes two or more substances selected from the group consisting of histone demethylation inhibitors.
本発明の組成物は、
i)ヒストンアセチル化酵素をコードする遺伝子を含む発現ベクター;
ii)ヒストンメチル化酵素をコードする遺伝子を含む発現ベクター;
iii)ヒストン脱アセチル化酵素をコードする遺伝子を含む発現ベクター;
iv)ヒストン脱メチル化酵素をコードする遺伝子を含む発現ベクター;
v)ヒストンアセチル化阻害剤;
vi)ヒストン脱アセチル化阻害剤;
vii)ヒストンメチル化阻害剤;及び
viii)ヒストン脱メチル化阻害剤
からなるグループから選択される、2種類またはそれ以上の物質を包摂する担体を含むものでもよい。 2. Carrier The composition of the present invention comprises:
i) an expression vector comprising a gene encoding a histone acetylase;
ii) an expression vector comprising a gene encoding a histone methylase;
iii) an expression vector comprising a gene encoding a histone deacetylase;
iv) an expression vector comprising a gene encoding a histone demethylase;
v) histone acetylation inhibitors;
vi) histone deacetylation inhibitors;
viii) a histone methylation inhibitor; and viii) a carrier that includes two or more substances selected from the group consisting of histone demethylation inhibitors.
本発明の組成物は、上記高分子及び担体の双方を含む態様も含まれる。
The composition of the present invention includes an embodiment containing both the polymer and the carrier.
i)−viii)の物質はいずれもクロマチンのヒストンのアセチル化、脱アセチル化、メチル化、あるいは脱メチル化に関与する物質である。ヒストンはリジン残基のアミノ基がアセチル化されるとアミノ基の正電荷が中和され、ヌクレオソーム間の相互作用が緩むと考えられている。よって、ヒストンのアセチル化によりクロマチン構造が弛緩し、転写が活性化される。脱アセチル化により反対にクロマチン構造は凝縮する。i)及びvi)はクロマチン構造を弛緩する作用を有する。一方、iii)及びv)は、クロマチン構造を凝縮させる構造を有する。一方ヒストンのメチル化は、H3K9がメチル化されるとクロマチンを凝縮させ、ヘテロクロマチンを形成することが知られており、位置に依存すると考えられる。一方、ヒストンH3K4がメチル化されると転写が活性化する。
I) -viii) are all substances involved in acetylation, deacetylation, methylation, or demethylation of histones of chromatin. Histones are thought to be neutralized when the amino group of lysine residues is acetylated, and the interaction between nucleosomes is relaxed. Therefore, the chromatin structure is relaxed by histone acetylation, and transcription is activated. In contrast, deacetylation condenses the chromatin structure. i) and vi) have the effect of relaxing the chromatin structure. On the other hand, iii) and v) have structures that condense chromatin structures. On the other hand, histone methylation is known to condense chromatin and form heterochromatin when H3K9 is methylated, and is thought to depend on position. On the other hand, transcription is activated when histone H3K4 is methylated.
本発明では、担体を用いて上記物質の2種類またはそれ以上を投与することを特徴とする。「2種類またはそれ以上の物質を包摂する担体」とは、1つの担体に2種類またはそれ以上の物質を含み態様も、2種以上の担体に2種類またはそれ以上の物質を含み態様も含む。クロマチンを制御する物質を2種類以上投与することにより、より強力な又は複雑な制御が可能となる。例えば、組成物には2種類以上の遺伝子を含ませてもよいし、遺伝子と化合物(阻害剤)の組み合わせでもよい。
In the present invention, two or more of the above substances are administered using a carrier. “A carrier that includes two or more substances” includes an embodiment that includes two or more substances in one carrier and an embodiment that includes two or more substances in two or more carriers. . By administering two or more substances that control chromatin, more powerful or complicated control becomes possible. For example, the composition may contain two or more genes, or a combination of a gene and a compound (inhibitor).
本発明の担体は、無毒若しくは低毒で生体への適用が可能である、発現ベクター及び/又は阻害剤を配合しうる、i)−viii)の物質を細胞の核まで運搬できる、という条件を満たすものであれば任意の公知の担体を使用可能である。態様において、担体は、ポリエステル、リン酸カルシウム、又はポリアミノ酸を含む。
The carrier of the present invention has the condition that it is non-toxic or low-toxic and can be applied to a living body, can contain an expression vector and / or an inhibitor, and can carry the substance i) -viii) to the nucleus of the cell. Any known carrier can be used as long as it satisfies the requirements. In embodiments, the carrier includes polyester, calcium phosphate, or polyamino acid.
「ポリエステル」は、多価カルボン酸とポリアルコールとの重縮合体であり、一般に、ポリアルコールと多価カルボン酸を反応(脱水縮合)させて作る。ポリエステルは一態様において、ポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体等生分解性高分子を含む。
“Polyester” is a polycondensate of polyhydric carboxylic acid and polyalcohol, and is generally produced by reacting (dehydrating and condensing) polyalcohol and polycarboxylic acid. In one embodiment, the polyester includes a biodegradable polymer such as polylactic acid, polyglycolic acid, and polylactic acid-polyglycolic acid copolymer.
「リン酸カルシウム」は、低毒性でかつ生分解性である。特に遺伝子を含む発現ベクターを担体に含ませるのに好ましい。同様の機能を有するものとして、リン酸ナトリウム等も本発明に使用しうる。
“Calcium phosphate” has low toxicity and biodegradability. In particular, it is preferable to include an expression vector containing a gene in a carrier. Sodium phosphate and the like can be used in the present invention as having the same function.
「ポリアミノ酸」は、複数のアミノ酸がアミド結合した高分子で、ポリペプチドともいう。アミノ酸は生体のタンパク質の構成成分であり、ポリアミノ酸は無毒又は低毒である。本明細書の実施例で記載したようなアセチル化ポリリジン(AcPLL)、ハイパーブランチポリリジン(高度に枝分かれしたポリリジン)、デンドリティックポリリジン(DPK)も、本発明の担体として使用しうる。さらに、ポリリジンは細胞の核においてポリリジンにヒストンアセチル化酵素が作用することにより、ヒストンアセチル化阻害剤としても作用しうる。また、アセチル化ポリリジンは逆に、ヒストン脱アセチル化阻害剤として作用しうる。
“Polyamino acid” is a polymer in which a plurality of amino acids are amide-bonded, and is also called a polypeptide. Amino acids are components of biological proteins, and polyamino acids are non-toxic or hypotoxic. Acetylated polylysine (AcPLL), hyperbranched polylysine (highly branched polylysine), dendritic polylysine (DPK) as described in the examples herein may also be used as the carrier of the present invention. Furthermore, polylysine can also act as a histone acetylation inhibitor by the action of histone acetylase on polylysine in the nucleus of the cell. In contrast, acetylated polylysine can act as a histone deacetylation inhibitor.
「ヒストンアセチル化酵素」(HAT)は、ヒストンのリジン側鎖のアセチル化を促進する酵素である。HATは公知であり、例えば、ヒト等においてタンパク質のアミノ酸配列、並びに当該タンパク質をコードする遺伝子の塩基配列が知られている。例えば、ヒトヒストンアセチル化酵素(KAT2B)遺伝子の塩基配列は、NCBIデータバンクのアクセッション番号NM_003884に開示されている。KAT2Bは、別名「CAF」と呼称されることもある。
"Histone acetylase" (HAT) is an enzyme that promotes acetylation of histone lysine side chains. HAT is known, and for example, the amino acid sequence of a protein and the base sequence of a gene encoding the protein are known in humans and the like. For example, the nucleotide sequence of the human histone acetylase (KAT2B) gene is disclosed in NCBI Data Bank accession number NM_003884. KAT2B may also be called “CAF”.
「ヒストンメチル化酵素」(HMT)は、ヒストンにメチル基を促進する酵素である。ヒストンメチル化酵素は公知であり、例えば、ヒト等においてタンパク質のアミノ酸配列、並びに当該タンパク質をコードする遺伝子の塩基配列が知られている。例えば、ヒトヒストンメチル化酵素(EHMT2)の変異体(G9a)遺伝子の塩基配列は、NCBIデータバンクのアクセッション番号NM_006709に開示されている。
“Histone methylase” (HMT) is an enzyme that promotes methyl groups in histones. Histone methylases are known, and for example, the amino acid sequence of a protein and the base sequence of a gene encoding the protein are known in humans and the like. For example, the nucleotide sequence of the mutant (G9a) gene of human histone methylase (EHMT2) is disclosed in accession number NM_006709 of NCBI Data Bank.
「ヒストン脱アセチル化酵素」(HDAC)は、ヒストンのリシン側鎖のアセチル基を加水分解し、リシンに変換する酵素である。HDACは公知であり、例えば、ヒト等においてタンパク質のアミノ酸配列、並びに当該タンパク質をコードする遺伝子の塩基配列が知られている。例えば、ヒトヒストン脱アセチル化酵素(HDAC3)遺伝子の塩基配列は、NCBIデータバンクのアクセッション番号NM_029678に開示されている。ヒトヒストン脱アセチル化酵素(SIRT2)遺伝子の塩基配列は、NCBIデータバンクのアクセッション番号NM_034146に開示されている。
“Histone deacetylase” (HDAC) is an enzyme that hydrolyzes the acetyl group of the lysine side chain of histone and converts it into lysine. HDAC is known. For example, in humans and the like, the amino acid sequence of a protein and the base sequence of a gene encoding the protein are known. For example, the nucleotide sequence of the human histone deacetylase (HDAC3) gene is disclosed in NCBI Data Bank Accession No. NM — 029678. The nucleotide sequence of the human histone deacetylase (SIRT2) gene is disclosed in NCBI Data Bank, Accession No. NM — 034146.
「ヒストン脱メチル化酵素」は、ヒストンに結合したメチル基を加水分解する酵素である。
“Histone demethylase” is an enzyme that hydrolyzes a methyl group bound to histone.
各遺伝子によってコードされる酵素のアミノ酸配列は、好ましくは天然のタンパク質の配列である。あるいは、各酵素の機能が維持される範囲内であれば、その変異体も本発明に使用しうる。具体的には天然のアミノ酸配列又は当該アミノ酸をコードする塩基配列に対して、好ましくは少なくとも80%、85%、90%、95%、97%、99%の配列相同性を有する。
The amino acid sequence of the enzyme encoded by each gene is preferably a natural protein sequence. Alternatively, as long as the function of each enzyme is maintained, mutants thereof can also be used in the present invention. Specifically, it preferably has at least 80%, 85%, 90%, 95%, 97%, 99% sequence homology to the natural amino acid sequence or the base sequence encoding the amino acid.
2つの配列の同一性%は、視覚的検査および数学的計算によって決定してもよい。あるいは、2つのタンパク質配列の同一性パーセントは、Needleman,S.B.及びWunsch,C.D.(J.Mol.Biol.,48:443−453,1970)のアルゴリズムに基づき、そしてウィスコンシン大学遺伝学コンピューターグループ(UWGCG)より入手可能なGAPコンピュータープログラムを用い配列情報を比較することにより、決定してもよい。GAPプログラムの好ましいデフォルトパラメーターには:(1)Henikoff,S.及びHenikoff,J.G.(Proc.Natl.Acad.Sci.USA,89:10915−10919,1992)に記載されるような、スコアリング・マトリックス、blosum62;(2)12のギャップ加重;(3)4のギャップ長加重;及び(4)末端ギャップに対するペナルティなし、が含まれる。
The percent identity between two sequences may be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two protein sequences can be determined by Needleman, S .; B. And Wunsch, C.I. D. (J. Mol. Biol., 48: 443-453, 1970) and determined by comparing sequence information using the GAP computer program available from the University of Wisconsin Genetics Computer Group (UWGCG). May be. Preferred default parameters for the GAP program include: (1) Henikoff, S .; And Henikoff, J. et al. G. (Proc. Natl. Acad. Sci. USA, 89: 10915-10919, 1992), scoring matrix, blossum 62; (2) 12 gap weights; (3) 4 gap length weights; And (4) no penalty for end gaps.
あるいは、天然のアミノ酸配列において、1またはそれ以上のアミノ酸残基が欠失、付加、または置換されているアミノ酸配列を有するものであってもよい。このような天然のタンパク質と相同なアミノ酸配列を有し、天然の酵素と同一の機能を有するタンパク質をコードする遺伝子も本発明において使用可能である。限定されるわけではないが、変更可能なアミノ酸数は、1ないし100アミノ酸残基、1ないし80アミノ酸残基、1ないし50アミノ酸残基、1ないし30アミノ酸残基、1ないし20アミノ酸残基、1ないし15アミノ酸残基、1ないし10アミノ酸残基、1ないし5アミノ酸残基である。公知の部位特異的突然変異法で修飾可能な数のアミノ酸残基、例えば、1ないし10アミノ酸残基、1ないし8、1ないし5、1ないし3アミノ酸残基がより好ましい。
Alternatively, a natural amino acid sequence may have an amino acid sequence in which one or more amino acid residues are deleted, added, or substituted. A gene encoding a protein having an amino acid sequence homologous to such a natural protein and having the same function as a natural enzyme can also be used in the present invention. The number of amino acids that can be changed is, but is not limited to, 1 to 100 amino acid residues, 1 to 80 amino acid residues, 1 to 50 amino acid residues, 1 to 30 amino acid residues, 1 to 20 amino acid residues, 1 to 15 amino acid residues, 1 to 10 amino acid residues, and 1 to 5 amino acid residues. The number of amino acid residues that can be modified by a known site-directed mutagenesis method, for example, 1 to 10 amino acid residues, 1 to 8, 1 to 5, 1 to 3 amino acid residues is more preferable.
「発現ベクター」は、遺伝子を発現するための、プラスミドベクター、ウイルスベクター、コスミドベクター等、公知のベクターを使用しうる。生体に投与することを目的とするため、生体に対し無毒若しくは低毒性のベクターが好ましい。本発明の組成物により2種類以上の遺伝子を発現させることを目的とする場合、各遺伝子を含む2種類以上の発現ベクターを用いてもよく、あるいは、1つの発現ベクターに2種類以上の遺伝子を含ませたものを用いてもよい。
As the “expression vector”, a known vector such as a plasmid vector, a virus vector, or a cosmid vector for expressing a gene can be used. For the purpose of administration to a living body, a vector that is non-toxic or less toxic to the living body is preferable. When the composition of the present invention is intended to express two or more types of genes, two or more types of expression vectors containing each gene may be used, or two or more types of genes may be used in one expression vector. You may use what was included.
「ヒストンアセチル化阻害剤」は、公知のものを使用しうる。例えば、コエンザイムA(CoA)、アナカルジン酸(AA)、クルクミン、MB−3を含む。
As the “histone acetylation inhibitor”, a known one can be used. Examples include coenzyme A (CoA), anacardic acid (AA), curcumin, MB-3.
「ヒストン脱アセチル化阻害剤」は、公知のものを使用しうる。例えば、バルプロ酸(VPA)、トリコスタチンA(TSA)、ボリノスタット、MS−275を含む。ヒストン脱アセチル化阻害剤は、癌細胞に対して、細胞周期の停止、分化誘導、アポトーシスなどの活性を示し、癌細胞の増殖に影響を与えることが知られている。
As the “histone deacetylation inhibitor”, a known one can be used. For example, valproic acid (VPA), trichostatin A (TSA), vorinostat, MS-275. Histone deacetylation inhibitors are known to exert activity on cancer cells such as cell cycle arrest, differentiation induction, and apoptosis, and affect the proliferation of cancer cells.
「ヒストンメチル化阻害剤」は、公知のものを使用しうる。例えば、ケトシン、BIX−01294、DZNep、AMI−1を含む。
As the “histone methylation inhibitor”, a known one can be used. For example, ketocin, BIX-01294, DZNep, AMI-1.
「ヒストン脱メチル化阻害剤」は、公知のものを使用しうる。例えば、トラニルシプロミン、を含む。
As the “histone demethylation inhibitor”, a known one can be used. For example, tranylcypromine.
阻害剤は、発現ベクターとともに担体中に含ませて組成物を構成してもよく、あるいは、担体とは別に、(例えば培地中に、あるいは生体に)直接投与してもよい。
The inhibitor may be included in a carrier together with the expression vector to constitute a composition, or may be administered directly (for example, in a medium or in a living body) separately from the carrier.
3.クロマチン構造を制御する方法
本発明は、上述した本発明の組成物をin vitro、ex vivo又はin vivoで投与することにより、クロマチン構造を制御する方法を含む。 3. Method for Controlling Chromatin Structure The present invention includes a method for controlling chromatin structure by administering the above-described composition of the present invention in vitro, ex vivo, or in vivo.
本発明は、上述した本発明の組成物をin vitro、ex vivo又はin vivoで投与することにより、クロマチン構造を制御する方法を含む。 3. Method for Controlling Chromatin Structure The present invention includes a method for controlling chromatin structure by administering the above-described composition of the present invention in vitro, ex vivo, or in vivo.
上記高分子と担体の双方を含む組成物を投与してもよく、あるいは、上記高分子を含む組成物と担体を含む組成物の2種類の組成物を投与する態様も含む。
A composition containing both the polymer and the carrier may be administered, or an embodiment in which two types of compositions, a composition containing the polymer and a composition containing the carrier, are administered is also included.
クロマチン構造の制御とは、クロマチン構造を弛緩、あるいは逆に凝縮することを指す。クロマチン構造が「弛緩する」とは、クロマチンが凝縮した状態の高次構造が緩み、遺伝子の転写が進みやすくなる、即ち、転写が活性化しオンの状態になることを意味する。クロマチン構造が「凝縮する」とは、弛緩とは逆に、クロマチンが凝縮した高次構造をとり、転写が生じにくいオフの状態になることを意味する。
Control of chromatin structure refers to relaxation or condensing of chromatin structure. The phrase “relaxing” the chromatin structure means that the higher-order structure in a state where the chromatin is condensed is loosened, and the transcription of the gene is facilitated, that is, the transcription is activated and turned on. “Condensation” of the chromatin structure means that, contrary to relaxation, it takes a higher-order structure in which chromatin is condensed and is in an off state in which transcription is difficult to occur.
クロマチンの「弛緩」及び「凝縮」は、例えば、遺伝子の転写及び/又は翻訳活性を測定することにより、調べることが可能である。遺伝子の転写及び/又は翻訳活性は、公知の方法を用いて確認することが可能である。例えば、蛍光タンパク質の発現により蛍光測定することができる。あるいは、より直接的にクロマチン構造を観察することにより確認してもよい。
Chromatin “relaxation” and “condensation” can be examined, for example, by measuring gene transcription and / or translation activity. The transcriptional and / or translational activity of the gene can be confirmed using a known method. For example, fluorescence can be measured by expression of a fluorescent protein. Or you may confirm by observing a chromatin structure more directly.
本願発明の高分子及び担体の投与量は特に限定されない。当業者は、高分子、担体、担体に含まれる物質等の種類、投与対象の状態等に応じて適宜量を決定することが可能である。本発明の両性高分子及びアニオン性高分子を用いる場合、アニオン数とクロマチン構造中のDNAの割合は、クロマチン構造の弛緩作用の効果の大きさに影響を与える可能性がある。限定されるわけではないが、インビトロの無細胞系において、本発明の両性高分子及びアニオン性高分子を用いる場合、クロマチン構造中のDNAと比較して高分子のアニオン数が2倍の場合にクロマチン構造が最も弛緩することが観察された。
The dosage of the polymer and carrier of the present invention is not particularly limited. Those skilled in the art can appropriately determine the amount depending on the type of polymer, carrier, substance contained in the carrier, the condition of the administration target, and the like. When the amphoteric polymer and the anionic polymer of the present invention are used, the number of anions and the ratio of DNA in the chromatin structure may affect the magnitude of the effect of relaxation of the chromatin structure. Although not limited, when the amphoteric polymer and the anionic polymer of the present invention are used in an in vitro cell-free system, the number of anions of the polymer is twice that of the DNA in the chromatin structure. It was observed that the chromatin structure was most relaxed.
4.DNAメチル化の制御
クロマチン構造のヒストンの修飾とは別に、DNAのメチル修飾も遺伝子情報の発現の制御に関与していることが知られている。具体的には、クロマチン構造のメチル化により転写が不活性化し、脱メチル化により転写が活性化する。よって、ヒストン修飾に加えて、DNAのメチル修飾の制御によりさらに遺伝子発現についてより強力、複雑又は柔軟な制御が可能である。 4). Control of DNA methylation Apart from the modification of histones in the chromatin structure, DNA methylation is also known to be involved in the control of the expression of genetic information. Specifically, transcription is inactivated by methylation of the chromatin structure, and transcription is activated by demethylation. Thus, in addition to histone modification, more powerful, complex or flexible control over gene expression is possible by controlling DNA methyl modification.
クロマチン構造のヒストンの修飾とは別に、DNAのメチル修飾も遺伝子情報の発現の制御に関与していることが知られている。具体的には、クロマチン構造のメチル化により転写が不活性化し、脱メチル化により転写が活性化する。よって、ヒストン修飾に加えて、DNAのメチル修飾の制御によりさらに遺伝子発現についてより強力、複雑又は柔軟な制御が可能である。 4). Control of DNA methylation Apart from the modification of histones in the chromatin structure, DNA methylation is also known to be involved in the control of the expression of genetic information. Specifically, transcription is inactivated by methylation of the chromatin structure, and transcription is activated by demethylation. Thus, in addition to histone modification, more powerful, complex or flexible control over gene expression is possible by controlling DNA methyl modification.
本発明において、担体が、さらに、DNA脱メチル化酵素をコードする遺伝子を含む発現ベクター、DNAメチル化酵素をコードする遺伝子を含む発現ベクター、あるいは、DNAメチル化酵素阻害剤、を含ませてもよい。
In the present invention, the carrier may further contain an expression vector containing a gene encoding a DNA demethylase, an expression vector containing a gene encoding a DNA methylase, or a DNA methylase inhibitor. Good.
DNAのメチル化修飾に関し、DNAメチルトランスフェラーゼとその相同分子としてこれまで5つの遺伝子が報告されている(Dnmt1、Dnmt2、Dnmt3a、Dnmt3b、Dnmt3L)。これらの遺伝子の塩基配列及びコードされるアミノ酸配列は公知であり、各々、NCBIデータバンクのアクセッション番号NM_001130823、NM_176085、NM_022552、NM_001207055、NM_013369として、開示されている。
Regarding DNA methylation modification, five genes have been reported so far as DNA methyltransferase and its homologous molecules (Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, Dnmt3L). The base sequences and encoded amino acid sequences of these genes are known and disclosed as NCBI data bank accession numbers NM_001130823, NM_176085, NM_022552, NM_001207055, and NM_013369, respectively.
発現ベクターは、ヒストンアセチル化酵素をコードする遺伝子等に関して上述した公知の発現ベクターを用いることができる。
As the expression vector, the known expression vectors described above regarding the gene encoding histone acetylase and the like can be used.
「DNAメチル化酵素阻害剤」は公知のものを使用しうる。例えば、5−アザシチジン、5−アザデオキシシチジン、ゼブラリン、ヒドララジン、を含む。
A known “DNA methylase inhibitor” can be used. For example, 5-azacytidine, 5-azadeoxycytidine, zebraline, hydralazine.
以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples. Those skilled in the art can easily modify and change the present invention based on the description of the present specification, and these are included in the technical scope of the present invention.
実施例1 人工クロマチンの作成
本実施例ではクロマチン構造を模倣した人工クロマチンモデルを作製した。 Example 1 Production of Artificial Chromatin In this example, an artificial chromatin model imitating the chromatin structure was produced.
本実施例ではクロマチン構造を模倣した人工クロマチンモデルを作製した。 Example 1 Production of Artificial Chromatin In this example, an artificial chromatin model imitating the chromatin structure was produced.
人工クロマチンはDNAの代替としてpGL3と呼ばれるプラスミドDNAを使用し、購入したヒストンはHeLa細胞のCore Histoneを使用した。プラスミドDNAは、環状であること、分子量が小さい点で染色体のDNAと相違する。しかしながら、取り扱いが容易であり発現する遺伝子が任意に組み込めることから、遺伝子発現の評価が容易である等の利点があるため、本実施例において利用した。
The artificial chromatin used plasmid DNA called pGL3 as an alternative to DNA, and the purchased histone used HeLa cell Core Histone. Plasmid DNA differs from chromosomal DNA in that it is circular and has a low molecular weight. However, since it is easy to handle and the gene to be expressed can be incorporated arbitrarily, it has advantages such as easy evaluation of gene expression, so it was used in this example.
また、in vitro のクロマチン形成反応におけるDNA とコアヒストンの比が重要であり、一般に新しいDNA とヒストンを調製するごとにtitration する必要がある。本実施例において、アガロースゲル電気泳動を用いてフリーなDNAが見られず、複合体のバンドのみが確認できるヒストン/DNA重量比を最適な重量比として決定した。
Also, the ratio of DNA and core histone in the in vitro chromatin formation reaction is important, and in general, it is necessary to perform titration every time new DNA and histone are prepared. In this example, using agarose gel electrophoresis, the histone / DNA weight ratio at which no free DNA was observed and only the complex band could be confirmed was determined as the optimum weight ratio.
実施例3以降において、本実施例において作製した人工クロマチンを用いた。その際には、アガロースゲル電気泳動により高分子のクロマチン構造を弛緩する最適な濃度を決定した。その後、その最適濃度による翻訳活性評価をすることでそれぞれの高分子のクロマチン構造の弛緩能を間接的に評価した。
In Example 3 and later, the artificial chromatin produced in this example was used. At that time, the optimum concentration for relaxing the chromatin structure of the polymer was determined by agarose gel electrophoresis. Then, the relaxation activity of the chromatin structure of each polymer was indirectly evaluated by evaluating the translation activity at the optimum concentration.
1−1)プラスミドDNAの精製
1-1) Purification of plasmid DNA
pGL3プラスミドDNAを大腸菌を用いて大量培養した。プラスミドDNA複製キット(Qiagen社)を用いて、精製し、得られたプラスミド量を吸光度から算出した。吸光度は、UV/Vis 分光光度計(日本分光社製)を用いて測定した。UV/Vis 分光光度計は分子の電子エネルギー遷移を起こす紫外から可視部(200nm~780nm)の波長の光を用いて分光吸光を行う装置である。
The pGL3 plasmid DNA was cultured in large quantities using E. coli. Purification was performed using a plasmid DNA replication kit (Qiagen), and the amount of the obtained plasmid was calculated from the absorbance. Absorbance was measured using a UV / Vis spectrophotometer (manufactured by JASCO Corporation). The UV / Vis spectrophotometer is a device that performs spectral absorption using light having a wavelength from the ultraviolet to the visible region (200 nm to 780 nm) causing electronic energy transition of molecules.
得られたプラスミドDNA濃度は、3つのサンプルを測ったところ、以下のようになった。実施例3以降の翻訳系を用いた実験系では、濃度が高い方(0.6mg/mL)、アガロースゲル電気泳動による実験系では、濃度が低い方(0.24mg/mL)を用いて実験を行った。
The obtained plasmid DNA concentration was as follows when three samples were measured. In the experimental system using the translation system of Example 3 and later, the experiment was performed using the higher concentration (0.6 mg / mL), and in the experimental system using agarose gel electrophoresis, the lower concentration (0.24 mg / mL). Went.
1−2)人工クロマチンの作製
1−1)で精製したプラスミドDNA(T7 Luciferase control DNA(0.6mg/mL))を用いた。人工クロマチンはそれぞれの重量比(ヒストン/DNA=0.213,0.43,0.85,1.7,2,4)になるように調整し、1時間インキュベートすることで作製した。最適な重量比はアガロースゲル電気泳動により決定した。結果を図1に示す。 1-2) Production of artificial chromatin The plasmid DNA (T7 Luciferase control DNA (0.6 mg / mL)) purified in 1-1) was used. Artificial chromatin was prepared by adjusting each weight ratio (histone / DNA = 0.213, 0.43, 0.85, 1.7, 2, 4) and incubating for 1 hour. The optimal weight ratio was determined by agarose gel electrophoresis. The results are shown in FIG.
1−1)で精製したプラスミドDNA(T7 Luciferase control DNA(0.6mg/mL))を用いた。人工クロマチンはそれぞれの重量比(ヒストン/DNA=0.213,0.43,0.85,1.7,2,4)になるように調整し、1時間インキュベートすることで作製した。最適な重量比はアガロースゲル電気泳動により決定した。結果を図1に示す。 1-2) Production of artificial chromatin The plasmid DNA (T7 Luciferase control DNA (0.6 mg / mL)) purified in 1-1) was used. Artificial chromatin was prepared by adjusting each weight ratio (histone / DNA = 0.213, 0.43, 0.85, 1.7, 2, 4) and incubating for 1 hour. The optimal weight ratio was determined by agarose gel electrophoresis. The results are shown in FIG.
DNA/ヒストンが複合体を形成していると、電荷が中和され、あまり流れずに注入部位付近にバンドが見られると考えて実験を行った。図1に示すように、重量比が1.7、2において複合体のバンドが見られたが、フリーなDNAのバンドも観察されてしまった。一方で、重量比が4において複合体のバンドのみが観察された。
When DNA / histone was forming a complex, the charge was neutralized, and the experiment was conducted on the assumption that a band was seen near the injection site without much flow. As shown in FIG. 1, a complex band was observed at a weight ratio of 1.7 and 2, but a free DNA band was also observed. On the other hand, only the composite band was observed at a weight ratio of 4.
これらの3つのサンプルを用い、in vitro翻訳系により転写・翻訳を試みた。DNA/ヒストンがきちんと生体内のクロマチンのように形成している場合、裸のDNAよりも発現量が低下すると考えたが、DNA/ヒストン重量比が1.7、2においてはポジティブコントロールであるDNAのみのサンプルと同等の発現量が得られた。しかし、重量比が4の場合、発現量が1/104倍となったので、このサンプルが本研究の弛緩実験に用いる転写不活性型のクロマチン構造として最適であるとして、この系を用い、実施例3以降の実験を行った。
Using these three samples, transcription / translation was attempted by an in vitro translation system. When DNA / histone is properly formed like in vivo chromatin, the expression level was considered to be lower than that of naked DNA. However, when DNA / histone weight ratio is 1.7 or 2, DNA is a positive control. An expression level equivalent to that of the only sample was obtained. However, when the weight ratio was 4, the expression level was 1/10 4 times, so that this sample was most suitable as a transcription-inactive chromatin structure used in the relaxation experiment of this study. Experiments after Example 3 were performed.
実施例2 高分子の合成
本実施例では、クロマチン制御に用いるための高分子を合成した。プロトンスポンジ効果と細胞膜融合活性により効率的なエンドソーム脱出が可能なカルボキシル基を有する点を考慮し、本実施例では以下の5つのアニオン性および両性高分子を選択した。 Example 2 Synthesis of Polymer In this example, a polymer for use in chromatin control was synthesized. Considering the fact that it has a carboxyl group that allows efficient endosome escape by the proton sponge effect and cell membrane fusion activity, the following five anionic and amphoteric polymers were selected in this example.
本実施例では、クロマチン制御に用いるための高分子を合成した。プロトンスポンジ効果と細胞膜融合活性により効率的なエンドソーム脱出が可能なカルボキシル基を有する点を考慮し、本実施例では以下の5つのアニオン性および両性高分子を選択した。 Example 2 Synthesis of Polymer In this example, a polymer for use in chromatin control was synthesized. Considering the fact that it has a carboxyl group that allows efficient endosome escape by the proton sponge effect and cell membrane fusion activity, the following five anionic and amphoteric polymers were selected in this example.
2−1)カルボキシメチル化ポリビニルイミダゾール(CM−PVIm)の合成
ポリビニルイミダゾール(PVIm)の合成
ラジカル重合開始剤としてV−65(2,2’−アゾビス(2,4−ジメチルバレロニトリル))を用いたラジカル重合によりポリビニルイミダゾール(PVIm)をラジカル重合する。V65は45℃で温度応答的に不対電子を持つので、C=C結合を有する1−ビニルイミダゾールを添加することでラジカル重合を行った。 2-1) Synthesis of carboxymethylated polyvinyl imidazole (CM-PVIm) Synthesis of polyvinyl imidazole (PVIm) V-65 (2,2'-azobis (2,4-dimethylvaleronitrile)) was used as a radical polymerization initiator. Radical polymerization of polyvinyl imidazole (PVIm) by radical polymerization. Since V65 has an unpaired electron in a temperature response at 45 ° C., radical polymerization was performed by adding 1-vinylimidazole having a C═C bond.
ポリビニルイミダゾール(PVIm)の合成
ラジカル重合開始剤としてV−65(2,2’−アゾビス(2,4−ジメチルバレロニトリル))を用いたラジカル重合によりポリビニルイミダゾール(PVIm)をラジカル重合する。V65は45℃で温度応答的に不対電子を持つので、C=C結合を有する1−ビニルイミダゾールを添加することでラジカル重合を行った。 2-1) Synthesis of carboxymethylated polyvinyl imidazole (CM-PVIm) Synthesis of polyvinyl imidazole (PVIm) V-65 (2,2'-azobis (2,4-dimethylvaleronitrile)) was used as a radical polymerization initiator. Radical polymerization of polyvinyl imidazole (PVIm) by radical polymerization. Since V65 has an unpaired electron in a temperature response at 45 ° C., radical polymerization was performed by adding 1-vinylimidazole having a C═C bond.
1−ビニルイミダゾール300mg(3.19mmol、密度1.04g/mL、288.5μL)をN,N−ジメチルホルムアミド(DMF)2400μLに溶解させた。V65 15.8mg(0.064mmol)をDMF300μLに溶解させた。二種の溶液を混合させた後、ラジカル反応中におけるラジカルの消失を防ぐために溶液中の酸素を除去する必要があるため、窒素によるバブリングを40min行った。ラジカル発生温度である45℃に予め設定したウォーターバスで24h撹拌せずにインキュベートした。アセトン80mL中に滴下することで再沈殿を行った。2600rpmで5min遠心分離し、上澄みのアセトンを除去した。少量のDMFに溶解させた後、再度アセトン80mLによる再沈殿、遠心分離、上澄みの除去を行った。ドラフト内で24時間静置することでアセトンを揮発させた。得られた生成物をH2O(20mL)に溶解させた後、MWCO:1000の透析膜を用いて2日間の透析を行った。凍結乾燥を施して得られた物質を回収した。収量57.97mg、収率19.32%であった。
300 mg (3.19 mmol, density 1.04 g / mL, 288.5 μL) of 1-vinylimidazole was dissolved in 2400 μL of N, N-dimethylformamide (DMF). V65 15.8 mg (0.064 mmol) was dissolved in 300 μL of DMF. After mixing the two kinds of solutions, it was necessary to remove oxygen in the solution in order to prevent the disappearance of radicals during the radical reaction, so bubbling with nitrogen was performed for 40 min. It incubated without stirring for 24 hours with the water bath preset to 45 degreeC which is radical generation temperature. Reprecipitation was performed by dropping into 80 mL of acetone. Centrifugation was performed at 2600 rpm for 5 min to remove the supernatant acetone. After dissolving in a small amount of DMF, reprecipitation with 80 mL of acetone, centrifugation, and removal of the supernatant were performed again. Acetone was volatilized by allowing to stand for 24 hours in a fume hood. The obtained product was dissolved in H 2 O (20 mL), and then dialyzed for 2 days using a MWCO: 1000 dialysis membrane. The material obtained by lyophilization was recovered. The yield was 57.97 mg and the yield was 19.32%.
カルボキシメチル化ポリビニルイミダゾール(CM−PVIm)の合成
上記の通り合成したポリビニルイミダゾール(PVIm)(30mg)をH2O(8mL)に溶解させた。ヨード酢酸40mgをH2O(2mL)に溶解させた。トリエチルアミン(TEA,44μL,0.32mmol)をPVIm水溶液に添加した後、ヨード酢酸水溶液を加え、40℃において24時間撹拌した(Fig.2−2)。MWCO:1000を用いた透析を2日間行った後に凍結乾燥により得られた物質を回収した。 Synthesis of Carboxymethylated Polyvinylimidazole (CM-PVIm) Polyvinylimidazole (PVIm) (30 mg) synthesized as described above was dissolved in H 2 O (8 mL). 40 mg of iodoacetic acid was dissolved in H 2 O (2 mL). Triethylamine (TEA, 44 μL, 0.32 mmol) was added to the PVIm aqueous solution, and then an iodoacetic acid aqueous solution was added, followed by stirring at 40 ° C. for 24 hours (FIG. 2-2). After dialysis using MWCO: 1000 for 2 days, the substance obtained by lyophilization was recovered.
上記の通り合成したポリビニルイミダゾール(PVIm)(30mg)をH2O(8mL)に溶解させた。ヨード酢酸40mgをH2O(2mL)に溶解させた。トリエチルアミン(TEA,44μL,0.32mmol)をPVIm水溶液に添加した後、ヨード酢酸水溶液を加え、40℃において24時間撹拌した(Fig.2−2)。MWCO:1000を用いた透析を2日間行った後に凍結乾燥により得られた物質を回収した。 Synthesis of Carboxymethylated Polyvinylimidazole (CM-PVIm) Polyvinylimidazole (PVIm) (30 mg) synthesized as described above was dissolved in H 2 O (8 mL). 40 mg of iodoacetic acid was dissolved in H 2 O (2 mL). Triethylamine (TEA, 44 μL, 0.32 mmol) was added to the PVIm aqueous solution, and then an iodoacetic acid aqueous solution was added, followed by stirring at 40 ° C. for 24 hours (FIG. 2-2). After dialysis using MWCO: 1000 for 2 days, the substance obtained by lyophilization was recovered.
PVImおよびCM−PVImは各々1H−NMRによる構造確認を行った。具体的には、PVIm 3mgを重水700μLに溶解させ測定した。
PVIm and CM-PVIm each confirmed the structure by 1 H-NMR. Specifically, 3 mg of PVIm was dissolved in 700 μL of heavy water and measured.
CM−PVImは、以下のように測定した。CM−PVIm 3mgを重DMSOに添加、水素結合を解消するためにトリフルオロ酢酸を数滴添加した。さらにカウンターイオンを交換するためヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し測定した。いずれも、目的とする化合物の合成が確認できた。
CM-PVIm was measured as follows. 3 mg of CM-PVIm was added to heavy DMSO, and a few drops of trifluoroacetic acid were added to break hydrogen bonds. Furthermore, in order to exchange counter ions, ammonium hexafluorophosphate (NH 4 PF 6 ) was added and measured. In either case, the synthesis of the target compound was confirmed.
2−2)ポリメタクリル酸(PMAA)の合成
減圧蒸留したメタクリル酸(関東化学株式会社)16.73mLをジメチルホルムアミド(DMF)133.7mLに混合した。混合物にDMF17mLに溶解したラジカル重合開始剤であるV−65 881.6mgを加え、攪拌しながら一晩、窒素バブリングを行った。その後、窒素雰囲気下で50℃、24時間反応させた。 2-2) Synthesis of polymethacrylic acid (PMAA) 16.73 mL of methacrylic acid (Kanto Chemical Co., Inc.) distilled under reduced pressure was mixed with 133.7 mL of dimethylformamide (DMF). 88-1.6 mg of V-65, a radical polymerization initiator dissolved in 17 mL of DMF, was added to the mixture, and nitrogen bubbling was performed overnight with stirring. Then, it was made to react at 50 degreeC under nitrogen atmosphere for 24 hours.
減圧蒸留したメタクリル酸(関東化学株式会社)16.73mLをジメチルホルムアミド(DMF)133.7mLに混合した。混合物にDMF17mLに溶解したラジカル重合開始剤であるV−65 881.6mgを加え、攪拌しながら一晩、窒素バブリングを行った。その後、窒素雰囲気下で50℃、24時間反応させた。 2-2) Synthesis of polymethacrylic acid (PMAA) 16.73 mL of methacrylic acid (Kanto Chemical Co., Inc.) distilled under reduced pressure was mixed with 133.7 mL of dimethylformamide (DMF). 88-1.6 mg of V-65, a radical polymerization initiator dissolved in 17 mL of DMF, was added to the mixture, and nitrogen bubbling was performed overnight with stirring. Then, it was made to react at 50 degreeC under nitrogen atmosphere for 24 hours.
合成したポリマーは、アセトンに滴下することで再沈精製を行った。その後、50℃で12時間真空乾燥を行った。しかし、ポリマーは、非常にゲル化しやすく、再沈溶媒であるアセトンを内包してしまう。そのため、乾燥したポリマーを脱イオン水に溶解させ、分画分子量(MWCO)が1,000の膜を用いて、2日間水中で透析を行い、凍結乾燥により回収した。
The synthesized polymer was purified by reprecipitation by dropping it into acetone. Then, it vacuum-dried at 50 degreeC for 12 hours. However, the polymer is very easy to gel and encloses acetone as a reprecipitation solvent. Therefore, the dried polymer was dissolved in deionized water, dialyzed in water for 2 days using a membrane having a molecular weight cut-off (MWCO) of 1,000, and recovered by lyophilization.
2−3)カルボキシメチル化ポリヒスチジン(CM−PLH)の合成
ポリ−L−ヒスチジン(PLH)(50mg)とヨード酢酸(I−CH2COOH)(PLH×0.8倍量:40mg)をそれぞれH2O 8mL、2mLに溶解させ、1N NaOHで水溶液をpH4.5~5に調整し室温で24時間攪拌した。その後、さらにH2O(0.2mL)に溶解させたヨード酢酸(40mg)を添加し、水溶液をpH4.5~5に保ち、再び24時間、室温で攪拌した。その後、同様の操作を行い、合計3日間反応を行った。得られた水溶液をMWCO:1000の透析膜で、3日間透析(1LのH2O中に5mL PBS(−)(×20)を添加)後、サンプルを回収する前にH2Oのみで2時間透析を行った。その後、凍結乾燥によって白色粉末を回収した。 2-3) Synthesis of carboxymethylated polyhistidine (CM-PLH) Poly-L-histidine (PLH) (50 mg) and iodoacetic acid (I-CH 2 COOH) (PLH × 0.8 times amount: 40 mg), respectively The solution was dissolved in 8 mL of H 2 O and 2 mL, and the aqueous solution was adjusted to pH 4.5 to 5 with 1N NaOH and stirred at room temperature for 24 hours. Thereafter, iodoacetic acid (40 mg) dissolved in H 2 O (0.2 mL) was further added, and the aqueous solution was kept at pH 4.5 to 5 and again stirred at room temperature for 24 hours. Then, the same operation was performed and reaction was performed for a total of 3 days. The resulting aqueous solution was dialyzed against a MWCO: 1000 dialysis membrane for 3 days (adding 5 mL PBS (−) (× 20) in 1 L of H 2 O), and then with H 2 O alone before collecting the sample. Time dialysis was performed. Thereafter, a white powder was recovered by lyophilization.
ポリ−L−ヒスチジン(PLH)(50mg)とヨード酢酸(I−CH2COOH)(PLH×0.8倍量:40mg)をそれぞれH2O 8mL、2mLに溶解させ、1N NaOHで水溶液をpH4.5~5に調整し室温で24時間攪拌した。その後、さらにH2O(0.2mL)に溶解させたヨード酢酸(40mg)を添加し、水溶液をpH4.5~5に保ち、再び24時間、室温で攪拌した。その後、同様の操作を行い、合計3日間反応を行った。得られた水溶液をMWCO:1000の透析膜で、3日間透析(1LのH2O中に5mL PBS(−)(×20)を添加)後、サンプルを回収する前にH2Oのみで2時間透析を行った。その後、凍結乾燥によって白色粉末を回収した。 2-3) Synthesis of carboxymethylated polyhistidine (CM-PLH) Poly-L-histidine (PLH) (50 mg) and iodoacetic acid (I-CH 2 COOH) (PLH × 0.8 times amount: 40 mg), respectively The solution was dissolved in 8 mL of H 2 O and 2 mL, and the aqueous solution was adjusted to pH 4.5 to 5 with 1N NaOH and stirred at room temperature for 24 hours. Thereafter, iodoacetic acid (40 mg) dissolved in H 2 O (0.2 mL) was further added, and the aqueous solution was kept at pH 4.5 to 5 and again stirred at room temperature for 24 hours. Then, the same operation was performed and reaction was performed for a total of 3 days. The resulting aqueous solution was dialyzed against a MWCO: 1000 dialysis membrane for 3 days (adding 5 mL PBS (−) (× 20) in 1 L of H 2 O), and then with H 2 O alone before collecting the sample. Time dialysis was performed. Thereafter, a white powder was recovered by lyophilization.
GFCは、キャリア:0.5M CH3COOH,0.3M Na2SO4,流速:1.0mL/分,カラム: Shodex OHpak SB−804 HQで測定を行った。1H NMRは、塩酸(5μL)を添加したD2O(700μL)で測定を行った。
GFC was measured with carrier: 0.5 M CH 3 COOH, 0.3 M Na 2 SO 4 , flow rate: 1.0 mL / min, column: Shodex OHpak SB-804 HQ. 1 H NMR was measured with D 2 O (700 μL) added with hydrochloric acid (5 μL).
GFCにより数平均分子量:約6000、1H NMRによりカルボキシメチル基修飾率:約50mol%と見積もった。
The number average molecular weight was estimated to be about 6000 by GFC, and the carboxymethyl group modification rate was estimated to be about 50 mol% by 1 H NMR.
実施例3 高分子による人工クロマチン弛緩実験
本実施例では、高分子による人工クロマチン弛緩実験を行った。 Example 3 Artificial Chromatin Relaxation Experiment with Polymer In this example, an artificial chromatin relaxation experiment with a polymer was performed.
本実施例では、高分子による人工クロマチン弛緩実験を行った。 Example 3 Artificial Chromatin Relaxation Experiment with Polymer In this example, an artificial chromatin relaxation experiment with a polymer was performed.
3−1)材料
高分子は、カルボキシメチル化ポリビニルイミダゾール(CM−PVIm)、ポリメタクリル酸(PMMA)及びカルボキシメチル化ポリヒスチジン(CM−PLH)は実施例2で合成したものを使用した。ポリグルタミン酸(PLE)はSigma Aldrichより購入した。ポリアクリル酸(PAA:分子量MW=25,000又は1,000,000)は和光純薬工業株式会社より購入した。 3-1) Materials As the polymer, carboxymethylated polyvinylimidazole (CM-PVIm), polymethacrylic acid (PMMA), and carboxymethylated polyhistidine (CM-PLH) synthesized in Example 2 were used. Polyglutamic acid (PLE) was purchased from Sigma Aldrich. Polyacrylic acid (PAA: molecular weight MW = 25,000 or 1,000,000) was purchased from Wako Pure Chemical Industries, Ltd.
高分子は、カルボキシメチル化ポリビニルイミダゾール(CM−PVIm)、ポリメタクリル酸(PMMA)及びカルボキシメチル化ポリヒスチジン(CM−PLH)は実施例2で合成したものを使用した。ポリグルタミン酸(PLE)はSigma Aldrichより購入した。ポリアクリル酸(PAA:分子量MW=25,000又は1,000,000)は和光純薬工業株式会社より購入した。 3-1) Materials As the polymer, carboxymethylated polyvinylimidazole (CM-PVIm), polymethacrylic acid (PMMA), and carboxymethylated polyhistidine (CM-PLH) synthesized in Example 2 were used. Polyglutamic acid (PLE) was purchased from Sigma Aldrich. Polyacrylic acid (PAA: molecular weight MW = 25,000 or 1,000,000) was purchased from Wako Pure Chemical Industries, Ltd.
3−2)アガロースゲル電気泳動による評価
実施例1で作製した人工クロマチン2.2μLに、各高分子をそれぞれDNAのアニオン数と比較してアニオン数が、2,4,8倍となるように添加し、15分間インキュベートした。反応物を、1% アガロースゲル, pH7.4(溶媒 50mMリン酸バッファー(PB))を用いて、Mupid(登録商標)−2xにより電圧50V条件下で、20分間電気泳動を施した。その後、Quantity Oneにより各高分子が弛緩するのに最適な濃度を決定した。各高分子は、DNAと比較してアニオン数が2,4,8倍となるように添加した。 3-2) Evaluation by Agarose Gel Electrophoresis In 2.2 μL of the artificial chromatin prepared in Example 1, each polymer was compared with the number of anions of DNA so that the number of anions was 2, 4 or 8 times. Added and incubated for 15 minutes. The reaction product was subjected to electrophoresis for 20 minutes under a voltage of 50 V using Mupid (registered trademark) -2x using 1% agarose gel, pH 7.4 (solvent 50 mM phosphate buffer (PB)). Thereafter, the optimum concentration for relaxing each polymer was determined by Quantity One. Each polymer was added so that the number of anions was 2, 4, and 8 times that of DNA.
実施例1で作製した人工クロマチン2.2μLに、各高分子をそれぞれDNAのアニオン数と比較してアニオン数が、2,4,8倍となるように添加し、15分間インキュベートした。反応物を、1% アガロースゲル, pH7.4(溶媒 50mMリン酸バッファー(PB))を用いて、Mupid(登録商標)−2xにより電圧50V条件下で、20分間電気泳動を施した。その後、Quantity Oneにより各高分子が弛緩するのに最適な濃度を決定した。各高分子は、DNAと比較してアニオン数が2,4,8倍となるように添加した。 3-2) Evaluation by Agarose Gel Electrophoresis In 2.2 μL of the artificial chromatin prepared in Example 1, each polymer was compared with the number of anions of DNA so that the number of anions was 2, 4 or 8 times. Added and incubated for 15 minutes. The reaction product was subjected to electrophoresis for 20 minutes under a voltage of 50 V using Mupid (registered trademark) -2x using 1% agarose gel, pH 7.4 (solvent 50 mM phosphate buffer (PB)). Thereafter, the optimum concentration for relaxing each polymer was determined by Quantity One. Each polymer was added so that the number of anions was 2, 4, and 8 times that of DNA.
結果を、図2に示す。図2に示した通り、アニオン性高分子(PAA、PMAA、CM−PLH及びPLE)を添加した場合、未添加の場合よりも複合体のバンドの蛍光強度のほうが強いことが分かった。この事実から、すべてのアニオン性高分子により人工クロマチンが弛緩されていることが示唆された。
The results are shown in FIG. As shown in FIG. 2, it was found that when the anionic polymer (PAA, PMAA, CM-PLH and PLE) was added, the fluorescence intensity of the complex band was stronger than when it was not added. This fact suggests that artificial chromatin is relaxed by all anionic polymers.
両性高分子であるCM−PVImにおいてはアニオン性高分子とは異なった傾向が見られた。CM−PVImを添加した人工クロマチンは未添加のものと比べ蛍光強度が低かった。両性高分子はアニオン性高分子と異なるメカニズムで弛緩されていることが考えられる。アニオン性高分子はヒストンのみに相互作用し、DNA−ヒストン間の相互作用を弱めるのに対し、両性高分子はアニオン部位はヒストンと、カチオン部位はDNAと相互作用することによりDNA−ヒストン間の相互作用を緩める。そのため、両性高分子はエチジウムブロマイドがインターカレートしにくく、蛍光強度が低くなってしまったのではないかということと推測される。
In the amphoteric polymer CM-PVIm, a tendency different from that of the anionic polymer was observed. The artificial chromatin added with CM-PVIm had lower fluorescence intensity than that without addition. It is considered that the amphoteric polymer is relaxed by a mechanism different from that of the anionic polymer. Anionic polymers interact only with histones and weaken DNA-histone interactions, whereas amphoteric polymers interact with histones at anion sites and between DNA and histones by interacting with cation sites on DNA. Relax the interaction. For this reason, it is presumed that the amphoteric polymer is unlikely to intercalate ethidium bromide and the fluorescence intensity has been lowered.
なお、すべての高分子においてDNAと比較してアニオン数が2倍量添加した時に、蛍光強度が最大となり最も弛緩されていることが示唆された。
In addition, it was suggested that when the number of anions was added twice as much as that of DNA in all polymers, the fluorescence intensity became maximum and was most relaxed.
3−3)翻訳活性評価
翻訳活性評価は、TNT(登録商標)Quick Coupled Transcription/Translation Systemを用いて下記のように弛緩能評価を行った。 3-3) Translation activity evaluation The translation activity evaluation was performed using the TNT (registered trademark) Quick Coupled Translation / Translation System to evaluate the relaxation ability as follows.
翻訳活性評価は、TNT(登録商標)Quick Coupled Transcription/Translation Systemを用いて下記のように弛緩能評価を行った。 3-3) Translation activity evaluation The translation activity evaluation was performed using the TNT (registered trademark) Quick Coupled Translation / Translation System to evaluate the relaxation ability as follows.
反応コンポーネント(翻訳システム)
TNT(登録商標)Quick Master Mix40μL,メチオニン
1mM 1μL,人工クロマチン2.2μL,
各高分子(CMPVIm(1mg/mL),PAA(0.1mg/mL),PMAA(0.15mg/mL)),
ヌクレアーゼを含まない水を加えて、総量で50μL Reaction component (translation system)
TNT (registered trademark)Quick Master Mix 40 μL, methionine 1 mM 1 μL, artificial chromatin 2.2 μL,
Each polymer (CMPVIm (1 mg / mL), PAA (0.1 mg / mL), PMAA (0.15 mg / mL)),
Add nuclease-free water for a total volume of 50 μL
TNT(登録商標)Quick Master Mix40μL,メチオニン
1mM 1μL,人工クロマチン2.2μL,
各高分子(CMPVIm(1mg/mL),PAA(0.1mg/mL),PMAA(0.15mg/mL)),
ヌクレアーゼを含まない水を加えて、総量で50μL Reaction component (translation system)
TNT (registered trademark)
Each polymer (CMPVIm (1 mg / mL), PAA (0.1 mg / mL), PMAA (0.15 mg / mL)),
Add nuclease-free water for a total volume of 50 μL
エッペンドルフチューブに反応コンポーネントを入れ、すべてのコンポーネントをピペッティングした。その後、30℃で90分間インキュベートし、ルミノメーターにより発光強度を測定することで弛緩能評価を行った。
The reaction components were put into an Eppendorf tube, and all components were pipetted. Thereafter, the cells were incubated at 30 ° C. for 90 minutes, and the relaxation ability was evaluated by measuring the luminescence intensity with a luminometer.
アガロースゲル電気泳動により最も弛緩されていると示唆された濃度において翻訳活性評価を行った。まず、ポジティブコントロールである裸のDNAと比べて人工クロマチンにおける翻訳活性が下がっていることが確認でき、転写不活性型の人工クロマチンの作製に成功したことがわかった。転写不活性型、つまり凝集状態のヘテロクロマチンを弛緩させることが出来れば、露出するDNAの領域が増加し、結果的に転写および翻訳が促進すると考え、本実験系により弛緩能評価を行った。結果を、図3及び図4に示す。
Translational activity was evaluated at a concentration suggested to be most relaxed by agarose gel electrophoresis. First, it was confirmed that the translation activity of artificial chromatin was lower than that of the positive control naked DNA, and it was found that the transcription-inactive artificial chromatin was successfully produced. If the transcriptionally inactive form, that is, the aggregated heterochromatin can be relaxed, the exposed DNA region increases, and as a result, transcription and translation are promoted, and the relaxation ability was evaluated by this experimental system. The results are shown in FIGS.
図3は、分子量MW25,000及び1,000,000の2種類の分子量のPAAの結果である。両者とも高い翻訳活性を示したが、MW1,000,000の方が若干高かった。図4は、CM−PVIm及びPMAAの翻訳活性を示す。いずれも翻訳活性が示されたが、特にCM−PVImで有意に高い効果が確認された。これらのアニオン性高分子についてはアニオン性電荷密度が高いほど効率的に弛緩するのではないかということが考えられる。
FIG. 3 shows the results of PAA having two molecular weights of molecular weights MW 25,000 and 1,000,000. Both showed high translation activity, but MW 1,000,000 was slightly higher. FIG. 4 shows the translational activity of CM-PVIm and PMAA. All showed translational activity, but a significantly higher effect was confirmed particularly with CM-PVIm. Regarding these anionic polymers, it is considered that the higher the anionic charge density, the more relaxed.
一方、電荷密度が低いCM−PVImにおいて翻訳活性の向上が見られたのは、興味深い結果であり、この高分子が両性高分子であることから、アニオン性高分子とは異なるメカニズムでより効率的に弛緩していることが考えられる。
On the other hand, the improvement in translational activity was seen in CM-PVIm with a low charge density, which is an interesting result. Since this polymer is an amphoteric polymer, it is more efficient by a mechanism different from that of an anionic polymer. It is thought that it is relaxed.
以上、ヒストンを用いた人工クロマチンモデルの構築に成功し、高分子の弛緩評価において有用な系を確立した。確立した系において実験したすべての高分子(PLE,CM−PLH,PAA,PMAA,CM−PVIm)がクロマチン構造を弛緩させることが明らかとなった。クロマチン弛緩させた高分子のなかで、特にPAA及びCM−PVImが無細胞系翻訳系における翻訳効率を向上させることが明らかとなった。
As described above, we have succeeded in constructing an artificial chromatin model using histones, and have established a useful system for evaluating relaxation of polymers. It was revealed that all macromolecules (PLE, CM-PLH, PAA, PMAA, CM-PVIm) tested in the established system relax the chromatin structure. Among the chromatin relaxed polymers, it was revealed that PAA and CM-PVIm improve the translation efficiency in the cell-free translation system.
実施例4 リン酸カルシウム複合体
本実施例は、ヒストン脱アセチル化酵素(HDAC)をコードする遺伝子を含むプラスミド、ヒストンアセチル化酵素阻害剤であるコエンザイムAを含む、リン酸カルシウム複合体の調製について記載する。 Example 4 Calcium Phosphate Complex This example describes the preparation of a calcium phosphate complex comprising a plasmid containing the gene encoding histone deacetylase (HDAC) and coenzyme A, a histone acetylase inhibitor.
本実施例は、ヒストン脱アセチル化酵素(HDAC)をコードする遺伝子を含むプラスミド、ヒストンアセチル化酵素阻害剤であるコエンザイムAを含む、リン酸カルシウム複合体の調製について記載する。 Example 4 Calcium Phosphate Complex This example describes the preparation of a calcium phosphate complex comprising a plasmid containing the gene encoding histone deacetylase (HDAC) and coenzyme A, a histone acetylase inhibitor.
1mM Tris−HCl、0.1mM EDTAをミリポアに溶解する事によりTE溶液(pH7.6)を調製した。TE溶液中に0.1mg/mlの濃度でプラスミドを含むプラスミド溶液を調製した。プラスミドは、pCMV−SPORT6ベクターにヒストン脱アセチル化酵素HDAC3をコードした遺伝子が挿入されているプラスミドと、pCMV−SPORT6ベクターにDNAメチル化酵素(DNMT3a)をコードした遺伝子が挿入されているプラスミドを用いた。pCMV−SPORT6ベクターの塩基配列を配列番号2に示す。
A TE solution (pH 7.6) was prepared by dissolving 1 mM Tris-HCl and 0.1 mM EDTA in millipore. A plasmid solution containing the plasmid at a concentration of 0.1 mg / ml in TE solution was prepared. As the plasmid, a plasmid in which a gene encoding histone deacetylase HDAC3 is inserted into the pCMV-SPORT6 vector and a plasmid in which a gene encoding DNA methylase (DNMT3a) is inserted into the pCMV-SPORT6 vector are used. It was. The base sequence of the pCMV-SPORT6 vector is shown in SEQ ID NO: 2.
次いで、2.5M CaCl2溶液と0.1mg/ml プラスミド溶液を1:9の割合で混合した(溶液A)。ポリグルタミン酸とコエンザイムAを、溶液A100μlに10μgと0、1、2、5、10μgとなるようにそれぞれ添加した(溶液B)。
Then, 2.5M CaCl 2 solution and 0.1 mg / ml plasmid solution were mixed at a ratio of 1: 9 (solution A). Polyglutamic acid and coenzyme A were added to 100 μl of solution A so as to be 10 μg and 0, 1, 2, 5, 10 μg, respectively (solution B).
140mM NaCl、50mM HEPES、6mM Na2HPO4をミリポアに溶解し、Hepes/phosphate溶液(pH7.1)を調製した。次いで、溶液Bに等量のHepes/phosphate溶液を添加し、数分間撹拌した後、37℃で24時間静置ことにより、リン酸カルシウム複合体を頂戴した。調製した複合体は、遠心分離(10000rpm、15分間)により回収した。
140 mM NaCl, 50 mM HEPES, and 6 mM Na 2 HPO 4 were dissolved in millipore to prepare a Hepes / phosphate solution (pH 7.1). Next, an equal amount of Hepes / phosphate solution was added to Solution B, stirred for several minutes, and then allowed to stand at 37 ° C. for 24 hours to receive a calcium phosphate complex. The prepared complex was recovered by centrifugation (10000 rpm, 15 minutes).
遠心分離により回収した全てのリン酸カルシウム複合体を過剰のPBSに懸濁し、ELSZ−2(大塚電子)を用いて粒径及びゼータ電位を測定した。結果を以下の表に示す。
All calcium phosphate complexes recovered by centrifugation were suspended in excess PBS, and the particle size and zeta potential were measured using ELSZ-2 (Otsuka Electronics). The results are shown in the table below.
さらに、リン酸カルシウム複合体中のコエンザイムA含有量を評価した。具体的には、先ず、調製した全ての複合体を滅菌PBSに懸濁し、遠心分離(10000rpm、15分間)することにより粒子表面を洗浄した。次いで、洗浄した全ての複合体を希塩酸(pH=3)中に分散し、十分にピペッティングして複合体を破壊した。溶液中へCPM(7−ジエチルアミノ−3−(4’−マレイミジルフェニル)−4−メチルクマリン)を添加しDTX 800(BECKMAN COULTER)により蛍光(EX=360、EM=469)を測定することにより、粒子内に含まれているコエンザイムAを定量した。結果を、図5に示す。
Furthermore, the coenzyme A content in the calcium phosphate complex was evaluated. Specifically, first, all prepared complexes were suspended in sterile PBS, and the particle surface was washed by centrifuging (10000 rpm, 15 minutes). Next, all the washed complexes were dispersed in dilute hydrochloric acid (pH = 3) and thoroughly pipetted to break the complexes. CPM into solution (7-diethylamino-3- (4'-maleimidyl-phenyl) -4-methyl coumarin) was added DTX 800 (BECKMAN COULTER) by measuring the fluorescence (E X = 360, E M = 469) By doing so, the coenzyme A contained in the particles was quantified. The results are shown in FIG.
実施例5 リン酸カルシウム複合体を用いた遺伝子発現評価
本実施例では、実施例4で作成したリン酸カルシウム複合体を用いた場合の、遺伝子発現評価を調べた。 Example 5 Gene Expression Evaluation Using Calcium Phosphate Complex In this example, gene expression evaluation when the calcium phosphate complex prepared in Example 4 was used was examined.
本実施例では、実施例4で作成したリン酸カルシウム複合体を用いた場合の、遺伝子発現評価を調べた。 Example 5 Gene Expression Evaluation Using Calcium Phosphate Complex In this example, gene expression evaluation when the calcium phosphate complex prepared in Example 4 was used was examined.
遺伝子発現評価のために、リン酸カルシウム複合体に、プラスミド種としてルシフェラーゼ遺伝子をコードしたpGL3を含ませた。まず、96wellプレートへHepG2細胞を1×104Cells播種し、24時間培養した。培地交換後、プラスミド量が約200ng/wellになるように、調製した複合体を培地に添加し24時間培養した。コントロールとして市販の遺伝子導入キャリアであるリポフェクチンを用いた。培地交換後、さらに48時間培養した。
For gene expression evaluation, pGL3 encoding a luciferase gene as a plasmid species was included in the calcium phosphate complex. First, 1 × 10 4 Cells of HepG2 cells were seeded on a 96-well plate and cultured for 24 hours. After exchanging the medium, the prepared complex was added to the medium and cultured for 24 hours so that the amount of plasmid was about 200 ng / well. Lipofectin, a commercially available gene transfer carrier, was used as a control. After the medium change, the cells were further cultured for 48 hours.
培地を除去し、滅菌PBSで3回洗浄後、全てのwellへセルライシス100μlを添加しピペッティングすることにより、細胞ライセートを得た。ライセートへルシフェラーゼ基質100μlを添加し、AccuFLEX Lumi400(ALOKA)を用いて、発光強度を測定した。
After removing the medium and washing 3 times with sterile PBS, cell lysate was obtained by adding 100 μl of cell lysis to all wells and pipetting. 100 μl of lysate luciferase substrate was added, and luminescence intensity was measured using AccuFLEX Lumi400 (ALOKA).
実施例6 HepG2細胞へのウエスタンブロット測定
本実施例では、本発明のリン酸カルシウム複合体とヒストン脱アセチル化阻害剤を細胞に投与した場合の、ヒストンのアセチル化をウエスタンブロットで測定した。今回使用した複合体は、「実施例4 リン酸カルシウム複合体」でのヒストン脱アセチル化酵素(HDAC)をコードする遺伝子を含むプラスミドの代わりに、ヒストン脱アセチル化酵素(SIRT2)をコードした遺伝子を含むプラスミドを使用したものである。 Example 6 Western Blot Measurement to HepG2 Cells In this example, histone acetylation when the calcium phosphate complex of the present invention and histone deacetylation inhibitor were administered to cells was measured by Western blot. The complex used this time contains a gene encoding histone deacetylase (SIRT2) instead of the plasmid containing the gene encoding histone deacetylase (HDAC) in "Example 4 calcium phosphate complex". A plasmid is used.
本実施例では、本発明のリン酸カルシウム複合体とヒストン脱アセチル化阻害剤を細胞に投与した場合の、ヒストンのアセチル化をウエスタンブロットで測定した。今回使用した複合体は、「実施例4 リン酸カルシウム複合体」でのヒストン脱アセチル化酵素(HDAC)をコードする遺伝子を含むプラスミドの代わりに、ヒストン脱アセチル化酵素(SIRT2)をコードした遺伝子を含むプラスミドを使用したものである。 Example 6 Western Blot Measurement to HepG2 Cells In this example, histone acetylation when the calcium phosphate complex of the present invention and histone deacetylation inhibitor were administered to cells was measured by Western blot. The complex used this time contains a gene encoding histone deacetylase (SIRT2) instead of the plasmid containing the gene encoding histone deacetylase (HDAC) in "Example 4 calcium phosphate complex". A plasmid is used.
先ず、96WellプレートへHepG2細胞を5×105Cells播種し、24時間培養後、ヒストン脱アセチル化阻害剤であるバルプロ酸(VPA)を3μM含む培地に変更し、さらに24時間培養した。次に、調製した複合体をWellに添加し、24時間培養した。コントロールにはアナカルジン酸(AA)を用いた。
First, HepG2 cells were seeded on 96-well plates at 5 × 10 5 cells, cultured for 24 hours, then changed to a medium containing 3 μM of histone deacetylation inhibitor valproic acid (VPA), and further cultured for 24 hours. Next, the prepared complex was added to Well and cultured for 24 hours. Anacardic acid (AA) was used as a control.
全てのWellから培地を除去し、滅菌PBSで3回洗浄した後、NP40バッファーを全てのWellへ100μ添加しピペッティングを行った。次いで、不溶性物質を除去するため遠心分離(15000rpm、5分間)にかけ、上澄みを回収する事により細胞ライセートを得た。回収した上澄み溶液へ2×SBバッファーを1:1の割合で混合し、95℃で5分間煮沸し、ウエスタンブロッティング用サンプルを作製した。
After removing the medium from all the wells and washing with sterile PBS three times, NP40 buffer was added to all the wells by 100 μ and pipetting was performed. Subsequently, cell lysate was obtained by centrifuging (15000 rpm, 5 minutes) to remove insoluble substances and collecting the supernatant. The collected supernatant solution was mixed with 2 × SB buffer at a ratio of 1: 1 and boiled at 95 ° C. for 5 minutes to prepare a sample for Western blotting.
ミニプロティアンTetraセル(Bio−Rad)、ミニトランスブロットセル(Bio−Rad)、各種アセチル化ヒストン抗体(H3−K9,−K18,−K27,H4−K5,−K8,−K12:CST)を用いてウエスタンブロット測定を行った。
Using a mini-PROTEAN Tetra cell (Bio-Rad), a mini-trans blot cell (Bio-Rad), and various acetylated histone antibodies (H3-K9, -K18, -K27, H4-K5, -K8, -K12: CST) Western blot measurement was performed.
ウエスタンブロット測定の結果を図6に示す。一番左のレーンはリン酸カルシウム(CaP)、コエンザイムA(CoA)、SIRT2をコードする遺伝子を含むプラスミドDNA、今回の実験には全く影響を与えないプラスミドDNA、及びアナカルジン酸を添加していないサンプルである。左から2番目のレーンはCaPを用いてプラスミドDNAを添加したサンプルである。何も添加していないサンプルと比較して、差は見られないためCaPがヒストンアセチル化には影響を与えていないことが確認された。真ん中のレーンはコントロールとしてAAのみを添加したサンプルである。左の2サンプルと比較してアセチル化ヒストンH3及びH4のバンドが薄くなっていることから、本実験におけるアセチル化量の評価が成立していることが確認された。右から2番目のサンプルはCaPを用いてSIRT2をコードする遺伝子を含むプラスミドDNAを導入したサンプルである。SIRT2が発現することにより、アセチル化ヒストンの量が減少していることが確認された。最後に一番右のレーンはCaPを用いてCoAとSIRT2をコードする遺伝子を含むプラスミドを導入したサンプルである。全てのサンプルと比較して最もバンドが薄くなっており、CoAとSIRT2が作用することで強力に脱アセチル化されていることが確認された。今回の実験ではアセチル化ヒストン抗体としてH3−K9,−K18,−K27,H4−K5,−K8,−K12を用いたため、これらのアセチル化量が減少したと考えられる。
The result of Western blot measurement is shown in FIG. The leftmost lane is a plasmid DNA containing a gene encoding calcium phosphate (CaP), coenzyme A (CoA), SIRT2, a plasmid DNA that has no effect on this experiment, and a sample to which no anacardic acid is added. is there. The second lane from the left is a sample to which plasmid DNA was added using CaP. Compared with the sample to which nothing was added, it was confirmed that CaP had no effect on histone acetylation since no difference was observed. The middle lane is a sample to which only AA is added as a control. Since the bands of acetylated histones H3 and H4 are thinner than the two samples on the left, it was confirmed that the evaluation of the amount of acetylation in this experiment was established. The second sample from the right is a sample into which plasmid DNA containing a gene encoding SIRT2 is introduced using CaP. It was confirmed that the amount of acetylated histone decreased due to the expression of SIRT2. Finally, the rightmost lane is a sample into which a plasmid containing a gene encoding CoA and SIRT2 was introduced using CaP. Compared with all samples, the band was the thinnest, and it was confirmed that CoA and SIRT2 acted to strongly deacetylate. In this experiment, since H3-K9, -K18, -K27, H4-K5, -K8, and -K12 were used as acetylated histone antibodies, it is considered that the amount of acetylation decreased.
実施例7 アセチル化ポリリジン(AcPLL)の合成
本実施例では、アセチル化ポリリジン(AcPLL)の合成について記載する。 Example 7 Synthesis of Acetylated Polylysine (AcPLL) This example describes the synthesis of acetylated polylysine (AcPLL).
本実施例では、アセチル化ポリリジン(AcPLL)の合成について記載する。 Example 7 Synthesis of Acetylated Polylysine (AcPLL) This example describes the synthesis of acetylated polylysine (AcPLL).
7−1)AcPLL(5%狙い)の合成
PLL9.58mgをDMSO0.95mLに溶解した。この溶液にTEA20μLを入れ、反応前のアミノ基定量用のサンプルを50μL採取した(溶液(1))。無水酢酸4.5μLをDMSO1.0mLに溶かし、その溶液から50μL採取し上記溶液(1)に加えた。この溶液をウォーターバス(40℃)中で2時間反応させた。反応後、アミノ基定量用のサンプルを50μL採取した。 7-1) Synthesis of AcPLL (5% target) 9.58 mg of PLL was dissolved in 0.95 mL of DMSO. 20 μL of TEA was put into this solution, and 50 μL of a sample for amino group determination before reaction was collected (solution (1)). Acetic anhydride (4.5 μL) was dissolved in DMSO (1.0 mL), and 50 μL was taken from the solution and added to the solution (1). This solution was reacted in a water bath (40 ° C.) for 2 hours. After the reaction, 50 μL of a sample for amino group determination was collected.
PLL9.58mgをDMSO0.95mLに溶解した。この溶液にTEA20μLを入れ、反応前のアミノ基定量用のサンプルを50μL採取した(溶液(1))。無水酢酸4.5μLをDMSO1.0mLに溶かし、その溶液から50μL採取し上記溶液(1)に加えた。この溶液をウォーターバス(40℃)中で2時間反応させた。反応後、アミノ基定量用のサンプルを50μL採取した。 7-1) Synthesis of AcPLL (5% target) 9.58 mg of PLL was dissolved in 0.95 mL of DMSO. 20 μL of TEA was put into this solution, and 50 μL of a sample for amino group determination before reaction was collected (solution (1)). Acetic anhydride (4.5 μL) was dissolved in DMSO (1.0 mL), and 50 μL was taken from the solution and added to the solution (1). This solution was reacted in a water bath (40 ° C.) for 2 hours. After the reaction, 50 μL of a sample for amino group determination was collected.
蛍光分光光度計を用いて、アミノ基定量を行い反応が進んでいることを確認した。1H NMRを測定し、アセチル化率を算出した結果、8.5%であった。即ち、反応進行率はほぼ100%であることが示唆された。
Using a fluorescence spectrophotometer, the amino group was quantified to confirm that the reaction was progressing. As a result of measuring 1 H NMR and calculating the acetylation rate, it was 8.5%. That is, the reaction progress rate was suggested to be almost 100%.
7−2)AcPLL(75%狙い)+マルトース(25%狙い)の合成
PLL11.2mgをDMSO1mLに溶解した。この溶液にTEA10μLを入れ、反応前のアミノ基定量用のサンプルを50μL採取した(溶液(1))。無水酢酸4μLを上記溶液(1)に加えた。この溶液をウォーターバス(40℃)中で2時間反応させた。反応後、アミノ基定量用のサンプルを50μL採取した(溶液(2))。上記溶液(2)にマルトース6.28mgを加え、ウォーターバス(40℃)中で24時間反応させた。反応後の溶液をアミノ基定量用に50μL採取した。 7-2) Synthesis of AcPLL (75% target) + maltose (25% target) PLL 11.2 mg was dissolved inDMSO 1 mL. 10 μL of TEA was put into this solution, and 50 μL of a sample for amino group determination before reaction was collected (solution (1)). 4 μL of acetic anhydride was added to the solution (1). This solution was reacted in a water bath (40 ° C.) for 2 hours. After the reaction, 50 μL of a sample for amino group determination was collected (solution (2)). Maltose 6.28mg was added to the said solution (2), and it was made to react in a water bath (40 degreeC) for 24 hours. 50 μL of the solution after the reaction was collected for amino group determination.
PLL11.2mgをDMSO1mLに溶解した。この溶液にTEA10μLを入れ、反応前のアミノ基定量用のサンプルを50μL採取した(溶液(1))。無水酢酸4μLを上記溶液(1)に加えた。この溶液をウォーターバス(40℃)中で2時間反応させた。反応後、アミノ基定量用のサンプルを50μL採取した(溶液(2))。上記溶液(2)にマルトース6.28mgを加え、ウォーターバス(40℃)中で24時間反応させた。反応後の溶液をアミノ基定量用に50μL採取した。 7-2) Synthesis of AcPLL (75% target) + maltose (25% target) PLL 11.2 mg was dissolved in
蛍光分光光度計を用いて、アミノ基定量を行い反応が進んでいることを確認した。
The amino group was quantified using a fluorescence spectrophotometer to confirm that the reaction was progressing.
7−3)AcPLL(30%狙い)+マルトース(70%狙い)の合成
PLL10mgをDMSO0.99mLに溶解した。この溶液にTEA10μLを入れた。(溶液(1))。無水酢酸150μLをDMSO1.0mLに溶かし、その溶液から10μL採取し、上記溶液(1)に加えた。この溶液をウォーターバス(40℃)中で2時間反応させた(溶液(2))。上記溶液(2)にマルトース226mgを加え、ウォーターバス(40℃)中で2日間反応させた。 7-3) Synthesis of AcPLL (30% target) + maltose (70% target) PLL (10 mg) was dissolved in DMSO (0.99 mL). 10 μL of TEA was added to this solution. (Solution (1)). 150 μL of acetic anhydride was dissolved in 1.0 mL of DMSO, 10 μL was collected from the solution, and added to the solution (1). This solution was reacted in a water bath (40 ° C.) for 2 hours (solution (2)). To the solution (2), 226 mg of maltose was added and reacted in a water bath (40 ° C.) for 2 days.
PLL10mgをDMSO0.99mLに溶解した。この溶液にTEA10μLを入れた。(溶液(1))。無水酢酸150μLをDMSO1.0mLに溶かし、その溶液から10μL採取し、上記溶液(1)に加えた。この溶液をウォーターバス(40℃)中で2時間反応させた(溶液(2))。上記溶液(2)にマルトース226mgを加え、ウォーターバス(40℃)中で2日間反応させた。 7-3) Synthesis of AcPLL (30% target) + maltose (70% target) PLL (10 mg) was dissolved in DMSO (0.99 mL). 10 μL of TEA was added to this solution. (Solution (1)). 150 μL of acetic anhydride was dissolved in 1.0 mL of DMSO, 10 μL was collected from the solution, and added to the solution (1). This solution was reacted in a water bath (40 ° C.) for 2 hours (solution (2)). To the solution (2), 226 mg of maltose was added and reacted in a water bath (40 ° C.) for 2 days.
1H NMRでアセチル化率及びマルトースの結合率を算出した。その結果、アセチル化率が29.3%、アミノ基とマルトースの結合率が39%と算出された。
The acetylation rate and maltose binding rate were calculated by 1 H NMR. As a result, the acetylation rate was calculated to be 29.3%, and the binding rate of amino group and maltose was calculated to be 39%.
実施例8 ハイパーブランチポリリジンの合成
本実施例は、ハイパーブランチポリリジンの合成(DMF溶媒)を記載する。 Example 8 Synthesis of Hyperbranched Polylysine This example describes the synthesis of hyperbranched polylysine (DMF solvent).
本実施例は、ハイパーブランチポリリジンの合成(DMF溶媒)を記載する。 Example 8 Synthesis of Hyperbranched Polylysine This example describes the synthesis of hyperbranched polylysine (DMF solvent).
L−リジン(208mg,1mmol)、TEA(154μL,1.1mmol)、DMF15mL混合溶液中にHBTU(379mg,1.0mmol)とHOBt・H2O(153mg,1.0mmol)を加え、15時間ウォーターバス40℃条件下で攪拌した。その後、室温で14日攪拌した。
HBTU (379 mg, 1.0 mmol) and HOBt · H 2 O (153 mg, 1.0 mmol) were added to a mixed solution of L-lysine (208 mg, 1 mmol), TEA (154 μL, 1.1 mmol) and DMF in 15 mL, and water was added for 15 hours. The bath was stirred under the condition of 40 ° C. Then, it stirred at room temperature for 14 days.
反応前溶液も白く白濁していたが、ウォーターバスを用いて15時間攪拌しても、反応混合溶液は白く懸濁していた。15時間攪拌して得られた反応混合溶液にDMF,DMSOを加え、溶けるかどうかを確認した。DMFで溶液を希釈しても溶解性は変わらなかった。一方で、DMSOを加え希釈すると、反応後溶液を4倍希釈したところで溶かすことに成功した。
The pre-reaction solution was also white and cloudy, but even after stirring for 15 hours using a water bath, the reaction mixture was suspended in white. DMF and DMSO were added to the reaction mixture obtained by stirring for 15 hours, and it was confirmed whether or not it dissolved. Dilution with DMF did not change the solubility. On the other hand, when DMSO was added and diluted, the solution was successfully dissolved when the solution was diluted 4 times.
DMF溶媒について、透析して凍結乾燥をしてなにか出来ているかを確認したところ白い粉末が得られた。ハイパーブランチPLLは水溶性なので水に不溶性の不純物を取り除くために、得られた白い粉末を水に溶かし再度凍結乾燥して生成物を回収した。水系GFCで合成生成物の分子量を測定したところ、少量だが、がハイパーブランチPLLが合成出来ていることが示唆された。また、1H NMR解析をしたところ、L−Lysineとは異なったピークが見られた。
The DMF solvent was dialyzed and lyophilized to confirm that it was ready, and a white powder was obtained. Since hyperbranched PLL is water-soluble, in order to remove impurities insoluble in water, the obtained white powder was dissolved in water and freeze-dried again to recover the product. When the molecular weight of the synthesized product was measured by the aqueous GFC, it was suggested that the hyperbranched PLL was synthesized although it was a small amount. Further, when 1 H NMR analysis was performed, a peak different from that of L-Lycine was observed.
実施例9 デンドリティックポリリジン(DPK)の合成
本実施例では、デンドリテッィクポリリジン(DPK)の合成例を記載する。 Example 9 Synthesis of Dendritic Polylysine (DPK) This example describes a synthesis example of dendritic polylysine (DPK).
本実施例では、デンドリテッィクポリリジン(DPK)の合成例を記載する。 Example 9 Synthesis of Dendritic Polylysine (DPK) This example describes a synthesis example of dendritic polylysine (DPK).
FAB−MSの測定値と文献値を比較することにより合成が出来ているかを確認したところ、KG2の合成に成功していることが示された。
It was confirmed that the synthesis of KG2 was successful when it was confirmed that the synthesis was completed by comparing the measured values of FAB-MS and literature values.
実施例10ヒストンアセチル化酵素DNA、ヒストン脱アセチル化酵素阻害剤、ポリ乳酸、及びカチオン性脂質の4要素を含む担体を用いた遺伝子導入
本実施例では、ヒストンアセチル化酵素DNA、ヒストン脱アセチル化酵素阻害剤、ポリ乳酸、及びカチオン性脂質の4要素を含む担体を用いて遺伝子導入を行い、担体の機能評価、ヒストンアセチル化量評価及び細胞分化率評価を行った。 Example 10 Gene Introduction Using a Carrier Containing Four Elements of Histone Acetylase DNA, Histone Deacetylase Inhibitor, Polylactic Acid, and Cationic Lipid In this example, histone acetylase DNA, histone deacetylation Gene transfer was performed using a carrier containing four elements of an enzyme inhibitor, polylactic acid, and cationic lipid, and the function of the carrier, histone acetylation amount and cell differentiation rate were evaluated.
本実施例では、ヒストンアセチル化酵素DNA、ヒストン脱アセチル化酵素阻害剤、ポリ乳酸、及びカチオン性脂質の4要素を含む担体を用いて遺伝子導入を行い、担体の機能評価、ヒストンアセチル化量評価及び細胞分化率評価を行った。 Example 10 Gene Introduction Using a Carrier Containing Four Elements of Histone Acetylase DNA, Histone Deacetylase Inhibitor, Polylactic Acid, and Cationic Lipid In this example, histone acetylase DNA, histone deacetylation Gene transfer was performed using a carrier containing four elements of an enzyme inhibitor, polylactic acid, and cationic lipid, and the function of the carrier, histone acetylation amount and cell differentiation rate were evaluated.
10−1 ポリ乳酸キャリアの調製
ヒストンアセチル化酵素DNA/ヒストン脱アセチル化酵素阻害剤/ポリ乳酸複合体/カチオン性脂質は以下の手順で調製した。 10-1 Preparation of polylactic acid carrier Histone acetylase DNA / histone deacetylase inhibitor / polylactic acid complex / cationic lipid was prepared by the following procedure.
ヒストンアセチル化酵素DNA/ヒストン脱アセチル化酵素阻害剤/ポリ乳酸複合体/カチオン性脂質は以下の手順で調製した。 10-1 Preparation of polylactic acid carrier Histone acetylase DNA / histone deacetylase inhibitor / polylactic acid complex / cationic lipid was prepared by the following procedure.
まず、カチオン性脂質は、様々なアルキル鎖の鎖長を持つ化合物があるが、本研究では、細胞毒性が低く、細胞内導入効率の優れた、アルキル鎖長が16−18である一本鎖もしくは2本鎖のカチオン性脂質を選択した。本実施例では、1本鎖であるステアリルアミンもしくは二本鎖のカチオン性脂質であるN−[1−(2,3−ジオレイオイルオキシ)プロピル]−N,N,N−トリメチル アンモニウム メチル硫酸(DOTAP)を使用した例を示す。ヒストンアセチル化酵素(CAF)をコードしたDNAとカチオン性脂質を、電荷比が1:1となるようにエタノールに溶解し、37℃で1hインキュベートした。
First, there are compounds having various alkyl chain lengths as cationic lipids. In this study, however, a single chain having an alkyl chain length of 16 to 18 has low cytotoxicity and excellent intracellular introduction efficiency. Alternatively, a double-chain cationic lipid was selected. In this example, single-chain stearylamine or double-chain cationic lipid N- [1- (2,3-dioleoyloxy) propyl] -N, N, N-trimethylammonium methylsulfate An example using (DOTAP) is shown. A DNA encoding histone acetylase (CAF) and a cationic lipid were dissolved in ethanol so that the charge ratio was 1: 1, and incubated at 37 ° C. for 1 h.
次に、DNA/カチオン性脂質複合体に50nMのヒストン脱アセチル化酵素阻害剤(トリコスタンチンA(TSA))を加え、さらにポリ乳酸(PLA)をDNA/カチオン性脂質に対して5倍量加え、37℃で1hインキュベートした。インキュベート終了後、サンプルはMWCO1000の透析膜を用いて透析を4日間行なった。最後に、透析を行なったサンプルは凍結乾燥を3日間行い、白色粉末を得た。キャリア中のDNAは、ルシフェラーゼアッセイによる遺伝子発現評価により存在確認を行なった。
Next, 50 nM histone deacetylase inhibitor (tricostatin A (TSA)) is added to the DNA / cationic lipid complex, and polylactic acid (PLA) is added in an amount 5 times that of the DNA / cationic lipid. In addition, it was incubated at 37 ° C. for 1 h. After the incubation, the sample was dialyzed for 4 days using a MWCO1000 dialysis membrane. Finally, the dialyzed sample was freeze-dried for 3 days to obtain a white powder. The presence of DNA in the carrier was confirmed by gene expression evaluation by luciferase assay.
ルシフェラーゼアッセイは、以下の手順で行なった。HepG2細胞は、96ウェルプレートに1×105c細胞/mlで播種し、37℃で24時間インキュベートした。ルシフェラーゼをコードしたプラスミドDNAを含むキャリアを、HepG2細胞に添加し、37℃で48時間インキュベートした。インキュベート終了後、HepG2細胞は回収し、細胞溶解用液(プロメガ社製、ルシフェラーゼアッセイシステム付属、「Cell Culture lysis reagent」)により溶解した。遺伝子発現量は、溶解液に基質を加え、ルミノメータにより測定した。キャリア中の阻害剤は、HDAC活性分析キットを用いて活性評価を行なった。
The luciferase assay was performed according to the following procedure. HepG2 cells were seeded at 1 × 10 5 c cells / ml in 96-well plates and incubated at 37 ° C. for 24 hours. A carrier containing plasmid DNA encoding luciferase was added to HepG2 cells and incubated at 37 ° C. for 48 hours. After completion of the incubation, the HepG2 cells were collected and lysed with a cell lysis solution (manufactured by Promega, attached to the luciferase assay system, “Cell Culture lysis reagent”). The gene expression level was measured by adding a substrate to the lysate and using a luminometer. Inhibitors in the carrier were evaluated for activity using an HDAC activity analysis kit.
10−2 細胞系
(1)キャリア導入
ヒト骨髄性白血病細胞(HL60)を、細胞濃度1×105細胞/mlで12ウェルプレートに播種し、37℃で24時間インキュベートした。調製したキャリアを、HL60細胞に添加し、37℃で48、96、192時間インキュベートした。インキュベート終了後の細胞は、一方は、顆粒球を特異的に染色する手法であるNBT染色により細胞分化率評価を行なった。他方では、細胞を細胞溶解用液により溶解し、タンパク質溶液を得た。
(2)ヒストンアセチル化量評価(ウエスタンブロット解析)
ヒストンアセチル化量の変化を、上記得られたタンパク質溶液を用いて、ウエスタンブロット法により評価した。回収したタンパク質溶液は、タンパク質のジスルフィド結合を切断するために、還元剤を用いて95℃で5分間インキュベートした。調製したサンプルを15%ポリアクリルアミドゲルを用いて、SDS−PAGEを行なった。次に、メタノールにより親水化処理を行なったPVDF膜と泳動したゲルとを重ね合わせ、ゲルからPVDG膜へタンパク質を転写した。転写したPVDF膜を、5%スキムミルクに浸けて、一時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。洗浄したPVDF膜は、一次抗体反応を行なった。一次抗体は、Ac−H3K9,K18,K27(Cell Signaling technology Japan社製)およびコントロールであるβ−アクチンを用いた。一次抗体は、洗浄液で1000倍に希釈して使用した。希釈した抗体溶液にPVDF膜を浸し、6時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。次に、二次抗体反応を行なった。二次抗体は、ホースラディッシュペルオキシダーゼ(HRP)を用いた。HRP抗体は、洗浄液で5000倍に希釈して使用した。希釈した抗体溶液にPVDF膜を浸し、6時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。最後に、検出試薬としてECL Prime Western Blotting Detection System(GEヘルスケアジャパン社製)を使用し、発光検出を行なった。検出試薬をPVDF膜に滴下し、5分間静置した。その後、PVDF膜は、ATTO製の撮影装置 AE−9300 Ez−Capture MGを用いて化学発光検出を行なった。
(3)細胞分化率評価(NBT染色)
ニトロブルーテトラゾリウム(NBT)溶液は、0.2% NBT、20% FBSとなるように調製した。インキュベート終了後のHL60細胞を、1×106細胞/mlとなるようにRPMI培地に懸濁した。次にRPMI培地と等量のNBT溶液を加え、さらにホルボールミリスチルアセテート(PMA)を2×10−6Mとなるように添加し、37℃で30分インキュベートした。インキュベート終了後、1200rpmで5分遠心分離し、上清を除去した。最後に、PBSに再懸濁させ、血球計数盤を用いて細胞のカウントを行なった。分化率(%)は、100×染色された細胞数/全細胞数として求めた。 10-2 Cell Line (1) Carrier Introduction Human myeloid leukemia cells (HL60) were seeded in 12-well plates at a cell concentration of 1 × 10 5 cells / ml and incubated at 37 ° C. for 24 hours. The prepared carrier was added to HL60 cells and incubated at 37 ° C. for 48, 96, 192 hours. One of the cells after completion of the incubation was evaluated for cell differentiation rate by NBT staining, which is a technique for specifically staining granulocytes. On the other hand, the cells were lysed with a cell lysis solution to obtain a protein solution.
(2) Evaluation of histone acetylation (Western blot analysis)
Changes in the amount of histone acetylation were evaluated by Western blotting using the protein solution obtained above. The recovered protein solution was incubated at 95 ° C. for 5 minutes with a reducing agent in order to cleave the disulfide bond of the protein. The prepared sample was subjected to SDS-PAGE using a 15% polyacrylamide gel. Next, the PVDF membrane hydrophilized with methanol and the migrated gel were superposed, and the protein was transferred from the gel to the PVDG membrane. The transferred PVDF membrane was immersed in 5% skim milk and allowed to stand for 1 hour. Thereafter, the PVDF membrane was cleaned using a cleaning solution. The washed PVDF membrane was subjected to a primary antibody reaction. As primary antibodies, Ac-H3K9, K18, K27 (manufactured by Cell Signaling technology Japan) and β-actin as a control were used. The primary antibody was used after being diluted 1000 times with a washing solution. The PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution. Next, a secondary antibody reaction was performed. As the secondary antibody, horseradish peroxidase (HRP) was used. The HRP antibody was used after being diluted 5000 times with a washing solution. The PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution. Finally, ECL Prime Western Blotting Detection System (manufactured by GE Healthcare Japan) was used as a detection reagent to detect luminescence. The detection reagent was dropped on the PVDF membrane and allowed to stand for 5 minutes. Thereafter, the PVDF film was subjected to chemiluminescence detection using an imaging device AE-9300 Ez-Capture MG manufactured by ATTO.
(3) Cell differentiation rate evaluation (NBT staining)
A nitro blue tetrazolium (NBT) solution was prepared to be 0.2% NBT, 20% FBS. HL60 cells after completion of the incubation were suspended in RPMI medium so as to be 1 × 10 6 cells / ml. Next, an NBT solution equivalent to RPMI medium was added, and phorbol myristyl acetate (PMA) was further added to 2 × 10 −6 M, followed by incubation at 37 ° C. for 30 minutes. After completion of the incubation, the mixture was centrifuged at 1200 rpm for 5 minutes, and the supernatant was removed. Finally, it was resuspended in PBS and the cells were counted using a hemocytometer. The differentiation rate (%) was calculated as 100 × number of stained cells / total number of cells.
(1)キャリア導入
ヒト骨髄性白血病細胞(HL60)を、細胞濃度1×105細胞/mlで12ウェルプレートに播種し、37℃で24時間インキュベートした。調製したキャリアを、HL60細胞に添加し、37℃で48、96、192時間インキュベートした。インキュベート終了後の細胞は、一方は、顆粒球を特異的に染色する手法であるNBT染色により細胞分化率評価を行なった。他方では、細胞を細胞溶解用液により溶解し、タンパク質溶液を得た。
(2)ヒストンアセチル化量評価(ウエスタンブロット解析)
ヒストンアセチル化量の変化を、上記得られたタンパク質溶液を用いて、ウエスタンブロット法により評価した。回収したタンパク質溶液は、タンパク質のジスルフィド結合を切断するために、還元剤を用いて95℃で5分間インキュベートした。調製したサンプルを15%ポリアクリルアミドゲルを用いて、SDS−PAGEを行なった。次に、メタノールにより親水化処理を行なったPVDF膜と泳動したゲルとを重ね合わせ、ゲルからPVDG膜へタンパク質を転写した。転写したPVDF膜を、5%スキムミルクに浸けて、一時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。洗浄したPVDF膜は、一次抗体反応を行なった。一次抗体は、Ac−H3K9,K18,K27(Cell Signaling technology Japan社製)およびコントロールであるβ−アクチンを用いた。一次抗体は、洗浄液で1000倍に希釈して使用した。希釈した抗体溶液にPVDF膜を浸し、6時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。次に、二次抗体反応を行なった。二次抗体は、ホースラディッシュペルオキシダーゼ(HRP)を用いた。HRP抗体は、洗浄液で5000倍に希釈して使用した。希釈した抗体溶液にPVDF膜を浸し、6時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。最後に、検出試薬としてECL Prime Western Blotting Detection System(GEヘルスケアジャパン社製)を使用し、発光検出を行なった。検出試薬をPVDF膜に滴下し、5分間静置した。その後、PVDF膜は、ATTO製の撮影装置 AE−9300 Ez−Capture MGを用いて化学発光検出を行なった。
(3)細胞分化率評価(NBT染色)
ニトロブルーテトラゾリウム(NBT)溶液は、0.2% NBT、20% FBSとなるように調製した。インキュベート終了後のHL60細胞を、1×106細胞/mlとなるようにRPMI培地に懸濁した。次にRPMI培地と等量のNBT溶液を加え、さらにホルボールミリスチルアセテート(PMA)を2×10−6Mとなるように添加し、37℃で30分インキュベートした。インキュベート終了後、1200rpmで5分遠心分離し、上清を除去した。最後に、PBSに再懸濁させ、血球計数盤を用いて細胞のカウントを行なった。分化率(%)は、100×染色された細胞数/全細胞数として求めた。 10-2 Cell Line (1) Carrier Introduction Human myeloid leukemia cells (HL60) were seeded in 12-well plates at a cell concentration of 1 × 10 5 cells / ml and incubated at 37 ° C. for 24 hours. The prepared carrier was added to HL60 cells and incubated at 37 ° C. for 48, 96, 192 hours. One of the cells after completion of the incubation was evaluated for cell differentiation rate by NBT staining, which is a technique for specifically staining granulocytes. On the other hand, the cells were lysed with a cell lysis solution to obtain a protein solution.
(2) Evaluation of histone acetylation (Western blot analysis)
Changes in the amount of histone acetylation were evaluated by Western blotting using the protein solution obtained above. The recovered protein solution was incubated at 95 ° C. for 5 minutes with a reducing agent in order to cleave the disulfide bond of the protein. The prepared sample was subjected to SDS-PAGE using a 15% polyacrylamide gel. Next, the PVDF membrane hydrophilized with methanol and the migrated gel were superposed, and the protein was transferred from the gel to the PVDG membrane. The transferred PVDF membrane was immersed in 5% skim milk and allowed to stand for 1 hour. Thereafter, the PVDF membrane was cleaned using a cleaning solution. The washed PVDF membrane was subjected to a primary antibody reaction. As primary antibodies, Ac-H3K9, K18, K27 (manufactured by Cell Signaling technology Japan) and β-actin as a control were used. The primary antibody was used after being diluted 1000 times with a washing solution. The PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution. Next, a secondary antibody reaction was performed. As the secondary antibody, horseradish peroxidase (HRP) was used. The HRP antibody was used after being diluted 5000 times with a washing solution. The PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution. Finally, ECL Prime Western Blotting Detection System (manufactured by GE Healthcare Japan) was used as a detection reagent to detect luminescence. The detection reagent was dropped on the PVDF membrane and allowed to stand for 5 minutes. Thereafter, the PVDF film was subjected to chemiluminescence detection using an imaging device AE-9300 Ez-Capture MG manufactured by ATTO.
(3) Cell differentiation rate evaluation (NBT staining)
A nitro blue tetrazolium (NBT) solution was prepared to be 0.2% NBT, 20% FBS. HL60 cells after completion of the incubation were suspended in RPMI medium so as to be 1 × 10 6 cells / ml. Next, an NBT solution equivalent to RPMI medium was added, and phorbol myristyl acetate (PMA) was further added to 2 × 10 −6 M, followed by incubation at 37 ° C. for 30 minutes. After completion of the incubation, the mixture was centrifuged at 1200 rpm for 5 minutes, and the supernatant was removed. Finally, it was resuspended in PBS and the cells were counted using a hemocytometer. The differentiation rate (%) was calculated as 100 × number of stained cells / total number of cells.
10−3 結果
(1)カチオン性脂質としてDOTAPを用いたポリ乳酸キャリアの機能評価
ルシフェラーゼアッセイによる遺伝子発現評価では、ポリ乳酸キャリアを導入した細胞で遺伝子発現が確認された。HDAC活性分析キットを用いて活性評価を行なったところ、薬剤を添加していないコントロールに対して、65%の阻害活性を示した。以上の結果から、DNAおよび阻害剤がキャリア内に封入されていることが確認された。
(2)ヒストンアセチル化量評価
2日後における細胞のヒストンアセチル化量は、ヒストン脱アセチル化酵素阻害剤のみを添加した場合は、何も添加していない場合と比較して1.4倍、ヒストンアセチル化酵素DNAのみを添加した場合は1.25倍上昇していた。一方、カチオン性脂質としてDOTAPを用いたキャリアを導入した場合は、1.65倍上昇した。4,8日後においても同様の傾向がみられ、カチオン性脂質としてDOTAPを用いたキャリアを添加した細胞は8日後において、コントロールに対してアセチル化量が2倍上昇していた。
(3)細胞分化率評価
2,4,8日後における顆粒球への分化率は、ヒストン脱アセチル化酵素阻害剤のみを添加した場合、それぞれ29,33,35%であった。一方でカチオン性脂質としてDOTAPを用いたキャリアを導入した細胞の分化率は、それぞれ45,51,59%であった。 10-3 Results (1) Functional evaluation of polylactic acid carrier using DOTAP as cationic lipid In gene expression evaluation by luciferase assay, gene expression was confirmed in cells introduced with polylactic acid carrier. When the activity was evaluated using the HDAC activity analysis kit, the inhibitory activity was 65% as compared with the control to which no drug was added. From the above results, it was confirmed that the DNA and the inhibitor were encapsulated in the carrier.
(2) Evaluation of histone acetylation amount The amount of histone acetylation of cells after 2 days is 1.4 times higher when histone deacetylase inhibitor alone is added than when nothing is added. When only acetylase DNA was added, it increased by 1.25 times. On the other hand, when a carrier using DOTAP as a cationic lipid was introduced, it increased 1.65 times. The same tendency was observed after 4 and 8 days, and the acetylation amount of the cells to which the carrier using DOTAP as the cationic lipid was added was increased by 2 times compared to the control after 8 days.
(3) Cell differentiation rate evaluation The differentiation rate into granulocytes after 2, 4, and 8 days was 29, 33, and 35%, respectively, when only a histone deacetylase inhibitor was added. On the other hand, the differentiation rates of cells introduced with carriers using DOTAP as the cationic lipid were 45, 51 and 59%, respectively.
(1)カチオン性脂質としてDOTAPを用いたポリ乳酸キャリアの機能評価
ルシフェラーゼアッセイによる遺伝子発現評価では、ポリ乳酸キャリアを導入した細胞で遺伝子発現が確認された。HDAC活性分析キットを用いて活性評価を行なったところ、薬剤を添加していないコントロールに対して、65%の阻害活性を示した。以上の結果から、DNAおよび阻害剤がキャリア内に封入されていることが確認された。
(2)ヒストンアセチル化量評価
2日後における細胞のヒストンアセチル化量は、ヒストン脱アセチル化酵素阻害剤のみを添加した場合は、何も添加していない場合と比較して1.4倍、ヒストンアセチル化酵素DNAのみを添加した場合は1.25倍上昇していた。一方、カチオン性脂質としてDOTAPを用いたキャリアを導入した場合は、1.65倍上昇した。4,8日後においても同様の傾向がみられ、カチオン性脂質としてDOTAPを用いたキャリアを添加した細胞は8日後において、コントロールに対してアセチル化量が2倍上昇していた。
(3)細胞分化率評価
2,4,8日後における顆粒球への分化率は、ヒストン脱アセチル化酵素阻害剤のみを添加した場合、それぞれ29,33,35%であった。一方でカチオン性脂質としてDOTAPを用いたキャリアを導入した細胞の分化率は、それぞれ45,51,59%であった。 10-3 Results (1) Functional evaluation of polylactic acid carrier using DOTAP as cationic lipid In gene expression evaluation by luciferase assay, gene expression was confirmed in cells introduced with polylactic acid carrier. When the activity was evaluated using the HDAC activity analysis kit, the inhibitory activity was 65% as compared with the control to which no drug was added. From the above results, it was confirmed that the DNA and the inhibitor were encapsulated in the carrier.
(2) Evaluation of histone acetylation amount The amount of histone acetylation of cells after 2 days is 1.4 times higher when histone deacetylase inhibitor alone is added than when nothing is added. When only acetylase DNA was added, it increased by 1.25 times. On the other hand, when a carrier using DOTAP as a cationic lipid was introduced, it increased 1.65 times. The same tendency was observed after 4 and 8 days, and the acetylation amount of the cells to which the carrier using DOTAP as the cationic lipid was added was increased by 2 times compared to the control after 8 days.
(3) Cell differentiation rate evaluation The differentiation rate into granulocytes after 2, 4, and 8 days was 29, 33, and 35%, respectively, when only a histone deacetylase inhibitor was added. On the other hand, the differentiation rates of cells introduced with carriers using DOTAP as the cationic lipid were 45, 51 and 59%, respectively.
小括
本実施例では、遺伝子導入によるエピジェネティクス修飾の促進および阻害剤による逆反応の抑制を同時に行なうことでエピジェネティクス修飾制御を行なった。エピジェネティクス修飾のうちヒストンアセチル化を促進することで、抗がん治療が可能であることが見いだされた。 Summary In this example, epigenetics modification was controlled by simultaneously promoting epigenetics modification by gene introduction and suppressing reverse reaction by an inhibitor. It was found that anti-cancer therapy is possible by promoting histone acetylation among epigenetic modifications.
本実施例では、遺伝子導入によるエピジェネティクス修飾の促進および阻害剤による逆反応の抑制を同時に行なうことでエピジェネティクス修飾制御を行なった。エピジェネティクス修飾のうちヒストンアセチル化を促進することで、抗がん治療が可能であることが見いだされた。 Summary In this example, epigenetics modification was controlled by simultaneously promoting epigenetics modification by gene introduction and suppressing reverse reaction by an inhibitor. It was found that anti-cancer therapy is possible by promoting histone acetylation among epigenetic modifications.
実施例11 ヒストンアセチル化酵素DNA、ヒストン脱アセチル化酵素阻害剤、リン酸カルシウム、及びポリグルタミン酸の4要素を含む担体を用いた遺伝子導入
本実施例では、ヒストンアセチル化酵素DNA、ヒストン脱アセチル化酵素阻害剤、ポリ乳酸、及びカチオン性脂質の4要素を含む担体を用いて遺伝子導入を行い、担体の機能評価、ヒストンアセチル化量評価及び細胞分化率評価を行った。 Example 11 Gene Introduction Using a Carrier Containing Four Elements of Histone Acetylase DNA, Histone Deacetylase Inhibitor, Calcium Phosphate, and Polyglutamic Acid In this example, histone acetylase DNA, histone deacetylase inhibition Genes were introduced using a carrier containing 4 elements of a drug, polylactic acid, and cationic lipid, and the function of the carrier, histone acetylation amount and cell differentiation rate were evaluated.
本実施例では、ヒストンアセチル化酵素DNA、ヒストン脱アセチル化酵素阻害剤、ポリ乳酸、及びカチオン性脂質の4要素を含む担体を用いて遺伝子導入を行い、担体の機能評価、ヒストンアセチル化量評価及び細胞分化率評価を行った。 Example 11 Gene Introduction Using a Carrier Containing Four Elements of Histone Acetylase DNA, Histone Deacetylase Inhibitor, Calcium Phosphate, and Polyglutamic Acid In this example, histone acetylase DNA, histone deacetylase inhibition Genes were introduced using a carrier containing 4 elements of a drug, polylactic acid, and cationic lipid, and the function of the carrier, histone acetylation amount and cell differentiation rate were evaluated.
11−1 HepG2細胞系
CAFプラスミドとTSAの導入実験
(1)複合体の調製
2.5M CaCl2溶液、10mg/ml ポリグルタミン酸(PLE)溶液をヒストンアセチル化酵素であるCAFをコードしたプラスミドDNA溶液と混合した。Ca2+の最終濃度は250mM、PLEの最終量は5μgとなるように調製した。次に前述の混合溶液と等量のHepes/Phosphate溶液を混合し、数分間撹拌した後、37℃で24時間インキュベートした。インキュベート終了後、10000rpmで5分間遠心分離し、複合体を回収した。
(2)複合体導入
HepG2細胞は1×105細胞/mlで96ウェルプレートに播種し、37℃で24時間インキュベートした。調製した複合体とヒストン脱アセチル化酵素阻害剤であるTSA(最終量が1μgとなるように)をHepG2細胞に添加し、37℃で24時間インキュベートした。インキュベート終了後、細胞に取り込まれなかった複合体を除くために培地交換を行なった。その後24時間毎に培地交換を2回行った。インキュベート終了後の細胞を細胞溶解用液により細胞溶解し、タンパク質溶液を得た。
(3)ヒストンアセチル化量評価(ウエスタンブロット解析)
ヒストンアセチル化量の変化を、ウエスタンブロット法により評価した。アセチル化ヒストンの評価は、Ac−H3K9,K18,K27の抗体(Cell Signaling technology Japan社製)を用いて行なった。 11-1 HepG2 cell line CAF plasmid and TSA introduction experiment (1) Preparation of complex 2.5M CaCl 2 solution, 10 mg / ml Polyglutamic acid (PLE) solution is a plasmid DNA solution encoding CAF which is histone acetylase Mixed with. The final concentration of Ca 2+ was 250 mM, and the final amount of PLE was 5 μg. Next, the above-mentioned mixed solution was mixed with an equal amount of Hepes / Phosphate solution, stirred for several minutes, and then incubated at 37 ° C. for 24 hours. After completion of the incubation, the complex was collected by centrifugation at 10,000 rpm for 5 minutes.
(2) Complex introduction HepG2 cells were seeded in a 96-well plate at 1 × 10 5 cells / ml and incubated at 37 ° C. for 24 hours. The prepared complex and histone deacetylase inhibitor TSA (final amount 1 μg) were added to HepG2 cells and incubated at 37 ° C. for 24 hours. After the incubation, the medium was changed to remove the complex that was not taken up by the cells. Thereafter, the medium was changed twice every 24 hours. Cells after incubation were lysed with a cell lysis solution to obtain a protein solution.
(3) Evaluation of histone acetylation (Western blot analysis)
Changes in the amount of histone acetylation were evaluated by Western blotting. The evaluation of acetylated histone was performed using Ac-H3K9, K18, K27 antibodies (manufactured by Cell Signaling technology Japan).
CAFプラスミドとTSAの導入実験
(1)複合体の調製
2.5M CaCl2溶液、10mg/ml ポリグルタミン酸(PLE)溶液をヒストンアセチル化酵素であるCAFをコードしたプラスミドDNA溶液と混合した。Ca2+の最終濃度は250mM、PLEの最終量は5μgとなるように調製した。次に前述の混合溶液と等量のHepes/Phosphate溶液を混合し、数分間撹拌した後、37℃で24時間インキュベートした。インキュベート終了後、10000rpmで5分間遠心分離し、複合体を回収した。
(2)複合体導入
HepG2細胞は1×105細胞/mlで96ウェルプレートに播種し、37℃で24時間インキュベートした。調製した複合体とヒストン脱アセチル化酵素阻害剤であるTSA(最終量が1μgとなるように)をHepG2細胞に添加し、37℃で24時間インキュベートした。インキュベート終了後、細胞に取り込まれなかった複合体を除くために培地交換を行なった。その後24時間毎に培地交換を2回行った。インキュベート終了後の細胞を細胞溶解用液により細胞溶解し、タンパク質溶液を得た。
(3)ヒストンアセチル化量評価(ウエスタンブロット解析)
ヒストンアセチル化量の変化を、ウエスタンブロット法により評価した。アセチル化ヒストンの評価は、Ac−H3K9,K18,K27の抗体(Cell Signaling technology Japan社製)を用いて行なった。 11-1 HepG2 cell line CAF plasmid and TSA introduction experiment (1) Preparation of complex 2.5M CaCl 2 solution, 10 mg / ml Polyglutamic acid (PLE) solution is a plasmid DNA solution encoding CAF which is histone acetylase Mixed with. The final concentration of Ca 2+ was 250 mM, and the final amount of PLE was 5 μg. Next, the above-mentioned mixed solution was mixed with an equal amount of Hepes / Phosphate solution, stirred for several minutes, and then incubated at 37 ° C. for 24 hours. After completion of the incubation, the complex was collected by centrifugation at 10,000 rpm for 5 minutes.
(2) Complex introduction HepG2 cells were seeded in a 96-well plate at 1 × 10 5 cells / ml and incubated at 37 ° C. for 24 hours. The prepared complex and histone deacetylase inhibitor TSA (
(3) Evaluation of histone acetylation (Western blot analysis)
Changes in the amount of histone acetylation were evaluated by Western blotting. The evaluation of acetylated histone was performed using Ac-H3K9, K18, K27 antibodies (manufactured by Cell Signaling technology Japan).
具体的には、回収したタンパク質溶液を、タンパク質のジスルフィド結合を切断するために、還元剤を用いて95℃で5分間インキュベートした。調製したサンプルを15% ポリアクリルアミドゲルを用いて、SDS−PAGEを行なった。次に、メタノールにより親水化処理を行なったPVDF膜と泳動したゲルとを重ね合わせ、ゲルからPVDG膜へタンパク質を転写した。転写したPVDF膜を、5% スキムミルクに浸けて、一時間放置した。その後、PVDF膜を、洗浄液を用いて洗浄した。洗浄したPVDF膜は、一次抗体反応を行なった。一次抗体は、Ac−H3K9,K18,K27の抗体(Cell Signaling technology Japan社製)およびコントロールである抗β−アクチン抗体を用いた。
Specifically, the recovered protein solution was incubated at 95 ° C. for 5 minutes using a reducing agent in order to cleave the disulfide bond of the protein. The prepared sample was subjected to SDS-PAGE using a 15% polyacrylamide gel. Next, the PVDF membrane hydrophilized with methanol and the migrated gel were superposed, and the protein was transferred from the gel to the PVDG membrane. The transferred PVDF membrane was soaked in 5% skim milk and allowed to stand for 1 hour. Thereafter, the PVDF membrane was cleaned using a cleaning solution. The washed PVDF membrane was subjected to a primary antibody reaction. As primary antibodies, Ac-H3K9, K18, and K27 antibodies (Cell Signaling Technology Japan) and a control anti-β-actin antibody were used.
一次抗体は、洗浄液で1000倍に希釈して使用した。希釈した抗体溶液にPVDF膜を浸し、6時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。次に、二次抗体反応を行なった。二次抗体は、抗ホースラディッシュペルオキシダーゼ(HRP)抗体を用いた。HRP抗体は洗浄液で5000倍に希釈して使用した。希釈した抗体溶液にPVDF膜を浸し、6時間放置した。その後、PVDF膜を洗浄液を用いて洗浄した。最後に、検出試薬としてECL Prime Western Blotting Detection System(GEヘルスケアジャパン社製)を使用し、発光検出を行なった。検出試薬をPVDF膜に滴下し、5分間静置した。その後、PVDF膜は、ATTO製の撮影装置 AE−9300 Ez−Capture MGを用いて化学発光検出を行なった。
The primary antibody was used after being diluted 1000 times with a washing solution. The PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution. Next, a secondary antibody reaction was performed. As the secondary antibody, an anti-horseradish peroxidase (HRP) antibody was used. The HRP antibody was used after being diluted 5000 times with a washing solution. The PVDF membrane was immersed in the diluted antibody solution and left for 6 hours. Thereafter, the PVDF membrane was cleaned using a cleaning solution. Finally, luminescence detection was performed using ECL Prime Western Blotting Detection System (manufactured by GE Healthcare Japan) as a detection reagent. The detection reagent was dropped on the PVDF membrane and allowed to stand for 5 minutes. Thereafter, the PVDF film was subjected to chemiluminescence detection using an ATTO imaging device AE-9300 Ez-Capture MG.
11−2 HL60細胞系
(1)キャリア導入
ヒト骨髄性白血病細胞(HL60)は、細胞濃度1×105細胞/mlで12ウェルプレートに播種し、37℃で24時間インキュベートした。CaP/CAFプラスミドDNA/TSA/PLE複合体は、HL60細胞に添加し、37℃で48時間インキュベートした。インキュベート終了後の細胞は、一方は、顆粒球を特異的に染色する手法であるNBT染色により細胞分化率評価を行なった。他方では、細胞を細胞溶解用液により細胞溶解し、タンパク質溶液を得た。ヒストンアセチル化量の変化は、このタンパク質溶液を用いて、ウエスタンブロット法により評価した。
(2)ヒストンアセチル化量評価
ヒストンアセチル化量の変化は、ウエスタンブロット法により評価した。アセチル化ヒストンの評価は、Ac−H3K9、Ac−H3K18、Ac−H4K12の抗体(Cell Signaling technology Japan社製)を用いて行なった。
(3)細胞分化率評価(NBT染色)
ニトロブルーテトラゾリウム(NBT)溶液は、0.2% NBT、20% FBSとなるように調製した。インキュベート終了後のHL60細胞を、1×106細胞/mlとなるようにRPMI培地に懸濁した。次にRPMI培地と等量のNBT溶液を加え、さらにホルボールミリスチルアセテート(PMA)を2×10−6Mとなるように添加し、37℃で30分インキュベートした。インキュベート終了後、1200rpmで5分遠心分離し、上清を除去した。最後に、PBSに再懸濁させ、血球計数盤を用いて細胞のカウントを行なった。分化率(%)は、100×染色された細胞数/全細胞数として求めた。 11-2 HL60 cell line (1) Carrier introduction Human myeloid leukemia cells (HL60) were seeded in 12-well plates at a cell concentration of 1 × 10 5 cells / ml and incubated at 37 ° C. for 24 hours. CaP / CAF plasmid DNA / TSA / PLE complex was added to HL60 cells and incubated at 37 ° C. for 48 hours. One of the cells after completion of the incubation was evaluated for cell differentiation rate by NBT staining, which is a technique for specifically staining granulocytes. On the other hand, the cells were lysed with a cell lysis solution to obtain a protein solution. Changes in the amount of histone acetylation were evaluated by Western blotting using this protein solution.
(2) Evaluation of histone acetylation amount The change in histone acetylation amount was evaluated by Western blotting. The evaluation of acetylated histone was performed using Ac-H3K9, Ac-H3K18, and Ac-H4K12 antibodies (manufactured by Cell Signaling technology Japan).
(3) Cell differentiation rate evaluation (NBT staining)
A nitro blue tetrazolium (NBT) solution was prepared to be 0.2% NBT, 20% FBS. HL60 cells after completion of the incubation were suspended in RPMI medium so as to be 1 × 10 6 cells / ml. Next, an NBT solution equivalent to RPMI medium was added, and phorbol myristyl acetate (PMA) was further added to 2 × 10 −6 M, followed by incubation at 37 ° C. for 30 minutes. After completion of the incubation, the mixture was centrifuged at 1200 rpm for 5 minutes, and the supernatant was removed. Finally, it was resuspended in PBS and the cells were counted using a hemocytometer. The differentiation rate (%) was calculated as 100 × number of stained cells / total number of cells.
(1)キャリア導入
ヒト骨髄性白血病細胞(HL60)は、細胞濃度1×105細胞/mlで12ウェルプレートに播種し、37℃で24時間インキュベートした。CaP/CAFプラスミドDNA/TSA/PLE複合体は、HL60細胞に添加し、37℃で48時間インキュベートした。インキュベート終了後の細胞は、一方は、顆粒球を特異的に染色する手法であるNBT染色により細胞分化率評価を行なった。他方では、細胞を細胞溶解用液により細胞溶解し、タンパク質溶液を得た。ヒストンアセチル化量の変化は、このタンパク質溶液を用いて、ウエスタンブロット法により評価した。
(2)ヒストンアセチル化量評価
ヒストンアセチル化量の変化は、ウエスタンブロット法により評価した。アセチル化ヒストンの評価は、Ac−H3K9、Ac−H3K18、Ac−H4K12の抗体(Cell Signaling technology Japan社製)を用いて行なった。
(3)細胞分化率評価(NBT染色)
ニトロブルーテトラゾリウム(NBT)溶液は、0.2% NBT、20% FBSとなるように調製した。インキュベート終了後のHL60細胞を、1×106細胞/mlとなるようにRPMI培地に懸濁した。次にRPMI培地と等量のNBT溶液を加え、さらにホルボールミリスチルアセテート(PMA)を2×10−6Mとなるように添加し、37℃で30分インキュベートした。インキュベート終了後、1200rpmで5分遠心分離し、上清を除去した。最後に、PBSに再懸濁させ、血球計数盤を用いて細胞のカウントを行なった。分化率(%)は、100×染色された細胞数/全細胞数として求めた。 11-2 HL60 cell line (1) Carrier introduction Human myeloid leukemia cells (HL60) were seeded in 12-well plates at a cell concentration of 1 × 10 5 cells / ml and incubated at 37 ° C. for 24 hours. CaP / CAF plasmid DNA / TSA / PLE complex was added to HL60 cells and incubated at 37 ° C. for 48 hours. One of the cells after completion of the incubation was evaluated for cell differentiation rate by NBT staining, which is a technique for specifically staining granulocytes. On the other hand, the cells were lysed with a cell lysis solution to obtain a protein solution. Changes in the amount of histone acetylation were evaluated by Western blotting using this protein solution.
(2) Evaluation of histone acetylation amount The change in histone acetylation amount was evaluated by Western blotting. The evaluation of acetylated histone was performed using Ac-H3K9, Ac-H3K18, and Ac-H4K12 antibodies (manufactured by Cell Signaling technology Japan).
(3) Cell differentiation rate evaluation (NBT staining)
A nitro blue tetrazolium (NBT) solution was prepared to be 0.2% NBT, 20% FBS. HL60 cells after completion of the incubation were suspended in RPMI medium so as to be 1 × 10 6 cells / ml. Next, an NBT solution equivalent to RPMI medium was added, and phorbol myristyl acetate (PMA) was further added to 2 × 10 −6 M, followed by incubation at 37 ° C. for 30 minutes. After completion of the incubation, the mixture was centrifuged at 1200 rpm for 5 minutes, and the supernatant was removed. Finally, it was resuspended in PBS and the cells were counted using a hemocytometer. The differentiation rate (%) was calculated as 100 × number of stained cells / total number of cells.
11−3 結果
(1)HepG2細胞系−CAFプラスミドDNAとトリコスタチンAを用いた実験
何も添加していない細胞と比較して、CAFプラスミドDNAのみを添加した細胞は、ヒストンアセチル化量が1.10倍であり、トリコスタチンAのみを添加した細胞では1.21倍上昇していた。さらに、リン酸カルシウムキャリアを導入した細胞では、2.51倍アセチル化量が上昇していた。
(2)HL60細胞系
(a)ヒストンアセチル化量評価
何も添加していない細胞と比較して、CAFプラスミドDNAのみを添加した細胞は、ヒストンアセチル化量が1.74倍であり、トリコスタチンAのみを添加した細胞では1.75倍であった。さらに、リン酸カルシウムキャリアを導入した細胞では、1.89倍アセチル化量が変化していた。
(b)細胞分化率評価
トリコスタチンAのみを添加した細胞では、27%の細胞が顆粒球へ分化していた。一方で、リン酸カルシウムキャリアを添加した細胞は、36%が顆粒球へ分化していた。 11-3 Results (1) HepG2 cell line-Experiment using CAF plasmid DNA and trichostatin A Compared with cells to which nothing was added, cells to which only CAF plasmid DNA was added had a histone acetylation level of 1 10-fold, and 1.21 times higher in cells to which only trichostatin A was added. Furthermore, the amount of acetylation increased 2.51 times in the cells into which the calcium phosphate carrier was introduced.
(2) HL60 cell line (a) Evaluation of histone acetylation amount Compared with cells to which nothing was added, cells to which only CAF plasmid DNA was added had a histone acetylation amount of 1.74 times, and trichostatin The number of cells added with A alone was 1.75 times. Furthermore, in the cells into which the calcium phosphate carrier was introduced, the acetylation amount was changed 1.89 times.
(B) Cell differentiation rate evaluation In cells to which only trichostatin A was added, 27% of the cells differentiated into granulocytes. On the other hand, 36% of cells added with calcium phosphate carrier were differentiated into granulocytes.
(1)HepG2細胞系−CAFプラスミドDNAとトリコスタチンAを用いた実験
何も添加していない細胞と比較して、CAFプラスミドDNAのみを添加した細胞は、ヒストンアセチル化量が1.10倍であり、トリコスタチンAのみを添加した細胞では1.21倍上昇していた。さらに、リン酸カルシウムキャリアを導入した細胞では、2.51倍アセチル化量が上昇していた。
(2)HL60細胞系
(a)ヒストンアセチル化量評価
何も添加していない細胞と比較して、CAFプラスミドDNAのみを添加した細胞は、ヒストンアセチル化量が1.74倍であり、トリコスタチンAのみを添加した細胞では1.75倍であった。さらに、リン酸カルシウムキャリアを導入した細胞では、1.89倍アセチル化量が変化していた。
(b)細胞分化率評価
トリコスタチンAのみを添加した細胞では、27%の細胞が顆粒球へ分化していた。一方で、リン酸カルシウムキャリアを添加した細胞は、36%が顆粒球へ分化していた。 11-3 Results (1) HepG2 cell line-Experiment using CAF plasmid DNA and trichostatin A Compared with cells to which nothing was added, cells to which only CAF plasmid DNA was added had a histone acetylation level of 1 10-fold, and 1.21 times higher in cells to which only trichostatin A was added. Furthermore, the amount of acetylation increased 2.51 times in the cells into which the calcium phosphate carrier was introduced.
(2) HL60 cell line (a) Evaluation of histone acetylation amount Compared with cells to which nothing was added, cells to which only CAF plasmid DNA was added had a histone acetylation amount of 1.74 times, and trichostatin The number of cells added with A alone was 1.75 times. Furthermore, in the cells into which the calcium phosphate carrier was introduced, the acetylation amount was changed 1.89 times.
(B) Cell differentiation rate evaluation In cells to which only trichostatin A was added, 27% of the cells differentiated into granulocytes. On the other hand, 36% of cells added with calcium phosphate carrier were differentiated into granulocytes.
小括
本実施例では、遺伝子導入によるエピジェネティクス修飾の促進および阻害剤による逆反応の抑制を同時に行なうことでエピジェネティクス修飾制御を行なった。エピジェネティクス修飾のうちヒストンアセチル化を促進することで、抗がん治療が可能であることが見いだされた。 Summary In this example, epigenetics modification was controlled by simultaneously promoting epigenetics modification by gene introduction and suppressing reverse reaction by an inhibitor. It was found that anti-cancer therapy is possible by promoting histone acetylation among epigenetic modifications.
本実施例では、遺伝子導入によるエピジェネティクス修飾の促進および阻害剤による逆反応の抑制を同時に行なうことでエピジェネティクス修飾制御を行なった。エピジェネティクス修飾のうちヒストンアセチル化を促進することで、抗がん治療が可能であることが見いだされた。 Summary In this example, epigenetics modification was controlled by simultaneously promoting epigenetics modification by gene introduction and suppressing reverse reaction by an inhibitor. It was found that anti-cancer therapy is possible by promoting histone acetylation among epigenetic modifications.
実施例12 アニオン性高分子を用いたクロマチン構造の制御
本実施例では、細胞内における、アニオン性高分子によりクロマチン構造を工学的に制御について記載する。アニオン性高分子であるポリアスパラギン酸−エチレンジアミン−β−シクロデキストリン(PLD−EDA−β−CD)を核内導入し、クロマチン構造の弛緩およびクロマチン構造の弛緩に伴うヒストンアセチル化量の上昇が見出された。 Example 12 Control of Chromatin Structure Using Anionic Polymer In this example, engineering control of chromatin structure by anionic polymer in cells is described. Polyaspartic acid-ethylenediamine-β-cyclodextrin (PLD-EDA-β-CD), an anionic polymer, was introduced into the nucleus, and the relaxation of the chromatin structure and the increase in the amount of histone acetylation accompanying the relaxation of the chromatin structure were observed. It was issued.
本実施例では、細胞内における、アニオン性高分子によりクロマチン構造を工学的に制御について記載する。アニオン性高分子であるポリアスパラギン酸−エチレンジアミン−β−シクロデキストリン(PLD−EDA−β−CD)を核内導入し、クロマチン構造の弛緩およびクロマチン構造の弛緩に伴うヒストンアセチル化量の上昇が見出された。 Example 12 Control of Chromatin Structure Using Anionic Polymer In this example, engineering control of chromatin structure by anionic polymer in cells is described. Polyaspartic acid-ethylenediamine-β-cyclodextrin (PLD-EDA-β-CD), an anionic polymer, was introduced into the nucleus, and the relaxation of the chromatin structure and the increase in the amount of histone acetylation accompanying the relaxation of the chromatin structure were observed. It was issued.
12−1
(1)6−O−Ts−β−CDの合成(Org. Biomol. Chem., 2011, 9, 7799)
β−シクロデキストリン(CD) 5g(12.3mmol)を41mLの水に添加し、0.6g(41mmol)の水酸化ナトリウムを溶解させた水酸化ナトリウム水溶液1.7mLを15分間かけて添加した。その後反応液を氷中に移し、2.5mLのアセトニトリルに溶解した1.02g(14.8mmol)のTsCl(p−トルエンスルホニルクロリド)を25分かけて添加した。その後氷中で4時間撹拌し、桐山ろ紙(No.5)によって沈殿をろ過し、ろ液を4℃で一晩静置した。生じた結晶を桐山ろ紙(No.4)で回収し、水とエタノールによって洗浄した。エタノールをデシケーター内で乾燥させ、1.05gの6−O−Ts−β−CDを得た。
(2)PLD−EDAおよびPLD−EDA−β−CDの合成
PLD(ポリアスパラギン酸)20mg(0.2mmol/COOH)、HOBt(1−ヒドロキシベンゾトリアゾール)27.7mg(0.2mmol)、PyBOP((ベンゾトリアゾール−1−イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスファート)105.1mg(0.2mmol)に脱水DMF10mL中に溶解し、超音波を照射しながら10分間インキュベートした。次いで、2mLの脱水DMF中に溶解したN−Boc−EDA(N−ブトキシカルボニルエチレンジアミン)320mg(2.0mmol)を加え、閉鎖系で、60℃オイルバス中で48時間撹拌した。反応液を室温まで放冷した後に20倍量のエタノール中に沈殿させ、30分間3500rpmで遠心した。上澄みを捨て、新たにエタノールを40mL加えて30分間3500rpmで遠心し、この操作を2回繰り返した。 12-1
(1) Synthesis of 6-O-Ts-β-CD (Org. Biomol. Chem., 2011, 9, 7799)
5 g (12.3 mmol) of β-cyclodextrin (CD) was added to 41 mL of water, and 1.7 mL of an aqueous sodium hydroxide solution in which 0.6 g (41 mmol) of sodium hydroxide was dissolved was added over 15 minutes. Thereafter, the reaction solution was transferred to ice, and 1.02 g (14.8 mmol) of TsCl (p-toluenesulfonyl chloride) dissolved in 2.5 mL of acetonitrile was added over 25 minutes. Thereafter, the mixture was stirred in ice for 4 hours, the precipitate was filtered through Kiriyama filter paper (No. 5), and the filtrate was allowed to stand at 4 ° C. overnight. The resulting crystals were collected with Kiriyama filter paper (No. 4) and washed with water and ethanol. Ethanol was dried in a desiccator to obtain 1.05 g of 6-O-Ts-β-CD.
(2) Synthesis of PLD-EDA and PLD-EDA-β-CD PLD (polyaspartic acid) 20 mg (0.2 mmol / COOH), HOBt (1-hydroxybenzotriazole) 27.7 mg (0.2 mmol), PyBOP ( 105.1 mg (0.2 mmol) of (benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate) was dissolved in 10 mL of dehydrated DMF and incubated for 10 minutes while irradiating with ultrasonic waves. Next, 320 mg (2.0 mmol) of N-Boc-EDA (N-butoxycarbonylethylenediamine) dissolved in 2 mL of dehydrated DMF was added, and the mixture was stirred in a 60 ° C. oil bath for 48 hours in a closed system. The reaction solution was allowed to cool to room temperature, precipitated in 20 times the amount of ethanol, and centrifuged at 3500 rpm for 30 minutes. The supernatant was discarded, 40 mL of ethanol was newly added and centrifuged at 3500 rpm for 30 minutes, and this operation was repeated twice.
(1)6−O−Ts−β−CDの合成(Org. Biomol. Chem., 2011, 9, 7799)
β−シクロデキストリン(CD) 5g(12.3mmol)を41mLの水に添加し、0.6g(41mmol)の水酸化ナトリウムを溶解させた水酸化ナトリウム水溶液1.7mLを15分間かけて添加した。その後反応液を氷中に移し、2.5mLのアセトニトリルに溶解した1.02g(14.8mmol)のTsCl(p−トルエンスルホニルクロリド)を25分かけて添加した。その後氷中で4時間撹拌し、桐山ろ紙(No.5)によって沈殿をろ過し、ろ液を4℃で一晩静置した。生じた結晶を桐山ろ紙(No.4)で回収し、水とエタノールによって洗浄した。エタノールをデシケーター内で乾燥させ、1.05gの6−O−Ts−β−CDを得た。
(2)PLD−EDAおよびPLD−EDA−β−CDの合成
PLD(ポリアスパラギン酸)20mg(0.2mmol/COOH)、HOBt(1−ヒドロキシベンゾトリアゾール)27.7mg(0.2mmol)、PyBOP((ベンゾトリアゾール−1−イルオキシ)トリピロリジノホスホニウムヘキサフルオロホスファート)105.1mg(0.2mmol)に脱水DMF10mL中に溶解し、超音波を照射しながら10分間インキュベートした。次いで、2mLの脱水DMF中に溶解したN−Boc−EDA(N−ブトキシカルボニルエチレンジアミン)320mg(2.0mmol)を加え、閉鎖系で、60℃オイルバス中で48時間撹拌した。反応液を室温まで放冷した後に20倍量のエタノール中に沈殿させ、30分間3500rpmで遠心した。上澄みを捨て、新たにエタノールを40mL加えて30分間3500rpmで遠心し、この操作を2回繰り返した。 12-1
(1) Synthesis of 6-O-Ts-β-CD (Org. Biomol. Chem., 2011, 9, 7799)
5 g (12.3 mmol) of β-cyclodextrin (CD) was added to 41 mL of water, and 1.7 mL of an aqueous sodium hydroxide solution in which 0.6 g (41 mmol) of sodium hydroxide was dissolved was added over 15 minutes. Thereafter, the reaction solution was transferred to ice, and 1.02 g (14.8 mmol) of TsCl (p-toluenesulfonyl chloride) dissolved in 2.5 mL of acetonitrile was added over 25 minutes. Thereafter, the mixture was stirred in ice for 4 hours, the precipitate was filtered through Kiriyama filter paper (No. 5), and the filtrate was allowed to stand at 4 ° C. overnight. The resulting crystals were collected with Kiriyama filter paper (No. 4) and washed with water and ethanol. Ethanol was dried in a desiccator to obtain 1.05 g of 6-O-Ts-β-CD.
(2) Synthesis of PLD-EDA and PLD-EDA-β-CD PLD (polyaspartic acid) 20 mg (0.2 mmol / COOH), HOBt (1-hydroxybenzotriazole) 27.7 mg (0.2 mmol), PyBOP ( 105.1 mg (0.2 mmol) of (benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate) was dissolved in 10 mL of dehydrated DMF and incubated for 10 minutes while irradiating with ultrasonic waves. Next, 320 mg (2.0 mmol) of N-Boc-EDA (N-butoxycarbonylethylenediamine) dissolved in 2 mL of dehydrated DMF was added, and the mixture was stirred in a 60 ° C. oil bath for 48 hours in a closed system. The reaction solution was allowed to cool to room temperature, precipitated in 20 times the amount of ethanol, and centrifuged at 3500 rpm for 30 minutes. The supernatant was discarded, 40 mL of ethanol was newly added and centrifuged at 3500 rpm for 30 minutes, and this operation was repeated twice.
残った沈殿をエタノールを用いてバイアル瓶へ流し込み、70℃常圧で一晩エタノールを乾燥させた。生成した粉末に1mLのTFA(トリフルオロ酢酸)を加えて1時間撹拌し、反応液は20mLのジエチルエーテル中に沈殿した。上澄みは4割以上を捨てた後に再び20mLになるまでジエチルエーテルを加え、この操作を5回繰り返した。室温で一晩ジエチルエーテルを乾燥させた後、残った固体を20mLの超純水に溶解し、5日間凍結乾燥し、3.9mgのPLD−EDAを得た。
The remaining precipitate was poured into a vial using ethanol, and ethanol was dried overnight at 70 ° C. and normal pressure. 1 mL of TFA (trifluoroacetic acid) was added to the resulting powder and stirred for 1 hour, and the reaction solution was precipitated in 20 mL of diethyl ether. After discarding 40% or more of the supernatant, diethyl ether was added again to 20 mL, and this operation was repeated 5 times. After diethyl ether was dried overnight at room temperature, the remaining solid was dissolved in 20 mL of ultrapure water and lyophilized for 5 days to obtain 3.9 mg of PLD-EDA.
得られたPLD−EDA 3.9mg(0.04mmol/EDA)と6−O−Ts−β−CD 50mg(0.4mmol)を脱水DMSO 4mLに溶解し、70℃オイルバス中で48時間撹拌し、反応液を室温まで放冷した後、水中で分画分子量3500の再生セルロース膜を用いて透析を行った。その後、凍結乾燥を48時間行い、5.0mgのPLD−EDA−β−CDを得た。
(3)PLD−EDA−β−CDの同定
PLD−EDA−β−CDはGFCによってフリーなCDの除去と分子量損失がないことを確認し、1H−NMRよりCD由来のピークおよびPLD由来のピークを確認した。
(4)PLD−EDA−β−CDのFITCラベル化
先の項で合成したPLD−EDA−β−CD 2.5mg(3μmol/NH2)を1.17mg(3μmol)のFITC(フルオレセインイソチオシアネート)とともに10mM K2CO3中で遮光しながら室温で2時間撹拌し、FITCラベル化を行った。その後分画分子量3500の膜を用いて水中で遮光しながら6日間透析し、残った不溶性の物質を3000rpmで10分間遠心分離することで取り除き、上清を2日間凍結乾燥することでFITCラベル化PLD−EDA−β−CDを得た。 3.9 mg (0.04 mmol / EDA) of the obtained PLD-EDA and 50 mg (0.4 mmol) of 6-O-Ts-β-CD were dissolved in 4 mL of dehydrated DMSO and stirred in a 70 ° C. oil bath for 48 hours. The reaction solution was allowed to cool to room temperature and then dialyzed in water using a regenerated cellulose membrane having a molecular weight cut off of 3500. Thereafter, lyophilization was performed for 48 hours to obtain 5.0 mg of PLD-EDA-β-CD.
(3) Identification of PLD-EDA-β-CD PLD-EDA-β-CD confirmed that there was no free CD removal and no molecular weight loss by GFC. From 1 H-NMR, CD-derived peak and PLD-derived A peak was confirmed.
(4) FITC labeling of PLD-EDA-β-CD 2.5 mg (3 μmol / NH 2 ) of PLD-EDA-β-CD synthesized in the previous section was replaced with 1.17 mg (3 μmol) of FITC (fluorescein isothiocyanate). In addition, the mixture was stirred at room temperature for 2 hours while being shielded from light in 10 mM K 2 CO 3 to perform FITC labeling. Then, using a membrane with a molecular weight cut off of 3500, dialyzed for 6 days while shielding from water, removed the remaining insoluble material by centrifuging at 3000 rpm for 10 minutes, and freeze-dried the supernatant for 2 days to be labeled with FITC PLD-EDA-β-CD was obtained.
(3)PLD−EDA−β−CDの同定
PLD−EDA−β−CDはGFCによってフリーなCDの除去と分子量損失がないことを確認し、1H−NMRよりCD由来のピークおよびPLD由来のピークを確認した。
(4)PLD−EDA−β−CDのFITCラベル化
先の項で合成したPLD−EDA−β−CD 2.5mg(3μmol/NH2)を1.17mg(3μmol)のFITC(フルオレセインイソチオシアネート)とともに10mM K2CO3中で遮光しながら室温で2時間撹拌し、FITCラベル化を行った。その後分画分子量3500の膜を用いて水中で遮光しながら6日間透析し、残った不溶性の物質を3000rpmで10分間遠心分離することで取り除き、上清を2日間凍結乾燥することでFITCラベル化PLD−EDA−β−CDを得た。 3.9 mg (0.04 mmol / EDA) of the obtained PLD-EDA and 50 mg (0.4 mmol) of 6-O-Ts-β-CD were dissolved in 4 mL of dehydrated DMSO and stirred in a 70 ° C. oil bath for 48 hours. The reaction solution was allowed to cool to room temperature and then dialyzed in water using a regenerated cellulose membrane having a molecular weight cut off of 3500. Thereafter, lyophilization was performed for 48 hours to obtain 5.0 mg of PLD-EDA-β-CD.
(3) Identification of PLD-EDA-β-CD PLD-EDA-β-CD confirmed that there was no free CD removal and no molecular weight loss by GFC. From 1 H-NMR, CD-derived peak and PLD-derived A peak was confirmed.
(4) FITC labeling of PLD-EDA-β-CD 2.5 mg (3 μmol / NH 2 ) of PLD-EDA-β-CD synthesized in the previous section was replaced with 1.17 mg (3 μmol) of FITC (fluorescein isothiocyanate). In addition, the mixture was stirred at room temperature for 2 hours while being shielded from light in 10 mM K 2 CO 3 to perform FITC labeling. Then, using a membrane with a molecular weight cut off of 3500, dialyzed for 6 days while shielding from water, removed the remaining insoluble material by centrifuging at 3000 rpm for 10 minutes, and freeze-dried the supernatant for 2 days to be labeled with FITC PLD-EDA-β-CD was obtained.
12−2 共焦点顕微鏡によるPLD−EDA−β−CDの細胞内導入の観察
スライドガラス上にHeLa細胞を3×104cells/ウェルの濃度で播種して37℃、5%CO2下でインキュベートした。8時間後に培地を交換し、PLD−EDA−β−CD 30μg/ウェルを添加した。さらに16時間37℃、5%CO2下でインキュベートし、培地を全て吸引した後にPBS(−)で洗浄し、4%パラホルムアルデヒドで細胞を固定した後にDAPI溶液(1万分の1希釈)により細胞核を染色した。PBS(−)で2回洗浄した後、50%グリセロールで試料をマウントし、遮光して保管した。 12-2 Observation of intracellular introduction of PLD-EDA-β-CD by confocal microscope HeLa cells were seeded on a slide glass at a concentration of 3 × 10 4 cells / well and incubated at 37 ° C. under 5% CO 2. did. After 8 hours, the medium was changed, and 30 μg / well of PLD-EDA-β-CD was added. After further incubation for 16 hours at 37 ° C. under 5% CO 2 , all the medium was aspirated, washed with PBS (−), fixed with 4% paraformaldehyde, and then cell nuclei with DAPI solution (1 / 10,000 dilution). Was stained. After washing twice with PBS (−), the sample was mounted with 50% glycerol and stored protected from light.
スライドガラス上にHeLa細胞を3×104cells/ウェルの濃度で播種して37℃、5%CO2下でインキュベートした。8時間後に培地を交換し、PLD−EDA−β−CD 30μg/ウェルを添加した。さらに16時間37℃、5%CO2下でインキュベートし、培地を全て吸引した後にPBS(−)で洗浄し、4%パラホルムアルデヒドで細胞を固定した後にDAPI溶液(1万分の1希釈)により細胞核を染色した。PBS(−)で2回洗浄した後、50%グリセロールで試料をマウントし、遮光して保管した。 12-2 Observation of intracellular introduction of PLD-EDA-β-CD by confocal microscope HeLa cells were seeded on a slide glass at a concentration of 3 × 10 4 cells / well and incubated at 37 ° C. under 5% CO 2. did. After 8 hours, the medium was changed, and 30 μg / well of PLD-EDA-β-CD was added. After further incubation for 16 hours at 37 ° C. under 5% CO 2 , all the medium was aspirated, washed with PBS (−), fixed with 4% paraformaldehyde, and then cell nuclei with DAPI solution (1 / 10,000 dilution). Was stained. After washing twice with PBS (−), the sample was mounted with 50% glycerol and stored protected from light.
共焦点顕微鏡観察はオリンパス社のFV1000−Dを用いて行った。波長それぞれFITC/DAPIに最適化された波長により励起・観察した。
Confocal microscope observation was performed using FV1000-D from Olympus. Each wavelength was excited and observed with a wavelength optimized for FITC / DAPI.
12−3 遺伝子導入およびウエスタンブロット法によるクロマチン構造弛緩評価
アニオン性高分子の核内導入によってクロマチン構造が弛緩し、ヒストンが露出すると、ヒストンテイルへのヒストンアセチル化酵素(HAT)のアクセシビリティーが向上し、アセチル化ヒストン量が増加すると考えられる。従って、そのアセチルヒストン量をウエスタンブロット法により定量する。 12-3 Chromatin structure relaxation evaluation by gene transfer and Western blotting When chromatin structure is relaxed by introduction of anionic polymer into nucleus and histone is exposed, the accessibility of histone acetylase (HAT) to histone tail is improved. However, the amount of acetylated histone is thought to increase. Therefore, the amount of acetyl histone is quantified by Western blotting.
アニオン性高分子の核内導入によってクロマチン構造が弛緩し、ヒストンが露出すると、ヒストンテイルへのヒストンアセチル化酵素(HAT)のアクセシビリティーが向上し、アセチル化ヒストン量が増加すると考えられる。従って、そのアセチルヒストン量をウエスタンブロット法により定量する。 12-3 Chromatin structure relaxation evaluation by gene transfer and Western blotting When chromatin structure is relaxed by introduction of anionic polymer into nucleus and histone is exposed, the accessibility of histone acetylase (HAT) to histone tail is improved. However, the amount of acetylated histone is thought to increase. Therefore, the amount of acetyl histone is quantified by Western blotting.
HeLa細胞を12ウェルプレートに5×104細胞/ウェルで播種し、37℃、5%CO2下でインキュベートした。8時間後に培地を交換し、PLD−EDA−β−CD 100μg/ウェルを添加した。さらに16時間同条件下でインキュベートし、培地を全て吸引した後に、ヒストンアセチル化酵素(HAT)をコードしたプラスミドDNAをリポフェクチンと電荷比(+/−)1で混合し、1時間リン酸バッファー中でインキュベートすることで調製した複合体を添加した(DNA量 1μg/ウェル)。その後、細胞を同条件下で48時間インキュベートし、培地を吸引した後PBS(−)で洗浄し、5×細胞溶解用液 75μL/ウェルを添加することで細胞溶解物を回収した。回収したライセートにPBS(−) 200μLを添加し、不溶性のタンパク質を取り除くために5000×gで10分間遠心分離を行った。上清200μLは、タンパク質のジスルフィド結合を切断するために還元剤を用いて、95℃で5分間インキュベートした。
HeLa cells were seeded in 12 well plates at 5 × 10 4 cells / well and incubated at 37 ° C., 5% CO 2 . After 8 hours, the medium was changed, and 100 μg / well of PLD-EDA-β-CD was added. After further incubation for 16 hours under the same conditions and aspiration of all the medium, plasmid DNA encoding histone acetylase (HAT) was mixed with lipofectin at a charge ratio (+/−) of 1 and in phosphate buffer for 1 hour. The complex prepared by incubating with was added (DNA amount 1 μg / well). Thereafter, the cells were incubated for 48 hours under the same conditions, the medium was aspirated, washed with PBS (−), and cell lysate was recovered by adding 75 μL / well of 5 × cell lysis solution. 200 μL of PBS (−) was added to the collected lysate, and centrifugation was performed at 5000 × g for 10 minutes to remove insoluble protein. 200 μL of the supernatant was incubated for 5 minutes at 95 ° C. using a reducing agent to cleave the disulfide bonds of the protein.
サンプルの30μLをロードし、30mA一定の条件でSDS−PAGEを行った。30分間の泳動後、PVDF膜へのブロッティングを100V一定の条件で90分間行い、PVDF膜を1時間ブロッキングした。ブロッキング後のPVDF膜を1×TBS−Tにより5分間400rpmで震盪することによって洗浄し、この操作を3回繰り返した。その後ウサギ由来のアセチル−H3抗体、アセチル−H4抗体・β−アクチン抗体それぞれ3μLを含む3mLの1×TBS−T中で、PVDF膜を12時間4℃でインキュベートした。さらにPVDF膜を1×TBS−Tで前述の通り洗浄し、ウサギ由来のHRP結合2次抗体3μLを含む3mLの1×TBS−T中で6時間インキュベートした。1×TBS−Tで前述の洗浄を行った後、アルカリホスファターゼによる発色処理を行い、CSアナライザーによって露光時間4分でバンドを検出した。
30 μL of the sample was loaded and SDS-PAGE was performed under a constant condition of 30 mA. After the electrophoresis for 30 minutes, the PVDF membrane was blotted for 90 minutes under a constant condition of 100 V, and the PVDF membrane was blocked for 1 hour. The PVDF membrane after blocking was washed by shaking with 1 × TBS-T for 5 minutes at 400 rpm, and this operation was repeated three times. Thereafter, the PVDF membrane was incubated at 4 ° C. for 12 hours in 3 mL of 1 × TBS-T containing 3 μL each of acetyl-H3 antibody, acetyl-H4 antibody and β-actin antibody derived from rabbit. Further, the PVDF membrane was washed with 1 × TBS-T as described above, and incubated in 3 mL of 1 × TBS-T containing 3 μL of HRP-conjugated secondary antibody derived from rabbit for 6 hours. After washing with 1 × TBS-T, color development with alkaline phosphatase was performed, and a band was detected with a CS analyzer at an exposure time of 4 minutes.
12−4 結果
(1)共焦点顕微鏡観察の結果
共焦点顕微鏡観察の結果を図7A−図7Dに示す。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。図7より、細胞核の領域に、PLD−EDA−β−CDが局在していることが示された。なお、CD修飾を行っていないPLD−EDAは核への局在が観察されなかった。限定されるわけではないが、「EDA」部分は、アニオン性高分子(PLD)と細胞間膜の反発を防ぐためのスペーサーとして、「CD」部分は細胞膜コレステロールとの相互作用により、脂質に富む領域にポリマーが留まるために機能していると考えられる。
(2)ウエスタンブロットによるアセチルヒストン量の変化(KSB102)
HeLa細胞におけるヒストンH3およびH4のアセチル化量はアニオン性ポリマー/HAT/リポフェクチン複合体のいずれも添加していないコントロールの場合と比較して、HAT/リポフェクチンを加えたものでは3.9倍アセチル化量が増加し、アニオン性ポリマー添加後にHAT/リポフェクチンを加えたものではコントロールに対して4.7倍アセチル化量の増加を示した。
12-4 Result (1) Result of confocal microscope observation The result of confocal microscope observation is shown to FIG. 7A-FIG. 7D. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined. FIG. 7 shows that PLD-EDA-β-CD is localized in the cell nucleus region. In addition, PLD-EDA not subjected to CD modification was not observed to be localized in the nucleus. Without limitation, the “EDA” moiety is a spacer to prevent repulsion between the anionic polymer (PLD) and the intercellular membrane, and the “CD” moiety is rich in lipids through interaction with plasma membrane cholesterol. It is thought that it is functioning because the polymer stays in the region.
(2) Change in the amount of acetyl histone by Western blot (KSB102)
The amount of acetylation of histones H3 and H4 in HeLa cells is 3.9 times higher in the case of adding HAT / lipofectin than in the case of adding no anionic polymer / HAT / lipofectin complex. The amount increased, and the addition of HAT / lipofectin after addition of the anionic polymer showed a 4.7-fold increase in acetylation relative to the control.
(1)共焦点顕微鏡観察の結果
共焦点顕微鏡観察の結果を図7A−図7Dに示す。図7A−Dは各々、(A)細胞核を染色したDAPIによる蛍光像、(B)FITCラベル化PLD−EDA−β−CDによる蛍光像、(C)微分干渉像、そして、(D)A−Cの画像を結合させたものである。図7より、細胞核の領域に、PLD−EDA−β−CDが局在していることが示された。なお、CD修飾を行っていないPLD−EDAは核への局在が観察されなかった。限定されるわけではないが、「EDA」部分は、アニオン性高分子(PLD)と細胞間膜の反発を防ぐためのスペーサーとして、「CD」部分は細胞膜コレステロールとの相互作用により、脂質に富む領域にポリマーが留まるために機能していると考えられる。
(2)ウエスタンブロットによるアセチルヒストン量の変化(KSB102)
HeLa細胞におけるヒストンH3およびH4のアセチル化量はアニオン性ポリマー/HAT/リポフェクチン複合体のいずれも添加していないコントロールの場合と比較して、HAT/リポフェクチンを加えたものでは3.9倍アセチル化量が増加し、アニオン性ポリマー添加後にHAT/リポフェクチンを加えたものではコントロールに対して4.7倍アセチル化量の増加を示した。
12-4 Result (1) Result of confocal microscope observation The result of confocal microscope observation is shown to FIG. 7A-FIG. 7D. 7A-D respectively show (A) fluorescence image by DAPI staining cell nuclei, (B) fluorescence image by FITC-labeled PLD-EDA-β-CD, (C) differential interference image, and (D) A- C images are combined. FIG. 7 shows that PLD-EDA-β-CD is localized in the cell nucleus region. In addition, PLD-EDA not subjected to CD modification was not observed to be localized in the nucleus. Without limitation, the “EDA” moiety is a spacer to prevent repulsion between the anionic polymer (PLD) and the intercellular membrane, and the “CD” moiety is rich in lipids through interaction with plasma membrane cholesterol. It is thought that it is functioning because the polymer stays in the region.
(2) Change in the amount of acetyl histone by Western blot (KSB102)
The amount of acetylation of histones H3 and H4 in HeLa cells is 3.9 times higher in the case of adding HAT / lipofectin than in the case of adding no anionic polymer / HAT / lipofectin complex. The amount increased, and the addition of HAT / lipofectin after addition of the anionic polymer showed a 4.7-fold increase in acetylation relative to the control.
Claims (7)
- 以下の
1)両性高分子、アニオン性高分子、及び非イオン性高分子からなる群から選択される、高分子であって、以下のいずれかの主鎖骨格を有する高分子;
2)
i)ヒストンアセチル化酵素をコードする遺伝子を含む発現ベクター;
ii)ヒストンメチル化酵素をコードする遺伝子を含む発現ベクター;
iii)ヒストン脱アセチル化酵素をコードする遺伝子を含む発現ベクター;
iv)ヒストン脱メチル化酵素をコードする遺伝子を含む発現ベクター;
v)ヒストンアセチル化阻害剤;
vi)ヒストン脱アセチル化阻害剤;
vii)ヒストンメチル化阻害剤;及び
viii)ヒストン脱メチル化阻害剤
からなるグループから選択される、2種類またはそれ以上の物質を包摂する担体を含む、クロマチン構造を制御するための組成物。 1) A polymer selected from the group consisting of amphoteric polymers, anionic polymers, and nonionic polymers, and having any of the following main chain skeletons:
2)
i) an expression vector comprising a gene encoding a histone acetylase;
ii) an expression vector comprising a gene encoding a histone methylase;
iii) an expression vector comprising a gene encoding a histone deacetylase;
iv) an expression vector comprising a gene encoding a histone demethylase;
v) histone acetylation inhibitors;
vi) histone deacetylation inhibitors;
vii) a histone methylation inhibitor; and viii) a composition for controlling a chromatin structure, comprising a carrier containing two or more substances selected from the group consisting of histone demethylation inhibitors. - クロマチン構造を弛緩するための、請求項1に記載の組成物。 The composition according to claim 1 for relaxing chromatin structure.
- 高分子が、
a)カルボキシメチル化ポリビニルイミダゾール、
b)ポリアクリル酸、ポリメタクリル酸、ポリグルタミン酸、カルボキシルメチル化ポリヒスチジン、若しくはポリアスパラギン酸、又は
c)PEG又は糖鎖
あるいは、これらのブロック共重合体、グラフト共重合体、又はデンドリマー体、から選択される、請求項1又は2に記載の高分子。 Polymer
a) carboxymethylated polyvinylimidazole,
b) from polyacrylic acid, polymethacrylic acid, polyglutamic acid, carboxylmethylated polyhistidine, or polyaspartic acid, or c) PEG or sugar chain, or a block copolymer, graft copolymer, or dendrimer thereof. The polymer according to claim 1 or 2, which is selected. - 高分子の分子量が、10,000−2,000,000である、請求項1−3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the polymer has a molecular weight of 10,000 to 2,000,000.
- 担体が、ポリエステル、リン酸カルシウム、又はポリアミノ酸を含む、請求項1−4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the carrier comprises polyester, calcium phosphate, or polyamino acid.
- 担体が、さらに、DNA脱メチル化酵素をコードする遺伝子を含む発現ベクター、DNAメチル化酵素をコードする遺伝子を含む発現ベクター、あるいは、DNAメチル化酵素阻害剤、を含む、請求項1−5のいずれか1項に記載の組成物。 The carrier further comprises an expression vector containing a gene encoding a DNA demethylase, an expression vector containing a gene encoding a DNA methylase, or a DNA methylase inhibitor. The composition according to any one of the above.
- 請求項1−6のいずれか1項に記載の組成物をin vitro、ex vivo又はin vivoで投与することにより、クロマチン構造を制御する方法。 A method for controlling a chromatin structure by administering the composition according to any one of claims 1 to 6 in vitro, ex vivo, or in vivo.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014512738A JP6004499B2 (en) | 2012-04-24 | 2013-04-24 | Composition for controlling chromatin structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012099302 | 2012-04-24 | ||
JP2012-099302 | 2012-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013162054A1 true WO2013162054A1 (en) | 2013-10-31 |
Family
ID=49483342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/062737 WO2013162054A1 (en) | 2012-04-24 | 2013-04-24 | Composition for controlling chromatin structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6004499B2 (en) |
WO (1) | WO2013162054A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015164420A (en) * | 2014-02-10 | 2015-09-17 | 公立大学法人首都大学東京 | chromatin structure control agent |
CN113209044A (en) * | 2021-01-29 | 2021-08-06 | 广州医科大学 | Bionic nano-particle for targeted delivery of HDACIs (high-Density antibodies), and preparation method and application thereof |
CN115054701A (en) * | 2022-05-30 | 2022-09-16 | 浙江大学 | Protein-loaded hyperbranched polylysine micro-nano carrier and preparation method thereof |
WO2023233813A1 (en) * | 2022-05-31 | 2023-12-07 | 株式会社Jvcケンウッド | Living body information processing method and living body information processing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029565A1 (en) * | 2006-09-05 | 2008-03-13 | Kyushu Institute Of Technology | Compound having inhibitory activity on histone deacetylase, and pharmaceutical comprising the compound as active ingredient |
WO2011068522A1 (en) * | 2009-12-02 | 2011-06-09 | Nimble Epitech | Pharmaceutical composition containing a hypomethylating agent and a histone deacetylase inhibitor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030236214A1 (en) * | 1999-06-09 | 2003-12-25 | Wolff Jon A. | Charge reversal of polyion complexes and treatment of peripheral occlusive disease |
-
2013
- 2013-04-24 WO PCT/JP2013/062737 patent/WO2013162054A1/en active Application Filing
- 2013-04-24 JP JP2014512738A patent/JP6004499B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008029565A1 (en) * | 2006-09-05 | 2008-03-13 | Kyushu Institute Of Technology | Compound having inhibitory activity on histone deacetylase, and pharmaceutical comprising the compound as active ingredient |
WO2011068522A1 (en) * | 2009-12-02 | 2011-06-09 | Nimble Epitech | Pharmaceutical composition containing a hypomethylating agent and a histone deacetylase inhibitor |
Non-Patent Citations (2)
Title |
---|
KAZANTSEV, A. G. ET AL.: "Therapeutic application of histone deacetylase inhibitors for central nervous system disorders.", NAT. REV., vol. 7, 2008, pages 854 - 868 * |
YUTARO ASABA ET AL.: "Atarashii Idenshi Sosa o Mezashita Epigenetics Kogaku", POLYMER PREPRINTS, JAPAN, vol. 60, no. 2, 2011, pages 4781 - 4782 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015164420A (en) * | 2014-02-10 | 2015-09-17 | 公立大学法人首都大学東京 | chromatin structure control agent |
CN113209044A (en) * | 2021-01-29 | 2021-08-06 | 广州医科大学 | Bionic nano-particle for targeted delivery of HDACIs (high-Density antibodies), and preparation method and application thereof |
CN115054701A (en) * | 2022-05-30 | 2022-09-16 | 浙江大学 | Protein-loaded hyperbranched polylysine micro-nano carrier and preparation method thereof |
WO2023233813A1 (en) * | 2022-05-31 | 2023-12-07 | 株式会社Jvcケンウッド | Living body information processing method and living body information processing device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013162054A1 (en) | 2015-12-24 |
JP6004499B2 (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zuo et al. | Enzyme-responsive Ag nanoparticle assemblies in targeting antibacterial against methicillin-resistant Staphylococcus aureus | |
Chang et al. | Efficient gene transfection by histidine-modified chitosan through enhancement of endosomal escape | |
EP2872120B1 (en) | Therapeutic nanoparticles with a polymyxin b as targeting agent | |
Ahmed et al. | Cationic glyco-functionalized single-walled carbon nanotubes as efficient gene delivery vehicles | |
Kim et al. | Bioreducible polymer-conjugated oncolytic adenovirus for hepatoma-specific therapy via systemic administration | |
Zhang et al. | DNA tetrahedron delivery enhances doxorubicin-induced apoptosis of HT-29 colon cancer cells | |
Kim et al. | Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia–reperfusion injury: Use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier | |
Zhang et al. | DNA nanosponge for adsorption and clearance of intracellular miR-21 and enhanced antitumor chemotherapy | |
US10058620B2 (en) | Dextran-peptide hybrid for efficient gene delivery | |
Ma et al. | Anti-inflammatory activity of chitosan nanoparticles carrying NF-κB/p65 antisense oligonucleotide in RAW264. 7 macropghage stimulated by lipopolysaccharide | |
JP6004499B2 (en) | Composition for controlling chromatin structure | |
Tavares et al. | High-affinity N-(2-hydroxypropyl) methacrylamide copolymers with tailored N-acetyllactosamine presentation discriminate between galectins | |
Wang et al. | Dual-responsive nanoparticles based on oxidized pullulan and a disulfide-containing poly (β-amino) ester for efficient delivery of genes and chemotherapeutic agents targeting hepatoma | |
Liu et al. | A novel gene carrier prepared from triple helical β-glucan and polydeoxyadenylic acid | |
Chen et al. | Aptamer-functionalized binary-drug delivery system for synergetic obesity therapy | |
Reich et al. | Secondary conformational polymorphism of nucleic acids as a possible functional link between cellular parameters and DNA packaging processes | |
US9161962B2 (en) | Targeted therapeutic nanoparticles | |
Martien et al. | Oral gene delivery: design of polymeric carrier systems shielding toward intestinal enzymatic attack | |
Yu et al. | Coordination-driven FBXW7 DNAzyme-Fe nanoassembly enables a binary switch of breast cancer cell cycle checkpoint responses for enhanced ferroptosis-radiotherapy | |
Balde et al. | Development and in vitro effects of thiolated chitosan nanoparticles for the sustained delivery of inflammation suppressing bioactive peptide | |
US9492470B2 (en) | Use of HMGA-targeted phosphorothioate DNA aptamers to suppress carcinogenic activity and increase sensitivity to chemotherapy agents in human cancer cells | |
Yu et al. | Microenvironment-responsive DNA-conjugated albumin nanocarriers for targeted therapy | |
Li et al. | Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors | |
US11305021B2 (en) | Membrane-lytic block copolymers | |
JPWO2016129531A1 (en) | DNA aptamer that binds to non-small cell lung cancer cells (H1975) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13781108 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2014512738 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13781108 Country of ref document: EP Kind code of ref document: A1 |